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Abstract

In this work, we study the physics of a magnetic impurity coupled to several conduction

band structures (metallic band, pseudo-gap systems and semiconductors with finite gap).

However, the main focus is to explain the behavior of a system comprising a quantum

impurity, strongly coupled to a semiconductor (with gap 2∆) and weakly coupled to a metal.

Using the Numerical Renormalization Group (NRG) and Anderson’s poor man’s scaling, we

show that this system (Impurity+metal-semiconductor hybrid contact), displays a reentrant

Kondo stage as one gradually lowers the temperature. The analysis of the corresponding

Single Impurity Anderson Model (SIAM), through the impurity’s thermodynamic and

spectral properties, shows that the reentrant stage is characterized by a second sequence

of SIAM fixed points, viz., free orbital (FO) → local moment (LM) → strong coupling

(SC). In the higher temperature stage, the SC fixed point (with a Kondo temperature TK1)

is unstable, while in the lower temperature, the Kondo screening exhibits a much lower

Kondo temperature TK2, associated to a stable SC fixed point. The results clearly suggest

that the reentrant Kondo screening is associated to an effective SIAM, with an effective

Hubbard Ueff , whose value is clearly identifiable in the impurity’s local density of states.

This reentrant SIAM, or effective SIAM, at temperatures below the gap, behaves as a

replica of the high temperature SIAM. We show this in our results, and more specifically,

in the NRG flow diagram (obtained through NRG). The second stage RG flow, whose FO

fixed point emerges for T ≈ ∆ < TK1, takes over once the RG flows away from the unstable

first stage SC fixed point. The intuitive picture that emerges from our analysis is that the

first Kondo state develops through impurity screening by semiconducting electrons, while

the second stage involves screening by metallic electrons, once the semiconducting electrons

are out of reach to thermal excitations (T < ∆) and only the metallic (low) spectral weight

inside the gap is available for impurity screening. For all parameter ranges analyzed, we

find through the NRG results that TK2 ≪ TK1. Last, we analyze a hybrid system formed

by a quantum impurity ‘sandwiched’ between an armchair graphene nanoribbon (AGNR)

and a scanning tunneling microscope (STM). In this system, the energy gap (2∆) can be

externally tuned by an electric-field-induced Rashba spin-orbit interaction. We analyzed

this system for realistic parameter values, using NRG, and concluded that the reentrant

SIAM, and the second stage Kondo, is worthy of experimental investigation.

Keywords: Kondo Temperature, Critical Coupling, reentrant Kondo,

reentrant SIAM, Armchair graphene nanoribbon



Resumo

Nesse trabalho, estudandos a física de uma impureza magnética acoplada a várias bandas

de condução (banda metálica, pseud-gap e semicondutora). Porém, o foco principal do tra-

balho é explicar o comportamento de um sistema constituido por uma impureza quântica,

fortemente acoplada a um semicondutor (com gap 2∆) e fracamente acoplada a um contato

metálico. Usando Rernoamlização de Grupo Numérica (NRG) e poor man’s scaling no

Modelo de Anderson, mostramos que para esse sistema (impureza+metal+semicondutor),

exibe um estágio repetição do efeito Kondo à medida que diminui gradualmente a tempe-

ratura. A análise do correspondente Modelo de Anderson de uma única impureza (SIAM),

através das propriedades termodinâmicas e espectrais da impureza, mostra que o estágio de

repetição é caracterizado por uma segunda sequência de pontos fixos SIAM, Orbital Livre

(FO) → Momento Local (LM) → acoplamento forte (SC). No estágio de temperatura mais

alta, o ponto fixo SC (com uma temperatura Kondo TK1) é instável, enquanto o segundo

Kondo tem uma temperatura Kondo TK2 muito mais baixa, associada a um ponto fixo SC

estável . Os resultados sugerem claramente que a repetição está associada a um SIAM

efetivo, com um pico de Hubbard Ueff , cujo valor é claramente identificável na densidade

de estados local da impureza.Esse SIAM efetivo para baixa temperatura, que chamamos

de repetição do SIAM, se comporta como uma réplica do SIAM de alta temperatura. O

fluxo RG do segundo estágio (obtido através do NRG), cujo ponto fixo FO emerge por

T ≈ ∆ < TK1, assume o controle assim que o RG flui para longe do ponto fixo SC instável

do primeiro estágio. A imagem intuitiva que emerge de nossa análise é que o primeiro estado

de Kondo se desenvolve por meio da blindagem da impureza por elétrons semicondutores,

enquanto o segundo estágio envolve a blindagem por elétrons metálicos, uma vez que os

elétrons semicondutores estão fora do alcance das excitações térmicas (T < ∆ ) e apenas

os elétrons metálicos, dentro do gap estão disponíveis para a blindagem da impureza. Para

todos os intervalos de parâmetros analisados, através do NRG encontramos TK2 ≪ TK1.

Por último, nós analizamos um sistema hibrido formado por uma impureza ‘imprensada’

entre uma nanofita de grafeno armchair (AGNR) e um microscópio de tunelamento de

varredura (STM). Nesse sistema, a energia do gap (2∆) pode ser externamente alterada por

um campo elétrinco induzido por interação spin-orbita Rashba. Analizamos esse sistema

para parâmetros realísticos, usando NRG, e concluimos que a repetição do SIAM, e o

segundo estágio Kondo, pode ser investigado experimentalmente.

Palavras Chaves: Temperatura Kondo, Acoplamento Crítico, repetição do

Kondo, repetição do SIAM, Nanofita de grafeno armchair
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1 Introduction

Unraveling the physics of a many-body interacting system is always a challenging

task. Despite simplicity form of mutual interactions between pairs of its constituents,

collectively, the system ofttimes behaves in an unexpected manner. This fascinating

facet of nature has been beautifully discussed in a seminal paper by P. W. Anderson [3].

The archetypal example, in condensed matter physics, is that of the ground state of

the many-body Kondo problem [4, 5, 6]. Experimentally observed in the thirties, the

Kondo effect remained incognito until the sixties, when the Japanese physicist J. Kondo

explained the phenomena [4]. The phenomena consist of a collective dynamical screening of

a localized magnetic moments embedded in a conducting material. The antiferromagnetic

coupling between the localized magnetic moments and the spins of the itinerant electrons

renders a singlet-like many-body ground state in the system. The characteristic energy

associated to this phenomena is related to the so called Kondo temperature TK , below

which the screening takes place. Originally, observed in bulk material doped with iron

[7, 8], later on the Kondo effect have been investigated in a variety of different systems

such as magnetic atoms on metallic surfaces and quantum dot (QD) coupled to conduction

electrons [9, 10, 11, 12].

The comprehension of the physical mechanisms underlying the Kondo screening was

important to understand magnetic properties in many materials. In nanoscopic systems,

the Kondo effect plays a pivotal role in transport properties, which is relevant to electronic

devices [13, 14, 15, 16, 17]. For example, in single electron transistors [18], when the

Kondo effect takes place, the system exhibits an resonant many-body electronic level

that is responsible for the electronic transport across the device. This dramatic effect in

the transport properties nanoscopic systems has profound implications in technological

applications [19]. More recently, renewed interest in the Kondo effect has been noted in

the context of topological materials such as topological insulators [20, 21, 22, 23, 24, 25].

To explain the Kondo effect, J. Kondo proposed a Hamiltonian describing the main

spin-flip scattering processes involved in the phenomena. Later on, it was shown that the

Kondo Hamiltonian could be derived from the more general Anderson model in the regime

in which charge fluctuations are suppressed [26]. It is unfortunate, however, that it is not

possible to solve the Anderson model in an exact manner. The reason is that the coulomb

interaction term together with the infinite degrees of freedom of the conduction electrons

in the Hamiltonian result in a rich and complicated many-body problem, to which there is

no known exact solution.
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Nevertheless, the Anderson model can be investigated using different techniques

and approximations, such as Green’s functions method [27], a slave bosons in mean-field

approximation [28], non-crossing approximation [29], perturbation theory [30], etc. As we

mention above, one interesting strategy to address the Kondo effect is to derive the Kondo

Hamiltonian from the Anderson model. Even though this approach simplifies the problem,

the resulting Kondo Hamiltonian is not yet exactly solvable. The advantage, however, is

that within the Kondo model we can employ more easily the scaling analysis, a technique

that allows us to obtain some relevant physical quantities of the problem, such as the

Kondo temperature [31]. In some particular case it is also instructive to apply scaling

analysis in Andereson Model [32]. Despite the usefulness of the many approximation

solutions for the Anderson and Kondo models, they fail to properly describe the ground

state of the system. To properly address the Kondo problem, Wilson developed a very

powerful numerical renormalization group (NRG) method capable to properly tackle the

Kondo problem [6, 26, 5].

A renormalization-group analysis of the single impurity Anderson Model (SIAM) [6,

26, 5] shows that the system crosses over three different fixed points as the temperature is

lowered: (i) the unstable free orbital (FO) fixed point, in which the impurity is effectively

decoupled from the conduction band, (ii) the local moment (LM) fixed point (also unstable),

where the impurity acquires a highly fluctuating magnetic moment, and (iii) the stable

strong coupling (SC) fixed point, in which the magnetic moment of the impurity becomes

fully screened by the electrons of the conduction band. The SIAM, so to speak, provides a

rich, although the simplest, description of the Kondo physics in QDs. The scenario presented

above represents a generic picture of the physics of the SIAM, which remains qualitatively

valid, provided the density of states of the conduction electrons exhibits no special features

close to the Fermi level. Richer Kondo physics can be found if the conduction band exhibits

structures such as a pseudo-gap or zero-energy peaks, like van-Hove singularities. These

features have been studied in great detail by several authors [33, 34, 35, 36].

It is known that the Kondo effect is strongly dependent on the character of the

conduction band to which the magnetic impurity is coupled [33]. A richer Kondo physics

emerge when the conduction band exhibits some structures near the Fermi level. For

instance, in pseudo-gap systems, in which the conduction band density ρ(ε) of states

depends on the energy ε as εr, with 0 < r < 2, there is a critical Kondo coupling below

which there is no screening [37]. Also working with pseudo-gap system, Cheng et al. [32]

found the SIAM fixed points using poor man’s scaling in Anderson Model.

An interesting, but less studied situation, is the case in which the conduction

band is that of a semiconductor, i.e, a spectra characterized by a finite gap ∆. Beyond

conventional narrow-gap semiconductors, examples of such a gapped material encompass

trans-Polyacetylene [38], also Dirac insulators [39] and the armchair graphene nanoribbon
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(AGNR) [40, 41, 42, 43, 44]. The richness of the Kondo physics resulting from the interplay

between TK and ∆ has been studied since almost three decades ago using a variety of

numerical and analytical techniques. For instance: Quantum Monte Carlo (QMC), by

Takegahara et al. [45, 46] and T. Saso [47], poor man’s scaling, 1/N expansion, non-

crossing approximation (NCA) and QMC, by Ogura and Saso [48], equation-of-motion

plus Hartree-Fock, by Cruz et al. [49], density matrix renormalization group (DMRG),

by Yu and Guerrero [50], numerical renormalization group (NRG), by Takegahara et

al. [45, 46] and Chen and Jayaprakash [51], Density Matrix NRG (DM-NRG), by Moca

and Roman [52], as well as perturbation theory and the local moment approach, by Galpin

and Logan [53, 54].

The earliest results pointed to the existence of a Kondo ground state (a SC fixed

point) whenever ∆ < ∆c, where the critical gap ∆c should fulfill the relation ∆c . TK ,

being TK defined as the Kondo temperature for ∆ = 0. However, NRG results [45, 51, 52]

have indicated that a finite critical gap ∆c only exists away from half-filling, while at

half-filling any arbitrarily small gap (i.e., any ∆ > 0) results in the ground state becoming

a doublet, i.e., switching from the standard Kondo-singlet SC fixed point (for ∆ = 0) to a

doublet LM fixed point. This qualitative difference (half-filling vs. away-from-half-filling)

has been confirmed by analytical calculations [53] and a local-moment approach [54], where

it was shown that the ground state away from half-filling is a so-called generalized Fermi

liquid, while it is a non-Fermi liquid for all finite values of ∆ at half-filling. In addition,

DM-NRG calculations [52] studied the quantum phase transition (QPT) occurring away

from half-filling for ∆ = ∆c and showed the formation of a single bound state when the

system is in the SC regime (∆ < ∆c), and the formation of an additional one once the

system transitions to the LM regime (∆ > ∆c).

In this work we, investigate the Kondo effect in a physical system that is a slightly

different model from the one already analyzed in the studies described above, as it is

composed of a QD [or a quantum impurity (QI)] that is strongly coupled, on the right, to

a semiconducting lead (with a gap 2∆) and, on the left, weakly coupled to a metallic lead

(see Fig. 1). We aim at comparing the results from the poor man’s scaling analysis to the

NRG approach obtained for the system as it is composed of a QD that is strongly coupled,

on the right, to a semiconducting lead and, on the left, is weakly coupled to a metallic

lead. More specifically, we want to compare two quantities: the Kondo temperature TK

and the critical Kondo couplings Jc, obtained from the semiconductor conduction bands

with gap by the two approaches. In addition, we want to explain the unusual behavior of

this system for energy scales below the gap and propose a real system where this can be

observed.

The main result of this work is obtained by poor man’s scaling (PMS) and NRG

analysis, of the appropriate SIAM for modeling the first system mentioned in the preceding
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2 Models for magnetic impurities coupled to

structured conduction bands

The Kondo effect results from unusual scattering mechanisms of conduction elec-

trons in a metal due to magnetic impurities. These scattering processes renders a term in

the electrical resistivity that increases logarithmically with temperature as the temperature

T is lowered. These mechanisms can also be used, more generally, to describe many-body

scattering processes from impurities or ions having quantum mechanical degrees of freedom

compatible with those of the conduction electrons. In this more general sense, these

mechanisms have become a key concept in condensed matter physics in understanding the

behavior of metallic systems with strongly interacting electrons.

Figure 2 – (red) Schematic representation of the resistance curve observed when the conduction
electrons are blinded by the magnetic impurity. This behavior can be observed in
systems that have magnetic impurities. In these systems it is possible to observe a
resistance minimum as the temperature decreases and this is the first experimental
evidence of the Kondo effect. (green) Schematic representation of the resistance curve
observed for ‘normal’ metals and explained by the phonon scattering mechanism.
(blue) Schematic representation of the resistance for superconductors metals where
the resistance drops to zero below a critical temperature, this phenomenon is
explained by the mechanisms of Cooper pairs. Figure retired from [1].
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resistivity is given by

R(T ) ≈ R0

[

1 + αT 2 + βT 5 − γ ln

(

kBT

D − εF

)]

, (2.1)

where α, β and γ are parameters that depend on the material. For small temperatures,

the logarithmic term in equation above increase as the temperature decreases, explaining

the resistivity minimum observed in the Fig. 3.

2.1 Anderson and Kondo Model

To understand the behavior of a magnetic impurity coupled to the conduction band

and also the scattering mechanisms responsible for the Kondo effect, we start with the

single impurity Anderson model (SIAM) described in second quantization as

HA =
∑

σ

εdd
†
σdσ + Und↑nd↓ +

∑

kσ

εkσc
†
kσckσ +

∑

kσ

(

Vkσd
†
σckσ + H.c.

)

. (2.2)

Here, d†
σ creates (annihilates) an electron with energy εd and spin σ in the quantum

impurity and c†
kσ creates and electron with energy εk and spin σ in the conduction band.

In the above, ndσ = d†
σdσ is the number operator. The conduction band is characterized

by a density of states ρ(ω) = ρ0f(ω)Θ(D − |ω|) in which D is the band width, ρ0 is a

normalization factor and f(ω) is a general function that describe the shape of the density

of states. For example, in the flat band f(ω) = 1 or in a pseudo-gap systems f(ω) = ωr

and in semiconductor f(ω) = |ω|√
ω2−∆2

Θ(|ω| − ∆).

The Kondo regime manifests itself at low temperatures and when the impurity

has a localized magnetic moment. In the Anderson model, the impurity is represented

by a quantum dot and only has the resulting localized magnetic moment if the impurity

have one unpaired electron, this is true only in the single level case. Thus, to recover this

regime through the Anderson model, we will use the general Hamiltonian projection in

the single occupancy subspace using the projection operators.

As already mentioned, in the Anderson model the magnetic impurity can assume

three states of occupation. The empty state, where there are no electrons in the impurity,

the single occupation where there is only one electron (with spin up or down) and the

double occupation, the impurity has two electrons (one up and one down due to principle

of Pauli’s exclusion).

A comparison of the energies associated to these occupations of the impurity is

represented by Figure 4. The energy of the single occupancy level is represented by E1,

while the energy difference between the double and single occupation state is εd +U , where

U is the Coulomb repulsion. Thus, if the energy of the singly occupied state is much lower

that the energy of the empty and doubly occupied state, then the impurity will prefer to
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Figure 4 – Schematic representation of the impurity states and their energy. In the empty
state |0〉, where there are no electrons in the quantum impurity is represented by
E0 = 0 in energy scale. The single occupation |1σ〉 have one electron with spin
σ (up or down), this state is represented by E1 in energy scale and is extremely
important in the Kondo physics since in this setting the quantum impurity has a
resulting magnetic moment. Other case is the quantum impurity with two electrons,
the double occupation state |2〉 with energy E2. The double occupation have one
electron spin up and one spin down by Pauli exclusion principle.

be in a single occupation state in low-energy, a necessary condition for the Kondo effect to

take place.

For the impurity in a single occupied state and at low temperatures, we can use

the Kondo Hamiltonian described by

HK =
∑

kσ

εkσc
†
kσckσ +

∑

kk′

Jkk′

[

Sz
(

c†
k↑ck′↑ − c†

k↓ck′↓
)

+ S+c†
k↓ck′↑ + S−c†

k↑ck′↓
]

. (2.3)

Here, Jk,k′ is called Kondo-like coupling. A Hamiltonian like (2.3) was proposed by Kondo

in 1963 [4], It was latter shown that it can be derived by performing a Schrieffer-Wolf

transformation [5] to the Hamiltonian (2.2). However there is another way to do this

transformation, a simpler one, using the approximation where the impurity is in a single

occupation. To do this, as already commented, we will project the Anderson Hamiltonian

in the single occupancy subspace to find the effective Kondo Hamiltonian.

2.2 Relation between Anderson and Kondo models

To show the connection between the Kondo and Anderson Hamiltonian in a

little more detail, let us write the Anderson model in the occupation representation [see

Hamiltonian in (2.4)]. In this representation, we will use the basis (in bracket notation)

|0〉 for empty state, |1σ〉 for single occupation with spin σ, and |2〉 for double occupation.
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The resulting Hamiltonian on this basis reads

Hocc =











H00 H01 H02

H10 H11 H12

H20 H21 H22











, (2.4)

where the matrix elements Hij are found by projection operators Pi,

Hij = PiHAPj. (2.5)

The term Hij in the Hamiltonian connects the occupation subspace |i〉 and the

occupation subspace |j〉. In another notation, the impurity state can be represented by

the number of electrons up and down so that the state |nd,↑, nd,↓〉 where nd,↑ is the number

of electrons up and nd,↓ the number of electrons down.

To find the matrix elements we need to define the projection operators for each

sub-space as
P0 = (1 − nd↑)(1 − nd↓),

P1 = nd↑ + nd↓ − 2nd↑nd↓,

P2 = nd↑nd↓.

(2.6)

Note that if one apply the operator Pi in the state |nd,↑, nd,↓〉 the results will be δnd,↑+nd,↓,i,

this can be easily confirmed by operating the operators in the possible states.

The matrix elements in Hamiltonian (2.4) can be found by equation (2.5) using

the projection operators (2.6) in the Anderson model. After applying the projector and

some manipulations, we find matrix elements

H00 =
∑

k,σ

εk,σnk,σ,

H01 =
∑

k,σ

V ∗
k

(1 − nd,σ)c†
k,σdσ,

H02 = 0,

H11 =
∑

σ

(

εd +
∑

k

εk,σnk,σ

)

(1 − nd,σ)nd,σ,

H12 =
∑

k,σ

V ∗
k
nd,σc

†
k,σdσ,

H22 =

(

2εd + U +
∑

k

εk,σnk,σ

)

nd,σnd,σ.

(2.7)

As expected, these Hamiltonians are Hermitian Hji = H∗
ij. In the Anderson Hamil-

tonian (2.4), the magnetic impurity can not migrate from empty state to the double

occupation directly, then the matrix elements H02 and H20 are zero. The elements H00,

H11 and H22 represents, respectively, the Hamiltonian with eigenvalue of energy E0 for the

empty state, E1 for the single occupation and E2 for the double occupation. In addition,
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the expected value of the term H00 (〈H00〉 = E0) at temperature T = 0 is exactly the

energy of the Fermi level εF = 0.

Now that the Hamiltonian elements have been found, we can use the time-

independent Schrödinger equation ΨHocc = EΨ (where Ψ = [ψ0, ψ1, ψ2]T in matrix

form and E is the energy of the quantum impurity) to isolate the contribution of the

Hamiltonian in the sub-space of single occupation (ψ1Heff = Eψ1),

Heff = H11 +H10(E −H00)−1H01 +H12(E −H22)−1H21. (2.8)

It is clear that the first term in the effective Hamiltonian (2.8) represents the energy for a

single electron in the quantum impurity. However, the second and third terms are more

subtle. The second term carries information about the influence that the empty state has

on the single occupancy, the matrix element H10 creates one electron in quantum impurity

and annihilates one in the conduction band, and (E−H00)−1 is the projection of the empty

state into the single occupancy. Then, we can conclude that the second term represents

the virtual process caused by the presence of the empty state in the single occupation

state. Similarly the third represents the virtual process caused by double occupation in

the single occupation state.

As discusses above, in the appropriate condition for the Kondo effect to occur,

the quantum impurity has a resultant magnetic moment from the unpaired electrons

(single occupation state) in the low-energy regime. In this case, the quantum impurity

has energy close to the energy for a single occupation state E ≈ E1 = εd and |εd| >
|2εd + U + 〈H00〉|, |〈H00〉|, then |E| > |〈H22〉|, 〈|H00〉|. Since the terms (E − H00)−1 and

(E −H22)−1 not commute with H10 and H12 we need a strategy to solve this. But for now,

to simplify the second and third terms of this effective Hamiltonian the familiar geometric

series expansion is used,

(E −H00)−1 =
1
E

∞
∑

n=0

(

H00

E

)n

,

(E −H22)−1 =
1
E

∞
∑

n=0

(

H22

E

)n

.

(2.9)

One way to solve this problem is by transferring all operators from left hand side

to right hand side. In case of the term H10(E − H00)−1H01 (see equation (2.8)) we can

transfer all operator in H10 to the right, for example. To this end, we write H10(E−H00)−1

as
H10(E −H00)−1 =

∑

kσ

Vk(1 − ndσ)d†
σckσ(E −H00)−1. (2.10)

Note that the operator ckσ does not commute with (E−H00)−1. We then use the fermionic

anticommutation proprieties of the operators and the geometric series defined by (2.9) to
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simplify the problem in ckσH00 = (H00 + εk)ckσ. After this, it is easy to show that

ckσ(E −H00)−1 =
1

εd − εk

[

1 +
E −H00 − εd

εd − εk

]−1

ckσ. (2.11)

Differently from the previous case, the operator (1 − ndσ)d†
σ appearing in equation

(2.10) commute with H00, so we can transfer this operator directly to the right hand side

(1 − ndσ)d†
σckσ(E −H00)−1 =

1
εd − εk

[

1 − E −H00 − εd

−εd + εk

]−1

(1 − ndσ)d†
σckσ. (2.12)

Putting all the terms together and after some manipulations, we find the complete term

in effective Hamiltonian (2.8) that describes the virtual process caused by the presence of

the empty state in the single occupancy state as

H10(E −H00)−1H01 =
∑

kk′σσ′

V ∗
k′Vk

εd − εk

F (εk, εd)d†
σckσ(1 − ndσ)(1 − ndσ′)c†

k′σ′dσ′ . (2.13)

Here we have defined F (x, y) =
(

1 − E−H00−εd

x−y

)−1
. This operator F (x, y) itself has no

physical meaning and is only inserted here just to simplify the equations.

Similar to the previous case [the second term in effetive Hamiltonian (2.8)], the

third term H12(E − H22)−1H21 can be found by transferring all operator in H12 to the

right. To do so, we write H12(E −H22)−1 as

H12(E −H22)−1 =
∑

kσ

V ∗
k
ndσc

†
kσdσ(E −H22)−1. (2.14)

The operators c†
kσ and dσ not commute with (E −H22)−1, then we use again the fermionic

anticommutation proprieties of the operators and the geometric series defined by (2.9) to

simplify the problem in c†
kσH22 = (2εd + U + H00 − εk)c†

kσndσndσ. After that and some

algebraic manipulations we obtain

c†
kσdσ(E −H22)−1 =

1
εk − εd − U

[

1 − E − εd −H00

εd + U − εk

]−1

c†
kσdσndσ. (2.15)

The complete third term in effective Hamiltonian (2.8) that describes the virtual process

caused by the presence of the double occupation in the single occupation state is

H12(E −H22)−1H21 =
∑

kk′σσ′

−V ∗
k′Vk

εd + U − εk′

F (εd + U, εk′)c†
k′σ′dσ′ndσ′ndσd

†
σckσ, (2.16)

where the operator F (x, y) has already been defined.

In the low-energy regime and considering all the previous discussion, the quantum

impurity has energy close to the energy for a single occupation state E ≈ εd, the electrons

and holes that participate in the physics of the problem are close to the Fermi level εk ≈ 0

and 〈H00〉 ≈ 0. As the differences in energy are |εd|, |εd + U | > 0, in the operator F (x, y),

the term E − εd −H00 ≈ 0 which leads to F (εk, εd), F (εd + U, εk′) ≈ 1.
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Another way to solve this same problem is by transferring now all operators

from right hand side to left hand side in equation (2.8). In doing this, one have to go

through similar algebraic laboring as before. However, we will find small differences with

the equations (2.13) and (2.16). Note now that these terms are not Hermitian [(2.13)

and (2.16)], and this is a big problem because the effective Hamiltonian must be Hermitian.

To overcome this, the symmetrization of the terms in (2.13) and (2.16) are necessary.

The procedure to do this is simple, we just do an arithmetic average of the result obtained

through the two choices (transfer all operator from right to the left or the opposite). After

symmetrizing the second and third complete and Hermitian terms in effective Hamiltonian

are found by

H10(E −H00)−1H01 =
∑

kk′σσ′

V ∗
k′Vk

2

( 1
εd − εk

+
1

εd − εk′

)

d†
σckσ(1 − nd,σ)(1 − nd,σ′)c†

k′σ′dσ′ ,

(2.17)

H12(E −H22)−1H21 =
∑

kk′σσ′

−V ∗
k′Vk

2

( 1
εd + U − εk

+
1

εd + U − εk′

)

c†
k′σ′dσ′nd,σ′nd,σd

†
σckσ.

(2.18)

Replacing the equations (2.17) and (2.18) in equation (2.8) we obtain the effective

Hamiltonian which captures the essence of the Kondo phenomenon. During the algebraic

manipulations we need to pay attention to the terms nd↑nd↓ = 0 and nd↑ + nd↓ = 1,

since all these calculations are only valid in the regime where the QD is in LM fixed

point (single electron in QD with spin ↑ or ↓). Is also necessary to define the operators

S+ = d†
↑d↓, S− = d†

↑d↓ and Sz = 1
2
(nd↑ − nd↓). After some manipulations we find the

effective Hamiltonian by

Heff = HK +
∑

σ

εdndσ +
∑

k

|Vk|2
εd − εk

+
∑

kk′σ

Wkk′c†
kσck′σ, (2.19)

where,

Wkk′ = −V ∗
k′Vk

4

( 1
εd − εk

+
1

εd − εk′

+
1

εd + U − εk

+
1

εd + U − εk′

)

, (2.20)

The first term above is the Kondo Hamiltonian [see equation (2.3)]. It is easy to understand

that the first term is exactly the Kondo Hamiltonian, since it was used to explain the

phenomenon for the first time and works well. The second and third terms in effective

Hamiltonian (2.19), only re-scale the reference energy, and the last term in effective

Hamiltonian are scattering potentials, then this terms do not have any importance in the

scaling procedure since the main physics of the problem is within the Kondo Hamiltonian

HK .
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In addition, we find the effective coupling Jkk′ in function of εd, U and Vk. The

term Vk is what in Anderson’s model connects the electrons in the conduction band to

impurity. This term is localized, assuming that the conducting electrons couples to the

impurity very close to it, thus in the k-space it is approximately constant. Remember that

all this analysis are valid at low energies so that the energy of the conduction electrons

are close to the Fermi level (|εd| ≫ εk, εk′ and εd + U ≫ εk, εk′). With this in mind, we

can write

Jkk′ =
V ∗

k′Vk

2

(

− 1
εd − εk

− 1
εd − εk′

+
1

εd + U − εk

+
1

εd + U − εk′

)

,

≃ |V |2
(

− 1
εd

+
1

εd + U

)

= J.
(2.21)

Within the conditions described in the previous paragraph, we can write the scattering

potential term Wkk′ as

Wkk′ = W ≃ |V |2
2

( 1
εd

+
1

εd + U

)

. (2.22)

In the particle-hole symmetry εd = −U/2, observe that this term vanishes. Thus, within

the scope of this work, even considering the scattering potential, this term does not

contribute to the physics of the problem.

Now that we have the models at hand, we can use the poor man’s scaling analyses

to obtain the behavior of the effective parameters (scaling equations), for the Anderson

Model or the Kondo Hamiltonian. These scale equations will give us valuable information

about the behavior of the system magnetic impurity and conduction band in certain

regimes. Some of this information is the Kondo temperature TK and the critical coupling

JC .
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Following the idea of the renormalization group discussed above we will discuss

how to eliminate the high energy states of the system. The way is to integrate on the

corresponding degrees of freedom whose energy lie within an interval Λ ∈ [D − δΛ, D].

The Hamiltonian will depend on the energy scale D − δΛ and will take the form H(Λ),

with the effective parameters. In particular for Poor man’s scaling, after removing the

high energy states, the Hamiltonian is not re-scaled back to the initial scale.

3.1.1 Poor man’s scaling in Kondo Hamiltonian

In 1970 Phillip Anderson derived an approache called Poor Man’s Scaling, which

consists of eliminating in a pertubative mode the high energy excitations [58]. For simplicity

we use the effective Hamiltonian (2.19), deduced for QD coupled with just one lead. The

effective Hamiltonian found has four terms. Note that with the exception of the first term,

all others do not cause spin-flip (scattering mechanism relevant to the Kondo effect). Thus,

they represent only potential scattering or an overall shift of the reference energy and do

not renormalize the term of coupling that we are interested in. Then, for this work we will

consider only the Kondo Hamiltonian term in effective Hamiltonian H = HK to the Poor

man’s scaling analysis.

Following Anderson’s idea, we eliminate high-energy fluctuations using the scatter-

ing matrix formalism (T-matrix), which describes the scattering of an electron from an

initial state |kσ〉 in a final state |k′σ′〉. The scattering matrix as a function of energy can

be written up to in second order as,

T (E) =
∑

k,k′



Hk,k′ +
∑

q∈ {εq≪0}
Hk,q(E −H0)−1Hq,k′ +

∑

q∈ {εq≫0}
Hq,k′(E −H0)−1Hk,q



 ,

(3.1)

where Hk,k′ represents each term of the effective Hamiltonian. εq is the energy associated

with the quasi-momentum vector q of the high-energy electrons. If εq ≫ 0 then the energy

level is far above the Fermi level (the empty state state is most probable nqσ = 0), in the

opposite case it is far below εF (the double occupancy state is most probable nqσ = 1).

The second term in T-matrix describes the hole-type scattering within the high-

energy sector of the Hilbert space and the third term the particle-type scattering within

the high energy sector. These scattering processes are represented in figure 6. In figure 6(a)

an initial particle state |kσ〉 scatter into the impurity spin represented by the letter A (S+,

S− or Sz) and then propagates to the second scattering in the impurity spin represented

by the letter B (S+, S− or Sz) and leaves with a final state |k′σ′〉. Figure 6 (b) represents

hole-type scattering. In this case, we have an electron in a state that can be scattered with

spin-flip for a final state |k′σ′〉 and a hole remaining that will be annihilated by an initial

state |kσ〉.
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which is called the β-equation [equation (3.5)]. In the limit that δ → 0 then δ can be

replaced in the equation by d and we can use the mathematical tools of Calculus.

One of the fixed points of the Hamiltonian in the Kondo problem is called the

strong coupling limit and happens when the coupling term diverges (J → ∞). In this case,

the impurity forms a singlet with the electrons of the conduction band and the Kondo

effect occurs. To find this fixed point we must integrate the β-equation in the direction of

the high energies for low energies to the point where the coupling diverges (J(Λ∗) → ∞).

At this point, we can estimate the Kondo temperature by Λ∗ ∼ TK .

The simplest case is for a flat conduction band ρ(Λ) = 1/2D, upon integrating the

β-equation from D a lower limit Λ∗ where J(Λ∗) → ∞, we find the estimate for Tk

TK ∼ De
− D

J0 . (3.6)

In particle-hole symmetry ρ0J0 = 4Γ0

πU
(see equation (2.21)) and for metallic conductor

(flat band) ρ0 = 1
2D

, then this equation can be written by

TK ∼ De
− πU

8Γ0 . (3.7)

This equation is very similar to the one deduced by Haldane in 1978 [59]. In Haldane’s

work, he finds an estimate of TK using a scaling procedure in the asymmetric Anderson

Model. Something remarkable is that the procedure used is very close to the poor man’s

scaling in the Anderson Model that will be shown in subsection 3.1.3. Within more general

considerations, Haldane arrived that TK can be estimated by

TK ∼ D

√

UΓ0

2
e

− πU
8Γ0 . (3.8)

We could come to a conclusion close to Haldane’s if we use the scattering matrix (T-matrix)

in third order, but that is not the focus of this work.
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3.1.2 PMS example: Pseudo-gap systems

Pseudo-gap or gapless are systems that exhibit a particular behavior where the gap

between conduction and valence band is zero. As already mentioned, the density of states

has the general form ρ(Λ) = ρ0|Λ|r, where ρ0 = (r+1)
2Dr+1 is the normalization factor. As an

example the application of the poor man’s scaling, we want to briefly explore the physics

of a magnetic impurity coupled to this type of conduction band. Within this approach

we can estimate, for instance, the Kondo temperature TK (similar to the previous one

with the flat band) and also the critical coupling JC below which no Kondo screening is

possible.

In analogy to the case of the flat band we start from the β-equation (3.5) and

replacing the pseudo-gap density of states ρ0|Λ|r, upon which we find the differential

equation for J as

−dJ

J2
= 2ρ0Λr−1dΛ. (3.9)

We can solve this equation by direct integration in the range Λ∗ ≤ Λ ≤ D with the initial

condition J(D) = J0,
(

1
J(Λ∗)

− 1
J0

)

= 2ρ0

∫ Λ∗

D
Λr−1dΛ =

2ρ0

r
[Λ∗r −Dr]. (3.10)

Again, in the Kondo regime the coupling term diverges [J(Λ∗) → ∞], a condition that

provides us with Λ∗. Remembering that this quantity is usually taken as TK , then we

estimate the Kondo temperature for pseudo-gap as

TK ∼ Λ∗ = D
[

1 − r

r + 1
D

J0

]

1

r

. (3.11)

Besides that, it is not difficult to show that at the limit r → 0, this equation becomes the

equation deduced for the metallic flat band (3.6).

Imposing the condition that Λ∗ must be within the region defined by finite density

of states (since without electrons in the conduction band the are no strong coupling limit),

something curious happens: this condition leads to a restriction in the values of J0 for the

Kondo effect to occur, namely

0 < Λ∗ < D ⇔ J0 > JC =
rD

r + 1
. (3.12)

We can write this result in another way. Defining ρ′
0 = Drρ0, we can show that 2ρ′

0JC = r,

and this result is already known in the literature for pseudo-gap systems [see [32] for more

details about this system].
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3.1.3 Poor man’s scaling analysis to the Anderson Model

Following Cheng et al. [32], we perform a poor man’s scaling calculation on our

HSIAM. Application of the poor man’s scaling to Anderson Model is similar but has small

differences than the Poor man’s scaling calculations to the Kondo model. Now, the strategy

to find the renormalized parameters of the Anderson Model (2.2) Ũ , Ṽk and ε̃d is to use

second order non-degenerate perturbation theory. We start with the many body stats in

simplified notation for the many-body states (number of the electrons in quantum impurity)

|0〉, |1σ〉 = d†
σ|0〉 and |2〉 = d†

σd
†
σ|0〉. However, the many-body state in it’s complete form is

|nd↑ + nd↓; ...nkσ...〉, (3.13)

where nkσ is the number of electrons in conduction band with energy εk and spin σ.

Without losing any information, the Anderson model (2.2) can be separated into two terms

H0 and H ′ where

H0 =
∑

σ

(

εdndσ +
U

2
ndσndσ

)

+
∑

kσ

εknkσ, (3.14)

describes the impurity and conduction band decoupled from each other and is diagonal on

the chosen base (|nd↑ + nd↓; ...nkσ...〉). In this procedure the pertubative term H ′ is the

hybridization term in Anderson Model (2.2),

H ′ =
∑

kσ

Vkd
†
σckσ + V ∗

k
c†

kσdσ. (3.15)

Before proceeding with the calculations let us brief discuss some basic properties

of the Hamiltonian H0. This Hamiltonian is basically the sum of the impurity energy and

the conduction band. As such, at temperature T = 0, the conduction band states with

energy below the Fermi level (εF = 0) are completely filled and the conduction band states

with energy above are completely empty (this is the ground state of the conduction band

Hamiltonian). The energy for the quantum impurity levels has already been discussed

and herewith the conduction band we can conclude that the many body state at zero

temperature together with their energies are

|0〉(0) ⇒E
(0)
0 =

〈

(

∑

kσ

εknkσ

)

T =0

〉

,

|1σ〉(0) ⇒E
(0)
1 = E

(0)
0 + εd,

|2〉(0) ⇒E
(0)
2 = E

(0)
0 + 2εd + U.

(3.16)

At this point it is useful to define the vector k− for the electrons with energy εk− < εF

and the vector k+ for the electrons with energy εk+ > εF .

In second order non-degenerate perturbation theory the state |m〉 with energy Em

is changed to the state |m̃〉 with energy Ẽm due to the presence of the perturbative term
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H ′.

|m̃〉 = |m〉 +
∑

n6=m

〈n|H ′|m〉
Em − En

|n〉 +O(V 2).

Ẽm = Em + 〈m|H ′|m〉 +
∑

n6=m

|〈n|H ′|m〉|2
Em − En

+O(V 3).
(3.17)

The idea is to use the same concepts in the Anderson Model (H0 +H ′) on the basis defined

by (3.13) to find the many body states (|0〉, |1σ〉 and |2〉) corrected by the presence of the

coupling between the quantum impurity and the conduction band.

We start the calculations with the empty state |0〉. In Anderson Model, the empty

state subspace is not connected to the dual occupation subspace, since in the Anderson

Hamiltonian the quantum impurity can exchange only one electron at a time with the

conduction band. Thus, using (3.17) to empty state we can find the term corrected by the

pertubative term |0̃〉,

|0̃〉 = |0〉(0) +
∑

σ

∑

σ′′{n
kσ′′ }

〈1σ|H ′|0〉(0)

E
(0)
0 − E1

|1σ〉 +O(V 2),

= |0〉(0) +
∑

σ

∑

σ′′{n
kσ′′ }

∑

σ′{n
k′σ′ }

−Vk

〈1σ|ck′σ′|1σ′〉(0)

E
(0)
0 − E1

|1σ〉 +O(V 2).

(3.18)

Note that a sum in the occupancy number for the conduction electrons ({nkσ′′}) has been

added. This is necessary since any combination of the distribution in the conduction band

is an eigenstate of the H0. One should not forget that, at zero temperature the conduction

band levels above the Fermi level are completely empty so ck′σ′|1σ′〉(0) annihilates one

electron in the state k′ with spin σ′

|0̃〉 = |0〉(0) +
∑

σ

∑

σ′′{n
kσ′′ }

∑

σ′{n
k′σ′ }

−Vk

〈1σ, ...nkσ′′ ...|1σ′ , ...nk′σ′ − 1...〉
E

(0)
0 − E1

|1σ, ...nkσ′′ ...〉 +O(V 2),

= |0〉(0) +
∑

σ

∑

σ′′{n
kσ′′ }

∑

σ′{n
k′σ′ }

−Vkδσ,σ′δσ′′,σ′δnσk,(nσ′k′ −1)

E
(0)
0 − (E(0)

1 + |εk|)
ckσ|1σ〉(0) +O(V 2),

(3.19)

then only electrons with k′ ∈ k− contribute to this expression above. After replacing the

sum in {nkσ′′} for k we can finally write the state |0̃〉 as

|0̃〉 = |0〉(0) +
∑

σ,k∈k−

Vk

εd + |εk|ckσ|σ〉(0) +O(V 2). (3.20)

The energy of this state Ẽ0 can also be found through the procedure described in (3.17)

using second order pertubation theory. As has already been discussed, the empty subspace

is only coupled with the single occupancy subspace, so the corrected energy Ẽ0 can be

written as

Ẽ0 = E
(0)
0 +

∑

σ

∑

σ′′{n
kσ′′ }

|〈1σ|H ′|0〉(0)|2

E
(0)
0 − E1

+O(V 3),

= E
(0)
0 +

∑

σ

∑

σ′′{n
kσ′′ }

(〈1σ|H ′|0〉(0))(〈1σ|H ′|0〉(0))∗

E
(0)
0 − E1

+O(V 3).

(3.21)
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Observe now that the term 〈1σ|H ′|0〉(0) has already been resolved. We can then use this

to obtain

Ẽ0 = E
(0)
0 − 2

∑

k∈k−

|Vk|2
εd + |εk| +O(V 3). (3.22)

Unlike |0〉 and |2〉, the single occupancy state |1σ〉 is connected to the empty state

and the dual occupation state. These calculations are very similar to those performed

previously for state |0〉, so less details will be shown for the next ones. As in the previous

case, using (3.17) to the single occupation state we can find the corrected state |1̃σ〉 by

|1̃σ〉 = |1σ〉(0) +
∑

σ′′{n
kσ′′ }

〈0|H ′|1σ〉(0)

E
(0)
1 − E0

|0〉 +
∑

σ′′{n
kσ′′ }

〈2|H ′|1σ〉(0)

E
(0)
1 − E2

|2〉 +O(V 2),

= |1σ〉(0) +
∑

σ′′{n
kσ′′ }

∑

σ′{n
k′σ′ }

V ∗
k

〈0|c†
k′σ′|0〉(0)

E
(0)
1 − E0

|0〉 −
∑

σ′′{n
kσ′′ }

∑

σ′{n
k′σ′ }

σVk〈2|c
k′σ′|2〉(0)

E
(0)
1 − E2

|2〉 +O(V 2).

(3.23)

As previously discussed at zero temperature the conduction band are completely empty

above the Fermi level and below are completely filled. The term c†
k′σ′|0〉(0) create one

electron in the conduction state k′ with spin σ′. But an electron can only be created if

this state are empty by the Pauli exclusion principle. As a result, in the first term only

electrons with k′ ∈ k+ contribute to this calculation. The term c
k′σ′|2〉(0) annihilates one

electron in the conduction state k′ with spin σ′, but this state must have electrons to be

annihilated. Therefore, in the second term only electrons with k′ ∈ k− contribute. After

this considerations and some math manipulations we can write the state |1̃σ〉 as

|1̃σ〉 = |1σ〉(0) +
∑

k∈k+

V ∗
k

εd − |εk|c
†
kσ|0〉(0) +

∑

k∈k−

σVk

εd + U + |εk|ckσ|2〉(0) +O(V 2). (3.24)

The energy of this state Ẽ1, again, using (3.17), can be written as

Ẽ1 = E
(0)
0 + εd +

∑

k∈k+

|Vk|2
εd − |εk| −

∑

k∈k−

|Vk|2
εd + U + |εk| +O(V 3). (3.25)

Alike the empty state, the dual occupation state |2〉 is not connected to the empty

state subspace. Then using (3.17), we can find the corrected state |2̃〉

|2̃〉 = |2〉(0) +
∑

σ

∑

σ′′{n
kσ′′ }

〈1σ|H ′|2〉(0)

E
(0)
2 − E1

|1σ〉 +O(V 2),

= |2〉(0) +
∑

σ

∑

σ′′{n
kσ′′ }

∑

σ′{n
k′σ′ }

σ′V ∗
k′〈1σ|c†

k′σ′
|1σ′〉(0)

E
(0)
2 − E1

|1σ〉 +O(V 2).

(3.26)

The term c†
k′σ′

|0〉(0) create one electron in the conduction state k′ with spin σ′. But an

electron can only be created if this state are empty by the Pauli exclusion principle.Then,

at zero temperature, only electrons with k′ ∈ k+ contribute to this calculation. From these
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considerations we can write the state |2̃〉 by

|2̃〉 = |2〉(0) +
∑

σ,k∈k+

σV ∗
k

εd + U − |εk|c
†
kσ|1σ〉(0) +O(V 2), (3.27)

while the energy Ẽ2 can be written as

Ẽ2 = E
(0)
0 + 2εd + U − 2

∑

σ,k∈k+

|Vk|2
εd + U − |εk| +O(V 3). (3.28)

Now we have the corrected states |0̃〉, |1̃σ〉 and |2̃〉 and the energies corrected Ẽ0,

Ẽ1 and Ẽ2. We a ready to derive the scaling equations for the effective parameters Ũ , ε̃d

and Ṽk. For the last, the scaling equation shows that Ṽk = Vk +O(V 3) [see Ref. [32]]. The

differences in energy levels for impurity have been discussed previously in the section 2.1,

so we know that the energy difference between the single occupation and empty state

is Ẽ1 − Ẽ0 = ε̃d. In addiction the difference between the dual occupation and the single

occupation states is Ẽ2 − Ẽ1 = ε̃d + Ũ . Using the equations (3.22), (3.25) and (3.28) we

find

ε̃d ≈ εd −
∑

k∈k+

|Vk|2
−εd + |εk| −

∑

k∈k−

|Vk|2
εd + U + |εk| + 2

∑

k∈k−

|Vk|2
εd + |εk| , (3.29)

and

Ũ ≈ U + 2





∑

k∈k+

|Vk|2
−εd + |εk| −

∑

k∈k+

|Vk|2
εd + U − |εk| −

∑

k∈k−

|Vk|2
εd + |εk| +

∑

k∈k−

|Vk|2
εd + U + |εk|



 .

(3.30)

Where ε̃d is the effective energy for one electron in quantum impurity and Ũ is the effective

Coulomb repulsion.

The next step is re-scaling the equations (3.29) and (3.30) as described in Figure 5.

For a small piece of the conduction band removed |δΛ| = D − Λ the summations can be

approximated by
∑

k∈k+ g(εk) ≈ g(Λ)ρ(Λ)δΛ and
∑

k∈k− g(εk) ≈ g(−Λ)ρ(−Λ)δΛ where Λ

is the new bandwidth. Assuming Vk real and k-independent Vk ≈ V , we can rewrite the

above equations as

ε̃d − εd ≈ −
[

ρ(Λ)|V |2
−εd + Λ

− ρ(−Λ)|V |2
εd + U + Λ

+ 2
ρ(−Λ)|V |2
εd + Λ

]

δΛ, (3.31)

and

Ũ − U ≈ 2

[

ρ(Λ)|V |2
−εd + Λ

− ρ(Λ)|V |2
εd + U − Λ

− ρ(−Λ)|V |2
εd + Λ

+
ρ(−Λ)|V |2
εd + U + Λ

]

δΛ. (3.32)
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When removing a second piece of the conduction band, the previous equations are

re-scaling by replacing εd → ε̃d, U → Ũ , ε̃d → ε̃d − δε̃d and Ũ → Ũ − δŨ . For simplicity,

we can insert the hybridization function Γ(Λ) = π|V |2ρ(Λ) we find

δε̃d

δΛ
=

1
π

[

Γ(Λ)
Λ − ε̃d

+
Γ(−Λ)

Λ + ε̃d + Ũ
− 2

Γ(−Λ)
Λ + ε̃d

]

, (3.33)

and
δŨ

δΛ
=

2
π

[

− Γ(Λ)
Λ − ε̃d

+
Γ(Λ)

Λ − ε̃d − Ũ
+

Γ(−Λ)
Λ + ε̃d

− Γ(−Λ)
Λ + Ũ + ε̃d

]

. (3.34)

At this point we have the scaling equations for the renormalized parameters, J for

the Kondo Hamiltonian and Ũ , ε̃d, Γ̃ obtained through the poor man’s scaling procedure.

In the next chapter we will apply these scaling equations to the main problem of a magnetic

impurity coupled to a gapped band, which we are interested in.
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3.2 Numerical renormalization group

Poor man’s scaling is a very useful approach to obtain certain properties of the

system at energy scales larger than the Kondo temperature. Beyond that point, the

effective coupling constant diverges and the theoretical predictions cannot be trusted.

Therefore, we need another method to obtain information below the Kondo temperature

scale. Numerical Renormalization Group [NRG, created by Kenneth G. Wilson in the

1970s [6]] is a convenient method that allow us to investigate the renormalization flow to

energy scale down to the Fermi level. The basic ideas of NRG [see Refs. [60, 61, 62, 63] for

more details] can be summarized in the following six steps below:

• 1- Logarithmic division of the conduction band. This was the first step in the

derivation and the most important one, allows handling the logarithmic divergence

mentioned in The Kondo Effect. The conduction band is split into intervals that

decrease towards low energies: ±[Λ−n−1,Λ−n], where Λ > 1 and n is an integer>=0.

• 2 - Fourier expansion of each interval, using orthogonal basis functions that are zero

outside the interval.

• 3 - Approximating the impurity orbital by using only the Wannier orbital centered on

the impurity. It turns out that the impurity couples directly only to the fundamental

harmonic, the other terms couple only indirectly through the first term and decouple

in the limit Λ → 1.

• 4 - Lanczos tridiagonalization: Wilson chain. The previous step ended up with the

impurity coupled to a p = 0 term for each interval, in order to be able to solve

it iteratively, it is tridiagonalized using the Lanczos algorithm. This results into a

semi-infinite chain (the so called Wilson chain) in which the impurity couples on to

its first site. The nearest neighbor couplings within the chain decays as Λ−n/2 (for

large n). This ensures a energy scale separation at each step.

• 5 - The renormalization group transformation A recursion relation is obtained:

HN+1 =
√

ΛHN + ΛN/2∑

σ
(tf †

σ,Nfσ,N+1 + h.c.) that allows to define a renormalization

group transformation HN+1 = R(HN).

• 6 - Iteration with truncation of the eigenvalues and eigenvectors. Because the Hilbert

space grows exponentially one cannot keep up all states and energies while new sites

are added, a truncation scheme is applied. The high energy states that are discarded

do not affect the low energy states that are added. Each step corresponds to an

energy scale associated to a given temperature.
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4 Results: Scaling equations

Our quantum impurity problem consists of an interacting quantum impurity (QI)

coupled to a metallic lead, as well as to a semiconducting contact (see Fig. 1). The effective

density of states (DOS) seen by the quantum impurity, is also depicted in the left panel in

Fig. 1, where it is clearly shown that there is a residual DOS around the Fermi energy,

coming from the coupling of the QI to the metallic lead. The system is described by a

Hamiltonian HSIAM = Himp +HS +HM +HHyb, whose first term is given by

Himp =
∑

σ

εdd
†
σdσ + Und↑nd↓, (4.1)

where d†
σ (dσ) creates (annihilates) an electron with energy εd and spin σ =↑, ↓ in the QI,

ndσ = d†
σdσ is the QI occupancy, and U represents the Coulomb interaction. The leads are

described by

HS/M =
∑

kσ
a=S,M

εakc
†
akσcakσ, (4.2)

where c†
akσ (cakσ) creates (annihilates) an electron with momentum k, energy εak and spin

σ in the metallic (a = M) or in the semiconducting (a = S) lead. Finally, the QI-leads

hybridization is given by

HHyb =
∑

kσ
a=S,M

(

Vakd
†
σcakσ + H.c.

)

, (4.3)

where Vak represents the hybridization matrix element that couples the impurity either to

the metallic (a = M) or to the semiconducting (a = S) lead. Here, we assume that the

metallic lead is characterized by a flat DOS ρM(ω) = (1/2D)Θ(D − |ω|), where D is the

half band width (Θ is the Heaviside step function), while the semiconducting-lead DOS

(schematically shown in Fig. 1) is given by

ρS(ω) = ρ0
|ω|√

ω2 − ∆2
Θ(|ω| − ∆)Θ(D − |ω|). (4.4)

Here, 2∆ is the semiconducting gap and ρ0 = 1
2
√

D2−∆2
is a normalization factor [see [38]].

Assuming Vak ≡ Va to be k-independent, for simplicity, the hybridization functions are

defined as, Γa(ω) = πV 2
a ρa(ω) (for a = S,M).

The Kondo physics in our model, for ΓS = 0, corresponds to the traditional SIAM,

which has been extensively studied over the last decades. Experimentally, the Kondo

physics for magnetic impurities adsorbed in metallic surfaces has been studied through

low-bias transport spectroscopy using an STM tip weakly coupled to the impurity. In
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our setup, the metallic lead serves not only to represent the STM tip, but also plays an

important role in the NRG calculations, as it introduces a small, but finite, hybridization

function at energies inside the semiconducting gap 2∆ (see Fig. 1).

In this work, we focus on the regime in which the QI is so weakly coupled to

the metallic lead, in comparison to its coupling to the semiconducting lead, i.e., [ΓM ≪
Γ(0)

S = ΓS(D)], that any possible Kondo screening generated by conduction electrons in

the metallic lead will occur at temperatures much lower than those associated to possible

Kondo screening occurring through electrons in the semiconducting lead. For our analysis

in what follows, it useful to define Γ0 = ΓM + Γ(0)
S ≈ Γ(0)

S , since ΓM ≪ Γ(0)
S . For the sake of

completeness, in this chapter we present a preliminary analysis, using Anderson’s poor

man’s scaling [58, 5], highlighting the interesting interplay between TK and ∆.

Similar to what has already been done in Chapter 2, we can find an new effective

Hamiltonian considering the impurity in the single occupation regime. Note now that all

calculations of Chapter 2 were performed for an impurity coupled to a one lead only [see

‘traditional’ Anderson Model in (2.2)]. But it can be easily generalized to two or more

leads by replacing the indexes and summation in k to indexes and summations in a,k,

where a represents the lead. Then the general Kondo Hamiltonian for the QI coupled to

two or more independent leads can be written as

HK =
∑

akσ

εakσc
†
akσcakσ +

∑

kk′

Jakk′

[

Sz
(

c†
ak↑cak′↑ − c†

ak↓cak′↓
)

+S+c†
ak↓cak′↑ + S−c†

ak↑cak′↓
]

. (4.5)

where as already mentioned, our quantum impurity problem consists in a QD coupled to

the metallic (a = M) and the semiconducting (a = S) lead. In addiction the coupling term

can be written now as

Ja(D) ≃ |Va|2
(

− 1
εd

+
1

εd + U

)

. (4.6)

Remember that here, the magnetic impurity is weekly coupled with the metal such that

JS ≫ JM . So, under these condition, this model is close to the “traditional” obtained by

(2.19). Moreover, since JM << JS, the poor man’s scaling analysis will break down before

the JM affect the renormalization flow. Therefore, we can use the scaling equation for the

coupling J (that was obtained in the equation (3.5)), replacing J with JS

dJS

d ln Λ
= −2ρ(Λ)JS

2, (4.7)

where JS(D) can be obtained by (4.6).

So in this part, we will study the magnetic impurity coupled to only a semiconductor

band with gap finite gap 2∆ between conduction and valence band. The density of states

has the form (4.4), but the same analyzes can be done for any type of conduction band,

changing only the complexity of the approach.
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Replacing the form of density of states for this semiconductor band (4.4) in the

β-equation (4.7) and integrating in the range Λ∗ ≤ Λ ≤ D, we obtain

− 1
JS(Λ∗)

+
1

JS(D)
= −2ρ0

∫ Λ∗

D
dΛ

Θ(Λ − ∆)√
Λ2 − ∆2

. (4.8)

For this system there are no electrons in conduction band above the Fermi level if

temperature is smaller than the gap T < ∆. Hence, it is expected that there is no strong

coupling limit if TK is less than the gap. With this in mind, integrating the equation (4.8)

for Λ∗ ≤ ∆ renders

− 1
JS(Λ∗)

+
1

JS(D)
= −2ρ0

∫ ∆

D
dΛ

1√
Λ2 − ∆2

= K(∆, D), (4.9)

where K(∆, D) is a constant just as JS(D). So 1
JS(Λ∗)

must be in general case a non zero

constant. Then, there is no strong coupling limit in this case.

However, if Λ∗ > ∆ we can find a regime with temperature between the ∆ and

TK so that the Kondo effect sets down (unstable strong coupling fixed point). We can

investigate this with the equation (4.8) by imposing the strong coupling in Λ∗ by setting

1/JS(Λ∗) to zero in Eq. (4.9), obtaining

1
JS(D)

= −2ρ0

∫ Λ∗

D
dΛ

1√
Λ2 − ∆2

= −2ρ0 ln





Λ∗ +
√

Λ∗2 − ∆2

D +
√
D2 − ∆2



 . (4.10)

Upon manipulating the equation (4.10) to isolate the Λ∗, finally, we can estimate the

Kondo temperature for this semiconductor band as

TK ∼ Λ∗ =
1
2





(

D0 +
√

D2
0 − ∆2

)

e−ℵ1 +
∆2

D0 +
√

D2
0 − ∆2

eℵ1



 . (4.11)

Here the exponent ℵ1 is given by

ℵ1 =
1

2ρ0JS(D)
. (4.12)

We can clearly see that in the limit where the gap goes to zero, the density of state for this

system tends to behave like a flat band and the corresponding expression for TK obtained

as well (3.6).

As mentioned before, Λ∗ needs be in range ∆ < Λ∗ ≤ D0 to Kondo regime occur.

Using this in the equation (4.10) we find a range for the values of JS(D) > JC so that the

strong coupling limit can happen with

JC =



2ρ0 ln





D0 +
√

D2
0 − ∆2

∆









−1

. (4.13)

The JS(D) = JC is the minimum coupling for which the Kondo effect can occur. JS(D)

can be found by equation (4.6) in terms of the VS, εdS and US.
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Note that it has already been discussed, but we need to pay attention to the fact

that the ground state for this problem is not the Kondo singlet. The Kondo effect can

occur only for energies between the gap ∆ and TK . This result is different from what

we found for the ‘traditional’ Kondo problem, where the system continues in the Kondo

singlet all the way to T → 0. Then, in our problem the Kondo singlet is a transition state,

called unstable strong coupling fixed point. For energy below the gap, the impurity is

expected to be decoupled to the conduction band in single occupancy state.

Although the results obtained are interesting, the Kondo Hamiltonian is not able

to explain the FO fixed point regime, since we obtained this model by imposing that the

system is in LM fixed point. So, for this type of analysis it is more appropriate to use the

scaling equations Ũ , ε̃d and Ṽ obtained by poor man’s scaling for the Anderson model. In

the particle-hole symmetry regime, ε̃d = −Ũ/2, and for conduction band hybridization

function with even symmetry Γ(Λ) = Γ(−Λ), we can unify the equations (3.34) and (3.33)

in a single equation

dŨ

dΛ
=

16Γ(Λ)
π

Ũ

4Λ2 − Ũ2
. (4.14)

Following the idea already discussed above, we can generalize this equation to two or more

leads by changing the hybridization function Γ(Λ) by
∑

a Γa(Λ), where a represents the

lead under consideration.

Despite its apparent simplicity, we have not been able to find an analytical solution

to equation (4.14). We provide instead a numerical one, shown in Fig. 7 (red curve). The

red curve shows the solution Ũ(Λ) for the equation (4.14). Given the low-order perturbative

approach in derivation of equation (4.14), it cannot provide quantitative accurate results,

as it expected to be rigorously valid for Λ ≫ Ũ , Γ̃ [64]. In particular, it is known that

Eq. (4.14) is unable to describe correctly the physical regimes if Γ̃ > Λ > Ũ/2 [32], however

it shows that Ũ rapidly decreases with Λ.

It is well-known that in the Anderson Model at temperature T > U the electrons

in the system are in a FO fixed point (were the QD states |0̃〉, |1̃↑〉, |1̃↓〉 and |2̃〉 are equally

likely) since the electrons have enough energy to overcome the Coulomb repulsion. This

occurs in the plot of the Figure 7 when Λ > Ũ, Γ̃. As the temperature decreases, eventually,

T < U and now the electrons in QI states feel the Coulomb repulsion and the state of

one electron occupation (|1̃↑〉 or |1̃↓〉) are more likely. In other words, the QI are in a

LM fixed point. According to Cheng et al. [Ref. [32]], this occurs where Ũ > Λ, Γ̃. Also,

if Γ̃ > Λ > Ũ , then the system can be in a mixed-valence state or in a strong coupling

regime. Using the Eq. (4.11), we can estimate the Kondo temperature TK ∼ 10−3. At that

point, the system QD and conduction band form a characteristic singlet (SC fixed point)

where the effective coupling J → ∞. Note that in equation (2.21), the effective coupling J̃
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5 Results: Numerical Renormalization Group

Approach

The renormalization analysis presented so far was very useful to grasp a general

qualitative idea of the interplay between the various parameters of our system model. For

a deeper quantitative understanding of the underlying physics, in this chapter we use

the NRG method, introduced in chapter 3. All NRG calculations was performed using

the NRG Ljubljana code [see [62] and [63]]. The NRG can numerically solve the Kondo

problem using the Anderson model or the Kondo model itself and find thermodynamic

properties at any temperature scale. We chose to use the Anderson model to find these

properties since we want to understand the physics of the system from the energy scales of

the order of the conduction band all the way deeper below the gap. To obtain the results

within the NRG we set the bandwidth of both semiconductor and metallic contact as

D = 1 as our energy unit. Moreover, for simplicity we set KB = ~ = 1 so temperature is

also given in unity of energy D.

5.1 Thermodynamic properties for ΓM ≈ 0

Here we want to discuss the case where the impurity is coupled only with the

semiconductor-lead. To do this, in this section, we set U = 0.5, εd = −0.25 and ΓM = 10−10.

We also want to compare the results obtained by the poor man’s scaling in the Kondo

model and discuss how it helps understanding the NRG results. Having a clear picture of

the physics discussed in this section is very important to understand the main results of

this work which will be presented in the next section.

To understand the various fixed point of the system within the NRG calculations,

it is very useful to analyses the impurity entropy Simp vs temperature T . The contributions

of the impurity to thermodynamic properties, such as Simp, are defined by the difference

between this properties with the impurity and without it. In statistical mechanics we

can prove that the entropy at zero temperature is ln(m) (in units of kB) where m is the

degeneracy. If the state is a singlet the entropy goes to zero, this is the case of the Kondo

effect where the impurity forms a singlet with the electrons of the conduction band. In the

local moment regime (one-electron with spin up or down) this state represents a doublet

and the entropy goes to ln 2. At high temperatures the electrons in quantum impurity are

in a Valence mixed regime where the states |0̃〉, |1̃↑〉, |1̃↓〉 and |2̃〉 are equally likely, then

the entropy goes to ln 4.
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Figure 8 – Impurity entropy behavior for U = 0.5, εd = −0.25, ∆ = 10−5 and different values
for Γ0. The critical coupling for this case is Γ0 = 0.028 by Wilson’s criterion. In the
graph we note a big behavior change between Γ0 values 0.02 and 0.04.

In Fig. 8 we show the NRG result for the impurity entropy, as function of tem-

perature, for different values of Γ0. Let us start the discussions with Γ0 = 0.04 (blue

circles) at high temperatures T > U = 0.5. This is the Valence mixed regime, in which

the electrons have energy enough to overcome the Coulomb repulsion, then the states

|0̃〉, |1̃↑〉, |1̃↓〉 and |2̃〉 are equally probable. However, for temperatures 0.5 > T & 10−3

the electrons in quantum impurity sense the Coulomb repulsion, then the states |1̃↑〉 and

|1̃↓〉 are now more likely and the entropy goes to ln 2. In this case, the quantum impurity

has a resultant local moment, in other words, this correspond to the LM regime. As the

temperature further decreases the conduction electrons start “feeling" the presence of

the impurity. If the coupling between the electrons in impurity and the electrons of the

conducting band is strong enough (Γ0 ≥ ΓC), the impurity and conduction band system

becomes a singlet known as the Kondo singlet for temperature below the characteristic

temperature known as TK ∼ 10−3 (for Γ0 = 0.04, blue curve in the Fig. 8). Where ΓC are

the critical hybridization and can be related to JC , in the p-h symmetry, by JC = 8
π

ΓC

U
.

For the parameters used the ΓC = 0.28 and it will be discussed in more detail below. We

can observe in Fig. 8, that if Γ0 ≥ 0.28 (red, black and blue curves) the impurity entropy

falls significantly indicating that the onset of the Kondo singlet state. If Γ0 ≪ 0.28 (pink

and green curves) the electrons in the conduction are weakly coupled from the impurity

to any temperature, but if Γ0 ≫ 0.28 the behavior at the gap is the exactly what was

discussed above.
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Continuing the discussions of Fig. 8, we can estimate the TK ∼ 10−7 for Γ0 = 0.02

(green curve) by Eq. 4.11. But, as previous discussed in chapter 4, if TK < ∆ has no

Kondo screening. Below the gap, there are no electrons in the conduction band, then

if temperatures is less than ∆, the system have a abrupt change in the “number” of

conduction electrons. Thus, the electrons in quantum impurity are decoupled to the

conduction band in a doublet state (|1̃↑〉 and |1̃↓〉). In this case, for Γ0 = 0.04 (blue curve)

the singlet are destroyed and the system returns to the LM fixed point and the entropy

always goes to ln 2 (we can see this at temperatures T < 10−8). However, for temperatures

in the range 10−8 < T < 10−5, that’s not exactly what happens. Note that in this range,

something like T > U occurs, a second Valence mixed regime (a second FO regime). Also

in the Figure 8 we note the FO and LM regimes appear to be repeated below the gap

for many curves (red, black and blue curves). So, a question arises: Is Anderson’s model

repeating itself with the renormalized parameters Ũ , Ṽ and ε̃d? The answer is yes, and we

call it reentrant SIAM.

Even though our poor man’s scaling in Anderson Model approach does not provide

a quantitative reliable result for Ũ , it suggest us that the coulomb repulsion appearing

in the reentrant SIAM should be very small, and and this is consistent to what is seen

in Fig. 7. The reentering of the system into the mixed valence regime can be understood

by comparing Γ̃ = Γ(Λ) (black line) with Λ. Note that for for Λ < ∆, the effective

hybridization function suddenly drops to ΓM which is smaller the Λ. In the RG sense, Λ is

directly related to the temperature T of the NRG calculation. Having this in mind, we

expect the system to reenter the FO regime for Λ ≈ ∆ = 10−5. These reasoning’s explain

at least qualitatively why the system returns to the FO fixed point shown in Figure 8

evolves as a second stage effective Anderson model, exhibiting all the expected fixed points.

Since this is a perturbative renormalization analysis, it is not expected to provide an

accurate result where the system enters into a Kondo regime, nevertheless it provides a

very interesting picture of the underlying renormalization flow.

Remember that, for technical reasons, the hybridization function cannot be zero

within the gap, so we need to put a very small but finite value. After all this discussion

one can be led to think, if we have below the gap a second SIAM (reentrant SIAM) with

renormalized parameters Ũ , Ṽ and ε̃d. Maybe at temperature T ≪ ∆ we also have a

second Kondo regimen (with TK2 ≪ TK1) if the hybridization function ΓM, is small, but

finite into the gap. The answer is again yes! We will discuss this regime in the next section.

As mentioned in the Introduction, we know that there is an artifact of the poor

man’s scaling approach, since, at half filling, as shown through NRG and confirmed by

other methods, there is no SC fixed point for any finite gap ∆ in the semiconductor spectra.

In the following, we will compare the critical coupling given by equation (4.13) with

the corresponding numerical results obtained from NRG calculations for the appropriate





5.1. THERMODYNAMIC PROPERTIES FOR ΓM ≈ 0 46

agreement between the PMS and the NRG results, showing that ΓC increases with ∆. This

means that, as intuitively expected, a larger ∆ requires stronger hybridization between

the impurity and the conduction electrons for the Kondo screening to take place. Last,

but not least, taking into account that, as shown above, there is no SC fixed point for

Λ < ∆, the NRG results in Figure 9 (red dots) do not describe the ground state of the

VM = 0 Hamiltonian, but rather what we may call a finite-temperature-Kondo (see below)

associated to an unstable SC fixed point. As described in the Introduction, the ground

state of the VM = 0 Hamiltonian corresponds to a doublet LM fixed point [53, 54].
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In the Figure 10 we show the impurity contribution to the entropy, Simp [Fig. [10(a)],

magnetic moment, µimp [10(b)], as well as the charge fluctuations, ∆Q2 [10(c)], as a function

of temperature for various values of ΓM. We first note that, for temperatures above the gap

T > ∆ , we observe the traditional SIAM behavior, in which the system crosses over from

the FO to the LM to a SC fixed point, as the temperature decreases. As previously discussed,

these three fixed points are marked, respectively, by entropy values Simp/kB ∼ ln 4, ∼ ln 2,

and 0, as seen in Figure 10(a). This is accompanied by an enhancement of the magnetic

moment µimp, at the LM fixed point, followed by its complete suppression in the SC

fixed point, as shown in Fig. 10(b). Finally, notice also the strong suppression of the

impurity charge fluctuations ∆Q2 (at the LM and SC points) [Figure 10(c)]. Interestingly,

all these features are independent of the ΓM value. This can be easily concluded from

the superposition of all the curves in all panels in Figure 10 in the temperature interval

100 > T > 10−5. This behavior is associated to the fact that in all calculations Γ0 are

fixed, thus the hybridization function is always the same above the gap.

It is well-known that the thermodynamic properties presented above are character-

istic of the SIAM [5]. However, for a traditional SIAM, the values of the thermodynamic

quantities, for T ≪ TK , i.e., well into the SC regime, remain unchanged down to T → 0,

as the system would have already reached the stable SC fixed point and would stay

there. Remarkably, in the present case, when T approaches ∆ = 10−5 (from above), the

system deviates from this standard behavior, as it can be easily seen in Fig. 10, since all

thermodynamic properties have additional structures for T < ∆. Indeed, when T → ∆,

the system flows to a second free orbital (SFO) fixed point, marked by an increase of

Simp, µimp, and ∆Q2, to values that go back to their high temperature (T = D) values.

Further decrease of T shows that the system crosses over fixed points that are very similar

to the ones crossed in the temperature interval 100 > T & 10−5. The similarity between

the low and high temperature fixed points indicates that, for T < ∆, the system seems

to be governed by an effective SIAM with renormalized parameters and a much lower

Kondo temperature. Note that the extent of the plateaus in the entropy (at kB ln 2) and

in the magnetic moment (at ≈ 1/4) depend strongly on ΓM, showing that the second stage

Kondo temperature, denoted as TK2, depends strongly on ΓM. Thus, all thermodynamic

quantities (Simp, µimp, and ∆Q2
imp) exhibit behavior compatible with the NRG flow of a

second stage effective SIAM.

The reentrant SIAM below the gap, can be understood as the same SIAM model

but with renormalized effective parameter Ũ , ε̃d = −Ũ/2, Γ̃0 and Γ̃M. Through the PMS

in SIAM we have evidence that the hybridization functions (ΓM and ΓS) are not affected

significantly in the scaling procedure. Another information given by PMS is the fall of the

effective Coulomb repulsion as the temperature decreases, despite the PMS not providing

quantitative information below TK1, we can believe in the qualitative discussion about

these results. However by Figure 10, the second FO fixed point occur in temperature range
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exponential. Then we can write TK2 = B0g(Ueff)e−B1Ueff , where g(x) is some function, which

unfortunately we cannot find and the parameters B0 and B1 carry the intricate information

from the renormalized effective Anderson model. Joining the information obtained through

the graphs in the Figure 13 (TK2 = A0e
−A1/ΓM ) and Figure 15 (TK2 = B0g(Ueff)e−B1Ueff )

also considering that Ueff and ΓM are practically independent (see again the Figure 12).

Then we can write TK2 with simultaneous dependence on Ueff and ΓM as

TK2 = C0g(Ueff ,ΓM)e−C1
Ueff
ΓM , (5.3)

where g(x, y) is some function, C0 and C1 are constants and all this terms carry the

intricate information from the renormalized effective Anderson model. Unfortunately these

results are only heuristic and we did not find anything like this equation through the

PMS, in fact we do not even know if it is possible, since in energies scale below the TK1

perturbative methods don’t work well.

The results shown so far are quite general and may be applicable to a variety

of gapped systems to which a magnetic impurity can be coupled to. Examples encom-

pass narrow-gap semiconductors [68], synthesized polymers [69], as well as modern gap-

engineered materials [70]. In the following, we shall discuss how the reentrant SIAM

behavior emerges in an AGNR in which a Rashba spin-orbit coupling (and thus a gap) is

induced externally [71].
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However, for values in the same order of magnitude to ΓM and ΓS (in curves green, orange

and pink), the contribution of impurity to thermodynamic properties has a competition

between the singlet Kondo (due to the electrons in the metallic conduction band) and

the valence-mixed state (due to the presence of the gap in the semiconductor band). To

classify the impurity behavior as singlet Kondo or valence-mixed state, we use again the

Wilson’s criteria (represented by the horizontal gray line in [Fig. 16(b)]). Then, after this

considerations, for Γ0 > ΓM > 0.3Γ0 the impurity behavior are majority coupled to a

metallic-lead, in which the semiconductor gap ∆ was no significant importance to the

system. And also for 0 < ΓM < 0.1Γ0 the impurity behavior are weakly coupled to a

metallic-lead.
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6 Conclusion

In this work, we studied the behavior of a magnetic impurity coupled to several

conduction band structures (metallic band, pseudo-gap systems and semiconductors with

finite gap). Besides that the magnetic impurity can be coupled to more than one lead.

However, the main focus is to explain the behavior of a magnetic impurity coupled with

two leads, one metallic and one semiconductor. For this reasons, we used Anderson Model

for one or more conduction bands coupled to the impurity. Then, we started by deriving

the Kondo model from the Anderson Model using the projection operators and restricting

the Hamiltonian in the conditions necessary for the Kondo effect occur, thus, we show

that Kondo Model is a particular case of Anderson Model in Local Moment regime. Using

the scattering Matrix (T-Matrix) and following Anderson’s ideas we derive the scaling

equations for the Kondo Hamiltonian known as Poor man’s scaling in Kondo Model. The

Poor man’s scaling is a perturbative method and after the long calculations to find the

β-equation is easy to get some information from the system. Only with conduction band

information and impurity energy levels we can find JC and TK . The results found by Poor

Man’s scaling, although limited to temperature scales above TK and extract only some

information, are satisfactory if compared to the NRG. We use this equation to estimate

the characteristic Kondo temperature TK for each of the described conduction bands. We

also find the conditions under which the Kondo effect can occur, known as critical coupling

JC . However, for temperatures below the TK we need a non-degenerate technique to solve

this problems, the ideal tool to do this is the NRG. For the metallic conduction band and

also for the pseudo-gap system, they are extensively explored in the literature. However,

for the semiconductor it has only few works.

In our calculations for the semiconductor band, in the first NRGs results we had

evidence to the reentrant SIAM for temperatures scale below the gap. Then, to understand

this behavior we use the poor man’s scaling in the Anderson Model. To do this it was

necessary to use second order non-degenerate perturbation theory in SIAM, then we find

the scaling equations for this parameters Ũ , ε̃d and Γ̃. Next we use this scaling equations

to understand the behavior of the magnetic impurity coupled structured conduction band

and we came to the conclusion that below the gap, there could really be a ‘second’ SIAM

with renormalized parameters, but the poor man’s scaling not enough. We compared the

result obtained for ΓC using NRG and PMS, the results were close, with similar behavior,

but they are not identical, in fact this was not expected. We also came to the conclusion

that in this system there may be a transient Kondo (unstable SC fixed point), but the

fundamental state must be a doublet.
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Later, we modified the system to study using only NRG an impurity coupled with

a semiconductor lead and weakly coupled with a metallic lead. In this system it is clear the

repetition of all fixed points, including a second regime of strong coupling fixed point (a

second Kondo effect occur below the gap). Using LDOS in NRG we were able to estimate

Ueff by locating the second Hubbard peak, also the second Kondo peak. In addition, we

note that Ueff is independent of ΓM, but is extremely dependent on Γ0 and ∆. We observed

that in this system, for finite ΓM and forming the first SC fixed point (unstable SC fixed

point), then the ground state is the singlet Kondo (stable SC fixed point). We also note

the exponential behavior of TK2 with ΓM, similar to Haldane’s expression. Besides that

the behavior of the TK2 with Ueff are also majority exponential, but carries an unknown

term that depends of the Ueff . Putting the previous information together, we found an

approximate heuristic expression for TK2, but unfortunately we can not validate this

through analytical calculations yet.

The system consisting by the magnetic impurity coupled to an AGNR, subjected

to a tunable spin-orbit coupling, in which the reentrant SIAM may be experimentally

observed. For typical values of this system, we can find TK1 = 55K and TK2 = 10mK. In

addition, we can find several other systems with a small gap, where this study can be

applied. Future perspective: Our finding may be useful to understand the Kondo problem

in gapped materials such as Dirac insulators [75, 76], in which the conduction band exhibit

a small gap.
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