

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA CURSO DE GRADUAÇÃO EM ENGENHARIA MECÂNICA

FELIPE FRANCISCO DE MELO

INTRODUÇÃO À DINÂMICA DOS FLUIDOS COMPUTACIONAL

UBERLÂNDIA – MG 2020 FELIPE FRANCISCO DE MELO

INTRODUÇÃO À DINÂMICA DOS FLUIDOS COMPUTACIONAL

Trabalho de Conclusão de Curso apresentado ao curso de graduação em Engenharia Mecânica da Universidade Federal de Uberlândia, como parte dos requisitos para a obtenção do título de Bacharel em Engenharia Mecânica.

Orientador: Aristeu da Silveira Neto

UBERLÂNDIA – MG 2020

RESUMO

A Fluidodinâmica Computacional ou CFD (Computational Fluid Dynamics) é a área do conhecimento que trata da simulação numérica de escoamentos, transferência térmica e fenômenos relacionados. Com o aumento do poder computacional, hoje é possível resolver problemas complexos de engenharia e da física. Nesse trabalho descrevem-se as etapas necessárias para desenvolver um código computacional, com o objetivo de solucionar as equações diferenciais aplicadas em um escoamento no interior de uma cavidade que apresenta uma tampa deslizante, o Método dos Passos Fracionados (Kim e Moin, 1985) com malhas deslocadas é usado para o acoplamento entre o campo de pressão e campo de velocidades, necessário quando se resolve escoamentos incompressíveis. No entanto, antes de começar a falar sobre este método e suas aplicações, são resolvidos casos de difusão e advecção para verificar a validade dos códigos utilizados. Através de um código escrito em linguagens Python e C foram realizadas simulações de escoamentos bidimensionais para o número de Reynolds 100, 400, 1000, 3200 e 5000 para o caso da cavidade quadrada. Os resultados computacionais obtidos para o caso da cavidade quadrada com o método dos Passos Fracionados foram satisfatórios quando comparados com os resultados da referência utilizada. Foram analisados os campos de velocidade, no qual pode notar-se algumas características que aparecem no escoamento como recirculações no canto inferior à medida que aumenta o número de Reynolds.

Palavras-chave: CFD; Navier-Stokes; fluidodinâmica; engenharia.

LISTA DE FIGURAS

Figura 1	Condução térmica bidimensional em uma placa1		
Figura 2	Cavidade com tampa deslizante12		
Figura 3	Velocidades e suas localizações usadas para discretizar a célula p (i, j) na		
	equação da pressão de Poisson	19	
Figura 4	Velocidades e suas localizações usadas para discretizar a célula u(i, j) na		
	equação de balanço do momentum linear de u	20	
Figura 5	Velocidades e suas localizações usadas para discretizar a célula v(i, j) na		
	equação de balanço do momentum linear de v	21	
Figura 6	Gráfico da solução do problema de condução bidimensional permanente	23	
Figura 7	Gráfico obtido da solução do problema Difusivo Advectivo em regime		
	transiente com solução sintetizada	24	
Figura 8	Gráfico da diferença máxima em modulo das soluções analítica e numérica		
	com evolução do tempo	25	
Figura 9	Gráfico representando a evolução temporal das velocidades u e v em		
	x/l=0,7 e y/l=0,3 para Reynolds igual a 100	26	
Figura 10	Gráfico representando a evolução temporal das velocidades u e v em		
	x/l=0,7 e y/l=0,3 para Reynolds igual a 400	27	
Figura 11	Gráfico representando a evolução temporal das velocidades u e v em		
	x/l=0,7 e y/l=0,3 para Reynolds igual a 1000	27	
Figura 12	Gráfico representando a evolução temporal das velocidades u e v em		
	x/l=0,7 e y/l=0,3 para Reynolds igual a 3200	28	
Figura 13	Gráfico representando a evolução temporal das velocidades u e v em		
	x/l=0,7 e y/l=0,3 para Reynolds igual a 5000	28	
Figura 14	Gráfico do divergente no instante inicial	29	
Figura 15	Gráfico do divergente no instante final	29	
Figura 16	Gráfico do divergente no instante inicial	29	
Figura 17	Gráfico do divergente no instante final	30	
Figura 18	Comparação das velocidades U na posição $x/L = 0,5$ para diferentes		
	tamanhos de malha utilizando-se Reynolds 100	31	
Figura 19	Comparação das velocidades U na posição x/L = 0,5 para diferentes		
	tamanhos de malha utilizando-se Reynolds 400	31	

Comparação das velocidades U na posição $x/L = 0.5$ para diferentes		
tamanhos de malha utilizando-se Reynolds 100032		
Comparação das velocidades V na posição y/L = 0,5 para diferentes		
tamanhos de malha utilizando-se Reynolds 100032		
Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds = 100 33		
Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds = 400 33		
Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds =		
1000		
Comparação das velocidades U na posição $x/L = 0.5$ para diferentes		
tamanhos de malha utilizando-se Reynolds 3200		
Comparação das velocidades V na posição $y/L = 0.5$ para diferentes		
tamanhos de malha utilizando-se Reynolds 320035		
Comparação das velocidades U na posição $x/L = 0.5$ para diferentes		
tamanhos de malha utilizando-se Reynolds 500035		
Comparação das velocidades V na posição $y/L = 0.5$ para diferentes		
tamanhos de malha utilizando-se Reynolds 5000		
Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds =		
3200		
Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds =		
5000		

LISTA DE TABELAS

|--|

LISTA DE SÍMBOLOS

Letras Latinas

g	aceleração da gravidade
Р	pressão
Re	número de Reynolds
t	tempo físico
и	velocidade na direção x
u _i	componente i do vetor velocidade
υ	velocidade na direção y
v_i	componente j do vetor velocidade
$ec{ u}$	vetor velocidade
x	coordenada cartesiana
\vec{x}	vetor posição da malha euleriana
у	coordenada cartesiana

Letras Gregas

- ρ densidade
- μ viscosidade dinâmica
- ν viscosidade cinemática

Índices

i, *j* pontos da malha euleriana

Operadores Matemáticos

- ∇ operador vetorial nabla
- ∇^2 operador laplaciano
- ∂ derivada parcial
- Δ diferença finita

SUMÁRIO

1	INTRODUÇÃO	.8
2	MODELAGEM FÍSICA DOS PROBLEMAS ANALISADOS	11
2.1	Modelo físico do problema de condução térmica bidimensional	
	permanente	11
2.2	Modelo físico do problema da cavidade com tampa deslizante	11
3	MODELAGEM MATEMÁTICA DOS PROBLEMAS	13
3.1	Introdução	13
3.2	Equações de Navier-Stokes e da continuidade	13
3.3	Modelagem matemática do problema de condução térmica bidimensional	
	permanente	13
3.4	Modelagem matemática do problema de difusão-advecção bidimensional	
	transiente com solução sintetizada	14
3.5	Modelagem matemática do problema da cavidade com tampa deslizante	15
4	MODELAGEM NUMÉRICA DOS PROBLEMAS ANALISADOS	16
4.1	Introdução	16
4.2	Modelagem numérica do problema de condução bidimensional	
	permanente	17
4.3	Modelagem numérica do problema de difusão-advecção bidimensional	
	transiente com solução sintetizada	17
4.4	Modelagem numérica do problema da cavidade com tampa deslizante	18
5	RESULTADOS	23
5.1	Resultados do problema de condução térmica bidimensional permanente23	
5.2	Resultados do problema de difusão advecção bidimensional transiente com	
	solução sintetizada	24
5.3	Resultados do problema da cavidade com tampa deslizante	25
5.3.1	Evolução temporal	26
5.3.2	Comparação com os Resultado Numéricos de Ghia <i>et al</i> . (1982)	30
6	CONCLUSÕES	38
7	PERSPECTIVAS PARA TRABALHOS FUTUROS	39
	REFERÊNCIAS BIBLIOGRÁFICAS	39

1 INTRODUÇÃO

Existem muitos fenômenos que escapam do controle do ser humano, tais como: a propagação de um incêndio, a trajetória que a água faz em uma inundação, a turbulência aérea, dentre outros. Se surgir o questionamento do que todos esses fenômenos têm em comum, chega-se a uma resposta: escoamentos.

Os fluidos, do ponto de vista físico - químico, são conjuntos de partículas unidas por forças fracas que promovem uma força externa a variação das posições de suas moléculas. Este é o caso de líquidos e gases.

Em 1822 o engenheiro e físico francês Claude - Louis Navier (1785 - 1836), deduziu um sistema de equações que descrevia aproximadamente o comportamento de alguns fluidos. Vinte Anos mais tarde, o matemático e físico irlandês Sir George Gabriel Stokes (1819 -1903), partindo de um modelo diferente, completou a descrição dessas equações, que então passou a receber o nome de Equações de Navier - Stokes em homenagem a ambos.

As equações de Navier-Stokes descrevem escoamentos de fluidos newtonianos, através da formulação matemática do princípio de balanço da quantidade de movimento linear aplicado a um meio contínuo e em uma descrição euleriana. Fluidos Newtonianos são amplamente encontrados em problemas de engenharia.

Em conjunto com a equação da continuidade, que traduz o balanço de massa, a solução das equações de Navier-Stokes permite prever ou recriar os campos de velocidades e pressões característicos de um escoamento. Para tal, formula-se o problema de valor de contorno, onde devem ser conhecidas as características do escoamento nas fronteiras do domínio modelado, bem como sua definição em um instante de referência.

A maioria dos campos de engenharia tem problemas difíceis que podem ser modelados com essas complexas equações diferenciais. Essas equações nem sempre podem ser resolvidas analiticamente, por isso é necessário implementar métodos numéricos para encontrar soluções aproximadas. O cálculo numérico aparece como uma ferramenta útil para entender e simular casos reais que antes eram impossíveis de executar. Assim o número de técnicas utilizadas nos métodos numéricos aumentou nos últimos anos junto com o poder dos computadores, possibilitando o desenvolvimento contínuo dos códigos e possibilidade de aumentar sua precisão.

Procedimentos numéricos possibilitam reproduzir os experimentos em ambiente virtual, e assumem cada vez maior participação em procedimentos de engenharia à medida que os recursos computacionais se tornam mais poderosos. Entretanto, o estado da arte na modelagem computacional de fluidos não dispensa a realização de experimentos. Na verdade, o estudo da mecânica dos fluidos é hoje pautado na interdependência de procedimentos experimentais e numéricos, embasados pela fundamentação teórica de procedimentos analíticos.

Ao usar modelagem computacional durante o projeto, um engenheiro pode estabelecer desde o início se seu produto estará em conformidade com os requisitos do cliente. Aplicar estes métodos geralmente significa que menos protótipos físicos terão que ser construídos durante o desenvolvimento do produto, e isso significa que menos testes de protótipo terão que ser realizados. O tempo de comercialização e o custo de comercialização são subsequentemente reduzidos. O risco técnico e a possível perda de investimento também são bastante reduzidos ao desenvolver produtos com CFD.

Dentre os métodos mais empregados para solucionar numericamente as equações de Navier-Stokes estão os métodos de Diferenças Finitas (MDF), Volumes Finitos (MVF) e Elementos Finitos (MEF). Embora seu emprego na mecânica dos sólidos tenha consagrado o MEF como o método mais adequado para problemas elípticos em domínios de complexidade arbitrária (GRESHO & SANI, 1998), historicamente o MEF tem sido menos empregado na simulação de escoamentos, quando comparado ao MDF e MVF.

O método dos volumes finitos (MVF) consiste em dividir o domínio em volumes de controle e as equações de balanço são aplicadas a cada um deles, onde as integrais de volume e superfície são aproximadas por fórmulas de quadratura. Outro método comum e bastante utilizado é o método dos elementos finitos (MEF). A ideia central do MEF é discretizar o domínio, representando-o, ainda que de forma aproximada, por uma reunião de um número finito de elementos. A partir desse processo é possível obter uma solução aproximada através de uma função definida no subdomínio que resulta pela ação de discretizar o domínio.

O método de diferenças finitas (MDF) é utilizado neste trabalho. Esse é um dos métodos mais antigos para a solução de uma EDP no qual as aproximações das derivadas são obtidas através das expansões em série de Taylor ou aproximação polinomial.

O presente trabalho começa com uma explicação das equações básicas necessárias para estudar a dinâmica dos fluidos. Um problema básico com uma solução conhecida é apresentado para explicar o caso de difusão pura. Em seguida, são mostrados os esquemas típicos usados para resolver a equação de difusão-advecção, que tem um papel importante na dinâmica de fluidos. Uma vez feito, o 'Método dos Passos Fracionados' é explicado, um método explícito que permite resolver as equações de Navier-Stokes para escoamentos incompressíveis. Também é apresentada a estrutura do código desenvolvido para usar o método mencionado. Depois, há uma seção na qual verifica-se o código e as soluções obtidas comparando com um caso de um escoamento no interior de uma cavidade com tampa deslizante. Por fim, são apresentadas algumas conclusões.

2 MODELAGEM FÍSICA DOS PROBLEMAS ANALISADOS

2.1 Modelo físico do problema de condução térmica bidimensional permanente

O modelo físico a seguir, trata-se do problema da condução térmica bidimensional em regime permanente em uma placa, com temperatura prescrita em cada uma das suas extremidades, conforme mostra a figura 1.

2.2 Modelo físico do problema da cavidade com tampa deslizante

O problema a seguir é comumente usado para verificar a validade de um código desenvolvido para resolver as equações de Navier-Stokes. Consiste em uma cavidade bidimensional cuja parede superior está se movendo com velocidade constante, e as outras paredes são fixas. Uma representação gráfica do domínio e das condições de contorno para o caso da cavidade com tampa deslizante é apresentada na figura 2

O problema é estudado considerando altura, comprimento e velocidade unitários. O número de Reynolds é uma entrada, pois caracteriza os escoamentos.

3 MODELAGEM MATEMÁTICA DOS PROBLEMAS

3.1 Introdução

Nesta seção apresenta-se a formulação básica das equações de Navier-Stokes e da continuidade. Em seguida são apresentadas as equações dos casos de difusão pura, difusão e advecção com solução sintetizada e do problema da cavidade com tampa deslizante.

3.2 Equações de Navier-Stokes e da continuidade

Com esse modelo matemático diferencial descrevem-se quase todos os escoamentos ao nosso redor e são o ponto de partida para um código de CFD. Além disso, como a maioria dos escoamentos podem ser aproximados como incompressíveis, será resolvido o modelo para esse grupo de escoamentos. Estas podem ser escritas na forma indicial como:

$$\frac{\partial u_i}{\partial t} + \frac{\partial (u_i u_j)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$$
(3.1)

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{3.2}$$

onde ρ e ν são, respectivamente, a massa específica e a viscosidade cinemática, p é a pressão, u_i é a componente i do vetor velocidade. A primeira equação é a equação de balanço do momentum linear e a segunda equação é a equação da continuidade que é consequente da incompressibilidade. Essas equações não podem ser resolvidas analiticamente para a maioria dos escoamentos e devem ser resolvidas usando métodos numéricos.

3.3 Modelagem matemática do problema de condução térmica bidimensional permanente

Como foi dito na introdução, é resolvido um problema de difusão pura cuja solução é conhecida. Este problema está relacionado à condução bidimensional em regime permanente em uma placa com temperatura prescrita, cuja equação diferencial é:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \tag{3.3}$$

Condições de Contorno:

$$T = 0 \text{ em } x = 0, 1$$

$$T = 0 \text{ em } y = 0$$

$$T = sen \frac{\pi x}{a} \text{ em } y = 1$$

A solução analítica deste problema é dada por:

$$T(x,y) = \frac{\operatorname{senh}\left(\frac{\pi y}{a}\right)}{\operatorname{senh}\left(\frac{\pi b}{a}\right)} \operatorname{sen}\left(\frac{\pi x}{a}\right)$$
(3.4)

3.4 Modelagem matemática do problema de difusão-advecção bidimensional transiente com solução sintetizada

Com a avaliação da discretização espacial bidimensional dos termos difusivos, podemos acrescentar, agora, os termos transientes e advectivos. A equação resultante já não possui solução analítica e para avaliar a resolução numérica é proposta uma solução sintetizada, onde um termo é adicionado e tem sua equação encontrada a partir da solução proposta. Assim a equação torna-se:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = v \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + g(x, y, t)$$
(3.5)

e a solução proposta:

$$T(x, y, t) = 100sin\left(\frac{2\pi x}{a}\right)cos\left(\frac{2\pi y}{a}\right)\left(2 - e^{\frac{-100\nu t}{a^2}}\right)$$
(3.6)

Condições de Contorno:

$$T(0, y, t) = 0 \text{ em } x = 0$$

$$T(1, y, t) = 0 \text{ em } x = 1$$

$$T(x, 0, t) = 100 sin\left(\frac{2\pi x}{a}\right) \left(2 - e^{\frac{-100vt}{a^2}}\right) \text{ em } y = 0$$

$$T(x, 1, t) = 100 sin\left(\frac{2\pi x}{a}\right) \left(2 - e^{\frac{-100vt}{a^2}}\right) \text{ em } y = 1$$

3.5 Modelagem matemática do problema da cavidade com tampa deslizante

Devido ao escoamento observado ser bidimensional e incompressível, devemos obter a equação de Navier-Stokes e de balanço de massa para as direções x e y. Essas equações não podem ser resolvidas analiticamente para a maioria dos escoamentos e devem ser resolvidas usando métodos numéricos. As equações para o escoamento incompressíveis podem ser escritas como:

Equação de balanço de massa:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3.7}$$

Navier-Stokes em x:

$$\frac{\partial u}{\partial t} + \frac{\partial uu}{\partial x} + \frac{\partial uv}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial x} v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
(3.8)

Navier-Stokes em y:

$$\frac{\partial v}{\partial t} + \frac{\partial vu}{\partial x} + \frac{\partial vv}{\partial y} = -\frac{1}{\rho} \frac{\partial P}{\partial y} v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$
(3.9)

Condições iniciais

u, v, p = 0 em todo o domínio

Condições de Contorno

u = 1 m/s em y = 1 (tampa em movimento) u, v = 0 nas outras paredes.

$$\frac{\partial p}{\partial x} = 0 \text{ em } x = 0, 1$$
$$\frac{\partial p}{\partial y} = 0 \text{ em } y = 0, 1$$

4 MODELAGEM NUMÉRICA DOS PROBLEMAS ANALISADOS

4.1 Introdução

O método de diferenças finitas (MDF) é utilizado neste trabalho. Este método consiste em aproximar o operador diferencial substituindo as derivadas na equação por quocientes diferenciais. A fórmula de aproximação da função derivada é obtida da série de Taylor.

O operador de diferenças finitas para derivada pode ser obtido a partir da série de Taylor para as seguintes funções:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)h^2}{2} + \frac{f'''(x)h^3}{6} + o(h^4)$$
$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)h^2}{2} - \frac{f'''(x)h^3}{6} + o(h^4)$$

Portanto, a derivada primeira pode ser escrita de três formas distintas como uma diferença-quociente mais um termo de erro, obtido ao desprezar-se termos de ordem superior:

Diferenças progressivas:

$$f'(x) = \frac{f(x+h) - f(x)}{h} + o(h)$$

Diferenças regressivas:

$$f'(x) = \frac{f(x) - f(x-h)}{h} + o(h)$$

Diferenças centradas:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + o(h^2)$$

Além disso, é possível obter derivadas de ordem superior. A derivada de segunda ordem é obtida a partir de

$$f(x+h) + f(x-h) = 2f(x) + f''(x)h^2 + o(h^4)$$

e é dada por:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + o(h^2)$$

Para discretização temporal foram utilizados os métodos de Euler, procedimento numérico de primeira ordem e o mais simples de implementar, e Runge-Kutta método de segunda ordem onde deve-se calcular a função em um ou mais pontos adicionais. O primeiro passo até metade do intervalo pode ser considerado como um passo preditor, baseado no método de Euler explícito, o qual é acompanhado de uma correção até o final do intervalo, o que faz o método de segunda ordem.

4.2 Modelagem numérica do problema de condução bidimensional permanente

Usando o método de diferenças finitas na equação (3.3) obtemos a aproximação numérica para a derivada de segunda ordem em diferenças centrais:

$$\frac{T_{ij+1} - 2T_{ij} + T_{ij-1}}{\Delta x^2} + \frac{T_{i+1j} - 2T_{ij} + T_{i-1j}}{\Delta y^2} = 0$$
(4.1)

Reorganizando a equação e fazendo $\Delta x = \Delta y$ obtemos:

$$T_{ij} = \frac{T_{i+1j} + T_{i-1j} + T_{ij+1} + T_{ij-1}}{4}$$
(4.2)

4.3 Modelagem numérica do problema de difusão-advecção bidimensional transiente com solução sintetizada

Usando o método de diferenças finitas na equação (3.5) obtemos a aproximação numérica em diferenças centrais para os termos advectivos e difusivos. O termo transiente foi discretizado pelo método de Euler de forma implícita.

Termo transiente:

$$\frac{T_{i,j}^{n+1} - T_{i,j}^n}{\Delta t} \tag{4.3}$$

Termos advectivos:

$$u\frac{T_{i+1,j}^{n+1} - T_{i-1,j}^{n+1}}{2\Delta x} + v\frac{T_{i,j+1}^{n+1} - T_{i,j-1}^{n+1}}{2\Delta y}$$
(4.4)

Termos difusivos:

$$\alpha \left[\frac{T_{i+1,j}^{n+1} - 2T_{i,j}^{n+1} + T_{i-1,j}^{n+1}}{\Delta x^2} + \frac{T_{i,j+1}^{n+1} - 2T_{i,j}^{n+1} + T_{i,j-1}^{n+1}}{\Delta y^2} \right]$$
(4.5)

Juntando-se os termos tem-se a seguinte equação:

$$\frac{\frac{T_{i,j}^{n+1} - T_{i,j}^{n}}{\Delta t} + u \frac{T_{i+1,j}^{n+1} - T_{i-1,j}^{n+1}}{2\Delta x}}{2\Delta x} + v \frac{T_{i,j+1}^{n+1} - T_{i,j-1}^{n+1}}{2\Delta y}}{2\Delta y} = \alpha \left[\frac{T_{i+1,j}^{n+1} - 2T_{i,j}^{n+1} + T_{i-1,j}^{n+1}}{\Delta x^{2}} + \frac{T_{i,j+1}^{n+1} - 2T_{i,j}^{n+1} + T_{i,j-1}^{n+1}}{\Delta y^{2}} \right] + g(x, y, t)$$

$$(4.6)$$

4.4 Modelagem numérica do problema da cavidade com tampa deslizante

Discretização Temporal

A discretização temporal é feita usando um esquema Euler explícito que pode ser escrito como:

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -\frac{\partial (u_i u_j)^n}{\partial x_j} - \frac{1}{\rho} \frac{\partial p^{n+1}}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial u_i^n}{\partial x_j} + \frac{\partial u_j^n}{\partial x_i} \right) \right]$$
(4.7)

Na equação anterior, o sobrescrito refere-se à iteração temporal, onde n+1 representa a iteração atual. Normalmente, a simulação é iniciada com n = 0 e a condição inicial é usada para preencher o campo de velocidade inicial un = 0. A equação é usada para encontrar soluções subsequentes e requer a utilização de passos de tempo pequenos a fim de garantir a estabilidade da solução.

O segundo método utilizado foi o de Runge-Kutta de 2ª ordem onde o passo preditor deste método é feito na metade do intervalo de tempo e a velocidade predita é utilizada nos termos advectivo e difusivo do passo corretor. O passo preditor é dado por:

$$\frac{u_i^{n+1/2} - u_i^n}{\Delta t/2} = -\frac{\partial (u_i u_j)^n}{\partial x_j} - \frac{1}{\rho} \frac{\partial p^n}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial u_i^n}{\partial x_j} + \frac{\partial u_j^n}{\partial x_i} \right) \right]$$
(4.8)

e o passo corretor:

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -\frac{\partial (u_i u_j)^{n+1/2}}{\partial x_j} - \frac{1}{\rho} \frac{\partial p^n}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial u_i^{n+1/2}}{\partial x_j} + \frac{\partial u_j^{n+1/2}}{\partial x_i} \right) \right]$$
(4.9)

Este método possui ordens de precisão mais altas e necessita de informações calculadas apenas no último tempo. Por outro lado, insere mais estágios de cálculo e, portanto, consome mais tempo. Este método é mais preciso e estável que os métodos multipontos de mesma ordem.

O acoplamento pressão velocidade é feito utilizando-se o método de acoplamento pressão -velocidade dos passos fracionados (KIM e MOIN, 1985). Um campo de velocidade é estimado considerando o campo de pressão do tempo anterior

$$\frac{\tilde{\mathbf{u}}_{i}^{n+1} - u_{i}^{n}}{\Delta t} = -\frac{\partial (u_{i}u_{j})^{n}}{\partial x_{j}} - \frac{1}{\rho}\frac{\partial p^{n}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}\left[\nu\left(\frac{\partial u_{i}^{n}}{\partial x_{j}} + \frac{\partial u_{j}^{n}}{\partial x_{i}}\right)\right]$$
(4.10)

Subtraindo a Eq. (4.6) da Eq. (4.9), obtêm-se a seguinte equação:

$$\frac{\tilde{u}_i^{n+1} - u_i^{n+1}}{\Delta t} = \frac{1}{\rho} \frac{\partial (p^{n+1} - p^n)}{\partial x_i}$$
(4.11)

Sendo $p' = p^{n+1} - p^n$ a correção de pressão no passo de tempo n+1. Esta equação pode ser utilizada para a correção da velocidade depois de obtida a correção da pressão

$$\frac{\tilde{u}_i^{n+1} - u_i^{n+1}}{\Delta t} = \frac{1}{\rho} \frac{\partial(p')}{\partial x_i}$$
(4.12)

Para obter a equação da correção de pressão, aplica-se o divergente à equação (4.11)

$$\frac{1}{\Delta t} \left[\frac{\partial \tilde{u}_i^{n+1}}{\partial x_i} - \frac{\partial u_i^{n+1}}{\partial x_i} \right] = \frac{1}{\rho} \frac{\partial}{\partial x_i} \left(\frac{\partial p'}{\partial x_i} \right)$$
(4.13)

O segundo termo do lado esquerdo da Eq. (4.12) deve ser nulo para que a velocidade no tempo atual satisfaça à conservação de massa. Portanto a Eq. (4.12) fica:

$$\frac{1}{\Delta t} \frac{\partial \tilde{u}_i^{n+1}}{\partial x_i} = \frac{1}{\rho} \frac{\partial^2 p'^{n+1}}{\partial x_j \partial x_j}$$
(4.14)

Rescrevendo a equação (4.13), obtêm-se:

$$\nabla^2 p^{\prime n+1} = \frac{\rho}{\Delta t} \vec{\nabla}. \tilde{u}^{n+1} \tag{4.15}$$

Figura 3 — Velocidades e suas localizações usadas para discretizar a célula p (i, j) na equação da pressão de Poisson

Fonte: A guide to writing your first CFD solver, (2017)

Discretização da equação de balanço do momentum linear em x, os termos advectivos e difusivos discretizados para a célula i, j ficam:

$$\frac{\partial^2 u}{\partial x^2} = \left(\frac{u_{i-1j} - 2u_{ij} + u_{i+1j}}{\Delta x^2}\right) \tag{4.16}$$

$$\frac{\partial^2 u}{\partial y^2} = \left(\frac{u_{ij-1} - 2u_{ij} + u_{ij+1}}{\Delta y^2}\right) \tag{4.17}$$

$$\frac{\partial(uu)}{\partial x} = \frac{1}{\Delta x} \left(\frac{(u_{ij+1} + u_{ij})}{2} \frac{(u_{ij+1} + u_{ij})}{2} - \frac{(u_{ij} + u_{ij-1})}{2} \frac{(u_{ij} + u_{ij-1})}{2} \right)$$
(4.18)

$$\frac{\partial(vu)}{\partial y} = \frac{1}{\Delta y} \left(\frac{\left(u_{i+1j} + u_{ij}\right) \left(v_{i+1j} + v_{i+1j-1}\right)}{2} - \frac{\left(u_{ij} + u_{i-1j}\right) \left(v_{ij} + v_{ij-1}\right)}{2} \right)$$
(4.19)

A Figura a seguir apresenta os valores de velocidade usados na discretização.

Fonte: A guide to writing your first CFD solver, (2017)

Discretização da equação de balanço do momentum linear em y, os termos advectivos e difusivos discretizados para a célula i, j ficam:

$$\frac{\partial^2 v}{\partial x^2} = \left(\frac{v_{i-1j} - 2v_{ij} + v_{i+1j}}{\Delta x^2}\right) \tag{4.20}$$

$$\frac{\partial^2 v}{\partial y^2} = \left(\frac{v_{ij-1} - 2v_{ij} + v_{ij+1}}{\Delta y^2}\right) \tag{4.21}$$

$$\frac{\partial(uv)}{\partial x} = \frac{1}{\Delta x} \left(\frac{\left(u_{ij+1} + u_{i-1j+1}\right) \left(v_{ij+1} + v_{ij}\right)}{2} - \frac{\left(u_{ij} + u_{i-1j}\right) \left(v_{ij-1} + v_{ij}\right)}{2} \right)$$
(4.22)

$$\frac{\partial(vv)}{\partial y} = \frac{1}{\Delta y} \left(\frac{\left(v_{i+1j} + v_{ij}\right)}{2} \frac{\left(v_{i+1j} + v_{ij}\right)}{2} - \frac{\left(v_{ij} + v_{i-1j}\right)}{2} \frac{\left(v_{ij} + v_{i-1j}\right)}{2} \right)$$
(4.23)

A Figura a seguir mostra os valores de velocidade usados na discretização.

Figura 5 — Velocidades e suas localizações usadas para discretizar a célula v(i, j) na equação de balanço do momentum linear de v Fonte: A guide to writing your first CFD solver, (2017)

Visão geral do código

- Define os parâmetros de entrada: viscosidade, densidade, número de pontos da malha, informações de tempo e condições de limite
- Inicia matrizes necessárias e a malha computacional
- Loop ao longo do tempo:
 - $\circ \quad \text{Atualiza tempo } t = t + \Delta$
 - Aplica condições de contorno ao campo de velocidade
 - Resolve \tilde{u}_i^{n+1} com a equação (4.10)

- \circ Com o resultado do passo anterior encontra-se p' equação (4.15)
- De possa de p' e \tilde{u}_i^{n+1} encontra-se velocidade corrigida equação (4.12)

5 RESULTADOS

Nessa seção apresentam-se os resultados dos diferentes escoamentos discutidos nos capítulos anteriores. Suas soluções são mostradas e analisadas comparado com a literatura e os resultados analíticos para garantir sua validade. As linguagens utilizadas para o desenvolvimento das simulações dos escoamentos foram Python e C.

5.1 Resultados do problema de condução térmica bidimensional permanente

Distribuição da temperatura

Figura 6 — Gráfico da solução do problema de condução bidimensional permanente. Fonte: Próprio autor (2020)

Para verificar o código, os resultados são comparados com a solução analítica descrita no capítulo 3, para o cálculo do erro foi utilizado a norma- L_{∞} da diferença das soluções analítica e numérica, a tabela abaixo apresenta os resultados para diferentes configurações de malhas.

Malha	Erro	Erron-1/Erron
8 x 8	0,012952	0,000000
16 x 16	0,004021	3,221300
32 x 32	0,001105	3,637624
64 x 64	0,000289	3,827154
128 x 128	0,000074	3,916113
256 x 256	0,000019	3,960000

Tabela 1 — Tabela dos valores do erro com diferentes malhas Fonte: Próprio autor (2020)

5.2 Resultados do problema de difusão advecção bidimensional transiente com solução sintetizada

Na figura abaixo apresenta-se a solução do problema de difusão advecção bidimensional transiente com solução sintetizada. Logo em seguida é apresentado um gráfico comparativo entre os dois resultados e um da evolução do erro com o tempo.

Figura 7 — Gráfico obtido da solução do problema Difusivo Advectivo em regime transiente com solução sintetizada

Fonte: Próprio autor (2020)

Figura 8 — Gráfico da diferença máxima em modulo das soluções analítica e numérica com evolução do tempo Fonte: Próprio autor (2020)

Nota-se nos gráficos das soluções uma boa consistência na resolução do problema, observa-se no segundo gráfico que o erro aumenta nos primeiros segundos e depois se torna constante devido a solução entrar em regime estacionário, pois na expressão da solução analítica temos um termo exponencial com expoente negativo em função do tempo.

5.3 Resultados do problema da cavidade com tampa deslizante

Foram simulados casos bidimensionais com números de Reynolds iguais a 100, 400, 1000, 3200 e 5000, onde o número de Reynolds foi calculado usando a velocidade da parede superior e o comprimento da cavidade. Os resultados foram obtidos com discretização de segunda ordem e com malhas de 20, 40, 60 e 80 pontos para número de Reynolds baixos, até 1000, e para números de Reynolds acima disso foram utilizadas malhas de 40, 60, 80 e 100 pontos. Primeiramente serão apresentadas as evoluções temporais das soluções. Em seguida serão mostradas as comparações dos resultados obtidos com os resultados numéricos de Guia *et al.* (1982).

5.3.1 Evolução temporal

Para estabelecer que o escoamento atingiu regime permanente foi utilizado o critério usado por Pinho (2006) em seu trabalho; que propõe que o ponto onde ocorrem as maiores oscilações das velocidades u e v são em x/L=0,7 e y/L=0,3, e por isso quando garante-se que esse ponto atingiu regime permanente todos os outros o terão atingido

Nas figuras 5.1, 5.2, 5.3, 5.4 e 5.5 são apresentadas as evoluções temporais das soluções obtidas para a configuração bidimensional para números de Reynolds iguais a 100, 400, 1000, 3200 e 5000 respectivamente. As figuras 5.6 até 5.9 mostram o efeito da aceleração na tampa da cavidade. As condições utilizadas para a simulação dos escoamentos foram as seguintes:

Número de Reynolds igual a 100, 400, 1000, 3200 e 5000. Foi utilizada uma malha uniforme de 40x40. Foi utilizado um passo de tempo de 10⁻³ s. Velocidade da parede superior 1m/s Aceleração da parede superior 0.1 m/s²

A condição para determinar o regime permanente foi que a variação da velocidade em cada passo de tempo com o anterior fosse menor que 10^{-6} .

Figura 9 — Gráfico representando a evolução temporal das velocidades u e v em x/l=0,7 e y/l=0,3 para Reynolds igual a 100.

Fonte: Próprio autor (2020)

Figura 10 — Gráfico representando a evolução temporal das velocidades u e v em x/l=0,7 e y/l=0,3 para Reynolds igual a 400.

Fonte: Próprio autor (2020)

Figura 11 — Gráfico representando a evolução temporal das velocidades u e v em x/l=0,7 e y/l=0,3 para Reynolds igual a 1000.

Fonte: Próprio autor (2020)

Figura 12 — Gráfico representando a evolução temporal das velocidades u e v em x/l=0,7 e y/l=0,3 para Reynolds igual a 3200.

Fonte: Próprio autor (2020)

Figura 13 — Gráfico representando a evolução temporal das velocidades u e v em x/l=0,7 e y/l=0,3 para Reynolds igual a 5000. Fonte: Próprio autor (2020)

Analisando as figuras percebe-se que para um tempo de 30s os casos com número de Reynolds iguais a 100, 400 e 1000, já não apresentam variações significativas nas velocidades e têm curvas suaves. Para os casos com número de Reynolds iguais a 3200 e 5000, a evolução apresenta oscilações iniciais e um maior tempo para entrar em regime permanente.

As figuras a seguir mostram o efeito que a aceleração aplicada, na tampa da cavidade, causa na equação da continuidade.

Problema da cavidade com tampa deslizante e velocidade constante

Problema da cavidade com tampa deslizante e aceleração

Figura 16 — Gráfico do divergente no instante inicial Fonte: Próprio autor (2020)

Figura 17 — Gráfico do divergente no instante final Fonte: Próprio autor (2020)

Pela análise das figuras percebe-se um menor erro quando a tampa é acelerada e que os pontos com maior resíduos são as duas quinas superiores.

5.3.2 Comparação com os Resultado Numéricos de Ghia et al. (1982)

Nesta seção serão apresentadas as comparações entre os resultados obtidos neste trabalho e os resultados de referência. Para a validação da simulação foram utilizadas as condições descritas anteriormente e foi feito um corte em x/l = 0,5 para compararmos o perfil de velocidades u, e um corte em y/l = 0,5 para possibilitar comparações dos perfis de velocidades v com Ghia *et al.* (1982). Os Perfis de velocidade adimensionais são apresentados nas figuras a seguir.

Figura 18 — Comparação das velocidades U na posição x/L = 0.5 para diferentes tamanhos de malha utilizando-se Reynolds 100.

Figura 19 — Comparação das velocidades U na posição x/L = 0.5 para diferentes tamanhos de malha utilizando-se Reynolds 400.

Fonte: Próprio autor (2020)

Figura 20 — Comparação das velocidades U na posição x/L = 0.5 para diferentes tamanhos de malha utilizando-se Reynolds 1000.

Figura 21 — Comparação das velocidades V na posição y/L = 0.5 para diferentes tamanhos de malha utilizando-se Reynolds 1000.

Fonte: Próprio autor (2020)

Pode-se notar que os perfis de velocidade apresentam boa concordância com os dados de Ghia *et al.* (1982), demonstrando que o código computacional foi construído corretamente e, pelo menos, parcialmente validado. O campo de velocidade e campo de vorticidade são apresentados nas figuras a seguir, para Reynolds 100, 400 e 1000 respectivamente.

Figura 22 — Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds = 100 Fonte: Próprio autor (2020)

Figura 23 — Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds = 400 Fonte: Próprio autor (2020)

Figura 24 — Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds = 1000 Fonte: Próprio autor (2020)

Os padrões típicos deste tipo de problema podem ser visualizados nas figuras acima: grande recirculação movendo-se para o centro da cavidade conforme o número de Reynolds aumenta e pequenos vórtices secundários nos cantos inferiores.

Figura 25 — Comparação das velocidades U na posição x/L = 0.5 para diferentes tamanhos de malha utilizando-se Reynolds 3200.

Fonte: Próprio autor (2020)

Figura 26 — Comparação das velocidades V na posição y/L = 0.5 para diferentes tamanhos de malha utilizando-se Reynolds 3200.

Fonte: Próprio autor (2020)

Figura 27 — Comparação das velocidades U na posição x/L = 0.5 para diferentes tamanhos de malha utilizando-se Reynolds 5000.

Fonte: Próprio autor (2020)

Figura 28 — Comparação das velocidades V na posição y/L = 0,5 para diferentes tamanhos de malha utilizando-se Reynolds 5000. Fonte: Próprio autor (2020)

Nos casos em que os números de Reynolds são iguais a 3200 e 5000 a solução, apesar de captar o formato da curva de forma coerente, não se aproximou muito bem dos resultados obtidos por Ghia et al(1982). Além disso, nota-se a influência da malha sobre a solução obtida com o aumento do número de Reynolds, sendo necessário malhas mais refinadas para gerar um bom resultado.

Figura 29 — Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds = 3200 Fonte: Próprio autor (2020)

Figura 30 — Campo de velocidade (a) e Campo de vorticidade (b) para Reynolds = 5000 Fonte: Próprio autor (2020)

6 CONCLUSÕES

Este trabalho teve como objetivo estudar métodos básicos que são uma introdução ao cálculo numérico e a dinâmica de fluidos. Com o propósito didático foi desenvolvido o código computacional de problemas simples até chegar no problema do escoamento no interior de uma cavidade com tampa deslizante. Através do modelo computacional desenvolvido neste trabalho foi possível perceber e comprovar várias teorias estudadas em mecânica dos fluidos, além disso, a boa concordância com os dados de Ghia *et al.* (1982) mostra que o código computacional foi construído corretamente e pode ser testado para outros tipos de problemas.

7 PERSPECTIVAS PARA TRABALHOS FUTUROS

Como continuidade do presente trabalho, serão apresentadas algumas sugestões para a evolução deste programa na resolução das equações de Navier-Stokes, de modo que possa ser estendido a problemas mais complexos de engenharia.

- Acrescentar as equações necessárias para tornar o algoritmo aplicável a problemas de escoamentos com efeitos térmicos.
- Implementar um algoritmo gerador de malhas e acoplá-lo ao programa principal para facilitar a aplicação em problemas mais complexos.
- Estudar outras geometrias.
- Estender a análise para problemas de escoamentos tridimensionais.

REFERÊNCIAS BIBLIOGRÁFICAS

Ferziger, Joel H., and M. Perić. 2002. Computational methods for fluid dynamics. Berlin: Springer.

Ghia, U., Ghia, K.N. and Shin, C.T., "High-Re Solutions for Incompressible Flow Using the Navier-Stokes equations and a Multigrud Method", J. Comput. Phys. 48, pp. 387-411.

Maliska, C.R. (2003) - "Transferência de Calor e Mecânica dos Fluidos Computacional", 2a edição revista e ampliada. Ed. LTC – Livros Técnicos e Científicos.

Patankar, S.V., 1980, "Numerical Heat transfer and Fluid Flow", Hemisphere Publishing Corporation, New York.

Universitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics, Oliva Llena, Asensio, Pérez Segarra, Carlos David, & Montllor Ramoneda, Marcel (2018). Computational Fluid Dynamics: Fractional Step Method and its applications in internal and external flows. Universitat Politècnica de Catalunya.

Versteeg, H. K., and W. Malalasekera. 2007. An introduction to computational fluid dynamics: the finite volume method. Harlow, England: Pearson Education Ltd.