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Resumo

Arquitetura de redes 5G utilizando Acesso de Radio em Nuvem Virtual permite movi-
mento suave entre base stations utilizando transmissao conjunta, mas transicoes ainda
podem acontecer dependendo da configuragdo da rede e dos recursos alocados. Os dois
problemas de alocacio de recursos nesta arquitetura sao formaciao de Redes Opticas Pas-
sivas Virtuais e Alocacdo de Banda de Recursos, para os quais os trabalhos recentes se
focam em resolver com técnicas de Programacao Linear Inteira. Nés formulamos os prob-
lemas em termos de Teoria de Grafos Temporais e propomos um algoritmo forga-bruta
e um heuristico para resolver o problema de Alocacdo de Banda de Recursos, ambos os
quais investigam apenas solucoes validas. Nosso algoritmo pode ser utilizado para avaliar
o desempenho de outros algoritmos cujo objetivo é decidir as atribui¢coes em tempo de ex-
ecucao. Nos também investigamos os algoritmos em cendrios realistas, mas cenarios com
tamanho e complexidade suficiente para serem interessantes se provaram demasiadamente

grandes tanto para nossos algoritmos quanto para os de trabalhos relacionados.

Palavras-chave: Teoria dos Grafos, Redes 5G, VCRAN, Teoria de Grafos Temporais,

Otimizagao.
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Abstract

5G Network architecture using Virtual Cloud Radio Access enables seamless move-
ment across base stations via Joint Transmission, but Handovers still occur depending on
the network configuration and allocated resources. In VCRAN, two resource allocation
problems are present, Virtual Passive Optical Network Formation and Resource-Block
Assignment, which existing works focus on solving with Integer Linear Programming
techniques. We have formulated the problems in terms of Temporal Graph Theory and
propose a brute-force and a heuristic algorithm for solving the Resource-Block Assign-
ment problem, both of which explore only valid solutions. Our algorithm can be used to
evaluate the performance of other algorithms whose aim is deciding assignments on the
fly. We have also investigated realistic scenarios, but ones with sufficient complexity and

size to be of interest proved to be large for both our approach and that of related works.

Keywords: Graph-Theory, 5G Networks, VCRAN, Temporal Graph Theory, Optimiza-

tion.
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CHAPTER

Introduction

4G networks incur service disruption when a MT moves between Base Stations (BSs).
This event is called a Handover and it occurs because no two BSs exchange messages with
the same device at the same time using the same radio frequency. It follows the break
before make principle, that is, the connection gets broken before the next BS takes over
transmission to the mobile device. Virtual Cloud Radio Access Network (VCRAN) is one
prominent proposal for 5G network architectures that aims to improve this by allowing
joint transmission to a single MT, but the technique cannot guarantee that service will
always be seamless. It centralizes signal processing from BS in the cloud by using so-called
digital units. Any single digital unit and its affiliated base stations constitute a Virtual
Passive Optical Network (VPON). Due to architecture limitations, transitioning between
VPONSs Inside the same VPON, however, these might be avoided if the communication
resource, also known as Resource Block (Resource Band (RB)) being used by the MT is
not being used by another MT in the vicinity of any newly transmitting BS.

Current methods used to solve these problems are generic and slow, as they are based
on Linear Programming LP (WANG et al., 2016a). In (ZHANG et al., 2017) the au-
thors devise a minimum-cut algorithm to reconfigure the network and reduce inter-VPON
traffic. In (TININT et al., 2017) the authors use an Integer Linear Programming (ILP)
algorithm to accommodate processing in VPONs and turn functions on or off in an energy-
efficient way. The authors of (BASU et al., 2010) also try to allocate VPON resources in
an energy-efficient way, but they use graph partitioning and rejoining techniques. Other
related works focus on proposing architectures to improve communication efficiency and
reducing overhead. In (YANG; CHAN, 2017) the authors propose a switching architec-
ture to protect remote radio heads against being overwhelmed. In (RIVA et al., 2018)
the authors propose an OFDM-PON architecture with VCRAN to improve bandwidth
utilization when the channel is bigger than the demand. In (YU et al., 2018) the authors
propose an architecture to improve utilization of the network’s optical transceivers and

an algorithm to improve energy utilization.

Existing works focus on scenarios with set boundary-crossing rates in order to generate
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high complexity situations in small setups, ignoring the possibility of generating realistic
movement patterns by using random walk and manhattan grid, for example. In order to
make our work comparable, we will focus on the former approach. We think that graph
and temporal graph theory have better prospects of producing an acceptable algorithm
compared to previous LP formulations, and that further progress is possible beyond classic
graph algorithms.

In this work we explore the problem of benchmarking handover minimization in
VCRAN architectures. We aim to establish a baseline for evaluation of algorithms that
will be used in a production system. For this end we formulate the problem in terms of
Time-Varying Graphs (TVG) and develop a brute-force algorithm that identifies assign-
ments with minimum number of handovers. We use Temporal Graph Theory (TGT) for
deriving the algorithm, where a first approach using hypergraphs is presented, but due to
time complexity constraints we also develop a simpler one. We devise and implement a
brute-force algorithm and run it against generated scenarios, comparing it with a random
pruning strategy, to find the optimal RB allocation in order to reduce handovers. The
brute-force algorithm is capable of evaluating only valid assignments. We judge them
based on time complexity, execution time and number of optimal solutions found.

This work is divided as follows. We first present the theoretical fundamentals, then
move on to define the network problem in terms of TGT. Based on these definitions
we formalize the problem both in temporal hypergraphs and temporal graphs, and move
on to derive a brute force algorithm along with its complexity analysis. We describe the
implementation and test it in generated scenarios along with a random pruning approach.

We then analyze the results and present the conclusions.
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CHAPTER

Fundamentals

2.1 5G Networks

5G Networks need to improve over current Radio Access Networks (RAN) to support
orders of magnitude more traffic, along with unique services and devices, specific quality
of experience requirements and latency constraints. As the number of connected devices
explodes the network is expected to become overloaded.

The solution to this problem is usually to increase network Base Station density.
Current Distributed RAN (DRAN) fails to scale in this respect because the shrunk area
cells would cause excessive handovers (HO) as mobile terminals (MTs) move. To make
matters worse, the break before make nature of these handovers asks that connection be
dropped before it is established with the new base station, resulting in more overhead.

To avoid network thrashing we need a new architecture that enables MT movement
across base stations with seamless handovers. The development of such a network is

possible due to recent advances in cloud computing and virtualization.

2.1.1 Virtual Cloud Radio Access Network

In traditional Distributed RAN, baseband processing is done at each BS, thus each
time an MT moves from one area to another there is a HO delay to move baseband
processing from one BS to another. In Cloud RAN (CRAN) the baseband processing is
moved from the BS to the Digital Unit (DU). Furthermore, if this setting is centralized
in commodity hardware and scaled through virtualization, we have a Virtual CRAN
(VCRAN). This way we can perform baseband processing in a centralized machine and
coordinate handovers locally. Now when an MT moves from one area to another, traffic
for that MT just needs to be routed through a different BS.

VCRAN architecture is shown in Figure 1. We can see the BSs which communicate
with MTs being aggregated in VPONS; or virtual base-stations (V-BS), by their respective
DUs, which process MT packets in the DU Cloud. DUs communicate between themselves
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Figure 1 — VCRAN architecture (WANG et al., 2016b).

through an internal ethernet switch. Each time a handover occurs between base stations
of different DUs, the MT information must be handled from one digital unit to another,
thus a handover cannot be avoided in this situation. Conversely, when an MT moves
between two BSs that report to the same DU, then the handover will only occur on the
MT side if necessary. BSs will be able to communicate seamlessly with the MT without
additional overhead.

There are two other essential pieces to support this architecture: the FrontHaul, a
high bandwidth, low latency and strict jitter network to communicate data between BSs
and DUs; and the ability to Joint-Transmission (JT), a method to coordinate signal

redirection from one RU to another, without the need to break connection.

2.1.2 FrontHaul

The FrontHaul can be built in a way that satisfies our constraints by using Time-
wavelength division multiplexing in a passive optical network. By aggregating certain
fibers under the same Virtual Passive Optical Network we can support baseband pro-
cessing for a certain network area under the same digital unit. Thus if we coordinate
transmission between different base stations to a moving MT in a way that service isn’t
disrupted as it changes area cells, also known as Coordinated Multi-Point, we avoid HOs
altogether inside VPONs (WANG et al., 2016a).

2.1.3 Joint Transmission

Joint-Transmission is a coordinated multi-point technique that works by enabling mul-
tiple base-stations to transmit together to the same MT (WANG et al., 2016a). Signal is
duplicated and sent to both base-stations, which coordinate their scheduled transmissions
in order to strengthen the signal for that MT in an area that would be ill-served by either
BS alone.
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R i

BS 1 BS 2 BS 3

Figure 2 — Joint Transmission in action: BS 2 tries to communicate with MTs in both BS
1 and BS 3.

Figure 2 shows Joint Transmission in action. It depicts how BS 2 would communicate
with MTs in BS 1, if any, with the same RB used by its native BS. The same would
occur with BS 3. Any MT in the highlighted box would receive its signal from both its
surrounding BSs. Notice that if both BS 1 and BS 3 are using the same RB, then joint
transmission cannot occur, as BS 2 would be communicating with 2 different MTs using
the same RB.

On the one hand, the technique enables seamless movement of any MT on the network,
on the other hand it might incur transmission overhead or another form of handover. The
transmission overhead is caused by performing JT to an MT when using BSs from more
than one VPON. Since digital units are in the cloud and connected by an internal ethernet
switch, it is possible to perform this operation, but it entails additional communication
costs, which we would like to minimize.

The new form of handover has to do with the freedom an MT now has to walk among
BSs using the same frequency assigned to it when it first connected. Unless we have an
unlimited number of available frequencies, this is bound to generate some conflicts. When
two MTs attempt to communicate through the same BS using the same Resource Block
(RB), the JT signal becomes interference and, therefore, we need to perform a handover
in one of the MTs to avoid this clash. This operation also incurs additional overhead
on the network. Note that the RB assigned to the MT is independent of the VPON
of its transmitting BSs, and this is a resource allocation problem to be solved globally.
In this case we want to minimize RB allocation changes among moving MTs. These
problems have been tackled using Integer Linear Programming (ILP) in a static setting
and Heuristics in a dynamic setting (WANG et al., 2016a; YU et al., 2013).

2.1.4 Resource Allocation Problems

There are two prominent problems of resource allocation using the aforementioned
architecture. The first one concerns the attribution of Base Stations to Digital Units.
Each digital unit has a limited processing capacity, and there must be a HandOver every

time an MT crosses borders between BSs from different digital units, called an Inter-
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VPON HandOver. This topological assignment, called VPON Formation (VF) can heavily
impact network performance. The second problem concerns the attribution of Resource
Blocks to individual MTs inside each VPON, where a RB is the time-wavelength slot used
to communicate with the MT. We want to minimize RB conflicts upon MT movement,
each of which would cause an Intra-VPON HandOver. This problem is called Resource
Block Assignment (RB-A). The number of available RBs is dependent upon the specific

equipment being used by the network.

2.2 Graph Theory

We base our initial investigations in classic graph algorithms. We will assume planarity

of the graph topology due to the network layout.

2.2.1 Hypergraphs

Hypergraphs are an established branch of graph theory relating to graphs that have
edges linking more than 2 nodes at once. Common hypergraph problems related to ours
are the k-way hypergraph cut problem (CHEKURI; LI, 2015), colouring planar mixed
hypergraphs (KUNDGEN; MENDELSOHN; VOLOSHIN, 2001) and total colouring of
hypergraphs (COWLING, 1995). In these works, it has been shown to be hard approxi-
mation problems for which algorithms are still immature. We have not found any papers
that attack the specific problem restrictions we run into.

In terms of algorithms, (KAZNACHEY; JAGOTA; DAS, 2003) enumerates some
greedy algorithms for graph coloring and provides a neural network model based on Hop-
field networks and an adaptation of the primal-dual method for training. Among the
presented heuristics, GR2 seems especially fit for our objectives. It is a uniform-coloring
algorithm based on always picking the least-used color. It can be easily adapted for multi-
coloring, and the order of picking elements can also be adapted to satisfy full-coloring,
by using the chromatic number of each element instead of using edges as pivots to choose

which vertex to color.

2.2.2 Temporal Graph Theory (TGT)

Temporal graphs appear in literature as a novel way to understand dynamic networks.
Static graphs have been used to model static networks, but the dynamic nature of some
applications prohibits the system from being completely understood in a static vision.
Adding a temporal dimension to graphs opens new opportunities to understand such
systems, and at the same time poses a new challenge.

The idea of temporal graphs has been applied independently in various works. Most

closely related are fault tolerant networks, where a connection might be present or not at
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a given moment. Another close theme is opportunistic mobile networks, where a message
travels according to available connections, which appear in function of agent movement.
In the following paragraphs we borrow from (CASTEIGTS et al., 2010) to describe Time-
Varying Graphs (TVG) and related concepts.

A Time-Varying Graph is defined as G = (V, E, T, p, (, L), where V' is a set of nodes,
E :V xV is a set of edges (or relationships between nodes), 7 is the system lifetime,
p: ExT — {0,1} is a binary function relating the presence of each edge with time, and
(: ExT — T is a latency function, indicating the cost of each edge at each moment in
time. L is the label set, which tags each element on the hypergraph with domain-specific

properties.

Just as in Static Graph Theory, TGT establishes some base-concepts that are useful
when working with TVGs. For example, the base graph of a TVG is the graph representing
all nodes and all edges that appeared at some moment in the lifetime of a TVG. Some
works refer to it as the smashed representation(BASU et al., 2010).

The evolution of a TVG may be seen from 3 points of view: edges, nodes and the
graph. Edge evolution happens as edges appear and disappear from the graph. The
union of all these appearance and disappearance dates forms the set of characteristic
dates of the TVG. Node evolution happens as the neighborhood of each node changes.
Graph evolution is a sequence of states, or snapshots, where each state is different from
the previous one. Note that for discrete-time applications we might establish that the
only variation is time, making it possible for two adjacent snapshots to be equal. In the

same fashion, a TVG subgraph might consist of a subset of nodes, edges and time.

The analogous of a path in TGT is a journey. A journey is a temporal path, that
is, a path that is satisfied over the lifetime of a TVG. Crossing an edge is subject to it
being available over a period that overcomes its latency. We can then view a journey as
happening both topologically and temporally. The topological distance of a journey is the
number of hops to reach a destination, while the temporal distance is the interval between
departure and arrival. If there is a journey from u to v, we say that u reaches v. The set

of all nodes reachable from wu is the horizon of wu.

According to the concept of a journey we can also see the distance between two nodes
topologically and temporally. In terms of shortest paths we could then have three metrics:
The shortest path is the one with least topological distance; the fastest path is the one
with least temporal distance; and the foremost path is the one with closest arrival date.
Note that all of these are taken from a base time ¢, so there is a set of such paths for

every pair of nodes at every time t.

The basic concepts in TVG can be analyzed to create classes, each of which guarantees
certain properties, that form a hierarchy. For example, two desirable characteristics are
universal temporal source and universal temporal sink. These establish, respectively,

a node that can send a (temporal) message to any other node and that can receive a
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(temporal) message from any other node. These two characteristics together lead to the
presence of connectivity over time, a third property that establishes that any node can
reach any other node. Strengthening this a bit, we get to establishing temporal cyclic
connectivity, that is, every node can send a message and receive an answer from the same
node, to any node in the graph.

The class of a TVG can be recognized by analyzing alternative views of the TVG, such
as connected components over time and the transitive closure. In the same way, classic
properties can be analyzed in other ways when seen through a formal temporal viewpoint.

Non-determinism can be introduced on a TVG by making the presence function return
the probability that an edge exists at time ¢, that is, p : Ex T — [0, 1]. Non-determinism
in discrete TVGs is modeled as a markovian process, while in continuous graphs it is
modeled as a graph where edge appearance follows a Poisson process.

Research opportunities in TVG abound, especially when related to distributed algo-
rithms, self-stabilization techniques, design and optimization of TVG topology, complexity
analysis of algorithms in TVGs, pattern detection and TVG visualization (CASTEIGTS
et al., 2010).
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CHAPTER

Problem Formulation

We start by defining a mathematical model of the system’s inner workings in terms of
TGT. We investigated Temporal Graph Theory and modeled the VF and RB-A problems
using it, contributing to Temporal Graph Theory in any respect it lacks in modeling our
problem. We also developed novel algorithms based on TGT and built prototypes to
validate our solutions against simulated network data.

Our initial formulation is based on hypergraphs. We proceed to work on a simple
graph model due to complexity constraints, but still present the first formulation here, as

it is valid and might be further explored in future works.

3.1 Base concepts

3.1.1 System model

We begin the definition of a system state by first delimiting the time-domain where
the system will function. Then we properly detail the information the system needs to

store at each state and how it is done.

3.1.1.1 Time-domain

Mobile Terminals move in the physical world with a continuous time domain. Even
then, the network system works in cycles and uses a discrete time domain. We address
this conflict by considering the system clock to be fast enough to detect M'T movements
between adjacent signal areas any time they happen.

In other words, we can assume a system window time and a minimum time to cross a
signal area (i.e., the time required to traverse two edges to reach a non-adjacent cell) such
that system_window time < time_to_cross. We define time_to_cross in function of

the signal area traversal distance and the max MT speed (e.g. 10m/s) as

stgnal__area_ traversal__distance

time_to_cross =
max__mt_ speed
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Figure 3 — MT movement scenario illustrating how MT movement is discretized in a time-
frame. The blue arrows show the actual MT movement, the red arrow shows
the MT movement as detected by the network in a single time frame transition.

for the general formulation:

system__window time X max_mt_ speed < signal area_traversal distance. Note
that when the MT moves twice (or more) between different adjacent signal areas, then
only one movement is captured. This last case is depicted in Figure 3.

Let’s work through an example to understand that we can work with signal areas
instead of the full network cell. We can do some math and show that considering a
reasonable max MT speed, we also have a reasonable size signal area that cannot be
crossed twice between time steps. Suppose we have an MT traveling at 10m/s, and
our time_ to cross is 10ms, then by substituting these values into our formula, and
considering the safe values as the ones where the time to cross is more than the available
transmission frame, we have:

stgnal__area_ traversal distance

> 10% 1073
10m/s . °

stgnal__area_ traversal distance > 10725 % 10m/s
stgnal__area_ traversal distance > 0.1m

Thus our signal area needs to have a diameter of more than 100cm, which is clearly the
norm.
These bounds will be useful when considering MT movement, thus not allowing them

to “leap”, which presumably makes movement prediction considerably harder.

3.1.1.2 System information

Internally we assign wavelengths to sets of cells, which constitutes a VPON. These
wavelengths are used to establish communication between the BS and the network back-
end. We also assign a Resource Block to each MT, which will be used when transmitting
to it by all BSs in range. Each MT is also associated with a Home BS, its closest Base
Station, which determines its VPON.
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VPON formation is restricted by wavelength capacity, as all information from the BS
must fit into the bandwidth of the wavelength used for transmission.

Non-adjacent groups of cells are considered to be different VPONs even though they
might share the same wavelength. This is done to improve resource use while reducing
system complexity: a detached VPON is the same as two separate VPONSs, but this
does not create wavelength interference. In practice both groups might be treated by
the network as the same VPON, as signal processing is split by wavelength. A complete
system state is then characterized by the definition of two functions: one that maps cells

to wavelengths and another one that maps resource bands to MT's inside each VPON.

3.1.1.3 Handover Triggering and Transmission Overhead

In order to coordinate JT between base stations we have two situations that cause
overhead (and potential denial of service) in the network, which are desired to be avoided.
We shall call them Transmission Overhead (TO) and Handover (HO). We would like to
minimize the total overhead incurred by these situations.

Joint Transmission poses a single requirement upon the network: we cannot transmit
to different MTs using the same RB where it would cause interference. This situation
arises when two BSs are close enough that their cover area overlaps, and they try trans-
mitting to different MTs using the same RB. Handovers are triggered when the movement
of MTs using the same resource block would result in interference. In this case we need
to change one of the MTs’ RB to a free one in order to avoid interference.

Transmission Overhead is caused by two BSs in different VPONs transmitting to
the same MT. While possible, this incurs communication overhead in the central office,
because the DUs of both VPONs must coordinate and transmit the baseband signal
through the DU cloud’s internal ethernet switch. This overhead is present at each time

step there is a transmission in this situation.

3.1.1.4 Time-Varying Graph Model

We provide the following TVG model for this problem. Consider a base TVG B =
(V,E, T, L) where V is the set of cell signal areas and E is the set of edges {u, v}, where u
and v are adjacent signal areas. A signal area is any delimited spot on the map for which
the set of RBs that transmit to that spot is distinct from all adjacent areas. L is the Label
set, which contains the base-stations that serve each signal area. A signal area serviced
by more than one BS is considered an interference area. Also 7 is the time domain. We
do not define a presence function p nor a latency function ¢, as we use the TVG only to
observe MT journeys over time. The underlying structure is otherwise static, unless in
case of failure, which is not considered here. An example is shown in Figure 4.

We can represent an MT journey on this graph as a journey spanning several such

signal areas. The journey starts when the MT connects to the network and ends when it
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Figure 4 — Example system as a TVG, both in state and snapshot representation.

disconnects. We consider each snapshot to show what happened between samplings. As
such we can see that the MT has a new position at each time-step, which might or might
not be equal to its last position. We say that if the current time is ¢, then MT position at
time ¢ is its current position. We also consider M to be the set of all MTs in our network
throughout its lifetime, individually represented as a journey which can be referenced as
M;. The position of M; at time ¢ can be referenced as M. Figure 5 exhibits a sample

MT on our network.

Figure 5 — MT Journey on the network in green.

We dismiss the alternative view of the problem as a bipartite graph, with a set of MTs
and a set of BSs, where edges are associations, as it creates a difficult structure to verify

adjacency and represent movement in Time-Varying Graphs (TVGs).

3.1.2 Problem

For each of the optimization problems we derive a new TVG G from B by removing all
edges, and for each interference area, we create a multi-edge joining all its servicing BSs
with weight equal to the number of MTs on a journey passing through that area at that
time step. We also remove the interference areas. For signal areas with a single servicing
BS, we can consider a self-loop, or assign the weight to the node. We favor the first
approach for consistency in always dealing with edges. Such a conversion is exemplified

in Fig. 6.
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Figure 6 — Example conversion from interference areas to Hypergraph. Green hyperedges
connect 3 base stations, while red hyperedges connect two base stations. They
are represented differently to improve visualization. Blue MTs on the original
network are converted to weights indicated by blue numbers.

Given this graph, in the Resource Block Assignment (RB-A) problem, we consider
each element’s chromatic number to be equal to its weight, and perform a total multi-
coloring. In the VPON Formation (VF) problem we perform a minimum cut using the

established weights.

3.1.2.1 RB-A

In order to find an RB Assignment that minimizes handovers we model this problem
as a total multi-coloring over the TVG G, and solve it for the minimum color changes
between time-steps. Total coloring is an operation that colors both vertices and edges
of a graph. When used without any qualification, a total coloring is always assumed to
be proper in the sense that no adjacent vertices, no adjacent edges, and no edge and its
end-vertices are assigned the same color. The total chromatic number x”(G) of a graph
G is the least number of colors needed in any total coloring of G. Since we might have
multiple MTs communicating with the same combination of base-stations, we actually
have to deal with a bag of colors in each element. Say we have C; as the set of colors in

node/multi-edge 1.

Like the graph coloring problem, the multi-coloring problem can model a num-
ber of applications. It is used in scheduling where each node represents a job,
edges represent jobs that cannot be done simultaneously, and the colors repre-
sent time units. Each job requires multiple time units (the required number of

colors at the node), and can be scheduled preemptively. The minimum num-
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ber of colors then represents the makespan of the instance. Multi-colorings
also arise in telecommunication channel assignment where the nodes repre-
sent transmitters, edges represent interference, and the transmitters send out
signals on multiple wavelengths (the colors). It is due to this application in
telecommunications that multicoloring, as well as generalizations that further
restrict feasible colorings, dates back to the 1960s. Aardal et al. provide an

excellent survey on these problems.

The multi-coloring problem can be reduced to graph coloring by re placing
each node by a clique of size equal to the required number of colors. Edges
are then replaced with complete bipartite graphs between the corresponding
cliques. Such a transformation both increases the size of the graph and embeds
an unwanted symmetry into the problem. It is therefore useful to develop

specialized algorithms that attack the multi-coloring problem directly.

(MEHROTRA; TRICK, 2007)

Regardless of the algorithm used to solve our problem, a hypergraph total multi-
coloring is the most natural representation. It can then be converted to simpler problems

with more efficient algorithms for solving.

3.1.2.2 VF Problem

In order to minimize the transmission overhead during the network lifetime, we for-
mulate it as a minimum k-cut problem, where k is unknown and is a function of the total
network load. Since we deal with a TVG, a cut might disappear at some point and come
to reappear later. Also, since the cost of changing a VPON is very low we can assume the
optimal solution is the same as calculating the optimal cut at each time-step. Flexibility
in regards to running time can be achieved by m-stacking the graph (YU et al., 2013),
but approximation quality is not uniform as different time-steps might delineate different

change factors.

3.1.2.3 Practical Considerations

We immediately stumble upon the controversy of needing journey information for MT's
that can move freely within the VCRAN. Thus we resort to movement prediction, as we
can only perform as well as we can predict future M'T movement. At this time we assume
an oracle that can correctly predict every movement from the start to the end of each
journey.

As computing time is bound to be a bottleneck, per the computational nature of the
problem, the system__window time becomes an algorithm choice driver.

The LTE specification establishes a 10ms system window, dictated by the transmission
frame time-span (COMPANY, 2009), but a handover can take up to 1 second (IRMER
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et al., 2011). In practice, we will probably need to arrange a compromise to cover for
this gap, as more details are needed such as, if a handover can take up to 1 second, how
long after it started do we need to know the appropriate RB? As such we abstract this
notion in benchmarking classical algorithms and work with the network as a perfectly

synchronous mechanism, keeping in mind the time-order of execution time.

3.1.3 Method

We focus on solving the RB-A problem through regular coloring algorithms, which
provides a good and justifiable approximation to this problem. We choose the RB-A
problem because it cannot be avoided, whereas the VF problem can be partially solved
offline by analyzing network load and movement statistics. Besides, related work is already
tackling the VF problem.

Even though our hypergraph formulation offers the most granular solution, we opt
for a simplified model for two reasons: first, it only opens up coloring opportunities
from close-by interference areas, which we deem too small; second, it constrains our time
requirements even more. Thus we model the problem as a graph node multi-coloring,
where each node is a BS and the chromatic number of each is the number of MTs attached
to it.

Consider, for example, the situation illustrated in Figure 7. In this scenario, consider
that BS1 is transmitting to an MT within area A using some RB. By modeling this
situation with a regular graph, BS2 cannot reuse the same RB, although it could. Our
hypergraph model captures this situation and would yield a more granular solution.

Even though we devised this model we have decided to implement a simpler approach
for a first attempt because of two reasons: first, we already have to deal with other
time-constrainers, such as dealing with multiple timesteps; second, these are very close
areas, and stochastic probability of the M'T moving to an adjacent area that would cause a
handover in a close time-step is high. Still, gains are possible and should only be evaluated

if possible.
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Figure 7 — Two MTs that are not adjacent in the hypergraph formulation, but are adja-
cent in the Graph formulation. In the hypergraph formulation they would be
separated by the interference area between BS1 and BS2. Remember that this
formulation only considers as adjacent MTs that are in the same interference
area.
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CHAPTER

Combinatorial Optimization

We will focus recoloring by considering a couple of adaptations on classic graph coloring
algorithms. Suppose, for example, that we are using a standard brute-force approach in
which we need to enumerate all possible k colors for all possible vertexes. This gives us
|V|¥ possible solutions. If we wish to naively check for conflicts, we multiply this by an
additional factor of 2|E|, which is the sum of degrees on the graph.

We can adapt this algorithm to work with multi-coloring by stating that instead of
considering each color for each node once, we consider each color for each color slot of
each node. In other words, we substitute a node by its chromatic number in the equation,
yielding a chromatic number of ZLZ‘I x; for the graph. Checking conflicts is complicated
by checking once against each position in the same node and each position in each of the
neighbors. We can do it naively with cost x; + Z‘f:ill x; for each vertex i, where 7); is the
set of neighbors of j, but it can be sped up by using better data structures.

For partial multi-coloring we keep the same conflict-checking function and assume
some of the nodes (or positions) have already been colored. So instead of re-rolling all
coloring for each color spot, we re-run it only for the un-colored spots, which reduces
our search space to Zl‘;'l(xz — X}), where Y} is the number of fixed colors in node i.
Alternatively, we can denote this as Z‘zg X7, where x7 is the number of conflicting colors
for node 1.

We can apply the same principle to a common heuristic in graph coloring: for each
node in turn, pick the smallest non-conflicting color. At first sight, this still yields the same
upper bound of |V |*, but a good implementation, using a neighbor list and a color-bit array
associated with each vertex, can bring the running time down to O(|V'|?) (KAZNACHEY;
JAGOTA; DAS, 2003). Multi-coloring adaptation would result in O(ZLQ x?), and partial
multi-coloring cost would be O(Z‘Z‘jl X"%).

These algorithms form the base for working with a TVG to minimize the number of
total handovers over the network service time, expressed by

|T|

minZHt

t=1



34 Chapter 4. Combinatorial Optimization

, where |H;| expresses the set of handovers occurring at time-step ¢.

We ran experiments to confirm these theoretical bounds in practice while considering
various factors such as data structures that guarantee these theoretical bounds, hidden
constant factors that might render them unusable in practice and their applicability given
the asynchronous nature of handovers. Our first model will consider only the Manhattan
distance, which is the distance between two points by traveling only in parallel to the
axes (CHANG et al., 2009).

4.1 Problem Statement

Let S be a bi-dimensional array consisting of the assigned color to each MT at each
timestep, and M = [my, mao, ..., mu) be the set of MTs. Denote S! as the color assign-

ment to m; at timestep t. We can then define

|M]

Hy = Z(Sf # Sf_l)

i=0
. Thus, the problem we want to optimize is, in terms of 7" and M, given by Equation 1.

7| |M|

min } Y (S # S (1)

t=1 ¢=0

4.2 Naive Brute-Force Optimization

This is a theoretical explanation on optimizing the implementation of the full scale
optimization, together with complexity analysis. We highlight that this algorithm is
meant to evaluate the scenario. If we wanted the best coloring to be used in a running
network, we would be interested in the timestep coloring with the best prospect of reducing
future Handovers, repeating and re-evaluating at each timestep.

As a first algorithm we can lay all MTs at each timestep in a single large array, and

try each possible combination of color assignments, yielding
10 (XIM \)

possibilities for each timestep, where x is the number of colors and |M]| is the number
of MTs on the system. We also have to validate each possibility regarding color clashes
inside each BS and among its adjacency. Intra-BS clashes can be calculated by creating
a color array for each BS, initialized with zeros, and summing one for each time the color
appears in the base station’s MTs. It has cost O(|M|), as each MT is only located at one
BS and we need only inspect each MT once. Clashes with adjacent BSs can be calculated

by applying a logic AND between adjacent base stations’ color arrays, for which the result
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should be 0 in case of a conflict-free coloring. This step has cost O(|B|), where |B] is the
number of base stations.

We need to repeat this for each timestep, so in total the naive algorithm will have cost
O(T) * O(xM x (O(|M|) + O(|B])) = O(T(|M| + |B)x™M) for a given y. If we want
to test for multiple y, we must apply this cost multiple times (i.e. from 1 to our desired
maximum x (C'), yielding

o (S a1+ 8pe)

c=1

We can reduce the number of colors to test by proving a lower bound of colors. We can
also eliminate the intrinsic BS coloring validation by using a data structure to generate
only valid color permutations and incrementing them as needed. For this we will need
to shift focus a bit and see the problem on a timestep by timestep basis. We can also
eliminate adjacency color validation by using an availability index for each BS. As we
generate the colors in order, we will guarantee that the colors available to any base
station only depend on the colors already used by the other base stations.

Let’s start by looking at optimizing the generated colorings, which present both greater
challenge and potential. Other opportunities for optimization include: identifying and
ignoring symmetric colorings, for example by hashing already visited states and remem-

bering them in a bloom filter; doing a random walk in the coloring search space.

4.3 Optimizing the combinatorial explosion

4.3.1 Eliminating intrinsic BS coloring validation

Let us start by generating all possible valid colorings on the first timestep. Figure 8
illustrates how we can visualize a single timestep as split by its base stations and contained
MTs. This representation will be useful to avoid color assignments that clash inside the

same base station.

b0 b1 bn

mOm1 ...

Figure 8 — A single timestep split by its composing base stations, each with its respective
MTs.

Let B = [b1,ba,...,bp] be the list of BSs, and b; = [m € M |m € b;] the set of MTs

at base station . We can generate all non-clashing color assignments for base station 7
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by generating all color permutations of size |b;|, the number of MTs at base station 4. If

we do this for each BS, we will need to generate

color assignments for this first timestep, where |B| is the number of BSs. This can be
shown to be less than the full O(x™!) colorings from the naive algorithm. The idea is
that instead of each MT considering all possible colors, it considers only the available
colors in its BS given the previous assignments. So instead of y * x * ... * x we have
X*(x—1)%...%(x — |b;|) inside the base station.

Moving forward to the next timesteps, we do not need to repeat this whole calculation.
It is both a network constraint and a mathematical advantage that MTs that do not move
do not need to be reassigned a RB. If we do it, we will spuriously cause spontaneous
handovers on the network, a situation undesirable both from the user’s experience point
of view and from the mathematical optimization one. Delaying possible handovers offers
no drawbacks.

To see that this is true, suppose that we have an MT m at a given timestep t. Also,
suppose that m is going to conflict colors with some other MT in a posterior timestep.
If we proactively do a handover on m to avoid the future conflict, we will incur the same
cost as doing it later. There is no gain, then, in doing preemptive handovers, yet there
is the risk that we might miss our prediction and even cause an additional one. Now
suppose more than one handover could be evicted by doing this preemptive handover.
We would also gain the same advantage by doing it on the first handover in the sequence,
so avoiding multiple handovers in conflicts with the same MT in a row becomes more of
a choice of who keeps their color than a matter of doing preemptive handovers.

This said, we can optimize the calculation of the next timesteps with a bound on the
number of handovers, much better than the total number of MTs. We can basically use
the same trick used on the first timestep, but using only the MTs that moved between
base stations and need a handover: for the base-stations containing a clash, separate the
MTs who moved in into a new array and use it to generate all permutations of available

colors inside that BS. Doing it for all base stations, we have a total cost of

(= (bl = [ha))!
O<H(x <||h|i|!| |>>)

1

, where |h;| is the number of handovers on base station i. What this means is that we
keep the assignments of all MTs that stayed put or moved without a clash (|b;| — |hs|),
and try all free colors for each of the remaining ones (x — (|b;| — |hil))-

Putting together all the parts, we have a cost of

C B B — (1by] = |i]))!
O(Z(Hwﬁﬂ( <1VL“\ m))

c=1 \i=1 =1
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4.3.2 Eliminating extrinsic BS coloring validation

For this step we will use an availability color index for each base station. For it to
work we will make use of the order of color assignment in generating a new candidate
scenario. Consider that we are evaluating the possible assignments for a given timestep
(any timestep, initial or otherwise). We have already divided it into a sequence of intra-BS
permutations on all colors. We will change this slightly to permutate only on the available
colors, given the assignments of the previous BSs. The used colors of a BS’s adjacency
can be calculated by taking the color arrays of each adjacent base station, as well as its
own, and applying a logical OR. If we invert this logical array we get the available colors,
and permutate on them.

The term for the number of available colors in base station b, A, is presented in
2, where ADJ; is the set of adjacent base stations of BS i, |ADJ;| is the size of the
adjacency, and ADJ;; is the j'th adjacent base station in ¢’s adjacency. Notice that A,
will not change for different color assignments as it is only dependent on the number of
MTs in the near vicinity and the chromatic number. We can substitute ¢! for it in the

previous cost equation to express the full cost of the algorithm as:

c (1B A, |B| Ay — (|b;] = [h))!
O(Z( \bMH( <\’hJ“ | |>>))

ce=1 \i=1 =1

|[ADJi|

Ai=c—bil = > [baps,l (2)

J=1

4.4 Giving a lower bound to the necessary number

of colors

For this step let us assume that the MTs are equally distributed across the network.
This presents the least number of MTs at any single BS and thus the potential for the
smallest C. We have another constraint, which is that a color cannot be used at the same

time at a base station and any of its adjacent ones.

Suppose an hexagonal topology with b base stations; we need to split our network
along a intertwined groups, where a is the maximum adjacency size among base stations.
Figure 9 illustrates this intertwined map. Notice how we cannot use the same color in
any BS of different groups, but we can repeat a color in any two BSs of the same group
without potential clashes.

Given this situation, we need

| M|
c >
= |B| * a
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Figure 9 — A scenario with intertwined base-stations groups, each with their color-set.

colors. This represents that we will need at least the amount of MTs equally split among
the base stations, with the caveat that the same colors cannot be used by adjacent groups,
so we need to multiply by the adjacency size a.

For the upper bound we do not need C' > | M|, as we will have more colors than MTs
and can freely assign one to each.

The final cost of the algorithm can be expressed by

Co (A B A — (o] — [R]))!
o 35 (H |b;|!+H<b <||hj|! | |>>)

_ M| i=1 i=1
=TB]

4.5 Algorithms

Algorithm 4.1 presents the steps of the naive brute-force algorithm. We take as inputs
the network trace, the adjacency list and C'.

The core of the algorithm is the color generator. To implement it we will make use
of two data structures, the ScenarioDescriptor (SD) and the Adjacency List (AL), which
we will describe. The generator itself is divided into three levels: coloring, timestep, and
base station. The first two levels share an implementation that differ only in determining
the problem size and creation of its constituent generators, which we will also describe.

In the end, we have a composite structure for the generator, as depicted in Figure 10.
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Algorithm 4.1 Naive Brute-force
1: Task NAIVEBF(T, A, C)
2: best score = inf
3 coloring = Coloring.from trace(T, C)
4: best = coloring.values()
5: gen = ColoringGenerator(A, coloring)
6
7
8
9

for in gen do
¢ = coloring
score__c¢ = score(c)
if score ¢ < best score then

10: best = coloring.value()
11: best score = score c
12: return best

Generator P

A

BS Composite
Generator Generator
[ |
Timestep Coloring
Generator Generator

Figure 10 — Composite structure of the Generator data structure.

BO B2 B1
. . .

Figure 11 — Example scenario.

For this section we will use the example from Figure 11 to illustrate how the data

structures are used.

4.5.1 Underlying data-structures: Scenario Descriptor and Ad-

jacency List

The simplest of these two data structures is the adjacency list. It is composed of an
index by BS id which points to an adjacency list which includes the base station itself.
This is convenient because the calculations which use the adjacency list will also need to
include the referenced base station.

The Scenario Descriptor is also a simple data structure per se. It is composed of a
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so—1{0, 2}

81— {1, 2}
82 —{0, 1, 2}

Figure 12 — Adjacency List.

mOmim2m3
t0/ 0|0 1|1
t112(0|1|2

Figure 13 — Trace.

mOm1m2m3
t0|0|2|0 |2
t1(1(2]0|3

Figure 14 — Possible coloring.

[T x MT| integer matrix, which will contain either BS ids, for the trace, or color numbers,
for the coloring. It also has a companion data structure, the Scenario Descriptor Index
(SDI), used to index the data for each base station. This way we can access the base
station’s information at any timestep for comparison. The SDI contains which MTs are
part of which BS at each timestep. The data structures, as they would be applied to our
example scenario, are presented in Figures 12, 13 and 14. The Trace and Coloring data

structures use the SD and SDI to represent their internal state.

4.5.2 Generator

The Generator’s job is to supply complete valid colorings to the brute force algo-
rithm. It is composed of four classes: the CompositeGenerator, the ColoringGenerator,
the TimestepGenerator, and the BSGenerator. Of these, the CompositeGenerator is an
abstract class that implements the updating mechanism on any generator that conforms
to the interface. It is used to implement the ColoringGenerator as a composition of
TimestepGenerators, and TimestepGenerator as a composition of BSGenerators. The
Coloring object is external to the iterators, and will be updated to reflect the most re-

cently generated coloring. All the generators will reset their sections when exhausted, but
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only the BSGenerator will fill the Coloring object with color values.

4.5.2.1 BSGenerator

Let us look first at the BSGenerator, which is more concrete and thus easier to grasp.
It is initialized with a set of MTs, a set of colors, and a Coloring object, and will generate
all color permutations for the available colors of size equal to the cardinality of the set of
MTs. It should be empty in case the number of colors is less than the number of MTs,
meaning that no coloring can be made. It should also be worth a single empty pass in
case the number of MTs is 0. This is important for the higher level iterations, as failing
this empty iteration when in the middle of the generator array will block the recursive
progress and impossibilitate generation of all colorings. In the general case it will return
the next available permutation and override the coloring section corresponding to the set
of MTs. Notice that the BSGenerator receives only the coloring slice that corresponds
to its timestep. When it is exhausted, it will clear its section (filling with color number
-1). The class initialization, iterator initialization and iteration algorithms are presented
in Algorithms 4.2 and 4.3 respectively. The python itertools library was used to generate

permutations.

Algorithm 4.2 BSGenerator. _iter_
Task BSGENERATOR.  ITER__
if len(self.colors) < len(self.mts) then
return iter([])

1:
2
3
4: if len(self.mts) == 0 then
)
6

return iter([None])

return self

Algorithm 4.3 BSGenerator.  next
. Task BSGENERATOR. __ NEXT_
if has permutations then
self.coloring[self.mts] = next(self.permutations)
else
self.coloring[self.mts] = -1
raise Stoplteration

4.5.2.2 CompositeGenerator

The CompositeGenerator is initialized with an adjacency matrix and a coloring ob-
ject, and creates a Generator array with length equal to the problem size (defined by
subclasses). In order to process the recursive iteration properly it has three phases: gen-

erating the first coloring, updating it to the next coloring, and exhaustion.



42 Chapter 4. Combinatorial Optimization

In the first time it is called, it will initialize all of its generators in ascending order,
in a way that if it hits a dead end when trying to initialize any of the generators, it will
backtrack to the previous generators until it can break through. This is accomplished by
having a method update__generator(i), which takes care of iteration on ¢ and previous
generators if needed, until it can generate a next color for generator ¢ or exhausts all
possibilities, stopping the iteration. This method will ensure that we create a first valid
coloring, or none in case it is impossible. This method is illustrated in Algorithm 4.4.
Control of when it is first called is done by a flag. This step needs to be done on the first
iteration, rather than on the iterator initialization, or we will lose the first coloring once

the next method is called.

Algorithm 4.4 CompositeGenerator.first_ color
1: Task COMPOSITEGENERATOR.FIRST COLOR

2: for i in range(0, len(self.generators)) do
3: self.generators|i] = iter(self.create_generator(i))
4: self.update gen(i)

In subsequent iterations, we only need to call the update generator method on the
last generator, as it will take care of generating a complete valid coloring recursively.
Upon exhaustion, it calls a cleanup method, to be implemented by subclasses.

The update__generator method has three versions: recursive, semi-recursive, and it-
erative. We will start with the recursive version, as it is easier to grasp, and remove
recursion step by step in the other versions.

The recursive version tries to increment the generator by the argument index. If it
fails, then it calls itself on the previous index, re-initializes the current generator, and
calls update on itself again. It should stop when the argument index is less than zero.

This algorithm is presented in Algorithm 4.5.

Algorithm 4.5 CompositeGenerator.update_generator_recursive
: Task COMPOSITEGENERATOR.UPDATE__ GENERATOR,__RECURSIVE(idx)
if 7dx < 0 then

raise Stoplteration

if has next then
next (self.generators|idx])
else
self.update(idx-1)
self.generators|idx| = self.create_generator(idx)
self.update generator(idx)

To remove the innermost recursion we will use a finished flag. We will retry updating
the generator on the argument index while the flag is false, going through the same steps

when it fails, except for the recursive call on the same index, and setting the flag to true
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once we can successfully update the generator. The stopping criterion is the same. This

algorithm is presented in Algorithm 4.6.

Algorithm 4.6 CompositeGenerator.update generator semi recursive
1: Task COMPOSITEGENERATOR.UPDATE__GENERATOR__SEMI__ RECURSIVE(idx)
2 if idx < 0 then

3 raise Stoplteration

4: finished = False

5: while not finished do
6

7
8

9

if has next then
next (self.generators|idx|)
finished = True
: else
10: self.update(idx-1)
11: self.generators[idx] = self.create_ generator(idx)

The final, iterative version, of the algorithm uses an iteration index and a creation
flag, to track the generator being currently updated and necessity for re-initializing the
next iterator. It starts by setting the iteration index 7 to the argument index idx, and the
creation flag to False, and iterates on ¢ while 0 < ¢ < idx. The loop follows a two-case
structure: if it can increment the generator at i, then it moves on to the next index and
needs to re-initialize the generator at that position (set creation flag to True); if it cannot
increment the generator at ¢, then it retries on the previous generator. At the start of
any iteration, if the creation flag is True (meaning it comes from an index increment)
then it will re-initialize the generator at this new ¢ and reset the creation flag to False.
If it ends by exceeding idx, then it returns with a new coloring, but if the iteration ends
with ¢ < 0, then all possibilities where exhausted and the iteration stops. This iterative

version is presented in Algorithm 4.7.

4.5.2.3 CompositeGenerator

The CompositeGenerator subclasses need to implement 3 methods: create_ generator,
problem__size, and cleanup. The ColoringGenerator is simpler: its problem size is the
number of timesteps, it creates a TimestepGenerator by passing ¢ along with the other
parameters, and on cleanup it should set the whole coloring object to -1.

The TimestepGenerator has trivial problem size, equal to the number of base stations
(length of adjacency list), and trivial cleanup (set whole timestep to -1, but the create
generator step is a bit tricky. First, as long as it is not the first timestep, it needs to
carry over the used colors for the MTs who do not suffer a handover. It literally copies
the colors from the previous timestep. This is illustrated in Algorithm 4.8. Second, it
must pass to the BSGenerator a list containing the MTs that need recoloring, a list of
available colors, and its coloring slice. These mt-list and available color calculations will

be presented further, and this rather high level algorithm is presented in Algorithm 4.9.
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Algorithm 4.7 CompositeGenerator.update generator_iterative

1: Task COMPOSITEGENERATOR.UPDATE_ GENERATOR,_ITERATIVE(idx)
2: i=idx

3: create = False

4: while 0 <7 <idx do

5: if create is True then

6: self.generators|i| = iter(self.create generator(i))
7: create = False

8: if has next then

9: next(self.generatorsli|)
10: i+=1
11: create = True
12: else
13: i-=1
14: if 7 < 0 then
15: raise Stoplteration

Algorithm 4.8 TimestepGenerator.do_ carryover
1: Task TIMESTEPGENERATOR.DO__CARRYOVER
2: if self.t > 0 then
3: co_mts = self.coloring.carryover__mts(self.t, bs, self.adjacency[bs])
4: self.coloring|[self.t, co_mts] = self.coloring[self.t - 1, co_ mts]

Algorithm 4.9 TimestepGenerator.create generator
1: Task TIMESTEPGENERATOR.CREATE GENERATOR
2: self._do_ carryover(bs)
3: return  BSGenerator(self.coloring.ho_ mts(self.t, bs, self.adjacency [bs]),
self.coloring.available_colors(self.t, self.adjacency[bs]), self.coloring.timestep(self.t))

4.5.3 In-Coloring calculations

With all the other pieces in place, we need the coloring object to answer these three

questions for any given BS and timestep:

(1 which MTs need recoloring?
1 which MTs do not need recoloring?

[d what are the available colors?

For this the Coloring will be represented by a ScenarioDescriptor and two extra com-
ponents: a base-station index (SDI) and y. It will also need a companion data structure,

the ColorTracker, which will index (mt, color) pairs to answer the following questions:
(d What MTs are conflicting colors?

[ What colors are free?
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Figure 15 — ColorTracker example.

[d What colors are unavailable?

The questions about MTs that do and do not need recoloring are better understood
declaratively using set operations. There are four sets of MTs to be composed in calcu-
lating these answers: MTs that are new to the base station N, MTs that were already in
this base station O, conflicting MTs C' and MTs with unavailable colors U. N and O are
trivial to calculate: just compare the MTs on this base station at this timestep with the
ones from the previous timestep. This is easily accomplished with our base-station index.

The C set is composed of the new MTs that use the same color, in which case both
need to be recolored. It is calculated by creating a ColorTracker with the new MTs and
checking for the colors that contain more than one MT.

The U set is composed of MTs whose colors are present in the adjacency. This means
that they were already used to color some MT and cannot be used again. It is calculated
by creating a ColorTracker for the adjacency at the previous timestep and discounting
the colors being used by these moving-in MTs.

We can then define the MTs that suffer handover as: None, if it is the first timestep,
or NA(CVU) otherwise. We can also define the MTs that do not suffer handover (a.k.a.
carryover MTs) as: None, in the first timestep, or OV ((N\ C)\U) otherwise. This means
that all new MTs or MTs that conflict or have unavailable colors must suffer handover, and
that all old MTs or new MTs that do not conflict nor have unavailable colors do not need
a handover. The set of available colors is trivially calculated by creating a ColorTracker
for the adjacency and returning the free colors.

The ColorTracker is a simple hash-like index: it stores a counter array to keep how
many MTs have each color, and stores all MTs containing that color in a list to be
referenced by the color number. Each time we add a new (mt, color) pair, we increase
the counter and store the MT in the list. We know the free colors as they have a counter
equal to 0, and we know the unavailable colors (optionally discounting for a passed-in color
array) as they will have a counter higher than 1. We can also know the conflicting MT's
by joining the lists for the positions with a counter higher than 1. Figure 15 illustrates

the data structure.
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Experiments

This chapter starts with a discussion of the scenarios used in testing, and proceeds
to discuss how each algorithm performed using different parameters. We measure both

scalability and solution quality.

5.1 Scenarios

We ran tests against the scenario presented at (WANG et al., 2016a), which is com-
prised of an hexagonal 7-cell architecture. Movement patterns were considered by forcing
the movement of each MT at each timestep, during a fixed number of timesteps. In prac-
tice the BS of each MT at the next timestep is drawn from the adjacent base stations.

We used the following parameters:

O Number of MTs: [1-10]
O Number of colors: [1 ... Number of MTs]

(d Number of timesteps: 5

Attempting to generate realistic scenarios with BonnMotion (ASCHENBRUCK et al.,
2010), using ManhattanGrid models of differing sizes, resulted in sparse scenarios that
took long to run and had trivial solutions, comprised of one color for each MT with no
possibility of reuse. Such maps are often too vast for any significant MT movement in
such a small amount of timesteps and did not yield interesting movement patterns.

To give a sense of scale, even cases with one block of 100m x 100m, with one base station
on each corner, proved to yield few HOs in a realistic timestep scale. The movement of
the MTs is too slow to cause transitions in 5 seconds that would result in handovers.
In a scenario with 4 base stations, 10 MTs and 5 seconds, using a random walk, we
could barely get one or two transitions. This conveys two important points: first, that

recoloring scenarios will not be so complex, so the algorithm in practice does not need to be
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a prediction powerhouse; second, that it is probably overkill to compute the colorings over
a dense network representation. Working over a data structure that allows efficient access
to transitions at each timestep and MT journey might yield more efficient algorithms
without losing on coloring quality.

We nevertheless took the dense brute-force approach as other works have. To this end
we implemented a simple generator that calculates the next position of each MT based

on its adjacency for the required number of timesteps. The results are presented below.

5.2 Results

We ran each brute-force scenario a single time, since its execution is deterministic.

Each random-pruning scenario was executed 10 times.

5.2.1 Valid-only brute-force

We present the raw experiment data in Table 1. We can see that for most tests the
execution time remains constant and yields a best-case coloring (0 HandOvers). For the
tests that start taking longer the number of equivalent solutions rises fast, along with the
time of experiment. This reflects the many equivalent solutions for a complex scenario. A
first way to explore a faster search in this case is to randomly prune the search branches,
which is what we tried next. We also plot the time progression for the scenarios consisting

of each separate number of MTs as we increase the color count. This is shown in Figure

16.

5.2.2 Using random pruning

We present in Table 2 the experiment data for the tests with random pruning. For
these we randomly stop the evaluation of a search branch with a fixed probability. This
chance is evaluated at every time we generate a coloring permutation for a base station.
Each reported value is the average of results for 50 runs of each experiment.

The first round used 50% chance when pruning. We see that for many cases it was
unable to find even one valid solution, even when given enough colors. Running times show
a slight upward trend at a much lower time scale, less than 1 second for any investigated

problem size. The time curves are presented in Figure 17.

#MTs | #Colors | Time (s) | # equivalent solutions | #HOs
1 1 0.003002 0.00 0.00
2 1 0.001346 0.00 0.00
2 0.001747 0.00 0.00
3 1 0.001321 0.00 0.00
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0.001793
0.004390
0.001307
0.001666
0.009404
0.007229
0.001274
0.001787
0.007070
0.009016
0.004766
0.001328
0.001755
0.007763
0.005513
0.008478
0.012240
0.001403
0.001629
0.006841
0.005719
0.008236
0.015348
0.012795
0.001311
0.001858
0.005560
0.006952
0.014184
0.008304
0.012029
0.011204
0.001519
0.002123
0.004073
0.010130
0.008747
0.007135
0.007826

0.00
0.16
0.00
0.00
0.36
0.34
0.00
0.00
0.36
0.50
0.32
0.00
0.00
0.32
0.34
0.50
0.72
0.00
0.00
0.28
0.30
0.34
0.76
0.78
0.00
0.00
0.30
0.36
1.06
0.52
0.54
0.46
0.00
0.00
0.14
0.58
0.48
0.40
0.44

0.00
0.08
0.00
0.00
0.06
0.06
0.00
0.00
0.08
0.12
0.06
0.00
0.00
0.08
0.10
0.06
0.10
0.00
0.00
0.04
0.04
0.08
0.08
0.12
0.00
0.00
0.08
0.08
0.24
0.10
0.10
0.04
0.00
0.00
0.04
0.14
0.06
0.04
0.04
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0.010582
0.010624
0.001315
0.001798
0.008030
0.009048
0.031816
0.014948
0.014034
0.009977
0.012159
0.007953

0.66
0.66
0.00
0.00
0.36
0.50
0.88
0.60
0.68
0.52
0.70
0.34

0.08
0.04
0.00
0.00
0.02
0.12
0.14
0.06
0.12
0.10
0.12
0.02

Table 2 — Test results for random pruning with 50%

chance.

Average over 50 runs for each com-
bination of #MTs, #Colors.

The second round used 25% chance for pruning. We present in Table 3 the experiment

data for these tests. We see that it was still unable to find valid solutions for many cases,

but in this regard it scored much better than random pruning with 50% chance. Running

times show an exponential upward trend, but at a much lower time scale than the brute

force at less than 1 second for any investigated problem size. The time curves are presented

in Figure 18.

#MTs
1
2

#Colors
1

= Ot R W N R WD R WY NN

Time (s)
0.001432
0.001383
0.003544
0.002204
0.003886
0.046645
0.001402
0.003644
0.041009
0.118902
0.001394
0.003704
0.047929
0.082922
0.171783
0.001432

# equivalent solutions
0.00
0.00
0.00
0.00
0.00
1.54
0.00
0.00
1.20
3.92
0.00
0.00
1.70
3.30
6.26
0.00

#HOs
0.00
0.00
0.00
0.00
0.00
0.06
0.00
0.00
0.08
0.06
0.00
0.00
0.08
0.12
0.08
0.00
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0.003381
0.043942
0.073953
0.134522
0.188622
0.002120
0.003881
0.039560
0.095298
0.162225
0.195013
0.236402
0.001573
0.003607
0.041753
0.084951
0.169339
0.237853
0.223513
0.289968
0.001382
0.003646
0.039135
0.096627
0.140969
0.205040
0.212568
0.175220
0.277696
0.001431
0.003219
0.033790
0.109213
0.185368
0.239807
0.195067
0.247531
0.334270
0.291506

0.00
1.42
2.66
4.84
7.94
0.00
0.00
1.30
3.44
6.92
7.24
10.52
0.00
0.00
1.38
3.40
6.98
9.98
10.98
12.90
0.00
0.00
1.18
3.32
5.28
9.48
12.50
11.50
17.46
0.00
0.00
1.16
3.32
6.68
9.28
8.86
11.86
16.58
16.52

0.00
0.06
0.04
0.04
0.08
0.00
0.00
0.06
0.08
0.04
0.06
0.02
0.00
0.00
0.08
0.08
0.10
0.08
0.04
0.04
0.00
0.00
0.06
0.04
0.08
0.06
0.10
0.04
0.06
0.00
0.00
0.06
0.02
0.04
0.10
0.06
0.06
0.04
0.00
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Table 3 — Test results for random pruning with 25%
chance. Average over 50 runs for each com-
bination of #MTs, #Colors.
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Figure 16 — Running times of brute-force algorithm as the number of colors grow. Each
curve depicts a scenario with a different number of MTs.
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Figure 17 — Execution times for random pruning with 50% chance.
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4
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410
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6
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1.5
1.6
1.8
1.5
1.5
1.5
1.5
1.7
5956

# equivalent solutions
1

S OO OO OO

[\ [\
= oo o X

240

—_
(0]

S OO OO DD OO OO OO OO OO OO Wooooomo oo

#HOs

o

O O OO OO OO ODOODODOODODOODODDWODOODIONODODOD OO OO ODOODOoOO OO OO

Table 1 — Test results for brute-force coloring. Tests cases that took longer than 600
seconds are omitted from the table.
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Conclusion

In this work we have studied the problem of Resource Band Assignment (RB-A) in
5G networks. We have modeled the network in terms of Hypergraphs, but decided to run
tests with a simpler model due to computational constraints.

We have advanced the theoretical formulations towards a solid algorithm for calculat-
ing optimal colorings. The problem formalization is solid and seems to reflect its practical
nature. We have presented an algorithm capable of exploring only the valid instances,
going through each of them exactly once, and a faster algorithm using random pruning.

Our attempt to tackle practical instances was not successful due to the scenario size
needed for complex coloring choices. We found out that other work in this area uses
condensed cases, and that the practical instances we generated through simulation were
not causing as many handovers as we would expect for interesting cases, at least not in a
scale we could calculate solutions for.

We have attained satisfactory advancements in evaluation of handover minimization
performance, although we have not focused on exploring production algorithms. The
random pruning algorithm we tested is just a small example of what can be compared
against our benchmark. The opportunity for production-grade algorithms in this problem
lies in approximation algorithms. Maybe artificial intelligence techniques such as genetic
programming can yield good results. Its combinatorial nature could be put to good use,
for example, by crossing solutions on points where a color would be exchanged between
MTs. Future work could explore more specific formulations.

We have also calculated the complexity of the optimized brute force algorithm. The
complexity of a benchmark tool is always expected to be poorer than a production-grade
algorithm, but its complexity is too high for large scenarios. We could probably settle for
some approximation algorithms on such cases. Its formulation serves as a base, however,
and can be used to judge further developments of these benchmark tools by comparing
evaluation performance on the cases it can handle.

The software developed for this work can be found on under the author’s GitHub
profile (FRANCO, 2018).
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