
UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Matheus Cunha Reis

Extending Smart Contracts security through

cryptographic protocols

Uberlândia, Brasil

2020

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Matheus Cunha Reis

Extending Smart Contracts security through

cryptographic protocols

Trabalho de conclusão de curso apresentado
à Faculdade de Computação da Universidade
Federal de Uberlândia, Minas Gerais, como
requisito exigido parcial à obtenção do grau
de Bacharel em Ciência da Computação.

Orientador: Ivan Sendin

Universidade Federal de Uberlândia Ű UFU

Faculdade de Computação

Bacharelado em Ciência da Computação

Uberlândia, Brasil

2020

Matheus Cunha Reis

Extending Smart Contracts security through
cryptographic protocols

Trabalho de conclusão de curso apresentado
à Faculdade de Computação da Universidade
Federal de Uberlândia, Minas Gerais, como
requisito exigido parcial à obtenção do grau
de Bacharel em Ciência da Computação.

Trabalho aprovado. Uberlândia, Brasil, 21 de dezembro de 2020:

Ivan Sendin

Orientador

Maria Adriana Vidigal de Lima

Professor

Rodrigo Sanches Miani

Professor

Uberlândia, Brasil

2020

Resumo

Smart Contracts juntamente com a Blockchain trouxeram um novo conjunto de possi-

bilidades no desenvolvimento de protocolos de segurança: os usuários ganham garantia

da execução correta das etapas dos protocolos enquanto a Blockchain proporciona um

ambiente seguro e imutável para a execução desses protocolos. Em contraste, as atuais

soluções baseadas em Smart Contracts não fornecem a privacidade de dados necessária

para os participantes interessados em um acordo, especialmente quando não há conĄança

mútua entre eles, algo indesejável em cenários de comércio eletrônico. Para fornecer uma

solução para compra de bens digitais onde as partes envolvidas não conĄam entre si, este

trabalho apresenta um protocolo de comércio justo usando Smart Contracts, Bloom Fil-

ters e a plataforma Ethereum. Em geral, o protocolo provou ser promissor para negócios

de médio a alto custo. Entretanto, seu uso em cenários de baixo custo deve ser abordado

com cautela, pois os custos da execução do protocolo devem ser levados em conta.

Palavras-chave: Blockchain, Smart Contracts, Ethereum, Fair Trade.

Abstract

Smart Contracts along with Blockchain bring a new set of possibilities in the security

protocol development: participants gain guarantees of the correct execution of the protocol

steps while Blockchain provides a secure and immutable environment to execute those

protocols. In contrast, current Smart Contract solutions do not provide the necessary data

privacy for the interested participants in a trade, especially when they are not mutually

trustworthy, being awful in scenarios of e-goods commerce. To provide a solution for e-

goods trading where the involved parties do not trust each other, this work presents a

fair trade protocol using Smart Contracts, Bloom Filters, and the Ethereum platform. In

general, the protocol proved to be promising for medium to high-cost trades. However,

its use in small-cost scenarios must be approached with caution, as the protocolŠs cost

execution must be taken into account.

Keywords: Blockchain, Smart Contracts, Ethereum, Fair Trade.

List of Figures

Figure 1 Ű The architecture of Ethereum . 12

Figure 2 Ű A Bloom Filter with 𝑛 = 14 and 𝑘 = 3. The elements A and B were

included in this Bloom Filter. Consulting if C is in this Bloom Filter

results a false positive. 24

Figure 3 Ű The blockchain structure of Bitcoin . 27

Figure 4 Ű FairContract preparation. 33

Figure 5 Ű FairContract execution for honest 𝒜 and ℬ. 35

Figure 6 Ű FairContract in litigious mode. ℬ sends 𝐿r

ℬ to FairContract and

receives the payment. If not, after a timeout, 𝒜 receives the contract

values. 36

Figure 7 Ű Game tree of the protocol after the sale started. The Ąrst coordinate

is the buyer payoff and the second is seller payoff; 𝒜 nodes represents

buyer actions and ℬ nodes represents seller ones. The heavy edges

denote the honest behaviour. 44

Listings

3.1 States of Contract . 37

3.2 The function where both parties send their commits 38

3.3 The function to start the sale . 38

3.4 The function for buyer accepts the sale . 39

3.5 The function for buyer refuses the sale and activate the litigious mode 39

3.6 The function where seller send the words in case of litigation 39

List of Tables

Table 1 Ű Summarization of dishonest behavior and penalties in FairContract. . 36

Table 2 Ű Estimated average cost to execute the contract at Ethereum 42

List of abbreviations and acronyms

P2P Peer-To-Peer

ZKP Zero-Knowledge Proof

SMC Security Multi-Part Computation

MPC Multi-Part Computation

DHT Distributed Hash Table

IT Information Technology

PSI Private Set Intersection

DAPPS Decentralized Applications

EOA Externally Owned Account

POW Proof of Work

DoS Denial of Service

EVM Ethereum Virtual Machine

Contents

1 INTRODUCTION . 11

1.1 Objectives . 13

1.2 Methods . 13

1.2.1 Zero-Knowledge Proof (ZKP) . 13

1.2.2 Security Multi-Party Computation . 14

1.2.3 Enigma . 15

1.2.4 Hawk . 16

2 THEORETICAL BACKGROUND 18

2.1 Cryptographic Protocols . 18

2.1.1 Commitment schemes . 18

2.1.2 Verifiable Computation . 20

2.1.3 Diffie-Hellman . 21

2.1.4 Private Set Intersection . 22

2.2 Bloom Filters . 23

2.3 Smart Contracts . 25

2.4 Proof of Work (POW) . 26

2.5 Ethereum . 28

2.5.1 Accounts . 28

2.5.2 Gas . 28

2.5.3 Messages and Transactions . 29

2.5.3.1 Transactions . 29

2.5.3.2 Messages . 29

2.5.4 Ethereum Virtual Machine . 30

2.5.5 Blockchain and Mining . 31

3 DEVELOPMENT . 32

3.1 Protocol . 32

3.1.1 Preparation . 32

3.1.2 Execution . 34

3.1.2.1 Honest Execution . 34

3.1.2.2 ℬ Acting Dishonestly . 35

3.1.2.3 𝒜 Acting Dishonestly . 36

3.2 Implementation . 37

3.2.1 Contract . 37

4 RESULTS . 41

4.1 Gas Analysis . 41

4.2 Game-theoretic Analysis . 42

5 CONCLUSION . 45

BIBLIOGRAPHY . 46

11

1 Introduction

At the end of 2008, Satoshi Nakamoto, a pseudonym for an individual or a group

of unknown people, published the article Bitcoin: A peer-to-peer electronic cash system

(NAKAMOTO, 2008) introducing an electronic cash system that uses a Peer-To-Peer

(P2P) network, which allows a person transfer money to another without depending

on a central authority or Ąnancial institution. This system called Bitcoin, also deĄned

as digital money ecosystem (ANTONOPOULOS, 2014) conciliated many tools and

technologies already known in a fast, secure, immutable and decentralized structure.

In the Bitcoin Protocol, units of currency also called Bitcoin are used to store and

perform transactions, either to transfer amounts to users or organizations or to buy and

sell products. After concluding the transactions, they are grouped and saved in blocks,

consequently chained in a list termed ledger, where Ąnancial transactions of users are

stored and distributed to members of the P2P network, without dependence and interfer-

ence of third parties, ensuring the veracity of data.

Blockchain or Distributed Ledger Technology (DLT) are another names given to

ledger, that could be described as the technology in the heart of the Cryptocurrencies. This

distributed database system keeps the blocks of the transactions sequentially, protecting

and encapsulating with a series of cryptographic methods, accessible for the world with

permanent and veriĄable data.

Definition 1.1. Blockchain At a technical level, blockchain can be defined as an im-

mutable ledger for record transactions, maintained within a distributed network of mutually

untrusting peers (GAUR et al., 2018).

Definition 1.2. Distributed Ledger Technology (DLT) A ledger that is distributed

among its participants and spread across multiple sites or organizations where the records

are stored contiguously (BASHIR, 2017).

Although used mainly as a ledger in Cryptocurrencies, it was noted that the

BlockchainŠs applicability was not restricted at this. Many projects were written and

developed to explore new possibilities for the Blockchain, using it for storage mechanisms

and Ąnancial transactions processing, including in the areas of health, food, and music

industry, among others (MATTILA, 2016).

One of the main applications and most used is Ethereum, a decentralized and

open-source distributed computing platform that provides uploading and autonomous

execution of scripts. The Blockchain is used to synchronize and store the changes of

system states, along with a cryptocurrency called Ether utilized to control the system,

Chapter 1. Introduction 13

to Smart Contracts being public and irreversible, contracts tend to be more susceptible

to failures and security attacks. After all, people with malicious intentions can see and

exploit the human factorŠs security Ćaws, being data, and money theft possible.

Since Smart Contracts are always associated with money, cryptocurrencies, and

tokens, users are very concerned about conĄdentiality. Consequently, data on Blockchain

is public, so it is impossible to hide pieces of information, including account balances,

which can be discouraging and uninteresting to companies and users who have sensitive

and conĄdential information.

Definition 1.3. Tokens Cryptocurrencies built by the Smart contracts over the Ethereum’s

Platform, mainly used as part of an ecosystem or collaborative fundraising.

1.1 Objectives

The main objective of this work is to analyze and provide solutions for improve the

conĄdentiality and privacy in Smart Contracts environments, using various cryptographic

methods and platforms in order to propose a new secure, private and trustable platform.

1.2 Methods

As previously discussed, Blockchain along with Ethereum and Smart Contracts

have the lack of privacy and conĄdentiality. To try to solve some of these problems, there

were created cryptographic methods that try to bring a bit more of conĄdentiality to

Smart Contracts.

1.2.1 Zero-Knowledge Proof (ZKP)

Zero-Knowledge Proof is a cryptographic protocol that adds a new level of security

and privacy to the Blockchain. It consists of proving that given a problem, and two parties,

one party (the prover) can prove to another party (the veriĄer) that he knows how to

solve the problem without conveying the solution itself, where the veriĄer can check if

the prover knows how to solve the problem without knowing the solution. As an example,

imagine have a color-blind friend and two balls, one red and another green, both of the

same size, and you wanna prove to your friend that those balls have different colors. The

friend as a color-blind person will certainly doubt your word. To make him believe, you

could ask him to get the balls and hide them from you in his backs. Thenceforward, your

friend with one ball in each hand will choose to change the hands or not, asking you if

the balls were changed in each turn. He would think that is just coincidence or lucky in

the Ąrst turns, but after some time, he will accept the proof that the balls have different

colors (KOENS; RAMAEKERS, 2017).

Chapter 1. Introduction 14

This experiment implements the core strategy of ZKP applications. A true Zero-

knowledge proof needs to have three different properties:

1. Completeness: If the information is true, the veriĄer should be convinced without

any extra help;

2. Soundness: If the information is false, the veriĄer can not be convinced in any

scenario;

3. Zero-knowledge: The veriĄer should not know any more information.

It should be noted that this algorithm works iteratively, where the prover keeps

sending proofs to the veriĄer until he is satisĄed. This iterable algorithm, also called

interactive ZKP, does not work well in P2P environments, as it is impractical to keep

checking the proof between nodes.

Due to this problem, the zkSnarks (REITWIESSNER, 2016) was created, a non-

interactive algorithm where the prover sends the proof to the veriĄer and the veriĄer

checks the proof itself without sending anything back to the prover which eliminates the

iterable part of the algorithm, making it suitable for use in P2P networks.

1.2.2 Security Multi-Party Computation

Security Multi-Party Computation (SMC), also known as Multi-Party Computa-

tion (MPC), is an essential topic in the cryptographic world. SMC allows multiple parties

to securely compute a function on their private inputs in a way that no data beyond the

agreed would be available to the parties. Unlike other cryptographic methods, SMC does

not try to protect the data from outside parties, but the attention is to keep secret the

individual data of the connected parties (EVANS; KOLESNIKOV; ROSULEK, 2018).

As an example, let us imagine that we have a number of N parties interconnected

(𝑝1, 𝑝2, ..., 𝑝n), each of them with their respective data (𝑑1, 𝑑2, ..., 𝑑n), and they want to

compute the value of a public function passing their private data without revealing the

data to other parties. The Ąrst and easier strategy would have an external trusted party

(𝑝e), where the parties would reveal their data to 𝑝e, and 𝑝e would call the public function

returning just the result for all the parties, assuring that two different parties would never

have the data of each other. The problem with this approach is the solution itself. Just

Ągure out if this trusted party decided not to be honest anymore and distribute the data

of 𝑝1 to 𝑝2, the process would not be fair, and 𝑝2 would always have an advantage against

the other parties.

The main reason why the SMC protocol was developed is precisely to solve this

problem. In the protocol, the partiesŠ data are partitioned and distributed between all

Chapter 1. Introduction 15

parties, where each party has a meaningless small piece of data. To execute the public

function, each party sends their data parts, and the merge of the data passed to the

function gives a correct result without revealing any information.

The basic properties to be maintained by a multi-party protocol are:

Input privacy No information on the private data held by the parties may be inferred

from the messages sent during the execution of the protocol. The only information

that can be inferred from private data is anything that could be inferred from seeing

the output of the function on its own;

Completeness Any appropriate subset of adverse parties willing to share data or deviate

from orders during the implementation of the procedure should not be able to force

honorable parties to achieve an inaccurate outcome. This correctness goal comes in

two ways: either honest parties are guaranteed to calculate the correct output, or

they abort if they Ąnd an error.

Examples of this protocol include privacy-preserving decision-making on distributed

or Ąnancial medical data, privacy-preserving machine learning, auctions, online poker, pri-

vate set intersection of sets belonging to various organizations, etc.

1.2.3 Enigma

A decentralized computation platform to build end-to-end decentralized applica-

tions without a trusted third party (ZYSKIND; NATHAN; PENTLAND, 2015). Enigma

has two main properties:

1. Private: Enigma uses a multi-party security computation, splitting data between

different nodes and merging them when a computation is needed, assuring that

parties know their own data and nothing more;

2. Scalable: Unlike blockchains, the computation and data are not replicated by every

node in the network, where Enigma creates different groups of nodes and attributes

to them responsibility for different parts of the data. Assuring less use of storage

and more computationŠs performance.

Designed for connecting to an existing Blockchain, the approach of Enigma consists

of separating the code of a Smart Contract into two parts: public and private. The public

part would be processed by the Blockchain itself and contain data and part of the code

that can be visible for everyone. Whereas the private part and the computation would be

off-loaded to the EnigmaŠs off-chain and cannot be visible for anyone.

Chapter 1. Introduction 16

Definition 1.4. Distributed Hash Table A distributed hash table (DHT) is a decen-

tralized storage system that provides lookup and storage schemes similar to a hash table,

storing key-value pairs.

The codeŠs execution is decentralized but not distributed, so the nodes execute

the function redundantly to achieve the same state in all nodes. Beyond that, with an

off-chain network Enigma solves known issues that the Blockchain cannot handle:

1. Storage: Solving the problem of the high cost of storage in the Blockchain, Enigma

has a decentralized off-chain Distributed Hash Table (DHT) accessible through the

Blockchain, which stores the link to the information, but not the data itself;

2. Privacy-enforcing computation: Enigma ensures correct execution of code with-

out leak any private information for other nodes;

3. Heavy processing: As the computationŠs cost in Blockchain is expensive, Enigma

pass through that executing the heavy computations off-chain and just distributing

the results for the nodes.

1.2.4 Hawk

A framework for building privacy-preserving Smart Contracts. As Enigma, Hawk

separates the code into the public and private portions. The private portion is protected

along with the participantŠs data and the money exchanges, whilst the public portions do

not touch private data or money.

Hawk owns his self compiler, which gets the public and private portions of code

and generates jointly with cryptographic methods, the blockchainŠs program which will

be executed by all consensus nodes, a program to be executed by users, and a program

to be executed by a special party called the manager.

This manager can see the userŠs inputs and is trusted not to disclose the userŠs

private data. Unlike the manager in common trusted third parties, the Hawk manager

can not affect the execution of the contract or give some advantage to one of the parties.

His role consists of performing the multiparty computation and guaranteeing the right

execution of Smart Contracts (KOSBA et al., 2016).

With all of those concepts, Hawk brings three properties as security guarantees:

1. Input independent privacy: Each user can not see other usersŠ data before in-

teracting with the contract. In other words, the data are independent;

2. Posterior Privacy: As the manager does not expose any data, the privacy of the

data stored through transactions is guaranteed;

Chapter 1. Introduction 17

3. Security against a dishonest manager: The manager can not affect the system

or have misbehaving acts without receiving high penalizations.

18

2 Theoretical Background

In this chapter, a theoretical background is built in order to explain and contex-

tualize the reader about all theoretical concepts used in the present work.

2.1 Cryptographic Protocols

2.1.1 Commitment schemes

In cryptography, a commitment scheme is a primitive that allows a user to commit

to a chosen value while keeping it secret to other users, including the capacity to reveal

the committed value later. To understand, we could compare a commitment scheme with

a safe, where a person Alice, locks an item inside the safe and gives it to another person

Bob, without telling the safeŠs secret. The item inside the safe is hidden from Bob, who

cannot open or change it cause he does not have the secret, but even without seeing the

item, Bob can assure that the item did not change since he received the safe, no mattering

if Alice reveals the key or not (BLUM, 1981).

Every commitment scheme has two phases:

1. Commit: The phase where a value is chosen and speciĄed;

2. Reveal: The phase where the chosen value at the commit phase is revealed and

speciĄed.

Moreover, it needs to follow two properties:

∙ Hiding: The property that guarantees the secrecy and privacy of the choices in

both phases;

∙ Biding: The property that certiĄcates the immutability of the values after the

commitment phase.

Generally, on simpler commitment schemes, in the commitment phase, a sender

delivers a message to the recipient, as long as that message cannot be recognized by him,

which is called commitment. Whereas in the reveal phase, the recipient calculates and

validates the message sent in the commitment phase, which is known by opening.

Nowadays, several applications require values to be hidden, and commitment

schemes are excellent solutions for this kind of problem. Some of the most known ap-

plications are:

Chapter 2. Theoretical Background 19

∙ Coin Flipping: A coin Ćip protocol when the participants, Alice and Bob, are not

physically in the same place. In a normal game, Alice and Bob would bet in one of

each face of the coin and Ćip it to check the winner, but that does not work when

the parties are not in the same place, seeing that the Ąrst to start the game would

have to bet a coinŠs face and send it to the other one and the second player could

cheat adapting the result of the Ćip to win.

By commitment schemes, a secure protocol can be done in Ąve steps:

1. Alice chooses her bet, hashes it with a secret key and send this hash as a

commitment to Bob;

2. Bob Ćips the coin and exposes the result;

3. Alice reveals the private key and her original bet to Bob;

4. Bob veriĄes AliceŠs commit by comparing it to the hash of original bet using

the secret key passed by her;

5. If AliceŠs commit is correct and equal to the coin result, she wins. Else, Bob

wins.

The only way that Bob can distort the results is if he could break the hash function.

So the security does not stand in the protocol itself but in the hash function used

in it;

∙ Blockchain: As stated before, Zero-Knowledge Proof (ZKP) is a commitment

scheme where a person could prove to another that he is capable of solving a speciĄc

problem without knowing the solution itself. In Blockchain, ZKP is regularly used to

help in the validation of transactions, considering that the transactionŠs and usersŠ

data need to be calculated without identiĄcation;

∙ Blind Auction: A blind auction is a type of auction, where the bidders submit

their bids simultaneously in secret so that no one would know how much the others

have bid until the end of bidding time. The winner of the auction is revealed when

the bids are exposed, and the bidder with the highest bid gains the prize.

A commitment scheme to solve this problem uses the same concept of the Coin

Flipping problem. Supposing that Alice is the auctioneer and Bob and Steve are the

bidders, the protocol can be described in three phases:

1. In the Ąrst phase, Bob and Steve will generate or choose a secret key for them.

With those keys in their hands, they will concatenate it to their bid and hash

it. The hash of the concatenation is what they will send to Alice to fulĄll their

bid;

Chapter 2. Theoretical Background 20

2. After the bidding time expires, Alice will ask the participants (Bob and Steve)

to send a proof of their bids. And so on, each one of them will send the original

bid and the secret key used to hash it. Alice will get all the proofs and check

the initial bidsŠ veracity, revealing the correct ones. Subsequently, Alice reveals

the winner by comparing the valid bids;

3. And in the last phase, the winner bidder gives the value of the bid to Alice

and receives his prize.

2.1.2 Verifiable Computation

Cloud computing had become an essential tool in the IT industry, as it offers

users computing resources without thinking about how these resources are provided and

handled. Along with the high consumption of those cloud servers, which are typically

managed by third-party vendors, the concerns about security, privacy, and correctness

execution raises considering that the trust in third parties guarantees those concerns

(LAI et al., 2014).

The correctness execution of the computation is one of the most worrying topics. It

has been studied for a long time since if the server gives incorrect results, the users should

be warned that the result data is not reliable. Users should also not have to trust third

parties blindly, but the parties should gain the userŠs trust or prove that the algorithms

will always be executed correctly and honestly in their platforms.

Thusly, veriĄable computing or veriĄed computation is deĄned as a protocol that

allows a veriĄer (client) to send data to a provider (server) with the expectation that the

result of a computation performed by him is veriĄable without the need for recomputing

data and provides a quick veriĄcation compared to running the algorithm itself.

There are diverse implementations of veriĄable computation, and each one of them

was created to solve special cases (LAI et al., 2014). Also, the algorithms are classiĄed

into two categories:

∙ Interactive: The interactive methods require multiple rounds of interaction be-

tween the parties in order for the prover to convince the veriĄer that the proof is

valid and generally assumes the use of strong polynomials being inefficient in some

real-world cases;

∙ Non-interactive: In the non-interactive methods, there is no data exchange in

the attempt of showing the validity of the proof, and the prover only produces

a validation certiĄcate at the end of computation as proof of work. This type of

implementation is more acceptable in the real world due to the order of polynomial-

time of execution.

Chapter 2. Theoretical Background 21

2.1.3 Diffie-Hellman

The rise of the Internet and its recurring innovations permitted the world to use

Information Technology (IT) tools for multiple reasons and routines, from Ąnancial trans-

actions to control our own house, just with some clicks, making our lives more Ćexible and

dynamic. However, the dependence on technology led to a huge increase in the number

of threats aimed at privacy invasion and data thefts.

Cryptography is an essential topic to keep those data safe and to prevent illegal

access to private data. There are two types of cryptography, symmetric and asymmetric,

and they both utilize security keys to cryptograph data, allowing the veriĄcation of the

userŠs identity and the information itself.

Symmetric cryptography is a type of algorithm where both sides of communica-

tion use the same secret key to encrypt and decrypt the messages. Through symmetric

algorithms, a message is converted to a cipher that cannot be understood by anyone who

does not have the same key to decrypt it. Once this message is received by who has the

same key, the algorithm decrypts it, and the original message is returned. The security

of symmetric algorithms is based on how difficult it is to break a key using a brute force

attack, so as bigger the key, the more trustable and safe is the algorithm.

Unlike symmetric algorithms, asymmetric cryptography or public-key cryptogra-

phy operates with two keys, a public and a private. As his name suggests, the public is a

key known by everyone, while the private is known and accessed just by his owner. Both

keys, also known as pair of keys are used to decrypt and encrypt the messages in two

situations: when Alice wants to send a message that only Bob can read and in this case,

she will use the public key of Bob to encrypt the message and Bob would use his private

key to decrypt, and in the situation where Alice wants to prove that she wrote a message

and then she would encrypt the message with her own private key, allowing anyone to

check the veracity of message with AliceŠs public key. Similar to symmetric algorithms,

the security of asymmetric functions depends on the size of the keys.

As symmetric cryptography needs a shared secret key between the parties, another

problem appeared: creating and distributing a secret key in a secure way between the

parties. To solve this, WhitĄeld Diffie and Martin Hellman created the Diffie-Hellman key

exchange algorithm in 1976. The objective of Diffie-Hellman is to allow two users to share

a secret value securely in a non-secure environment, that can be used as a key for the

encryption of messages (DIFFIE; HELLMAN, 2006).

Definition 2.1. Primitive Root In modular arithmetic, a number g is a primitive root

mod n, if all relatively primes of n are congruent to a power of g mod n (CORN et al.,

2020).

Chapter 2. Theoretical Background 22

Diffie-Hellman is based on operations with discrete logarithms and can be described

in 7 steps:

1. Initially, Alice and Bob, the parties that want to create the key, agree on two values:

p, a prime number, and g, a primitive root of p. Those values can be exchanged in a

non-safe network, in other words, they do not need to be kept secret from anyone;

2. Alice chooses in private a secret number a;

3. Bob do the same choosing b;

4. Alice computes A, and send it to Bob;

𝐴 = 𝑔a 𝑚𝑜𝑑 𝑝

5. Equally, Bob computes B and send it to Alice;

𝐵 = 𝑔b 𝑚𝑜𝑑 𝑝

6. Upon receiving B, Alice computes the shared key K;

𝐾 = 𝐵a (𝑚𝑜𝑑 𝑝) = 𝑔ba (𝑚𝑜𝑑 𝑝)

7. And Bob also calculates the shared K at the acquirement of A.

𝐾 = 𝐴b (𝑚𝑜𝑑 𝑝) = 𝑔ab (𝑚𝑜𝑑 𝑝)

As 𝑔ab (𝑚𝑜𝑑 𝑝) = 𝑔ba (𝑚𝑜𝑑 𝑝), the key would always be the same and just known by

the party who has the key a or b. Therefore, Alice and Bob could use the key to exchange

information through a symmetric algorithm without worrying about privacy invasions or

data theft. In security perspectives, if p is large enough, the computation in unfeasible,

considering that a malicious person would have to calculate a from 𝐴 = 𝑔a 𝑚𝑜𝑑 𝑝 or b

from 𝐵 = 𝑔b 𝑚𝑜𝑑 𝑝, what leads to the calculation of discrete logarithm of p that takes a

considerable amount of time depending on p size.

2.1.4 Private Set Intersection

Private Set Intersection (PSI) is one of the best-studied subjects in the Ąeld of

secure computation. It consists in calculate the intersection of sets from two parties with-

out exposing any information about the items for each party (PINKAS; SCHNEIDER;

ZOHNER, 2018).

An initial idea was to use a third party to handle the service. So, for example, if

Alice and Bob, the parties, send their sets 𝑆𝒜 = ¶𝑥1, 𝑥2, ..., 𝑥n♢ and 𝑆ℬ = ¶𝑦1, 𝑦2, ..., 𝑦n♢

Chapter 2. Theoretical Background 23

to a third party Steve, he could calculate the intersection and send the result back, but

in this process, he would also learn the items and Alice and Bob would lose their privacy,

what violates the main principle of PSI.

A naive solution for PSI problem beyond the use of a third party would be Alice

and Bob consent in use a cryptographic hash function 𝐻 and calculates a new set using

this function, where 𝑆’

𝒜 = ¶𝐻(𝑥1), 𝐻(𝑥2), ..., 𝐻(𝑥3)♢ and 𝑆’

ℬ = ¶𝐻(𝑦1), 𝐻(𝑦2), ..., 𝐻(𝑦3)♢.

As the same hash function is used in both sets, they could send the new set for each other

and Ąnd the intersection comparing the hashes of the items. This technique works in some

cases, but for sets from small spaces (phone numbers, registration codes, ...), a dishonest

party could make a brute force attack and discover all the items from the other one.

Another interesting approach is use the Diffie-Hellman key exchange protocol along

with PSI to achieve better results. The protocol works similarly to the naive solution.

However, instead of using the same key and hash function for all items in sets, the parties

would generate two sets of shared keys being one key for each item in the sets, and if a key

is present on both sets, then the item is in the intersection. The limitations also include

the problem when the set domain is small, but the efficiency and practicality increases as

the size of sets grow (Meadows, 1986).

PSI is not important only in theory, there are several implementations for multiple

use cases (CRISTOFARO; TSUDIK, 2009). For example:

∙ Contact Discovery: Check which contacts in userŠs address book use the same

application or service;

∙ Airport Security: The airport security team could use PSI to check in a terrorist

list of a foreign airline if a passenger is wanted. As neither party wills to reveal its

list, they could calculate the intersection between the boarding list and terrorist

lists to assure the safety of passengers;

∙ Online Advertisements Performance: Companies could compare the list of

clients that received an advertisement for a speciĄc product and the list of clients

that bought that product without invading the clientŠs privacy.

The best choice for a protocol generally depends on data size, how secure and fast

the protocol should be, and if the execution platform has limited resources.

2.2 Bloom Filters

Bloom Filter is a fast and space-efficient probabilistic data structure that calculates

whether an element belongs to a set or not. For the sake of efficiency, Bloom Filters can

Chapter 2. Theoretical Background 24

produce false positives and, in fact, they return if the element may be in the set or

deĄnitely not.

In the original Bloom Ąlter implementation, the methods add, and contains are

available. The add method as his name suggests just adds an element to the set. Whilst

test method returns false if the element is not in the set or true if the element is probably

in.

The backend of a Bloom Filter is a bit vector with size 𝑚; to add some element 𝑒

to a Ąlter, a family of 𝑘 cryptographic hash functions1 is used set on 𝑘 bits of the backend

vector. In Figure 2 is presented a Bloom Filter containing two elements - A and B. When

someone query this BloomFilter for C, a false positive occurs. Given the expected number

of elements 𝑛 and a tolerable probability of false positive 𝑝, the parameters 𝑚 and 𝑘 can

be determined by:

𝑚 =

⋃︀

⋁︀

⋁︀

⋁︀

𝑛 * 𝑙𝑛(𝑝)

𝑙𝑛(1
ln(2)2)

⋂︀

∑︁

∑︁

∑︁

𝑘 =
⎫

𝑚

𝑛
* 𝑙𝑛(2)

⎩

A

?

?

?

B

C

Figure 2 Ű A Bloom Filter with 𝑛 = 14 and 𝑘 = 3. The elements A and B were included
in this Bloom Filter. Consulting if C is in this Bloom Filter results a false
positive.

As Bloom Ąlters are space-efficient, they have some powerful properties like:

∙ Set Union: Given two Ąlter with the same size and using the same family of hash

functions, the set union operation is given by the bitwise OR operation;

∙ Set Intersection: Similarly, the set intersection is obtained by bitwise AND;

∙ Set Size: The number of elements added to Ąlter can be calculated approximately

by this formula given 𝑋, the number of bits Š1Š in the Ąlter:

1 Cryptographic hash functions produces hash codes not suitable to be used directly as an index to an
array, usually just some bits of hash code is used.

Chapter 2. Theoretical Background 25

𝑆 = ⊗
𝑛

𝑘
⊗ ln(1 ⊗

𝑋

𝑛
).

Although bloom Ąlters are built using cryptographic hash functions with proper-

ties of unidirectionality and second pre-image resistance, bloom Ąlters offer very limited

privacy in some scenarios: given a Bloom Filter determining a 𝑥 that is in the Ąlter has

difficulty limited by the probability of false positives of the Ąlter. In the context of a "dic-

tionary attack", an opponent can easily brute force the dictionary and test each element.

In some scenarios, the privacy properties are enough, and Bloom Filters are used in some

cryptocurrency protocols (see (GERVAIS et al., 2014) for example).

Some authors propose advances in Bloom Filters to provide better privacy. In (LAI

et al., 2006) the authors propose the partitioning of the Ąlter in order to obtain privacy.

The use of cryptographic schemes based on Pohlig-Hellman Encryption (BELLOVIN;

CHESWICK, 2007), and the use of Blind Signatures and Oblivious Pseudorandom Func-

tion (NOJIMA; KADOBAYASHI, 2009) are also proposed.

2.3 Smart Contracts

The Bitcoin and Cryptocurrency revolution has brought several changes in the

manner in which we comprehend and manage cash. Furthermore, those digital currencies

have also helped to develop quite revolutionary technologies, with various applications in

the Ąnancial world, such as the Smart Contracts.

Smart Contracts are self-executing digital contracts that use technology to guar-

antee that a contractŠs agreements will be fulĄlled. In essence, they can be deĄned as

programming codes described by strict rules and consequences - in the same way as a tra-

ditional document, establishing responsibilities, beneĄts, and penalties due to the parties

in different circumstances (SZABO, 2018).

The distinction with a traditional contract is that the smart contract is public,

digital, immutable, secure, and self-executing. In other words, it guarantees the security

of the execution of the agreement, using Blockchain technology for this.

Thus, when a smart contract is created, and the parties had closed an agreement,

the clauses are programmed, and the contract is deployed, activating the requirements

automatically, simplifying the payments, and the inspection of the processes. The vali-

dation of the contract rules is done by Blockchain, which accompanies the shared data

and allows direct and encrypted communication, guaranteeing more security in the whole

process.

The information inserted in the agreement is automatically updated, and all the

actions are executed without the risk of frauds and alterations. This is only possible

Chapter 2. Theoretical Background 26

because the smart contract is immutable. However, the consequence of immutability is

that even a small mistake like a typing error forces the administrator to create a new

contract.

Besides, and according to Nick Szabo, some principles need to be attended for a

contract be considered smart (SZABO, 2018). They are:

1. Observability: Ability to verify that others have fulĄlled their part of the contract

and to prove to others that they have fulĄlled theirs;

2. Verifiability: Ability to prove to a third party that the contract has been executed

or violated or the ability of such third parties to discover these by other manners;

3. Privacy: Only the responsible parties may have access to the execution of the

contract.

On this wise, it is clear to see how versatile Smart Contracts can be, being used

in elections, insurance agreements, to trade cash, properties, information, or any other

items that people consider appropriate for a negotiation. Lastly, it has allowed the trans-

formation of the conventional processes for signing contracts into an efficient, practical,

and safe steps, optimizing the management and issuance of documents with suppliers or

consumers of products and services.

2.4 Proof of Work (POW)

The idea came out in 1993 in an article published by Cynthia Dwork and Moni

Naor (DWORK; NAOR, 1992), this scientiĄc paper introduced a new method to reduce

spam emails by using the computational power of computers. In fact, the term Proof of

Work (PoW) did not appear in the article, but already had the concept of forcing the

user to prove that he accomplished a task. Later in 1999, Markus Jakobsson and Ari

Juels published the article "Proofs of work and bread pudding protocols" (JAKOBSSON;

JUELS, 1999), which formalized the idea of the Proof of Work, a protocol where a prover

demonstrates to a veriĄer that he has spent a certain level of time and computational

effort over a speciĄc time interval.

The protocol was not as popular until Satoshi Nakamoto released the Bitcoin

whitepaper, given that Proof of Work was the most signiĄcant idea behind it. With this

protocol, he introduced the idea of how it could be used to enable a distributed and

reliable consensus.

Definition 2.2. Whitepaper A white paper is an official document published by a gov-

ernment or an organization, in order to serve as a report or guide about a problem and

how to face it.

Chapter 2. Theoretical Background 28

2.5 Ethereum

The Ethereum proposal came up with Vitalik Buterin, a member of BitcoinŠs

own active community in 2013. The idea was to create an open-source, decentralized

and distributed platform that could do more than Bitcoin, being capable of running

distributed applications (DAPPS) also know as Smart Contracts based in Blockchain and

use its advantages without the complexity and costs of creating a private network.

Along with Ethereum, a coin named Ether was created to be the base of the entire

platform ecosystem. Beyond the normal usage of a cryptocurrency, Ether was raised to be

used as payment for performing operations like the deployment of a contract or a function

invocation (Leka et al., 2019) and to compensate the mining nodes for their computations.

2.5.1 Accounts

Ethereum uses Blockchain to store not only the state of your usersŠ accounts but

also source code and its associated state. DeĄned as objects that can store the balance of a

user or the state itself of a smart contract, the accounts can be separated into two types:

Externally Owned Account (EOA), accounts controlled by private keys, and Contract

Account, accounts controlled by their contract code. The EOA accounts are belonged by

external users who can use accountŠs private key to send messages and sign transactions,

whereas Contract accounts execute its code when it receives a message which can also

deploy or interact with other contracts (SOLIDITY, 2019). The accounts own 4 Ąelds:

1. Nonce: A counter to guarantee that the same transaction would not be processed

multiple times;

2. Balance: The accountŠs ether balance;

3. Contract Code: The accountŠs contract code, if present;

4. Storage: The accountŠs storage.

2.5.2 Gas

A mechanism called gas is used by Ethereum to represent the cost to pay for each

computation realized by contracts. The most simple operation spends 1 unit of gas at

execution, and the amount of gas needed grows in conjunction with the complexity of the

contractsŠ source code.

On top of that, other properties were created, the gas limit, and the gas price.

The purpose of the gas limit as his name suggests is to establish a limit for the use of gas

avoiding denial of service attacks (DoS) as well as other spam attacks. Whereas the gas

price determines the price in Ether to pay for each unit of gas spent.

Chapter 2. Theoretical Background 29

In each contract deployment or function execution, the messageŠs sender speciĄes

the gas limit and the gas price. If the operation spends more than permitted or the sender

does not have enough ether to pay the gas cost, the transaction effects are reverted, and

the sender lost the gas fee spent (Leka et al., 2019).

It is essential to understand that the processing speed of transactions directly

depends on how the gas price is set. Due to the fact that miners receive an amount of

Ether equivalent to the total amount of gas it took them to execute a complete operation

and they decide which transaction their node will process or not, they will mostly choose

the transactions with the higher price, as lower prices are less lucrative for them. So, the

gas price should be properly balanced, owing to a transaction with a lower price take

some time or not be processed, while transactions with a higher price will be executed

faster, but the Ether spent would be increasingly high (ROSIC, 2020).

2.5.3 Messages and Transactions

2.5.3.1 Transactions

Being one of the core functions in Ethereum, transactions are signed data packages

that store a message to be sent from an externally owned account (EOA) forwarded by

the Ethereum network and stored in the Blockchain (Leka et al., 2019). Those packages

could refer to a transference of ether from an account to another, a contract creation, or

a contractŠs method call and each transaction contain the following Ąelds:

1. Nonce: A counter to guarantee that the same transaction would not be processed

multiple times;

2. Gas Price: The fee to pay for each computation;

3. Gas Limit: The maximum number of gas allowed to be spent;

4. To: The recipient of the transaction;

5. Value: The amount of ether to transfer from the sender to the recipient;

6. Data(optional): A data Ąeld;

7. v,r,s: A signature that identiĄes the sender.

2.5.3.2 Messages

Contrarily from transactions, Messages can only be originated by ContractŠs Ac-

counts, although they perform similar actions and can be used for the same objectives,

ether transferences, contract creation or methods call. The main differences are that the

messages are the only way how contracts can communicate with each other and they are

Chapter 2. Theoretical Background 30

not stored in Blockchain, as they just exist in the running environment of Ethereum (Leka

et al., 2019). The messages own 5 Ąelds:

1. Sender: The sender of the message;

2. Recipient: The recipient of the message;

3. Value: The amount of ether to transfer from the sender to the recipient;

4. Gas Limit: The maximum number of gas allowed to be spent;

5. Data: A data Ąeld.

An interesting point of view about messages is that the gas price is not part of the

arguments as it is in transactions. The reason for that is because the contracts do not pay

gas and the gas is always paid by the EOA accounts at the creation of transactions, what

does imply that the gas limit speciĄed by a transaction is shared with all the messages

that are created from its execution.

So, at the moment that a contract receives a transaction or a message, your code

is executed, which can delegate a call to other methods in different contracts creating

a chain of messages that will Ąnish after the execution of them or until the gas limit is

exceeded.

2.5.4 Ethereum Virtual Machine

Ethereum Virtual Machine (EVM) is the main role in the platform ecosystem and

provides a runtime environment that runs in EthereumŠs network. It allows the execution

of smart contracts code by compiling it to EVM bytecode, an executable code, and Con-

tract ABI, and interface to interact with EVM bytecode. Along with those data, EVM

parses the code, calculates the gas needed, executes, and mine it to store on blocks.

Once a contract is deployed, its code is compiled obtaining the EVM bytecode and

the contract ABI, which is stored in the blockchain. After that, when a method is called

by an external source, the call passes Ąrst by the ABI interface, what is in charge of the

contract interaction and will specify the right mode to execute the method. Obviously,

all participants in the EthereumŠs network will execute the code concurrently on the

Ethereum Virtual Machine.

Alongside EVM, Ethereum achieved more than the other blockchain systems, ex-

panding the limits and solving more complex problems beyond the simple money trans-

ference. EVM also ensures a safe and secure running scenario as it systemically isolates

the executions of codes in nodes to avoid security Ćaws. Indeed, if a node is compromised,

then it will not affect the other nodes and the blockchain network.

Chapter 2. Theoretical Background 31

EVM makes the process of creating decentralized applications (DAPPS) faster and

more efficient. Instead of having to create and develop an entire blockchain for each new

application, Ethereum favors thousands of different apps to be built on a single platform.

2.5.5 Blockchain and Mining

The Ethereum blockchain owns plenty of similarities with the Bitcoin blockchain.

The principle distinction among them is in the blockchain architecture, in Bitcoin blockchain,

the blocks are composed of the list of transactions, nonce, and a block header, while in

Ethereum blockchain the list of transactions is still on the blocks, but the whole state of

the network is also saved inside a block along with two other properties the block number

and the difficulty (ETHEREUM, 2020).

The extra Ąelds may appear to be costly expensive in terms of storage, but in

comparison with Bitcoin is really efficient. The reason for that is because Ethereum uses

a special data structure called Patricia Tree, a modiĄcation of Merkle Tree that stores

the whole state. As the state is stored in a tree structure, the blocks only need to keep a

reference for its root and the part that must be changed, saving a considered amount of

stored data. Indeed, if the same strategy would be applied in Bitcoin, it could save twenty

times more space.

Beyond the structure, there is also another difference: the PoW algorithm. Whilst

Bitcoin implements the HashCash version, Ethereum uses Ethash, which produces a block

every 12 seconds against 10 minutes in HashCash. The advantage is on the fastness of the

transaction processing, an important topic when decentralized applications are involved

(Leka et al., 2019).

32

3 Development

The proposal of the present work is the implementation of a fair trade protocol

with item validation, where two parties that not mutually trustworthy want to negotiate

the sale of information in a secure manner.

3.1 Protocol

The protocol presented below uses the concepts of VeriĄable Computation, Private

Set Intersection, Bloom Filter, Ethereum and Smart Contract to provide a contract that

applies the rules of a fair trade. In this case, for a better explanation we would use a list

of words as the item negotiated, and the situation where a party 𝒜 wants to buy a list

of strings from another party ℬ using this contract. The fulĄlling of this protocol is done

in two parts, the preparation and the execution.

3.1.1 Preparation

As stated before, an entity 𝒜 wants to buy a set of words from ℬ , which we name

as 𝐿ℬ . 𝒜 also has his set of words 𝐿𝒜 and in fact, he does not want all of the words

from ℬ , but only "new words" of 𝐿ℬ . To start the protocol, 𝒜 and ℬ agree with some

conditions:

∙ Bloom Filter specification: The size of bit vector, the false positive rate and the

number of hash functions that will be used to calculate the bloom Ąlters in the next

steps;

∙ Collateral: An initial collateral to be paid in case of misbehavior of the parties;

∙ Timeout time: A time limit for the parties to perform certain actions.

After that, 𝒜 and ℬ produce in private their respectives bloom Ąlters 𝐵𝐹𝒜 and

𝐵𝐹ℬ , respecting the agreed speciĄcation and using their words 𝐿𝒜 and 𝐿ℬ as the items.

Considering that the computation for construct the bloom Ąlters is executed locally, there

are no effective costs for it.

Consequently, 𝒜 creates and deploys the FairContract in EthereumŠs platform

along with the established conditions, and also sends to the contract his commitment

𝐶𝑜𝑚𝑚𝑖𝑡𝒜 for 𝐵𝐹𝒜 and the collateral previously accorded $Col

𝒜 . ℬ does the same next

and sends his commitment 𝐶𝑜𝑚𝑚𝑖𝑡ℬ for 𝐵𝐹ℬ and the collateral $Col

ℬ (steps 1 and 2 in

Chapter 3. Development 33

Figure 4). Those commits donŠt trigger any action or have a special meaning, they are

just a sign of interest by both parties.

Following the preparation, 𝒜 sends 𝐵𝐹𝒜 and get the collateral back. This step of

the protocol is symmetrical, so ℬ acts in the same way (steps 3 and 4 in Figure 4). Thus,

both participants are compelled to act honestly with the penalty of losing the collateral

or the privacy of 𝐿ℬ .

𝒜 ℬ
Fair

Contract

1

𝐶𝑜𝑚𝑚𝑖𝑡𝒜,$Col

𝒜

2

𝐶𝑜𝑚𝑚𝑖𝑡ℬ,$Col

ℬ

3 𝐵𝐹𝒜
4 𝐵𝐹ℬ

5
$Col

𝒜 ,𝐵𝐹ℬ 6
$Col

ℬ ,𝐵𝐹𝒜

Figure 4 Ű FairContract preparation.

Knowing that the data in the blockchain is public, at the end of the preparation

phase, both participants will get to know 𝐵𝐹𝒜 and 𝐵𝐹ℬ and will be able to calculate

approximately the size of the set of new words

♣𝐿ℬ♣ ⊗ ♣𝐿𝒜 ∩ 𝐿ℬ♣.

An important feature about using Bloom Filters in this protocol is that it allows

one party to verify the honesty of the other party even before the data or values change

take place. Using 𝐵𝐹𝒜 and 𝐵𝐹ℬ, 𝒜 can estimate the size of ♣𝐿𝒜 ∩ 𝐿ℬ♣, and in this

way have some thoughts about the "quality" of 𝐿ℬ: if the size of estimated intersection

is too small, 𝒜 can gives up on buying 𝐿ℬ concluding that the purchase of 𝐿ℬ isnŠt

advantageous or that ℬ created his Ąlter with random words.

At this point, ℬ creates a subset 𝐿r

ℬ from 𝐿ℬ such that the 𝐵𝐹r Ąlter created

from 𝐿r

ℬ have the following property:

𝐵𝐹𝒜 ∨ 𝐵𝐹ℬ = 𝐵𝐹𝒜 ∨ 𝐵𝐹r,

where ∨ stands for bitwise or operator. In other words, ℬ creates a subset of 𝐿ℬ con-

taining the words that are present in 𝐵𝐹ℬ and not present in 𝐵𝐹𝒜 .

As previously said, 𝒜 wants to buy only the "new words" of ℬ and 𝐿r

ℬ is exactly

that, the list with the words that are not present on 𝐵𝐹𝒜 and what 𝒜 is really trying

to purchase. ℬ creates this list for two main reasons:

∙ In the case where 𝒜 tries to inĆate his 𝐵𝐹𝒜 , switching some bits to "1" so that

it appears to have more words, paying less for B. That doesnŠt happens because

𝒜 would get no benneĄts from this once it gets proportionally fewer items;

Chapter 3. Development 34

∙ In the case of litigation, less gas will be spent leading to lower cost (see Table 1).

Ideally, 𝐿r

ℬ should be the minimal set that meets the restriction of covering, and

Ąnding such minimum subset of coverage is NP-Hard(KARP, 1972). But, as 𝐿r

ℬ does not

impact the correct execution of the protocol, only at a possible cost, a greedy algorithm

is sufficient.

The initial off-chain communication to deĄne the speciĄcations of the protocol

can be executed using traditional secure means1. Whereas, the bulk computations in this

phase performed in the calculation of sets and bloom Ąlters are private and each party

performs the computation on your own equipment, leaving the heavy computation outside

the platform of Ethereum, saving costs.

3.1.2 Execution

The execution phase starts at the moment the preparation Ąnishes and once again,

𝒜 and ℬ uses off-chain communication to agree on some values (step 1 in Figure 5):

∙ $𝒜: the payment for 𝐿ℬ;

∙ 𝑣ℬ: a collateral to be deposited by ℬ to prevent dishonesty;

∙ Ð: a value to deĄne a penalty factor to be paid according with the situation (see

Table 1).

The steps to implement the protocol are presented next, Ąrst of the honest behavior

of the participants and then of the scenarios of possible misbehavior.

3.1.2.1 Honest Execution

Whenever 𝒜 and ℬ behave honestly, the protocol is straightforward:

∙ 𝒜 calls the contract to start the sale, depositing $𝒜 , the payment for the words, and

sending as arguments: 𝑣ℬ , the agreed collateral value and the Ð factor to calculate

the penalty if it would be necessary (step 2 in Figure 5);

∙ ℬ binds to FairContract sending the collateral value $ℬ, corresponding to 𝑣ℬ (step

3 in Figure 5);

∙ ℬ sends 𝐿r

ℬ to 𝒜 (step 4 in Figure 5). This step is also off-chain and the reason

of that is because the costs of EthereumŠs platform are directly related to the size

of storage, and as 𝐿r

ℬ can have many items, the costs could get increasingly high

1 Secure e-mail or instant messaging.

Chapter 3. Development 35

without the necessity, considering that an off-chain communication is enough in this

case;

∙ Locally, 𝒜 veriĄes 𝐿r

ℬ , checking if the number of words is approximately the

same as previously calculated in preparation phase and testing the words in 𝐵𝐹ℬ ,

to guarantee the veracity of the set. After the validation, if 𝐿r

ℬ corresponds to

acceptable results, 𝒜 sends a "sale accepted" message to contract, ending his

participation on the sale (step 5 in Figure 5);

∙ When the contract receives the "sale accepted" message from 𝒜 , it allows ℬ with-

draw the payment for the list of words($𝒜) and the collateral once payed by him($ℬ),

Ąnishing the FairContract (step 6 in Figure 5).

𝒜 ℬFair
Contract

1 Off chain negotiation

2

$𝒜,𝑣ℬ,Ð 3
$ℬ

4
𝐿r

ℬ

5Ok/Timeout 6 $𝒜,$ℬ

Figure 5 Ű FairContract execution for honest 𝒜 and ℬ.

3.1.2.2 ℬ Acting Dishonestly

As long as the parties behave honestly, the protocol is executed efficiently following

the execution steps (Figure 5). But, when A or B tries to outwit the other one, an extra

step is activated, the litigation, which is nothing more than contesting the result of a

process, in this case, the list of the words 𝐿r

ℬ .

In the situation where ℬ is acting dishonestly and he does not send the correct

𝐿r

ℬ in execution phase, 𝒜 activates the contractŠs litigious mode (Figure 6). This mode

forces ℬ to prove that he sent the correct list of words to 𝒜 by sending 𝐿r

ℬ to the

contract, which will validate 𝐿r

ℬ using 𝐵𝐹ℬ .

This mode involves two alternatives scenarios:

1. ℬ sends 𝐿r

ℬ to FairContract, once 𝐿r

ℬ is validated using 𝐵𝐹ℬ, ℬ receives $𝒜 , the

payment for the words, and Ð$ℬ, a percentage of the collateral paid by him (Steps

1,2 and 3 in Figure 6);

Chapter 3. Development 36

2. At the activation of litigious mode, a time limit (deĄned in the preparation phase)

starts to count, and if after it expires ℬ has not sent 𝐿ℬ to the FairContract,

𝒜 invokes FairContract and receives $𝒜 and $ℬ , penalizing ℬ (Steps 1 and 2′

in Figure 6).

3.1.2.3 𝒜 Acting Dishonestly

Even, if ℬ sends 𝐿r

ℬ correctly to 𝒜 , he could act dishonestly and calls the

FairContract triggering the litigious mode improperly. Following the steps of the litiga-

tion, ℬ will have to send 𝐿r

ℬ to the FairContract, as 𝐿r

ℬ will be correct, 𝒜 will receive

nothing and ℬ would receive $𝒜 and Ð$ℬ. Therefore, there is no advantage for 𝒜 in this

situation, he will have no Ąnancial beneĄt and will lose the conĄdentiality of the list just

purchased.

𝒜 ℬFair
Contract

1Litigation 2 𝐿r

ℬ

3 $𝒜,Ð$ℬ
2′ $𝒜,$ℬ

Figure 6 Ű FairContract in litigious mode. ℬ sends 𝐿r

ℬ to FairContract and receives
the payment. If not, after a timeout, 𝒜 receives the contract values.

It is important to note that the contract fails to distinguish between the scenario

in which 𝒜 acts dishonestly by calling the litigious mode improperly and the scenario in

which ℬ "holds" 𝐿r

ℬ waiting for 𝒜 to call the litigious mode. In these two cases both

participants are penalized: 𝒜 loses 𝐿r

ℬ conĄdentiality and ℬ loses (1-Ð)$ℬ. Thus, to avoid

these scenarios, the values of $ℬ and Ð need to be chosen according to an estimated value

of 𝐿r

ℬ conĄdentiality. A summarization of the dishonest behaviors and their respective

penalties in FairContract are presented at Table 1.

Dishonest Behavior Reaction Penalty

𝒜 (or ℬ) don’t open FairContract blocks the collateral The collateral is lost.
the commit for filter

𝒜 inflates BF𝒜 ℬ creates L
r
ℬ based on the 𝒜 receives less

with random bits difference of BF𝒜 from BFℬ information from ℬ

ℬ don’t send L
r
ℬ 𝒜 put FairContract in litigious mode ℬ loses $ℬ

𝒜 calls litigious ℬ sends L
r
ℬ through FairContract 𝒜 loses L

r
ℬ confidentiality

improperly ℬ loses (1 ⊗ α)$ℬ

ℬ "holds" L
r
ℬ 𝒜 calls litigious mode, 𝒜 loses L

r
ℬ confidentiality

ℬ sends L
r
ℬ through FairContract ℬ loses (1 ⊗ α)$ℬ

Table 1 Ű Summarization of dishonest behavior and penalties in FairContract.

Chapter 3. Development 37

3.2 Implementation

The fair protocol was implemented using Solidity and the Truffle Suite (Truf-

Će & Ganache) (TRUFFLE, 2020). Truffle is the most popular Ethereum framework to

create, execute, and test smart contracts. It allows developers to deploy, link libraries,

write automated tests and manage network artifacts with an easy and fast API. Among

their usabilities, Truffle provides the communication between the tests and the deployed

contracts on Ethereum networks. Whereas, Ganache is a tool that creates a personal

Ethereum blockchain where you can execute commands, run tests, inspect and debug the

state of contracts easier and faster than using online Ethereum networks.

In this implementation, along with Truffle Suite, Web3.js (WEB3, 2020), a library

that allows you to interact with a local or remote Ethereum node using HTTP, IPC or

WebSocket, and Mocha (MOCHA, 2020), a framework for build test scenarios, helped in

the creation of tests for the possible situations of contract operation.

3.2.1 Contract

The contract was implemented applying the concept of states. For each step on

the phases, there is a corresponding state as an exception the SALE_LOCKED, which

represents the end of the contract. States also have a time limit for being executed with

the risk of suffering a penalty if the time expires.

1 enum SaleState {

2 BUYER_COMMIT ,

3 SELLER_COMMIT ,

4 BUYER_SEND_BLOOM_FILTER ,

5 SELLER_SEND_BLOOM_FILTER ,

6 BUYER_START_SALE ,

7 SELLER_DEPOSIT ,

8 BUYER_CONFIRM_SALE ,

9 SALE_ACCEPTED ,

10 LITIGIOUS_MODE ,

11 SALE_LOCKED

12 }

Listing 3.1 Ű States of Contract

As stated before, the deployment of the contract is made by the buyer party (𝒜).

During it, 𝒜 calls the constructor sending the parameters pre-established and the sellerŠs

address starting the protocol. This step is crucial, because in this moment the timeout

for the execution of functions and the addresses are stored in contract, which will be used

in each next step to restrict the contract functions only to the participants.

In the preparation phase, the Ąrst two steps are the commits of the parties. The

Chapter 3. Development 38

parties send their commits by calling the commitCollateral function and sending along

with the transaction their respective collaterals. The state is updated according to the

party, so if the buyer commits, the state becomes SELLER_COMMIT, and if it is the

sellerŠs turn, it becomes BUYER_SEND_BLOOM_FILTER.

1 function commitCollateral () public payable onlyParticipant {

2 if (msg. sender == buyer) {

3 require (state == SaleState . BUYER_COMMIT , "Buyer cannot

commit collateral ");

4 state = SaleState . SELLER_COMMIT ;

5 collateralBuyer = msg.value ;

6 endTimeState = now + timeoutDuration ;

7 emit Commit (msg.sender , msg.value);

8 } else if (msg. sender == seller) {

9 require (state == SaleState . SELLER_COMMIT , " Seller cannot

commit collateral ");

10 require (now < endTimeState , "Time expired for commit the

collateral ");

11 state = SaleState . BUYER_SEND_BLOOM_FILTER ;

12 collateralSeller = msg. value ;

13 endTimeState = now + timeoutDuration ;

14 emit Commit (msg.sender , msg.value);

15 }

16 }

Listing 3.2 Ű The function where both parties send their commits

Steps 3 and 4 (Figure 4) are executed by sendBloomFilter function. This function

is similar to the commitCollateral, where the arguments (bloom Ąlters) passed will be

stored in the contract, the states will be updated, and the collaterals will be released to

be withdrawn.

At the execution phase, the Ąrst action of the buyer is calling the startSale function

passing the agreed parameters: penalty, factor, and the payment for the words.

1 function startSale (uint _penalty , uint _factor) public payable onlyBuyer

{

2 require (state == SaleState . BUYER_START_SALE , "Buyer cannot start

sale");

3

4 state = SaleState . SELLER_DEPOSIT ;

5 deposits [msg. sender] = msg. value ;

6 penalty = _penalty ;

7 factor = _factor ;

8 endTimeState = now + timeoutDuration ;

9

10 emit SaleStarted (msg.sender , msg.value , penalty , factor);

Chapter 3. Development 39

11 }

Listing 3.3 Ű The function to start the sale

After the buyer receives the words in the execution phase and if he is satisĄed with

the process, he calls the acceptSale function, where the values are relocated for the seller

withdraw his collateral and the payment. However, if the words do not seem correct, he

calls refuseSale to activate the litigious mode.

1 function acceptSale () external onlyBuyer {

2 require (state == SaleState . BUYER_CONFIRM_SALE , "Buyer cannot

accept the sale");

3

4 state = SaleState . SALE_ACCEPTED ;

5 uint outcome = deposits [seller]. add(deposits [buyer]);

6 withdraws [seller] = withdraws [seller]. add(outcome);

7

8 emit SaleAccepted (msg. sender);

9 }

Listing 3.4 Ű The function for buyer accepts the sale

1 function refuseSale () external onlyBuyer {

2 require (state == SaleState . BUYER_CONFIRM_SALE , "Buyer cannot

refuse the sale");

3

4 state = SaleState . LITIGIOUS_MODE ;

5 endTimeState = now + timeoutDuration ;

6

7 emit SaleRefused (msg. sender);

8 }

Listing 3.5 Ű The function for buyer refuses the sale and activate the litigious mode

If the litigious mode is activated, the seller sends the words in the sendWords

function. For the sake of efficiency, the words are passed as numbers, and the bloom Ąlter

is constructed based on that. If the AND bitwise operation of the bloom Ąlter passed at

the beginning of the protocol (𝐵𝐹ℬ) with this new one (𝐵𝐹r) results in a bloom Ąlter

equal to 𝐵𝐹r, so the words are correct, and the seller receives his proper money. On the

other hand, if the result is different from 𝐵𝐹r , the buyer receives all the cash.

1 function sendWords (uint [] memory words) public onlySeller

onlyIfNotExpired {

2 require (state == SaleState . LITIGIOUS_MODE , "Sale should be

refused ");

3

4 uint bloomFilter = 0;

5 for (uint i = 0; i < words. length ; i++) {

6 for (uint j = 1; j <= numberOfHashes ; j++) {

Chapter 3. Development 40

7 uint256 bitPos = uint256 (keccak256 (abi. encodePacked (

words[i], j))) % 256;

8 uint256 mask = 1 << bitPos ;

9 bloomFilter |= mask;

10 }

11 }

12

13 state = SaleState . SALE_LOCKED ;

14

15 if ((bloomFilter & bloomFilterSeller) == bloomFilter) {

16 uint factorAmount = deposits [seller]. mul(factor).div (100);

17 uint penaltyAmount = deposits [seller]. sub(factorAmount);

18 withdraws [seller] = deposits [buyer]. add(penaltyAmount);

19 } else {

20 withdraws [buyer] = deposits [buyer]. add(deposits [seller]);

21 }

22

23 emit LitigiousResult (bloomFilter == bloomFilterSeller ,

bloomFilterSeller , bloomFilter);

24 }

Listing 3.6 Ű The function where seller send the words in case of litigation

The withdraw and deposit functions are just simple methods as their name suggests

to withdraw the available amount for each party or deposit the collateral in the case of

the seller.

The contract and his tests are available at <https://github.com/matheuscr30/

Word-Sale-Fair-Contract>.

41

4 Results

Within the scope of this project, the proposed protocol succeeds in provides a

fair trade between two parties that do not trust each other, in a secure and transparent

way, without interference from third parties. However, it is necessary to consider some

important factors that could become a problem when the actual scenario is taken into

consideration. One of them is the cost to execute the protocol, because as mentioned

before, in EthereumŠs platform every computation realized by the contracts are paid in

gas, which can be very expensive depending on what the contract is doing. Another factor

and an essential one is the human factor. Since humans tend to always act in self-beneĄt,

there is a need to evaluate the possible scenarios and strategies, as well as, the advantages

and disadvantages of frauding the contract, so that it does not beneĄt the dishonesty.

Those both factors are analyzed in the next sections:

4.1 Gas Analysis

Preceding what was said about the costs of using the EthereumŠs platform, the

price paid for the computations is directly dependent on the gas used and its price. And

even if those costs do not exist in development networks, we can use Ganache to evaluate

the amount of gas and the cost in ether for each operation realized.

Definition 4.1. Gwei A unit of ether that means gigawei, or better, 1,000,000,000 wei,

where wei is the smallest unit of ether (1 ether = 1018 wei)

Differently from the real environment, where for each transaction the gas price is

set by the creator, Ganache asks the users to specify a gas price, that will be used for all

transactions. For testing purposes, the gas price was set at 55 Gwei, which is the average

price in the official Ethereum network. In other words, each unit of spent gas has cost

0.000000055 ether what is 0.00003 USD pursuant to the current dollar exchange rate on

the date of this work (478.83 USD per unit of ether). Using this approach, the Table 2

presents the amount of gas used and the estimated average cost for each operation of the

FairContract .

According the data exposed on Table 2, we can estimate the costs for the two

possible scenarios of the protocol:

∙ Honest Execution: In honest executions, the buyer (𝒜) would approximately

spend 15.24 USD to execute his operations (Deploy Contract, Commit, Send Bloom

Chapter 4. Results 42

Operation Gas Ether Dollar (USD)

Deploy Contract 3002221 0.0165122 7.91
Commit 84331 0.0041322 1.98
Send Bloom Filter 75508 0.0036999 1.77
Start Sale 95643 0.03423423 2.24
Deposit 49277 0.0024146 1.16
Accept Sale 35604 0.0017446 0.83
Activate Litigious 33730 0.0016528 0.79
Send Words 59630 0.0029219 1.41
Withdraw 21921 0.0010741 0.51

Table 2 Ű Estimated average cost to execute the contract at Ethereum

Filter, Start Sale, Accept Sale and Withdraw). While the seller (ℬ) would spend

5.42 USD (Commit, Send Bloom Filter, Deposit, and Withdraw);

∙ Dishonest Execution: Now, in dishonest executions, 𝒜 would spend 15.10 USD,

being almost the same as the honest executions as he just changes the operation

Accept Sale for Activate Litigious. In contrast, ℬ needs to spend more gas because

of the Send Words operation in litigious mode, costing a total of 6.83 at the end.

Thus, it is plain that 𝒜 always pays more than ℬ regardless of the behavior

of participants, what is appropriate in the regard that he is the main interested in the

purchase. Beyond that, if we think only on operation costs, ℬ is the only party that gets

prejudiced when the litigious mode is activated, and 𝒜 could freely activate it trying to

make ℬ loses some money if the conĄdentiality of the words were not in-game. Also, it is

possible to comprehend that the protocol is not optimistic for low priced purchases since

15.24 USD could be an expensive tax. For example, for a sale where the price established

for the list of words is 20 USD, using the proposed protocol might not be advantageous

because the buyer would have to spend almost the same price of the sale to execute

the protocol. Whereas, in high-value purchases, the tax value becomes more and more

insigniĄcant with the increase in the price of the words, compensating the use of the

protocol.

4.2 Game-theoretic Analysis

In this section, the protocol is analysed from the point of view of Game Theory,

whither it is assumed that the participants do not behave in an honest/dishonest way

but in a rational way in order to maximise the utility value of their participation, which

reaches its maximal value if both parties behave honestly (SCHWARTZBACH, 2020).

Chapter 4. Results 43

The analysis of the protocol consists in build a game tree of the possible scenarios

bearing in mind some properties:

∙ $𝒜: the payment cost of the words;

∙ $ℬ: the collateral paid by seller;

∙ 𝑔: the Ąnancial cost of the computation spent in gas to send 𝐿r

ℬ through contract

in litigious mode;

∙ 𝐶: the estimate conĄdentiality value of 𝐿r

ℬ ;

∙ 𝑝𝑒𝑟𝒜: the perceived value of 𝐿r

ℬ , how worth are the words for 𝒜 ;

∙ 𝑝𝑒𝑟ℬ: the perceived value of 𝐿r

ℬ , how worth are the words for ℬ .

It is important to note that the perceived values and the estimated conĄdentiality

of 𝐿r

ℬ are different for each party because they have different purposes and motives for

going on with the words sale. Also, we can see the perceived values like an incentive for

the parties to continue the protocol, as if 𝑝𝑒𝑟𝒜 > $𝒜 > 𝑝𝑒𝑟ℬ, 𝒜 would pay less than its

ideal value for 𝐿r

ℬ , and ℬ would receive more that he thinks that is the ideal value of

the words, being advantageous for both parties.

Overall, we can use those properties to deĄne the utility values of 𝒜 and ℬ :

∙ Utility value of 𝒜 : 𝑈𝒜 is given by 𝑝𝑒𝑟𝒜 - $𝒜, which represents the cost that

𝒜 thinks 𝐿r

ℬ worth minus the actual cost payment for it;

∙ Utility value of ℬ : 𝑈ℬ is given by $𝒜 + $ℬ - 𝑝𝑒𝑟ℬ, which represents the payment

that ℬ receives from 𝒜 , plus the collateral that he sends to the contract, minus

the worth value of 𝐿r

ℬ for him.

Considering the game tree of the protocol presented in Figure 7, we can extract

some crucial knowledge about the behaviours of the parties. By commencing with the

seller, if we look at the payoffs of his actions, we can see that in all cases where he sends

the words, being it off-chain or through litigious mode, he gets his utility value 𝑈ℬ and

the only difference is because he pays 𝑔 when the litigation is active, proving that there is

no advantageous for ℬ to hold the words or do not send them off-chain in the right step.

In the opposite side, if ℬ does not send the words, he also will get no beneĄts, except

when 𝒜 accepts the sale without receiving the words, what does not happen when the

parties act rationally. Besides, ℬ always loses either its collateral value or the perceived

value when the contract is in litigation, and he does not send the words. Indeed, ℬ will

Chapter 4. Results 44

ℬ

Send 𝐿r

ℬ DonŠt send 𝐿r

ℬ

𝒜 𝒜

Acceptance Litigation

𝑈𝒜

𝑈ℬ

⋃︀

⋁︀

⨄︀

⋂︀

∑︁

⋀︀

Acceptance Litigation

⊗$𝒜

$𝒜 + $ℬ

⋃︀

⋁︀

⨄︀

⋂︀

∑︁

⋀︀

ℬ ℬ

Send 𝐿r

ℬ through Contract DonŠt send 𝐿r

ℬ

𝑈𝒜 ⊗ 𝐶

𝑈ℬ ⊗ 𝑔

⋃︀

⋁︀

⨄︀

⋂︀

∑︁

⋀︀

𝑝𝑒𝑟𝒜 + $𝒜 + $ℬ

⊗𝑝𝑒𝑟ℬ

⋃︀

⋁︀

⨄︀

⋂︀

∑︁

⋀︀

Send 𝐿r

ℬ through Contract DonŠt send 𝐿r

ℬ

𝑈𝒜 ⊗ 𝐶

𝑈ℬ ⊗ 𝑔

⋃︀

⋁︀

⨄︀

⋂︀

∑︁

⋀︀

0

⊗$ℬ

⋃︀

⋁︀

⨄︀

⋂︀

∑︁

⋀︀

Figure 7 Ű Game tree of the protocol after the sale started. The Ąrst coordinate is the
buyer payoff and the second is seller payoff; 𝒜 nodes represents buyer ac-
tions and ℬ nodes represents seller ones. The heavy edges denote the honest
behaviour.

never beneĄt from dishonest actions, and therefore he will tend to act honestly to not

prejudice himself.

Unlike the seller, the buyer can self-beneĄt from being dishonest in the situation

where ℬ sends 𝐿r

ℬ off-chain, but 𝒜 , even so, activates the litigious mode giving up on

the conĄdentiality of 𝐿r

ℬ. At this point, ℬ will have to weigh what is worth more for him,

the payment or the conĄdentiality of his words, in both cases ℬ loses something, and to

keep away from this situation, the values $𝒜 and $ℬ need to be established considering

how much the conĄdentiality of the words is worth to both parties. Therefore, supposing

that $𝒜 and $ℬ are balanced, whenever the litigious mode is activated, 𝒜 will as ℬ lose

the conĄdentiality of 𝐿r

ℬ or the amount of the payment, which does not lead to any gain

to both of them.

On this wise, it is clear to see that the litigious mode is disadvantageous for 𝒜 and

ℬ , and it will be executed only when necessary to avoid extra costs or loss of conĄdentiality

when the parties act rationally. Likewise, the parties tend to be honest and reach their

maximal utility value to make the execution of the protocol more efficient and cheaper.

45

5 Conclusion

In this work, we introduced a fair trade protocol with item validation based on

Smart Contracts and Bloom Filters, where two parties that do not trust each other,

want to negotiate some information. The use of Bloom Filters brought with it aspects

such as efficiency and privacy, which allows items to be validated and veriĄed at low

costs without being exposed before Ąnancial transactions take place. Along with it, the

Blockchain and the Smart Contract also provides reliability, security and transparency,

solving some problems relevant to other online trade systems.

The proposed protocol is optimistic in the sense that if the parties behave honestly,

the participation of the contract is minimal and the costs are reduced. Also, the partici-

pants are encouraged and tend to act honestly from the point of view of game theory to

not suffer Ąnancial and conĄdentiality losses.

Even if the parties act in an honest manner, the solution still has some limitations

when it comes to the cost of execution, as the price is dependent on a volatile currency

and can also be expensive for certain transactions and negotiations. Albeit, the part of the

protocol that requires signiĄcant CPU costs is executed privately by the parties involved,

saving gas charged by Ethereum. Another limitation is in relation to Bloom Filters because

if their domain set is small, it is possible to make a brute force attack and discover the

items behind them.

In addition to the proposed application, the work has proved relevant as it through

the analysis and results presented here, proves the logic of the contract and the trust that

it brings, providing an immutable contract and a transparent way of negotiation. In future,

we plan to study the viability of extending this work by using more secure alternatives to

Bloom Filters.

46

Bibliography

ANTONOPOULOS, A.; WOOD, G. Mastering Ethereum: Building Smart Contracts
and DApps. OŠReilly Media, Incorporated, 2018. ISBN 9781491971949. Disponível em:
<https://books.google.com.br/books?id=SedSMQAACAAJ>. Citado na página 12.

ANTONOPOULOS, A. M. Mastering Bitcoin: Unlocking Digital Crypto-Currencies. 1st.
ed. [S.l.]: OŠReilly Media, Inc., 2014. ISBN 1449374042, 9781449374044. Citado na
página 11.

BASHIR, I. Mastering Blockchain. Packt Publishing, 2017. ISBN 9781787129290.
Disponível em: <https://books.google.com.br/books?id=urkrDwAAQBAJ>. Citado
na página 11.

BELLOVIN, S. M.; CHESWICK, W. R. Privacy-Enhanced Searches Using Encrypted
Bloom Filters. Columbia University Academic Commons, p. CUCSŰ034Ű07, 2007.
Citado na página 25.

BLUM, M. Coin Ćipping by telephone. In: Advances in Cryptology: A Report on
CRYPTO 81. [s.n.], 1981. p. 11Ű15. Disponível em: </archive/crypto81/11_blum.pdf>.
Citado na página 18.

BUTERIN, V. Ethereum: A next-generation smart contract and decentralized application
platform. 2014. Accessed: 2020-08-22. Disponível em: <https://github.com/ethereum/
wiki/wiki/White-Paper>. Citado na página 12.

CORN, P. et al. Primitive Roots. 2020. Disponível em: <https://brilliant.org/wiki/
primitive-roots/>. Citado na página 21.

CRISTOFARO, E. D.; TSUDIK, G. Practical private set intersection protocols with
linear computational and bandwidth complexity. IACR Cryptology ePrint Archive,
v. 2009, p. 491, 01 2009. Citado na página 23.

DIFFIE, W.; HELLMAN, M. New directions in cryptography. IEEE Trans. Inf.
Theor., IEEE Press, v. 22, n. 6, p. 644Ű654, set. 2006. ISSN 0018-9448. Disponível em:
<https://doi.org/10.1109/TIT.1976.1055638>. Citado na página 21.

DWORK, C.; NAOR, M. Pricing via processing or combatting junk mail. In: Proceedings
of the 12th Annual International Cryptology Conference on Advances in Cryptology.
Berlin, Heidelberg: Springer-Verlag, 1992. (CRYPTO Š92), p. 139Ű147. ISBN 3540573402.
Citado na página 26.

ETHEREUM. Ethereum Whitepaper. 2020. Accessed: 2020-07-20. Disponível em:
<https://ethereum.org/en/whitepaper/>. Citado na página 31.

EVANS, D.; KOLESNIKOV, V.; ROSULEK, M. A Pragmatic Introduction to Secure
Multi-Party Computation. Foundations and Trends R÷ in Privacy and Security, 2018.
ISSN 2474-1558. Citado na página 14.

Bibliography 47

GAUR, N. et al. Hands-On Blockchain with Hyperledger: Building Decentralized
Applications with Hyperledger Fabric and Composer. [S.l.]: Packt Publishing, 2018. ISBN
1788994523, 9781788994521. Citado na página 11.

GERVAIS, A. et al. On the privacy provisions of bloom Ąlters in lightweight bitcoin clients.
In: Proceedings of the 30th Annual Computer Security Applications Conference. New
York, NY, USA: Association for Computing Machinery, 2014. (ACSAC Š14), p. 326Ű335.
ISBN 9781450330053. Disponível em: <https://doi.org/10.1145/2664243.2664267>.
Citado na página 25.

JAKOBSSON, M.; JUELS, A. Proofs of work and bread pudding protocols. In:
Proceedings of the IFIP TC6/TC11 Joint Working Conference on Secure Information
Networks: Communications and Multimedia Security. NLD: Kluwer, B.V., 1999. (CMS
Š99), p. 258Ű272. ISBN 0792386000. Citado na página 26.

KARP, R. Reducibility among combinatorial problems. In: MILLER, R.; THATCHER,
J. (Ed.). Complexity of Computer Computations. [S.l.]: Plenum Press, 1972. p. 85Ű103.
Citado na página 34.

KOENS, T.; RAMAEKERS, C. Efficient zero-knowledge range proofs in ethereum. In: .
[S.l.: s.n.], 2017. Citado na página 13.

KOSBA, A. et al. Hawk: The Blockchain Model of Cryptography and Privacy-Preserving
Smart Contracts. In: Proceedings - 2016 IEEE Symposium on Security and Privacy, SP
2016. [S.l.: s.n.], 2016. ISBN 9781509008247. Citado na página 16.

LAI, J. et al. VeriĄable computation on outsourced encrypted data. In: KUTYčOWSKI,
M.; VAIDYA, J. (Ed.). Computer Security - ESORICS 2014. Cham: Springer
International Publishing, 2014. p. 273Ű291. ISBN 978-3-319-11203-9. Citado na página
20.

LAI, P. K. Y. et al. An efficient bloom Ąlter based solution for multiparty private
matching. Proceedings of the 2006 International Conference on Security & Management,
SAM, p. 286Ű292, 2006. Disponível em: <https://pdfs.semanticscholar.org/ebbd/
f7b64eb8f8c8607b29c679db4b663a794d07.pdf>. Citado na página 25.

LARIMER, D. EOS.IO White Paper. 2017. Accessed: 2019-09-22. Disponível em:
<https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md>.
Citado na página 12.

Leka, E. et al. Design and implementation of smart contract: A use case for geo-
spatial data sharing. In: 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). [S.l.: s.n.], 2019.
p. 1565Ű1570. Citado 5 vezes nas páginas 27, 28, 29, 30, and 31.

MATTILA, J. The Blockchain Phenomenon – The Disruptive Potential of Distributed
Consensus Architectures. 2016. Citado na página 11.

Meadows, C. A more efficient cryptographic matchmaking protocol for use in the absence
of a continuously available third party. In: 1986 IEEE Symposium on Security and
Privacy. [S.l.: s.n.], 1986. p. 134Ű134. Citado na página 23.

Bibliography 48

MOCHA. Mocha Project. 2020. Accessed: 2020-05-22. Disponível em: <https:
//mochajs.org/>. Citado na página 37.

NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system. 2008. Disponível em:
<http://www.bitcoin.org/bitcoin.pdf>. Citado na página 11.

NEO. NEO White Paper. 2017. Accessed: 2019-09-22. Disponível em: <https:
//github.com/neo-project/docs/blob/master/docs/en-us/basic/whitepaper.md>.
Citado na página 12.

NOJIMA, R.; KADOBAYASHI, Y. Cryptographically secure bloom-Ąlters. Transactions
on Data Privacy, v. 2, n. 2, p. 131Ű139, 2009. ISSN 18885063. Citado na página 25.

PINKAS, B.; SCHNEIDER, T.; ZOHNER, M. Scalable private set intersection based
on ot extension. ACM Trans. Priv. Secur., Association for Computing Machinery,
New York, NY, USA, v. 21, n. 2, jan. 2018. ISSN 2471-2566. Disponível em:
<https://doi.org/10.1145/3154794>. Citado na página 22.

REITWIESSNER, C. zkSNARKs in a Nutshell. Ethereum Blog, 2016. Citado na página
14.

ROBINSON, P. Requirements for Ethereum Private Sidechains. 2018. Citado na página
12.

ROSIC, A. What is Ethereum Gas? 2020. Citado na página 29.

SCHWARTZBACH, N. I. An incentive-compatible smart contract for decentralized
commerce. CoRR, abs/2008.10326, 2020. Disponível em: <https://arxiv.org/abs/2008.
10326>. Citado na página 42.

SOLIDITY. 2019. Accessed: 2020-07-20. Disponível em: <https://solidity.readthedocs.
io/en/v0.5.11/>. Citado 2 vezes nas páginas 12 and 28.

SZABO, N. Smart contracts : Building blocks for digital markets. In: . [S.l.: s.n.], 2018.
Citado 3 vezes nas páginas 12, 25, and 26.

TRUFFLE. Truffle Suite. 2020. Accessed: 2020-05-22. Disponível em: <https:
//www.trufflesuite.com>. Citado na página 37.

WEB3. Web3 Project. 2020. Accessed: 2020-05-22. Disponível em: <https://web3js.
readthedocs.io/en/v1.2.11/>. Citado na página 37.

ZYSKIND, G.; NATHAN, O.; PENTLAND, A. Enigma: Decentralized Computation
Platform with Guaranteed Privacy. 2015. Citado na página 15.

	Title page
	Approval
	Resumo
	Abstract
	List of Figures
	Listings
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Objectives
	Methods
	Zero-Knowledge Proof (ZKP)
	Security Multi-Party Computation
	Enigma
	Hawk

	Theoretical Background
	Cryptographic Protocols
	Commitment schemes
	Verifiable Computation
	Diffie-Hellman
	Private Set Intersection

	Bloom Filters
	Smart Contracts
	Proof of Work (POW)
	Ethereum
	Accounts
	Gas
	Messages and Transactions
	Transactions
	Messages

	Ethereum Virtual Machine
	Blockchain and Mining

	Development
	Protocol
	Preparation
	Execution
	Honest Execution
	B Acting Dishonestly
	A Acting Dishonestly

	Implementation
	Contract

	Results
	Gas Analysis
	Game-theoretic Analysis

	Conclusion
	Bibliography

