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Resumo 
Silvestrini, Rafaella Almeida. 2019. Métodos de modelagem para distribuição de espécies a partir de 

registros restritos: aplicação em projeções de padrões futuros de formigas do Cerrado. Tese de 

Doutorado em Ecologia e Conservação de Recursos Naturais. UFU. Uberlândia-MG. 66p. 

Mudanças climáticas atreladas às modificações nos ambientes naturais têm impulsionado 

o uso de modelos de distribuição de espécies voltados ao planejamento da conservação. 

Contudo, o uso destes modelos tem sido limitado para espécies cujas informações 

geográficas são restritas, fato comum em espécies raras ou endêmicas, categorias 

especialmente relevantes sob o ponto de vista da preservação. Os insetos, um grupo 

funcional importante e que compõem a maior parcela da biodiversidade terrestre, 

raramente são considerados em estudos de conservação.  Neste contexto, esta tese se 

propôs a: 1) avaliar técnicas de modelagem que sejam menos sensíveis à condição de 

restrição de dados, caracterizada tanto pela quantidade quanto pela abrangência 

geográfica amostral; 2) aplicar estas metodologias para predizer o padrão atual e futuro 

da distribuição de  espécies de formigas do Cerrado e outras vegetações savânicas da 

América do Sul. O primeiro item foi alcançado comparando-se modelagens resultantes 

da utilização de dados restritos versus aquelas resultantes da totalidade dos dados 

disponíveis. Estas comparações foram realizadas para três espécies de formigas – com 

diferentes padrões geográficos e quantidades de registros de ocorrência – usando duas 

técnicas de modelagem – Maxent e Pesos de Evidência. Pesos de Evidência é um método 

Bayesiano já bastante utilizado na modelagem ambiental, mas que nunca foi aplicado à 

modelagem de distribuição de espécies com sucesso. Para adequar este método aos dados 

disponíveis, foi realizado um controle no número e na localização das pseudo-ausências 

durante a calibração. Condições de restrição de dados apresentaram entre 5 e 27 

ocorrências restritas ao Cerrado, enquanto condições de dados amplos mostraram entre 

16 e 47 registros distribuídos ao longo da América do Sul. As performances de cada 

experimento foram avaliadas por meio de: 1) inspeção visual dos mapas de probabilidade; 

2) porcentagem de acerto de presenças e ausências, avaliadas por meio do TSS (do inglês, 

True Skill Statistics) calculado em diferentes escalas. O método Pesos de Evidência 

forneceu resultados significativamente melhores que o Maxent, principalmente quando o 

objetivo foi estimar a distribuição da espécie fora da área de abrangência da calibração. 

Então, esse método foi aplicado na segunda etapa da tese, para modelar a distribuição 

atual e futura de 12 espécies de formigas típicas das vegetações savânicas da América do 

Sul. Distribuições estimadas mostraram que, sob o pior cenário, estas espécies poderão 
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perder entre 37% e 88% de suas áreas de adequabilidade estimadas. O estudo sugeriu 

Linepithema cerradense como a espécie de menor grau de ameaça. Por outro lado, 

Blepheridatta conops e Pheidole cyrtostela  podem ser as mais vulneráveis, com menos 

de 16% de suas áreas favoráveis atuais a serem preservadas em 2070. As demais espécies 

apresentaram taxas de preservação das áreas de adequabilidade atual entre 17% e 32%. 

Estima-se que as espécies possuam, em média, 13% da área favorável atual coincidindo 

com áreas de proteção, valor que pode chegar a 5% em 2070.  
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Abstract 
Silvestrini, Rafaella Almeida. 2019. Métodos de modelagem para distribuição de espécies a partir de 

registros restritos: aplicação em projeções de padrões futuros de formigas do Cerrado. Tese de 

Doutorado em Ecologia e Conservação de Recursos Naturais. UFU. Uberlândia-MG. 66p. 

The joint effect of changes in climate and on natural environments has triggered the use 

of species distribution models for conservation planning. However, application of these 

models has been very limited for species whose geographic information is restricted, a 

common fact in rare or endemic species, categories which are especially relevant from 

the point of view of preservation. Insects, an important functional group that compose the 

largest portion of terrestrial biodiversity, are rarely considered in conservation studies. In 

this context, the present thesis aims to: 1) evaluate modeling techniques that are less 

sensitive to the data restriction condition, characterized by both the quantity and the 

geographic range of the sample; 2) to apply these methodologies to predict the current 

and future pattern of the species of ants typical of the Cerrado and other types of savanna 

vegetation of South America. The first goal was achieved by comparing models resulting 

from the use of restricted data versus those resulting from the use of all data. These 

comparisons were made for three ant species - which have different geographic patterns 

and quantities of occurrence records - using two modeling techniques - Maxent and 

Weights of Evidence. Weights of Evidence is a Bayesian method widely used in 

environmental modeling, but that has never been successfully applied to modeling species 

distribution. In order to adapt this method for the application in our available data, I have 

controlled the number and location of pseudo-absences during the calibration phase. For 

each species, data restriction conditions comprised  between 5 and 27 occurrences, 

restricted within the Cerrado Biome, while broad data varied between 16 and 47 records 

distributed throughout South America. The performances of each experiment were 

assessed by: 1) visual inspection of probability maps; 2) TSS (True skill statistics) 

evaluated according to different scales. The Weights of Evidence method provided 

significantly better results than Maxent, especially when the goal was to estimate the 

distribution of the species outside the range of the calibration area. Then, given the best 

performance of the Weights of Evidence method, it was applied to model current and 

future distribution of 12 species of ants typical of savanna vegetation in South America. 

Estimated distributions have shown that under the worst scenario, these species will have 

lost between 37% and 88% of their current estimated range. This study suggested that 

Linepithema cerradense is the least threatened species. On the other hand, Blepheridatta 
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conops and Pheidole cyrtostela  might be the most vulnerable ones, with less than 16% 

of their current estimated distribution to be preserved in 2070. The other species may 

preserve, by 2070, between 17% and 32% of their current estimated distributions. These 

species might have, on average, 13% of their current suitable area overlapped with 

protection zones, a value that can decrease to only 5% by 2070.  
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Introdução Geral 
  

O aquecimento global e as mudanças na cobertura vegetal constituem uma das 

maiores ameaças à conservação da biodiversidade. Estudos indicam que grande parte da 

América do Sul terá sua temperatura aumentada em mais de 4°C até o fim do século XXI 

(Magrin et al., 2014) e que o recente aquecimento já pode ter sido a causa da extinção de 

algumas espécies (Pounds et al., 2006; Urban, 2015). Por sua vez, as alterações antrópicas 

na paisagem natural podem impedir indivíduos de colonizarem regiões com climas 

propícios à manutenção de sua espécie (Marini et al., 2009). Frente a estas perspectivas, 

a biodiversidade do Cerrado, segundo maior bioma da América do Sul (MMA, 2019), 

pode estar seriamente ameaçada.  O Cerrado possui apenas 2.85% do território sob 

proteção integral (MMA, 2019), aproximadamente metade de sua vegetação nativa já foi 

perdida e estima-se que apenas 19% da cobertura vegetal permanece inalterada 

(Strassburg et al., 2017).  Estimativas sobre a diversidade do Cerrado apontam o bioma 

como a savana mais diversa do mundo, com alto grau de endemismos (Myers et al., 2000).  

Neste contexto, a modelagem de distribuição de espécies surge como uma 

ferramenta essencial para planejar estratégias de conservação, uma vez que ela permite 

inferir sobre os locais propícios à manutenção de espécies frente às mudanças climáticas 

e as alterações na paisagem natural (Soberón e Peterson, 2004). Tal método tem como 

princípio básico predizer, por meio de fundamentos da ecologia e técnicas estatísticas 

e/ou de modelagem computacional, o padrão da distribuição potencial das espécies 

através de uma série de variáveis de entrada (Soberón e Nakamura, 2009), geralmente 

associadas ao clima e à estrutura da vegetação. O objetivo é estimar parcialmente o nicho 

da espécie (Peterson e Soberon, 2012) baseado em variáveis ambientais e 

desconsiderando outros fatores que também delineiam o nicho, como exemplo, relações 

entre as espécies dentro de sua comunidade e estrutura demográfica da população.   

Apesar da vasta aplicação do método em espécies de interesse para conservação, 

como  mamíferos e aves (e.g.: Marini et al., 2009; Ferraz et al., 2009; Zeilhofer et al., 

2014; Charbonnel et al., 2016),   o uso deste tipo de modelagem tem sido bastante limitado 

em espécies raras ou endêmicas - categorias especialmente importantes do ponto de vista 

da conservação - devido à falta de habilidade dos métodos em lidar com poucos registros 

de ocorrência (Lomba et al. 2010; Galante et al., 2017), uma condição frequente destas 

espécies.  
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Dada a inviabilidade de esperar o surgimento de informações adicionais destes 

grupos, torna-se urgente o desenvolvimento de técnicas capazes de superar o desafio da 

restrição de dados. Estudos recentes envolvendo esta temática mostraram que, dentre os 

métodos comumente utilizados em previsão de distribuição de espécies, o algoritmo 

Maxent é  menos sensível à quantidade de registros (Wisz et al., 2008; Muscarella et al, 

2014), se utilizado concomitantemente com técnicas de jacknife ou bootstrap, 

disponibilizadas no pacote ENMeval do R (Muscarella et al., 2014; Galante et al., 2017).  

Recentemente, considerando novos métodos que podem ser eficazes na 

modelagem espacial com restrição de dados, as técnicas Bayesianas têm se destacado 

devido, principalmente, a suas poucas exigências em relação às hipóteses iniciais, o que 

as tornam facilmente adaptáveis a diversas situações. Dentre eles, duas técnicas são 

aplicadas em modelagem ambiental: as Redes Bayesianas e os Pesos de Evidência. As 

Redes Bayesianas têm aplicações bem recentes, destacando-se seu uso em modelagem de 

distribuição de espécies (Hamilton et al., 2015; Trifonova et al., 2017). O método baseia-

se no uso de informações adicionais - tais como conhecimentos à priori das preferências 

da espécie - como forma de compensar a situação de poucos dados. Contudo, sua 

aplicação é bastante desafiadora pois, além de exigir conhecimentos detalhados a respeito 

da espécie, muitas vezes não disponíveis, ele requer um elevado grau de conhecimento 

estatístico e computacional do modelador por não se encontrar implementado em nenhum 

software de modelagem. Por outro lado, o método Pesos de Evidência (Bonham-Carter, 

1994), apesar de nunca ter sido aplicado na modelagem de distribuição de espécies, é bem 

estabelecido no campo da modelagem ambiental, com aplicações em modelagens de 

desmatamento (Soares-Filho et al., 2006), incêndios florestais (Silvestrini et al., 2011) e 

ocorrências de minerais (Agterberg e Bonham-Carter, 1990).  Semelhantemente aos 

outros métodos de previsão de distribuição de espécies, os Pesos de Evidência usam uma 

série de variáveis para criar relações e estimar pesos, que indicam como cada variável 

influencia na presença do fenômeno em estudo. Ao contrário das redes bayesianas, que 

apresentam dificuldade de implementação e exigem informações adicionais muitas vezes 

não disponíveis, as únicas exigências dos pesos de evidencia é que as variáveis 

explicativas apresentem correlação com o fenômeno em estudo e que sejam 

independentes e não correlacionadas entre si. Além destas vantagens, o fato deste método 

já se encontrar implementado em software de modelagem gratuito e de fácil acesso ao 

modelador (Dinamica EGO, Soares-Filho et al., 2013), o torna uma potencial 

metodologia para modelagem de espécies.   
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Independentemente da técnica utilizada, um ponto crucial em qualquer 

modelagem é o controle e a minimização dos erros (Beale e Lenon, 2012), que se inicia 

com a seleção de dados confiáveis de presença e/ou ausência da espécie, passa pela 

escolha de um algoritmo adequado para a quantidade de dados disponíveis e finaliza por 

meio de uma validação transparente. Tanto a escolha do algoritmo, a qual constitui a 

principal fonte de incerteza no processo de modelagem (Watling et al, 2015), quanto as 

técnicas de validação podem ser facilmente controladas pelo pesquisador.  Por outro lado, 

a qualidade dos dados de ocorrência é o ponto mais difícil de ser atingido devido à 

possibilidade de coletas viciadas, as quais potencializam a chance de serem gerados 

padrões de distribuição espaciais errôneos, principalmente na situação de poucos dados 

(Boria et al., 2014). Uma modelagem confiável e eficaz é diretamente proporcional à 

qualidade dos dados de entrada. 

A presente tese utiliza um banco de dados de ocorrência de espécies de formigas 

nas savanas da região do Cerrado (Vasconcelos et al. 2014, 2017), juntamente com outros 

dados disponíveis na base “Antmaps.org” (Janicki et al., 2016), para investigar métodos 

capazes de lidar com dados restritos e, então, modelar a distribuição espacial das espécies 

mais típicas do Cerrado.  Para tanto, este trabalho foi dividido em dois capítulos.  

O primeiro deles aborda o aspecto mais teórico da tese e está em processo de 

revisão na revista PeerJ. Nele, os métodos Maxent e Pesos de Evidência são comparados 

em relação à sua capacidade de lidar com a restrição de dados, seja ela pela pequena 

quantidade de registros ou pela restrição espacial da área de abrangência em que estes 

registros se encontram.  

A segunda parte aplica o método Pesos de Evidência, que se revelou mais 

adequado para a situação de restrição de dados, na modelagem de 12 espécies de formigas 

que ocorrem predominantemente ou exclusivamente no Cerrado ou em outras áreas de 

vegetações savânicas da América do Sul. Com os modelos de distribuição das áreas de 

adequabilidade para cada espécie, determinei: (a) qual a porcentagem da área com 

adequabilidade ambiental atual de cada espécie que se encontra sob proteção, e (b) qual 

o tamanho das áreas favoráveis para cada espécie na atualidade e em 2070. Esta análise 

está sendo preparada para submissão na revista Journal of Insect Conservation.  

Assim, pretende-se que este estudo, além de contribuir para o avanço de técnicas 

de modelagem de espécies raras ou endêmicas em geral, colabore com a inclusão dos 

insetos em estudos de planejamento da conservação, pois, apesar de representar a maior 

parcela da biodiversidade e constituir um grupo funcional importante (Edwards et al., 
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1993; Thomas et al., 2008), eles raramente são levados em consideração devido à pequena 

disponibilidade de dados (Jenkins et al., 2013).  
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Abstract 

Background. Currently, modeling species with restrict datasets assumes particular 

importance, once the ongoing global changes in climate and land cover may not allow 

waiting for more comprehensive species databases. Although there are techniques able to 

overcome the difficulties of estimating species distributions under small datasets, much 

less is known about modeling approaches able to accurately predict outside the spatial 

range of a small sample. 

Methods.  We compared the performance of Maxent and the Bayesian technique 'Weights 

of Evidence' regarding their ability to maintain satisfactory suitability surfaces even when 

the data are restricted, both in terms of quantity and location. In order to achieve this goal, 

the modeling methods were applied to three Neotropical ant species, and for each of these, 

the models were run using three distinct datasets: (a) the complete dataset consisting of 

species presence data, (b) a restricted dataset – both in terms of number of records and 

geographical coverage of the data – also based on species presence data, and (c) a 

restricted dataset whose records consisted of abundance rather than presence data. 

Evaluation of results were conducted with independent presences and absences through 

comparisons of True Skill Statistics (TSS), a metric that ranges from 1 (complete 

agreement) to -1 (complete disagreement). 

Results. Concerning modeling with complete datasets, TSS values estimated in a 23 x 23 

km window size varied from 0.5 to 1 with Weights of Evidence, and from 0 to 0.31 with 

Maxent.  When calibration data were restricted, Maxent had their TSS estimated in a 23 

km x 23 km window varying from 0.12 to 0.76, whereas Weights of Evidence showed 

TSS values higher than 0.72 in this same window size. Overall, Weights of Evidence 

outperformed Maxent because it was able to predict many of the presence records located 

outside the geographical limits of restricted datasets and also because it was more accurate 

in predicting absences. The inclusion of abundance values in modeling restrict datasets 

did not significantly improve TSS.  

Discussion. Our results suggest that Weights of Evidence is more robust than Maxent, 

especially when dealing with restrict databases. Given this circumstance, only Weights 

of Evidence was able to classify correctly almost all absences and presences located 

outside the limits of the calibration ones. We believe Weights of Evidence performed 

better than Maxent mainly as a result of the calibration strategy applied here. We adopted 
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a new approach for running Weights of Evidence, so that the number and location of 

pseudo-absences during the calibration process were specifically designed for each 

modeled scenario. To our knowledge, this is the most comprehensive study to evaluate 

species distributions obtained through Weights of Evidence, a method traditionally used 

in geosciences. We thus encourage further studies regarding its application in species 

distribution modeling. 

Introduction 

Modeling species spatial distribution is an important tool in conservation planning 

(Wilson et al., 2005). However, its application has been especially difficult for species 

that have only few occurrences, mainly because these may be covering only a small 

portion of the real geographic range of species. Over the past few years, there has been 

an ongoing effort to develop techniques designed to overcome the challenges of modeling 

under small datasets (Wisz et al., 2008; Hernandez et al., 2006; Breiner et al., 2015; 

Hamilton et al, 2015; Galante et al., 2017). Notwithstanding, little is known about 

modeling approaches able to accurately predict outside the spatial range of a small 

sample. This issue is of special concern to develop conservation strategies for the tropics. 

Despite being the region with the highest biodiversity, there is a shortage of information 

regarding species occurrences (El-Gabbas et al., 2017). The rapid changes in climate 

(Magrin et al., 2014) and land cover (Ferreira et al., 2013; Soares-Filho et al., 2006) may 

not allow waiting to collect more comprehensive species datasets.  

Recent assessments revealed that, the most reliable approach for modeling species 

with few occurrence records (< 30) is to apply the Maxent algorithm (Philips et al., 2006; 

Hernadez et al., 2006; Wisz et al., 2008) using the ENMeval package (Muscarella et al. 

2014; Galante et al., 2017). ENMeval (Muscarella et al. 2014) is an R (R Core Team, 

2017) package that builds a series of Maxent models with a variety of settings in order to 

select the optimal model for a given species under few occurrences. Bayesian networks 

and hierarchical models are other important modeling techniques that have been 

successfully applied to small datasets (Wilson et al., 2010; Hamilton et al., 2014). They 

allow incorporating sources of uncertainties, such as indirect signs of the species (Wilson 

et al., 2010), bias correction (Velásquez-Tibata et al., 2015), and à priori probabilities 

stated by species' experts (Hamilton et al. 2015) and, hence, they minimize the errors 

associated with modeling under few data. Nonetheless, in contrast to Maxent, these 

approaches are far from simple. Their applications involve both complex theoretical 
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considerations and intensive computation. In addition, they require additional information 

that are not available for the majority of species with few records.   

Nevertheless, an important uncertainty still remains regarding modeling methods: 

it is not known which modeling technique has the greatest performance in predicting 

outside the limits of a geographically restricted dataset. This kind of analysis - frequently 

called as transferability assessment - is gainning attention (Wenger et al., 2012, Breiner 

et al., 2015) due to its importance in conservation planning. If a model has a satisfactory 

performance only around the input presence points and cannot detect other suitable areas 

outside the current known species range, it means that it is not able to predict new 

potential areas for the species. The ability of indicating new suitable areas for a given 

species is crucial, especially because of climate change, which is expected to alter species 

current geographical ranges (Chen et al., 2011). To our knowledge, only five studies have 

evaluated this issue (Wenger et al., 2012; Breiner et al., 2015; Muscarella et al., 2014, 

Qiao et al., 2018; Iturbide et al., 2018), with only one considering restricted datasets 

(Muscarella et al., 2014), and none of them comparing modeling algorithms. 

Within this context, we compared the performance of a Bayesian probability 

method, Weights of Evidence (Agtberg and Bonhan-Carter, 1990), with Maxent (Philips 

et al., 2006) regarding both their ability to deal with restricted datasets and their potential 

to be used for transferability purposes, using a non-biased validation technique. We 

conducted modeling experiments by varying both the number of occurrences and their 

spatial ranges for three species of ants with different number and spatial patterns of 

presence/absence data. In order to avoid validation bias, evaluation procedures were 

conducted with independent - hold-out data - by analyzing TSS (True Skill Statistics), 

sensitivity and specificity indexes in different scales together with visual inspections of 

modeled probability maps. This is the first paper to compare Weights of Evidence to 

Maxent in modeling species with geographically restricted data. 

 

Materials & Methods 

We compared Maxent and Weights of Evidence regarding their ability to maintain 

satisfactory suitability surfaces even when the data are restricted, both in terms of quantity 

and location. In order to achieve this goal, each modeling algorithm was applied to three 

species and for each species, the models were run using three distinct datasets: (a) the 
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complete dataset consisting of species presence data, (b) a restricted dataset – both in 

terms of number of records and geographical coverage of the data – also based on species 

presence data, and (c) restricted dataset whose records consisted of abundance rather than 

presence data. The combination of dataset type and modeling algorithm resulted in six 

scenarios for each species. These scenarios were then evaluated concerning validation 

scores (based on independent test data). In the following sections, each of these steps are 

described in details.  

Data 

As explaining variables, we considered factors that might shape species 

distributions: climate, the amount of energy available in the system, and the topographic 

characteristics of the terrain. In this study, we obtained climatic conditions from 

WorldClim database, version 1.4 (Hijmans, 2005), constituting of 19 maps representing 

combination of means, extremes, and seasonality in rainfall and temperature. To 

characterize system energy, we used net primary productivity and gross primary 

productivity. Both are available from MODIS sensor 

(https://lpdaac.usgs.gov/products/modis_products_table/mod17a3). Altitude and slope 

were derived from SRTM (Shuttle Radar Topography Mission) maps. All maps represent 

current conditions in 1 km resolution and span South America.  

The restricted datasets were derived from the study of Vasconcelos et al. (2017). 

In this study, a systematic sampling of the arboreal and ground-dwelling ant faunas was 

conducted in 29 sites spread haphazardly over a region of approximately 2000 x 1800 km 

in the Brazilian Cerrado (savanna) biome (Fig. 1). In each site, it was stablished three 

sampling transects (≥ 1 km apart from each other), with a total of 20 sampling plots each 

(spaced 20 m from each other). Thus, in each site there was a total of 60 sampling points 

and ant abundance data represented the number of samples (for a total maximum of 60) 

in which a given species was recorded. For our study, we selected three of the species 

collected by Vasconcelos et al. (2017). These were: Cyatta abscondita, Gracilidris 

pombero, and Linepithema cerradense. These species were selected because they showed 

varying patterns of distribution and abundance.  Linepithema cerradense was both widely 

distributed across the Cerrado biome and locally abundant (it was present in 27 of the 29 

sites sampled and its local abundance varied from 2 to 31; mean = 16 species records per 

sampling site). Gracilidris pombero was present in 13 sites and its abundance varied from 

1 to 13 (mean = 6). Cyatta abscondita was the rarest species, found in only five sites, at 
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an abundance ranging from 1 to 3 species records per site.  Spatial coordinates of 

presences corresponded to either the location of the single transect in which the species 

was recorded or the centroid of the transects, in case the species was present in more than 

one transect.  Sites in which a given species was not collected were considered as true 

absences, and spatial location was also attributed to transects centroid. Although 

restriction condition is a priori limited to the Cerrado boundaries - due to the sampling 

design of Vasconcelos’s research - Gracilidris pombero and Cyatta abscondita showed 

an even smaller geographic range under restriction condition, given their small number 

of occurrences (Fig 1).  

The “complete” dataset consisted of both the data described above and data 

obtained from antmaps.org (Janicki et al., 2016). The antmaps.org data 

(www.antmaps.org) is a comprehensive global database of ant species distributional 

records, including literature records, museum databases and online specimen databases, 

that nevertheless has not yet included the data collected by Vasconcelos et al. (2018). The 

data downloaded from antmaps.org was scanned for reducing possible bias, retaining only 

species occurrences whose sources have been published in the literature and removing 

records that were less than 2 km apart from each other, as these could inflate predictions. 

The total number of occurrences (antmaps data plus Vasconcelos et al., 2018 data) then 

comprised 44 for L. cerradense, 31 for G. pombero, and 16 for C. abscondita.  

Species data were divided into calibration (or training) and validation (or testing) 

subsets (Fig 1). In the modeling scenarios that used the complete datasets, validation data 

represented 25% of the presence occurrences, randomly chosen through systematic 

sampling ordered by latitude values of presences, plus the absences. For models using 

restrict datasets, validation subsets for G. pombero and C. abscondita were composed of 

all occurrences from antmaps and all absences recorded by Vasconcelos (2017). 

However, for L. cerradense, the validation subset consisted of all occurrences from 

antmaps presences and eight randomly selected occurrences from Vasconcelos et al. 

(2017). This was done in order to create a significant difference in number of calibration 

occurrences between the complete and restrict modeling experiments for this species. 

Otherwise, calibration values for complete and restrict datasets would be very similar (33 

in the complete dataset and 27 in the restrict one). The range of calibration occurrences 

in complete and restrict datasets led to distinct areas, as pointed out by the minimum 
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boundary polygon surrounding calibration points (Fig. 1), allowing us to perform 

transferability assessments.  

Modelling methods 

For each of the nine species scenarios, Maxent suitability surfaces were obtained 

through two steps. Firstly, we applied the ENMevaluate function (Muscarella et al., 2014) 

to calibration data using the jackknife option. As a result, this function returns a table with 

several parameters and statistics, among them, Feature Class, Regularization multiplier, 

AIC and delta AIC. The combination of parameters Feature Class and Regularization 

Multiplier that resulted in the best fitted model, as demonstrated by a delta AIC equal to 

zero, was used to run the final model of each one of the nine species dataset scenarios in 

Maxent software, version 3.4.1. In this software, the final suitability surfaces were 

obtained by averaging ten subsampled models, each run with seventy percent of 

calibration data. In order to turn Maxent surfaces of suitability values into probability 

ones, the clog-log transform was applied (Philips et al., 2017). 

While Maxent and the ENMevaluate function could be easily applied to the data 

because they were specifically designed to the case of species presence information, the 

use of Weights of Evidence required several modifications.  In the next sections, we 

briefly describe the Weights of Evidence and, following, we detail the steps we developed 

to fit this technique to the case of modeling species distributions with small datasets of 

presence-only data.  

Weights of evidence 

Weights of Evidence (hereafter referred to as WE) is a Bayesian method 

traditionally used to derive suitability maps for spatial point phenomena (Agterberg and 

Bonham-Carter, 1990; Bonham-Carter, 1994; Soares-Filho et al., 2009). We believed in 

its potential to model species distribution due to the fact that it was originally developed 

to model mineral occurrences whose input dataset constituted solely on drilling holes 

located across the geographical space, with no information on sites in which these holes 

were not taken. Therefore, being an analogous situation as modelling species distributions 

with presence only data.  

WE consists on analyzing a set of explanatory variables (in raster map format) and 

to associate them with known occurrences of the event. These associations are estimated 

for several categories of each one of the explanatory maps by means of odds ratios of 
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conditional probabilities, based on Bayes rule, and are called as Weights of Evidence 

(Bonham-Carter, 1994). The magnitude of the weights depends on the measured 

association between the phenomena and the explanatory variables: positive values for 

Weights of Evidence favor the modeled event, the higher the value, the stronger the 

association. On the other hand, a negative weight indicates an inhibitory effect, whereas 

values close to zero are consistent with no association (Bonham-Carter, 1994). The 

probability of occurrence of the phenomenon in a given raster cell is estimated by 

integrating all variable weights of that cell through posterior logits, as demonstrated in 

Eq. 1. For more details concerning derivation of weights and the probability equation, the 

reader should refer to Bonham-Carter (1994).  

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶. .∩ 𝑁𝑁)(𝑥𝑥,𝑦𝑦) =
𝑒𝑒∑ 𝑊𝑊𝑖𝑖𝑁𝑁𝑖𝑖=𝐴𝐴1+𝑒𝑒∑ 𝑊𝑊𝑖𝑖𝑁𝑁𝑖𝑖=𝐴𝐴                               Eq. 1 

where, 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶. .∩ 𝑁𝑁)(𝑥𝑥,𝑦𝑦) is the probability of occurrence of the phenomenon at the 

(x,y) cell given N explaining variables (A, B, C, … N), whereas 𝑊𝑊𝑖𝑖 is the weight 

of variable i. 

The only assumption of this method is that all explanatory variables must be 

independent. The Weights of Evidence is implemented in Dinamica EGO modelling 

platform (Soares-Filho et al., 2009) and only requires raster maps of explaining variables 

and occurrence data to be applied. By default, information of the entire geographic range 

of the input maps are used in this process, assuming that the whole area was sampled. 

Given this assumption is not true for the species databases used here, we applied a series 

of modifications in the way WE is traditionally calibrated (see Soares-Filho et al.,  2009). 

The fitting process used here will be described in details bellow and was applied to each 

species scenario.  

1. Generating input data 

Instead of using maps of the entire South America, we used just a sub-sample of 

them. This was required in order to adequate the modeling algorithm into the case study 

of modeling species under data-poor conditions, in which the real geographic range of the 

species may have not been entirely sampled.  
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Firstly, as the geographic domain influences the location of pseudo-absences, 

which, in turn, can have significant effects on model performance (VanDerWall et al., 

2009; Wisz and Guisan, 2009; Lobo et al., 2010), we defined calibration regions as the 

minimum boundary polygon surrounding presence points (Fig. 1) added to its 500 km 

buffer. The idea behind this approach is to create pseudo-absences that are not too close 

to presence records, what would cause spurious predictions (VanDerWall et al., 2009) 

and also to avoid inflating validation statistics, caused by over spreading of pseudo-

absences (Lobo et al. 2010). Other ranges were tested but 500 km produced good results 

for all the species. Then, a randomly selected subset of the background cells composed 

the pseudo-absences group. Number of pseudo-absences were determined as the sum of 

presence weights, as suggested by Barbet-Massin (2012), who showed that models fitted 

with a large number of pseudo-absences, but equally weighted to presences, produces the 

most accurate predicted distributions. After testing several approaches to estimate the best 

values to be attributed to presences, we established the following rules: 1) for complete 

datasets and restrict ones without the use of abundance data, each presence occurrence is 

given a weight of 10; 2) for the restrict dataset, in which abundance values were taken 

into account, presence weights corresponded to observed abundance for L. cerradense 

and to the observed abundance (times 10) for G. pombero and C. abscondita. We decided 

to multiply abundance by 10 for these two species to increase the importance of the 

presence occurrences in relation to pseudo-absences in modeling procedures, since G. 

pombero and C. abscondita showed low abundance values.  

Then, the weights of the presences, the pseudo-absences and explaining variables 

were organized into a table whose first column indicated presence or pseudo-absence - 

assuming the presence weight or the value of zero, in case of pseudo-absences -  and the 

next columns showed the values of explanatory variables collected at the presences and 

pseudo-absences points. Following, each column was organized as a matrix, hereafter 

called fiction raster maps, which were used as inputs in Dinamica EGO WE calibration 

process, instead of using maps of entire South America. The name “fiction” maps was 

chosen because they are, actually, simple matrices, whose cells do not have any 

geographical relationships with one-another.  Fiction maps of species and explanatory 

variables are structured in the same way and have the same number of lines and columns, 

and used in asc format. Although these maps do not have any spatial relation between 
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cells, this fact does not have any implication on modeling estimations, since the WE does 

not depend on any kind of neighborhood relationships.  

The process of creating the fiction rasters was developed in R (R Core Team, 

2017) and the code is available for download. To be run, the function requires the 

geographical coordinates of presences and a map showing the contiguous area in which 

the presence points are inserted (in our case, it was South America). By default, it assumes 

presence weights will be ten and it will generate a number of pseudo-abscences 

correspondent to number of presences times 10. For other weights, the user should alter 

the source code.  

2. Calculating Weights of Evidence  

The fiction maps were passed on to Dinamica EGO functions “Determine weights 

of evidence ranges” and “Determine Weights of Evidence Continuous occurrence” 

(Agterberg and Bonham-Carter 1990; Soares-Filho et al., 2009), which were run 

iteratively, changing the parameters used to estimate the ranges at each step. Interactions 

were obtained by varying the following parameters of the “Determine weights of evidence 

function”: minimum delta (assumed values 1, 20 and 30), tolerance angle (could be 5 or 

10) and increment (varying between 1 and 20% of variable amplitude). After each step, 

the significant weights and their ranges were saved in a separated txt file. Iterations were 

run as many times as necessary in order to fine-tune and reach the broadest sequence of 

significant range weights for each variable.  Given overlaps between ranges originated 

from different iterations, we preferred the longer ones and the ones with higher contrast 

(contrast is one of the parameters that Dinamica Ego uses to evaluate weight coefficient 

significance). In sum, the main goal of these iterations was to seek for variables whose 

weight’s graph presented a clear trend, easy to interpret and to establish relations between 

the explanatory variables and species occurrences. Given a graph whose general trend is 

clear, but that presents one or two classes whose weights fall far away from their trend or 

is equal to zero, these classes’ weights were assigned to the mean of its neighbors’ 

coefficients, as suggested by Soares-Filho et al. (2009). This is an approach to correct 

values that might have been occurred due to chance, by a non-sampled place, for example.  

Usually, one certain combination of these parameters is enough to generate 

significant weights (Soares-Filho et al., 2009) and a weights’ graph showing a clear trend. 

However, in the case of modelling species with few occurrences, as the one used here, 

we noted that a unique combination of parameters was never enough to generate ranges 
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with significant weights spanning across the amplitude of a certain variable. This might 

have happened due to a limited ability of the method used to categorize the continuous 

variables given a small dataset.   

Within this step we applied the first filter used to select the most important 

variables related to species occurrence: only explanatory variables with more than 70% 

of significant classes are considered in the next step.  

3. Estimating probability of occurrence given just one variable 

From this step on, the fiction maps are no longer used and we estimated probability 

maps of species occurrence given just one variable along the entire South America. As 

ranges and weights were estimated based on a buffer polygon surrounding presences, 

areas of South America outside the polygon remained without ranges and weights. Hence, 

two new ranges were created in the upper and lower limits of the sequence of ranges. 

Given a certain variable, the lower range varies from its minimum value observed in the 

South America to the minimum value in its fiction map, and the upper range begins on 

the maximum value of the fiction map and closes on maximum value of the variable 

observed in the South America map.  Weights assigned to the lower and upper ranges 

assumed a value of 20% less than the most negative weight obtained during calibration 

or, in case of all calibrated weights being positive, weights of upper and lower classes 

were assigned to -0.5.  

Each variable had their weights applied to its South America map using the 

function “Calculate Weights of Evidence Probability map” in Dinamica EGO (Soares-

Filho et al., 2009). The idea behind this approach is to evaluate how much of the species 

distribution can be explained alone by each variable.  

 In this phase, we applied two more filters in order to select important variables.  

To be considered in the next steps, variables should have sensitivity higher than 75% and 

partial Area Under Curve (Peterson & Soberon, 2008) higher than 80%.  Both these 

statistics took into account calibration presences.  

4. Checking correlation between variables 

Correlation between pairs of selected variables were evaluated through the Joint 

Information Uncertainty Index, estimated by the Dinamica EGO function “Determine 

Weights of Evidence Correlation” (Bonhan-Carter, 1994; Soares Filho et al, 2009). The 

theoretical limit of this correlation coefficient varies from 0 to 1 and, in our analysis, for 
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a given pair of variables with correlation higher than 0.5, just the one with the higher sum 

sensitivity plus partial ROC remained in the model.   

5. Estimating species distributions 

We obtained current and future probability maps of species occurrence by 

applying the function “Calculate Weights of Evidence Probability map” into selected 

variables. This function applies equation 1 into explaining variables. Then, suitable and 

non-suitable areas were defined based on a probability threshold that maximizes the sum 

sensitivity plus specificity. This threshold was obtained using the function 

“Find.Optim.Stat” in biomod2 package (Thuiller et al., 2014) within R (R Core Team, 

2017), using ROC as the parameter.   

Evaluation of model predictions 

We validated modeled predictions by evaluating True Skill Statistics (TSS, 

Allouche et al., 2006) across different scales and, at the same time, associated them to 

percentages of correct classification of presences (sensitivity) and absences (specificity) 

separately. In parallel, we visually analyzed the maps of predicted probability.  

Firstly, TSS (Alouchee et al., 2006) was applied to compare predicted and 

observed occurrence maps of presences and absences. To obtain predicted maps, we used 

the threshold value of 0.5: cells with probabilities greater than 0.5 were considered as 

presences, otherwise they were classified as absences. To analyze TSS in different scales, 

we estimated percentages of correct classification on window sizes varying from 1 to 23 

cells, corresponding to a spatial resolution ranging from 1 to 23 km. This analysis was 

also applied for both presences and absences. While TSS will give a general view of 

agreement between observed and predicted maps, the sensitivity and specificity will show 

how well the model predicts these kinds of occurrences separately. We run this approach 

in Dinamica EGO (Soares-Filho et al., 2009) by applying the “Calculate Reciprocal 

Similarity Map” into maps of validation presences  and absences.  

Probability maps were visually evaluated in parallel to these indexes. We believe 

that in spatial modeling, visual inspections of resultant probability maps assume the same 

importance as the analysis of summary statistics, since they can bring into light patterns 

that could not be revealed by a mathematical analysis. This is especially important in the 

case of species modeling, where, in general, data are not systematically collected along 

the entire region. In this context, the aim was to evaluate not only if the predicted surface 
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is in accordance with the pattern of the species database but also to see how the model 

behaves in areas where there is no information about the modeled species. Moreover, with 

restricted datasets, when one omits a careful visual inspection and uses only metrics 

instead, evaluation of model predictions becomes more susceptible to misleading 

conclusions regarding predicted accuracy. For example, if a suitability map presents 

higher values only close to presence records, TSS, sensitivity and specificity will return 

satisfactory values. Nonetheless, predicted suitability would be poor, bringing no 

knowledge gain in relation to what is already known from the collected data. 

 

Results 

The general results were consistent among the three species analyzed, with 

Weights of Evidence showing better predictions than Maxent for all datasets conditions 

(Fig. 2).  

Considering modeling of complete datasets, validation TSS lines for Weights of 

Evidence were higher than those from Maxent for all window sizes and species. By 

analyzing G. pombero in a cell by cell comparison, while Maxent TSS corresponded to -

0.25, Weights of Evidence was equal to 0.19 (Fig. 2A), a difference of 0.44. With the 

increase of window size to 23 x 23 km, TSS increased to 0.31 in Maxent and to 0.5 in 

WE (Fig. 2A), reducing the difference in accuracy rates to only 0.19. For L. cerradense, 

although TSS of WE and Maxent were the same in a 1x1 km comparison, at the 23x23 

km window size Maxent TSS was equivalent to 0 while WE TSS corresponded to 1 (Fig. 

2D). Maxent TSS for C. abscondita in a cell by cell comparison was 0.26 (trocar por 

28%) points lower than the value that resulted from the WE (Fig. 2G). Considering the 

largest window size analyzed, this difference increased to 0.46 (trocar por 52) (Fig. 2G).  

The main cause of these observed differences was prediction of absences. Although 

accuracy in predicting presences were high for all species and for both modeling 

algorithms (equal to 100% - except for G. pombero modeled by Maxent which was 

equivalent to 87.5% - Figs. 2B, 2Ee 2H), Maxent was less accurate in predicting absences 

than WE (Figs. 2C, 2F e 2I). While WE percentages of correct classification for absences 

in the largest resolution analyzed corresponded to 100% for L. cerradense, 71(trocar por 

80%) % for C. abscondita and 50% for G. pombero, these same values for Maxent were 

0%, 25% and 44%. The analysis of probability maps (Fig 3A-B, 4A-B and 5A-B) shows 

that the outlines that can be made by gathering the highest probability areas in WE 
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resulted in spatial shapes with irregular contours, on the opposite of Maxent ones, whose 

highest probability regions presented more smooth borders and hence, more homogenous 

polygons.     

The analysis of restrict datasets showed that WE produced the best-fit models 

regardless the use of abundance values. WE TSS of restrict validation datasets almost 

reached total accuracy in a 23 x 23 window size for G. pombero and L. cerradense and 

corresponded to 0.65 for C. abscondita, which was calibrated with only 5 presence 

occurrence points (Figs 2A, 2D, 2G). When comparing C. abscondita probability maps 

originated from restrict and complete datasets using WE, we found that even the map 

from the restricted dataset shows a huge contraction of the highest probability area (Fig. 

2I), it still predicted the majority of validation points correctly (90% of absences and 80% 

of presences in a 23 x 23 km window size). The probability map of L. cerradense for both 

Maxent and WE showed an increase in the highest probability area in relation to the map 

obtained with the complete dataset, incorporating the Andes as a suitable region for the 

species. In contrast to WE TSS of restrict datasets, Maxent TSS reached a maximum of 

0.76 for G. pombero, 0.38 for L. cerradense and 0.12 for C. abscondita  in a 23 x 23 km 

window size (Fig. 2A, 2D, 2G). The decrease in performance rates from WE in relation 

to Maxent was due to the more general probability surfaces resultant from Maxent (Figs. 

3C-D, 4C-D, 5C-D), making specificity rates of this method much lower than those from 

WE. This effect was more pronounced for models involving C. abscondita, which showed 

a too general probability surface.  

The inclusion of abundance values on modeling restrict datasets caused different 

effects on the two modeling techniques and, overall, did not significantly improve the 

TSS statistics. In general, while Maxent surfaces have their highest probability regions 

reduced in size with the inclusion of abundance values for G. pombero and L. cerradense, 

WE maintained similar areas of highest suitability but increased probability values of 

these areas for the three species (Figs. 3E-F, 4E-F, 5E-F). The small differences in 

Weights of Evidence TSS rates caused by including abundance in restrict datasets were 

not enough to suggest that abundance values could improve predictions of this method 

(2A, 2D, 2G). However, we noted one positive modification for L. cerradense: the use of 

abundance values caused a decrease probability of occurrence in the Andes (Fig 4C-F). 

Regarding Maxent predictions including abundance information, C. abscondita showed 

a huge expansion of the highest probability area (Fig. 5E), maintaining sensitivity values 
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equal to 100% but reducing even more specificity, downgrading to 0% (Figs. 2H and 2I). 

Maxent TSS of restrict with abundance datasets showed higher values than the restricted 

scenarios for G. pombero and L. cerradense (Figs. 2A, 2D, 2G). Nevertheless, a closer 

analysis supported by both the probability maps (Figs. 3F and 4F) and sensitivity and 

specificity graphs (Figs. 2C and2F), shows that they have predicted really few presences, 

a result of the contraction observed in the highest probability area (Figs. 3F and 4F).   

Discussion 

Our results suggest that, in general, Weights of Evidence (WE) performed better than 

Maxent for all datasets conditions for the three species analyzed. Concerning modeling 

with complete datasets, while TSS estimated in a 23 x 23 km window size varied from 

0.53 to 1  for WE, Maxent values ranged from 0 to 0.34. When calibration data were 

restricted to Cerrado boundaries, WE TSS were higher than 0.72 for all species and 

Maxent values ranged from 0.12 to 0.75. Taking into account that TSS varies from -1 to 

1, these observed differences in TSS among modeling algorithms suggest that Maxent 

predictions are significantly less accurate than those from WE for the complete datasets. 

The reason why Maxent performed poorly than WE was due to its low accuracy for 

absences in both datasets and its poor ability in predicting validation presences located 

far away from calibration region. These results, therefore, suggest that WE might be 

transferable to unsampled regions nearby calibration points with a superior accuracy than 

Maxent. WE most outperformed Maxent for the species with the smallest dataset, C. 

abscondita, for which Maxent returned too general probability surfaces – showing high 

values in a large contiguous area of the map, which, hence, does not allow absences to be 

predicted. The really extensive suitable area of C. abscondita (Figure 5D) is the opposite 

of the expected for a species with a restrict distribution. 

It was interesting to note that WE TSS of restrict datasets for G. pombero and L. 

cerradense were even higher than WE TSS of complete datasets for window sizes greater 

than 5x5 km. We believe this might be an effect of the lower variance presented by the 

explanatory variables of the restrict dataset presence points in relation to the complete 

dataset occurrences. As restrict datasets were collected only in the Cerrado biome, the 

climatic and environmental characteristics of these points show a smaller variability than 

the ones that were collected in several other biomes. This low variability resulted in a 

narrower range of suitable environmental conditions than the one obtained with complete 

datasets, resulting in a straight forward search for environmental conditions similar to the 
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ones in which the species were found within Cerrado.  The inclusion of abundance values 

caused little differences on WE modeling which, overall, were not strong enough to 

suggest that they improved predictions. For Maxent, visual analysis of probability maps 

suggests that the use of abundance data may even have a negative impact on model 

predictions.  

The basic of statistics states that the liability to trust a model’s output is directly 

linked to three main factors: 1) the quality of the input data; 2) the evaluation strategy 

applied; and 3) the degree to which the assumptions of the method are met. Here, we 

attempted to control all these three factors, since lack of attachment to these rules may 

lead to greater uncertainty in predictions. The input species data used here were either 

obtained from a planned survey across a large region (the Brazilian Cerrado), and thus 

represented a relatively spatially unbiased dataset, or from presence records gathered 

from different sources by antmaps.org, which were filtered in order to remove samples 

too close to one another and that, therefore, could inflate predictions. Moreover, the 

spatial error that might have been included due to the use of explanatory variables 

obtained from remote sensing imagery was diminished by applying spatial filters on 

predicted suitability maps.  

Considering the evaluation strategy, a modeler should attain to adopt the one(s) 

with best fit to their dataset, mainly concerning presence-only or presence-absence data 

availability. We chose to rely on TSS (Alouchee et al, 2006), a non-biased technique 

which has a really straight-forward meaning, is robust and easy to interpret. Along with 

this metric, we evaluated percentages of correct classifications of presences and absences, 

and conducted visual analysis of predicted probability maps. Given the lack of a planned 

survey across the entire region being modeled, the visual analysis of probability maps 

assumes particular importance. In this work, L. cerradense serves as an example 

regarding this issue. Under restrict datasets, although both modeling methods showed 

satisfactory evaluation metrics, their probability surfaces predicted the Andes region as a 

suitable area for the species. However, as far as we know, there are no L. cerradense 

records in the eastern side of the Andes, and it certainly does not occur in the western side 

since the Andes itself acts as a barrier to the dispersal of L. cerradense.    

Regarding modeling methods assumptions, our approach relied on one of the types 

of models more appropriate to spatial datasets, the Bayesian methods (Bonham-Carter, 

1994). It is well known that Bayesian methods are adequate for spatial information since 
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they are estimated in a nonparametric way, and thus not presenting all the restrictive 

assumptions of parametric statistical models. In comparison to Hierarchical Bayesian 

techniques that have been increasingly applied to species distribution modelling (Wilson 

et al., 2010; Carrol et al., 2008, Rivera et al., 2008), Weights of Evidence is a simpler 

method regarding equations and methodologies used to estimate parameters. 

Nevertheless, although it is already implemented in a user-friendly modeling software 

(Dinamica EGO, Soares-Filho et al., 2009), the WE fitting process applied here was time 

consuming for two reasons: 1) we created fiction raster maps to be used in the calibration 

process, constituting matrices showing presences and pseudo-absences as explanatory 

variables; and 2) the fine tuning of Weights of Evidence categorization process required 

exhaustive modification in the parameters in order to reach the categorization pattern with 

the greatest number of significant classes. Futures researches could include the 

automatization of these process, allowing WE to be readily applied to model species with 

few and spatially restricted occurrences.   

A recent work comparing Weights of Evidence to Maxent suggested that these 

methods have similar efficacy levels (Lopes et al., 2014). We believe we reached a 

distinct conclusion both because we used a different evaluation strategy and also due to 

the different way of conducting the calibration process. While Lopes et al (2014) used 

AUC statistics taking into account only presence records, we applied a non-biased metric, 

TSS, using both presences and absences. In addition, our calibration process was based 

on the creation of fiction maps that turned WE more appropriate to the case of species 

distribution modeling. These maps allowed us to control the number of pseudo-absences 

and their weights in relation to each presence record, as suggested by Barbet-Massin 

(2012). In addition, they made it possible to restrict these pseudo-absences to buffer zones 

related to the extent of calibration presences. Restricting model fitting to an area 

surrounding occurrence points is a key factor to obtain more realistic predictions than 

models calibrated within areas that extrapolates species occurrence ranges (Anderson & 

Raza, 2010). 

Conclusions 

Overall, it was worthwhile to conduct species distribution modeling through the 

Weights of Evidence method, despite the time-consuming calibration process adopted 

here. Our results suggest that WE is more robust than Maxent, especially when dealing 

with restrict databases, in which case only WE was able to classify correctly almost all 
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presences and absences located outside the limits of the calibration ones. This is an 

imperative behavior of models to be applied in datasets whose range do not span the entire 

geographic distribution of the species and an especially important ability when the aim of 

modeling is to design conservation strategies in face of climate and land use change 

(Peterson et al., 2007; Qiao et al., 2018; Iturbide, Bedia & Gutierrez, 2018). We highlight 

the need of further investigations regarding the use of Weights of Evidence in species 

distribution modeling, including the use of different species and a more refined 

transferability assessment, considering different levels of split sampling.  
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Figure 2:  

Evaluation statistics in relation to window sizes.  

Shown is the TSS, sensitivity (percentage of correct classification of validation 

presences), and specificity (percentage of correct classification of absences) statistics. 

Legend codes refers to predictions of the following methods and datasets: MC: 

Maxent/Complete dataset; WC: Weights of Evidence/Complete dataset; MR: 

Maxent/Restrict dataset; WR: Weights of Evidence/Restrict dataset; MRA: 

Maxent/Restrict dataset including Abundance values; WRA: Weights of 

Evidence/Restrict dataset including Abundance values. 
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Figure 3:  

Suitability surfaces for Gracilidris pombero.  

Panels represent surfaces obtained by applying the following modeling methods to each 

dataset condition: A) Weights of Evidence (WE), Complete Dataset; B) Maxent, 

Complete dataset; C) WE, Restrict Dataset; D) Maxent, Restrict Dataset; E) WE, Restrict 

Dataset including Abundance values; F) Maxent, Restrict Dataset including Abundance 

values. 
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Figure 4:  

Suitability surfaces for Linepithema cerradense.  

Panels represent surfaces obtained by applying the following modeling methods into each 

dataset condition: A) Weights of Evidence (WE), Complete Dataset; B) Maxent, 

Complete dataset; C) WE, Restrict Dataset; D) Maxent, Restrict Dataset; E) WE, Restrict 

Dataset including Abundance values; F) Maxent, Restrict Dataset including Abundance 

values. 
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Figure 5:  

Suitability surfaces for Cyatta abscondita.  

Panels represent surfaces obtained by applying the following modeling methods into each 

dataset condition: A) Weights of Evidence (WE), Complete Dataset; B) Maxent, 

Complete dataset; C) WE, Restrict Dataset; D) Maxent, Restrict Dataset; E) WE, Restrict 

Dataset including Abundance values; F) Maxent, Restrict Dataset including Abundance 

values. 
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Abstract  

Climate change along with degradation of the natural environment have caused 

species losses worldwide and, in many cases, changes in ecosystem functioning. It is well 

known that ectotherm taxa from the tropics are more physiologic vulnerable to climate 

warming than organisms at higher latitudes.  As such, tropical ants, especially those with 

a restricted geographic distribution may be under high risk.  In this context, the main goals 

of this work were: (1) to estimate current and future (2070) suitability maps for 12 ant 

species, that occurs exclusively in the savannas or grasslands of South America; (2) to 

evaluate how effective protected areas are to safeguard these 12 species; (3) to estimate 

vulnerability degrees of these species based on future suitability surfaces and on 

protection effectiveness. Current and future suitability surfaces were estimated by means 

of the Weights of Evidence method based on variables related to climate, soil, elevation 

and gross primary productivity (GPP).  Validation of each species model was based on 

partial Area under Curve (partial AUC) and sensitivity values (correct classification of 

presences), estimated for a subset of 25% of presence records not used during the 

calibration process. Results showed that considering the unlimited dispersal assumption 

– i.e., ant species will be able to reach novel potential regions by 2070 regardless their 

distance from current distributions – two species are expected to expand their suitable 

ranges, reaching around 128%, on average, of their current suitable areas. The other 10 

species show 2070 suitable extensions varying from 40% to 91% of areas predicted as 

suitable nowadays. Considering an opposite situation, in which species will not be able 

to disperse and, hence their future distribution will be restricted to remaining current areas 

by 2070, percentual loss of suitable region might be much higher. Given this hypothesis, 

the extension of suitable ranges may decrease between 13% to 63%. Overall, our study 

suggests that Linepithema cerradense is the least threatened species, due to its 130% 

increase in suitable area by 2070 and its high representativeness in protected areas, 

corresponding to 23% in the future. The most vulnerable ones are Pheidole cyrtostela  

and Blepharidatta conops, which are expected to maintain between 13% and 16% of 

current suitable regions. Since these are species that, until today, have been recorded 

exclusively in some vegetation types of South America, their extinction may mean a 

world biodiversity loss.  
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Introduction 

Climate change worldwide has been the main cause of observed modifications on 

distribution ranges of many species (Urban, 2015; Pounds et al., 2006), which, in turn, 

alters community structure and triggers functional changes in species assemblages and 

associated ecosystem processes (Pecl et al., 2017; Tiede et al, 2017). In spite of a 

relatively greater increase in temperature to be expected in higher latitudes rather than in 

lower ones  (IPCC, 2014), for ectotherm taxa, the effect of climate warming might be 

worst in the tropics, since ectotherms inhabiting low latitudes are more physiologically 

vulnerable to climate warming than organisms at higher latitudes (Deutsch et al., 2008; 

Sunday et al., 2011). Among these taxa, ants (Hymenoptera: Formicidae) constitute a 

relevant functional group. They are important for food web interactions and are involved 

in numerous ecosystem processes (Del Toro et al., 2015), such as predation, nutrient 

cycling, soil turnover and seed dispersal (Underwood and Fisher, 2006; Parr et al, 2016). 

Potential changes in ant species distributions caused by climate warming may 

significantly alter ant-mediated ecosystem processes and services (Del Toro et al., 2015). 

Ant species richness and composition is often correlated with climatic gradients 

(del Toro et al., 2015; del Toro et al, 2019; Vasconcelos et al, 2017) and vegetation 

structure (Hoffmann, 2010; Underwood and Fisher, 2006; Gibb and Parr, 2013; Gibb et 

al., 2015; Wiescher et al., 2012, Tiede et al., 2017). Diamond et al (2012) showed that 

climate warming may have a negative effect on tropical ant species due to their low 

thermal tolerance. Climate effects may act even more rapidly on endemic and range-

restricted ant species, not only because they might present even smaller temperature 

buffers but also due to their lower ability to track environmental changes (Parmesan, 

2006; Domisch et al., 2013). In the tropics, the additional effect of the ongoing 

deforestation (Strassburg et al., 2017) may increase ant vulnerability even more. The 

South America tropical savanna - that composes the second largest Biome in South 

America, the Cerrado - have lost 46% of its natural cover and only 19% remain 

undisturbed (Strassburg et al., 2017). In this sense, anticipating the impacts that future 

changes may have on tropical ants constitutes an important issue to help developing 

conservation strategies.  

Species distribution models (SDMs) are useful tools to estimate future species 

distributions given environmental and climate change and, hence, constitutes a key 

procedure in conservation planning (Wilson et al., 2005). SDMs basically identifies 
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relationships between environmental variables and species occurrence in order to predict 

species distribution ranges. Due to the scarce availability data (Jenkins et al., 2013), only 

recently SDMs have been applied to predict future consequences of climate change on of 

insects (Nóbrega & De Marco 2011; Giannini et al., 2013; Silva et al., 2013; Martins et 

al., 2014; De Marco et al, 2015; Pires et al., 2018; Silva et al., 2019). Regarding ants, 

there are studies evaluating the possible effects of future climate on species richness and 

composition (Del Toro et al., 2015; Tiede et al., 2017; Diamond et al., 2012), but only 

one have dedicated to estimate their future spatial distributions (del Toro et al, 2015).  

An extensive survey of the Neotropical savanna ants (Vasconcelos et al., 2017) 

revealed that there are at least 12 range-restricted species that occurs exclusively, or 

predominantly, in the Cerrado biome (Rodrigo Feitosa, personal communication).  In this 

context, the main goals of this work were: (1) to assess the effect of climate change on 

the distribution of the 12 range-restricted savanna ant species; (2) to evaluate how 

effective protected areas are to safeguard these 12 species; (3) to estimate vulnerability 

degrees of these species based on future suitability surfaces and on protection 

effectiveness. 

Material and Methods 

Data  

The 12 ant species analyzed here represent a subset of the 47 species listed as 

grassland/savanna specialists by Vasconcelos et al (2017). The selected species were 

chosen because their known distribution is largely coincident with the distribution of the 

Cerrado biome. In addition, these species have a relatively well-resolved taxonomy, and 

thus are less prone to identification errors (Rodrigo M. Feitosa, personal communication).  

Among the selected ant species, nine belong to the Attini tribe (subfamily 

Myrmicinae). These are Cyatta abscondita Soza-Calvo et al, 2013; Xerolitor explicatus 

Kempf 1968; Mycetagroicus cerradensis Brandão & Mayhé-Nunes 2001; Trachymyrmex 

dichrous  Kempf 1967; Blepharidatta conops Kempf 1967; Sericomyrmex maravalhas 

Ješovnik & Schultz, 2017; Sericomyrmex scrobifer Forel 1911, Cephalotes betoi de 

Andrade & Urbani, 1999; and Pheidole cyrtostela  Wilson 2003. The three remaining 

species are Linepithema cerradense Wild 2007, Linepithema aztecoides Wild 2007, both 

in the Dolichoderinae subfamily, and Ectatomma planidens Borgmeier 1939, a 

representative of the subfamily Ectatominae.  
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Occurrence numbers for these species varied from six to 44 records (table 1). The 

data (composed of species presences records) were split into calibration (or training) and 

validation (or test) data. Validation dataset corresponded to 25% of total presences and 

were obtained through a systematic sampling ordered by latitude values of presences. The 

remaining 75% composed the calibration group.  

The variables used to model each species suitability across the space took into 

account that the occurrence of different ant species is, to a large extent, determined by 

variation in climate, elevation gradients, vegetation cover and soils (Del Toro et al., 2015, 

2018; Vasconcelos et al., 2017). Climatic data was obtained from WorldClim version 1.4 

(Hijmans, 2005) in a spatial resolution of, approximately, 0.041 degrees (~4.5 km). 

Climatic conditions constitute of 19 maps representing combination of means, extremes, 

and seasonality in rainfall and temperature. Future climate corresponded to projections of 

these same 19 variables also estimated by WorldClim version 1.4 and reflects projected 

climate by 2070 in the worst IPCC scenario (RCP 8.5, IPCC 2014). Altitude were derived 

from SRTM (Shuttle Radar Topography Mission) maps. To account for vegetation 

characteristics and also the energy available in the system, I used Gross Primary 

Productivity (GPP) maps of present-day and 2070 developed by Madani et al. (2018). 

Finally, to account for soil characteristics that might interfere in building nests, I have 

downloaded soil data from soilgrids.org. These data show estimated sand and clay content 

at seven depth levels each, varying from the surface to 2 meters deep. In total, I had 37 

candidate maps of potential predictors of ant distributions.  

The protected areas network was downloaded from the World Database on 

Protected Areas (WDPA 2015, http://www.wdpa.org). I have considered here only 

protected areas whose categories varied from I-IV according to the codes of the 

International Union for Conservation of Nature (IUCN). 

Methods 

The analysis applied here constitutes on three steps. In the first one, I follow the 

method explained in Chapter 1 to fit probability models for occurrence of each one of the 

12 ant species selected for this study. After validating current suitability surfaces, fitted 

models were used to generate future distributions of these ant species. In the last step, I 

accounted for the expected changes in suitable areas caused by climate change and 

evaluated the match between predicted surfaces and the protected areas network.   
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Considering modelling suitability surfaces, Weights of Evidence, hereafter 

referred as WE, (Agtberg and Bonhan-Carter, 1990; Bonham-Carter, 1994; Soares Filho 

et al., 2009) was selected because most ant species have few and restricted presence 

records, two conditions against which WE proved to have superior ability than Maxent 

(Philips et al., 2006), a technique commonly used to model few data. For each variable, 

WE calculates a series of weights, which are combined into a single equation that 

generates the suitability maps (Bonham-Carter, 1994). The weights describe the 

relationship between the variable and the occurrence of the species, and, hence can be a 

basic guide to suggest species preferences. Model calibration for each species was 

conducted following the exact steps described in Chapter 1 taking into account calibration 

presence records. From the 37 possible explaining variables, final models of each species 

contained just the most significant and not correlated ones, also according to the approach 

suggested in Chapter 1.  

I evaluated each model using two different evaluation metrics. The first one 

consisted on partial AUC (area under curve; Peterson and Soberon, 2008), which was run 

by means of “roc” function of the pROC package in R (R Core Team, 2017). This function 

was applied in calibration and validation presence points plus an amount of spatially 

random points, correspondent to ten times the number of total presences. As a second 

evaluation metric, I evaluated sensitivity values of validation datasets across different 

scales, varying from 1 cell size (~4.5 km) to 11 cells (~50 km). The analysis of several 

scales allows to account as correct classification the case of a cell predicted as presence 

that fall not in the exact position of an observed record but within its neighborhood.  A 

neighborhood analysis like this is relevant mainly in situations in which explaining 

variables were not directly measured but interpolated and, hence, small space 

displacements might occur.  To estimate sensitivity, it is necessary, firstly, to determine 

expected presences and absences. The value used to determine if a probability cell 

constituted on an estimated presence or absence corresponded to the threshold that 

maximized the sum sensitivity plus specificity by means of the function Find.Optim.Stat 

of the package Biomod2, in R (R Core Team, 2017). Although the database of 

Vasconcelos et al (2017) shows sites where the species was not detected, I opted for not 

using these places as absence points as there is a large chance that they do not represent 

true absences due to the fact that observed abundance was very low (in many cases equal 

to one) for the majority of the species.  
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Also based in this threshold, I calculated suitable and non-suitable areas and, then 

- given suitability maps for 2070 obtained by applying fitted models to 2070 data - 

estimated expected habitat loss or gain between nowadays and 2070. As a last step, 

suitable areas for each species were compared to the protected areas network in order to 

estimate the vulnerability degree of each species. Classification of species into 

vulnerability degrees was based on a vulnerability graph, similar to Velaszco (2019). 

Here, vulnerability graph shows, in the Y axis, the percentage of current suitable areas  

that are expected to be maintained as suitable in 2070, and in the X axis, the percentual 

loss of suitable regions inside protected areas.   

Results 

General Species preferences   

The most important variables describing the potential distribution of the studied 

species, according to Weights of Evidence, were rainfall, temperature and GPP. All fitted 

models contained rainfall and temperature variables and nine of them showed also GPP 

as a crucial predictor (table 2).  

Considering the eight ant species for which GPP was a significant variable (table 

2), their GPP interval with positive weights ranged between 999 – 2261 g m-2year-1 (Fig. 

1A), a range that corresponds to a third part of the total range observed in South America. 

As positive weights reflect an association between the explaining variable and the 

modeled event, our analysis suggest that the general GPP interval preferred by the ant 

species analyzed here might be 999 – 2261 g m-2year-1.  A closer analysis of GPP 

weights for each species revealed that each one shows a different tolerance to vegetation 

conditions, since specific ranges and weights varied significantly between species (Fig. 

1A).  Trachymyrmex dichrous showed the broadest interval of preferred GPP, since it 

presented the largest spectrum of GPP positive weights (Fig. 1A). On the other hand, 

Pheidole cyrtostela may be the most demanding species concerning GPP values due to 

its small range of GPP (Fig. 1A).  The four species in which GPP was not a significant 

variable were Sericomyrmex scrobifer, Sericomyrmex maravalhas, Mycetagroicus 

cerradensis and Cyatta abscondita.  

The rainfall related variable most used in final fitted models was annual 

precipitation. It was part of the models of seven species (Blepharidatta conops, 

Linepithema cerradense, Linepithema aztecoides Xerolitor explicatus, Sericomyrmex 
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scrobifer, Ectatomma planidens and Trachymyrmex dichrous, table 2), whose preferred 

values ranged between the 116 – 2015 mm interval (Fig. 1B). By means of comparison, 

precipitation range of 99% of South America territory correspond to 0 – 4000 mm. The 

species most adapted to dry conditions was Xerolitor explicatus, whose positive 

precipitation weights begun at 116 mm. At the same time, this species showed the 

broadest range, from 116 to 1359 mm (Fig. 1B). Among the five species whose final 

models did not include annual precipitation, four included other rainfall related variables.  

Pheidole cyrtostela, Sericomyrmex maravalhas and Mycetagroicus cerrandensis were 

correlated to precipitation of wettest month, showing positive weights from 173 to 296 

mm, 206 to 362 mm and 178 to 280 mm, respectively. The final model of Cephalotes 

betoi took into account the precipitation of driest quarter, with positive weights ranging 

from 24 to 64 mm.  

General temperature preferences could not be seen in this study, since each species 

model showed a different arrangement of significant temperature variables. In contrast to 

rainfall data, which had only four variables included in the fitted models, temperature 

characteristics of final models included nine temperature variables (Table 2). Five of these 

variables were exclusive of just one of the fitted models, three variables were present in 

two models and just one, the maximum temperature of warmest month was included in 

three models.    

Surprisingly, just one species, Trachymyrmex dichrous, had soil characteristics in 

the final model (table 2).  Elevation took part of the models of five species, listed along 

with their preferred altitude ranges: Cyatta abscondita, 360 to 1250 m, Ectatomma 

planidens, 450-1450 m, Sericomyrmex scrobifer, 608-1353 m, Mycetagroicus 

cerradensis, 607-1192 m, and Trachymyrmex dichrous, 647-1362 m. 

Fitted suitability surfaces 

Our data suggest that, under the assumption of unlimited dispersal (Merow et al. 

2013; Owens et al. 2013), the total extension of suitable areas might decrease for 10 

species by 2070 (Figs. 2 and 3). This assumption consider that ant species will be able to 

reach novel potential regions by 2070 regardless their distance from current distributions. 

The two species that might expand their suitable areas are Linepithema cerradense and 

Mycetagroicus cerradensis (Fig 3), which are expected to have 131% and 125% of their 

current areas by 2070, respectively. Their expansion areas tend to shift towards the north 
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and south of their current distributions (Figs 2B and 2K). The huge expansion of suitable 

conditions for Linepithema cerradense towards the Amazon (Fig 2B) was caused by the 

joint effect of drier conditions and diminished productivity of vegetation in this region by 

2070.  Weights of evidence analysis revealed that current preferred ranges of GPP for 

Linepithema cerradense varies between 1243 and 2055 g m-2year-1 (Fig. 1A) and also 

that this species currently occupies regions with annual precipitation varying from 1328 

to 1836 mm (Fig 1B). By 2070, these ranges are expected to occur in the southeast 

Amazon. The other species may have suitable areas corresponding to 40% - 91% of the 

total area predicted as currently suitable (Fig. 3). The species with smaller percentual loss 

in areal size, varying from 9% to 20%, were Xerolitor explicatus, Cephalotes betoi and 

Trachymyrmex dichrous. Ectatomma planidens, Blepharidatta conops and Sericomyrmex 

scrobifer may have future suitable areas varying between 65-67% of suitable areas 

observed today. The highest percentual losses are expected to Sericomyrmex maravalhas, 

Linepithema aztecoides, Cyatta abscondita and Pheidole cyrtostela , which may show 

2070 suitable ranges between 45%- 60% smaller than current suitable areas.  

Evaluating only the percentage of current suitable areas expected to be maintained 

by 2070 - and, hence, simulating an opposite situation of the unlimited dispersal 

assumption – all species are expected to lose suitable areas. Linepithema cerradense and 

Mycetagroicus cerradensis, two species that showed increase in suitable ranges under 

unlimited dispersal assumption, are expected to maintain 61% and 38% of their current 

suitable areas by 2070. Among the 10 species expected to have total suitable areas in 2070 

smaller than the current ones (Fig. 3), the species of ants with the highest maintenance 

rates of suitable regions are Sericomyrmex scrobifer, Ectatomma planidens and 

Trachymyrmex dichrous  (Figs. 2J, 2L and 2D). These species are expected to maintain, 

respectively, 45%, 50% and 63% of their current suitability areas by 2070. Blepharidatta 

conops and Pheidole cyrtostela  presented the lowest expected proportion of current 

suitable areas to be conserved by 2070 (Figs. 2A and 2G), corresponding to 16% and 

13%, respectively. The species with intermediate rates of maintenance of current suitable 

areas were Linepithema aztecoides, Cyatta abscondita, Xerolitor explicatus and 

Cephalotes betoi (Figs. 2C, 2E, 2F and 2H), with preservation percentages ranging from 

17% to 32%. 

Considering that occupation of entire new suitable areas by 2070 (unlimited 

dispersion) might not be feasible for the majority of the species,  and also that total limited 
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dispersion is not likely to occur, I have analyzed an intermediate situation.  I have 

considered that effective new potential areas - the ones that might be reached by the 

species - will be formed by contiguous regions spanning the 2070 suitable area that is 

connected (share borders) to remaining parts of current suitable areas by 2070. Within 

this context, Linepithema cerradense might be the species with the greatest chance to 

successfully persist in South America, since its new potential area predicted by 2070 

shares a great border with areas expected to be suitable both in present-day and in the 

future (Fig. 2B). On the opposite, new future areas that shares borders only with present-

day suitable regions might not be effective to shelter the species. This is because we do 

not know when proper climate conditions for each species will be disrupted and, more 

importantly, until when species are able to persist in a determined area under a changing 

climate. For example, if proper conditions for a given species extinguishes by 2040, then 

the existence, in the future, of a suitable region next to the present-day distribution might 

be not useful.   In this context, once more, our study suggests that Blepharidatta conops 

and Pheidole cyrtostela  are expected to be the most impaired species because, besides 

showing the smallest overlap between current and future suitability areas, a significant 

part of 2070 new potential suitable areas are located far beyond the former cited 

overlapping area (Fig. 2A and 2G). Another species that might be seriously impacted by 

future changes is Xerolitor explicatus. This species showed the most restricted 

distribution range for both present-day and future, in addition, its overlapping area 

between present-day and 2070 is not connected to new suitable regions (Fig. 2F).   

Still regarding connection between future and present-day distributions, the 

species Ectatomma planidens, Trachymyrmex dichrous, Sericomyrmex maravalhas, 

Sericomyrmex scrobifer, Linepithema aztecoides, Cyatta abscondita, Cephalotes betoi 

and Mycetagroicus cerradensis might, in the future, stay restricted to the reduced amount 

of suitable regions constituted by the overlapping present-day and 2070 areas,  since new 

2070 suitable regions for these species are really small or located far beyond current areas 

(Fig 2L, 2D, 2I, 2J, 2C, 2E, 2H, 2K).  

Evaluating fitted models  

Evaluation of fitted probability maps, the ones used to produce suitability regions 

presented in Fig 2, showed satisfying results for all species. Partial AUC values varied 

between 0.83 and 0.95 (Fig. 4A) and correct prediction of presences (sensitivity) ranged 

from 67% to 100% in a cell by cell comparison (Fig 4B). If we increase evaluating 
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window size to 5 x 5 cells, corresponding to approximately 22.5 km x 22.5 km, the final 

model for Xerolitor explicatus classifies correctly 96% of the presences. If we consider a 

bigger window, of 11 x 11 cells – i.e. 50 km -  the Xerolitor explicatus model predicts all 

presences and the model for Sericomyrmex scrobifer 83% of them. By this scale, the only 

models that did not reach 100% of accuracy were the ones of Pheidole cyrtostela, 

Linepithema aztecoides and Trachymyrmex dichrous. Models for Pheidole cyrtostela  and 

Linepithema aztecoides reached maximum accuracy of presences in window sizes of 13 

x 13 cells and in a 15 x 15 cells, respectively. The only model that did not reach 100% of 

correct classification of presences within a 15 x 15km window was the one for 

Trachymyrmex dichrous.  

Comparing suitable regions with protected areas network  

All species was represented in at least one protected area. The majority of the 

species have between 10% and 15% of their current suitable distribution overlaid to 

protected areas (Fig. 5). If we consider predicted suitable area by 2070, under the 

assumption of unlimited dispersion, this percentage is expected to increase for seven 

species, the ones whose regions with proper conditions are predicted to go towards the 

north, a region that contains a much larger area under protection. Nevertheless, a more 

conservative assessment as suggested by opposite conditions of dispersal - considering 

that species will not be able to migrate, and, hence, taking into account only current 

suitable areas that will persist with proper conditions in the future - revealed that 

percentage of protection in the future might be, on average, as low as 5%.   

Level of vulnerability for each species can be classified into four categories, 

varying from I, the less vulnerable group, to IV, the most threatened one (Figure 6). Group 

I comprised two species, Linepithema cerradense and Trachymyrmex dichrous, which are 

expected to maintain more than 60% of current suitable areas by 2070 and have the lowest 

percentual loss inside protected areas (figure 6). Group II comprises the species 

Ectatomma planidens, Sericomyrmex scrobifer and Mycetagroicus cerradensis which are 

predicted to maintain between 39% and 50% of current estimated distributions by 2070 

and are expected to loss between 63% and 65% inside protected areas by this same period 

(Figure 6). Group III includes Cyatta abscondita, Sericomyrmex maravalhas, Xerolitor 

explicatus, Cephalotes betoi and Linepithema aztecoides, whose maintenance 

percentages varied from 25% to 32% and percentual loss inside protected areas might 

reach 69% to 85%. Group IV consists of the most threatened ones: Pheidole cyrtostela  
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and Blepharidatta conops, which are expected to maintain only between 13% and 16% 

of their current estimated distributions and are estimated to loose between 79% and 88% 

of suitable regions inside protected areas (Figure 6). 

  

Discussion  

This is the first study to evaluate the effects of future climate change on the 

distribution of South American ant species. Level of vulnerability for each species was 

classified into four categories, varying from I, the less vulnerable group, to IV, the most 

threatened one. Within all species, Linepithema cerradense was the least vulnerable one, 

since our analysis indicated an increase of 130% in the suitable area by 2070, of which 

23% is expected to be located in protected areas.  In addition, this species presented a 

wide contiguous zone comprising 2070 suitability together with remaining current 

suitable areas. The existence of a contiguous current-2070 area may facilitate the 

migration process along the years. In contrast, for all the other species, a contiguous 

current-2070 area is small or inexistent (Fig. 2).  

Our study suggests that species from groups II to IV might have a small amount 

of future range represented in protected areas, corresponding to an average of 10%, a 

value that could be diminished to a mean of 5% if we consider the limited dispersal 

assumption. This conclusion is in accordance to other studies regarding future 

distributions of insects in South America, which have also predicted a very small 

coverage of protected areas (Martins et al., 2015; Pires et al., 2018; Silva et al., 2019). 

Another factor that must be taken into account is that savannas and grasslands in South 

America contain a very small portion under protection zones (Strassberg et al., 2017; 

Bilenca and Miñarro 2004). For example, grasslands areas under legal protection in 

Argentina and Southern Brazil ranges between 1 to 1.5% (Bilenca and Miñarro 2004) 

and, in Cerrado, just 2.89% fall into the category of fully protected land (Strassberg et 

al., 2017).  

In general, fitted models included explaining variables that have already been 

identified as correlated with the distribution of ants. All fitted models presented at least 

one temperature variable and six of them showed between 2 and 5 temperature variables, 

indicating that model fitting process could capture the high sensitivity of tropical ants to 

temperature conditions (Diamond et al., 2012). The relationship between ant species 
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richness and precipitation has already been pointed out (Del Toro et al, 2018), and, here, 

rainfall has shown to be strongly correlated to species presences, since 11 models 

presented at least one variable related to precipitation. The joint effect of temperature, 

rainfall and GPP guided species suitable conditions towards the north of Brazil, more 

specifically, to the south of Amazon. However, although GPP values in this expanded 

range are likely to be similar to the ones currently observed in Cerrado, we do not know 

if vegetation structure by that time will allow the presence of species.  

Here, I have dedicated to estimate climatically suitable areas for individual ant 

species. These surfaces should be seen as basic indicators for species maintenance in 

future years, since their effective survival depends on other factors which were not able 

to be measured here.  A different climate might alter species in different ways, depending 

on their functional traits, diet and foraging strategy (Gibb and Parr, 2013; Gibb et al., 

2015; Wiescher et al., 2012; Tiede et al., 2017). As a consequence, population and 

community patterns are likely to change and the new emerging interactions may cause 

substantial changes in species distributions, which were not able to be accounted in this 

study. For example, since climate change may impact fungus (Rodder et al., 2010; 

Shrestha & Bawa 2014), six species analyzed here are expected to suffer the additional 

effect that future climate may have on their symbiotic fungus.   

In this context, future studies should aim not only to model species distributions, 

but also to explore how the complex relationships within a community might be altered 

as a joint effect of climate and land use changes. Considering there is a lack of systematic 

nation-wide surveys that could be used as basis to such studies, especially in developing 

countries (El Gabbas & Dormann, 2017), the first step to model communities is to create 

systematic species databases within the community level. Given this database, it would 

be able to develop monitoring programs that, beyond alerting us to biodiversity losses, 

would suggest functional changes in species assemblages and associated ecosystem 

functioning and services.  

Conclusion  

Overall, our study suggests that Linepithema cerradense is the least threatened 

species, due to its 130% increase in suitable area by 2070 and its high representativeness 

in protected areas, corresponding to 23% in the future. The most vulnerable ones are 

Pheidole cyrtostela  and Blepharidatta conops, which are expected to maintain between 
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13% and 16% of current suitable regions. Since these are species that, until today, have 

been recorded exclusively in some vegetation types of South America, their extinction 

may mean a world biodiversity loss.  
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Figures 
 

 

Figure 1: Intervals with positive weights of evidence for GPP (A) and Annual 

precipitation (B).  Only species whose fitted models included one of those variables are 

shown. The upper limit of the X axis shows the highest value observed in South America 

for GPP and, for annual precipitation, the maximum precipitation value observed in 99% 

of South America territory.  

 

 

 

 

 

Linepthema cerradense

Sericomyrmex scrobifer

Xerolitor explicatus

Linepithema aztecoids

Trachmirmex dichorus

Belpheridata conops

Ectatomma planidens

0 1000 2000 3000 4000

Sp
ec

ie
s

Annual Precipitation (mm)

Linepthema cerradense

Pheydole cyrtostela

Cephalottes betoi

Xerolitor explicatus

Linepithema aztecoids

Trachmirmex dichorus

Belpheridata conops

Ectatomma planidens

0 1000 2000 3000

Sp
ec

ie
s

Gross Primary Productivity - GPP - (g m-2 year-1)

B 

A 



59 
 

 

 

 

Figure 2. Current and future (2070) expected suitable regions for the occurrence of 12 

ant species that occurs exclusively, or predominantly, in savannas or grasslands of central 

South America. 
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Figure 4: Evaluation of fitted suitability surfaces. Graphs show partial AUC (A) and 

sensitivity (correct prediction of presences) (B) for each species.  
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Figure 5: Proportion of the modelled suitable areas of occurrence of each ant species 

that is represent by protected areas, currently and by 2070.   
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Figure 6: Graph showing vulnerability degree for each species. Vulnerability is based 

into the relationship between percentage of remnants of suitable areas by 2070 and 

percentual loss of suitable regions inside Protected Areas (PAs). Vulnerability increases 

as remnants diminishes and loss of suitable areas inside Protected Areas increases.  

Species were classified into four vulnerability groups, represented by different colors in 

the graph. Group I, green group, is the least vulnerable one, comprising species that are 

expected to maintain more than 60% of current suitable areas by 2070 and have the lowest 

percentual loss inside PAs. Group II, orange one, contains species which were estimated 

to have between 39% and 50% of current estimated distributions by 2070 and are 

expected to loss between 63% and 65% inside protected areas by this same period. Group 

III, represented by purple dots, includes species whose maintenance percentages varied 

from 25% to 32% and percentual loss inside protected areas might reach 69% to 85%. 

Group IV, represented by red dots, is composed of the most threatened species, which are 

expected to maintain only between 13% and 16% of their current estimated distributions 

and are expected to loose between 79% and 88% of suitable regions inside PAs. 
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Tables  

Table 1: Species of ants endemic to the savannas, grasslands and/or dry forests of central 

South America and the number of sites in which they were recorded. Data from 

Vasconcelos et al. (2017) and from the antmaps.org database. 

Species Number of records 

Linepithema cerradense 44 

Ectatomma planidens 33 

Blepharidatta conops 24 
Sericomyrmex scrobifer 22 
Cephalotes betoi 22 
Linepithema aztecoides 20 
Trachymyrmex dichrous 17 
Cyatta abscondita 16 
Mycetagroicus cerradensis 15 
Xerolitor explicatus 9 
Pheidole cyrtostela  8 
Sericomyrmex maravalhas 6 
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Table 2: Significant variables included in final Weights of Evidence models of each 

species. Variables were listed among groups. GPP refers to Gross Primary Productivity. 

Temperature variables correspond to Annual Mean Temperature (B1), Mean Diurnal 

Range (B2), Isothermality (B3), Temperature Seasonality (B4), Maximum Temperature 

of Warmest Month (B5), Minimum Temperature of Coldest Month (B6), Temperature 

Annual Range (B7), Mean Temperature of Wettest Quarter (B8), Mean Temperature of 

Warmest Quarter (B10) and Mean Temperature of Coldest Quarter (B11). Rainfall 

related variables refers to Annual Precipitation (B12), Precipitation of Wettest Month 

(B13), Precipitation of Driest Quarter (B17), and Precipitation of Coldest Quarter 

(B19). ALT corresponds elevation and ARG_005 refers to the clay content estimated at 

0.05 meter deep.  

 

Species 

Variables included in the model, separeted by groups 

GPP Temperature Rainfall Altitude Soil 
Blepharidatta conops GPP B6 B12   
Linepithema cerradense GPP B10 B12   
Linepithema aztecoides GPP B1 B12   
Cyatta abscondita  B8  ALT  
Xerolitor explicatus GPP B2, B10 B12   
Pheidole cyrtostela  GPP B6, B10 B13   
Cephalotes betoi GPP B3, B4, B6 B17   
Sericomyrmex maravalhas  B7, B11 B13   
Sericomyrmex scrobifer  B6, B8 B12 ALT  
Mycetagroicus cerradensis  B2, B5 B13 ALT  
Ectatomma planidens GPP B11 B12, B19 ALT  
Trachymyrmex dichorus GPP B5 B12, B13 ALT ARG_005 
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Conclusões gerais 
 

Esta tese demonstrou a eficácia superior do método Pesos de Evidência em relação 

ao Maxent quando os dados de entrada são poucos (menos de 30) e abrangem apenas 

parte da real distribuição da espécie. Este comportamento é essencial tanto na modelagem 

de espécies raras, ou com poucas informações disponíveis, quanto em situações cujo 

objetivo é o planejamento da conservação.  É importante ressaltar que este trabalho 

constitui uma primeira avaliação do método Pesos de Evidência na modelagem de 

distribuição de espécies, portanto o uso em outras espécies e em outros locais de estudo 

deve ser cautelosa. Idealmente, sugere-se que qualquer modelagem de distribuição de 

espécies passe pela avaliação de algumas metodologias, aquelas mais adequadas para o 

conjunto de dados em questão, sendo utilizada, por fim, aquela com maior acerto, o qual 

deverá ser definido com base em dados não incluídos durante o processo de calibração.   

A aplicação do método Pesos de Evidência em formigas do Cerrado mostrou que, 

mesmo sob melhor cenário - considerando que as espécies terão capacidade de migrar e 

alcançar novas áreas de adequabilidade em 2070 - dez das doze espécies analisadas terão 

áreas de condições propícias equivalentes a 40% - 90% de suas áreas atuais.  Sob uma 

hipótese mais conservadora, considerando que as espécies não serão capazes de migrar 

para as novas áreas favoráveis até 2070, esta porcentagem de redução pode ser ainda mais 

severa, e as áreas futuras poderão corresponder a 13% - 63% das áreas de adequabilidade 

atuais para as 12 espécies. Em geral, o estudo sugeriu Linepithema cerradense como a 

espécie de menor grau de ameaça. Por outro lado, Blepheridatta conops e Pheidole 

cyrtostela  podem ser as mais vulneráveis, com menos de 16% da distribuição estimada 

atual a ser preservada em 2070. Estima-se que, atualmente, as espécies possuam, em 

média, 13% da área favorável coincidindo com áreas de proteção, valor que pode chegar 

a 5% em 2070. 
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