
Um algoritmo de força bruta para avaliação de

desempenho da minimização de handovers

intra-VPON em VCRAN

Lucas Marchesoti Franco

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2018

Lucas Marchesoti Franco

Um algoritmo de força bruta para avaliação de

desempenho da minimização de handovers

intra-VPON em VCRAN

Dissertação de mestrado apresentada ao

Programa de Pós-graduação da Faculdade

de Computação da Universidade Federal de

Uberlândia como parte dos requisitos para a

obtenção do título de Mestre em Ciência da

Computação.

Área de concentração: Ciência da Computação

Orientador: Lásaro Jonas Camargos

Coorientador: Gustavo Bittencourt Figueiredo

Uberlândia

2018

Dedico este trabalho a todos os alunos de cursos de pós graduação que sofrem com

depressão ano após ano. A todos que desejam criar um produto acadêmico de qualidade,

mas sofrem com a incapacidade, própria e de seus pares, de traçar métricas claras e

ancoradas na realidade. Ser relevante é uma arte. Sem a percepção de utilidade é

impossível retirar satisfação do trabalho.

Agradecimentos

Agradeço primeiro aos meus orientadores, Lásaro Jonas Camargos e Gustavo Bit-

tencourt Figueiredo, que me apresentaram este instigante tema e me conduziram no

desenvolvimento deste projeto. Agradeço à Prof. Márcia Aparecida Fernandes, que

acompanhou de perto meu trabalho e contribuiu imensamente com o desenvolvimento

teórico. Agradeço ao Prof. Luís Fernando Faina pelos excelentes insights e direcionamen-

tos. Agradeço também ao Prof. Rafael Pasquini, que foi de imensa ajuda sempre que

solicitado.

Agradeço às coordenações da Faculdade de Computação (FACOM) da Universidade

Federal de Uberlândia, campi Uberlândia e Monte Carmelo, sempre prestativas e com-

preensivas com a dualidade de conduzir um mestrado enquanto se trabalha. Em especial

gostaria de citar o coordenador da FACOM em Monte Carmelo à época em que Ąz parte

do corpo docente, Kil Jin Brandini Park, e o diretor da FACOM no mesmo período,

Ilmério Reis da Silva.

Agradeço ao meu amigo Tuanir França Rezende, com o qual muito discuti sobre a

vida acadêmica e o curso de mestrado, e com quem troquei muitas idéias sobre projetos,

ferramentas e técnicas. Agradeço ao falecido Fábio Ferreira de Moura, excelente pessoa

com a qual desenvolvi meu primeiro trabalho acadêmico, sob a orientação da Prof. Márcia

Aparecida Fernandes mencionada acima.

EnĄm agradeço à minha esposa, Taynara Tuanne Lima Pereira, que me acompanhou

durante a longa jornada para a obtenção do título de mestre e me apoiou estóicamente,

sendo tolerante com minhas indecisões e compreensiva com as minhas escolhas.

ŞNada do que vivemos tem sentido, se não tocarmos o coração das pessoas.Ť

Cora Coralina

Resumo

Arquitetura de redes 5G utilizando Acesso de Rádio em Nuvem Virtual permite movi-

mento suave entre base stations utilizando transmissão conjunta, mas transições ainda

podem acontecer dependendo da conĄguração da rede e dos recursos alocados. Os dois

problemas de alocação de recursos nesta arquitetura são formação de Redes Ópticas Pas-

sivas Virtuais e Alocação de Banda de Recursos, para os quais os trabalhos recentes se

focam em resolver com técnicas de Programação Linear Inteira. Nós formulamos os prob-

lemas em termos de Teoria de Grafos Temporais e propomos um algoritmo força-bruta

e um heurístico para resolver o problema de Alocação de Banda de Recursos, ambos os

quais investigam apenas soluções válidas. Nosso algoritmo pode ser utilizado para avaliar

o desempenho de outros algoritmos cujo objetivo é decidir as atribuições em tempo de ex-

ecução. Nós também investigamos os algoritmos em cenários realistas, mas cenários com

tamanho e complexidade suĄciente para serem interessantes se provaram demasiadamente

grandes tanto para nossos algoritmos quanto para os de trabalhos relacionados.

Palavras-chave: Teoria dos Grafos, Redes 5G, VCRAN, Teoria de Grafos Temporais,

Otimização.

A brute-force algorithm to evaluate the

performance of VCRAN intra-VPON handover

minimization

Lucas Marchesoti Franco

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2018

UNIVERSIDADE FEDERAL DE UBERLÂNDIA Ű UFU
FACULDADE DE COMPUTAÇÃO Ű FACOM

PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIA DA
COMPUTAÇÃO Ű PPGCO

The undersigned hereby certify they have read and recommend to the PPGCO
for acceptance the dissertation entitled Um algoritmo de força bruta para
avaliação de desempenho da minimização de handovers intra-VPON
em VCRAN submitted by Lucas Marchesoti Franco as part of the require-
ments for obtaining the Master’s degree in Computer Science.

Uberlândia, 29 de Agosto de 2018

Supervisor: _________________
Prof. Dr. Lásaro Jonas Camargos

Universidade Federal de Uberlândia

Cosupervisor: _________________
Prof. Dr. Gustavo Bittencourt Figueiredo

Universidade Federal de Uberlândia

Examining Committee Members:

Prof. Dr. Igor Santos Peretta

Universidade Federal de Uberlândia

Prof. Dr. Rodolfo da Silva Villaça

Universidade Federal do Espírito Santo

Profa. Dra. Márcia Aparecida Fernandes

Universidade Federal de Uberlândia

Abstract

5G Network architecture using Virtual Cloud Radio Access enables seamless move-

ment across base stations via Joint Transmission, but Handovers still occur depending on

the network conĄguration and allocated resources. In VCRAN, two resource allocation

problems are present, Virtual Passive Optical Network Formation and Resource-Block

Assignment, which existing works focus on solving with Integer Linear Programming

techniques. We have formulated the problems in terms of Temporal Graph Theory and

propose a brute-force and a heuristic algorithm for solving the Resource-Block Assign-

ment problem, both of which explore only valid solutions. Our algorithm can be used to

evaluate the performance of other algorithms whose aim is deciding assignments on the

Ćy. We have also investigated realistic scenarios, but ones with sufficient complexity and

size to be of interest proved to be large for both our approach and that of related works.

Keywords: Graph-Theory, 5G Networks, VCRAN, Temporal Graph Theory, Optimiza-

tion.

List of Figures

Figure 1 Ű VCRAN architecture (WANG et al., 2016b). 20

Figure 2 Ű Joint Transmission in action: BS 2 tries to communicate with MTs in

both BS 1 and BS 3. 21

Figure 3 Ű MT movement scenario illustrating how MT movement is discretized

in a time-frame. The blue arrows show the actual MT movement, the

red arrow shows the MT movement as detected by the network in a

single time frame transition. 26

Figure 4 Ű Example system as a TVG, both in state and snapshot representation. 28

Figure 5 Ű MT Journey on the network in green. 28

Figure 6 Ű Example conversion from interference areas to Hypergraph. Green hy-

peredges connect 3 base stations, while red hyperedges connect two

base stations. They are represented differently to improve visualization.

Blue MTs on the original network are converted to weights indicated

by blue numbers. 29

Figure 7 Ű Two MTs that are not adjacent in the hypergraph formulation, but

are adjacent in the Graph formulation. In the hypergraph formula-

tion they would be separated by the interference area between BS1

and BS2. Remember that this formulation only considers as adjacent

Mobile Terminals (MTs) that are in the same interference area. 32

Figure 8 Ű A single timestep split by its composing base stations, each with its

respective MTs. 35

Figure 9 Ű A scenario with intertwined base-stations groups, each with their color-

set. 38

Figure 10 Ű Composite structure of the Generator data structure. 39

Figure 11 Ű Example scenario. 39

Figure 12 Ű Adjacency List. 40

Figure 13 Ű Trace. 40

Figure 14 Ű Possible coloring. 40

Figure 15 Ű ColorTracker example. 45

Figure 16 Ű Running times of brute-force algorithm as the number of colors grow.

Each curve depicts a scenario with a different number of MTs. 53

Figure 17 Ű Execution times for random pruning with 50% chance. 53

Figure 18 Ű Execution times for random pruning with 25% chance. 54

List of Tables

Table 2 Ű Test results for random pruning with 50% chance. Average over 50 runs

for each combination of #MTs, #Colors. 50

Table 3 Ű Test results for random pruning with 25% chance. Average over 50 runs

for each combination of #MTs, #Colors. 52

Table 1 Ű Test results for brute-force coloring. Tests cases that took longer than

600 seconds are omitted from the table. 55

Acronyms list

AL Adjacency List

BS Base Station

CRAN Cloud Radio Access Network

DRAN Dynamic Radio Access Network

DU Digital Unit

HO Hand Over

ILP Integer Linear Programming

JT Joint-Transmission

LP Linear Programming

LTE Long Term Evolution Architecture

MT Mobile Terminal

OFDM-PON Orthogonal Frequency Division Multiplexing - Passive Optical Network

RAN Radio Access Network

RB Resource Band

RB-A Resource Band Assignment

SD ScenarioDescriptor

SDI ScenarioDescriptor Index

TVG Time-Varying Graph

TGT Temporal Graph Theory

TO Transmission Overhead

VCRAN Virtual Cloud Radio Access Network

VPON Virtual Passive Optical Network

VF VPON Formation

List of Algorithms

4.1 Naive Brute-force . 39

4.2 BSGenerator.__iter__ . 41

4.3 BSGenerator.__next__ . 41

4.4 CompositeGenerator.Ąrst_color . 42

4.5 CompositeGenerator.update_generator_recursive 42

4.6 CompositeGenerator.update_generator_semi_recursive 43

4.7 CompositeGenerator.update_generator_iterative 44

4.8 TimestepGenerator.do_carryover . 44

4.9 TimestepGenerator.create_generator . 44

Contents

1 INTRODUCTION . 17

2 FUNDAMENTALS . 19

2.1 5G Networks . 19

2.1.1 Virtual Cloud Radio Access Network . 19

2.1.2 FrontHaul . 20

2.1.3 Joint Transmission . 20

2.1.4 Resource Allocation Problems . 21

2.2 Graph Theory . 22

2.2.1 Hypergraphs . 22

2.2.2 Temporal Graph Theory (TGT) . 22

3 PROBLEM FORMULATION 25

3.1 Base concepts . 25

3.1.1 System model . 25

3.1.2 Problem . 28

3.1.3 Method . 31

4 COMBINATORIAL OPTIMIZATION 33

4.1 Problem Statement . 34

4.2 Naive Brute-Force Optimization 34

4.3 Optimizing the combinatorial explosion 35

4.3.1 Eliminating intrinsic BS coloring validation 35

4.3.2 Eliminating extrinsic BS coloring validation 37

4.4 Giving a lower bound to the necessary number of colors 37

4.5 Algorithms . 38

4.5.1 Underlying data-structures: Scenario Descriptor and Adjacency List . . 39

4.5.2 Generator . 40

4.5.3 In-Coloring calculations . 44

5 EXPERIMENTS . 47

5.1 Scenarios . 47

5.2 Results . 48

5.2.1 Valid-only brute-force . 48

5.2.2 Using random pruning . 48

6 CONCLUSION . 57

BIBLIOGRAPHY . 59

I hereby certify that I have obtained all legal permissions from the owner(s) of each

third-party copyrighted matter included in my thesis, and that their permissions allow

availability such as being deposited in public digital libraries.

Lucas Marchesoti Franco

16 List of Tables

17

Chapter 1

Introduction

4G networks incur service disruption when a MT moves between Base Stations (BSs).

This event is called a Handover and it occurs because no two BSs exchange messages with

the same device at the same time using the same radio frequency. It follows the break

before make principle, that is, the connection gets broken before the next BS takes over

transmission to the mobile device. Virtual Cloud Radio Access Network (VCRAN) is one

prominent proposal for 5G network architectures that aims to improve this by allowing

joint transmission to a single MT, but the technique cannot guarantee that service will

always be seamless. It centralizes signal processing from BS in the cloud by using so-called

digital units. Any single digital unit and its affiliated base stations constitute a Virtual

Passive Optical Network (VPON). Due to architecture limitations, transitioning between

VPONs Inside the same VPON, however, these might be avoided if the communication

resource, also known as Resource Block (Resource Band (RB)) being used by the MT is

not being used by another MT in the vicinity of any newly transmitting BS.

Current methods used to solve these problems are generic and slow, as they are based

on Linear Programming LP (WANG et al., 2016a). In (ZHANG et al., 2017) the au-

thors devise a minimum-cut algorithm to reconĄgure the network and reduce inter-VPON

traffic. In (TININI et al., 2017) the authors use an Integer Linear Programming (ILP)

algorithm to accommodate processing in VPONs and turn functions on or off in an energy-

efficient way. The authors of (BASU et al., 2010) also try to allocate VPON resources in

an energy-efficient way, but they use graph partitioning and rejoining techniques. Other

related works focus on proposing architectures to improve communication efficiency and

reducing overhead. In (YANG; CHAN, 2017) the authors propose a switching architec-

ture to protect remote radio heads against being overwhelmed. In (RIVA et al., 2018)

the authors propose an OFDM-PON architecture with VCRAN to improve bandwidth

utilization when the channel is bigger than the demand. In (YU et al., 2018) the authors

propose an architecture to improve utilization of the networkŠs optical transceivers and

an algorithm to improve energy utilization.

Existing works focus on scenarios with set boundary-crossing rates in order to generate

18 Chapter 1. Introduction

high complexity situations in small setups, ignoring the possibility of generating realistic

movement patterns by using random walk and manhattan grid, for example. In order to

make our work comparable, we will focus on the former approach. We think that graph

and temporal graph theory have better prospects of producing an acceptable algorithm

compared to previous LP formulations, and that further progress is possible beyond classic

graph algorithms.

In this work we explore the problem of benchmarking handover minimization in

VCRAN architectures. We aim to establish a baseline for evaluation of algorithms that

will be used in a production system. For this end we formulate the problem in terms of

Time-Varying Graphs (TVG) and develop a brute-force algorithm that identiĄes assign-

ments with minimum number of handovers. We use Temporal Graph Theory (TGT) for

deriving the algorithm, where a Ąrst approach using hypergraphs is presented, but due to

time complexity constraints we also develop a simpler one. We devise and implement a

brute-force algorithm and run it against generated scenarios, comparing it with a random

pruning strategy, to Ąnd the optimal RB allocation in order to reduce handovers. The

brute-force algorithm is capable of evaluating only valid assignments. We judge them

based on time complexity, execution time and number of optimal solutions found.

This work is divided as follows. We Ąrst present the theoretical fundamentals, then

move on to deĄne the network problem in terms of TGT. Based on these deĄnitions

we formalize the problem both in temporal hypergraphs and temporal graphs, and move

on to derive a brute force algorithm along with its complexity analysis. We describe the

implementation and test it in generated scenarios along with a random pruning approach.

We then analyze the results and present the conclusions.

19

Chapter 2

Fundamentals

2.1 5G Networks

5G Networks need to improve over current Radio Access Networks (RAN) to support

orders of magnitude more traffic, along with unique services and devices, speciĄc quality

of experience requirements and latency constraints. As the number of connected devices

explodes the network is expected to become overloaded.

The solution to this problem is usually to increase network Base Station density.

Current Distributed RAN (DRAN) fails to scale in this respect because the shrunk area

cells would cause excessive handovers (HO) as mobile terminals (MTs) move. To make

matters worse, the break before make nature of these handovers asks that connection be

dropped before it is established with the new base station, resulting in more overhead.

To avoid network thrashing we need a new architecture that enables MT movement

across base stations with seamless handovers. The development of such a network is

possible due to recent advances in cloud computing and virtualization.

2.1.1 Virtual Cloud Radio Access Network

In traditional Distributed RAN, baseband processing is done at each BS, thus each

time an MT moves from one area to another there is a HO delay to move baseband

processing from one BS to another. In Cloud RAN (CRAN) the baseband processing is

moved from the BS to the Digital Unit (DU). Furthermore, if this setting is centralized

in commodity hardware and scaled through virtualization, we have a Virtual CRAN

(VCRAN). This way we can perform baseband processing in a centralized machine and

coordinate handovers locally. Now when an MT moves from one area to another, traffic

for that MT just needs to be routed through a different BS.

VCRAN architecture is shown in Figure 1. We can see the BSs which communicate

with MTs being aggregated in VPONs, or virtual base-stations (V-BS), by their respective

DUs, which process MT packets in the DU Cloud. DUs communicate between themselves

20 Chapter 2. Fundamentals

Figure 1 Ű VCRAN architecture (WANG et al., 2016b).

through an internal ethernet switch. Each time a handover occurs between base stations

of different DUs, the MT information must be handled from one digital unit to another,

thus a handover cannot be avoided in this situation. Conversely, when an MT moves

between two BSs that report to the same DU, then the handover will only occur on the

MT side if necessary. BSs will be able to communicate seamlessly with the MT without

additional overhead.

There are two other essential pieces to support this architecture: the FrontHaul, a

high bandwidth, low latency and strict jitter network to communicate data between BSs

and DUs; and the ability to Joint-Transmission (JT), a method to coordinate signal

redirection from one RU to another, without the need to break connection.

2.1.2 FrontHaul

The FrontHaul can be built in a way that satisĄes our constraints by using Time-

wavelength division multiplexing in a passive optical network. By aggregating certain

Ąbers under the same Virtual Passive Optical Network we can support baseband pro-

cessing for a certain network area under the same digital unit. Thus if we coordinate

transmission between different base stations to a moving MT in a way that service isnŠt

disrupted as it changes area cells, also known as Coordinated Multi-Point, we avoid HOs

altogether inside VPONs (WANG et al., 2016a).

2.1.3 Joint Transmission

Joint-Transmission is a coordinated multi-point technique that works by enabling mul-

tiple base-stations to transmit together to the same MT (WANG et al., 2016a). Signal is

duplicated and sent to both base-stations, which coordinate their scheduled transmissions

in order to strengthen the signal for that MT in an area that would be ill-served by either

BS alone.

22 Chapter 2. Fundamentals

VPON HandOver. This topological assignment, called VPON Formation (VF) can heavily

impact network performance. The second problem concerns the attribution of Resource

Blocks to individual MTs inside each VPON, where a RB is the time-wavelength slot used

to communicate with the MT. We want to minimize RB conĆicts upon MT movement,

each of which would cause an Intra-VPON HandOver. This problem is called Resource

Block Assignment (RB-A). The number of available RBs is dependent upon the speciĄc

equipment being used by the network.

2.2 Graph Theory

We base our initial investigations in classic graph algorithms. We will assume planarity

of the graph topology due to the network layout.

2.2.1 Hypergraphs

Hypergraphs are an established branch of graph theory relating to graphs that have

edges linking more than 2 nodes at once. Common hypergraph problems related to ours

are the k-way hypergraph cut problem (CHEKURI; LI, 2015), colouring planar mixed

hypergraphs (KUNDGEN; MENDELSOHN; VOLOSHIN, 2001) and total colouring of

hypergraphs (COWLING, 1995). In these works, it has been shown to be hard approxi-

mation problems for which algorithms are still immature. We have not found any papers

that attack the speciĄc problem restrictions we run into.

In terms of algorithms, (KAZNACHEY; JAGOTA; DAS, 2003) enumerates some

greedy algorithms for graph coloring and provides a neural network model based on Hop-

Ąeld networks and an adaptation of the primal-dual method for training. Among the

presented heuristics, GR2 seems especially Ąt for our objectives. It is a uniform-coloring

algorithm based on always picking the least-used color. It can be easily adapted for multi-

coloring, and the order of picking elements can also be adapted to satisfy full-coloring,

by using the chromatic number of each element instead of using edges as pivots to choose

which vertex to color.

2.2.2 Temporal Graph Theory (TGT)

Temporal graphs appear in literature as a novel way to understand dynamic networks.

Static graphs have been used to model static networks, but the dynamic nature of some

applications prohibits the system from being completely understood in a static vision.

Adding a temporal dimension to graphs opens new opportunities to understand such

systems, and at the same time poses a new challenge.

The idea of temporal graphs has been applied independently in various works. Most

closely related are fault tolerant networks, where a connection might be present or not at

2.2. Graph Theory 23

a given moment. Another close theme is opportunistic mobile networks, where a message

travels according to available connections, which appear in function of agent movement.

In the following paragraphs we borrow from (CASTEIGTS et al., 2010) to describe Time-

Varying Graphs (TVG) and related concepts.

A Time-Varying Graph is deĄned as 𝒢 = (𝑉, 𝐸, 𝒯 , 𝜌, Õ, ℒ), where 𝑉 is a set of nodes,

𝐸 : 𝑉 × 𝑉 is a set of edges (or relationships between nodes), 𝒯 is the system lifetime,

𝜌 : 𝐸 × 𝒯 ⊃ ¶0, 1♢ is a binary function relating the presence of each edge with time, and

Õ : 𝐸 × 𝒯 ⊃ 𝒯 is a latency function, indicating the cost of each edge at each moment in

time. ℒ is the label set, which tags each element on the hypergraph with domain-speciĄc

properties.

Just as in Static Graph Theory, TGT establishes some base-concepts that are useful

when working with TVGs. For example, the base graph of a TVG is the graph representing

all nodes and all edges that appeared at some moment in the lifetime of a TVG. Some

works refer to it as the smashed representation(BASU et al., 2010).

The evolution of a TVG may be seen from 3 points of view: edges, nodes and the

graph. Edge evolution happens as edges appear and disappear from the graph. The

union of all these appearance and disappearance dates forms the set of characteristic

dates of the TVG. Node evolution happens as the neighborhood of each node changes.

Graph evolution is a sequence of states, or snapshots, where each state is different from

the previous one. Note that for discrete-time applications we might establish that the

only variation is time, making it possible for two adjacent snapshots to be equal. In the

same fashion, a TVG subgraph might consist of a subset of nodes, edges and time.

The analogous of a path in TGT is a journey. A journey is a temporal path, that

is, a path that is satisĄed over the lifetime of a TVG. Crossing an edge is subject to it

being available over a period that overcomes its latency. We can then view a journey as

happening both topologically and temporally. The topological distance of a journey is the

number of hops to reach a destination, while the temporal distance is the interval between

departure and arrival. If there is a journey from 𝑢 to 𝑣, we say that 𝑢 reaches 𝑣. The set

of all nodes reachable from 𝑢 is the horizon of 𝑢.

According to the concept of a journey we can also see the distance between two nodes

topologically and temporally. In terms of shortest paths we could then have three metrics:

The shortest path is the one with least topological distance; the fastest path is the one

with least temporal distance; and the foremost path is the one with closest arrival date.

Note that all of these are taken from a base time 𝑡, so there is a set of such paths for

every pair of nodes at every time 𝑡.

The basic concepts in TVG can be analyzed to create classes, each of which guarantees

certain properties, that form a hierarchy. For example, two desirable characteristics are

universal temporal source and universal temporal sink. These establish, respectively,

a node that can send a (temporal) message to any other node and that can receive a

24 Chapter 2. Fundamentals

(temporal) message from any other node. These two characteristics together lead to the

presence of connectivity over time, a third property that establishes that any node can

reach any other node. Strengthening this a bit, we get to establishing temporal cyclic

connectivity, that is, every node can send a message and receive an answer from the same

node, to any node in the graph.

The class of a TVG can be recognized by analyzing alternative views of the TVG, such

as connected components over time and the transitive closure. In the same way, classic

properties can be analyzed in other ways when seen through a formal temporal viewpoint.

Non-determinism can be introduced on a TVG by making the presence function return

the probability that an edge exists at time 𝑡, that is, 𝜌 : 𝐸 ×𝒯 ⊃ [0, 1]. Non-determinism

in discrete TVGs is modeled as a markovian process, while in continuous graphs it is

modeled as a graph where edge appearance follows a Poisson process.

Research opportunities in TVG abound, especially when related to distributed algo-

rithms, self-stabilization techniques, design and optimization of TVG topology, complexity

analysis of algorithms in TVGs, pattern detection and TVG visualization (CASTEIGTS

et al., 2010).

25

Chapter 3

Problem Formulation

We start by deĄning a mathematical model of the systemŠs inner workings in terms of

TGT. We investigated Temporal Graph Theory and modeled the VF and RB-A problems

using it, contributing to Temporal Graph Theory in any respect it lacks in modeling our

problem. We also developed novel algorithms based on TGT and built prototypes to

validate our solutions against simulated network data.

Our initial formulation is based on hypergraphs. We proceed to work on a simple

graph model due to complexity constraints, but still present the Ąrst formulation here, as

it is valid and might be further explored in future works.

3.1 Base concepts

3.1.1 System model

We begin the deĄnition of a system state by Ąrst delimiting the time-domain where

the system will function. Then we properly detail the information the system needs to

store at each state and how it is done.

3.1.1.1 Time-domain

Mobile Terminals move in the physical world with a continuous time domain. Even

then, the network system works in cycles and uses a discrete time domain. We address

this conĆict by considering the system clock to be fast enough to detect MT movements

between adjacent signal areas any time they happen.

In other words, we can assume a system window time and a minimum time to cross a

signal area (i.e., the time required to traverse two edges to reach a non-adjacent cell) such

that 𝑠𝑦𝑠𝑡𝑒𝑚_𝑤𝑖𝑛𝑑𝑜𝑤_𝑡𝑖𝑚𝑒 ⊘ 𝑡𝑖𝑚𝑒_𝑡𝑜_𝑐𝑟𝑜𝑠𝑠. We deĄne 𝑡𝑖𝑚𝑒_𝑡𝑜_𝑐𝑟𝑜𝑠𝑠 in function of

the signal area traversal distance and the max MT speed (e.g. 10𝑚/𝑠) as

𝑡𝑖𝑚𝑒_𝑡𝑜_𝑐𝑟𝑜𝑠𝑠 =
𝑠𝑖𝑔𝑛𝑎𝑙_𝑎𝑟𝑒𝑎_𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑎𝑥_𝑚𝑡_𝑠𝑝𝑒𝑒𝑑

3.1. Base concepts 27

VPON formation is restricted by wavelength capacity, as all information from the BS

must Ąt into the bandwidth of the wavelength used for transmission.

Non-adjacent groups of cells are considered to be different VPONs even though they

might share the same wavelength. This is done to improve resource use while reducing

system complexity: a detached VPON is the same as two separate VPONs, but this

does not create wavelength interference. In practice both groups might be treated by

the network as the same VPON, as signal processing is split by wavelength. A complete

system state is then characterized by the deĄnition of two functions: one that maps cells

to wavelengths and another one that maps resource bands to MTs inside each VPON.

3.1.1.3 Handover Triggering and Transmission Overhead

In order to coordinate JT between base stations we have two situations that cause

overhead (and potential denial of service) in the network, which are desired to be avoided.

We shall call them Transmission Overhead (TO) and Handover (HO). We would like to

minimize the total overhead incurred by these situations.

Joint Transmission poses a single requirement upon the network: we cannot transmit

to different MTs using the same RB where it would cause interference. This situation

arises when two BSs are close enough that their cover area overlaps, and they try trans-

mitting to different MTs using the same RB. Handovers are triggered when the movement

of MTs using the same resource block would result in interference. In this case we need

to change one of the MTsŠ RB to a free one in order to avoid interference.

Transmission Overhead is caused by two BSs in different VPONs transmitting to

the same MT. While possible, this incurs communication overhead in the central office,

because the DUs of both VPONs must coordinate and transmit the baseband signal

through the DU cloudŠs internal ethernet switch. This overhead is present at each time

step there is a transmission in this situation.

3.1.1.4 Time-Varying Graph Model

We provide the following TVG model for this problem. Consider a base TVG ℬ =

(𝑉, 𝐸, 𝒯 , ℒ) where V is the set of cell signal areas and E is the set of edges ¶𝑢, 𝑣♢, where 𝑢

and 𝑣 are adjacent signal areas. A signal area is any delimited spot on the map for which

the set of RBs that transmit to that spot is distinct from all adjacent areas. ℒ is the Label

set, which contains the base-stations that serve each signal area. A signal area serviced

by more than one BS is considered an interference area. Also 𝒯 is the time domain. We

do not deĄne a presence function 𝜌 nor a latency function Õ, as we use the TVG only to

observe MT journeys over time. The underlying structure is otherwise static, unless in

case of failure, which is not considered here. An example is shown in Figure 4.

We can represent an MT journey on this graph as a journey spanning several such

signal areas. The journey starts when the MT connects to the network and ends when it

30 Chapter 3. Problem Formulation

ber of colors then represents the makespan of the instance. Multi-colorings

also arise in telecommunication channel assignment where the nodes repre-

sent transmitters, edges represent interference, and the transmitters send out

signals on multiple wavelengths (the colors). It is due to this application in

telecommunications that multicoloring, as well as generalizations that further

restrict feasible colorings, dates back to the 1960s. Aardal et al. provide an

excellent survey on these problems.

The multi-coloring problem can be reduced to graph coloring by re placing

each node by a clique of size equal to the required number of colors. Edges

are then replaced with complete bipartite graphs between the corresponding

cliques. Such a transformation both increases the size of the graph and embeds

an unwanted symmetry into the problem. It is therefore useful to develop

specialized algorithms that attack the multi-coloring problem directly.

(MEHROTRA; TRICK, 2007)

Regardless of the algorithm used to solve our problem, a hypergraph total multi-

coloring is the most natural representation. It can then be converted to simpler problems

with more efficient algorithms for solving.

3.1.2.2 VF Problem

In order to minimize the transmission overhead during the network lifetime, we for-

mulate it as a minimum k-cut problem, where k is unknown and is a function of the total

network load. Since we deal with a TVG, a cut might disappear at some point and come

to reappear later. Also, since the cost of changing a VPON is very low we can assume the

optimal solution is the same as calculating the optimal cut at each time-step. Flexibility

in regards to running time can be achieved by m-stacking the graph (YU et al., 2013),

but approximation quality is not uniform as different time-steps might delineate different

change factors.

3.1.2.3 Practical Considerations

We immediately stumble upon the controversy of needing journey information for MTs

that can move freely within the VCRAN. Thus we resort to movement prediction, as we

can only perform as well as we can predict future MT movement. At this time we assume

an oracle that can correctly predict every movement from the start to the end of each

journey.

As computing time is bound to be a bottleneck, per the computational nature of the

problem, the 𝑠𝑦𝑠𝑡𝑒𝑚_𝑤𝑖𝑛𝑑𝑜𝑤_𝑡𝑖𝑚𝑒 becomes an algorithm choice driver.

The LTE speciĄcation establishes a 10ms system window, dictated by the transmission

frame time-span (COMPANY, 2009), but a handover can take up to 1 second (IRMER

3.1. Base concepts 31

et al., 2011). In practice, we will probably need to arrange a compromise to cover for

this gap, as more details are needed such as, if a handover can take up to 1 second, how

long after it started do we need to know the appropriate RB? As such we abstract this

notion in benchmarking classical algorithms and work with the network as a perfectly

synchronous mechanism, keeping in mind the time-order of execution time.

3.1.3 Method

We focus on solving the RB-A problem through regular coloring algorithms, which

provides a good and justiĄable approximation to this problem. We choose the RB-A

problem because it cannot be avoided, whereas the VF problem can be partially solved

offline by analyzing network load and movement statistics. Besides, related work is already

tackling the VF problem.

Even though our hypergraph formulation offers the most granular solution, we opt

for a simpliĄed model for two reasons: Ąrst, it only opens up coloring opportunities

from close-by interference areas, which we deem too small; second, it constrains our time

requirements even more. Thus we model the problem as a graph node multi-coloring,

where each node is a BS and the chromatic number of each is the number of MTs attached

to it.

Consider, for example, the situation illustrated in Figure 7. In this scenario, consider

that BS1 is transmitting to an MT within area A using some RB. By modeling this

situation with a regular graph, BS2 cannot reuse the same RB, although it could. Our

hypergraph model captures this situation and would yield a more granular solution.

Even though we devised this model we have decided to implement a simpler approach

for a Ąrst attempt because of two reasons: Ąrst, we already have to deal with other

time-constrainers, such as dealing with multiple timesteps; second, these are very close

areas, and stochastic probability of the MT moving to an adjacent area that would cause a

handover in a close time-step is high. Still, gains are possible and should only be evaluated

if possible.

33

Chapter 4

Combinatorial Optimization

We will focus recoloring by considering a couple of adaptations on classic graph coloring

algorithms. Suppose, for example, that we are using a standard brute-force approach in

which we need to enumerate all possible k colors for all possible vertexes. This gives us

♣𝑉 ♣k possible solutions. If we wish to naively check for conĆicts, we multiply this by an

additional factor of 2♣𝐸♣, which is the sum of degrees on the graph.

We can adapt this algorithm to work with multi-coloring by stating that instead of

considering each color for each node once, we consider each color for each color slot of

each node. In other words, we substitute a node by its chromatic number in the equation,

yielding a chromatic number of
√︁♣V ♣

i=1
äi for the graph. Checking conĆicts is complicated

by checking once against each position in the same node and each position in each of the

neighbors. We can do it naively with cost äi +
√︁♣ηi♣

j=1
äj for each vertex 𝑖, where Öj is the

set of neighbors of 𝑗, but it can be sped up by using better data structures.

For partial multi-coloring we keep the same conĆict-checking function and assume

some of the nodes (or positions) have already been colored. So instead of re-rolling all

coloring for each color spot, we re-run it only for the un-colored spots, which reduces

our search space to
√︁♣V ♣

i=1
(äi ⊗ ä′

i), where ä′
i is the number of Ąxed colors in node 𝑖.

Alternatively, we can denote this as
√︁♣V ♣

i=1
ä′′

i , where ä′′
i is the number of conĆicting colors

for node 𝑖.

We can apply the same principle to a common heuristic in graph coloring: for each

node in turn, pick the smallest non-conĆicting color. At Ąrst sight, this still yields the same

upper bound of ♣𝑉 ♣k, but a good implementation, using a neighbor list and a color-bit array

associated with each vertex, can bring the running time down to 𝑂(♣𝑉 ♣2) (KAZNACHEY;

JAGOTA; DAS, 2003). Multi-coloring adaptation would result in 𝑂(
√︁♣V ♣

i=1
ä2

i), and partial

multi-coloring cost would be 𝑂(
√︁♣V ♣

i=1
ä′′

i
2).

These algorithms form the base for working with a TVG to minimize the number of

total handovers over the network service time, expressed by

𝑚𝑖𝑛
♣T ♣
∑︁

t=1

𝐻t

34 Chapter 4. Combinatorial Optimization

, where ♣𝐻t♣ expresses the set of handovers occurring at time-step 𝑡.

We ran experiments to conĄrm these theoretical bounds in practice while considering

various factors such as data structures that guarantee these theoretical bounds, hidden

constant factors that might render them unusable in practice and their applicability given

the asynchronous nature of handovers. Our Ąrst model will consider only the Manhattan

distance, which is the distance between two points by traveling only in parallel to the

axes (CHANG et al., 2009).

4.1 Problem Statement

Let 𝑆 be a bi-dimensional array consisting of the assigned color to each MT at each

timestep, and 𝑀 = [𝑚1, 𝑚2, . . . , 𝑚♣M ♣] be the set of MTs. Denote 𝑆t
i as the color assign-

ment to 𝑚i at timestep 𝑡. We can then deĄne

𝐻t =
♣M ♣
∑︁

i=0

(𝑆t
i ̸= 𝑆t⊗1

i)

. Thus, the problem we want to optimize is, in terms of 𝑇 and 𝑀 , given by Equation 1.

min
♣T ♣
∑︁

t=1

♣M ♣
∑︁

i=0

(𝑆t
i ̸= 𝑆t⊗1

i) (1)

4.2 Naive Brute-Force Optimization

This is a theoretical explanation on optimizing the implementation of the full scale

optimization, together with complexity analysis. We highlight that this algorithm is

meant to evaluate the scenario. If we wanted the best coloring to be used in a running

network, we would be interested in the timestep coloring with the best prospect of reducing

future Handovers, repeating and re-evaluating at each timestep.

As a Ąrst algorithm we can lay all MTs at each timestep in a single large array, and

try each possible combination of color assignments, yielding

𝑂
(︁

ä♣M ♣
⎡

possibilities for each timestep, where ä is the number of colors and ♣𝑀 ♣ is the number

of MTs on the system. We also have to validate each possibility regarding color clashes

inside each BS and among its adjacency. Intra-BS clashes can be calculated by creating

a color array for each BS, initialized with zeros, and summing one for each time the color

appears in the base stationŠs MTs. It has cost 𝑂(♣𝑀 ♣), as each MT is only located at one

BS and we need only inspect each MT once. Clashes with adjacent BSs can be calculated

by applying a logic AND between adjacent base stationsŠ color arrays, for which the result

36 Chapter 4. Combinatorial Optimization

by generating all color permutations of size ♣𝑏i♣, the number of MTs at base station 𝑖. If

we do this for each BS, we will need to generate

𝑂

∏︀

∐︁

♣B♣
∏︁

i=1

ä!

♣𝑏i♣!

∫︀

̂︀

color assignments for this Ąrst timestep, where ♣𝐵♣ is the number of BSs. This can be

shown to be less than the full 𝑂(ä♣M ♣) colorings from the naive algorithm. The idea is

that instead of each MT considering all possible colors, it considers only the available

colors in its BS given the previous assignments. So instead of ä * ä * . . . * ä we have

ä * (ä ⊗ 1) * . . . * (ä ⊗ ♣𝑏i♣) inside the base station.

Moving forward to the next timesteps, we do not need to repeat this whole calculation.

It is both a network constraint and a mathematical advantage that MTs that do not move

do not need to be reassigned a RB. If we do it, we will spuriously cause spontaneous

handovers on the network, a situation undesirable both from the userŠs experience point

of view and from the mathematical optimization one. Delaying possible handovers offers

no drawbacks.

To see that this is true, suppose that we have an MT 𝑚 at a given timestep 𝑡. Also,

suppose that 𝑚 is going to conĆict colors with some other MT in a posterior timestep.

If we proactively do a handover on 𝑚 to avoid the future conĆict, we will incur the same

cost as doing it later. There is no gain, then, in doing preemptive handovers, yet there

is the risk that we might miss our prediction and even cause an additional one. Now

suppose more than one handover could be evicted by doing this preemptive handover.

We would also gain the same advantage by doing it on the Ąrst handover in the sequence,

so avoiding multiple handovers in conĆicts with the same MT in a row becomes more of

a choice of who keeps their color than a matter of doing preemptive handovers.

This said, we can optimize the calculation of the next timesteps with a bound on the

number of handovers, much better than the total number of MTs. We can basically use

the same trick used on the Ąrst timestep, but using only the MTs that moved between

base stations and need a handover: for the base-stations containing a clash, separate the

MTs who moved in into a new array and use it to generate all permutations of available

colors inside that BS. Doing it for all base stations, we have a total cost of

𝑂

∏︀

∐︁

♣B♣
∏︁

1

(ä ⊗ (♣𝑏i♣ ⊗ ♣ℎi♣))!

♣ℎi♣!

∫︀

̂︀

, where ♣ℎi♣ is the number of handovers on base station 𝑖. What this means is that we

keep the assignments of all MTs that stayed put or moved without a clash (♣𝑏i♣ ⊗ ♣ℎi♣),

and try all free colors for each of the remaining ones (ä ⊗ (♣𝑏i♣ ⊗ ♣ℎi♣)).

Putting together all the parts, we have a cost of

𝑂

∏︀

∐︁

C
∑︁

c=1

∏︀

∐︁

♣B♣
∏︁

i=1

𝑐!

♣𝑏i♣!
+

♣B♣
∏︁

i=1

(𝑐 ⊗ (♣𝑏i♣ ⊗ ♣ℎi♣))!

♣ℎi♣!

∫︀

̂︀

∫︀

̂︀

4.4. Giving a lower bound to the necessary number of colors 37

4.3.2 Eliminating extrinsic BS coloring validation

For this step we will use an availability color index for each base station. For it to

work we will make use of the order of color assignment in generating a new candidate

scenario. Consider that we are evaluating the possible assignments for a given timestep

(any timestep, initial or otherwise). We have already divided it into a sequence of intra-BS

permutations on all colors. We will change this slightly to permutate only on the available

colors, given the assignments of the previous BSs. The used colors of a BSŠs adjacency

can be calculated by taking the color arrays of each adjacent base station, as well as its

own, and applying a logical OR. If we invert this logical array we get the available colors,

and permutate on them.

The term for the number of available colors in base station 𝑏, 𝐴b, is presented in

2, where 𝐴𝐷𝐽i is the set of adjacent base stations of BS 𝑖, ♣𝐴𝐷𝐽i♣ is the size of the

adjacency, and 𝐴𝐷𝐽ij is the 𝑗Šth adjacent base station in 𝑖Šs adjacency. Notice that 𝐴b

will not change for different color assignments as it is only dependent on the number of

MTs in the near vicinity and the chromatic number. We can substitute 𝑐! for it in the

previous cost equation to express the full cost of the algorithm as:

𝑂

∏︀

∐︁

C
∑︁

c=1

∏︀

∐︁

♣B♣
∏︁

i=1

𝐴b

♣𝑏i♣!
+

♣B♣
∏︁

i=1

(𝐴b ⊗ (♣𝑏i♣ ⊗ ♣ℎi♣))!

♣ℎi♣!

∫︀

̂︀

∫︀

̂︀

𝐴i = 𝑐 ⊗ ♣𝑏i♣ ⊗
♣ADJi♣

∑︁

j=1

♣𝑏ADJij
♣ (2)

4.4 Giving a lower bound to the necessary number

of colors

For this step let us assume that the MTs are equally distributed across the network.

This presents the least number of MTs at any single BS and thus the potential for the

smallest 𝐶. We have another constraint, which is that a color cannot be used at the same

time at a base station and any of its adjacent ones.

Suppose an hexagonal topology with 𝑏 base stations; we need to split our network

along 𝑎 intertwined groups, where 𝑎 is the maximum adjacency size among base stations.

Figure 9 illustrates this intertwined map. Notice how we cannot use the same color in

any BS of different groups, but we can repeat a color in any two BSs of the same group

without potential clashes.

Given this situation, we need

𝐶 ⊙
♣𝑀 ♣

♣𝐵♣
* 𝑎

4.5. Algorithms 41

only the BSGenerator will Ąll the Coloring object with color values.

4.5.2.1 BSGenerator

Let us look Ąrst at the BSGenerator, which is more concrete and thus easier to grasp.

It is initialized with a set of MTs, a set of colors, and a Coloring object, and will generate

all color permutations for the available colors of size equal to the cardinality of the set of

MTs. It should be empty in case the number of colors is less than the number of MTs,

meaning that no coloring can be made. It should also be worth a single empty pass in

case the number of MTs is 0. This is important for the higher level iterations, as failing

this empty iteration when in the middle of the generator array will block the recursive

progress and impossibilitate generation of all colorings. In the general case it will return

the next available permutation and override the coloring section corresponding to the set

of MTs. Notice that the BSGenerator receives only the coloring slice that corresponds

to its timestep. When it is exhausted, it will clear its section (Ąlling with color number

-1). The class initialization, iterator initialization and iteration algorithms are presented

in Algorithms 4.2 and 4.3 respectively. The python itertools library was used to generate

permutations.

Algorithm 4.2 BSGenerator.__iter__
1: Task BSGenerator.__iter__
2: if len(self.colors) < len(self.mts) then
3: return iter([])

4: if len(self.mts) == 0 then
5: return iter([None])

6: return self

Algorithm 4.3 BSGenerator.__next__
1: Task BSGenerator.__next__
2: if has permutations then
3: self.coloring[self.mts] = next(self.permutations)
4: else
5: self.coloring[self.mts] = -1
6: raise StopIteration

4.5.2.2 CompositeGenerator

The CompositeGenerator is initialized with an adjacency matrix and a coloring ob-

ject, and creates a Generator array with length equal to the problem size (deĄned by

subclasses). In order to process the recursive iteration properly it has three phases: gen-

erating the Ąrst coloring, updating it to the next coloring, and exhaustion.

42 Chapter 4. Combinatorial Optimization

In the Ąrst time it is called, it will initialize all of its generators in ascending order,

in a way that if it hits a dead end when trying to initialize any of the generators, it will

backtrack to the previous generators until it can break through. This is accomplished by

having a method 𝑢𝑝𝑑𝑎𝑡𝑒_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑖), which takes care of iteration on 𝑖 and previous

generators if needed, until it can generate a next color for generator 𝑖 or exhausts all

possibilities, stopping the iteration. This method will ensure that we create a Ąrst valid

coloring, or none in case it is impossible. This method is illustrated in Algorithm 4.4.

Control of when it is Ąrst called is done by a Ćag. This step needs to be done on the Ąrst

iteration, rather than on the iterator initialization, or we will lose the Ąrst coloring once

the 𝑛𝑒𝑥𝑡 method is called.

Algorithm 4.4 CompositeGenerator.Ąrst_color
1: Task CompositeGenerator.first_color
2: for i in range(0, len(self.generators)) do
3: self.generators[i] = iter(self.create_generator(i))
4: self.update_gen(i)

In subsequent iterations, we only need to call the 𝑢𝑝𝑑𝑎𝑡𝑒_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 method on the

last generator, as it will take care of generating a complete valid coloring recursively.

Upon exhaustion, it calls a 𝑐𝑙𝑒𝑎𝑛𝑢𝑝 method, to be implemented by subclasses.

The 𝑢𝑝𝑑𝑎𝑡𝑒_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 method has three versions: recursive, semi-recursive, and it-

erative. We will start with the recursive version, as it is easier to grasp, and remove

recursion step by step in the other versions.

The recursive version tries to increment the generator by the argument index. If it

fails, then it calls itself on the previous index, re-initializes the current generator, and

calls update on itself again. It should stop when the argument index is less than zero.

This algorithm is presented in Algorithm 4.5.

Algorithm 4.5 CompositeGenerator.update_generator_recursive
1: Task CompositeGenerator.update_generator_recursive(idx)
2: if 𝑖𝑑𝑥 < 0 then
3: raise StopIteration
4: if has next then
5: next(self.generators[idx])
6: else
7: self.update(idx-1)
8: self.generators[idx] = self.create_generator(idx)
9: self.update_generator(idx)

To remove the innermost recursion we will use a 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 Ćag. We will retry updating

the generator on the argument index while the Ćag is false, going through the same steps

when it fails, except for the recursive call on the same index, and setting the Ćag to true

4.5. Algorithms 43

once we can successfully update the generator. The stopping criterion is the same. This

algorithm is presented in Algorithm 4.6.

Algorithm 4.6 CompositeGenerator.update_generator_semi_recursive
1: Task CompositeGenerator.update_generator_semi_recursive(idx)
2: if 𝑖𝑑𝑥 < 0 then
3: raise StopIteration
4: Ąnished = False
5: while not Ąnished do
6: if has next then
7: next(self.generators[idx])
8: Ąnished = True
9: else

10: self.update(idx-1)
11: self.generators[idx] = self.create_generator(idx)

The Ąnal, iterative version, of the algorithm uses an iteration index and a creation

Ćag, to track the generator being currently updated and necessity for re-initializing the

next iterator. It starts by setting the iteration index 𝑖 to the argument index 𝑖𝑑𝑥, and the

creation Ćag to False, and iterates on 𝑖 while 0 ⊘ 𝑖 ⊘ 𝑖𝑑𝑥. The loop follows a two-case

structure: if it can increment the generator at 𝑖, then it moves on to the next index and

needs to re-initialize the generator at that position (set creation Ćag to True); if it cannot

increment the generator at 𝑖, then it retries on the previous generator. At the start of

any iteration, if the creation Ćag is True (meaning it comes from an index increment)

then it will re-initialize the generator at this new 𝑖 and reset the creation Ćag to False.

If it ends by exceeding 𝑖𝑑𝑥, then it returns with a new coloring, but if the iteration ends

with 𝑖 < 0, then all possibilities where exhausted and the iteration stops. This iterative

version is presented in Algorithm 4.7.

4.5.2.3 CompositeGenerator

The CompositeGenerator subclasses need to implement 3 methods: 𝑐𝑟𝑒𝑎𝑡𝑒_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟,

𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑠𝑖𝑧𝑒, and 𝑐𝑙𝑒𝑎𝑛𝑢𝑝. The ColoringGenerator is simpler: its problem size is the

number of timesteps, it creates a TimestepGenerator by passing 𝑡 along with the other

parameters, and on cleanup it should set the whole coloring object to -1.

The TimestepGenerator has trivial problem size, equal to the number of base stations

(length of adjacency list), and trivial cleanup (set whole timestep to -1, but the create

generator step is a bit tricky. First, as long as it is not the Ąrst timestep, it needs to

carry over the used colors for the MTs who do not suffer a handover. It literally copies

the colors from the previous timestep. This is illustrated in Algorithm 4.8. Second, it

must pass to the BSGenerator a list containing the MTs that need recoloring, a list of

available colors, and its coloring slice. These mt-list and available color calculations will

be presented further, and this rather high level algorithm is presented in Algorithm 4.9.

44 Chapter 4. Combinatorial Optimization

Algorithm 4.7 CompositeGenerator.update_generator_iterative
1: Task CompositeGenerator.update_generator_iterative(idx)
2: i = idx
3: create = False
4: while 0 ⊘ 𝑖 ⊘ 𝑖𝑑𝑥 do
5: if create is True then
6: self.generators[i] = iter(self.create_generator(i))
7: create = False
8: if has next then
9: next(self.generators[i])

10: i += 1
11: create = True
12: else
13: i -= 1
14: if 𝑖 < 0 then
15: raise StopIteration

Algorithm 4.8 TimestepGenerator.do_carryover
1: Task TimestepGenerator.do_carryover
2: if 𝑠𝑒𝑙𝑓.𝑡 > 0 then
3: co_mts = self.coloring.carryover_mts(self.t, bs, self.adjacency[bs])
4: self.coloring[self.t, co_mts] = self.coloring[self.t - 1, co_mts]

Algorithm 4.9 TimestepGenerator.create_generator
1: Task TimestepGenerator.create_generator
2: self._do_carryover(bs)
3: return BSGenerator(self.coloring.ho_mts(self.t, bs, self.adjacency[bs]),

self.coloring.available_colors(self.t, self.adjacency[bs]), self.coloring.timestep(self.t))

4.5.3 In-Coloring calculations

With all the other pieces in place, we need the coloring object to answer these three

questions for any given BS and timestep:

o which MTs need recoloring?

o which MTs do not need recoloring?

o what are the available colors?

For this the Coloring will be represented by a ScenarioDescriptor and two extra com-

ponents: a base-station index (SDI) and ä. It will also need a companion data structure,

the ColorTracker, which will index (mt, color) pairs to answer the following questions:

o What MTs are conĆicting colors?

o What colors are free?

46 Chapter 4. Combinatorial Optimization

47

Chapter 5

Experiments

This chapter starts with a discussion of the scenarios used in testing, and proceeds

to discuss how each algorithm performed using different parameters. We measure both

scalability and solution quality.

5.1 Scenarios

We ran tests against the scenario presented at (WANG et al., 2016a), which is com-

prised of an hexagonal 7-cell architecture. Movement patterns were considered by forcing

the movement of each MT at each timestep, during a Ąxed number of timesteps. In prac-

tice the BS of each MT at the next timestep is drawn from the adjacent base stations.

We used the following parameters:

o Number of MTs: [1-10]

o Number of colors: [1 . . . Number of MTs]

o Number of timesteps: 5

Attempting to generate realistic scenarios with BonnMotion (ASCHENBRUCK et al.,

2010), using ManhattanGrid models of differing sizes, resulted in sparse scenarios that

took long to run and had trivial solutions, comprised of one color for each MT with no

possibility of reuse. Such maps are often too vast for any signiĄcant MT movement in

such a small amount of timesteps and did not yield interesting movement patterns.

To give a sense of scale, even cases with one block of 100𝑚×100𝑚, with one base station

on each corner, proved to yield few HOs in a realistic timestep scale. The movement of

the MTs is too slow to cause transitions in 5 seconds that would result in handovers.

In a scenario with 4 base stations, 10 MTs and 5 seconds, using a random walk, we

could barely get one or two transitions. This conveys two important points: Ąrst, that

recoloring scenarios will not be so complex, so the algorithm in practice does not need to be

48 Chapter 5. Experiments

a prediction powerhouse; second, that it is probably overkill to compute the colorings over

a dense network representation. Working over a data structure that allows efficient access

to transitions at each timestep and MT journey might yield more efficient algorithms

without losing on coloring quality.

We nevertheless took the dense brute-force approach as other works have. To this end

we implemented a simple generator that calculates the next position of each MT based

on its adjacency for the required number of timesteps. The results are presented below.

5.2 Results

We ran each brute-force scenario a single time, since its execution is deterministic.

Each random-pruning scenario was executed 10 times.

5.2.1 Valid-only brute-force

We present the raw experiment data in Table 1. We can see that for most tests the

execution time remains constant and yields a best-case coloring (0 HandOvers). For the

tests that start taking longer the number of equivalent solutions rises fast, along with the

time of experiment. This reĆects the many equivalent solutions for a complex scenario. A

Ąrst way to explore a faster search in this case is to randomly prune the search branches,

which is what we tried next. We also plot the time progression for the scenarios consisting

of each separate number of MTs as we increase the color count. This is shown in Figure

16.

5.2.2 Using random pruning

We present in Table 2 the experiment data for the tests with random pruning. For

these we randomly stop the evaluation of a search branch with a Ąxed probability. This

chance is evaluated at every time we generate a coloring permutation for a base station.

Each reported value is the average of results for 50 runs of each experiment.

The Ąrst round used 50% chance when pruning. We see that for many cases it was

unable to Ąnd even one valid solution, even when given enough colors. Running times show

a slight upward trend at a much lower time scale, less than 1 second for any investigated

problem size. The time curves are presented in Figure 17.

#MTs #Colors Time (s) # equivalent solutions #HOs

1 1 0.003002 0.00 0.00

2 1 0.001346 0.00 0.00

2 0.001747 0.00 0.00

3 1 0.001321 0.00 0.00

5.2. Results 49

2 0.001793 0.00 0.00

3 0.004390 0.16 0.08

4 1 0.001307 0.00 0.00

2 0.001666 0.00 0.00

3 0.009404 0.36 0.06

4 0.007229 0.34 0.06

5 1 0.001274 0.00 0.00

2 0.001787 0.00 0.00

3 0.007070 0.36 0.08

4 0.009016 0.50 0.12

5 0.004766 0.32 0.06

6 1 0.001328 0.00 0.00

2 0.001755 0.00 0.00

3 0.007763 0.32 0.08

4 0.005513 0.34 0.10

5 0.008478 0.50 0.06

6 0.012240 0.72 0.10

7 1 0.001403 0.00 0.00

2 0.001629 0.00 0.00

3 0.006841 0.28 0.04

4 0.005719 0.30 0.04

5 0.008236 0.34 0.08

6 0.015348 0.76 0.08

7 0.012795 0.78 0.12

8 1 0.001311 0.00 0.00

2 0.001858 0.00 0.00

3 0.005560 0.30 0.08

4 0.006952 0.36 0.08

5 0.014184 1.06 0.24

6 0.008304 0.52 0.10

7 0.012029 0.54 0.10

8 0.011204 0.46 0.04

9 1 0.001519 0.00 0.00

2 0.002123 0.00 0.00

3 0.004073 0.14 0.04

4 0.010130 0.58 0.14

5 0.008747 0.48 0.06

6 0.007135 0.40 0.04

7 0.007826 0.44 0.04

50 Chapter 5. Experiments

8 0.010582 0.66 0.08

9 0.010624 0.66 0.04

10 1 0.001315 0.00 0.00

2 0.001798 0.00 0.00

3 0.008030 0.36 0.02

4 0.009048 0.50 0.12

5 0.031816 0.88 0.14

6 0.014948 0.60 0.06

7 0.014034 0.68 0.12

8 0.009977 0.52 0.10

9 0.012159 0.70 0.12

10 0.007953 0.34 0.02

Table 2 Ű Test results for random pruning with 50%

chance. Average over 50 runs for each com-

bination of #MTs, #Colors.

The second round used 25% chance for pruning. We present in Table 3 the experiment

data for these tests. We see that it was still unable to Ąnd valid solutions for many cases,

but in this regard it scored much better than random pruning with 50% chance. Running

times show an exponential upward trend, but at a much lower time scale than the brute

force at less than 1 second for any investigated problem size. The time curves are presented

in Figure 18.

#MTs #Colors Time (s) # equivalent solutions #HOs

1 1 0.001432 0.00 0.00

2 1 0.001383 0.00 0.00

2 0.003544 0.00 0.00

3 1 0.002204 0.00 0.00

2 0.003886 0.00 0.00

3 0.046645 1.54 0.06

4 1 0.001402 0.00 0.00

2 0.003644 0.00 0.00

3 0.041009 1.20 0.08

4 0.118902 3.92 0.06

5 1 0.001394 0.00 0.00

2 0.003704 0.00 0.00

3 0.047929 1.70 0.08

4 0.082922 3.30 0.12

5 0.171783 6.26 0.08

6 1 0.001432 0.00 0.00

5.2. Results 51

2 0.003381 0.00 0.00

3 0.043942 1.42 0.06

4 0.073953 2.66 0.04

5 0.134522 4.84 0.04

6 0.188622 7.94 0.08

7 1 0.002120 0.00 0.00

2 0.003881 0.00 0.00

3 0.039560 1.30 0.06

4 0.095298 3.44 0.08

5 0.162225 6.92 0.04

6 0.195013 7.24 0.06

7 0.236402 10.52 0.02

8 1 0.001573 0.00 0.00

2 0.003607 0.00 0.00

3 0.041753 1.38 0.08

4 0.084951 3.40 0.08

5 0.169339 6.98 0.10

6 0.237853 9.98 0.08

7 0.223513 10.98 0.04

8 0.289968 12.90 0.04

9 1 0.001382 0.00 0.00

2 0.003646 0.00 0.00

3 0.039135 1.18 0.06

4 0.096627 3.32 0.04

5 0.140969 5.28 0.08

6 0.205040 9.48 0.06

7 0.212568 12.50 0.10

8 0.175220 11.50 0.04

9 0.277696 17.46 0.06

10 1 0.001431 0.00 0.00

2 0.003219 0.00 0.00

3 0.033790 1.16 0.06

4 0.109213 3.32 0.02

5 0.185368 6.68 0.04

6 0.239807 9.28 0.10

7 0.195067 8.86 0.06

8 0.247531 11.86 0.06

9 0.334270 16.58 0.04

10 0.291506 16.52 0.00

52 Chapter 5. Experiments

Table 3 Ű Test results for random pruning with 25%

chance. Average over 50 runs for each com-

bination of #MTs, #Colors.

5.2. Results 55

#MTs #Colors Time (s) # equivalent solutions #HOs
1 1 1.5 1 0
2 1 1.5 0 0
2 2 1.6 2 0
3 1 1.5 0 0
3 2 1.5 0 0
3 3 1.8 6 0
4 1 1.5 0 0
4 2 1.5 0 0
4 3 1.6 0 0
4 4 4 24 0
5 1 1.5 0 0
5 2 1.5 0 0
5 3 2.3 6 4
5 4 34.8 24 0
5 5 410 240 0
6 1 1.5 0 0
6 2 1.5 0 0
6 3 1.5 0 0
6 4 164 168 2
7 1 1.5 0 0
7 2 1.5 0 0
7 3 1.5 0 0
7 4 5.7 0 0
7 5 560 3 3
8 1 1.5 0 0
8 2 1.5 0 0
8 3 1.5 0 0
8 4 1.6 0 0
8 5 6 0 0
9 1 1.3 0 0
9 2 1.4 0 0
9 3 1.5 0 0
9 4 1.6 0 0
9 5 1.8 0 0
10 1 1.5 0 0
10 2 1.5 0 0
10 3 1.5 0 0
10 4 1.5 0 0
10 5 1.7 0 0
10 6 556 0 0

Table 1 Ű Test results for brute-force coloring. Tests cases that took longer than 600
seconds are omitted from the table.

56 Chapter 5. Experiments

57

Chapter 6

Conclusion

In this work we have studied the problem of Resource Band Assignment (RB-A) in

5G networks. We have modeled the network in terms of Hypergraphs, but decided to run

tests with a simpler model due to computational constraints.

We have advanced the theoretical formulations towards a solid algorithm for calculat-

ing optimal colorings. The problem formalization is solid and seems to reĆect its practical

nature. We have presented an algorithm capable of exploring only the valid instances,

going through each of them exactly once, and a faster algorithm using random pruning.

Our attempt to tackle practical instances was not successful due to the scenario size

needed for complex coloring choices. We found out that other work in this area uses

condensed cases, and that the practical instances we generated through simulation were

not causing as many handovers as we would expect for interesting cases, at least not in a

scale we could calculate solutions for.

We have attained satisfactory advancements in evaluation of handover minimization

performance, although we have not focused on exploring production algorithms. The

random pruning algorithm we tested is just a small example of what can be compared

against our benchmark. The opportunity for production-grade algorithms in this problem

lies in approximation algorithms. Maybe artiĄcial intelligence techniques such as genetic

programming can yield good results. Its combinatorial nature could be put to good use,

for example, by crossing solutions on points where a color would be exchanged between

MTs. Future work could explore more speciĄc formulations.

We have also calculated the complexity of the optimized brute force algorithm. The

complexity of a benchmark tool is always expected to be poorer than a production-grade

algorithm, but its complexity is too high for large scenarios. We could probably settle for

some approximation algorithms on such cases. Its formulation serves as a base, however,

and can be used to judge further developments of these benchmark tools by comparing

evaluation performance on the cases it can handle.

The software developed for this work can be found on under the authorŠs GitHub

proĄle (FRANCO, 2018).

58 Chapter 6. Conclusion

59

Bibliography

ASCHENBRUCK, N. et al. Bonnmotion: a mobility scenario generation and analysis
tool. In: ICST (INSTITUTE FOR COMPUTER SCIENCES, SOCIAL-INFORMATICS
AND TELECOMMUNICATIONS ENGINEERING). Proceedings of the 3rd
international ICST conference on simulation tools and techniques. 2010. p. 51.
Disponível em: <https://doi.org/10.4108/ICST.SIMUTOOLS2010.8684>.

BASU, P. et al. Modeling and analysis of time-varying graphs. arXiv preprint
arXiv:1012.0260, 2010.

CASTEIGTS, A. et al. Time-varying graphs and dynamic networks. arXiv preprint
arXiv:1012.0009, 2010.

CHANG, D.-J. et al. Compute pairwise manhattan distance and pearson correlation
coefficient of data points with gpu. In: IEEE. Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed Computing, 2009.
SNPD’09. 10th ACIS International Conference on. 2009. p. 501Ű506. Disponível
em: <https://doi.org/10.1109/SNPD.2009.34>.

CHEKURI, C.; LI, S. A note on the hardness of approximating the k-way hypergraph
cut problem. 2015.

COMPANY, A. LTE Resource Guide. 2009. Disponível em: <http://web.cecs.pdx.
edu/~Ći/class/LTE_Reource_Guide.pdf>.

COWLING, P. Total colouring of hypergraphs. Journal of Combinatorial
Mathematics and Combinatorial Computing, Charles Babbage Research Centre,
v. 19, p. 151Ű160, 1995.

FRANCO, L. M. VCRAN Handover Optimization Benchmark. 2018.
<https://github.com/lmarchesoti/vcran-ho-optimization-benchmark>.

IRMER, R. et al. Coordinated multipoint: Concepts, performance, and Ąeld trial results.
IEEE Communications Magazine, IEEE, v. 49, n. 2, p. 102Ű111, 2011. Disponível
em: <https://doi.org/10.1109/MCOM.2011.5706317>.

KAZNACHEY, D.; JAGOTA, A.; DAS, S. Neural network-based heuristic algorithms
for hypergraph coloring problems with applications. Journal of Parallel and
Distributed Computing, Elsevier, v. 63, n. 9, p. 786Ű800, 2003. Disponível em:
<https://doi.org/10.1016/S0743-7315(03)00064-9>.

60 Bibliography

KUNDGEN, A.; MENDELSOHN, E.; VOLOSHIN, V. Colouring planar mixed
hypergraphs. JOURNAL OF COMBINATORICS, v. 7, n. 2, p. R60ŰR60, 2001.

MEHROTRA, A.; TRICK, M. A. A branch-and-price approach for graph multi-
coloring. In: Extending the horizons: Advances in computing, optimization,
and decision technologies. Springer, 2007. p. 15Ű29. Disponível em: <https:
//doi.org/10.1007/978-0-387-48793-9_2>.

RIVA, M. et al. An elastic optical network-based architecture for the 5g fronthaul. In:
Simpósio Brasileiro de Redes de Computadores (SBRC). [S.l.: s.n.], 2018. v. 36.

TININI, R. I. et al. Optimal placement of virtualized bbu processing in hybrid
cloud-fog ran over twdm-pon. In: IEEE. GLOBECOM 2017-2017 IEEE
Global Communications Conference. 2017. p. 1Ű6. Disponível em: <https:
//doi.org/10.1109/GLOCOM.2017.8254770>.

WANG, X. et al. Handover reduction in virtualized cloud radio access networks
using an optical fronthaul. 2016. Under evaluation. Disponível em: <https:
//doi.org/10.1364/JOCN.8.00B124>.

. Handover reduction in virtualized cloud radio access networks using
twdm-pon fronthaul. Journal of Optical Communications and Networking,
Optical Society of America, v. 8, n. 12, p. B124ŰB134, 2016. Disponível em:
<https://doi.org/10.1364/JOCN.8.00B124>.

YANG, Q.; CHAN, C. C.-K. A switching architecture for remote radio head
protection in cloud radio access networks. In: IEEE. Microwave Photonics
(MWP), 2017 International Topical Meeting on. 2017. p. 1Ű3. Disponível em:
<https://doi.org/10.1109/MWP.2017.8168666>.

YU, F. et al. Algorithms for channel assignment in mobile wireless networks using
temporal coloring. In: ACM. Proceedings of the 16th ACM international
conference on Modeling, analysis & simulation of wireless and mobile
systems. 2013. p. 49Ű58. Disponível em: <https://doi.org/10.1145/2507924.2507965>.

YU, H. et al. Energy-efficient dynamic lightpath adjustment in a decomposed
awgr-based passive wdm fronthaul. Journal of Optical Communications and
Networking, Optical Society of America, v. 10, n. 9, p. 749Ű759, 2018. Disponível em:
<https://doi.org/10.1364/JOCN.10.000749>.

ZHANG, J. et al. ReconĄgurable optical mobile fronthaul networks for coordinated
multipoint transmission and reception in 5g. IEEE/OSA Journal of Optical
Communications and Networking, IEEE, v. 9, n. 6, p. 489Ű497, 2017. Disponível
em: <https://doi.org/10.1364/JOCN.9.000489>.

	Title page
	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Approval
	Abstract
	List of Figures
	List of Tables
	Acronyms list
	Contents
	Introduction
	Fundamentals
	5G Networks
	Virtual Cloud Radio Access Network
	FrontHaul
	Joint Transmission
	Resource Allocation Problems

	Graph Theory
	Hypergraphs
	Temporal Graph Theory (TGT)

	Problem Formulation
	Base concepts
	System model
	Time-domain
	System information
	Handover Triggering and Transmission Overhead
	Time-Varying Graph Model

	Problem
	RB-A
	VF Problem
	Practical Considerations

	Method

	Combinatorial Optimization
	Problem Statement
	Naive Brute-Force Optimization
	Optimizing the combinatorial explosion
	Eliminating intrinsic BS coloring validation
	Eliminating extrinsic BS coloring validation

	Giving a lower bound to the necessary number of colors
	Algorithms
	Underlying data-structures: Scenario Descriptor and Adjacency List
	Generator
	BSGenerator
	CompositeGenerator
	CompositeGenerator

	In-Coloring calculations

	Experiments
	Scenarios
	Results
	Valid-only brute-force
	Using random pruning

	Conclusion
	Bibliography

