Modificações pós-traducionais das histonas H3S10ph, H3K9ac e H4K12ac associadas às enzimas Aurora B e GCN5 em carcinoma de células escamosas bucal

Post-translational histone modifications H3S10ph, H3K9ac and H4K12ac associated to Aurora B and GCN5 in oral squamous cell carcinoma

> Dissertação apresentada à Faculdade de Odontologia da Universidade Federal de Uberlândia, para obtenção do Título de Mestre em Odontologia na Área de Clínica Odontológica Integrada.

Uberlândia, 2020

Modificações pós-traducionais das histonas H3S10ph, H3K9ac e H4K12ac associadas às enzimas Aurora B e GCN5 em carcinoma de células escamosas bucal

Post-translational modifications of H3S10ph, H3K9ac and H4K12ac histones associated with Aurora B and GCN5 in oral squamous cell carcinoma

> Dissertação apresentada à Faculdade de Odontologia da Universidade Federal de Uberlândia, para obtenção do Título de Mestre em Odontologia na Área de Clínica Odontológica Integrada.

Orientador: Prof. Dr. Adriano Mota Loyola

Banca examinadora: Prof. Dr. Adriano Mota Loyola Prof. Dr. Marcelo Sivieri de Araújo Prof^a. Dr^a. Maria Luiza Gonçalves dos Reis Monteiro

Uberlândia, 2020

Bibliotecários responsáveis pela estrutura de acordo com o AACR2:

Gizele Cristine Nunes do Couto - CRB6/2091

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Coordenação do Programa de Pós-Graduação em Odontologia Av. Pará, 1720, Bloco 4L, Anexo B, Sala 35 - Bairro Umuarama, Uberlândia-MG, CEP 38400-902 Telefone: (34) 3225-8115/8108 - www.ppgoufu.com - copod@umuarama.ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de Pós- Graduação em:	Odontologia					
Defesa de:	Mestrado Acadêmico, 382, PPGODONTO					
Data:	Quinze de Dezembro de Dois Mil e Vinte	Hora de início:	08:00	Hora de encerramento:	11:50	
Matrícula do Discente:	11812OD0009					
Nome do Discente:	Marcelo Augusto Garcia Júnior					
Título do Trabalho:	Modificações pós-traducionais das histonas H3S10ph, H3K9ac e H4K12ac associadas às enzimas Aurora B e GCN5 em carcinoma de células escamosas bucal					
Área de concentração:	Clínica Odontológica Integrada					
Linha de pesquisa:	Patologia e Diagnóstico Bucal					
Projeto de Pesquisa de vinculação:	Patologia e Diagnóstico Bucal					

Reuniu-se em Web Conferência pela plataforma MConf - RNP, em conformidade com a PORTARIA № 36, DE 19 DE MARÇO DE 2020 da COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES, pela Universidade Federal de Uberlândia, a Banca Examinadora, designada pelo Colegiado do Programa de Pós-graduação em Odontologia, assim composta: Professores Doutores: Maria Luiza Gonçalves dos Reis Monteiro (UFU); Marcelo Sivieri de Araújo (UNIUBE); Adriano Mora Loyola (UFU) orientador(a) do(a) candidato(a).

Iniciando os trabalhos o(a) presidente da mesa, Dr(a). Adriano Mota Loyola, apresentou a Comissão Examinadora e o candidato(a), agradeceu a presença do público, e concedeu ao Discente a palavra para a exposição do seu trabalho. A duração da apresentação do Discente e o tempo de arguição e resposta foram conforme as normas do Programa.

A seguir o senhor(a) presidente concedeu a palavra, pela ordem sucessivamente, aos(às) examinadores(as), que passaram a arguir o(a) candidato(a). Ultimada a arguição, que se desenvolveu dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o resultado final, considerando o(a) candidato(a):

Aprovado.

Esta defesa faz parte dos requisitos necessários à obtenção do título de Mestre.

O competente diploma será expedido após cumprimento dos demais requisitos, conforme as normas do Programa, a legislação pertinente e a regulamentação interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e achada conforme foi assinada pela Banca Examinadora.

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2700739&infra_sistema=... 1/2

15/12/2020

SEI/UFU - 2394577 - Ata de Defesa - Pós-Graduação

seil 8 assinatura

Documento assinado eletronicamente por Adriano Mota Loyola, Professor(a) do Magistério Superior, em 15/12/2020, às 11:49, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

seil assinatura eletrônica

Documento assinado eletronicamente por MARCELO SIVIERI DE ARAÚJO, Usuário Externo, em 15/12/2020, às 11:51, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto</u> nº 8.539, de 8 de outubro de 2015.

sei! 0

Documento assinado eletronicamente por Maria Luiza Gonçalves dos Reis Monteiro, Professor(a) do Magistério Superior, em 15/12/2020, às 11:53, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site <u>https://www.sei.ufu.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **2394577** e o código CRC **D7D60708**.

Referência: Processo nº 23117.068655/2020-25

SEI nº 2394577

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2700739&infra_sistema=... 2/2

DEDICATÓRIA

Dedico esse trabalho a todas as pessoas que tiveram suas vidas e as vidas de seus familiares impactadas pelo câncer.

AGRADECIMENTOS

Ao Prof. Dr. Adriano Mota Loyola pela oportunidade e pelos ensinamentos ao longo desses anos. Com certeza essa jornada só foi tão rica graças às suas incontáveis contribuições.

À minha família: meu pai Marcelo, minha mãe Vanusa, e meus irmãos Matheus e Vinicius, por todo o apoio no início, meio e fim desse processo. Obrigado por terem abraçado o meu sonho comigo e sempre estarem comigo.

Ao meu noivo Matheus por ser fonte de consolo e de inspiração nos momentos difíceis, por ter sido fonte de alegria nos momentos de comemoração e por acreditar em mim sempre. Obrigado pela paciência e por me mostrar que posso alcançar todos os meus objetivos.

Aos meus avós Carmem, Sebastião, Maria Helena e Dagobert por serem os maiores exemplos de seres humanos que eu conheço e por sempre terem me apoiado na busca incansável pelo conhecimento.

Aos meus padrinhos Denise, Biasi, Diego, Maria Teresa e Claudio por serem exemplos de dedicação, luta e conquista. Existe um ditado popular que diz que os afilhados puxam traços dos seus padrinhos e só tenho a agradecer por ter pego esses traços de vocês.

Ao meu afilhado João Vinicius por sempre me lembrar que existe uma alegria infinita nesse mundo, mesmo nos momentos mais difíceis. Espero um dia ser exemplo para você, como você é para mim.

Aos meus colegas de laboratório, em especial à Anaíra, que em tantos momentos me auxiliou das mais diversas formas possíveis e me ensinou mais do que eu jamais imaginaria aprender. Obrigado por ser a pessoa incrível que é, o Antônio não poderia ter um exemplo melhor.

A equipe do laboratório que me auxiliou de todas as formas possíveis e até mesmo impossíveis na realização desse trabalho. Débora, Lúbia e Neide, vocês são mulheres incríveis e foi uma honra trabalhar e aprender com vocês nesse período.

VII

"Se você não pode voar, então corra, se você não pode correr, ande, se você não pode andar, engatinhe, mas tudo que você tem que fazer é continuar seguindo em frente"

Martin Luther King Jr.

SUMÁRIO

	Resumo / Palavras-Chave	.11
	Abstract / Keywords	.12
1.	Introdução e Referencial Teórico	.13
	1.1. Carcinoma de células escamosas bucal	15
	1.2. Epigenética	.17
	1.3. Cromatina, histonas e MPTH	.18
	1.4.H3S10ph e Aurora B	20
	1.5.H3K9ac, H4K12ac e GCN5	.23
	1.6. Sinergismo entre acetilação e fosforilação de histonas	.26
2.	Proposição	.27
3.	Objetivos	.29
4.	Capítulo 1	.31
	4.1.Resumo	.33
	4.2. Introdução	34
	4.3. Materiais e Métodos	.36
	4.3.1. Amostra	.36
	4.3.2. Micro-arranjo Tecidual (TMA)	.37
	4.3.3. Imuno-histoquímica	.38
	4.3.4. Análise e avaliação das imagens	.39
	4.3.5. Estatística	.40
	4.4. Resultados	.41
	4.4.1. Características da amostra	.41
	4.4.2. Expressão imuno-histoquímica e IOD para Aurora B, GCN5	,
	H3K9ac, H4K12ac e H3S10ph	.42
	4.4.3. Aurora B e GCN5	42
	4.4.4. H3K9ac, H4K12ac e H3S10ph	43
	4.4.5. Análises de correlação entre as MPTH e as enzimas	.44
	4.4.6. Impacto na sobrevida	.44
	4.5. Discussão	.45
	4.6. Conclusão	.51
	4.7. Referências	.52
	4.8. Tabelas	61

4.9. Figuras	64
4.10. Legendas das figuras	68
5. Conclusão	70
Referências Bibliográficas	72
Anexos	87
Anexo 1 - Parecer do Comitê de Ética em Pesquisa	88
Anexo 2 - Materiais e Métodos	94
Microarranjo tecidual (Tissue microarray – TMA)	94
Ensaios imuno-histoquímicos	96
Análise de reatividade imuno-histoquímica	99
Calibração do ImageJ	100
Análise das imagens	104
Anexo 3 - Resultados das Análises	110

RESUMO

Os estudos epigenéticos em torno das modificações pós-traducionais de histonas e suas enzimas são da maior importância, especialmente no que diz respeito ao carcinoma de células escamosas bucal. Isso ocorre porque elas são modificações epigenéticas envolvidas na progressão e desenvolvimento do tumor. Dessa forma, o nosso estudo pretendeu avaliar as modificações póstraducionais de histonas H3S10ph, H3k9ac e H4K12ac e as enzimas GCN5 e Aurora B, analisando a sua importância em pacientes acometidos por carcinoma de células escamosas bucal. Primeiramente, uma amostra composta por 90 pacientes diagnosticados com essa neoplasia foi selecionada. Então, a coloração imuno-histoquímica com anticorpos contra H3S10ph, H3K9ac, H4K12ac, GCN5 e Aurora B foi realizada nas amostras de tecido fixado em parafina. Foi preparada uma associação das modificações pós-traducionais de histonas e dos níveis de expressão das enzimas com fatores clinicopatológicos, bem como um teste de correlação entre elas e análise de sobrevida dos pacientes. Todas as modificações de histona e enzimas mostraram expressão nuclear em células tumorais. Encontramos as seguintes associações significativas: alta Aurora B, GCN5, H3S10ph, H3K9ac e H4K12ac com local de localização; alta expressão GCN5 e H3k9ac com tabagismo; baixa expressão GCN5 com recidiva. Além disso, foi encontrada uma correlação positiva entre: Aurora B e H3S10ph; GCN5 e H3K9ac; H3K9ac e H3S10ph; Aurora B e GCN5. As nossas descobertas sugerem que H3S10ph, H3K9ac, H4K12ac, Aurora B e GCN5 podem participar no desenvolvimento da CCEB, mas não na sua progressão.

Palavras-chave: câncer bucal; carcinoma de células escamosas; imuno-histoquímica; modificações de histona; prognóstico.

ABSTRACT

Epigenetic studies around histone modifications and its enzymes are of utmost importance, especially regarding oral squamous cell carcinoma. It comes to the fore as they are epigenetic modifications involved in tumor progression and development. Therefore, our study intended to evaluate the expression of H3S10ph, H3K9ac, and H4K12ac histone modifications and GCN5 and Aurora B enzymes, analyzing it is importance on OSCC patients. Firstly, a sample composed of 90 patients diagnosed with OSCC was selected. Then, immunohistochemical staining with antibodies against H3S10ph, H3K9ac, H4K12ac, GCN5, and Aurora B was performed on their paraffin-embedded tissue samples. An association of the histone modifications and enzyme expression levels with clinicopathological factors was prepared, as well as a correlation test and survival analysis. All the histone modifications and enzymes showed nuclear expression in tumor cells. The following significant associations were found: high Aurora B, GCN5, H3S10ph, H3K9ac, and H4K12ac with location site; high GCN5 and H3k9ac expression with smoking; low GCN5 expression with relapse. Besides that, a positive correlation was found between Aurora B and H3S10ph; GCN5 and H3K9ac; H3K9ac and H3S10ph; Aurora B and GCN5. Our findings suggest that H3S10ph, H3K9ac, H4K12ac, Aurora B and GCN5 may participate in OSCC development, but not on its progression.

Keywords: histone modifications; immunohistochemistry; oral cancer; prognosis; squamous cell carcinoma.

1.INTRODUÇÃO E REFERENCIAL TEÓRICO

1.1 Carcinoma de Células Escamosas Bucal

A cavidade oral é um do sítios mais acometidos por câncer no mundo, sendo que no ano de 2018 relataram-se mais de 300.000 novos casos, dos quais aproximadamente 50% podem levar a óbito (Warnakulasuriya, 2009; Bray et al., 2020). Nesse contexto, o carcinoma de células escamosas bucal (CCEB) é a neoplasia maligna mais comum a atingir a cabeça e o pescoço, com exceção dos tumores de pele tipo não-melanoma. Na boca, representam aproximadamente 90% dos cânceres aí incidentes (Khurshid et al., 2018; Chi, et al., 2015). No Brasil ele é quinto tumor mais comum entre os homens, e o décimo terceiro entre as mulheres, com estimativa de quase 15.000 novos casos para cada ano do triênio de 2020 e 2022 (Instituto Nacional do Câncer [INCA], 2020).

Dos principais fatores de risco para o desenvolvimento de CCEB, o tabagismo e o etilismo estão presentes em 90% dos casos e possuem ação sinérgica (Koontongkaew, 2013; Dissanayaka et al., 2012). A probabilidade de desenvolvimento de câncer na boca é três vezes maior em pessoas que fumam, sendo a quantidade de cigarros e o tempo de uso diretamente relacionados ao seu desenvolvimento (Gandini et al., 2008; Lee et al., 2009). Não obstante, todas as formas de exposição aos produtos do fumo carregam algum risco para o desenvolvimento de neoplasias (Boyle et al., 2006).

Por outro lado, tem sido um desafio avaliar a participação do etilismo isoladamente no processo de carcinogênese, uma vez que 75% dos pacientes diagnosticados com câncer de boca fazem o uso de tabaco e álcool simultaneamente (Reidy, 2011). Seu papel na carcinogênese bucal pode estar ligado ao metabolismo do etanol em acetaldeído pela enzima álcool desidrogenasse, uma vez que o acetaldeído é conhecido por danificar o DNA das células (Ogden, 2018). Além disso, em contato direto com a mucosa oral o álcool aumenta sua permeabilidade e atrofia o epitélio, deixando o epitélio da mucosa mais susceptível às agressões exógenas (Rivera, 2015).

Além disso, estudos recentes demonstram que os vírus da família dos papilomavirus humanos (HPV) constituem-se prováveis agentes etiológicos no desenvolvimento de carcinoma de células escamosas na região da cabeça e do

pescoço (Hubbers e Akgul, 2015), especialmente na orofaringe. Entre os sorotipos mais estudados estão os HPV16 e HPV18, já comprovadamente relacionados ao acometimento por CCEB (Kreimer et al., 2015)

Para melhor compreensão de sua carcinogênese, é importante ressaltar que um determinado percentual de casos exibe uma fase precedente, clinicamente reconhecida como lesões potencialmente malignas (LPM), ou cancerizáveis (Warnakulasuriya et al., 2007). As LPM mais comuns encontradas na cavidade oral são a eritroplasia, a leucoplasia e o líquen plano (Warnakulasuriya, 2018). Apesar do diagnóstico dessas lesões ser tipicamente clínico, sua análise microscópica é mandatória. Este procedimento é indicado para descartar a presença de lesões cujos aspectos histopatológicos sejam nosologicamente distintos, e identificar e avaliar a presença de displasia epitelial. A displasia tem sido considerada "padrão ouro" para predizer a possibilidade de transformação maligna da LPM (Speight, 2007).

Clinicamente o CCEB se caracteriza como lesões que podem apresentar aspecto eritroplásico, leucoplásico, ou eventualmente misto. A manifestação clínica prevalente é a úlcera com bordas elevadas e endurecidas, com endurecimento basal e profundo. Nos casos avançados, a lesão apresentase úlcero-vegetante, com presença de necrose, denotando franca infiltração (invasão) nos tecidos subjacentes, (Neville e Day, 2002). No estágio inicial, as lesões podem ser assintomáticas e são frequentemente negligenciadas pelo paciente e pelo profissional, mas em estágio avançado podemos encontrar diversos sintomas, como sangramento bucal, perda de dentes, disfagia, odinofagia e úlcera que não-cicatrizante (Sidrón e Antón, 2015).

Uma vez feito o diagnóstico de CCEB através de biópsia, a determinação do prognóstico depende de diversos fatores, entre eles: estadiamento da lesão; invasão perineural; invasão linfovascular; profundidade de invasão, presença de metástase; identificação de HPV; e alto grau de displasia nas margens cirúrgicas (El-Naggar et al., 2017). O sistema de estadiamento preconizado pela Organização Mundial de Saúde (OMS) classifica a neoplasia utilizando as letras T, N e M sendo que: T representa as dimensões do tumor e sua profundidade de invasão; N representa a presença de linfonodo cervical positivo; e M representa a ocorrência de metástase à distância. A partir

da classificação TNM é possível separar as lesões em estágio inicial (I e II) e em estágio avançado (III e IV) (Muller, 2017). Histopatologicamente, a gradação se dá pelo nível de diferenciação tumoral e sua semelhança com o tecido normal, com bem, moderadamente e pobremente diferenciado. Complementam esses parâmetros a presença de invasão tumoral acima de 4mm. (El-Naggar et al., 2017) A presença de invasão perineural e linfovascular, por sua vez, está intimamente ligada ao tamanho do tumor, bem como sua profundidade de invasão e maior risco de desenvolvimento de metástases linfonodais (Taghavi e Yazdi, 2015; El-Naggar et al., 2017). Já o alto grau de displasia nas margens cirúrgicas implica diretamente em menor tempo de sobrevida dos pacientes, uma vez que em pacientes nos quais a remoção é feita com margens seguras existe 80% de possibilidade de sobrevida acima de cinco anos (Chen, et al., 2012).

Dos fatores citados acima, o estadiamento da lesão auxilia na escolha do tratamento a ser empregado em pacientes acometidos por CCEB, porém não somente ele deve ser considerado na escolha do tratamento, uma vez que o paciente pode apresentar outras condições sistêmicas e comorbidades (Huber e Tantiwongkosi, 2014). Dessa forma, as modalidades mais comuns de tratamento são: cirurgia, radioterapia e quimioterapia e, de modo geral, os pacientes são tratados utilizando apenas uma ou combinações dessas modalidades (Rivera, 2015). Como aproximadamente um terço dos casos de CCEB são diagnosticados no estágio inicial, geralmente o tratamento cirúrgico, radioterápico ou ambos apresentam um bom prognóstico para estes pacientes, com taxas de cura de 65% a 80% (Yao et al., 2007). No entanto, a maioria dos casos de CCEB são diagnosticados no estágio avançado com expectativa abaixo de 50% para sobrevida de cinco anos e inferior a 30% para cura, mesmo com a utilização de todas as modalidades apresentadas (Guneri e Epstein, 2014). Além disso, é importante ressaltar que pelo menos 50% dos pacientes acometidos com CCEB em estágio avançado apresentam metástase linfonodal ou a distância, sendo que em pacientes em estágio inicial existe a probabilidade de 42% de metástase linfonodal (Noguti et al., 2012). Nos casos em que existe a presença de metástase, seja regional ou a distância, a quimioterapia é uma aliada, uma vez que atua nas células neoplásicas via corrente sanguínea sistematicamente (Specenier e Vermorken, 2009).

Via de regra, o câncer é uma doença multifatorial e que depende de uma rede de modificações genéticas e epigenéticas, celulares e teciduais, para acontecer, tais como: instabilidade genômica, mutações e imortalidade replicativa; perda de sensibilidade aos fatores de supressão de crescimento e presença de sinalização proliferativa via inflamação promotora do tumor; desregulação do ciclo energético celular; resistência à morte celular programada (apoptose) e à destruição pelo sistema imune; e ativação de invasão tecidual e metástase (Hannahan e Weinberg, 2011). No caso do CCEB, diversos biomarcadores têm sido estudados com o objetivo de melhorar a compreensão acerca desse processo, fornecer métodos mais eficientes e precisos de diagnóstico, indicadores de prognóstico e sobrevida, e possíveis alvos terapêuticos moleculares (Zhong et al., 2018). Esse biomarcadores podem ser detectados utilizando diversas metodologias e estudos e atuando de diversas formas, como em: modificações pontuais na regulação do ciclo celular, sua proliferação e apoptose; mobilidade celular; degradação de matriz extracelular; relação das células tumorais com seu microambiente; e reações imunológicas; angiogênese; e fatores de transcrição (Blatt et al., 2017).

Nesse sentido, maior atenção tem sido dada a alterações epigenéticas, que juntamente com alterações genéticas, constituem-se nas vertentes principais dos estudos moleculares da carcinogênese e sua influência no comportamento biológico e na terapêutica das lesões.

1.2 Epigenética

O termo "epigenética" surgiu primeiramente em 1942 para denominar um segmento de investigação biológica que estuda as interações genotípicas responsáveis pela expressão do fenótipo (Waddington, 1942). Porém, com o avanço da genética, o termo passou a referenciar o estudo das modificações no DNA que não alteram o seu sequenciamento, sendo herdáveis, tanto por mitose quanto por meiose (Wu e Morris, 2001). Sendo assim, diferentemente das alterações genéticas, as epigenéticas são aquelas que não concorrem para modificações estruturais do DNA (Verma et al., 2014).

Da mesma forma que o mapeamento do genoma humano foi finalizado em 2013 e permitiu avanços significativos no campo de estudo da área da saúde, o conhecimento do epigenoma é considerado fundamental para a completa compreensão da carcinogênese em suas variadas etapas (Esteller, 2008; Baylin e Jones, 2011).

Não obstante as alterações epigenéticas serem herdadas, elas são potencialmente reversíveis, destacando-se como alvo nas recentes propostas terapêuticas do câncer (Koch et al., 2018; Baretti e Azad, 2018; Buljubašić et al., 2018; Conte et al., 2018). Assim, essas modificações possuem potencial como biomarcadores aplicáveis no acompanhamento da carcinogênese, fenômenos de progressão neoplásica, e à resposta à terapia (Thomas e Marcato, 2018).

Dentre os fenômenos epigenéticos mais estudadas estão a metilação do DNA (MetDNA), a ação dos microRNA (miRNA), e as modificações póstraducionais de histonas (MPTH) (D'Souza e Saranath, 2015). As MPTH estão envolvidas em processos celulares fisiológicos, como a transcrição e reparação de DNA, e a manutenção da estrutura da cromatina e, por isso, apresentam um campo promissor de estudo da carcinogênese (Audia e Campbell, 2016).

1.3 Cromatina, histonas e MPTH.

A cromatina é uma estrutura multimolecular composta por nucleossomos, cuja integridade é fundamental para a fisiologia do DNA (Wolffe, 1998). O nucleossomo é composto por uma fita dupla de DNA associada a proteínas denominadas histonas (H). As histonas podem ser subdividas em duas categorias: histonas centrais (H2A, H2B, H3 e H4), que compõem o octâmero: dois pares de cada histona, em torno do qual aproximadamente 174 pares de base DNA se enovelam, e histonas de ligação (H1), que atuam na ligação entre os octâmeros (Wolffe, 1998). Esse é o padrão básico de organização da cromatina em toda a extensão do DNA (Kornberg, 1975).

As histonas possuem caudas terminais que correspondem de 20% a 30% de todo seu peso molecular e extrapolam ligeiramente a estrutura de octâmero. Estes sítios são propícios a reações com outros tipos de proteínas (Erler et al., 2014). Esses segmentos são compostos por aminoácidos que se organizam

como cadeias flexíveis, participando de diversos processos celulares, mas principalmente na conformação estrutural da cromatina e na acessibilidade ao DNA (Luger e Richmond, 1998).

São justamente as caudas terminais das histonas que sofrem modificações através de diversos processos fisiológicos e patológicos (Dawson e Kouzarides, 2012). E, assim modificadas, geram efeitos fisiológicos sobre o DNA, com repercussão em processos fisiológicos e patológicos. A influência das MPTH está vinculada a condensação e descondensação da cromatina, modulando o acesso ao DNA (Kornberg, 1974; Prakash, 2018).

As MPTH formam um tipo de código que pode ser lido por proteínas especializadas, regulando e alterando os processos de condensação da cromatina (Rothbart e Strahl, 2014). Além disso, as mesmas proteínas que fazem a leitura desse código, também são capazes de realizar alterações e podem reescrever o código de acordo com estímulos externos (Zhang et al., 2015).

Como em cada MPTH aparece um aminoácido específico na cauda terminal de uma histona, foi criada uma nomenclatura para facilitar o entendimento e a comunicação a respeito dessas alterações. Para nomear uma MPTH, inicialmente deve-se mencionar em qual histona o processo está ocorrendo; em seguida deve-se mencionar o aminoácido acometido e seu posicionamento na cauda terminal; por fim, indica-se qual a modificação que está ocorrendo no aminoácido indicado. Alguns exemplos dessa nomenclatura são: H3S10ph, que indica uma fosforilação (ph), na serina (S) que ocupa a posição 10 na H3; e H4K12ac, que indica uma acetilação (ac), na lisina (K) que ocupa a posição 12 na H4 (Strahl e Allis, 2000).

Dentre as MPTH, destacam-se a acetilação e a fosforilação, uma vez que já foram identificadas em processos fisiológicos e em diferentes modelos de carcinogênese (Rosetto et al., 2012; Marmorstein e Zhou, 2014). A acetilação está mais associada a resíduos de lisina (K), atuando também na condensação da cromatina e na regulação do pH intracelular (Audia e Campbell, 2016). A fosforilação, de modo geral, ocorre majoritariamente em resíduos de serina (S) das caudas das histonas, estando envolvida na condensação da cromatina durante a mitose e a meiose (Banerjee e Shakravarti, 2011).

O processo de acetilação de histonas é catalisado por enzimas referidas como histona-acetiltransferases (HATs) (Struhl, 1998). As HATs facilitam a transferência de um grupo acetil oriundo da Acetil-Coenzima-A para o grupo NH3+ na lisina (K) das histonas (Kuo e Allis, 1998). Elas também realizam acetilação em outras proteínas, como p53, rb e myc, e tanto a alta quanto a baixa expressão estão relacionadas a uma série de cânceres nos quais não há alteração estrutural do DNA (Di Cerbo e Shneider, 2013). Já o processo de fosforilação é feito por enzimas denominadas Aurora quinases e ocorre através da transferência do γ-fosfato de adenosina trifosfato (ATP) para os substratos seguintes, que passam de estado inativo para ativo (Lakkaniga et al., 2020). Cada uma das enzimas dessa família realiza diferentes funções na regulação da divisão celular, em especial na entrada no ciclo mitótico, a montagem do fuso de microtúbulos e a conclusão da citocinese (Mehra, 2013).

Uma vez que as MPTH são reversíveis, tanto sua compreensão no processo carcinogênico, quanto a compreensão das enzimas relacionadas funcionalmente, indicam um campo promissor de estudo, inclusive auxiliando na elaboração de estratégias viáveis no tratamento do câncer (Audia e Campbell, 2016).

1.4H3S10ph e Aurora B.

A fosforilação (ph) da serina 10 (S10) na histona H3 (H3S10ph) já foi ligada a vários processos celulares, tais como condensação cromossômica, citocinese, apoptose, e regulação da expressão gênica (Cerutti e Casas-Mallano, 2009). Em mamíferos, sua alta expressão foi primeiramente descrita durante a metáfase, sendo ela essencial para o início do processo de condensação cromossômica (Hendzel et al., 1997). Estudos *in vivo* demonstrara que a fosforilação da serina 10 na histona 3 se dá no início da prófase, tem seu pico na metáfase, encerrando-se na anáfase, quando ocorre sua desfosforilação (Teperek-Tkacz et al., 2010). A impossibilidade de fosforilação em organismos com S10 mutada (substituição de serina por alanina), a segregação e

material genético (Wei et al., 1999). Dessa forma, H3S10ph é apontada como marcador confiável da presença de divisão celular (Cerutti e Casas-Mallano, 2009; Komar et al., 2020).

Os primeiros indícios de sua provável participação na carcinogênese se deram pela observação de sua expressão em células modificadas por ações de diversos oncogenes em ratos (Chadee et al., 1999). Não obstante, sua alta expressão também já foi indicada como participante no processo de instabilidade genômica, um fator importante para a ocorrência de carcinogênese (Espino et al., 2009; Hannahan e Weinberg, 2011).

Estudos relacionando a H3S10ph com câncer e lesões precursoras específicas ainda são escassos (Komar et al., 2020). Já foi demonstrado que diferentes níveis de Arsênio (As) no organismo, uma substância cancerígena, alteram a expressão H3S10ph, sendo que maior presença de arsênio trióxido (AsIII) aumenta consideravelmente. Sua expressão aumentada está associada a desregulação da segregação cromossômica (Howe e Gamble, 2016). Em estudos *in vitro* com linhagens celulares de adenocarcinoma de mama, a elevada expressão de H3S10ph foi associada a maior taxa de proliferação celular na presença de agentes externos capazes de provocar modificações epigenéticas, como concentrado de fumaça de cigarro (Yan et al., 2016). Em casos de câncer gástrico, a sua alta expressão já foi identificada como um indicador de pior prognóstico traduzido por maior grau de agressividade tumoral e menor sobrevida. Nesses estudos, também foi apontada como marcadora da identificação de margens cirúrgicas seguras para ressecção tumoral, diminuindo a ocorrência de recidivas (Khan et al., 2016; Nie et al., 2020).

Em pacientes com queilite actínica e carcinoma de células escamosas de lábio, os níveis de expressão dessa MPTH já foram associados com o processo de carcinogênse e progressão tumoral, estando expressa de forma mais intensa em lesões menos diferenciadas (De Freitas-Filho, 2015). No CCEB, essa modificação também é apontada como provável biomarcador de prognóstico e metástases, atuando no processo de progressão tumoral (Campos-Fernandez et al., 2019).

Além disso, estudos *in vitro* apresentaram H3S10ph e suas enzimas precursoras como possíveis alvos terapêuticos para o tratamento de neoplasias.

Isso se daria pela modulação da apoptose em linhagens de células malignas com a diminuição da fosforilação (Lee et al., 2011).

Uma vez que o mecanismo pelo qual H3S10ph atua no desenvolvimento e prognóstico do câncer ainda não é claro, o estudo das enzimas fosforiladoras de histonas se mostra um campo aberto à investigação. Como já mencionado, a família das Aurora quinases é responsável pela fosforilação das histonas, repercutindo sobre a H3S10ph. Esse grupo de enzimas é composto por: Aurora A, Aurora B e Aurora C, sendo as duas primeiras enzimas reguladoras da mitose e a última reguladora de meiose (Goldenson e Crispino, 2015). Dessa família de enzimas, Aurora B parece ser a mais importante no que tange a sua relação com H3S10ph na mitose. Aumento de sua expressão foi observado em embriões de suínos e ratos, sendo sua inibição a causa de anomalias tanto nas primeiras quanto nas segundas mitoses embrionárias (Teperek-Tkacz et al., 2010).

Além de catalisar H3S10ph, Aurora B também faz parte do "complexo passageiro de cromossomos" (CPC). Este complexo proteico, do qual essa enzima faz parte, é fundamental para que o processo de ligação dos centrômeros com os microtúbulos ocorra corretamente no processo de divisão celular (Lakkaniga et al., 2020). A sua baixa expressão é frequentemente apontada como causadora de anomalias durante a metáfase, sendo a falha no processo de alinhamento cromossômico um ponto importante no diagnóstico histopatológico de neoplasias (Wang et al., 2012).

Alguns estudos demonstraram que alterações na expressão de Aurora B podem gerar tetraploidia celular devido a falhas no processo de divisão celular, acarretando a formação de um tecido tumoral com amplificação e deleção gênica (Nguyen et al., 2009). Em carcinoma pulmonar de não-pequenas células, alterações na expressão de Aurora B já foram indicadas como fator colaborador para instabilidade genômica, influenciando ainda no processo de diferenciação celular e colaborando para uma piora do prognóstico (Smith et al., 2005). Em estudos *in silico* de carcinoma de ovário, lesões com alta expressão de Aurora B foram associadas a um pior prognóstico devido à sua participação no processo de proliferação e diferenciação celular (Ocaña et al., 2016).

No CCEB, a expressão do oncogene DCUN1D1 foi associada à de Aurora B, uma vez que a diminuição dessa enzima associada ao aumento desse

oncogene causaram instabilidade genômica, refletindo em aumento nos índices de proliferação celular e diminuição dos índices de diferenciação (Huang et al., 2017). A alta expressão de Aurora B já foi apontada como indicador de pior prognóstico e como possível alvo terapêutico para casos de CCEB quando paralela à survivina nuclear, uma proteína inibidora de apoptose, devido à sua associação com a ocorrência de recidivas, baixo grau de diferenciação celular e baixa sobrevida (Erpolat et al., 2012). Além disso, a sua alta expressão também foi associada ao aumento de proliferação celular, presença de células multinucleadas e ocorrência de metástase (Qi et al., 2007).

1.5 H3K9ac, H4K12ac e GCN5.

A acetilação da lisina 9 na histona H3 (H3K9ac) possui uma função celular bem compreendida. As evidências apontam sua participação no processo de descompactação da cromatina, favorecendo a ativação gênica, por deixá-la acessível aos fatores de transcrição (Jin et al., 2011). Além disso, quando ocorre acetilação de resíduos de lisina, essa molécula pode ser lida por proteínas que possuam um bromodomínio que, por sua vez, estão envolvidas na acessibilidade à cromatina, ativando ou desativando a transcrição do DNA (Gil et al., 2017).

Em relação ao seu envolvimento na carcinogênese, níveis elevados de acetilação da histona 3 já foram evidenciados pela sua capacidade de ativação de transcrição gênica (Juliano et al., 2016). No câncer de mama, sua alta expressão já foi associada com maior agressividade do tumor e maior grau de invasão das células tumorais, além de indicar pior prognóstico (Berger et al., 2020). No entanto, em casos de tumores ependimários, a sua baixa expressão foi associada a tumores recidivantes, caracterizando-o como indicador prognóstico para essas lesões (Ebrahimi et al., 2013). Em carcinoma de células escamosas de esôfago, sua alta expressão se faz presente nos casos com maior grau de diferenciação (Hoseok et al., 2010).

No CCEB, a H3K9ac já foi associada com aumento da proliferação celular e indicado com provável potencial biomarcador para pior prognóstico (Webber et al., 2017). Correlação positiva com proliferação celular também foi observada

em epitélio de leucoplasia bucal, no entanto houve maior expressão em tecido normal, indicando que seu aumento possa estar associado aos estágios neoplásicos mais avançados (Espinosa, 2018). Outros estudos também a identificaram em tumores na região da cabeça e pescoço, como tumores odontogênicos com diferenciação ameloblástica, no qual sua alta expressão se deu majoritariamente em tumores malignos e metastatizantes; e em carcinoma de células escamosas labial bem diferenciados. Apesar dessas lesões apresentarem patogênese distinta do CCEB, os achados encontrados nesses estudos corroboram para o fato de alterações na expressão de H3K9ac podem influenciar no processo de evolução dessas doenças (Ribeiro, 2017; Andrade, 2018; de Freitas Filho, 2015).

A acetilação da lisina 12 na histona H4 (H4K12ac) está ligada à ativação gênica, com alta expressão em estágios iniciais do desenvolvimento embrionário (Paradowska et al., 2012). Níveis elevados de H4K12ac já foram identificados em neoplasias pancreáticas, associados a um pior prognóstico para a doença (Juliano et al., 2016). Diversamente, tumores colorretais mostraram uma relação direta e positiva entre níveis de expressão e diferenciação tumoral, sem, contudo, traduzir significado prognóstico (Ashktorab, 2009). A baixa expressão de H4K12ac em carcinoma de células escamosas de esôfago foi relacionada a melhor diferenciação tumoral (Hoseok et al., 2010). Nesses tumores, sua expressão se mostrou possível indicador independente para um pior prognóstico (Hoseok et al., 2010).

Para o CCEB, a expressão de H4K12ac foi associada à progressão do tumor pela sua significativa associação com metástases linfonodais (Campos-Fernández et al., 2019). Ainda nesse campo de investigação, a presença de H4K12ac foi observada em leucoplasias bucais, cujos níveis mostraram correção positiva com proliferação celular (Espinosa, 2018). Além disso, assim como em H3K9ac, ela já foi associada ao adenocarcinoma polimorfo em casos recidivantes e ao carcinoma adenoide cístico de glândulas salivares em casos avançados, recidivantes e metastáticos, e carcinoma de células escamosas labial (Andrade, 2018).

A família das HATs, enzimas responsáveis pela acetilação das histonas, é subdividida em dois grandes grupos: as N-acetiltransferases relacionadas a

GCN5 (no inglês, *Gcn5-related N-acetyltransferase* - GNATs); e as MYSTs (acrônimo para MOZ, Ybf2, Sas2, e Tip60, as primeiras enzimas a serem incluídas nesse grupo) (Lee e Workman, 2007). Dentro das GNATs, existe um subgrupo responsável por catalisar a acetilação preferencialmente nas lisinas 9 e 14 das histonas H2B, H3 e H4, denominado SAGA (Spt–Ada–Gcn5– acetiltransferase) (John et al., 2000; Lee e Workman, 2007). Desse subgrupo, a GCN5 foi a primeira enzima identificada que apontou uma relação entre acetilação de histonas e ativação gênica (Jin et al., 2011).

Atuando nos processos de transcrição gênica, GCN5 tem sido relacionada ao fenômeno da transição epitélio-mesenquimal, fenômeno implicado na invasão tecidual e metástases sendo, dessa forma, admitida como possível alvo terapêutico para câncer de mama (Zhao et al., 2018). Semelhante interpretação tem sido considerada quanto a sua participação na carcinogênese colorretal, por atuar no processo de proliferação e diferenciação celular (Yin et al., 2015). Sua elevada expressão também foi encontrada em casos de carcinoma urotelial e de carcinoma pulmonar não de pequenas células, sendo relacionada com aumento da proliferação celular, sendo também identificada como possível alvo terapêutico objetivando inibição da progressão tumoral (Koutsogiannouli et al., 2017; Mustachio et al., 2019).

No caso do CCEB, GCN5 já foi correlacionada com a acetilação da H3 na lisina 27 (H3K27ac) e apontada como atuante na inflamação e imunossupressão do microambiente do tumor (Ma et al., 2020). Ainda assim, não há na literatura estudos a respeito da atuação de GCN5 associada a MPTH em CCEB, tornandoa uma área rica para o desenvolvimento de novas pesquisas.

1.6 Sinergismo entre acetilação e fosforilação de histonas

Estudos utilizando imunoprecipitação encontraram que tanto a acetilação da lisina 9 quanto a fosforilação da serina 10 estão ligadas à ativação gênica, ambas ocorrendo na histona 3, sugerindo que esses processos possam ter alguma correlação em experimentos *in vitro* (Cheung et al., 2000). Mais do que isso, também foi possível observar que na presença dessa fosforilação, a

acetilação ocorria em maior expressão, permitindo inferir que alterações nos níveis de uma poderiam acarretar modificações no nível da outra (Cheung et al., 2000). Aprofundando ainda mais essa correlação, a fosforilação de H3 na serina 10 foi apontada também como facilitador da ocorrência de acetilação através da ativação e do recrutamento de HATs, em especial de GCN5, tanto *in vitro* quanto *in vivo* (Lo et al., 2001).

Existem três mecanismos possíveis para que ocorra essa facilitação para a ocorrência de H3K9ac na presença de H3S10ph: o primeiro implica que a fosforilação cria um sítio de ligação para HATs; o segundo implica que a fosforilação afrouxa a cromatina e facilita a ação de reguladores transcricionais como as HATs; e o terceiro implica que a fosforilação perturba a ligação de inibidores de acetilação, permitindo então que ela ocorra (Fry et al., 2004).

Apesar disso, alguns estudos que utilizaram inibidores de fosforilação encontraram que sua diminuição não ocasionou na queda da acetilação, sugerindo que essa relação de causa e consequência não ocorre em todas as ocasiões, podendo em alguns casos suas expressões serem independentes (Thomson et al., 2001).

Logo, considerando que ainda não existem estudos analisando ambos os processos de forma simultânea e correlacionando com o CCEB, pesquisas nessa área podem ajudar a compreender melhor os mecanismos pelos quais essas MPTHs e enzimas atuam no processo de carcinogênese e até mesmo seus efeitos no prognóstico do paciente.

2.PROPOSIÇÃO

Avaliar a expressão de GCN5 e Aurora B em pacientes com CCEB, analisando sua relação com a imunoexpressão das MPTH H4K12ac, H3K9ac e H3S10ph, na perspectiva de verificar sua associação com diferentes variáveis sociodemográficas e clinicopatológicas, e com o comportamento biológico das lesões, traduzido por metástases e sobrevida dos pacientes.

3.OBJETIVOS

1. Avaliar a imunorreatividade dos antígenos das MPTH e enzimas associadas em CCEB a partir da mensuração de densidade ótica integrada (IOD) de núcleos imunorreativos;

2. Analisar por comparação os valores das IOD obtidas para as MPTH e enzimas relacionadas, considerando as variáveis sociodemográficas e clinicopatológicas dos casos de CCEB;

3. Investigar o potencial uso dos valores de IOD medidas para as MPTH e enzimas associdas como marcadores de prognóstico a partir de sua relação com recidivas, metástases e sobrevida nos casos de CCEB.

<u>4.CAPÍTULO 1 – ARTIGO 1</u>

IMPACTO CLÍNICO DAS MODIFICAÇÕES PÓS-TRADUCIONAIS DE HISTONAS H3S10PH, H3K9AC E H4K12AC ASSOCIADAS ÀS ENZIMAS AURORA B E GCN5 EM CARCINOMA DE CÉLULAS ESCAMOSAS BUCAL

Marcelo Augusto Garcia Júnior¹, Anaíra Ribeiro Guedes Fonseca Costa¹, Sérgio Vitorino Cardoso¹, Paulo Rogério de Faria², João Paulo Silva Servato³, Morun Bernardino Neto⁴, Adriano Mota Loyola^{1*}

- 1. Departamento de Patologia Oral e Maxilofacial, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brasil.
- 2. Departamento de Morfologia, Instituto de Ciências Biomédicas Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brasil
- 3. Area de Biopatologia, Faculdade de Odontologia, Universidade de Uberaba (UNIUBE), Uberaba, MG, Brasil.
- 4. Departamento de Ciências Básicas e Ambientais, Escola de Engenharia de Lorena, Universidade de São Paulo (USP), Lorena, MG, Brasil.

*AUTOR CORRESPONDENTE:

Adriano Mota Loyola Departamento de Patologia Oral e Maxilofacial Universidade Federal de Uberlândia (UFU) Rua Pará, 1720, Umuarama, Uberlândia, Brasil - 38405-302 Telefone: +55-34-3225-8118; Fax: +55 34 3225 8116 e-mail: loyolaam@gmail.com

Conflitos de Interesse

Os autores declaram não haver conflito de interesse.

Contagem de palavras

~4.300 palavras.

RESUMO

Os estudos epigenéticos em torno das modificações pós-traducionais de histonas e suas enzimas são da maior importância, especialmente no que diz respeito ao carcinoma de células escamosas bucal. Isso ocorre porque elas são modificações epigenéticas envolvidas na progressão e desenvolvimento do tumor. Dessa forma, o nosso estudo pretendeu avaliar as modificações póstraducionais de histonas H3S10ph, H3k9ac e H4K12ac e as enzimas GCN5 e Aurora B, analisando a sua importância em pacientes acometidos por carcinoma de células escamosas bucal. Primeiramente, uma amostra composta por 90 pacientes diagnosticados com essa neoplasia foi selecionada. Então, a coloração imuno-histoquímica com anticorpos contra H3S10ph, H3K9ac, H4K12ac, GCN5 e Aurora B foi realizada nas amostras de tecido fixado em parafina. Foi preparada uma associação das modificações pós-traducionais de histonas e dos níveis de expressão das enzimas com fatores clínico-patológicos, bem como um teste de correlação entre elas e análise de sobrevida dos pacientes. Todas as modificações de histona e enzimas mostraram expressão nuclear em células tumorais. Encontramos as seguintes associações significativas: alta Aurora B, GCN5, H3S10ph, H3K9ac e H4K12ac com local de localização; alta expressão GCN5 e H3k9ac com tabagismo; baixa expressão GCN5 com recidiva. Além disso, foi encontrada uma correlação positiva entre: Aurora B e H3S10ph; GCN5 e H3K9ac; H3K9ac e H3S10ph; Aurora B e GCN5. As nossas descobertas sugerem que H3S10ph, H3K9ac, H4K12ac, Aurora B e GCN5 podem participar no desenvolvimento da CCEB, mas não na sua progressão.

Palavras-chave: Câncer bucal; carcinoma de células escamosas; imunohistoquímica; modificações de histona; prognóstico.

INTRODUÇÃO

Estima-se que 2% do total de novos casos de câncer no mundo acometam a boca. Nesse contexto, o carcinoma de células escamosas bucal (CCEB) é o mais frequente, com aproximadamente 300 mil novos casos/ano^{1,2}. Por definição, o CCEB é uma neoplasia maligna originária do epitélio de revestimento da mucosa bucal, acometendo majoritariamente pessoas do sexo masculino, na quinta e sexta década de vida, tendo sua etiologia associada principalmente a exposição aos produtos do fumo e álcool³. Dentre outros fatores de risco, destacam-se: utilização de noz de Betel, o hábito de mascar tabaco, uma dieta pobre em frutas e vegetais, má higiene bucal e exposição a vírus do grupo do Papilomavirus humano (HPV), Herpesvirus humano (HHV3 e HHV4) e vírus da imunodeficiência humana (HIV)⁴. Não obstante os aperfeiçoamentos técnicos alcançados no seu tratamento cirúrgico, radio e quimioterápico, suas taxas de sobrevida são baixas, chegando a taxas de aproximadamente 24% em cinco anos, sendo que pacientes que apresentam metástases e recidivas possuem sobrevida ainda menor⁵.

Diferentes tipos de alterações genotípicas e fenotípicas têm sido identificados nessas lesões^{6,7}. Esses dados têm contribuído para o entendimento da carcinogênese, elucidando mecanismos de atividade proliferativa descontrolada, evasão de mecanismos de inibição do crescimento, morte celular programada (apoptose), participação do sistema imune (defesa), angiogênese, mudanças metabólicas, longevidade proliferativa, invasão e metástases. Não obstante, sua repercussão, bem como marcadores de fenômenos biológicos e de comportamento, ainda é elusiva^{7,8}.

Paralelamente, tem sido observado que mecanismos epigenéticos associados a modificações funcionais gênicas estão também implicados na patogenia do câncer, independentemente de sua origem⁹. Nesse sentido, a metilação do DNA (MetDNA), micro RNA (miRNA), e modificações póstraducionais de histonas (MPTH) influenciam a funcionalidade do DNA, interferindo na ativação ou repressão da transcrição gênica, diretamente relacionados a função dos genes supressores de tumor (GST) e oncogenes no processo de carcinogênese⁹. Por serem reversíveis, essas modificações tem sido alvos de propostas terapêuticas para o câncer, com repercussões favoráveis¹⁰.

O estudo das MPTH na carcinogênese do CCEB tem apresentado boas perspectivas na explicação de sua patogenia e na geração de biomarcadores de prognóstico¹¹. As MPTH são alterações que ocorrem nos aminoácidos presentes nas caudas terminais das histonas, influenciando o acesso ao DNA através da condensação ou descondensação da cromatina¹². Nesse contexto, são de particular interesse a acetilação da lisina, que causa a descompactação da cromatina, favorecendo acesso e transcrição gênica; e a fosforilação da serina, associada à modelação da cromatina durante a divisão celular e condensação cromossomal, com efeito compactante no DNA¹¹.

O desenvolvimento das MPTH está associado funcionalmente a ação de enzimas específicas, sendo que o aumento da expressão funcional dessas enzimas tem sido relacionado à carcinogênese ¹³. A enzima Aurora B faz parte do grupo das Aurora Quinases, responsáveis pela fosforilação da serina 10 na histona 3 (H3S10ph), sendo fundamental no processo de divisão celular^{14,15}. Sua desregulação pode causar anomalias durante a divisão celular, sendo um ponto

importante a ser observado no diagnóstico histopatológico de carcinomas ¹⁶. A enzima *General Control Non-derepressible 5* (GCN5), por sua vez, faz parte do grupo das histonas acetiltransferases (HATs) que catalisam a acetilação da lisina 12 na histona 4 (H4K12ac) e a acetilação da lisina 9 na histona 3 (H3K9ac)¹⁷. Essas enzimas atuam na ativação da transcrição gênica, no silenciamento de genes, na mediação do reparo de DNA e na progressão do ciclo celular¹⁷. Tais evidências tem colocado GCN5 como alvo de diversos tratamentos de quimioterapia, especialmente em células resistentes ao tratamento em casos de câncer de mama ^{18, 19}.

Existem poucos estudos acerca do envolvimento das enzimas e de sua associação com MPTH no CCEB, e pouco se conhece de sua participação na carcinogênese bucal e seu potencial significado na elucidação do comportamento da doença e seu prognóstico ²⁰.

Assim nosso estudo objetivou avaliar a expressão de GCN5 e Aurora B em pacientes com CCEB, analisando sua relação com a imunoexpressão das MPTH H4K12ac, a H3K9ac e a H3S10ph, na perspectiva de verificar sua associação com variáveis sociodemográficas, clinicopatológicas, comportamento biológico das lesões e sobrevida dos pacientes.

MATERIAIS E MÉTODOS

Amostra

O presente estudo foi desenvolvido após a aprovação pelo Comitê de Ética Institucional, registrado sob o número CAAE: (CAAE: 00593312.1.0000.5152, Fev/2012). Foram incluídos no presente estudo 90 pacientes acometidos pelo CCEB, registrados no Departamento de Patologia
Oral da Universidade Federal de Uberlândia de 2006 a 2013. Para o estudo foram selecionados casos que tiveram o mínimo de dois anos de acompanhamento, dados sociodemográficos, clinicopatológicos e de progressão objetivamente da doenca completos, registrados no período de acompanhamento do paciente, com disponibilidade de amostra biológica suficiente para a realização dos ensaios imuno-histoquímicos. Dos prontuários médicos dos pacientes, foram coletados os seguintes dados: idade, sexo, consumo de álcool, tabagismo, sintomatologia, histórico familiar de câncer, localização e tamanho do tumor, estadiamento da doença e evolução da doença, gradação histopatológica de malignidade, tipo de tratamento empregado, presença de recidivas, presença de metástase, e condição clínica na última consulta. Todos os casos foram revisados quanto ao diagnóstico histopatológico e gradação de malignidade baseados nos critérios contemporâneos da classificação dos tumores de cabeça e pescoço da OMS²¹.

Microarranjo tecidual (TMA)

Duas áreas tumorais foram selecionadas dos blocos de parafina de cada paciente e transferidas para o bloco de parafina receptor utilizando agulha de captura de 1mm de diâmetro. O bloco receptor contendo áreas dos pacientes em duplicata foi posteriormente cortado em secções de 3mm de espessura para procedimento de imuno-histoquímica²².

Imuno-histoquímica

Para a realização dos ensaios imuno-histoquímicos, utilizou-se a técnica da estreptavidina-biotina-peroxidase²³, a partir de secções teciduais do bloco de TMA, com 3 µm de espessura. As lâminas foram desparafinadas com xilol e hidratadas em soluções de etanol em concentração decrescente. A remoção do

pigmento formólico foi realizada com banho em solução de hidróxido de amônio (10%) e etanol (95%) e a recuperação do epítopo antigênico foi feita com solução de EDTA (1mM). O bloqueio da peroxidase endógena foi feito com peróxido de hidrogênio 10v e o da avidina endógena foi realizado com solução de 90ml de água deionizada e 15g de leite em pó desnatado (Molico®, Nestlé, São Paulo, SP, Brasil). A biotina endógena foi bloqueada utilizando-se solução de 200ml de água destilada e duas claras de ovo não refrigeradas²⁴.

Para incubação do anticorpo primário foi utilizada solução de Background Sniper (Biocare Medical, Pacheco, CA, EUA) por 15 minutos, em câmara úmida, seguida da aplicação de anticorpos contra as enzimas GCN5 (sc-365321, Santa Cruz Biotechnology, Dallas, TX, USA) e Aurora B (ab45145, Abcam, Cambridge, UK) por 18h a 4°C em concentrações de 1:100 e 1:200, respectivamente; e contra as modificações H3S10ph (ab47297, Abcam, Cambridge, UK), H3K9ac (ab10818, Abcam, Cambridge, UK) e H4K12ac (ab61238, Abcam, Cambridge, UK) por 2h, em temperatura ambiente e concentrações de 1:500, 1:2.000 e 1:10.000, respectivamente. O anticorpo secundário foi incubado com solução Trekkie Link (Biocare Medical, Pacheco, CA, EUA), por 30 minutos em temperatura ambiente. A incubação do complexo terciário se deu utilizando Trekkie Avidin-HRP (Biocare Medical, Pacheco, CA, EUA), por 30 minutos em temperatura ambiente. Os controles positivos foram constituídos por casos de tecido normal ou de tumores conhecidamente positivos para os antígenos pesquisados, conforme a indicação do fabricante. Para os controles negativos omitiu-se o anticorpo primário. Para a revelação, foi utilizada solução Betazoid DAB Chromogen (Biocare Medical, Pacheco, CA, EUA), na concentração de 1 gota para cada 1ml de Substrate Buffer (Biocare Medical, Pacheco, CA, EUA),

por 3 minutos em temperatura ambiente. A contra-coloração foi realizada com hematoxilina de Harris, e as lâminas foram montadas com goma de damar (ISOFAR, Duque de Caxias, RJ, Brasil).

Análise e avaliação das imagens

As lâminas de TMA foram digitalizadas em ampliação de 20x usando scanner Aperio AT2 (Leica Biossystems Imaging, Wetzlar, Germany). Em seguida, foram obtidas duas fotomicrografias em máxima ampliação de cada *spot* com auxílio do *software* QuPath, versão 0.2.2²⁵. Para a análise quantitativa das imagens, foram obtidos, previamente, os valores de densidade óptica integrada (IOD) das áreas marcadas nos *spots* utilizando o software ImageJ, versão 1.52 (NIH, Bethesda, MD, EUA). O valor de IOD foi definido como o produto da área demarcada pela a soma dos valores de absorbância de cada distância nas imagens, sendo, neste caso,1,99pixels/µm, seguida pela calibração da escala de cinza e conversão dos valores de cinza em valores de absorbância (<u>https://imagej.nih.gov/ij/docs/examples/calibration/</u>).

As fotomicrografias foram, então, submetidas à separação dos vetores referentes às cores da hematoxilina (H) e do cromógeno (DAB) com auxílio do *plugin Colour Deconvolution*, selecionando-se a opção "H DAB". Com isso, foram obtidas três imagens a partir da fotomicrografia original: a primeira contendo as células coradas com H, a segunda contendo as células coradas com DAB, e uma terceira imagem residual, totalmente branca. Para definir como região de interesse (*Region of Interest* - ROI) apenas os núcleos das células neoplásicas, foi criada uma seleção com base na coloração de hematoxilina usando a ferramenta *Threshold*. A partir desta seleção, criou-se uma máscara a ser

aplicada na imagem contendo apenas a marcação de DAB, possibilitando, assim a quantificação da reação antígeno-anticorpo nos núcleos positivos por meio do cálculo da IOD (*IntDen*).

Cada caso foi analisado considerando a leitura dos dois *spots* tumorais. Os valores de IOD foram registrados isoladamente para cada *spot*, e cada caso teve seus valores de IOD como a média dos valores obtidos nos *spots*.

Estatística

A análise descritiva e exploratória dos dados foi definida a partir da natureza da escala em que os dados são medidos, dessa forma, as variáveis qualitativas, medidas em escala de razão, foram descritas por meio de: número de observações, amplitude total, mediana ou média. Para as variáveis qualitativas, que foram mensuradas em escalas nominais ou ordinais, a análise descritiva foi processada por meio de frequência absoluta, frequência relativa e porcentagem acumulativa. A forma de distribuição de frequência dos valores das variáveis quantitativas foi avaliada por meio do teste de normalidade de D'Agostino & Pearson e a partir dos resultados optou-se pela estratégia não paramétrica de análise. Os testes para comparação dos valores de IOD para as diferentes variáveis foram realizados utilizando-se teste *U* de Mann-Whitney ou o teste de Wilcoxon. A busca de correlações entre os valores de IOD para as enzimas e as MPTH foi processada por meio do teste de correlação de Spearman.

A comparação da sobrevida de dois grupos foi feita por meio da construção gráfica da curva de sobrevivência e curva de risco por meio da técnica de Kaplan-Meyer. Para a análise comparativa utilizou-se o teste de Log rank. Para tanto, foram comparados grupos com valores de IOD alto e baixo,

definidos a partir de *cut-offs* para cada antígeno considerado. A definição dos *cut-offs* utilizados foi obtida por meio da curva Receiver Operating Characteristic (ROC). Os testes foram processados pelos softwares IBM SPSS Statistics®, Bioestat 5.3 e Origin 9.0. Para todos os testes os resultados foram considerados altamente significantes quando $\alpha \le 0,01$, significantes quando $0,01 < \alpha \le 0,05$ e de significância limítrofe quando $0,05 < \alpha < 0,10$.

RESULTADOS

Características da amostra

Dos 90 casos incluídos no estudo, 75,6% (n = 68) eram do sexo masculino, sendo que apenas 43,3% (n = 39) possuía mais de 60 anos de idade. A maioria dos pacientes era fumante (n = 81, 90%) e consumia bebida alcoólica (n = 72, 80%), enquanto aproximadamente 45,6% (n = 41) relataram histórico familiar de câncer. Em torno de 65,6% (n = 59) dos pacientes apresentaram sintomatologia, sendo a maioria dos casos (n = 50, 55,6%) diagnosticada após mais de 6 meses de evolução da lesão, com pouco menos da metade dos pacientes (n = 43, 57,8%) mostrando lesões com dimensão inferior a 4cm. O sítio mais acometido foi a língua (n = 37, 41,1%). A maioria das lesões foi diagnosticada em estadiamento avançado (n = 63, 70,0%) e aproximadamente um quinto dos casos registraram doença recidivante (n = 19, 21,1%), com pouco mais da metade (n = 46, 51,1%) registrando metástases linfonodais. Quanto à classificação histológica, 71,1% (n = 64) das lesões eram pouco ou moderadamente diferenciadas O tratamento mais frequentemente empregado foi o trimodal (cirurgia, radioterapia) para 34,4% dos pacientes

(n = 31). Do nosso grupo de pacientes, 41,1% (n = 37) evoluíram para óbito. Os dados sociodemográficos e clinicopatológicos estão detalhados na Tabela 1.

Expressão imuno-histoquímica e IOD para Aurora B, GCN5, H3K9ac, H4K12ac e H3S10ph.

A expressão imuno-histoquímica para as enzimas e as MPTH podem ser observados nas Figura 1. Os respectivos valores de IOD segundo as variáveis sociodemográficas e clinicopatológicas estudadas são demonstrados na Tabela 2, acompanhados dos valores de *p* e dos testes utilizados nas análises.

Aurora B e GCN5

Ambas as imunomarcações para as enzimas foram heterogêneas, uma vez que cada *spot* apresentou níveis variados de intensidade de coloração, no entanto todos os *spot*s apresentaram imunomarcação. Para Aurora B a marcação foi preferencialmente nuclear. Localização citoplasmática foi observada nos casos em que a marcação nuclear foi mais intensa. O valor de mediana de IOD foi de 47.863, com percentil de 25% em 31.946 e de 75% em 64.959. Houve menor expressão de Aurora B nos casos cuja lesão se localizava na língua, se comparada com o assoalho bucal e com as demais regiões (p<0,01, p<0,05 e p<0,01, respectivamente).

Para GCN5, a imunomarcação foi predominantemente nuclear, no entanto também houve marcação intensa de citoplasma em menor grau. Todos os *spots* apresentaram marcação, no entanto de forma heterogênea, ocorrendo de forma mais acentuada em determinados spots. A mediana de IOD foi de 63.676, com percentis de 25% em 50.029 e 75% em 81.031. O grupo de pacientes tabagistas apresentou maior expressão dessa enzima (p<0,05), igualmente ao grupo não-recidivante, que apresentou maior expressão se

comparado ao grupo recidivante (p<0,05). Quanto aos sítios acometidos em nossa amostra, a maior expressão de GCN5 ocorreu no assoalho de boca e na a língua (p<0,01 em ambos).

H3K9ac, H4K12ac e H3S10ph

De modo geral, as MPTH apresentaram marcação mais bem delimitada e mais concentrada no núcleo celular do que as enzimas citadas anteriormente. Para H3K9ac a imunorreação foi observada em todos os casos com intensidade variável e de localização predominantemente nuclear, sendo que a localização citoplasmática ocorreu com pouca frequência. A mediana dos valores de IOD (11.073) foi a maior entre as obtidas para as MPTH estudadas, com percentis de 25% em 6.646 e 75% em 19.674. O grupo tabagista apresentou maior expressão de H3K9ac se comparado ao grupo não-tabagista (p<0,05) e o grupo assintomático também apresentou maior expressão da mesma (p<0,05). Se tratando dos sítios de localização da lesão, lesões na língua obtiveram marcação inferior ao assoalho e às outras localizações (p<0,0001, p<0,0001 e p<0,05, respectivamente).

A expressão de H4K12ac seguiu um padrão semelhante daquele observado para H3K9ac, sendo que nas áreas onde a marcação nuclear foi mais intensa identificou-se também maior intensidade na imunoexpressão citoplasmática, ainda assim essa coloração no citoplasma foi menos intensa do que se comparada à imunoexpressão das enzimas. A mediana de IOD foi de 4.535, com percentis 25% em 3.267 e 75% em 7.542. O grupo de lesões na língua apresentou marcação inferior à ao grupo acometido no assoalho e em outras localizações (p<0,0001, p<0,0001 e p<0,05).

Para H3S10ph, a marcação foi preferencialmente nuclear, com frequência de marcações citoplasmáticas maior que a identificada para H3K9ac, ainda assim essa marcação ocorreu de forma bem delimitada. A mediana da IOD foi de 8.061, com percentil de 25% em 5.446 e de 75% em 13.634. O grupo assintomático apresentou maior expressão dessa MPTH (p<0,01), no entanto sua expressão foi inferior na língua se comparado com o assoalho bucal e as demais localizações (p<0,01, p<0,01 e p<0,05, respectivamente);

Análises de correlação entre as MPTH e as enzimas

Os valores de r_s para as correlações entre enzimas e MPTH estão distribuídos na Tabela 3. Observou-se correlação positiva forte entre os valores médios de IOD para GCN5 e Aurora B (r_s =0,676, p<0,0001); e H3S10ph e H3K9ac (r_s =0,698, p<0,0001). Observou-se correlação positiva moderada entre os valores médios de IOD para GCN5 e H3K9ac (r_s =0,619, p<0,0001); Aurora B e H3S10ph (r_s =0,633, p<0,0001); GCN5 e H3S10ph (r_s = 0,504, p<0,0001); e Aurora B e H3K9ac (r_s =0,488, p<0,0001).

Impacto das MPTH e enzimas na sobrevida

Os pacientes foram agrupados de acordo com as MPTH e enzimas tendo como referência o ponto de corte (*cut-off*) estabelecido pela curva ROC para classificar os pacientes em alta e baixa expressão (Figura 2 e Tabela 4). Foram considerados os escores 0 (baixa expressão) e 1 (alta expressão) para valores abaixo e acima do *cut-off*, respectivamente. As análises de sobrevida de Kaplan-Meier mostraram que GCN5 (p=0,07), H3K9ac (p=0,05) e H3S10ph (p=0,003) tiveram impacto significante na sobrevida, estando sua baixa expressão associada a um pior prognóstico. Tanto Aurora B (p=0,121) como H4K12ac (p=0,47) não apresentaram diferenças significantes das taxas de sobrevida. As

curvas de sobrevida e risco cumulativo para as enzimas e para as MPTH podem ser observadas nas Figuras 3 e 4, respectivamente.

DISCUSSÃO

Os resultados do presente trabalho mostraram que houve correlação significativa entre valores de IOD para enzimas GCN5 e Aurora B, entre esses e aqueles para as MPTH H3K9ac e H3S10ph, respectivamente, e entre os valores de IOD das MPTH. Para todos os antígenos pesquisados os valores de IOD foram significativamente maiores para lesões no soalho bucal. Para os pacientes tabagistas, as diferenças também foram significativas em relação a GCN5 e H3K9ac. E, embora não significativos, os valores foram também maiores para lesões em pacientes do sexo masculino, tabagistas, etilistas, com moderada a pobre diferenciação. Por outro lado, valores menores de IOD foram observados em casos recidivantes e metastáticos, sendo essa baixa expressão considerada significante para pior sobrevida considerando H3K9ac, H3S10ph e GCN5. Esses achados sugerem que processos de acetilação e fosforilação vinculados a H3K9ac e H3S10ph, catalisados por GCN5 e Aurora B, podem estar atuando coordenadamente na carcinogênese bucal, sem, contudo, terem uma clara relação com a progressão tumoral.

Evidências indicam que a fosforilação e acetilação de histonas podem ocorrer concomitantemente, favorecendo o aumento da atividade gênica. Esse fenômeno se dá através da alteração da carga dos resíduos das caudas terminais, modificando o estado de compactação da cromatina e favorecendo a transcrição gênica²⁶. Tanto a fosforilação de H3S10ph intermediada por Aurora B quanto a enzima individualmente atuam no processo de transcrição gênica, sendo marcadores do aumento de proliferação celular^{11,27,28}. H3K9ac e

H4K14ac, por sua vez, estão associadas à ativação da transcrição gênica; enquanto evidências apontam para a atuação de GCN5 também no aumento dos processos de diferenciação e proliferação celular^{26,29}. Já foi demonstrado pela literatura que a acetilação de histonas via GCN5 ocorre preferencialmente na presença de H3S10ph²⁸. Isso se deu porque a serina fosforilada na histona 3 confere a GCN5 maior afinidade polar ao substrato, mediando a transferência de um grupo acetil para a lisina 9²⁸. De fato, a ação coordenada dessas MPTH e suas enzimas já foi detectada em estudos *in vitro* utilizando células epiteliais pulmonares, observando alta expressão de HATs e de H3K9ac, H4K12ac e H3S10ph em grupos celulares sob agressão³⁰.

Esses dados reforçam a hipótese de que nos CCEB a atuação de H3K9ac e H3S10ph, bem como GCN5 e Aurora B, acontece de forma coordenada e interdependente na patogenia tumoral. Além disso, nossos dados encontraram uma piora na sobrevida dos indivíduos com baixa expressão dessas modificações e de GCN5, tendo a baixa expressão de Aurora B ficado próximo ao valor limítrofe de aceitação da hipótese. Esses dados vão de encontro à literatura que aponta baixa expressão de H3K9ac como indicador de menor sobrevida³¹. No entanto, nosso estudo foi o primeiro a encontrar baixa expressão de H3S10ph e GCN5 associadas ao maior risco de óbito em CCEB. Dessa forma, podemos sugerir uma via de correlação entre acetilação e fosforilação que, quando menos expressa, diminui a sobrevida dos pacientes, aumentando o risco de óbito^{28,32}.

O soalho bucal foi a região que, comparativamente, mostrou valores de IOD significativamente maiores para as MPTH e enzimas estudas. Esse dado, além de convergir para a relação de interdependência funcional das MPTH e

enzimas relacionadas³³, sugere a existência de perfis metabólicos fisiológicos teciduais específicos que podem ser conservados na carcinogênese³⁴.

Nossos resultados mostraram valores significantemente maiores de IOD para GCN5 em lesões não recorrentes. A recorrência tem sido considerada um evento associado a prognósticos desfavoráveis de pacientes com câncer^{18,35,36}. Nessa discussão, três aspectos são relevantes na sua explicação: a) imperícia técnica na remoção da lesão, favorecendo a permanência de tumor residual; b) tumores francamente invasivos, restritivos às técnicas cirúrgicas utilizadas à sua remoção; c) ocorrência de fenômenos de cancerização de campo^{37,38,39}. No segundo caso, alterações genéticas e epigenéticas específicas poderiam explicar o comportamento invasivo da lesão (não obstante a dificuldade técnica na sua remoção)²⁶; no terceiro caso, essas alterações poderiam estar presentes no campo de cancerização em torno da lesão, que viabilizariam o aparecimento de novo tumor no sítio primário^{37,39}. Com base nesses postulados, seria provável que as alterações epigenéticas associadas a redução da acetilação pudessem explicar eventos da progressão tumoral (invasão) e aqueles precedentes a transformação maligna.

Para todas as MPTH e Aurora B os valores também foram menores nos casos recidivantes. E mais, valores menores também foram observados em casos metastáticos e que evoluíram para óbito. A literatura mostra que há variações de níveis de enzimas e MPTH para um mesmo comportamento em tumores diferentes. Por exemplo: níveis elevados de GCN5 têm sido relacionados ao fenômeno transição epitélio mesênquima que é intimamente favorecedor da invasão e metástases^{18, 35}. Ativação de proliferação celular tem também sido observada associada a níveis maiores de GCN5 em carcinoma

colorretal, urotelial e pulmonar^{40,41,42}. Aumento de atividade de acetilação em células tumorais está associada a imunossupressão no ambiente tumoral, fato que pode favorecer sua progressão e resistência ao tratamento⁴³. Por outro lado, em outros modelos, a baixa expressão de GCN5 tem sido associada a um crescimento celular, via sua ação na acetilação da lisina 9 em H3⁴⁴. Leucoplasias bucais tem mostrado níveis inferiores de acetilação e fosforilação, positivamente relacionados a proliferação celular, comparativamente ao epitélio normal⁴⁵. Esses achados, embora não significativos podem ser um indício de que enquanto essas moléculas são importantes no início da carcinogênese, não tem relevância para progressão tumoral. Nesse sentido, os resultados observados em nosso trabalho abrem perspectiva de estudo para identificar prováveis fatores que poderiam influenciar na expressão de acetilação e fosforilação que não estariam associados a agressividade tumoral e quais fatores extratumorais poderiam interferir nesse processo, diminuindo níveis dessa enzima no ambiente tumoral.

Outros achados interessantes, mas não significativos, dizem respeito aos valores mais elevados de IOD, especialmente para GCN5, Aurora B, H3K9ac e H3S10ph para pacientes tabagistas, lesões de maior dimensão, e lesões menos diferenciadas histologicamente. Esses dados estão de certa forma coerentes com a relação positiva e direta encontrada para os valores das enzimas e suas MPTH específicas, e entre essas, reforçando a tese da ação coordenada da via de acetilação e fosforilação²⁸. Experimentos sugerem que a nicotina presente no cigarro promove transição epitélio-mesenquimal dependente de TGF- β , aumentando a vascularização da região e promovendo substrato necessário para o crescimento tumoral⁴⁶. Provavelmente, a acetilação e fosforilação podem

atuar modulando o processo proliferativo ativando oncogenes com ação direta sobre a mitose^{9,47,48}, vinculado a ação de carcinógenos que tenham ação promotora, como etanol e produtos do fumo^{49,50,51,52}. Ainda que esses resultados sejam interessantes, não houve significância estatística em nossa amostra, o que sugere que mais estudos acerca de GCN5 sejam realizados para que haja maior compreensão do seu papel no processo de carcinogênse. Associação de acetilação de serina em H3 e H4 tem sido observada em vários tipos de câncer, incluindo no CCEB e em desordens cancerizáveis^{11,27,36,45}.

Evidências da atuação de Aurora B na carcinogênese tem sido mostrada em carcinomas gástricos, nos quais foi observada sua participação no aumento da transcrição de ciclina B1⁵³, participando também como inibidora da transcrição de genes supressores de tumor em pulmão⁵⁴. Esses mecanismos atuam convergindo para a tumorigênese, por meio da ativação da proliferação celular^{53,54}. Nossos resultados mostraram maior expressão dela em pacientes com comportamento de risco para CCEB, tanto tabagismo, quanto etilismo, sugerindo que ela possa ter algum tipo de participação no acometimento por CCEB, necessitando maiores estudos. Níveis relacionados de H3S10ph foram observados consoantes aos níveis de Aurora B, sugerindo que álcool e fumo possam induzir modificações epigenéticas nessas vias. Tem sido observado que a produção de acetaldeído pela metabolização do etanol é conhecida por danificar o DNA das células⁵⁵. A ele também tem sido atribuído a indução de H3K9ac e H4K12ac quando em contato com células epiteliais⁵⁵.

Nossos achados também mostraram que os valores de IOD foram maiores em neoplasias moderada e pobremente diferenciadas, para todas as enzimas e MPTH estudadas. Perda de diferenciação celular, traduzida por maior

grau de displasia nas lesões (cancerizáveis e no próprio câncer) é um fenômeno vinculado a progressão da carcinogênese e da neoplasia⁵⁶. Esses dados sustentam a utilização dos níveis de displasia e anaplasia nas lesões neoplásicas e pré-neoplásicas como fatores indicadores de comportamentos mais agressivos e de transformação maligna, respectivamente^{57,58}. Isso ocorre porque lesões menos diferenciadas são mais propensas à agressividade, recidivas e metástases, em especial em casos de CCBE e de lesões cancerizáveis como leucoplasia e eritroplasia^{56,57}.

Considerando o que esses achados representam como indicação de comportamento das lesões, esperávamos também observar valores de IOD mais elevados para os antígenos pesquisados em lesões metastáticas e recidivantes. Sustentam essa ideia a observação de que valores aumentados de H3K9ac e H3S10ph têm sido observados em neoplasias metastáticas e naquelas com níveis de prognóstico pior para os pacientes, traduzido por menor sobrevida em CCEB e outros tipos neoplásicos^{11,27,36,45}. Na mesma linha de evidências, fosforilação de histonas em displasias epiteliais tem sido apontada como fator preditivo para evolução da lesão para câncer na cavidade orial⁵⁹. Nossos resultados levantam a hipótese de que a progressão da doença não estaria vinculada a alterações seletivas na via de fosforilação e acetilação envolvendo H3K9ac e H4K12ac. Por outro lado, nos remete a possibilidade de que a metodologia utilizada nessa investigação não permite obter resultados que expressem a relação desses marcadores com fenômenos de progressão tumoral. Além disso, podemos considerar que outras alterações tanto genéticas quanto epigenéticas podem estar envolvidas no processo de carcinogênese da

amostra e ambas podem atuar concomitantemente e separadamente no processo de carcinogênese⁵⁹.

Os resultados do expressão imuno-histoquímica moléculas associadas a via de acetilação e fosforilação de MPTH não permitiram explicar de forma linear e claramente esses fenômenos e seus significados a partir de uma amostra de CCEB. Todavia, sua análise abre espaço para novas iniciativas de estudo a partir de metodologias que aprofundem as possibilidades teóricas aqui consideradas. A utilização de amostras homogêneas quanto as variáveis estudadas, a utilização de tecidos não fixados, e metodologias mais precisas de identificação e avaliação dos níveis enzimáticos e de MPTH na acetilação e fosforilação, focando em genes específicos classicamente associados como marcadores da carcinogênese permitirão melhor definição de seu papel na carcinogênese e na progressão das doenças. Essa abordagem poderia facilitar a análise mais precisa de sua utilização como marcador de prognóstico e alvo terapêutico.

CONCLUSÃO

Os resultados do presente estudo mostram que as enzimas e proteínas GCN5, Aurora B, H3K9ac e H3S10ph correlacionam-se na patogenia do CCEB, embora, por esse estudo, não podemos concluir como essa relação se dá funcionalmente. A partir dos dados existentes, podemos afirmar que a expressão de GCN5 quanto a H3K9ac é superior em pacientes fumantes. A expressão de diferentes modificações de histonas e enzimas varia de acordo com a localização, com valores maiores sendo verificado especificamente para o soalho bucal. A expressão de H3K9ac, H3S10ph e GCN5 está relacionada com pior prognóstico (óbito). Nosso estudo sugere que os valores limítrofes de Aurora

B para menor sobrevida, colocam-na, também, como potencial marcador de risco de óbito.

REFERÊNCIAS

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
- Thomson PJ. Perspectives on oral squamous cell carcinoma prevention proliferation, position, progression and prediction. J Oral Pathol Med. 2018;47(9):803–7.
- Brener S, Jeunon FA, Barbosa AA, Grandinetti H de AM. Carcinoma de células escamosas bucal: uma revisão de literatura entre o perfil do paciente, estadiamento clínico e tratamento proposto. Ver Bras Cancerol. 2007;53(1):63–9.
- Conway DI, Purkayastha M, Chestnutt IG. The changing epidemiology of oral cancer: Definitions, trends, and risk factors. Br Dent J. 2018;225(9):867.
- De Oliveira LR, Ribeiro-Silva A, Zucoloto S. Perfil da incidência e da sobrevida de pacientes com carcinoma epidermóide oral em uma população brasileira. J Bras Patol e Med Lab. 2006;42(5):385–92.
- Sinevici N, O'sullivan J. Oral cancer: Deregulated molecular events and their use as biomarkers. Oral Oncol. 2016;61:12–8.

- Rivera C, Oliveira AK, Costa RAP, De Rossi T, Paes Leme AF. Prognostic biomarkers in oral squamous cell carcinoma: A systematic review. Oral Oncol. 2017;72:38–47.
- Sasahira T, Kirita T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int J Mol Sci. 2018;19(8).
- 9. Esteller M. Epigenetics in Cancer. N Engl J Med. 2008;358(11):1148–59.
- 10. Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25(3):403–18.
- 11. Campos-Fernández E, Matsuo FS, Andrade MF, Servato JPS, Loyola AM, Cardoso S V., et al. Prognostic value of histone H3 serine 10 phosphorylation and histone H4 lysine 12 acetylation in oral squamous cell carcinoma. Histopathology. 2019;74(2):227–38.
- 12. Prakash K, Fournier D. Evidence for the implication of the histone code in building the genome structure. BioSystems. 2018;164:49–59.
- Yang H, Jin X, Dan H, Chen Q. Histone modifications in oral squamous cell carcinoma and oral potentially malignant disorders. Oral Dis. 2019;(July 2018):1–14.
- 14. Qi G, Ogawa I, Kudo Y, Miyauchi M, Siriwardena BSMS, Shimamoto F, et al. Aurora-B expression and its correlation with cell proliferation and metastasis in oral cancer. Virchows Arch. 2007;450(3):297–302.
- 15. Cerutti H, Casas-Mallano VER. Histone H3 phosphorylation: Universal code or lineage specific dialects? Epigenetics. 2009;4(2):71–5.

- 16. Wang F, Ulyanova NP, Daum JR, Patnaik D, Kateneva A V., Gorbsky GJ, et al. Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. J Cell Biol. 2012;199(2):251–68.
- 17. Voss AK, Thomas T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. BioEssays. 2018;40(10):1–16.
- 18. Zhao L, Pang A, Li Y. Function of GCN5 in the TGF β1 induced epithelial to mesenchymal transition in breast cancer. Oncol Lett. 2018;16(3):3955–63.
- 19. Toth M, Boros IM, Balint E. Elevated level of lysine 9-acetylated histoneH3 at the MDR1 promoter in multidrug-resistant cells. Cancer Sci. 2012;103(4):659–69.
- 20.Ma F, Jiang S, Zhang C yang. Recent advances in histone modification and histone modifying enzyme assays. Expert Ver Mol Diagn. 2019;19(1):27–36.
- 21. EI-Naggar AK, Chan JKC, Takata T, Grandis JR, Slootweg PJ. The fourth edition of the head and neck World Health Organization blue book: editors' perspectives. Hum Pathol. 2017;66:10–2.
- 22. Lewis JS, Chernock RD, Bishop JA. Squamous and Neuroendocrine Specific Immunohistochemical Markers in Head and Neck Squamous Cell Carcinoma: A Tissue Microarray Study. Head Neck Pathol. 2018;12(1):62–70.
- 23. Riedel F, Götte K, Schwalb J, Bergler W, Hörmann K. Expression of 92kDa type IV collagenase correlates with angiogenic markers and poor survival in head and neck squamous cell carcinoma. Int J Oncol. 2000;17(6):1099–105.

- Miller RT. Avoiding pitfalls in diagnostic immunohistochemistry–important technical aspects that every pathologist should know. Semin Diagn Pathol. 2019;36(5):312–35.
- 25. Bankhead, P., Loughrey, M.B., Fernández, J.A. et al. QuPath: Open source software for digital pathology image analysis. Sci Rep 7, 16878 (2017).
- 26. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):1–31.
- 27. De Freitas Filho SAJ. Avaliação das modificações de histonas H3K36me3,
 H3K9ac, H4K12ac e H3S10ph em queilite actínica e carcinoma epidermóide de lábio. MSc [dissertation]. Uberlândia: Universidade Federal de Uberlândia. 2015.
- 28. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell. 2000;5(6):905– 15.
- 29. Wang Y, Huang Y, Liu J, Zhang J, Xu M, You Z, et al. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep. 2020;21(1):1–17.
- 30. Leclercq B, Platel A, Antherieu S, Alleman LY, Hardy EM, Perdrix E, et al. Genetic and epigenetic alterations in normal and sensitive COPDdiseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5. Environ Pollut. 2017;230:163–77.

- 31. Webber LP, Wagner VP, Curra M, Vargas PA, Meurer L, Carrard VC, et al. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. Histopathology. 2017;71(2):278–86.
- 32. Lo WS, Trievel RC, Rojas JR, et al. Phosphorylation of serine 10 in histoneH3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylationat lysine 14. Mol Cell. 2000;5(6):917-926.
- 33. Fischle W, Mootz HD, Schwarzer D. Synthetic histone code. Curr Opin Chem Biol. 2015;28(Figure 1):131–40.
- 34. Huang C, Wen B. "identification Card": Sites on Histone Modification of Cancer Cell. Chinese Med Sci J. 2015;30(4):203–9.
- 35. Lin Y, Mallen-St. Clair J, Wang G, Luo J, Palma-Diaz F, Lai C, et al. p38 MAPK mediates epithelial-mesenchymal transition by regulating p38IP and Snail in head and neck squamous cell carcinoma. Oral Oncol. 2016;60:81–9.
- 36. Sant'Ana JMA, Servato JPS, Matsuo FS, Andrade MF, Pitorro TEA, Moraes ADS, Cardoso SV, Loyola AM, de Faria PR. The role of the histones H3K9ac, H3K9me3, HP1γ, and H3K36me3 in oral squamous cell carcinoma loco-regional metastasis and relapse. Pathol Res Pract. 2020 Sep 9;216(11):153201.
- 37. Tzao C, Tung HJ, Jin JS, Sun GH, Hsu HS, Chen BH, et al. Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Mod Pathol. 2009;22(2):252–60.
- Wong T, Wiesenfeld D. Oral Cancer. Aust Dent J. 2018;63 Suppl 1:S91-S99.

- 39. Curtius K, Wright NA, Graham TA. An evolutionary perspective on field cancerization. Nat Rev Cancer. 2018;18(1):19-32.
- 40. Yin YW, Jin HJ, Zhao W, Gao B, Fang J, Wei J, et al. The histone acetyltransferase GCN5 expression is elevated and regulated by c-Myc and E2F1 transcription factors in human colon cancer. Gene Expr. 2015;16(4):187–96.
- 41. Koutsogiannouli EA, Wagner N, Hader C, Pinkerneil M, Hoffmann MJ, Schulz WA. Differential effects of histone acetyltransferase GCN5 or PCAF knockdown on urothelial carcinoma cells. Int J Mol Sci. 2017;18(7).
- 42. Mustachio LM, Roszik J, Farria AT, Guerra K, Dent SY. Repression of GCN5 expression or activity attenuates c-MYC expression in non-small cell lung cancer. Am J Cancer Res. 2019;9(8):1830–45.
- 43. Ma H, Chang H, Yang W, Lu Y, Hu J, Jin S. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma. Mol Cancer. 2020;19(1):1–16.
- 44. Hu C, Liu M, Zhang W, Xu Q, Ma K, Chen L, Wang Z, He S, Zhu H, Xu N. Upregulation of KLF4 by methylseleninic acid in human esophageal squamous cell carcinoma cells: Modification of histone H3 acetylation through HAT/HDAC interplay. Mol Carcinog. 2015 Oct;54(10):1051-9.
- 45. Espinosa RCG, Modificações pós- traducionais das histonas H3K9ac e H4K12ac podem estar associadas com a patogênese das proliferações celulares na leucoplasia bucal. MSc [dissertation]. Uberlândia: Universidade Federal de Uberlândia. 2018.

- 46. Zhang Y, Pan T, Zhong X, Cheng C. Nicotine upregulates microRNA-21 and promotes TGF-β-dependent epithelial-mesenchymal transition of esophageal cancer cells. Tumour Biol. 2014 Jul;35(7):7063-72.
- 47. Chadee DN, Hendzel MJ, Tylipski CP, Allis CD, Bazett-Jones DP, Wright JA, Davie JR: Increased Ser-10 phosphorylation of histone H3 in mitogenstimulated and oncogene-transformed mouse fibroblasts. J Biol Chem. 1999;274(35):24914-20.
- 48. Huang G, Kaufman AJ, Xu K, Manova K, Singh B. Squamous cell carcinoma-related oncogene (SCCRO) neddylates Cul3 protein to selectively promote midbody localization and activity of Cul3^{KLHL21} protein complex during abscission. J Biol Chem. 2017;292(37):15254-15265.
- 49. Boyle, P., Yasantha Ariyaratne, M., Barrington, R., Bartelink, H., Bartsch, G., Berns A. Tobacco: deadly in any form. 2006;367:20–2.
- 50. Gandini S, Botteri E, Iodice S, Boniol M, Lowenfels AB, Maisonneuve P, et al. Tobacco smoking and cancer: A meta-analysis. Int J Cancer. 2008;122(1):155–64.
- 51. Ogden GR. Alcohol and mouth cancer. Br Dent J. 2018;225(9):880–3.
- 52. Reidy J, McHugh E, Stassen LFA. A review of the relationship between alcohol and oral cancer. Surgeon. 2011;9(5):278–83. Ding L, Yang L, He Y, Zhu B, Ren F, Fan X, et al. CREPT/RPRD1B associates with Aurora B to regulate Cyclin B1 expression for accelerating the G2/M transition in gastric cancer. Cell Death Dis. 2018;9(12).
- 53. Smith SL, Bowers NL, Betticher DC, et al. Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent,

generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer. 2005;93(6):719-729.

- 54. Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, Younger ST, McBrayer SK, Cowley GS, Bonal DM, Nguyen QD, Brulle-Soumare L, Taylor P, Cairo S, Ryan CJ, Pease EJ, Maratea K, Travers J, Root DE, Signoretti S, Pellman D, Ashton S, Lord CJ, Barry ST, Kaelin WG Jr. Cells Lacking the RB1 Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov. 2019 Feb;9(2):230-247. Doi: 10.1158/2159-8290.CD-18-0389.
- 55. Chen D, Fang L, Li H, Jin C. The effects of acetaldehyde exposure on histone modifications and chromatin structure in human lung bronchial epithelial cells. Environ Mol Mutagen. 2018;59(5):375–85.
- 56. Leethanakul C, Patel V, Gillespie J, Pallente M, Ensley JF, Koontongkaew S, Liotta LA, Emmert-Buck M, Gutkind JS. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene. 2000 Jun 29; 19(28):3220-4.
- 57. Venkat Naga SKS, Shekar PC, Kattappagari KK, Prakash Chandra KL, Reddy GS, Ramana Reddy BV. Expression of cluster differentiation-44 stem cell marker in grades of oral epithelial dysplasia: A preliminary study. J Oral Maxillofac Pathol. 2019 May-Aug;23(2):203-207.
- 58. Leung EY, McMahon JD, McLellan DR, Syyed N, McCarthy CE, Nixon C, Orange C, Brock C, Hunter KD, Adams PD. DNA damage marker phosphorylated histone H2AX is a potential predictive marker for

progression of epithelial dysplasia of the oral cavity. Histopathology. 2017 Oct;71(4):522-528.

- 59. Khunger M, Kumar U, Roy HK, Tiwari AK. Dysplasia and cancer screening in 21st century. Apmis. 2014;122(8):674–82.
- 60. Irimie AI, Ciocan C, Gulei D, Mehterov N, Atanasov AG, Dudea D, et al. Current insights into oral cancer epigenetics. Int J Mol Sci. 2018;19(3):1– 17.

TABELAS

Tabela 1 – Distribuição dos dados sociodemográficos e clinicopatológicos dos pacientes com carcinoma de células escamosas de boca incluídos no estudo.

Variáveis	Valores
Idade	
Média	60
Mediana	56
Variação	34 - 99
Sexo (n%)	01 00
Masculino	68 (75 6)
Fominino	22(24.4)
Tabagismo	22 (24,4)
Tampa de expecieñes	
rempo de exposição	41,5
Etilismo	
l empo de exposição*	32,6
Tempo de evolução (meses)	
Média	10,1
Variação	1 – 97
Dimensão (cm)	
Média	3,09
Variação	1 – 5
Localização (n/%)	-
	37 (41 1)
Palato mole/duro	10 (11 1)
	23 (25 6)
Congive inseride/reporte alveolar	23(20,0)
	9 (10,0) 6 (6 6)
	0 (0,0)
Mucosa jugal	1 (1,1)
Estadiamento (1)^^(n/%)	a ((a a))
1	9 (10,0)
Τ2	18 (20,0)
T3	28 (32,1)
Τ4	35 (37,9)
Metástases linfonodais (n/%)	48 (53,0)
Recidivas (n/%)	19 (21,1)
Histórico familíar de câncer (n/%)	41 (45.6)
Sintomatologia (n/%)	59 (65.6)
	58 (64 0)
Sangramento	19 (21 0)
Tratamento (n/%)	13 (21,0)
	12 (11 1)
Ciluigia	13 (14,4)
Radioterapia	10 (11,1)
Cirurgia plus radioterapia	14 (15,6)
Quimioterapia plus radioterapia	21 (23,3)
Cirurgia plus radioterapia plus quimioterapia	31 (34,4)
Desfecho (n/%)	
Vivo	53 (58,9)
Óbito	37 (41,1)
	~ .

* Média em anos ** Estadiamento T (dimensão). Dimensão do tumor primário, segundo o sistema de estadiamento TNM (Amin MB, Edge SB, Greene FL, et al. editors. AJCC Cancer Staging Manual. 8th ed. Switzerland: Springer, 2017).

-	IOD nuclear										
Variáveis A		Aurora B		H3S10ph		GCN5		H3K9ac		H4K12ac	
	n (m)¹	Р	n (m)	p	n (m)	p	n (m)	p	n (m)	p	
Gênero				•				•			
Masculino	68 (48391)		68 (8062)		68 (64310)		68 (11475)		68 (4478)		
Eeminino	22 (47623)	0,9289 ^A	22 (8383)	0,8851 ^A	22 (62543)	0,3254 ^A	22 (0230)	0,3384 ^A	22 (5155)	0,4413 ^A	
Idade	22 (47 023)		22 (0000)		22 (02040)		22 (0200)		22 (0100)		
	52 (48103)	0,4010 ^A	52 (8372)		52 (61631) 38 (67575) 0,3041 ^A		52 (11332)		52 (1151)		
	32 (47623)		38 (7850) 0,8105 ^A	0,8105 ^A		38 (10522)	0,9126 ^A	32 (5022)	0,8741 ^A		
Zabagismo	38 (47023)		38 (7850)				38 (10323)		38 (3033)		
l'abagisilio Sim	01 (40201)		91 (9241)	91 (64402)	91 (11520)	4 (44 520)	01 (1120)				
Silli Nã -	01 (40391) 7 (40040)	0,5856 ^A	01 (0241)	0,2839 ^A	01 (04402) 7 (45050)	0,0159 ^A	or (11559)	0,0334 ^A	01 (4420) 7 (7000)	0,0614 ^A	
Nao	7 (43616)		7 (6503) 7 (4585	7 (45859)	')	7 (6158)		7 (7393)			
Etilismo	70 (40400)		70 (0404)		70 (005 40)		70 (44000)		70 (4000)		
Sim	72 (48103)	0,4477 ^A	72 (8434)	0,2549 ^A	72 (62543)	0,4477 ^A	72 (11332)	0,6342 ^A	72 (4626)	0,6567 ^A	
Nao	16 (44824)		16 (6503)		16 (64310)		16 (10182)		16 (4230)		
Localizaçao											
Lingua	37 (36259)		37 (17066)		37 (51581)		37 (9065)	D. C.	37 (8458)		
Assoalho	23 (57643)	0,0029 ^в	23 (33321)	0,001 ^в	23 (82421)	0,0005 ^B	23 (20453)	< 0,0001 ^B	23 (17105)	< 0,0001 ^B	
Outra	29 (55221)		29 (24319)		29 (63676)		29 (13307)		29 (12626)		
Tamanho											
≤ 4 cm	43 (47863)	0 7725 ^A	43 (7808)	0 8448 ^A	43 (62630)	0,8494 ^A	43 (11317)	0,8003 ^A	43 (4497)	0 9350 ^A	
> 4 cm	37 (47666)	0,7720	37 (8565)	0,0440	37 (65187)		37 (10792)		37 (4566)	0,0000	
Estadiamento clínico											
Inicial	27 (48688)	0 99/1 4	27 (38836)	0 0726 ^A	27 (60030)	0.2204 A	27 (11347)	0 6368 4	27 (4108)	0 1226 A	
Avançado	61 (46941)	0,0041	61 (7944) 61 (66650) 61 (66650) 61	61 (10829)) 0,0300	61 (5025)	0,1550				
Cl. Histológica											
BD	26 (45537)	0.0957 A	26 (7808)	0.16108	26 (58767)	0 2224 C	26 (10482)	0 1922 A	26 (4451)	0 9097 A	
P/MD	30 (54991)	0,0657	30 (11004)	0,1010	30 (67611)	0,3324	30 (14202)	0,1022	30 (4751)	0,0007	
Recidiva											
Presente	19 (36464)	0.4000 Å	19 (6421)	0.2000 A	19 (55129)	0 0202 A	19 (7348)	0.0001	19 (4753)	0.7450	
Ausente	50 (49991)	0,1606	50 (8624)	0,3099	50 (70546)	0,0302	50 (13861)	0,0694	50 (4942)	0,7150**	
Metástase											
Presente	46 (46901)	•	46 (7850)	0.0700	48 (58584)	4	46 (7850)	(7850)	46 (4399)	0.0040	
Ausente	44 (49991)	0,7064 *	44 (8890)	0,6726*	42 (66650)	0,3593 ^	44 (8890)	0,8626 ^	44 (5137)	0,2818 ^	
Desfecho	· /				· /		× ,				
Vivo	51 (51157)	0.1484 ^A	53 (9663)	0.0778 ^A	51 (66650)	0,1799 ^A	53 (11731)	0.4929 ^A	53 (4405)	0.3433 ^A	
Óbito	37 (43616)	-, -	37 (7482)	-,	37 (54430)		37 (9882)	-,	37 (5249)	- ,	

Tabela 2 - A mediana da expressão de GCN5, Aurora B, H3S10ph, H3K9ac e H4K12ac de acordo com fatores clinicopatológicos dos 90 pacientes acometidos por CCEB.

(A) Teste U de Mann-Whitney; (B) Teste de Kruskal-Wallis; (C) Teste *t*; BD: Bem diferenciado; P/MD: Pouco/moderadamente diferenciado; C: Cirurgia; R: Radioterapia; Q: Quimioterapia; 1 - número (mediana)

Tabela 3 – Valores da correlação (r_s) obtida entre valores de IOD para modificações postraducionais de histonas (MPTH) e enzimas Aurora B e GCN5 associadas, testadas nos casos de carcinomas de células escamosas bucais.

Enzimas / MPTH	Aurora B	GCN5	H3K9ac	H4K12ac
GCN5	<i>r</i> s =0,676			
	p<0,0001			
H3K9ac	<i>r</i> _s =0,488	<i>r</i> _s =0,619		
	p<0,0001	p<0,0001		
H4K12ac	<i>r</i> s =0,252	<i>rs</i> =0,02004	<i>r</i> s =0,109	
	p=0,0179	p=0,853	p=0,305	
H3S10ph	<i>r</i> _s =0,633	<i>r</i> _s =0,504	<i>r</i> _s =0,698	<i>r</i> _s =0,117
	p<0,000	p<0,0001	p<0,0001	p=0,096

Tabela 4 – Valores preditivos da curva ROC para as MPTH e enzimas.

Valores preditivos	Aurora B	H3S10ph	GCN5	H3K9ac	H4K12ac
Ponto de corte	48.641	8.302	60.030	10.792	4.685
Sensibilidade	0.583	0.583	0.542	0.521	0.583
Especificidade	0.548	0.571	0.643	0.571	0.548
Likelihood ratio positiva	1.29	1.36	1.52	1.21	1.29
Valor preditivo positivo	59,55%	60,8%	63,41%	58,09%	59,55%
Likelihood ratio negativa	0.76	0.73	0.71	0.84	0.76
Valor preditivo negativo	53.52%	54.54%	55,16%	51,09%	53,52%
Acurácia	56,67%	57,74%	58,92%	54,44%	56,67%
Distância	0.615	0.598	0.581	0.643	0,615

FIGURA 1

FIGURA 2

FIGURA 3

LEGENDAS DAS FIGURAS

Figura 1 – Quadro demonstrativo da coloração em H&E e da reatividade imunohistoquímica para as enzimas GCN5, Aurora B, e as modificações póstraducionais de histonas (MPTH) H3K9ac, H3S10ph e H4K12ac no mesmo *spot* de TMA. A imuno-coloração foi localizada no núcleo para todos os antígenos pesquisados, com pequenas variações em intensidade entre as MPTH. Para Aurora B observou-se também localização citoplasmática da imuno-coloração; padrão semelhante foi observado também para GCN5, embora a imuno-coloração citoplasmática tenha sido fraca. Para as MPTH, a imuno-coloração foi raramente observada no citoplasma, com intensidades variadas (Aumento de 200x. Técnica da estreptavidina-biotina-peroxidase, contra-coloração: hematoxilina de Harris).

Figura 2 – Gráficos representativos das curvas ROC utilizadas para determinação dos cut-offs de IOD para os diferentes antígenos pesquisados empregados na análise de sobrevida e de associação entre valores de IOD para as modificações pós-traducionais de histonas e diferentes variáveis referentes as características dos carcinomas de células escamosas bucais incluídos no presente estudo.

Figura 3 – Curvas de sobrevida (A) e respetivas curvas de risco de óbito (B) dos pacientes com carcinomas de células escamosas bucais expressando diferentes valores de IOD para enzimas relacionadas a acetilação (GCN5) e fosforilação (AURORA B) de modificações pós-traducionais de histonas. As curvas representam casos com valores de IOD maiores (vermelho) e menores (azul), que

os cut-offs obtidos para cada enzima (GCN5: 60.030; AURORA B: 48.641). As curvas de sobrevida e risco foram construídas pelo método de Kaplan-Meyer, e analisadas a partir do teste de log-rank de Cox-Mantel, com alfa = 0,05.

Figura 4 – Curvas de sobrevida (A) e respetivas curvas de risco de óbito (B) dos pacientes com carcinomas de células escamosas bucais expressando diferentes valores de IOD para modificações pós-traducionais de histonas (MPTH). As curvas representam casos com valores de IOD maiores (vermelho) e menores (azul), que os cut-offs obtidos para cada MPTH (H3K9ac: 8.302; H4K12ac: 4.685; H3S10ph: 10.792). As curvas de sobrevida e risco foram construídas pelo método de Kaplan-Meyer, e analisadas a partir do teste de log-rank de Cox-Mantel, com alfa = 0,05.

5.CONCLUSÃO

Os resultados do presente estudo mostram que as enzimas e proteínas GCN5, Aurora B, H3K9ac e H3S10ph correlacionam-se na patogenia do CCEB, embora, por esse estudo, não podemos concluir como essa relação se dá funcionalmente. A partir dos dados existentes, podemos afirmar que a expressão de GCN5 quanto a H3K9ac é superior em pacientes fumantes. A expressão de diferentes modificações de histonas e enzimas varia de acordo com a localização, com valores maiores sendo verificado especificamente para o soalho bucal. A expressão de H3K9ac e H3S10ph está relacionada com pior prognóstico (óbito). Nosso estudo sugere que os valores limítrofes de GCN5 para menor sobrevida, colocam-na, também, como potencial marcador de risco de óbito.

6. REFERÊNCIAS BIBLIOGRÁFICAS
- Akgül B, Cooke JC, Storey A. HPV-associated skin disease. J Pathol. 2006;208(2):165-75. <u>https://doi.org/10.1002/path.1893</u>
- Andrade ACAS. Expressão da H3K9ac e H4K12ac no adenocarcinoma polimorfo e carcinoma adenoide cístico de glândulas salivares. MSc [dissertation]. Uberlândia: Universidade Federal de Uberlândia. 2015. http://dx.doi.org/10.14393/ufu.di.2018.755
- Ashktorab H, Belgrave K, Hosseinkhah F, et al. Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci. 2009;54(10):2109-2117. https://doi.org/10.1007/s10620-008-0601-7
- Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):1-31.
 https://doi.org/10.1101/cshperspect.a019521
- Banerjee T, Chakravarti D. A Peek into the Complex Realm of Histone Phosphorylation. Mol Cell Biol. 2011;31(24):4858-73. <u>https://doi.org/10.1128/MCB.05631-11</u>
- Baylin SB, Jones PA. A decade of exploring the cancer epigenome biological and translational implications. Nat Rev Cancer. 2011;11(10):726-734.

https://doi.org/10.1038/nrc3130

- Baretti M, Azad NS. The role of epigenetic therapies in colorectal cancer. Curr Probl Cancer. 2018;42(6):530-47. <u>https://doi.org/10.1016/j.currproblcancer.2018.03.001</u>
- Berger L, Kolben T, Meister S, et al. Expression of H3K4me3 and H3K9ac in breast cancer. J Cancer Res Clin Oncol. 2020;146(8):2017-2027. <u>https://doi.org/10.1007/s00432-020-03265-z</u>
- 9. Blatt S, Krüger M, Ziebart T, Sagheb K, Schiegnitz E, Goetze E, et al. Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: A

review of the literature. J Cranio-Maxillofacial Surg. 2017;45(5):722-30. https://doi.org/10.1016/j.jcms.2017.01.033

- 10. Boyle, P., Yasantha Ariyaratne, M., Barrington, R., Bartelink, H., Bartsch, G., Berns A. Tobacco: deadly in any form. 2006;367:20-2. <u>https://doi.org/10.1016/S0140-6736(06)68747-3</u>
- 11.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [published correction appears in CA Cancer J Clin. 2020 Jul;70(4):313]. CA Cancer J Clin. 2018;68(6):394-424.

https://doi.org/10.3322/caac.21492

- 12. Buljubašić R, Buljubašić M, Bojanac AK, Ulamec M, Vlahović M, Ježek D, et al. Epigenetics and testicular germ cell tumors. Gene. 2018;661:22-33. <u>https://doi.org/10.1016/j.gene.2018.03.072</u>
- 13. Campos-Fernández E, Matsuo FS, Andrade MF, Servato JPS, Loyola AM, Cardoso S V., et al. Prognostic value of histone H3 serine 10 phosphorylation and histone H4 lysine 12 acetylation in oral squamous cell carcinoma. Histopathology. 2019;74(2):227-38. https://doi.org/10.1111/his.13713
- 14. Cerutti H, Casas-Mallano JA. Histone H3 phosphorylation: Universal code or lineage specific dialects? Epigenetics. 2009;4(2):71-5. <u>https://doi.org/10.4161/epi.4.2.7781</u>
- 15. Chadee DN, Hendzel MJ, Tylipski CP, Allis CD, Bazett-Jones DP, Wright JA, Davie JR: Increased Ser-10 phosphorylation of histone H3 in mitogenstimulated and oncogene-transformed mouse fibroblasts. J Biol Chem. 1999;274(35):24914-20.

https://doi.org/10.1074/jbc.274.35.24914

16. Chen TC, Wang CP, Ko JY, Yang TL, Lou PJ. The impact of pathologic close margin on the survival of patients with early stage oral squamous cell

carcinoma. Oral Oncol. 2012;48(7):623-8. https://doi.org/10.1016/j.oraloncology.2012.01.015

 Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell. 2000;5(6):905-15.

https://doi.org/10.1016/S1097-2765(00)80256-7

- 18. Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma-an update. CA Cancer J Clin. 2015;65(5):401-21. <u>https://doi.org/10.3322/caac.21293</u>
- 19. Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol. 2018;98:65-74. <u>https://doi.org/10.1016/j.biocel.2018.03.004</u>
- 20. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12-27. https://doi.org/10.1016/j.cell.2012.06.013
- 21. De Freitas Filho SAJ. Avaliação das modificações de histonas H3K36me3, H3K9ac, H4K12ac e H3S10ph em queilite actínica e carcinoma epidermóide de lábio. MSc [dissertation]. Uberlândia: Universidade Federal de Uberlândia. 2015.
- 22.Di Cerbo V, Schneider R. Cancers with wrong HATs: The impact of acetylation. Brief Funct Genomics. 2013;12(3):231-43. <u>https://doi.org/10.1093/bfgp/els065</u>
- 23. Dissanayaka WL, Pitiyage G, Kumarasiri PVR, Liyanage RLPR, Dias KD, Tilakaratne WM. Clinical and histopathologic parameters in survival of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(4):518-25.

https://doi.org/10.1016/j.oooo.2011.11.001

- 24. D'Souza W, Saranath D. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol. 2015;51(12):1061-1068. https://doi.org/10.1016/j.oraloncology.2015.09.006
- 25. Ebrahimi A, Schittenhelm J, Honegger J, Schluesener H. Prognostic relevance of global histone 3 lysine 9 acetylation in ependymal tumors. J Neurosurg. 2013;119(6):1424-1431.

https://doi.org/10.3171/2013.9.JNS13511

- 26. El-Naggar AK, Chan JKC, Takata T et al. The fourth edition of the head and neck World Health Organization blue book: editors' perspectives. Hum Pathol 2017; 66:10-12. https://doi.org/10.1016/j.humpath.2017.05.014
- 27. Erler J, Zhang R, Petridis L, Cheng X, Smith JC, Langowski J. The role of histone tails in the nucleosome: a computational study. Biophys J. 2014;107(12):2911-2922.

https://doi.org/10.1016/j.bpj.2014.10.065

28. Erpolat OP, Gocun PU, Akmansu M, Karakus E, Akyol G. High expression of nuclear survivin and Aurora B predicts poor overall survival in patients with head and neck squamous cell cancer. Strahlenther Onkol. 2012;188(3):248-254.

https://doi.org/10.1007/s00066-011-0042-7

29. Espino PS, Pritchard S, Heng HH, Davie JR: Genomic instability and histone H3 phosphorylation induction by the Ras-mitogen activated protein kinase pathway in pancreatic cancer cells. Int J Cancer. 2009;124(3):562-67.

https://doi.org/10.1002/ijc.23959

30. Espinosa RCG, Modificações pós- traducionais das histonas H3K9ac e H4K12ac podem estar associadas com a patogênese das proliferações celulares na leucoplasia bucal. MSc [dissertation]. Uberlândia: Universidade Federal de Uberlândia. 2018.

http://dx.doi.org/10.14393/ufu.di.2018.827

- 31. Esteller M. Epigenetics in Cancer. N Engl J Med. 2008;358(11):1148-59. https://doi.org/10.1056/NEJMra072067
- 32. Fry CJ, Shogren-Knaak MA, Peterson CL. Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks?. Cold Spring Harb Symp Quant Biol. 2004;69:219-226. <u>https://doi.org/10.1101/sqb.2004.69.219</u>
- 33. Gandini S, Botteri E, Iodice S, Boniol M, Lowenfels AB, Maisonneuve P, et al. Tobacco smoking and cancer: A meta-analysis. Int J Cancer. 2008;122(1):155-64.

https://doi.org/10.1002/ijc.23033

- 34. Gil J, Ramírez-Torres A, Encarnacion-Guevara, S. Lysine acetylation and cancer: A proteomics perspective. J of Proteomics. 2017;150:297-309. <u>https://doi.org/10.1016/j.jprot.2016.10.003</u>
- 35. Goldenson B, Crispino JD. The aurora quinases in cell cycle and leukemia. Oncogene. 2015 Jan 29;34(5):537-45. https://doi.org/10.1038/onc.2014.14
- 36. Güneri P, Epstein JB. Late stage diagnosis of oral cancer: Components and possible solutions. Oral Oncol. 2014;50(12):1131-6. <u>https://doi.org/10.1016/j.oraloncology.2014.09.005</u>
- 37. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Vol.
 144, Cell. 2011. p. 646-74.
 <u>https://doi.org/10.1016/j.cell.2011.02.013</u>
- 38. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997;106:348-60.

https://doi.org/10.1007/s004120050256

39. Hoseok I, Ko E, Kim Y, Cho EY, Han J, Park J, et al. Association of global levels of histone modifications with recurrence-free survival in stage IIB and III esophageal squamous cell carcinomas. Cancer Epidemiol Biomarkers Prev. 2010;19(2):566-73.

https://doi.org/10.1158/1055-9965.EPI-09-0980

- 40. Howe CG, Gamble M V. Influence of Arsenic on Global Levels of Histone Posttranslational Modifications: a Review of the Literature and Challenges in the Field. Curr Environ Heal reports. 2016;3(3):225-37. https://doi.org/10.1007/s40572-016-0104-1
- 41.Huang G, Kaufman AJ, Xu K, Manova K, Singh B. Squamous cell carcinoma-related oncogene (SCCRO) neddylates Cul3 protein to selectively promote midbody localization and activity of Cul3KLHL21 protein complex during abscission. J Biol Chem. 2017;292(37):15254-15265.

https://doi.org/10.1074/jbc.M117.778530

- 42. Hübbers CU, Akgül B. HPV and cancer of the oral cavity. Virulence. 2015;6(3):244-8. <u>https://doi.org/10.1080/21505594.2014.999570</u>
- 43. Huber MA, Tantiwongkosi B. Oral and Oropharyngeal Cancer. Med Clin North Am. 2014;98(6):1299-321. https://doi.org/10.1016/j.mcna.2014.08.005
- 44. Jeong YS, Cho S, Park JS, Ko Y, Kang YK. Phosphorylation of serine-10 of histone H3 shields modified lysine-9 selectively during mitosis. Genes Cells. 2010 Mar;15(3):181-92. https://doi.org/10.1111/j.1365-2443.2009.01375.x
- 45. Jin Q, Yu LR, Wang L, et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 2011;30(2):249-262. https://doi.org/10.1038/emboj.2010.318

- 46. John S, Howe LA, Tafrov ST, Grant PA, Sternglanz R, Workman JL. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 2000;14(10):1196-208.
- 47. Juliano CN, Izetti P, Pereira MP, et al. H4K12 and H3K18 Acetylation Associates With Poor Prognosis in Pancreatic Cancer. Appl Immunohistochem Mol Morphol. 2016;24(5):337-344. https://doi.org/10.1097/PAI.00000000000194
- 48. Khan SA, Amnekar R, Khade B, Barreto SG, Ramadwar M, Shrikhande S V., et al. p38-MAPK/MSK1-mediated overexpression of histone H3 serine 10 phosphorylation defines distance-dependent prognostic value of negative resection margin in gastric cancer. Clin Epigenetics. 2016;8(1):1-16.

https://doi.org/10.1186/s13148-016-0255-9

- 49. Khurshid Z, Zafar MS, Khan RS, Najeeb S, Slowey PD, Rehman IU. Role of Salivary Biomarkers in Oral Cancer Detection. Vol. 86, Advances in Clinical Chemistry. Elsevier Ltd; 2018. 23-70 p. https://doi.org/10.1016/bs.acc.2018.05.002
- 50. Koch A, Joosten SC, Feng Z, De Ruijter TC, Draht MX, Melotte V, et al.
 Analysis of DNA methylation in cancer: Location revisited. Nat Rev Clin
 Oncol. 2018;15(7):459-66.

https://doi.org/10.1038/s41571-018-0004-4

- 51.Komar D, Juszczynski P. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 quinases in cancer biology and therapy. Clin Epigenetics. 2020;12:147. https://doi.org/10.1186/s13148-020-00941-2
- 52. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous

cell carcinomas. J Cancer. 2013;4(1):66-83. https://doi.org/10.7150/jca.5112

53.Kornberg R. Chromatin Structure : A Repeating Unit of Histones and DNA Chromatin structure is based on a repeating unit of eight. Science (80-). 1974;184:868-71.

https://doi.org/10.1126/science.184.4139.868

- 54. Koutsogiannouli EA, Wagner N, Hader C, Pinkerneil M, Hoffmann MJ, Schulz WA. Differential effects of histone acetyltransferase GCN5 or PCAF knockdown on urothelial carcinoma cells. Int J Mol Sci. 2017;18(7). <u>https://doi.org/10.3390/ijms18071449</u>
- 55. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiology, Biomarkers & Preven. Cancer Epidemiol Biomarkers Prev. 2005;14(2):467-75. https://doi.org/10.1158/1055-9965.EPI-04-0551
- 56. Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998 Aug;20(8):615-26. https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
- 57. Lakkaniga NR, Balasubramaniam M, Zhang S, Frett B, Li HY. Structural Characterization of the Aurora Kinase B "DFG-flip" Using Metadynamics. AAPS J. 2020;22(1):14. https://doi.org/10.1208/s12248-019-0399-6
- 58.Lee CC, Lin YH, Chang WH, Lin PC, Wu YC, Chang JG. Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells. BMC Cancer. 2011 ;8;11:58. https://doi.org/10.1186/1471-2407-11-58
- 59.Lee KK, Workman JL. Histone acetyltransferase complexes: One size doesn't fit all. Nat Rev Mol Cell Biol. 2007;8(4):284-95. <u>https://doi.org/10.1038/nrm2145</u>

60. Liu W, Cui Y, Ren W, Irudayaraj J. Epigenetic biomarker screening by FLIM-FRET for combination therapy in ER+ breast cancer. Clin Epigenetics. 2019;11(1):1-9. https://doi.org/10.1186/s13148-019-0620-6

61. Lo WS, Trievel RC, Rojas JR, et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell. 2000;5(6):917-926. https://doi.org/10.1016/S1097-2765(00)80257-9

62. Luger K, Richmond TJ. The histone tails of the nucleosome. Curr Opin Genet Dev. 1998;8(2):140-146 https://doi.org/10.1016/S0959-437X(98)80134-2

63. Ma H, Chang H, Yang W, Lu Y, Hu J, Jin S. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma. Mol Cancer.

https://doi.org/10.1186/s12943-019-1123-y

 64. Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 2014 Jul 1;6(7):a018762.

https://doi.org/10.1101/cshperspect.a018762

- 65.Mehra R. The role and targeting of Aurora quinases in head and neck cancer. Lancet Oncol. 2013;14(10):1-21. https://doi.org/10.1016/S1470-2045(13)70128-1
- 66. Müller S. Update from the 4th Edition of the World Health Organization of Head and Neck Tumours: Tumours of the Oral Cavity and Mobile Tongue. Head Neck Pathol. 2017;11(1):33-40. <u>https://doi.org/10.1007/s12105-017-0792-3</u>
- 67. Mustachio LM, Roszik J, Farria AT, Guerra K, Dent SY. Repression of GCN5 expression or activity attenuates c-MYC expression in non-small cell lung cancer. Am J Cancer Res. 2019;9(8):1830-45.

- 68. Nagarajan S, Benito E, Fischer A, Johnsen SA. H4K12ac is regulated by estrogen receptor-alpha and is associated with BRD4 function and inducible transcription. Oncotarget. 2015;6(9):7305-17. <u>https://doi.org/10.18632/oncotarget.3439</u>
- 69. Neville BW, Day TA. Oral Cancer and Precancerous Lesions. CA Cancer J Clin. 2002;52(4):195-215. https://doi.org/10.3322/canjclin.52.4.195
- 70. Nguyen HG, Makitalo M, Yang D, Chinnappan D, St Hilaire C, Ravid K. Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB
 J. 2009 Aug;23(8):2741-8. https://doi.org/10.1096/fj.09-130963
- 71. Nie M, Wang Y, Yu Z, Li X, Deng Y, Wang Y, et al. AURKB promotes gastric cancer progression via activation of CCND1 expression. Aging (Albany NY).
 2020;12(2):1304-21.

https://doi.org/10.18632/aging.102684

- 72. Noguti J, De Moura CFG, De Jesus GPP, Da Silva VHP, Hossaka TA, Oshima CTF, et al. Metastasis from oral cancer: An overview. Cancer Genomics and Proteomics. 2012;9(5):329-36.
- 73. Ocaña A, Pérez-Peña J, Alcaraz-Sanabria A, et al. In silico analyses identify gene-sets, associated with clinical outcome in ovarian cancer: role of mitotic quinases. Oncotarget. 2016;7(16):22865-22872. <u>https://doi.org/10.18632/oncotarget.8118</u>
- 74.Ogden GR. Alcohol and mouth cancer. Br Dent J. 2018;225(9):880-3. https://doi.org/10.1038/sj.bdj.2018.921
- 75. Paradowska AS, Miller D, Spiess AN, Vieweg M, Cerna M, Dvorakova-Hortova K, et al. Genome wide identification of promoter binding sites for H4K12ac in human sperm and its relevance for early embryonic development. Epigenetics. 2012;7(9):1057-70. https://doi.org/10.4161/epi.21556

- 76. Prakash K, Fournier D. Evidence for the implication of the histone code in building the genome structure. BioSystems. 2018;164:49-59. <u>https://doi.org/10.1016/j.biosystems.2017.11.005</u>
- 77. Qi G, Ogawa I, Kudo Y, et al. Aurora-B expression and its correlation with cell proliferation and metastasis in oral cancer. Virchows Arch. 2007;450(3):297-302.

https://doi.org/10.1007/s00428-006-0360-9

- 78. Reidy J, McHugh E, Stassen LFA. A review of the relationship between alcohol and oral cancer. Surgeon. 2011;9(5):278-83. <u>https://doi.org/10.1016/j.surge.2011.01.010</u>
- 79. Ribeiro CV, Avaliação das modificações de histonas H3Ki36me3, H3K9ac, H4K1 2ac e H3SI0ph em tumores odontogenicos em diferenciação ameloblástica. MSc [dissertation]. Uberlândia: Universidade Federal de Uberlândia. 2017.

http://doi.org/10.14393/ufu.di.2017.282

- Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8(9):11884-94.
- Rossetto D, Avvakumov N, Côté J. 2012. Histone phosphorylation: A chromatin modification involved in diverse nuclear events. Epigenetics 7: 1098-1108.

https://doi.org/10.4161/epi.21975

- 82. Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 2014 Aug;1839(8):627-43. <u>https://doi.org/10.1016/j.bbagrm.2014.03.001</u>
- 83. Sidrón M. AM. Genética Cáncer Oral. 2015;31(4):247-59. https://doi.org/10.4321/S0213-12852015000400002
- 84. Smith SL, Bowers NL, Betticher DC, et al. Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer. 2005;93(6):719-729. https://doi.org/10.1038/sj.bjc.6602779

- 85. Specenier PM, Vermorken JB. Current concepts for the management of head and neck cancer: Chemotherapy. Oral Oncol. 2009;45(4-5):409-15. <u>https://doi.org/10.1016/j.oraloncology.2008.05.014</u>
- 86. Speight PM. Update on oral epithelial dysplasia and progression to cancer. Head Neck Pathol. 2007;1(1):61-6. https://doi.org/10.1007/s12105-007-0014-5
- 87.Strahl BD, Allis CD. 2000 Modificaciones Covalentes De Las Histonas.Pdf. 2000;403(January):41-5. https://doi.org/10.1038/47412
- 88. Struhl K. Histone acetylation and transcriptional regulatory mechanisms.
 Genes Dev. 1998;12(5):599-606.
 https://doi.org/10.1101/gad.12.5.599
- Taghavi N, Yazdi I. Prognostic factors of survival rate in oral squamous cell carcinoma: Clinical, histologic, genetic and molecular concepts. Arch Iran Med. 2015;18(5):314-9.
- 90. Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol. 2011;2011:603740.
 https://doi.org/10.1155/2011/603740
- 91. Teperek-Tkacz M, Meglicki M, Pasternak M, Kubiak JZ, Borsuk E. Phosphorylation of histone H3 serine 10 in early mouse embryos: active phosphorylation at late S phase and differential effects of ZM447439 on first two embryonic mitoses. Cell Cycle. 2010;9(23):4674-87. <u>https://doi.org/10.4161/cc.9.23.14023</u>
- 92. Thomas ML, Marcato P. Epigenetic Modifications as Biomarkers of Tumor Development, Therapy Response, and Recurrence across the Cancer Care Continuum. Cancers (Basel). 2018;10(4):101.
 <u>https://doi.org/10.3390/cancers10040101</u>
- 93. Thomson S, Clayton AL, Mahadevan LC. Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol Cell. 2001;8(6):1231-1241. https://doi.org/10.1016/S1097-2765(01)00404-X

- 94. Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Su LJ, et al. Epigenetic research in cancer epidemiology: Trends, opportunities, and challenges.
 Cancer Epidemiol Biomarkers Prev. 2014;23(2):223-33.
 https://doi.org/10.1158/1055-9965.EPI-13-0573
- 95. Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150(3805):405-6. https://doi.org/10.1038/150563a0
- 96. Warnakulasuriya S, Johnson NW, Van Der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36(10):575-80. https://doi.org/10.1111/j.1600-0714.2007.00582.x
- 97. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4-5):309-16. https://doi.org/10.1016/j.oraloncology.2008.06.002
- 98. Wang F, Ulyanova NP, Daum JR, Patnaik D, Kateneva A V., Gorbsky GJ, et al. Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. J Cell Biol. 2012;199(2):251-68. <u>https://doi.org/10.1083/jcb.201205106</u>
- 99. Webber LP, Wagner VP, Curra M, Vargas PA, Meurer L, Carrard VC, et al. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. Histopathology. 2017;71(2):278-86. <u>https://doi.org/10.1111/his.13218</u>
- 100. Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell. 1999;97(1):99-109. https://doi.org/10.1016/S0092-8674(00)80718-7
- 101. Wolffe AP, Packaging principle: How DNA methylation and histone acetylation control the transcriptional activity of chromatin. J. Exp. Zool. 1998;282: 239-244. <a href="https://doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<239::AID-JEZ25>3.0.CO;2-N">https://doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<239::AID-JEZ25>3.0.CO;2-N

- 102. Wu C-T, Morris JR. E P I G E N E T I C S s Genes, Genetics, and Epigenetics: A Correspondence. 2001;293(August):1103-5.
 <u>https://doi.org/10.1126/science.293.5532.1103</u>
- 103. Yan Y, Cummings CA, Sutton D, Yu L, Castro L, Moore AB, et al. Immunogold electron microscopy and confocal analyses reveal distinctive patterns of histone H3 phosphorylation during mitosis in MCF-7 cells. Genes Chromosom Cancer. 2016;55(4):397-406. https://doi.org/10.1002/gcc.22343
- 104. Yin YW, Jin HJ, Zhao W, Gao B, Fang J, Wei J, et al. The histone acetyltransferase GCN5 expression is elevated and regulated by c-Myc and E2F1 transcription factors in human colon cancer. Gene Expr. 2015;16(4):187-96.

https://doi.org/10.3727/105221615X14399878166230

- 105. Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep. 2015 Nov;16(11):1467-81. <u>https://doi.org/10.15252/embr.201540945</u>
- 106. Zhao L, Pang A, Li Y. Function of GCN5 in the TGF β1 induced epithelial to mesenchymal transition in breast cancer. Oncol Lett. 2018;16(3):3955-63.

https://doi.org/10.3892/ol.2018.9134

107. Zhong L, Liu Y, Wang K, He Z, Gong Z, Zhao Z, et al. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer. 2018;18(1):1-20. <u>https://doi.org/10.1186/s12885-018-4806-7</u>

7. ANEXOS

Anexo 1 – Parecer do Comitê de Ética e Pesquisa

UNIVERSIDADE FEDERAL DE UBERLÂNDIA/MG

PARECER CONSUBSTANCIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: Avaliação de alterações epigenéticas em doenças da região bucomaxilofacial. Pesquisador: ADRIANO MOTA LOYOLA Área Temática: Versão: 2 CAAE: 60858016.1.0000.5152 Instituição Proponente: Universidade Federal de Uberlândia/ UFU/ MG Patrocinador Principal: Financiamento Próprio

DADOS DO PARECER

Número do Parecer: 2.001.481

Apresentação do Projeto:

Conforme apresenta o protocolo: As modificações epigenéticas têm ganhado atenção no estudo da carcinogênese juntamente com as alterações genéticas. Evidências recentes sugerem a participação de componentes epigenéticos também em lesões cancerizáveis. Esse estudo foi desenvolvido para analisar as alterações epigenéticas associadas à carcinogênese humana na região bucomaxilofacial. Padrões dessas alterações têm sido observados em amostras dessas neoplasias. A identificação e caracterização desses distintos padrões se faz essencial para o desenvolvimento de terapêuticas mais eficazes e efetivas, além de proporcionar a tentativa de explicar a etiopatogenia, e detectar possíveis influências das mesmas no comportamento desses tumores.Até recentemente, o sequenciamento de DNA para identificar mutações genéticas em neoplasias era impraticável e caro. Os recentes avanços tecnológicos nesse processo, como a criação do método de sequenciamento de última geração, baseada no uso de semicondutores lon Proton, otimizou o custo e o tempo do sequenciamento, além de oferecer resultados mais confiáveis.

Usando o lon Proton, os pesquisadores sequenciarão genes mais comumente relacionados às alterações em histonas, buscando identificar o papel dessas alterações epigenéticas em amostras de tumores benignos e malignos de glândula salivar (adenomas, carcinomas e adenocarcinomas), carcinomas de mucosa bucal, tumores benignos e malignos odontogênicos e lesões cancerizáveis

 Endereço:
 Av. João Naves de Ávila 2121- Bloco "1A", sala 224 - Campus Sta. Mônica

 Balrro:
 Santa Mônica

 CEP:
 38.408-144

 UF:
 MG

 Município:
 UBERLANDIA

 Telefone:
 (34)3239-4131

 Fax:
 (34)3239-4335

 E-mail:
 cep@propp.ufu.br

UNIVERSIDADE FEDERAL DE UBERLÂNDIA/MG

Continuação do Parecer: 2.001.481

(leucoplasia, eritroplasia e queilite actínica). Serão considerados na composição da amostra tumores benignos e malignos de glândula salivar (adenomas, carcinomas e adenocarcinomas), carcinomas de mucosa bucal, tumores benignos e malignosodontogênicos e lesões cancerizáveis (leucoplasia, eritroplasia e queilite actínica). Todos os casos incluídos nesse estudo serão coletados prospectivamente, a partir da aprovação do presente projeto, e retrospectivamente, a partir de 1978 (início do arquivamento das amostras cirúrgicas do Laboratório de patologia bucomaxilofacial da Faculdade de Odontologia da Universidade Federal de Uberlândia). A coleta dos casos em ambas as situações se fará até 2021 período limite do desenvolvimento do estudo, perfazendo um número provável de 320 amostras ao final, baseado na frequência de seus diagnósticos registrados no Laboratório de Patologia do Curso de Odontologia. Todos os casos eletivos serão incluídos no estudo a partir da aceitação do paciente, mediante a assinatura de termo de consentimento livre e esclarecido (TCLE).

Objetivo da Pesquisa:

Objetivo Primário:

Identificar e analisar alterações epigenéticas, em amostras de tumores benignos e malignos de glândula salivar (adenomas, carcinomas e adenocarcinomas), carcinomas de mucosa bucal, tumores benignos e malignos odontogênicos e lesões cancerizáveis (leucoplasia, eritroplasia e queilite actínica) e sua relação com comportamento biológico e parâmetros clínicopatológicos das lesões supracitadas.

Objetivo Secundário:

A) Descrever as características clínicopatológicas das lesões estudadas, considerando, quando pertinente, a possibilidade de estudar casos isolados ou pequenas serie de casos, especialmente quando os casos trouxerem informações inusitadas em relação ao que é conhecido pela literatura;

B) Descrever e semiquantificar os padrões de reatividade imunoistoquímica de vários antígenos representativos das modificações de histonas, nas lesões supracitadas;

C) Analisar os padrões de reatividade imunoistoquímica com os dados clínico-patológicos nas diferentes lesões a busca de associações entre os padrões e comportamento biológico das lesões e sobrevida dos pacientes.

D) Quantificar por Western Blotting, a presença de proteínas histonas modificadas, em amostras de tumores benignos e malignos de glândula salivar (adenomas, carcinomas e adenocarcinomas), carcinomas de mucosa bucal, tumores benignos e malignos odontogênicos e lesões cancerizáveis (leucoplasia, eritroplasia e queilite actínica);

Endereço: Av. João Naves de Ávila 2121- Bloco "1A", sala 224 - Campus Sta. Mônica						
Bairro: Sa	anta Mônica		CEP:	38.408-144		
UF: MG	Município:	UBERLA	NDIA			
Telefone:	(34)3239-4131	Fax:	(34)3239-4335	E-mall:	cep@propp.ufu.br	

UNIVERSIDADE FEDERAL DE UBERLÂNDIA/MG

Continuação do Parecer: 2.001.481

E) Mapear as mutações gênicas de histonas em amostras de tumores benignos e malignos de glândula salivar (adenomas, carcinomas e adenocarcinomas), carcinomas de mucosa bucal, tumores benignos e malignos odontogênicos e lesões cancerizáveis (leucoplasia, eritroplasia e queilite actínica;F) Avaliar a presença de miRNA relacionados as proteínas histonas em amostras de tumores benignos e malignos de glândula salivar (adenomas, carcinomas e adenocarcinomas), carcinomas de mucosa bucal, tumores benignos e malignos e malignos de glândula salivar (adenomas, carcinomas e adenocarcinomas), carcinomas de mucosa bucal, tumores benignos e malignos e malignos odontogênicos e lesões cancerizáveis (leucoplasia, eritroplasia e queilite actínica.

Avallação dos Riscos e Benefícios: Segundo os pesquisadores:

Riscos: Os participantes incluídos na pesquisa serão submetidos a riscos considerados mínimos, que consistem em incômodo ou desconforto no momento da coleta do material. Os mesmos serão coletados após a retirada cirúrgica, que aconteceria, independentemente da realização desta pesquisa. Essa coleta será realizada por profissional experiente das clínicas de estomatologia e cirurgia da Faculdade de Odontologia da Universidade Federal de Uberlândia. O risco de identificação do participante da pesquisa será respeitada, ou seja, seu nome ou qualquer outro dado ou elemento que possa, de qualquer forma, o identificar, será mantido em sigilo. Não serão utilizadas identificações como as inicias do nome do participante, cada participante será identificado por um número no instrumento de coleta de dados e nos tubos que serão coletadas as amostras, garantindo assim o sigilo da sua identidade em todas as etapas da pesquisa.

Benefícios: Quanto aos benefícios, o projeto pretende proporcionar um melhor entendimento acerca da patogenia dessas lesões. Entendemos que, a depender dos resultados obtidos, o conhecimento gerado por este estudo poderá somar-se a outros já presentes na literatura ou motivar sua expansão para que, oportunamente, possamos vislumbrar o surgimento de técnicas terapêuticas no combate a essas neoplasias, de forma menos invasiva e mais eficiente, proporcionando melhor qualidade de vida aos pacientes tratados.

Comentários e Considerações sobre a Pesquisa:

O projeto de pesquisa esta descrito de maneira detalhada, permitindo adequada interpretação para a elaboração do parecer ético deste comitê.

Endereço: Av. João Naves de Ávila 2121- Bloco "1A", sala 224 - Campus Sta. Mônica							
Balrro: Sa	anta Mônica		CEP:	38.408-144			
UF: MG	Município:	UBERL	ANDIA				
Telefone:	(34)3239-4131	Fax:	(34)3239-4335	E-mall:	cep@propp.ufu.br		

UNIVERSIDADE FEDERAL DE UBERLÂNDIA/MG

Continuação do Parecer: 2.001.481

Considerações sobre os Termos de apresentação obrigatória:

Todos os termos obrigatórios foram apresentados.

Recomendações:

Não há.

Conclusões ou Pendências e Lista de Inadequações:

As pendências apontadas no parecer consubstanciado número 1.864.897, de 05 de Dezembro de 2016, foram atendidas.

De acordo com as atribuições definidas na Resolução CNS 466/12, o CEP manifesta-se pela aprovação do protocolo de pesquisa proposto.

O protocolo não apresenta problemas de ética nas condutas de pesquisa com seres humanos, nos limites da redação e da metodologia apresentadas.

Considerações Finais a critério do CEP:

Data para entrega de Relatório Parcial ao CEP/UFU: Setembro de 2018. Data para entrega de Relatório Parcial ao CEP/UFU: Setembro de 2019. Data para entrega de Relatório Parcial ao CEP/UFU: Setembro de 2020. Data para entrega de Relatório Final ao CEP/UFU: Setembro de 2021.

OBS.: O CEP/UFU LEMBRA QUE QUALQUER MUDANÇA NO PROTOCOLO DEVE SER INFORMADA IMEDIATAMENTE AO CEP PARA FINS DE ANÁLISE E APROVAÇÃO DA MESMA.

O CEP/UFU lembra que:

a- segundo a Resolução 466/12, o pesquisador deverá arquivar por 5 anos o relatório da pesquisa e os Termos de Consentimento Livre e Esclarecido, assinados pelo sujeito de pesquisa.

b- poderá, por escolha aleatória, visitar o pesquisador para conferência do relatório e documentação pertinente ao projeto.

c- a aprovação do protocolo de pesquisa pelo CEP/UFU dá-se em decorrência do atendimento a Resolução CNS 466/12, não implicando na qualidade científica do mesmo.

Orientações ao pesquisador :

• O sujeito da pesquisa tem a liberdade de recusar-se a participar ou de retirar seu consentimento em qualquer fase da pesquisa, sem penalização alguma e sem prejuízo ao seu cuidado (Res. CNS

Endereço:	Av. João Naves de Á	vila 212	I - Bloco "1A", sala	224 - Campus S	ta. Mônica
Balrro: Sa	inta Mônica		CEP:	38.408-144	
UF: MG	Município:	UBERL	ANDIA		
Telefone:	(34)3239-4131	Fax:	(34)3239-4335	E-mall:	cep@propp.ufu.br

UNIVERSIDADE FEDERAL DE UBERLÂNDIA/MG

Continuação do Parecer: 2.001.481

466/12) e deve receber uma via original do Termo de Consentimento Livre e Esclarecido, na íntegra, por ele assinado.

O pesquisador deve desenvolver a pesquisa conforme delineada no protocolo aprovado e descontinuar o
estudo somente após análise das razões da descontinuidade pelo CEP que o aprovou (Res. CNS 466/12),
aguardando seu parecer, exceto quando perceber risco ou dano não previsto ao sujeito participante ou
quando constatar a superioridade de regime oferecido a um dos grupos da pesquisa que requeiram ação
imediata.

 O CEP deve ser informado de todos os efeitos adversos ou fatos relevantes que alterem o curso normal do estudo (Res. CNS 466/12). É papel de o pesquisador assegurar medidas imediatas adequadas frente a evento adverso grave ocorrido (mesmo que tenha sido em outro centro) e enviar notificação ao CEP e à Agência Nacional de Vigilância Sanitária – ANVISA – junto com seu posicionamento.

• Eventuais modificações ou emendas ao protocolo devem ser apresentadas ao CEP de forma clara e sucinta, identificando a parte do protocolo a ser modificada e suas justificativas. Em caso de projetos do Grupo I ou II apresentados anteriormente à ANVISA, o pesquisador ou patrocinador deve enviá-las também à mesma, junto com o parecer aprobatório do CEP, para serem juntadas ao protocolo inicial (Res.251/97, item III.2.e).

Tipo Documento	Arquivo	Postagem	Autor	Situação
Informações Básicas do Projeto	PB_INFORMAÇÕES_BÁSICAS_DO_P ROJETO_804983.pdf	14/12/2016 20:23:48		Aceito
Outros	PB_PARECER_CONSUBSTANCIADO_ CEP 1864897.pdf	14/12/2016 20:23:12	ADRIANO MOTA LOYOLA	Aceito
Outros	Respostas_pendencias_CEP.pdf	14/12/2016 20:22:32	ADRIANO MOTA LOYOLA	Aceito
Projeto Detalhado / Brochura Investigador	Projeto.pdf	14/12/2016 20:18:20	ADRIANO MOTA LOYOLA	Aceito
TCLE / Termos de Assentimento / Justificativa de Ausência	TCLE.pdf	14/12/2016 20:17:07	ADRIANO MOTA LOYOLA	Aceito
Folha de Rosto	Folha_de_Rosto.pdf	07/10/2016 11:31:04	ADRIANO MOTA LOYOLA	Aceito
Outros	Questionario.pdf	06/10/2016 13:03:59	ADRIANO MOTA LOYOLA	Aceito

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Endereço	Endereço: Av. João Naves de Ávila 2121- Bloco "1A", sala 224 - Campus Sta. Mônica				
Bairro: S	anta Mônica	CEP:	38.408-144		
UF: MG	Município:	UBERLANDIA			
Telefone:	(34)3239-4131	Fax: (34)3239-4335	E-mall: cep@propp.ufu.br		

UBERLÂNDIA/MG

Continuação do Parecer: 2.001.481

Outros	Declaracao_Instituicao_Co_Participante.	05/10/2016	ADRIANO MOTA	Aceito
	pdf	10:03:35	LOYOLA	
Declaração de	termo_de_compromisso_da_equipe_exe	05/10/2016	ADRIANO MOTA	Aceito
Pesquisadores	cutora.pdf	10:01:55	LOYOLA	
Outros	Carta_de_encaminhamento_de_protocol	05/10/2016	ADRIANO MOTA	Aceito
	o.pdf	10:00:30	LOYOLA	
Outros	Diretor_HO.pdf	05/10/2016	ADRIANO MOTA	Aceito
		09:58:04	LOYOLA	
Outros	Diretor_FOUFU.pdf	05/10/2016	ADRIANO MOTA	Aceito
		09:57:24	LOYOLA	
Outros	Lattes.pdf	05/10/2016	ADRIANO MOTA	Aceito
		09:53:57	LOYOLA	

Situação do Parecer: Aprovado Necessita Apreclação da CONEP: Não

UBERLANDIA, 05 de Abril de 2017

Assinado por: Sandra Terezinha de Farlas Furtado (Coordenador)

Endereço: Av. João Naves de Ávila 2121- Bloco "1A", sala 224 - Campus Sta. Mônica Balrro: Santa Mônica CEP: 38.408-144 Município: UBERLANDIA UF: MG Telefone: (34)3239-4131 Fax: (34)3239-4335 E-mall: cep@propp.ufu.br

Anexo 2 – Materiais e Métodos

Tendo em vista a necessidade de descrever a metodologia de forma sucinta no trabalho, os itens abaixo inseridos nesse Anexo, tem por finalidade ampliar a descrição do que foi exposto no trabalho, na tentativa de melhorar a a compreensão dos métodos empregados.

2.1 – Microarranjo tecidual (*Tissue microarray* – TMA)

A técnica do TMA consiste em retirar amostras de diferentes blocos parafinados (denominados "blocos doadores") agrupando-os em um único bloco (denominado "bloco receptor"), possibilitando a realização de análise imunohistoquímica de diferentes amostras simultaneamente. Primeiramente delimitaram-se duas áreas de interesse nos blocos oriundos dos casos selecionados utilizando suas respectivas lâminas coradas em H&E. Para essa seleção, optou-se por selecionar duas regiões dos blocos onde houvesse maior quantidade de tecido tumoral. Tendo essas áreas sido delimitadas nas lâminas, elas foram identificadas nos blocos parafinados e então retiradas utilizando o dispositivo *core facilite* (Beecher Instruments, Sun Prairie, WI, EUA). Esse processo é feito inserindo uma agulha de 1mm de diâmetro no bloco doador, que retira esse material e o insere no bloco receptor utilizando um padrão (Figura 1). A partir desse momento, cada parte do bloco receptor que foi inserido no bloco doador é denominado de *spot*, havendo um distanciamento de 1mm entre eles. A configuração final dos spots, em duplicata, pode ser vista na Figura 2.

Figura 1: Imagem mostrando o dispositivo *core facilite* acompanhada de um esquema esquema indicando a inserção da agulha de 1 mm de diâmetro no bloco doador (*donor*) e a posterior inserção no bloco receptor (*recipient*). Fonte: Giltnane e Rimm (2004), adaptado pelo autor para a dissertação.

mm		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
		0	1.2	2.4	3.6	4.8	6.0	7.2	8,4	9.6	10.8	12.0	13.2	14.4	15.6	16.8	18.0	mm	
0	0	Place nta	12018 C4	9474 B	8940 A	11768	94267	12600	12166	11440 A2	09.90 18 A	11704 4 A2	09.20 09	12302 C	11552	10356	11770 A1	0	0
1	1.2	10259	12503	12871 B	13622 E1	11858 1	11543	83942	12381 E1	11878	9909	10195 A	11.83 2353	10.11 98 A2	92772 9 B	07.13 39 A1	05.92 26 A1	1.2	1
2	2.4	06.154 2	117.5 32	11210	9904	12485 A	12532 A1	11493 A2	11000 37	07.8079 A2	9994 A1	75898	9139 E3	9458				2.4	2
3	3.6	10436	09.96 90 D	91798	12041 B	75390	12810	8867 A1	07.40 52 A	11181	10.00 40 B	11914 F1b	10625	07390 7 A2	11684	10515	11707	3.6	3
4	4.8	06509 0	3849	11208 A4	12499	63.27 8	96799	13663 B	10937 8	10697	9872 A8	12400 B	11615	12304 B22	09.36 97 D5	94.94 5	12035	4.8	4
5	6.0	10703	11193	12378	06.72 78	08.56 39	9232	06.5191 A2	9006	10.3696	8944	06.17 30 A	06.78 26	13724	06.18 63			6.0	5
6	7.2	12304 C5	12398 D1	11914 F4	07.07 7 F2	13663 F25e	11798 3 F											7.2	6
7	8.4																	8.4	7
8	9.6	Place nta	12018 C4	9474 B	8940 A	11768	94267	12600	12166	11440 A2	09.90 18 A	11704 4 A2	09.20 09	12302 C	11552	10356	11770 A1	9.6	8
9	10. 8	10259	12503	12871 B	13622 E1	11858 1	11543	83942	12381 E1	11878	9909	10195 A	11.83 2353	10.11 98 A2	92772 9 B	07.13 39 A1	05.92 26 A1	10.8	9
10	12. 0	06.154 2	117.5 32	11210	9904	12485 A	12532 A1	11493 A2	11000 37	07.8079 A2	9994 A1	75898	9139 E3	9458				12.0	10
11	13. 2	10436	09.96 90 D	91798	12041 B	75390	12810	8867 A1	07.40 52 A	11181	10.00 40 B	11914 F1b	10625	07390 7 A2	11684	10515	11707	13.2	11
12	14. 4	06509 0	3849	11208 A4	12499	63.27 8	96799	13663 B	10937 8	10697	9872 A8	12400 B	11615	12304 B22	09.36 97 D5	94.94 5	12035	14.4	12
13	15. 6	10703	11193	12378	06.72 78	08.56 39	9232	06.5191 A2	9006	10.3696	8944	06.17 30 A	06.78 26	13724	06.18 63			15.6	13
14	16. 8	12304 C5	12398 D1	11914 F4	07.07 7 F2	13663 F25e	11798 3 F											16.8	14
15	18. 0																	18.0	15
16	19. 2																	19.2	16
17	20. 4																	20.4	17
18	21. 6																	21.6	18
mm	22. 8																	22.8	mm
mm		0	1.2	2.4	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12.0	13.2	14.4	15.6	16.8	18.0		
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	mm	

Figura 2: Na figura é possível ver o mapa dos casos de CCEB inseridos no bloco receptor. Em amarelo estão indicados os pacientes que não apresentaram lesão metastática cervical; em azul estão indicados os pacientes que apresentaram metástase cervical; e em laranja estão as lesões metastáticas.

2.2 – Ensaios imuno-histoquímicos

Os ensaios imuno-histoquímicos foram realizados utilizando a técnica estreptavidina-biotina-peroxidase em cortes de 3 µm de espessura obtidos a partir do bloco receptor do TMA e montados em lâminas polarizadas StarFrost

(Knittel Glaser, Brunsquive, BS, Alemanha). Todos os ensaios foram realizados de acordo com protocolos pré-definidos pelo Laboratório de Patologia Bucal da Universidade Federal de Uberlândia.

Primeiramente foi feita a desparafinação das lâminas com dois banhos em solução de xilol (Synth, São Paulo, SP, Brasil), sendo o primeiro em estufa a 56°C por 30 minutos e o segundo em temperatura ambiente por 15 minutos. Em seguida procedeu-se à hidratação utilizando soluções de etanol em concentração decrescente: 100% duas vezes, 95% e 80%, sendo cada banho de 5 minutos de duração. A remoção do pigmento formólico foi feita em um banho de 10 minutos utilizando uma solução etanol a 95% e hidróxido de amônia a 10% (Synth, São Paulo, SP, Brasil), seguido por 7 banhos de água deionizada.

A recuperação antigênica foi realizada utilizando solução de ácido etilenodiaminotetracético (EDTA, Amresco, Solon, OH, EUA), em uma concentração de 1,0 mM, tamponado com hidróxido de sódio (pH = 8,0) em 3 ciclos de 5 minutos em micro-ondas (AW42, Continental Brasil Ltda., Curitiba, PR, Brasil). Os cortes então ficaram em temperatura ambiente por 40 minutos para resfriamento e passaram por 5 banhos de água deionizada. O bloqueio da biotina endógena foi feito submergindo as lâminas por 15 minutos, em temperatura ambiente, em uma solução composta por duas claras de ovos e 200ml de água destilada, sendo realizados 10 banhos em água destilada em seguida. Para o bloqueio da avidina endógena, as lâminas foram submergidas, em temperatura ambiente, em uma solução contendo 30g de leite em pó desnatado (Nestlé Brasil Ltda., São Paulo, SP, Brasil) e 180 ml de água destilada, passando por dez banhos de água destilada em seguida. O bloqueio da peroxidase endógena foi feito através de três banhos de 15 minutos cada em solução de peróxido de hidrogênio a 10V (Dinâmica Química Contemporânea, São Paulo, Brasil), seguido por 5 banhos de água destilada.

Para incubação dos anticorpos primários, os cortes passaram por três banhos de cinco minutos cada uma em solução tampão de Tris-HCI a 20 nM em temperatura ambiente. Então o bloqueio de reações inespecíficas foi feito utilizando o Background Sniper (Biocare Medical, Pacheco, CA, EUA) por 15 minutos em temperatura ambiente. Os anticorpos para as enzimas GCN5 e

97

Aurora B, bem como para as MPTH H3S10, H3K9ac e H4K12ac foram diluídos em solução PBS-BSA (tampão fosfato/soro albumina bovina) e encubados de acordo com a Tabela 1.

Tabela 1: relação dos anticorpos utilizados nos ensaios imunohistoquímicos, titulações, tempo e temperatura de incubação e informações dos fabricantes.

Anticorpo	Concentração	Ind	cubação	Fabricante ¹	
		Tempo	Temperatura		
Aurora B	1:200	106	400	ABCAM	
(ab45145)	1.200	10[]	4°C		
GCN5	1.100	106	400	Conto Onio	
(sc-365321)	1.100			Santa Oruz	
H3K9ac	1.2 000	2h Ambiente		ABCAM	
(ab10818)	1.2.000				
H3S10ph	1.500	Oh	Ambianta	ABCAM	
(ab47297)	1.500	211	Ampiente		
H4K12ac	1.10.000				
(ab61238)	1.10.000	211	AMDIENIE	ADUAIN	

1. ABCAM, Cambridge, MA, USA; Santa Cruz Biotechnology, Dallas, TX, USA.

Os cortes passaram por 2 banhos de 2 minutos cada uma em solução tampão de Tris-HCI a 20 nM em temperatura ambiente para desencubação do anticorpo primário. Então aplicou-se a solução Trekkie Link (Biocare Medical, Pacheco, CA, EUA), por 30 minutos em câmara úmida para incubação do anticorpo secundário, seguida de 2 banhos de 2 minutos cada uma em solução tampão de Tris-HCI a 20 nM em temperatura ambiente. O complexo terciário foi

incubado utilizando Trekkie Avidin-HRP (Biocare Medical, Pacheco, CA, EUA), por 30 minutos em temperatura ambiente utilizando câmara úmida. Por fim, a revelação foi feita aplicando Betazoid DAB Chromogen Solution (Biocare Medical, Pacheco, CA, EUA) - um cromógeno 3,3'-tetrahidrocloreto de diaminobenzidina - por cinco minutos na concentração de 1 gota para cada 1ml de Substrate Buffer (Biocare Medical, Pacheco, CA, EUA), seguida de lavagem em agua corrente.

A contracoloração das lâminas foi feita utilizando hematoxilina de Harris, então elas foram lavadas em água corrente e desidratadas em soluções de concentrações crescentes de etanol: 80% por 5 minutos; 90% por 5 minutos; 100% por 5 minutos; e 100% por 10 minutos duas vezes. Para diafanzação foram feitos 2 banhos de 5 minutos em xilol (Synth, São Paulo, SP, Brasil) e em seguida as lâminas foram montadas com goma de damar (ISOFAR, Duque de Caxias, RJ, Brasil).

2.3 – Análise de reatividade imunohistoquímica

Previamente à análise, as lâminas de TMA confeccionadas e coradas foram escaneadas em aumento de 20x utilizando o *Slide Scanner* Aperio AT2 (Leica Biosystems Imaging, Inc., Nussloch, Alemanha) e um computador (Dell Precision T3600). Cada *spot* foi então fotografado individualmente no mesmo aumento utilizando o *software* QuPath, versão 0.2.2 (Bankhead et al., 2017) e então as imagens foram submetidas à análise utilizando o software ImageJ versão 1.52 (NIH, Bethesda, MD, EUA) (Figura 3).

Figura 3: Tela inicial do ImageJ ilustrando as diferentes ferramentas fornecidas pelo software para análises de imagem. (Fonte: próprio autor)

2.3.1 – Calibração do ImageJ

O processo da análise de imagem inicia-se com duas calibrações, uma primeira para calibrar a escala de cinza e uma segunda para calibrar a distância, ambas feitas de acordo com o protocolo fornecido pelo fabricante (Fonte: https://imagej.nih.gov). Esses procedimentos são importantes uma vez que a densidade ótica integrada (IOD), consiste na intensidade de coloração de cada pixel (em densidade de cinza) de uma área previamente delimitada.

A calibração da densidade de cinza é feita utilizando-se valores préestabelecidos em intervalos de densidade de cinza (Kodak n° 3, tutorial (<u>https://imagej.nih.gov/ij/docs/examples/calibration/index.html</u>) como o passo a passo abaixo:

1 – Clica-se no item Analyze, na barra de ferramentas, em seguida seleciona-se o item Calibrate (Figura 4).

Analyze	Plugins	Windov							
Measur	Measure #M								
Analyze	Particles.								
Summa	rize								
Distribu	ition								
Label									
Clear R	esults								
Set Mea	asurement	s							
Set Sca	le								
Calibra	te								
Histogr	am								
Plot Pro	Plot Profile #K								
Surface	Surface Plot								
Gels									
Tools		►							

Figura 4: Imagem mostrando a barra de ferramentas, indicados em azul as opções *Analyze* e *Calibrate*. (Fonte: próprio autor) 2 – Na janela aberta, na opção "*Function*" deve-se selecionar "*Rodbard*", em "*Unit*" deve-se colocar IOD. Na janela em branco da esquerda devem ser inseridos os valores de cinza, e na janela em branco da direita os valores de absorbância correspondentes de acordo com o protocolo fornecido pelo fabricante (Fonte: http://rsbweb.nih.gov/ij/docs/examples/calibration). Deve-se então marcar a opção "*Global Calibration*" e clicar em "*Ok*" para salvar a configuração. (Figura 5).

	Calibra	ate	
Function:	Rodbard		\$
Unit:	IOD		
252.3 225.3 191.6 154.7 125.7 101.1 79.58 61.92 48.2 37.21 29.32 23.19 17.97 17.97 17.97 14.09 11.05 8.76 7.16 6.0	8 7 6 3 5	0.0 0.06 0.2 0.34 0.49 0.64 0.79 0.94 1.1 1.26 1.41 1.56 1.41 1.56 1.7 1.85 2.01 2.16 2.32 2.46 2.6	
Open	. Save.		
🗹 Glo 🗹 Sho	bal calibration w plot	1	
H	lelp C	ancel	ОК

Figura 5: Janela aberta mostrando as configurações de função (*Function: Rodbard*), unidade (*Unit:* IOD) e escala de cinza (Fonte: próprio autor).

3 - A clicagem e "*Ok*" gera uma relação entre valores de pixel e IOD traduzidos por uma curva exponencial, indicando que a calibração foi realizada com sucesso (Figura 6).

Figura 6: Curva de calibração gerada a partir dos valores da escala de cinza e IOD utilizadas na calibração (Fonte: próprio autor).

A calibração de distância é necessária porque permite que o programa quantifique quantos pixels se encontram em uma determinada área cuja distância é conhecida. Dessa forma é possível obter o IOD para a área de interesse, sendo que essa calibração ocorre da seguinte forma:

1 – Deve-se medir quantos pixels estão presentes em 200um utilizando a ferramenta "*Straight line*" e fazendo uma linha reta sobre a barra de escala presente na figura (Figura 7).

Figura 7: A seta azul indica a função indica a função "*Straight line*" pressionada na barra de ferramentas e a seta laranja indica a linha amarela criada sobre a barra de medida presente na imagem (Fonte: autor).

2 – Com a linha reta definida, deve-se então clicar na aba "*Analyze*" e clicar no item "*Set Scale*" (Figura 8).

Analyze	Plugins	Windov						
Measur	Measure #M							
Analyze	Particles							
Summa	rize							
Distribu	tion							
Label								
Clear Re	esults							
Set Mea	asurement	:S						
Set Sca	le							
Calibrat	e							
Histogra	am							
Plot Pro	ofile	ЖK						
Surface	Surface Plot							
Gels		>						
Tools		►						

Figura 8: Imagem mostrando a barra de ferramentas, indicados em azul as opções *Analyze* e *Set Scale* (fonte: autor).

3 – Na janela que foi aberta deve-se inserir a distância em pixels obtida no passo 1 (*Distance in pixels*), a distância real conhecida fornecida na imagem (*Known distance*), a proporção entre as medidas (*Pixel aspect ratio*) e a unidade de medida real que foi utilizada (*Unit of length*). Em seguida deve-se marcar a chave "*Global*" para tornar a modificação aplicável em todas as imagens. (Figura 9).

Set	Scale					
Distance in pixels:	398					
Known distance:	200					
Pixel aspect ratio:	1.0					
Unit of length:	um					
Clic	k to Remove Scale					
🗹 Global	🗹 Global					
Scale: 1.99 pixels/um						
Help Ca	ncel OK					

Figura 9: Janela na qual são inseridas as informações para calibração da distância na imagem. No nosso caso a distância em pixels (*Distance in pixels*) foi de 398; a distância real (*Known distance*) foi de 200um; a proporção entre as medidas (*Pixel aspect ratio*) foi 1:1; e a unidade de medida real que foi utilizada (*Unit of length*) foi um. A chave "*Global*" encontra-se marcada (fonte: autor).

2.3.2 – Análise das imagens

Feita as calibrações do ImageJ, a a análise quantitativa do IOD já pode ser realizada seguindo os passos a seguir:

1 – Na barra de ferramentas deve-se clicar na aba "*Plugins*" e em seguida em "*Colour Deconvolotion*" (Figura 10).

Figura 10: Imagem mostrando a barra de ferramentas, indicados em azul as opções *Plugins* e *Colour Deconvolution* (fonte: autor).

2 – Na janela que se abre, deve-se selecionar os vetores ("*Vectors*") H DAB e clicar em "*OK*". Esse procedimento irá gerar 3 imagens: uma relativa a coloração em DAB; outra referente à coloração em hematoxilina de Harris; e uma terceira residual (Figuras 11 e 12).

Colour Deconvolution 1.5				
Vectors	H DAB	\$		
Show matricesHide legend				
	Cancel	ОК		

Figura 11: Imagem mostrando a janela que foi aberta após realização do passo 1. É possível ver os vetores (Vectors) "H DAB" selecionados. (fonte: autor).

Figura 12: Processo de deconvolução da imagem original necessário à obtenção do índice de absorbância das imunomarcações. Da esquerda para a direita: a imagem original escaneada em ampliação de 20x, mostrando o spot com área do carcinoma de células escamosas sob análise, onde se percebe a neoplasia corada em HE, e os núcleos celulares imunomarcados por DAB; a imagem deconvoluída mostrando as colorações nucleares em DAB; a imagem deconvoluída apenas mostrando a coloração de hematoxilina; a imagem residual gerada.

3 – A partir da imagem em hematoxilina, deve-se criar uma máscara que cubra apenas os núcleos das células. Para isso, utiliza-se o atalho Control+T (ou Command+Shift+T), que abrirá a janela de ajuste de "*Threshold*" (Figura 13).

Threshold			
10.37 %			
-		0	
Default ᅌ	Red	\$	
 Dark background Stack histogram Don't reset range 			
Auto Apply	Reset	Set	

Figura 13: Quadro de ajustes de Threshold para seleção dos núcleos na imagem gerada em H&E (Figura 12). Essa seleção funciona escolhendo um ponto de corte de valor, de modo que cada pixel menor que valor seja esse considerado uma classe, enquanto cada pixel maior que esse valor seja considerado outra.

4 – Ajustado o "*Threshold*" de forma a cobrir apenas os núcleos das células, dá-se sequência clicando na aba "*Edit*" na barra de ferramentas do ImageJ, seguido de "*Selection*" e "*Create Selection*". Essa seleção então é aplicada sobre a imagem em DAB utilizando o "ROI Manager" através do atalho Control+T ou Command+Shift+T (Figura 14).

Figura 14: À esquerda, criação da seleção envolvendo os apenas os núcleos do spot. Em vermelho estão os núcleos que foram mapeados a partir da imagem corada em hematoxilina, correspondente a Figura 12. Esse procedimento auxilia na determinação das áreas individuais dos núcleos celulares tumorais, permitindo a avaliação da área total ocupada pelos núcleos das células neoplásicas no spot avaliado. À direita, imagem do spot neoplásico analisado, mostrando a área da máscara em amarelo sendo aplicada sobre a imagem do tumor corado em DAB, a partir da qual será realizada a leitura de intensidade por área imunomarcada.

5 – Por fim, o cálculo do IOD é feito na imagem em DAB após aplicação da seleção utilizando o atalho Control+M ou Command+Shift+M, gerando uma tabela de resultados onde o IOD é traduzido por "*IntDen*" (Figura 15).
	e Results		
	Label	IntDen	RawIntDen
L	Caso88.png-(Colour_2):0940-0927	28980.394	36563089

Figura 15: Tabela de resultados gerada após a análise da imagem em DAB com o IOD, aqui representado por "*IntDen*". Esse valor representa a intensidade de absorbância por área nuclear presente em cada área avaliada nos spots tumorais.

Anexo 3 – Resultados das Análises

Tabela 2: Valores de IOD obtidos para cada caso em duplicata e suas respectivas médias. Os valores em branco indicam spots que não possuíam material biológico suficiente para análise.

Casos	GCN5			AURORA B			H3S10PH				НЗК9АС	;	H4K12AC		
Casus	1	2	Média	1	2	Média	1	2	Média	1	2	Média	1	2	Média
1	98.186	130.757	114.472	66.614	74.990	70.802	6.853	10.277	8.565	3.313	2.761	3.037	6.345	8.962	7.653
2							3.691		3.691	1.846		1.846	29.475		29.475
3	35.489	66.351	50.920	60.023	51.551	55.787	9.893	16.167	13.030	6.312	6.881	6.597	3.029	15.405	9.217
4	68.043	65.257	66.650	90.143	58.555	74.349	4.440	19.491	11.966	4.718	8.866	6.792	3.613	49.444	26.529
5	112.451	80.123	96.287	134.250	70.871	102.561	19.929	13.986	16.958	14.943	19.014	16.979	6.720	11.478	9.099
6	102.145	110.596	106.371	123.484	126.528	125.006	7.056	12.270	9.663	14.777	37.440	26.108	68.473	5.657	37.065
7	80.401	128.509	104.455	91.383	143.038	117.211	2.719	4.347	3.533	5.803	11.612	8.707	9.248	3.358	6.303
8	41.863	63.554	52.709	46.085	63.223	54.654	1.138	14.053	7.596	1.444	14.201	7.823	1.447	9.362	5.404
9	69.884	77.004	73.444	63.265	55.732	59.499	3.310	6.622	4.966	5.005	9.944	7.475	2.499	3.164	2.831
10	59.181	56.699	57.940	61.315	38.667	49.991	36.809	17.346	27.078	29.013	14.576	21.794	5.084	6.929	6.006
11	46.020	79.065	62.543	34.261	32.218	33.240	9.694	19.684	14.689	11.640	14.474	13.057	4.596	5.454	5.025
12	66.876	92.406	79.641	48.300	47.906	48.103	5.770	12.118	8.944	17.819	19.375	18.597	4.502	3.714	4.108
13	58.223	77.435	67.829	24.596	27.634	26.115	2.615	9.624	6.120	15.452	12.129	13.791	3.769	3.100	3.435
14	30.858	54.926	42.892	14.064	23.707	18.886	3.473	11.490	7.482	17.688	11.818	14.753	4.097	2.703	3.400
15	76.879	105.804	91.342	63.949	50.231	57.090	10.356	8.212	9.284	39.881	23.027	31.454	3.729	2.211	2.970
16	12.322	19.589	15.956	7.787	11.616	9.702	922	258	590	444	335	389	7.488	7.596	7.542
17	32.175	31.629	31.902	14.146	14.845	14.496	4.366	1.730	3.048	6.252	1.931	4.091	6.011	14.370	10.191
18	68.218	60.585	64.402	23.662	41.867	32.765	9.464	17.580	13.522	10.504	11.155	10.829	14.775	24.812	19.794
19	63.686	46.571	55.129	43.200	46.447	44.824	3.391	9.203	6.297	6.287	5.148	5.718	6.709	3.861	5.285
20	91.657	101.525	96.591	74.256	94.496	84.376	4.299	18.361	11.330	7.259	7.451	7.355	2.332	27.094	14.713
21	73.856	83.270	78.563	62.922	83.521	73.222	4.637	22.979	13.808	39.027	46.839	42.933	27.325	6.329	16.827

22	7.451	35.111	21.281	26.196	35.733	30.965	1.189	5.841	3.515	3.421	11.020	7.221	3.074	5.156	4.115
23		169.254	169.254		191.023	191.023	3.153	88.470	45.812	5.515	61.243	33.379	2.303	50.185	26.244
24	63.231	64.025	63.628	149.866	58.057	103.962	19.906	5.779	12.843	16.243	6.451	11.347	4.068	3.787	3.927
25	76.776	81.942	79.359	66.792	68.399	67.596	28.346	11.612	19.979	21.956	18.696	20.326	551	7.374	3.963
26	72.571	62.578	67.575	39.975	41.551	40.763	6.472	8.565	7.519	10.582	17.384	13.983	840	2.222	1.531
27	94.664	92.593	93.629	75.256	54.157	64.707	13.849	23.401	18.625	15.199	15.828	15.514	3.290	2.315	2.803
28	73.150	78.836	75.993	53.336	48.978	51.157	13.907	18.688	16.298	24.003	21.388	22.696	5.202	4.430	4.816
29	77.887	57.407	67.647	28.836	20.878	24.857	2.519	2.467	2.493	16.754	6.708	11.731	1.646	2.998	2.322
30	75.270	101.537	88.404	34.826	41.899	38.363	11.081	17.755	14.418	32.772	12.077	22.424	1.506	403	955
31	86.401	102.821	94.611	34.407	30.845	32.626	6.791	10.881	8.836	19.331	19.479	19.405	5.777	2.659	4.218
32	32.763	32.207	32.485	13.129	24.371	18.750	2.588	4.252	3.420	959	2.484	1.721	2.327	6.667	4.497
33	44.950	42.174	43.562	32.170	40.757	36.464	10.281	2.806	6.544	6.677	1.048	3.863	6.612	3.886	5.249
34	47.889	48.293	48.091	30.656	24.720	27.688	4.109	3.417	3.763	8.791	2.272	5.532	1.961	4.800	3.381
35	67.805	62.725	65.265	46.253	63.951	55.102	4.732	25.700	15.216	9.171	26.505	17.838	1.702	3.616	2.659
36	74.833	75.161	74.997	79.237	75.880	77.559	5.773	11.593	8.683	13.986	27.700	20.843	5.765	4.339	5.052
37	116.413	101.476	108.945	93.841	85.364	89.603	15.363	28.199	21.781	21.429	36.191	28.810	4.831	6.678	5.755
38	48.928	63.631	56.280	43.059	65.329	54.194	2.368	7.366	4.867	6.096	12.943	9.519	4.399	3.398	3.899
39	47.176		47.176	36.259		36.259	2.824	1.943	2.384	4.717	2.552	3.635	2.382	8.964	5.673
40	52.530	50.632	51.581	42.089	50.408	46.249	3.212	6.059	4.636	2.557	5.814	4.186	3.222	1.709	2.466
41	52.965	70.296	61.631	51.950	62.561	57.256	18.823	17.742	18.283	11.308	28.040	19.674	3.687	5.123	4.405
42	47.559	45.494	46.527	34.883	23.776	29.330	10.788	4.880	7.834	8.865	5.514	7.190	4.005	3.868	3.937
43	74.446	77.745	76.096	48.499	48.877	48.688	12.974	22.940	17.957	19.307	16.179	17.743	7.389	5.801	6.595
44	93.828	15.032	54.430	38.294	6.792	22.543	8.922	4.025	6.474	10.040	3.754	6.897	9.277	2.591	5.934
45	34.453	49.734	42.094	32.423	54.808	43.616	5.108	5.152	5.130	4.107	2.777	3.442	6.007	3.000	4.504
46	64.113	35.949	50.031	44.245	28.742	36.494	8.525	7.076	7.801	3.178	5.135	4.156	5.281	3.411	4.346
47	39.600	22.021	30.811	31.674	21.476	26.575	6.635	2.536	4.586	4.288	2.473	3.380	3.726	3.857	3.791

48	55.054	45.474	50.264	26.215	37.690	31.953	3.345	7.359	5.352	3.465	12.443	7.954	5.548	3.584	4.566
49	57.405	41.646	49.526	60.351	50.052	55.202	7.731	18.804	13.268	9.055	12.530	10.792	134	10.985	5.560
50	141.589	95.273	118.431	123.192	112.645	117.919	19.246	33.557	26.402	26.305	40.463	33.384	3.806	12.822	8.314
51	43.960	33.304	38.632	49.078	34.385	41.732	8.003	5.415	6.709	9.071	4.731	6.901	3.061	2.666	2.864
52	86.733	41.886	64.310	85.188	39.656	62.422	20.413	9.379	14.896	19.952	8.888	14.420	3.051	2.466	2.758
53		82.421	82.421		106.951	106.951	917	50.689	25.803	1.850	24.699	13.274	1.923	13.232	7.577
54	127.545	84.018	105.782	133.835	88.143	110.989	16.224	14.566	15.395	10.421	26.709	18.565	2.121	2.293	2.207
55	160.911	86.553	123.732	139.345	76.597	107.971	13.564	12.805	13.185	15.179	16.741	15.960	295	3.104	1.699
56	59.304	55.702	57.503	28.367	34.085	31.226	5.400	7.288	6.344	9.668	3.275	6.472	6.274	2.089	4.181
57		72.949	72.949		40.289	40.289	7.846	12.902	10.374	10.830	10.296	10.563	2.481	1.648	2.065
58	93.138	92.824	92.981	41.089	46.438	43.764	2.498	4.312	3.405	5.649	10.143	7.896	3.089	501	1.795
59	46.228	52.532	49.380	17.243	23.477	20.360	3.129	12.758	7.944	2.410	16.938	9.674	1.991	3.784	2.888
60	136.024	152.859	144.442	58.931	77.402	68.167	5.574	11.030	8.302	17.648	45.901	31.774	2.464	12.923	7.694
61	59.306	51.923	55.615	48.449	81.973	65.211	9.702	6.079	7.891	4.567	4.670	4.619	9.101	2.544	5.823
62	122.135	63.957	93.046	60.155	60.974	60.565	7.920	4.559	6.240	11.335	9.629	10.482	4.987	1.568	3.277
63	52.399	26.442	39.421	32.002	31.849	31.926	4.219	7.917	6.068	3.482	19.151	11.317	4.880	4.489	4.685
64	97.319	36.688	67.004	63.879	31.367	47.623	7.933	7.599	7.766	19.794	20.372	20.083	25.171	6.304	15.738
65	43.962		43.962	31.126		31.126	3.838		3.838	9.882		9.882	9.228		9.228
66	61.830	79.261	70.546	43.066	73.692	58.379	6.911	4.541	5.726	4.895	6.742	5.818	15.799	5.786	10.793
67	27.459	51.011	39.235	33.383	60.419	46.901	14.814	2.935	8.875	19.601	16.325	17.963	2.723	3.532	3.127
68	77.727	49.721	63.724	100.084	46.726	73.405	11.595	10.527	11.061	30.286	14.076	22.181	6.161	3.501	4.831
69	84.584	109.821	97.203	80.319	106.112	93.216	26.531	17.606	22.069	26.771	30.649	28.710	11.239	1.628	6.433
70	45.462	46.255	45.859	40.568	32.901	36.735	13.218	8.137	10.678	10.317	12.947	11.632	9.363	5.123	7.243
71	68.181	69.779	68.980	48.058	49.224	48.641	21.543	29.780	25.662	25.482	25.690	25.586	3.445	42.688	23.067
72	70.539	66.519	68.529	51.374	63.911	57.643	11.286	44.327	27.807	41.308	36.022	38.665	3.414	107.312	55.363
73	57.523	55.581	56.552	33.124	28.954	31.039	8.612	14.913	11.763	19.397	11.255	15.326	1.440	2.705	2.072

74	62.627	56.040	59.334	22.563	13.044	17.804	2.595	10.523	6.559	3.807	9.151	6.479	474	2.509	1.491
75	121.939	71.545	96.742	71.800	26.726	49.263	15.159	8.534	11.847	18.971	32.005	25.488	2.138	1.207	1.672
76	111.606	109.146	110.376	26.067	28.092	27.080	3.394	6.330	4.862	8.013	47.709	27.861	8.412	262	4.337
77	98.833	18.335	58.584	67.064	26.817	46.941	7.883	656	4.270	3.667	701	2.184	4.221	3.386	3.803
78	33.215	43.057	38.136	20.388	60.441	40.415	7.892	7.307	7.600	6.312	6.321	6.317	2.211	6.410	4.311
79	47.292	56.637	51.965	27.824	45.943	36.884	5.241	7.311	6.276	2.209	23.275	12.742	9.027	4.016	6.522
80	79.120	27.452	53.286	75.255	31.136	53.196	31.014	16.335	23.675	35.700	12.680	24.190	3.084	17.859	10.471
81							13.634		13.634	3.646		3.646	2.584		2.584
82	41.437	38.696	40.067	31.675	29.126	30.401	2.598	2.688	2.643	7.456	8.623	8.040	6.088	51.911	29.000
83	33.175	14.048	23.612	38.483	10.456	24.470	11.813	3.803	7.808	15.162	4.821	9.991	6.102	6.600	6.351
84	49.405	70.655	60.030	68.175	54.307	61.241	10.788	3.209	6.999	9.048	5.118	7.083	2.999	3.529	3.264
85	77.651		77.651	87.397		87.397	12.158		12.158	20.599		20.599	5.532		5.532
86	53.946	46.099	50.023	58.936	37.845	48.391	8.633	7.725	8.179	12.270	15.591	13.930	10.310	5.558	7.934
87	125.325	149.002	137.164	127.885	86.017	106.951	60.148	27.645	43.897	75.930	23.752	49.841	1.760	6.753	4.256
88	72.440	84.660	78.550	37.508	33.040	35.274	4.779	5.006	4.893	13.060	6.818	9.939	3.363	5.540	4.451
89	94.637	16.034	55.336	52.795	8.239	30.517	2.744	1.900	2.322	7.233	1.036	4.134	4.176	1.891	3.034
90	58.054	47.796	52.925	10.185	11.390	10.788	1.059	1.946	1.503	3.712	3.703	3.707	678	1.063	871