UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA CIVIL

PROJETO ESTRUTURAL DE LAJES LISAS PROTENDIDAS UTILIZANDO O MÉTODO DOS PÓRTICOS EQUIVALENTES

Carlos Henrique Almeida Barbosa

Uberlândia, Julho de 2020

CARLOS HENRIQUE ALMEIDA BARBOSA

PROJETO ESTRUTURAL DE LAJES LISAS PROTENDIDAS UTILIZANDO O MÉTODO DOS PÓRTICOS EQUIVALENTES

Trabalho de Conclusão de Curso apresentado à Universidade de Federal de Uberlândia, como parte dos requisitos à conclusão da disciplina Trabalho de Conclusão de Curso e obtenção do diploma de Engenheiro Civil.

Orientador: Prof. Dr. Arquimedes Diógenes Ciloni

Uberlândia, Julho de 2020

Carlos Henrique Almeida Barbosa

PROJETO ESTRUTURAL DE LAJES LISAS PROTENDIDAS UTILIZANDO O MÉTODO DOS PÓRTICOS EQUIVALENTES

Trabalho de Conclusão de Curso apresentado à Universidade de Federal de Uberlândia, como parte dos requisitos à conclusão da disciplina Trabalho de Conclusão de Curso e obtenção do diploma de Engenheiro Civil.

Aprovado em 09 de Julho de 2020

Prof. Dr. Arquimedes Diógenes Ciloni (UFU) (Presidente/Orientador)

Prof. Dr. Antônio Carlos dos Santos (UFU)

Prof.^a Dr. Rodrigo Gustavo Delalibera (UFU)

Uberlândia, Julho de 2020

Agradecimentos

Primeiramente a Deus por ter me iluminado durante toda minha vida e mostrando os melhores caminhos para meu futuro.

Aos meus pais que sempre estiveram ao meu lado nesta luta, ajudando a vencer desafios e me apoiando em todos os momentos, por todos seus sacrifícios, e ajudando a ser o primeiro formando da família.

Aos meus avós, tios, tias, namorada e amigos que estiveram comigo durante esta caminhada, que acreditaram no meu potencial e fizeram deste momento o mais feliz possível.

Ao meu orientador, Professor Arquimedes Diógenes Ciloni, por todo o apoio durante a faculdade, que o faz com enorme prazer e vontade de ensinar a mim e aos outros alunos, que possui além de conhecimentos técnicos, experiência de vida para orientar-nos.

Agradeço também a todos os professores da Faculdade de Engenharia Civil, com seu profissionalismo e compromisso de ensinar, e que estão sempre dispostos a nos ajudar.

Agradeço a Universidade Federal de Uberlândia por suas políticas de cotas e incentivo aos estudantes, por meio de bolsas, auxílios e outros programas que ajudam os jovens carentes durante a faculdade, sem isso esse trabalho não estaria sendo feito hoje.

Resumo

As lajes lisas protendidas são uma das soluções mais utilizadas onde se faz necessário a utilização da protensão, com o objetivo de vencer grandes vãos, suportando maiores cargas, com menores espessuras de laje, e utilizando melhor a seção transversal se comparada a uma estrutura de concreto armado com armadura passiva.

Essas lajes apoiam diretamente sobre pilares, podendo estes serem constituídos ou não de capitéis. Estes servem para aumentar a área de contato laje-pilar, facilitando a transferência de esforços e sendo uma solução para casos de esmagamento do concreto na região de contorno do pilar.

Entre outros fatores destaca-se neste trabalho o dimensionamento de lajes lisas protendidas. O trabalho consiste primeiramente no estudo e escolha do posicionamento dos pilares na estrutura e do pré-dimensionamento dos elementos. O foco maior está no levantamento das cargas nas lajes com base no método dos pórticos equivalentes, e realização do dimensionamento e verificação do estado limite último e de utilização. Também é feito o detalhamento da laje com o traçado do perfil dos cabos na laje e na ligação laje-pilar com o uso de capitéis, e detalhes construtivos.

PALAVRAS-CHAVE: Lajes lisas. Protensão. Método dos pórticos equivalentes.

Abstract

The prestressed flat slabs are one of the most used solutions where it is necessary to use of prestressing, in order to overcome large spans, supporting larger loads, with lower slab thicknesses, and making better use of the cross section if compared to a reinforced concrete structure with passive reinforcement.

These slabs directly support pillars, which may or may not consist of capitals. These serve to increase the slab-column contact area, facilitating the effort transfer and being a solution for concrete crushing cases in the contour region of the column.

Among other factors, the design of smooth slabs stands out in this work prestressed. The work consists primarily of the study and choice of positioning of the pillars in the structure and the pre-dimensioning of the elements. The biggest focus is on lifting of loads on slabs based on the equivalent frame method, and dimensioning and verification of the ultimate limit state and usage. Detailing of the slab is also done with the tracing of the cable profile on the slab andslab-pillar connection with the use of capitals, and constructive details.

KEYWORDS: Smooth slabs. Prestressing. Equivalent gantry method.

LISTA DE FIGURAS

Figura 1- Método dos pórticos equivalentes	15
Figura 2- Perdas de protensão – pós tração	19
Figura 3 – cordoalha engraxada de 7 fios	20
Figura 4 - Diagrama tensão-deformação para aços de armaduras passivas	21
Figura 5 - Divisão dos pórticos	24
Figura 6 – Faixas dos pórticos equivalentes	25
Figura 7 – Faixas de projeto	
Figura 8 – Pilar Equivalente	
Figura 9 – Força de protensão	27
Figura 10 – carregamentos equilibrados para os vãos internos	
Figura 11 – carregamentos equilibrados para o balanço	29
Figura 12 – Carregamento balanceado	30
Figura 13 - Laje Lisa	31
Figura 14 - Laje cogumelo	31
Figura 15 - Relação L/h para lajes nervuradas protendidas	32
Figura 16 – Ação da protensão	33
Figura 17 – distribuição dos cabos de protensão	33
Figura 18 - Montagem das armaduras	34
Figura 19 - Perímetro crítico em pilares retangulares internos	35
Figura 20 - Verificações adicionais para laje com capitel	35
Figura 21 - Perímetro da superfície crítica C"	38
Figura 22 – Planta do projeto	39
Figura 23 – Pré-dimensionamento de lajes	42
Figura 24 – Pórticos equivalentes em y	45
Figura 25 - Perfil dos cabos de protensão	46
Figura 26 – Pórtico equivalente interno com carregamento balanceado pela prot	ensão 51
Figura 27 – Pórtico equivalente externo com carregamento balanceado pela prot	ensão 51
Figura 28 - Diagrama pórtico equivalente interno com carregamento balance	ado pela
protensão	52
Figura 29 – Diagrama pórtico equivalente interno com carregamento balance	ado pela
protensão	53
Figura 30 – Pórtico Interno - carregamentos na combinação 1	55

Figura 31 – Pórtico Externo - carregamentos na combinação 1	56
Figura 32 – Pórtico Interno - carregamentos na combinação 2	57
Figura 33 – Pórtico Externo - carregamentos na combinação 2	57
Figura 34 – Pórtico Interno - carregamentos na combinação 3	58
Figura 35 – Pórtico Interno - carregamentos na combinação 3	59
Figura 36 – Pórtico Interno - carregamentos na combinação 4	60
Figura 37 – Pórtico Interno - carregamentos na combinação 4	60
Figura 38 – Diagrama de momentos para a combinação 1 - Pórtico interno	61
Figura 39 – Diagrama de momentos para a combinação 1 - Pórtico Externo	62
Figura 40 – Diagrama de momentos para a combinação 2 - Pórtico interno	63
Figura 41 – Diagrama de momentos para a combinação 2 - Pórtico Externo	64
Figura 42 – Diagrama de momentos para a combinação 3 - Pórtico interno	65
Figura 43 – Diagrama de momentos para a combinação 3 - Pórtico Externo	66
Figura 44 – Diagrama de momentos para a combinação 4 - Pórtico interno	67
Figura 45 – Diagrama de momentos para a combinação 4 - Pórtico Externo	68
Figura 46 – Divisão das faixas para distribuição dos momentos	69
Figura 47– Diagrama de momentos devido ao carregamento balanceado de 1 Ø12,7 m	ım
(P =123,2 kN) no pórtico interno	76
Figura 48 – Diagrama de momentos devido ao carregamento balanceado de 1 Ø12,7 m	ım
(P =123,2 kN) no pórtico externo	76
Figura 49 - momento hiperestático de protensão no pórtico interno	76
Figura 50 - momento hiperestático de protensão no pórtico externo	77
Figura 51 – esforços cortantes devido ao efeito hiperestático no pórtico interno	77
Figura 52 – esforços cortantes devido ao efeito hiperestático no pórtico externo	77
Figura 53 – Verificação da ruptura por flexão no ELU	79
Figura 54 – detalhamento das armaduras passivas negativas na direção y	82
Figura 55 - Pinos de cisalhamento	86
Figura 56 - Armadura transversal tipo pino - Pilar P4	87
Figura 57 - Contorno C" do pilar P4	88
Figura 58 - Armadura tipo pino no contorno C"	89
Figura 59 - Pilar P1=P3=P7=P9	90
Figura 60-Pilar P2=P4=P6=P8	91
Figura 61 - Armadura pilar P5	91
Figura 62 - Detalhamento cabos e ancoragens ativas c/ fretagem – vista superior	92

Figura 63 - Detalhamento cabos e ancoragens ativas c/ fretagem – vista lateral	92
Figura 64- Detalhamento cabos e ancoragens passivas c/ fretagem – vista superior	93
Figura 65 -Detalhamento cabos e ancoragens passivas c/ fretagem – vista lateral	93

LISTA DE TABELAS

Tabela 1 – Exigências relativas a fissuração	18
Tabela 2 - Cordoalhas engraxadas de 3 e 7 fios para protensão	21
Tabela 3 – Coeficiente K	36
Tabela 4 – Pilar equivalente – pórtico equivalente interno	50
Tabela 5 - Pilar equivalente – pórtico equivalente interno	50
Tabela 6 - Carregamentos	54
Tabela 7 – distribuição dos momentos nas faixas - combinação 1	70
Tabela 8 – distribuição dos momentos nas faixas - combinação 2	70
Tabela 9 – distribuição dos momentos nas faixas - combinação 3	71
Tabela 10 – Distribuição dos momentos nas faixas - combinação 4	71
Tabela 11 – Esforços totais nos pilares	83

SUMÁRIO

1.	INTRODUÇÃO	. 14
2.	OBJETIVOS	. 15
3.	REVISÃO BIBLIOGRÁFICA	. 15
	3.1 Breve Histórico	. 15
	3.2 Tipos de protensão	. 16
	3.2.1 Concreto protendido com armadura ativa pré-tracionada	. 16
	3.2.2 Concreto protendido com armadura ativa pós-tracionada	. 17
	3.3 Níveis de protensão	. 17
	3.3.1 Protensão completa	. 18
	3.3.2 Protensão limitada	. 18
	3.3.3 Protensão parcial	. 18
	3.4 Força de protensão	. 19
	3.5 Aço para armadura ativa	. 20
	3.6 Perdas de protensão	. 22
	3.7 Método dos Pórticos Equivalentes	. 23
	3.8 Determinação da força de protensão	. 26
	3.8.1 Determinação da força de protensão	. 26
	3.8.2 Consideração do efeito de inversão de curvatura no perfil dos cabos sobre	e os
	pilares	. 27
	3.8.3 Método das cargas balanceadas	. 29
	3.9 Recomendações para projeto de Lajes	. 30
	3.9.1 Lajes lisas protendidas	. 30
	3.9.2 Dimensões estruturais	. 32
	3.9.3 Detalhamento das armaduras	. 32
	3.10 Verificação do ELU de ruptura por cisalhamento	. 34
	3.10.1 Verificação do contorno C dos pilares	. 34

3.10.2 Verificação do contorno C' dos pilares 3	7
3.10.3 Verificação do contorno C'' dos pilares	7
4. RESULTADOS E DISCUSSÕES 3	8
4.1 Propriedades dos materiais	9
4.2 Pré-dimensionamento 4	2
4.2.1 Pré-dimensionamento das lajes 4	2
4.2.2 Pré-dimensionamento dos pilares 4	2
4.3 Carregamentos 4	4
4.3.1 Ações permanentes 4	4
4.3.2 Ações variáveis 4	4
4.3.3 Carregamento a ser equilibrado pela protensão 4	4
4.4 Pórticos equivalentes 4	4
4.5 Força de protensão e cálculo da quantidade de cordoalhas 4	6
4.6 Carregamento Balanceado Pela Protensão 4	17
4.6.1 Pórtico equivalente interno – vãos internos 4	17
4.6.2 Pórtico equivalente externo – vãos internos 4	8
4.6.3 Pórtico equivalente interno – balanços 4	8
4.6.4 Pórtico equivalente externo – balanços 4	8
4.7 Comprimento equivalente dos pilares 4	8
4.7.1 Cálculo da constante de torção (C) 4	9
4.7.2 Cálculo da rigidez à torção (Kt) 4	9
4.7.3 Cálculo da rigidez à flexão (Kc) 4	9
4.7.4 Cálculo da rigidez equivalente do pilar (Kec) 4	9
4.7.5 Cálculo do comprimento equivalente dos pilares	;0
4.8 Carregamentos nos pórticos equivalentes 5	;0
4.9 Combinações das ações 5	;4

4.9.1 Combinação 1: verificação das tensões normais na transferência pelo ACI 318
e pela NBR 6118
4.9.2 Combinação 2: verificação do Estado-Limite de Deformação Excessiva no ELS
(DEF) pela NBR 6118 56
4.9.3 Combinação 3: verificação das tensões normais para o ELS-F (CF) e o ELS-
W (CF) pela NBR 6118 58
4.9.4 Combinação4: verificação no Estado-Limite Último
4.10 Distribuição dos momentos 69
4.11 VERIFICAÇÃO DAS TENSÕES PELA NBR 6118 71
4.11.1 Estado-limite último no ato da protensão 71
4.11.2 Tensões no ELS-F conforme a NBR 6118 73
4.11.3 Tensões no ELS-W conforme a NBR 611874
4.12 Cálculo do efeito hiperestático de protensão
4.13 Verificação da ruptura por flexão no estado-limite último
4.13.1 Taxa de armadura ativa 78
4.13.2 Armadura passiva mínima
4.13.3 Verificação da ruptura por flexão no Estado-Limite Último
4.14 Verificação da Ruptura por Cisalhamento no ELU (PUNÇÃO) 83
4.14.1 Verificação do contorno C (Pilar P4)
4.14.2 Verificação do contorno C'
4.14.3 Verificação do contorno C''
4.14.4 Verificação ao colapso progressivo
4.15 Especificações finais
6. CONCLUSÃO
REFERÊNCIAS BIBLIOGRÁFICAS
Anexo A – Tabela WIGHT E MACGREGOR (2009)

1. INTRODUÇÃO

Devido a necessidade de projetar construções com maiores vãos livres, para um melhor aproveitamento do espaço interno, com a redução do número de pilares, surgiu a necessidade de criar novos modelos estruturais, mantendo uma boa capacidade resistente da estrutura, sem trazer risco a segurança. A protensão surgiu com o objetivo de melhorar esses modelos estruturais, promovendo um aumento da resistência da estrutura e um melhor aproveitamento das peças devido a essas e outras necessidades.

A protensão aumenta a capacidade resistente de uma seção transversal de concreto armado, pois cria um estado prévio de tensão com o objetivo de diminuir ou eliminar as tensões de tração provocadas pelo carregamento externo ou efeitos expansivos no concreto devido a mecanismos físico químicos, diminuindo também as flechas e a fissuração.

Um elemento estrutural dentre os que mais se desenvolveram com a protensão foram as lajes protendidas, necessárias com o objetivo de vencer grandes vãos nos edifícios, suportando maiores cargas com menores espessuras, com um melhor aproveitamento da seção transversal, se comparada a uma laje em concreto armado.

Essas lajes normalmente apoiam diretamente sobre pilares, sendo chamadas de lajes lisas, e podendo haver a necessidade de capitéis na região laje-pilar. Estes servem para aumentar a área de contato nessa região, facilitando a transferência de esforços e sendo uma das soluções para o aumento da resistência a punção nessa região.

O método dos pórticos equivalentes consiste em representar a estrutura em pórticos em cada direção, onde as barras horizontais representam a laje e as verticais representam os pilares, sendo aplicado a totalidade das cargas em ambas as direções dos pórticos equivalentes.

Figura 1- Método dos pórticos equivalentes

Fonte: Wight e MacGregor (2009)

SILVEIRA (2010) apresenta um processo prático para o cálculo da força de protensão para pré-dimensionar a quantidade de cabos a utilizar nos projetos de lajes planas protendidas. O processo é baseado no Método das cargas balanceadas considerando as componentes transversais da força de protensão equilibrando as ações permanentes e uma parcela da carga acidental, e agindo em sentido contrário à essas cargas verticais.

Devido aos elementos já apresentados, utiliza-se o método dos pórticos equivalentes para levantamentos dos esforços para dimensionamento de uma laje lisa protendida a ser apresentada neste trabalho, onde a geometria da planta é definida para atender as exigências da aplicação do método.

2. OBJETIVOS

O objetivo do trabalho é analisar e dimensionar estruturas de lajes lisas protendidas, desde o pré-dimensionamento até a verificação dos estados limites com base na ABNT NBR 6118:2014 e ABNT NBR 6120:2019. Este estudo pretende aprofundar os conhecimentos e as técnicas sobre concreto protendido pelo autor, com a aplicação do trabalho, e servir de referência para autores que utilizem este tipo de sistema.

3. REVISÃO BIBLIOGRÁFICA

3.1 Breve Histórico

Um dos primeiros usos da protensão é citado por CARVALHO (2012), onde é descrito a experiência de Koenem, em Berlim na Alemanha que, em 1906 aplica a

protensão para reduzir a fissuração de pisos de argamassa. As primeiras experiências tiveram como maior problema as perdas de protensão, não tendo um resultado preciso da força de protensão na época.

CARVALHO e FILHO (2014) relata a primeira patente em concreto protendido feita pelo alemão Dohring, para aumentar a capacidade de resistência de placas e pequenas vigas, associando o concreto à uma armadura ativa, aplicando uma força anterior a ação do carregamento.

De acordo com ALBUQUERQUE (2017), Freyssinet foi um dos maiores contribuintes para o desenvolvimento do concreto protendido, sendo o primeiro a fazer o uso de aço de alta resistência no Brasil que também teve o impacto do problema das perdas de protensão, nesse caso ao longo do tempo, originadas pela deformação lenta e retração do concreto. Esse foi enfrentado pelos pesquisadores como Mörsch, que iniciou seus estudos em conjunto com Könen. Freyssinet também inventou e patenteou métodos construtivos, equipamentos, concretos e aços especiais, entre outros.

Em 1948, no Brasil, a primeira obra em que foi empregado o concreto protendido foi a ponte do Galeão, no Rio de Janeiro, tendo como base os modelos desenvolvidos por Freyssinet, o qual também trabalhou como consultor (SUSSEKIND, 1981).

De acordo com FERNANDES (2018), a primeira utilização da protensão não aderente em lajes foi no período de 1956-1957 em construção de escolas em Nevada, E.U.A., utilizando cabos engraxados e envoltos em papel, tendo desenvolvido posteriormente o sistema com cordoalhas engraxadas e plastificadas. A disponibilidade da fabricação das mesmas no mercado brasileiro e internacional, vem aumentando a viabilidade da utilização da protensão.

Estudos de pesquisadores como Lin e Burns (1981) na difusão do método das cargas balanceadas, de José E. Rufloff Manns e José Carlos de Figueiredo Ferraz, que desenvolveram o sistema de protensão, e também, vários outros pesquisadores vem contribuindo para o aumento da utilização do concreto protendido no Brasil.

3.2 Tipos de protensão

3.2.1 Concreto protendido com armadura ativa pré-tracionada

Os cabos de protensão são tracionados antes da concretagem e ancorados em blocos externos a laje, independentes da peça a ser protendida. Após a protensão, o concreto é lançado e espera-se atingir uma resistência mínima especificada em projeto, no qual são retiradas as ancoragens com os blocos externos. Após isso, a armadura ativa

tende a encurtar, e o concreto impede esse movimento pela aderência já estabelecida, sendo ocorrido a transferência da carga nesse momento pela aderência. Como exemplo desse tipo são as treliças pré-fabricadas protendidas para uso em lajes.

3.2.2 Concreto protendido com armadura ativa pós-tracionada

Nesse caso, primeiramente ocorre o posicionamento dos cabos de protensão e lançamento do concreto no local, em que ocorre o estiramento da armadura após essa concretagem, através de apoio na própria peça.

Após o estiramento dos cabos, pode ocorrer ou não a injeção de nata de cimento sob pressão nas bainhas metálicas, podendo o comportamento ser com aderência ou sem aderência.

Os cabos aderentes são colocados em bainhas metálicas, injetadas com nata de cimento após a protensão, promovendo-se assim uma melhor distribuição das fissuras, e aumentando a segurança à ruptura para efeitos localizados como incêndio.

Já os cabos não aderentes usam-se bainhas de polietileno e polipropileno, sendo as mesmas preenchidas com graxa, de modo a proteger as cordoalhas contra a corrosão, diminuindo as perdas por atrito, tendo a ausência da injeção de nata de cimento.

3.3 Níveis de protensão

Os níveis de protensão estão associados a força de protensão que será aplicada na peça e a proporção da armadura ativa em relação a armadura passiva que precisa ser utilizada. Eles podem ser um nível de protensão completo, limitado ou parcial, podendo ser utilizado conforme necessidade do projetista, seguindo as recomendações da ABNT NBR 6118:2014. Na tabela 1 é apresentado o nível máximo de fissuração conforme a utilização da protensão.

Tipo de concreto estrutural	Classe de agressividade ambiental (CAA) e tipo de protensão	Exigências relativas à fissuração	Combinação de ações em serviço a utilizar	
Concreto simples	CAA I a CAA IV	Não há	-	
	CAA I	ELS-W <i>w</i> _k ≤ 0,4 mm		
Concreto armado	CAA II e CAA III	ELS-W <i>w</i> _k ≤ 0,3 mm	Combinação frequente	
	CAA IV	ELS-W <i>w</i> _k ≤ 0,2 mm		
Concreto protendido nível 1 (protensão parcial)	Pré-tração com CAA I ou Pós-tração com CAA I e II	ELS-W <i>w</i> _k ≤ 0,2 mm	Combinação frequente	
Concreto	Pré-tração com CAA II ou Pós-tração com CAA III e IV	Verificar as duas condições abaixo		
protendido nível 2		ELS-F	Combinação frequente	
(protensão limitada)		ELS-D ^a	Combinação quase permanente	
Concreto	Pré-tração com CAA III	Verificar as duas	s condições abaixo	
protendido nível 3 (protensão		ELS-F	Combinação rara	
completa)		ELS-D ^a	Combinação frequente	

Tabela 1 – Exigências relativas a fissuração

Fonte: ABNT NBR 6118:2014

3.3.1 Protensão completa

Em caso de obras em meios muito agressivos ou onde exige-se pouca ou nenhuma fissuração, utiliza-se a protensão completa. Para essa protensão, o projeto deve ter classes de agressividade ambiental III ou IV, sendo a armadura ativa pré-traçionada.

Deve-se respeitar o limite de descompressão, não se admitindo tensões de tração no concreto para as combinações frequentes de ações, e o estado limite de formação de fissuras para as combinações raras de ações.

3.3.2 Protensão limitada

Na protensão limitada admite-se tensões moderadas de tração em serviço, onde podem ser utilizadas classes de agressividade ambiental II com armadura ativa prétracionada, e III ou IV com pós tração.

Deve-se respeitar o limite de descompressão, não admitindo trações no concreto para as combinações quase permanentes de ações e o estado limite de formação de fissuras para as combinações frequentes de ações.

3.3.3 Protensão parcial

Na protensão parcial é admitido tensões mais elevadas de tração em serviço e formação de fissuras de maior abertura, onde podem ser utilizadas classes de agressividade ambiental I com armadura ativa pré-tracionada, e I ou II com pós tração.

Deve-se respeitar o limite de abertura de fissuras de 0,2mm, para as combinações frequentes de ações.

Neste trabalho utiliza-se a protensão parcial, tendo a necessidade também da armadura passiva, para absorver as tensões de tração não absorvidas pela protensão e controlar as fissuras.

3.4 Força de protensão

A ABNT NBR 6118:2014 em seu item 9.6.3.1 descreve que o projeto deve prever as perdas de protensão em relação ao valor inicial da força a ser aplicado, ocorridas antes da sua transferência para a peça, durante e ao longo do tempo. Essas perdas podem ser classificadas em perdas iniciais, imediatas e ao longo do tempo. Como exemplo geral das perdas de protensão na pós-tração pode-se observar a figura 2, que descreve as perdas existentes em uma peça de protensão na pós tração.

Figura 2- Perdas de protensão - pós tração

Fonte: Bastos (2015)

Após o estiramento da armadura de protensão, o cilindro hidráulico solta a mesma, que escorrega alguns milímetros e arrasta a cunha para dentro, promovendo uma perda da força em relação a força inicial a ser aplicada na peça P_i . Também após o estiramento da armadura ocorre uma perda por atrito entre a bainha e o aço de protensão.

Durante a aplicação da força de protensão na peça, ocorre um encurtamento inicial da armadura devido ao encurtamento imediato do concreto, causando também uma perda. Também ocorrem as perdas por relaxação inicial da armadura, retração inicial do concreto e perda por fluência inicial do concreto, sendo após isso, encontrado a força efetivamente transferida para o concreto denominada P_0 .

Após a transferência da força, ocorrem ao longo do tempo, as perdas de retração, devido a evaporação da água e deformação do volume de concreto, a fluência gerada pelas tensões de compressão no concreto devido a aplicação da força de protensão e os carregamentos externos ao longo do tempo, e a relaxação posterior da armadura.

3.5 Aço para armadura ativa

As cordoalhas são formadas por fios de aço de alta resistência enrolados entre si ou ao redor de um fio central, podendo eles ser lisos ou entalhados. Os fios de aço são fabricados com relaxação normal (RN) ou relaxação baixa (RB) que tem cerca de 25% da relaxação do aço RN.

Os fios de aço podem ter diferentes resistências, como exemplo, o fio CP 175 RN - aço para Concreto Protendido, com resistência característica mínima à tração f_{ptk} de 175 kN/cm² (1.750 MPa) e de relaxação normal (RN).

As cordoalhas mais comuns são formadas por 7 fios de aço de 12,7mm, que tem as superfícies com nervuras, que melhoram a aderência com o concreto.

Figura 3 - cordoalha engraxada de 7 fios

Fonte: Catálogo ArcelorMittal

Neste trabalho serão utilizadas cordoalhas CP190 RB que indica a resistência a tração e relaxação baixa. O catálogo da tabela 2 mostra alguns modelos de cordoalhas CP 190 RB.

Designação (ABNT)	Diâme- tro nominal	Área nominal de aço	Área mínima	Massa nominal	Carga minima de ruptura	Carga mínima a 1% de alonga- mento	Alonga- mento sob carga (em 610 mm)
	m	mm ²	mm ²	kg/km	kN	kN	%
CP-190 RB 3 x 3,0	6,5	21,8	21,5	171	40,8	36,7	
CP-190 RB 3 x 3,5	7,6	30,3	30,0	238	57,0	51,3	
CP-190 RB 3 x 4,0	8,8	38,3	37,6	304	71,4	64,3	
CP-190 RB 3 x 4,5	9,6	46,5	46,2	366	87,7	78,9	35
CP-190 RB 3 x 5,0	11,1	66,5	65,7	520	124,8	112,3	5,5
CP-190 RB 9,5	9,5	55,5	54,8	441	104,3	93,9]
CP-190 RB 12,7	12,7	101,4	98,7	792	187,3	168,6]
CP-190 RB 15,2	15,2	143,5	140,0	1.126	265,8	239,2	1
* Quociente entre a carga a 1% de alongamento e a área nominal de aço: é considerado equivalente a fpyk (= 0,90 fptk) **Quociente entre a carga de ruptura e a área nominal de aço (fptk) Módulo de elasticidade: 202.000 MPa, ± 3%				l de aço: é lk)	Perda máxima por relaxação após 1.000 horas a 20° C, para carga inicial de 80% da carga de ruptura: 3,5% Coeficiente de relaxação ψ sob com- primento constante (1.000 h, 20°C): 1,5%, 2,5% e 3,5% para σpi/fptk = 60%, 70% e 80%, respectivamente. Tabela baseada no catálogo técnico de produtos da Belon – Grupo Argelor, 2004		

Tabela 2 - Cordoalhas engraxadas de 3 e 7 fios para protensão

Fonte: HANAI, 2005

De acordo com a ABNT NBR 6118, para o cálculo nos estados-limite de serviço e último, pode-se utilizar o diagrama simplificado mostrado na Figura 4, para intervalos de temperaturas entre –20° C e 150°C.

Figura 4 - Diagrama tensão-deformação para aços de armaduras passivas

Fonte: Adaptado pelo autor da ABNT NBR 6118:2014

Onde f_{ptk} é a resistência característica última e f_{pyk} é a resistência característica de escoamento convencional. De acordo com a ABNT NBR 6118 na falta de ensaios pode

ser adotado a massa específica de 7.850 kg/m3, e o coeficiente de dilatação térmica de $10-5/^{\circ}$ C. Para o módulo de elasticidade (Ep) a norma permite adotar 200 GPa (200.000 MPa = 20.000 kN/cm2) para fios e cordoalhas

3.6 Perdas de protensão

Como já descrito no item 3.4 a força aplicada no momento da protensão é diferente daquela que será transmitida durante sua utilização, devendo ser previsto portanto, as perdas de protensão geradas no ato da aplicação da força (ancoragem, atrito e encurtamento inicial do concreto) e ao longo do tempo (fluência e retração do concreto e relaxação do aço) em peças pré-tracionadas.

As perdas na ancoragem são devidas a acomodação das cunhas quando o esforço é transferido do equipamento de protensão para as placas de apoio. As perdas por atrito são causadas pelo deslocamento da cordoalha no interior da bainha, ou com o cabo e as peças adjacentes durante a protensão, no caso de pré tração. Também existe a perda por encurtamento imediato do concreto, devido a aplicação da força na peça gerando tensões de compressão e uma deformação na armadura devido a aderência existente.

A perda por fluência do concreto ao nível da armadura de protensão depende da tensão de compressão atuante no concreto naquele nível. A retração do concreto é uma deformação ao longo do tempo gerada na maioria das vezes pelo equilíbrio do concreto com o meio ambiente. A relaxação do aço ocorre quando a armadura que já foi previamente deformada por uma solicitação é mantida com comprimento e temperatura constantes.

Para efeito de cálculo deste trabalho serão considerados os valores médios para as perdas de protensão, que de acordo com EMERICK (2005) são

Perdas imediatas = 6%

Perdas finais = 12%

ALBUQUERQUE (2017) também adota esses valores para a consideração das perdas iniciais e finais para o dimensionamento de uma laje lisa em concreto protendido. CARLOS (2013) também faz referência a recomendação de EMERICK quanto a adoção de uma estimativa para as perdas de protensão. PFEIL (1988) cita em seu trabalho que para o caso da protensão não aderente, utilizando ensaios experimentais, que as perdas por atrito dos cabos nos macacos e ancoragens são da ordem de 5%.

3.7 Método dos Pórticos Equivalentes

Existem vários métodos para determinação dos esforços solicitantes em lajes protendidas, como o método dos elementos finitos (MEF), método direto, método de analogia de grelha, e o método dos pórticos equivalentes para a determinação dos esforços.

SILVA (2019) realiza um comparativo dos esforços obtidos com o método dos pórticos equivalentes em relação ao MEF para uma laje nervurada com regularidade entre vãos e pilares alinhados, com o projeto semelhante ao realizado neste trabalho. É demonstrado, para o projeto escolhido, que os momentos na maioria das faixas obtidos pelo método dos pórticos equivalentes apresentam valores em módulo superiores ao MEF, onde ocorre também em alguns locais um maior valor do MEF.

De acordo com ALBUQUERQUE (2019) o MEF é um método que demanda grande investimento de tempo na modelagem e refinamento das malhas dos elementos, necessitando de maior habilidade e experiência na sua aplicação. Para EMERICK (2005) o MEF é um método mais abrangente e que pode ser aplicado na maioria dos projetos, onde exige-se um maior refinamento do modelo, como projetos com pilares desalinhados, locais com grandes aberturas, sendo mais apropriado para tal.

O método dos pórticos equivalentes é mais simples e limitado, sendo que devido a regularidade entre os vãos e do projeto a ser trabalhado, considera-se o mesmo como suficiente para este trabalho, com o qual será utilizado.

O método dos pórticos equivalentes se baseia no teorema estático para determinar os esforços atuantes em lajes, por meio da representação da estrutura em uma série de pórticos em cada uma das direções. Ele é apresentado pelo ACI 318 (2005), pela norma inglesa (BS 8110/97) e pela norma brasileira ABNT NBR 6118:2014.

De acordo com a ABNT NBR 6118:2014, o método pode ser aplicado apenas nos casos de lajes em que os pilares estiverem dispostos em filas ortogonais, de maneira regular e com vãos pouco diferentes.

Os pórticos são elementos formados por pilares e lajes, definidos longitudinalmente e transversalmente na análise da laje. Os painéis são delimitados pelas linhas que unem os centros dos pilares, como mostra a figura 5, onde esses painéis serão divididos em faixas para formação dos pórticos.

Figura 5 - Divisão dos pórticos

Fonte: Autor

A laje é dividida longitudinalmente e transversalmente em pórticos constituídos entre as linhas médias dos painéis adjacentes, onde as cargas são aplicadas na totalidade para ambas as direções. As faixas são delimitadas pelos eixos de simetria de dois painéis adjacentes ou pelo eixo de simetria do painel e a borda quando o painel for de extremidade, como exemplo os pórticos equivalentes na direção y mostrados na figura 6.

Figura 6 – Faixas dos pórticos equivalentes

Após definidos os carregamentos verticais por m² nas lajes, eles devem ser lançados nos pórticos por meio da multiplicação das ações pela largura do pórtico analisado, onde esses podem ser modelados em softwares como o FTOOL. Conforme LOUREIRO (2006), o carregamento deve ser lançado separadamente em cada direção, em sua totalidade, pois o mecanismo de ruptura de uma laje apoiada diretamente sobre pilares é semelhante àquele de uma laje armada numa só direção.

Após a obtenção dos esforços deve ser feita a distribuição dos momentos nas faixas. De acordo com a ABNT NBR 6118:2014 essa distribuição segundo as faixas, deve ser feita da seguinte maneira:

a) 45 % dos momentos positivos para as duas faixas dos pilares;

b) 27,5 % dos momentos positivos para cada uma das faixas centrais;

c) 25 % dos momentos negativos para as duas faixas dos pilares;

d) 37,5 % dos momentos negativos para cada uma das faixas centrais

Figura 7 – Faixas de projeto

Fonte: Adaptado pelo autor da ABNT NBR 6118:2014

Apesar da análise do carregamento ser feita em apenas uma direção, a rigidez dos pilares que formam os pórticos deve ser modificada devido a laje funcionar em duas direções. Também de acordo com ALBUQUERQUE (2017), é necessário a consideração da rigidez à torção do bordo da laje em conjunto com a rigidez à flexão dos pilares, além da variação de inércia ao longo do comprimento da laje.

Segundo Emerick (2005), pode-se calcular um comprimento equivalente para o pilar que corresponda à rigidez equivalente do conjunto pilar-laje levando em consideração o esforço de torção gerado pelas diferenças de rotação entre os mesmos. Esse comprimento é mais detalhado no item 4.7.

Fonte: Autor

3.8 Determinação da força de protensão

3.8.1 Determinação da força de protensão

De acordo com EMERICK (2005) pode-se adotar, para vãos com mesma proporção, que a força de protensão é constante ao longo dos cabos, sendo a mesma calculada para o vão mais desfavorável. A formulação utilizada para o cálculo da força de protensão é simplificada de acordo com a figura 9, onde desconsidera-se o efeito da inversão da curvatura dos cabos sobre os pilares, a ser tratada posteriormente no item 3.8.2.

Fonte: Autor

 f_1, f_2 e f_3 são as excentricidades máximas do cabo, sendo calculadas em função do cobrimento mínimo. São apresentadas nas equações a seguir a força de protensão para o balanço, vão interno e vão externo respectivamente.

$$P = \frac{q \cdot l_1^2}{2 f_1} + \frac{Q \cdot l_1}{f_1}$$
(1)

$$P = \frac{q \cdot l_2^2}{8 f_2}$$
(2)

$$P = \frac{q \cdot l_3^2}{8 f_3}$$
(3)

3.8.2 Consideração do efeito de inversão de curvatura no perfil dos cabos sobre os pilares

Para obter maiores precisões nos cálculos pode-se considerar o efeito da inversão de curvatura dos cabos devido ao seu traçado, utilizando as recomendações de NAAMAN (1982), sendo descritos a seguir as formulações para o vão interno e o balanço, sendo os modelos com perfis parabólicos.

Figura 10 - carregamentos equilibrados para os vãos internos

(5)

Fonte: NAAMAN (1982)

Sendo recomendados pelo mesmo autor $\alpha_2=0,1$; $\beta_2=1$; $e_0=0,1613$ m

Figura 11 – carregamentos equilibrados para o balanço

Fonte: NAAMAN (1982)

3.8.3 Método das cargas balanceadas

Para o cálculo da força de protensão utiliza-se o método das cargas balanceadas proposto por de LIN e Burns (1981) que consiste em determinar a força de protensão para equilibrar uma parcela do carregamento atuante gerando dois efeitos. O primeiro é o isostático, necessário para manter o equilíbrio independente das condições de apoio e das cargas balanceadas. O segundo efeito é o hiperestático, que são esforços de momento e cortante gerado devido a imposição à livre deformação da estrutura em estruturas hiperestáticas. A protensão é tratada como um carregamento no sentido oposto a curvatura do cabo, na figura 12 é mostrado o esquema de forças na viga e no cabo de protensão.

Figura 12 - Carregamento balanceado

Fonte: Adaptado pelo autor de Emerick (2005)

A parcela do carregamento externo a ser adotada para ser equilibrada com o efeito da protensão deve ser definida pelo projetista. O ACI 423 recomenda que seja equilibrado o peso próprio mais 50 kgf/m², já EMERICK (2005) recomenda que seja equilibrado o peso próprio mais 10% do carregamento total.

3.9 Recomendações para projeto de Lajes

3.9.1 Lajes lisas protendidas

As lajes lisas possuem diversas vantagens como estética, devido a adaptabilidade do espaço interno, funcional devido a simplificação das formas, armaduras e concretagem, entre outros. Um modelo dessas lajes é apresentado na figura 13, e é a estrutura adotada para esse trabalho.

Figura 13 - Laje Lisa

Fonte: CARLOS (2013)

As lajes lisas não necessitam de vigas, sendo os esforços da laje transferidos diretamente para os pilares. Um dos pontos importantes é a grande concentração de tensões de cisalhamento na região de contato entre laje-pilar, podendo levar a estrutura à ruína. Essa pode ser evitada com o uso de capitéis para aumentar a resistência nessa região conforme a figura 14. Essa laje é denominada pela ABNT NBR 6118:2014 como laje cogumelo.

Figura 14 - Laje cogumelo

Fonte: CARLOS (2013)

Dentre as vantagens da laje protendida estão um melhor aproveitamento da seção transversal, visto que com a mudança da excentricidade do cabo pode-se ter uma posição mais favorável da linha neutra, podendo atingir a compressão em toda a seção transversal, tendo um melhor aproveitamento do concreto. A protensão permite também a diminuição das flechas nas lajes.

De acordo com SOUZA (1994), a escolha da laje lisa protendida é recomendada especialmente para vãos entre 7 e 12m, podendo-se chegar aos 15m se forem utilizados capitéis ou engrossamento da laje junto aos pilares.

A distância e a distribuição dos apoios da laje devem ser feitas de maneira regular, de forma a melhorar o comportamento estrutural. Nas extremidades dessas lajes utiliza-se um bordo livre, com os pilares em pequeno afastamento da lateral.

3.9.2 Dimensões estruturais

No caso de lajes protendidas a espessura deve respeitar o limite mínimo da ABNT NBR 6118:2014 de 16 cm para lajes lisas, e 14 cm para lajes-cogumelo, fora do capitel. EMERICK (2005) apresenta a relação vão/espessura usual para seções típicas de lajes lisas protendidas.

TIPO DA SEÇÃO	CARREGAMENTO TOTAL (kN/m2)	RELAÇÃO VÃO/ESPESSURA (6m <u>< L < 1</u> 3m)
1) LAJE LISA	2,5	40
	5,0	36
	10,0	30
2) LAJE C/ ENGROSSAMENTO		
\rightarrow	2,5	44
	5,0	40
<u>≥ L/3</u> VISTA A-A	10,0	34

Figura 15 - Relação L/h para lajes nervuradas protendidas

Fonte: EMERICK (2005)

Caso sejam necessários capitéis na laje proposta para estudo, utilizara-se a recomendação de EMERICK (2005) da figura 15.

3.9.3 Detalhamento das armaduras

O traçado dos cabos de protensão tendem a seguir o diagrama de momentos fletores da estrutura em estudo, para levar a tensão de compressão (efeito da força de protensão) aos locais críticos à tração, provocadas pelo momento fletor devido ao carregamento externo. O traçado do cabo, como mostrado na figura 16, cria um

carregamento dirigido para o centro da curvatura, criando assim um pré-carregamento transversal no sentido oposto ao carregamento externo para promover o equilíbrio.

Figura 16 – Ação da protensão

Fonte: IBRACON (2015, p.369).

Para a distribuição dos cabos o ACI 318-05 exige que em pelo menos uma direção, os cabos sejam distribuídos. O ACI 318-05 também recomenda que os cabos sejam distribuídos entre 65% a 75% na faixa dos pilares e 35% a 25% na faixa central.

Figura 17 - distribuição dos cabos de protensão

De acordo com EMERICK (2005) este sistema de distribuição dos cabos pelo ACI 318-05 é o mais recomendado, pois os esforços no alinhamento dos pilares são de maior intensidade, concentrando, portanto, os cabos nessas faixas. Essa distribuição também aumenta a resistência a punção e melhora a distribuição de momentos nas proximidades dos pilares. Vale destacar os cuidados para o correto posicionamento das cordoalhas conforme especificado em projeto, uma pequena mudança na excentricidade do cabo pode ocasionar uma grande variação do esforço resistente e mudar a capacidade da seção transversal.

Fonte: PREFOR (2019)

Utiliza-se também a armadura passiva em várias regiões, a armadura de punção nas proximidades com os pilares, a armadura suplementar na face inferior e superior da laje, a armadura de fretagem com o objetivo de minimizar as tensões em torno das ancoragens dos cabos e as armaduras de reforço no perímetro da laje, furos, aberturas, etc.

3.10 Verificação do ELU de ruptura por cisalhamento

3.10.1 Verificação do contorno C dos pilares

O modelo de cálculo consiste na verificação do cisalhamento das superfícies críticas nas proximidades da força concentrada da laje com o pilar. A primeira superfície é o contorno do pilar, chamada contorno C, sendo verificado o esmagamento das bielas de compressão através da tensão de cisalhamento.

Figura 19 - Perímetro crítico em pilares retangulares internos

Fonte: Adaptado de ABNT NBR 6118:2014

Se for necessário o uso do capitel para auxiliar na resistência ao cisalhamento na ligação laje-pilar deve ainda ser verificado os contornos críticos $C'_1 \in C'_2$, conforme a figura 20.

Figura 20 - Verificações adicionais para laje com capitel

Fonte: Adaptado de ABNT NBR 6118:2014

Devido a disponibilidade de espaço para posicionamento dos pinos para aumentar a resistência da região, todos os pilares serão dimensionados como pilares internos, com equações aqui apresentadas, podendo ocorrer ou não momentos nas direções principais dos pilares devido as combinações do ELU.

A tensão resistente no contorno C do pilar da figura 19, de acordo com o item 19.5.3.1 da ABNT NBR 6118:2014 é dada por

$$\tau_{Rd2} = 0,27 \,.\, \alpha_{v} \,.\, f_{cd} \tag{7}$$

$$\alpha_v = 1 - f_{ck}/250 \tag{8}$$

A tensão solicitante para pilares internos, de acordo com o item 19.5.2.1 da ABNT NBR 6118:2014 é dada por

$$\tau_{sd} = \frac{F_{sd}}{u.d} + k.\frac{M_{sd}}{W_p.d} \tag{9}$$

Onde para pilares retangulares

$$u = 2. (c_1 + c_2) \tag{10}$$

$$W_p = \frac{c_1^2}{2} + c_1 \cdot c_2 + 4 \cdot c_2 \cdot d + 16 \cdot d^2 + 2 \cdot \pi \cdot d \cdot c_1$$
(11)

A altura útil é definida na ABNT NBR 6118:2014 por

$$d = \frac{dx + dy}{2} \tag{12}$$

Figura 21 - Altura útil

Fonte: Autor

O coeficiente K é a parcela que equivale ao momento M_{sd} transmitido como cisalhamento no pilar, e é dado pela tabela 3, retirada do item 19.5.2.2 da ABNT NBR 6118:2014.

C1/C2	0,5	1,0	2,0	3,0			
к	0,45	0,60	0,70	0,80			
onde							
C ₁ é a dimensão do pilar paralela à excentricidade da força;							
C_2 é a dimensão do pilar perpendicular à excentricidade da força.							

Fonte: ABNT NBR 6118:2014

Para elementos protendidos deve ser adicionada na verificação o efeito positivo da força de protensão, reduzindo a tensão solicitante τ_{sd} para $\tau_{sd,ef}$, conforme a figura 22 e a equação a seguir

$$\tau_{sd,ef} = \tau_{sd} - \tau_{pd} \tag{13}$$

$$\tau_{pd} = \sum \frac{P_{k,inf,i}.sen(\alpha)}{u.d}$$
(14)
$$P_{k,inf,i} = 0.8. P_{inf}$$
(15)

Figura 22 - Efeito positivo da força de protensão

Fonte: ABNT NBR 6118:2014

3.10.2 Verificação do contorno C' dos pilares

Na segunda superfície, chamada C', distante 2. *d* da face do pilar, ver figura 19, deve-se verificar a punção, associada a resistência à tração diagonal.

Para a verificação do contorno C' calcula-se a taxa de armadura ρ_x e ρ_y considerando uma faixa de largura igual a dimensão do pilar mais 3. *d* para cada lado.

A tensão resistente, segundo o item 19.5.3.2 da ABNT NBR 6118:2014, considerando a existência da armadura de punção, é dada por:

$$\tau_{Rd1} = 0.13 \cdot \left(1 + \sqrt{\frac{20}{d}}\right) \cdot (100.\rho.fck)^{\frac{1}{3}} + 0.1 \cdot \sigma_{cp} + 1.5 \cdot \frac{d}{s} \cdot \frac{A_{sw}}{u.d} \cdot f_{ywd} \cdot sen(\alpha)$$
(16)

Caso não exista a armadura de punção a terceira parcela da equação se anula pois $A_{sw} = 0.$

Sendo

$$\rho = \sqrt{\rho_x \cdot \rho_y} \tag{17}$$

A Tensão solicitante, conforme o item 19.5.2.2 da ABNT NBR 6118:2014 é

$$\tau_{sd} = \frac{F_{sd}}{u.d} + k.\frac{M_{sd}}{W_{p.d}}$$
(18)

Onde para pilares retangulares

$$u = 2.(c_1 + c_2) + 4.\pi.d$$
(19)

$$W_p = \frac{c_1^2}{2} + c_1 \cdot c_2 + 4 \cdot c_2 \cdot d + 16 \cdot d^2 + 2 \cdot \pi \cdot d \cdot c_1$$
(20)

3.10.3 Verificação do contorno C" dos pilares

Caso seja necessária a utilização da armadura de punção, deve ainda ser verificado o cisalhamento a uma distância 2. *d* do último conector, ver figura 21, no

contorno C'', de acordo com as equações já descritas para o contorno C', sendo para pilares retangulares

$$u = 2.(c_1 + c_2) + 4.\pi.d + 2.\pi.p$$
(21)

$$W_p = \frac{c_1^2}{2} + c_1 \cdot c_2 + 4 \cdot c_2 \cdot d + 16 \cdot d^2 + 2 \cdot \pi \cdot d \cdot c_1 + 2 \cdot c_2 \cdot p + 16 \cdot d \cdot p + 4p^2 + p$$
(22)

 $\pi.c_1.p$

Fonte: Adaptado de ABNT NBR 6118:2014

4. RESULTADOS E DISCUSSÕES

É apresentado na figura 22 o projeto para realização deste trabalho, é mostrado uma laje lisa de um pavimento tipo, iniciando com uma solução sem capitel, empregando o sistema convencional em concreto armado e o sistema de pós-tração não aderente em concreto protendido utilizando monocordoalhas engraxadas.

Visando o emprego do método clássico do pórtico equivalente, o projeto escolhido foi formulado para atender as restrições exigidas pela ABNT NBR 6118:2014 para tal método, como exemplo a regularidade nos vãos e o alinhamento dos pilares. O mesmo apresenta vãos de 10 metros e balanços de 2 metros em ambas as direções. As seções transversais dos pilares e a altura da laje serão determinadas pelo prédimensionamento a ser feito no item 4.2.

Figura 22 – Planta do projeto

O ambiente no qual o projeto está inserido é urbano e oferece um pequeno risco de deterioração da estrutura, com uma agressividade moderada, que corresponde a uma classe de agressividade ambiental II de acordo com a ABNT NBR 6118:2014.

Antes da adoção deste projeto, mostrado na figura 22, fez-se os cálculos do mesmo com vãos de 12 metros, ao invés dos 10 metros apresentados, onde para esse modelo utilizava-se um f_{ck} de 40 MPa. Ao realizar as verificações das tensões obteve-se valores insatisfatórios, onde nesse sentido é utilizado vãos de 10 metros e um f_{ck} maior que o anterior, de 45 MPa. Todos os cálculos serão apresentados para o projeto da figura 22.

4.1 Propriedades dos materiais

• Resistência característica do concreto à compressão (f_{ck})

O concreto deverá apresentar aos 28 dias, resistência característica à compressão $f_{ck} \ge 45$ MPa e, onde é utilizada a idade de 5 dias para o ato da protensão, onde tem-se uma resistência superior a 70% da resistência ao final. Esta resistência é superior que a mínima especificada na ABNT NBR 6118:2014 para concreto protendido com classe de agressividade ambiental II.

A resistência característica a compressão do concreto na idade da protensão de 5 dias é dada por

$$f_{ck,5} = f_{ck} \cdot \exp\{0,25\left[1 - \left(\frac{28}{t}\right)^{\frac{1}{2}}\right]\}$$
$$f_{ck,5} = 45 \cdot \exp\{0,25\left[1 - \left(\frac{28}{5}\right)^{\frac{1}{2}}\right]\} = 31,98 MPa$$

• Resistência característica do concreto à tração (fctk)

É calculada a resistência característica à tração do concreto de acordo com a ABNT NBR 6118:2014 a seguir:

$$f_{ctk} = 0,21 f_{ck}^{2/3}$$

 $f_{ctk} = 021.45^{2/3} = 2,7 MPa$

Na idade de protensão também é calculada a resistência característica à tração do concreto a ser utilizada na verificação posterior das tensões de tração limites no ato da protensão.

$$f_{ctk,5} = 0.21 f_{ck,5}^{2/3}$$

$$f_{ctk,5} = 0.21 \cdot 31,98^{2/3} = 2.1 MPa$$

• Resistência média à tração (f_{ctm})

A resistência à tração direta pode ser avaliada o seu valor médio, sendo chamada resistência característica média à tração, obtida de acordo com o item 8.2.5 da ABNT NBR 6118:2014 a seguir:

$$f_{ctm} = 0.3 f_{ck}^{2/3}$$

 $f_{ctm} = 0.3 .45^{2/3} = 3.8 MPa$

Na idade de protensão também é calculada a resistência característica média à tração do concreto a ser utilizada na verificação posterior das tensões de tração limites no estado-limite último no ato da protensão.

$$f_{ctm} = 0.3 f_{ck,5}^{2/3}$$

$$f_{ctm} = 0.3 .31,98^{2/3} = 3.02 MPa$$

 Módulo de elasticidade do concreto aos 28 dias (Ec28), módulo de elasticidade secante (*Ecs*) e o módulo aos 5 dias (*Ec*5)

Os módulos de elasticidade do concreto são calculados de acordo com o item 8.2.8 da ABNT NBR 6118:2014 descrito a seguir

$$E_{ci} = \alpha_E.5600.\sqrt{f_{ck}}$$

Utilizando o agregado basalto, e o f_{ck} já definido anteriormente, temos

$$E_{ci} = 1,2.5600 \cdot \sqrt{45} = 45079,1 MPa$$

O módulo de deformação secante pode ser obtido segundo método de ensaio estabelecido na ABNT NBR 8522, ou estimado pela expressão:

$$E_{cs} = \alpha_i \cdot E_{ci}$$

Sendo

$$\alpha_i = 0.8 + 0.2 \cdot \frac{f_{ck}}{80} \le 1$$

$$\alpha_i = 0.8 + 0.2 \cdot \frac{45}{80} = 0.91 \le 1$$

$$E_{cs} = \alpha_i \cdot E_{ci} = 0.91 \cdot 45079.1 = 41022.0 MPa$$

• Armadura ativa

por

Utiliza-se a cordoalha CP190 RB aço de relaxação baixa e classe 190 de $f_{ct,k}$ = 1900 MPa, com diâmetro de Ø12,7mm, módulo de elasticidade E_p = 200 GPa, conforme item 8.4.4 da ABNT NBR 6118:2014.

Segundo o item 9.6.1.2.1 da ABNT NBR 6118:2014, a tensão σ_{pi} da armadura de protensão na saída do aparelho de tração deve ser limitada, sendo no caso de pós-tração de cordoalhas engraxadas de aço CP 190 RB, para classe de relaxação baixa, conforme os valores limites abaixo

$$\sigma_{pi} \leq_{0,82.fpyk}^{0,74.f_{ptk}} \sigma_{pi} \leq_{0,82.1710}^{0,74.1900=1406 MPa} \sigma_{pi} = 1402,2 MPa$$

A força de protensão em uma cordoalha, desconsiderando as perdas, é calculada

$$P_{cord} = \sigma_{pi} A_{nom}$$

Para barras de 12,7 mm, com A_{nom} obtido nos catálogos, temos

$$P_{cord} = 1402, 2.1000 \frac{kN}{m^2} \cdot 101, 4 mm^2 \cong 140 \, kN/cord$$

• Armadura passiva

Para a armadura passiva, utilizar-se barras de aço CA-50, com tensão de escoamento (f_{yk}) igual à 500 MPa, também para as barras construtivas será utilizado o mesmo aço.

4.2 Pré-dimensionamento

4.2.1 Pré-dimensionamento das lajes

A ABNT NBR 6118:2014 estabelece as espessuras mínimas das lajes maciças no item 13.2.4.1, sendo para laje lisa o limite de 16 cm. EMERICK (2005) recomenda para pré-dimensionamento das mesmas, as relações mostradas na figura 23, embora para ALBUQUERQUE (2017), necessita-se apenas que os critérios de deformações e vibrações máximas sejam atendidos.

Portando tem-se para o vão de 10 metros deste projeto de uma laje lisa protendida a espessura de 25 cm.

h = 25 cm

4.2.2 Pré-dimensionamento dos pilares

Para o pré dimensionamento da seção dos pilares será utilizado o processo das áreas de influência, consagrado no meio técnico e elaborada por PINHEIRO (1993), e citado por GIONGO (2007), onde, todos os pilares são considerados como submetidos a compressão centrada, e as excentricidades são levadas em conta por um coeficiente α de majoração das ações.

A força normal fictícia na fundação (N_K^*) e força normal fictícia de cálculo (N_d^*) é calculada por

$$N_K^* = (n + 0,7) \cdot (g + q) \cdot A_i$$

 $N_d^* = \alpha \cdot N_K^*$

Onde *n* é o número de andares, acima do tramo de pilar o qual se faz o prédimensionamento, (g + q) são as ações avaliadas por unidade de área e A_i a área de influência dos pilares. O coeficiente alfa foi obtido da tabela 3. Utiliza-se n = 3.

Гabel	la 3 –	coeficiente	alfa

Coeficiente Alfa					
Posição Pilar	α				
Interno	1,8				
Extremidade	2,2				
Canto	2,5				

Fonte: Giongo (2007)

A Tensão no aço comprimido (σ sc) e a tensão ideal (σ ideal) foi calculada por

$$\sigma_{\rm sc} = E_s \, \mathcal{E}_s$$
$$\sigma_{\rm ideal} = 0.85. \frac{f_{ck}}{\gamma_c} - 0.85. \frac{f_{ck}}{\gamma_c} \cdot \rho_s + \sigma_{\rm sc} \cdot \rho_s$$

É apresentado os resultados finais na tabela 4, onde foi considerado 4 pavimentos, $g + q = 12 \ kN/m^2$ e utilizando $f_{ck} = 45 \ MPa$, e aço CA-50.

Pilar	Área de influência A _i (m²)	Ação total N⊧ (kN)	Coeficiente α	Ação final de cálculo N₀ (kN)	Taxa de armadura ρ	Tensão ideal (kN/cm²)	Área da seção transversal do pilar A _p (cm ²)	Dimensões do pilar (cm)
P1 = P3 = P7 = P9	49	2175,6	2,5	5439	0,02	3,52	1546,27	50x50
P2 = P4 = P6 = P8	70	3108	2,2	6837,6	0,02	3,52	1943,88	50x50
P5	100	4440	1,8	79,92	0,02	3,52	2272,07	50x50

Tabela 4 - Valores de pré-dimensionamento pilares

4.3 Carregamentos

4.3.1 Ações permanentes

O peso próprio da laje lisa em concreto armado é calculado para 1 m^2 da laje, sendo o peso específico do concreto armado 25 kN/m², sendo, portanto, o peso próprio de

$$g_{nn} = \gamma . h = 25 . 0.25 = 6.25 kN/m^2$$

Também foi considerado um revestimento de 1 kN/m², divisórias entre os ambientes de 1 kN/m² e uma alvenaria nos bordos da laje de 5,4 kN/m.

$$g_T = 6,25 + 1 + 1 = 8,25 \ kN/m^2$$

 $g_{par} = 5,4 \ kN/m$

4.3.2 Ações variáveis

A laje se encontra em uma edificação comercial com salas de uso geral, sendo portanto, de acordo com a ABNT NBR 6120:2019 definida uma carga variável de 2,5 kN/m².

$$q_T = 2,5 \ kN/m^2$$

4.3.3 Carregamento a ser equilibrado pela protensão

Como mencionado, o método das Cargas Balanceadas proposto por Lin e Burns (1981) aplica-se ao projeto de lajes protendidas e consiste em determinar a força de protensão necessária e o traçado geométrico do cabo para equilibrar uma determinada parcela do carregamento atuante. Assim como citado no item 3.8.3, utiliza-se a recomendação de Emerick (2005) que consiste em equilibrar o carregamento devido ao peso próprio da estrutura mais 1/10 do carregamento total atuante, conforme visto a seguir:

$$q = g_T + 0.1.(g_T + q_T) = 6.25 + 0.10.(8.25 + 2.5) = 7.325 \text{ kN/m}^2$$

4.4 Pórticos equivalentes

Para a aplicação do método dos pórticos equivalentes, divide-se a laje na direção y em 2 pórticos externos com largura de 7 metros e 1 interno com largura de 10 m, delimitados de acordo com o item 3.7 deste trabalho, onde a delimitação é feita no centro dos painéis para essa direção. Os pórticos equivalentes em y são mostrados na figura 24, direção essa que se representar-se-ão os cálculos, o mesmo pode ser feito na direção x.

Fonte: Autor

Para as excentricidades dos cabos, assume-se os maiores valores possíveis, respeitando-se os cobrimentos mínimos da ABNT NBR 6118:2014, buscando um melhor aproveitamento do material, sendo o mesmo representado na figura 25.

A trajetória do cabo apresentado na figura 25 é de forma parabólica conforme serão apresentadas as equações de NAAMAN (1982) para o cálculo do carregamento balanceado pela protensão, que as descreve para esse tipo de traçado.

$$d' = c_{nom} + \phi_l + \frac{\phi_p}{2}$$

Assumindo que o diâmetro da armadura passiva seja $\phi_l = 8mm$ e cordoalhas de $\phi_p = 12,7 mm$ temos

$$d' = 3 + 0.8 + \frac{1.27}{2} = 4.44 \ cm$$

4.5 Força de protensão e cálculo da quantidade de cordoalhas

A força de protensão é calculada, conforme o método das Cargas Balanceadas citado no item 3.8. Neste projeto, temos 2 balanços e 2 vãos internos. Logo, a máxima protensão necessária para o balanço de acordo com as equações já apresentadas é:

$$P = \frac{7,325.2^2}{2.(0,08065)} + \frac{5,4.2}{0,08065}$$
$$P = 315,56 \text{ kN/m}$$

E a máxima protensão necessária para o vão interno é:

$$P = \frac{7,325 \cdot 10^2}{8.(0,1613)}$$
$$P = 567,65\frac{\text{kN}}{m}$$

Para o cálculo da quantidade de cordoalhas, utiliza-se a CP 190 RB de 12,7 mm, onde adota-se a seguinte estimativa de perdas de protensão:

Perdas imediatas adotadas = 6 %

Perdas finais adotadas = 12 %

Utilizando uma força de protensão de 140 kN/cordoalha, o número de cordoalhas necessárias para equilibrar os carregamentos e admitindo que as perdas finais fiquem em torno de 12%, tem-se:

$$n_{\text{cord,int}}^{\text{o}} = \frac{L \cdot P_{\text{máx}}}{(1 - \text{perdas}) \cdot P_{\text{cord}}}$$

Para o pórtico equivalente interno

$$n^{\circ} cord, int = \frac{1,12.10.567,65}{140} = 45,4 = 46$$

Para o pórtico equivalente externo

$$n^{0} cord, ext = \frac{1,12.7.567,65}{140} = 31,8 = 32$$

Portanto temos 46 Ø 12,7mm para o pórtico equivalente interno e 32Ø 12,7mm para o pórtico equivalente externo.

É recomendado pelo ACI 423 (ACI, 1983), que 65% dos cabos sejam localizados na faixa dos pilares e o restante nas faixas centrais, ver figura 62, assim temos para o pórtico equivalente interno

30 Ø 12,7mm para a faixa dos pilares

16 Ø 12,7mm para a faixa central

E para o pórtico equivalente externo

21 Ø 12,7mm para a faixa dos pilares

11 Ø 12,7mm para a faixa central

4.6 Carregamento Balanceado Pela Protensão

Assim como citado no item 3.8.2 pode-se considerar o efeito da inversão de curvatura dos cabos com as formulações propostas por NAAMAN (1982), no vão interno mostrado na figura 10 e no balanço na figura 11, sendo recomendado pelo mesmo autor $\alpha_2 = 0,1$; $\beta_2 = 1$; $e_0 = 0,1613$ m

4.6.1 Pórtico equivalente interno – vãos internos

Considerando 6% de perdas imediatas na protensão, temos os carregamentos para os vãos internos de

$$q_{b1,i} = \frac{-4 \cdot (0.94 \cdot 46 \cdot 140 \cdot (1+1) \cdot 0.1613)}{0.1 \cdot 10^2} = -781.16 \, kN/m$$
$$q_{b2,i} = \frac{4 \cdot (0.94 \cdot 46 \cdot 140 \cdot (1+1) \cdot 0.1613)}{(0.5 - 0.1) \cdot 10^2} = 195.29 \, kN/m$$

Considerando 12% de perdas totais finais na protensão, temos os carregamentos para os vãos internos de

$$q_{bf,i} = \frac{-4 \cdot (0,88 \cdot 46 \cdot 140 \cdot (1+1) \cdot 0,1613)}{0,1 \cdot 10^2} = -731,3 \ kN/m$$
$$q_{bf,i} = \frac{4 \cdot (0,88 \cdot 46 \cdot 140 \cdot (1+1) \cdot 0,1613)}{(0,5-0,1) \cdot 10^2} = 182,82 \ kN/m$$

4.6.2 Pórtico equivalente externo - vãos internos

Considerando 6% de perdas imediatas na protensão, temos os carregamentos para os vãos internos de

$$q_{b1,i} = \frac{-4 \cdot (0.94 \cdot 32 \cdot 140 \cdot (1+1) \cdot 0.1613)}{0.1 \cdot 10^2} = -543.41 \ kN/m$$
$$q_{b2,i} = \frac{4 \cdot (0.94 \cdot 32 \cdot 140 \cdot (1+1) \cdot 0.1613)}{(0.5 - 0.1) \cdot 10^2} = 135.85 \ kN/m$$

Considerando 12% de perdas totais finais na protensão, temos os carregamentos para os vãos internos de

$$q_{b1,f} = \frac{-4.(0,88.32.140.(1+1).0,1613)}{0,1.10^2} = -508,73 \, kN/m$$
$$q_{b2,f} = \frac{4.(0,88.32.140.(1+1).0,1613)}{(0,5-0,1).10^2} = 127,18 \, kN/m$$

4.6.3 Pórtico equivalente interno – balanços

Considerando 6% de perdas imediatas na protensão, temos os carregamentos de

$$q_{b1,i} = \frac{2 \cdot (0.94 \cdot 46 \cdot 140 \cdot (1-0) \cdot 0.1613)}{(1-0) \cdot 2^2} = 488,22 \ kN/m$$

Considerando 12% de perdas totais finais na protensão, temos os carregamentos de

$$q_{b1,f} = \frac{2 \cdot (0,88.46.140 \cdot (1-0) \cdot 0,1613}{(1-0) \cdot 2^2} = 457,06 \, kN/m$$

4.6.4 Pórtico equivalente externo – balanços

Considerando 6% de perdas imediatas na protensão, temos os carregamentos de

$$q_{b1,i} = \frac{2 \cdot (0.94 \cdot 32 \cdot 140 \cdot (1-0) \cdot 0.1613}{(1-0) \cdot 2^2} = 339,63 \ kN/m$$

Considerando 12% de perdas totais finais na protensão, temos os carregamentos de

$$q_{b1,f} = \frac{2 \cdot (0,88.32.140.(1-0).0,1613)}{(1-0).2^2} = 317,95 \ kN/m$$

4.7 Comprimento equivalente dos pilares

Conforme apresentado na revisão bibliográfica, é necessário a consideração da rigidez à torção do bordo da laje em conjunto com a rigidez à flexão dos pilares, além da variação de inércia ao longo do comprimento da laje, calculando um comprimento equivalente para o pilar dado por

$$L_{eq} = \frac{4 \cdot E_{cs} \cdot I_c}{\sum K_{ec}}$$

Onde E_{cs} é o módulo de elasticidade secante do concreto, I_c é o momento de inércia da seção transversal do pilar, e K_{ec} é a rigidez equivalente.

A seguir é mostrado o procedimento de cálculo para determinar o comprimento equivalente dos pilares.

4.7.1 Cálculo da constante de torção (C)

A constante de torção, para o pórtico equivalente é calculada conforme a equação abaixo

$$C = \sum \left(1 - 0.63 \cdot \frac{x}{y} \right) \cdot \frac{x^3}{3} \cdot y$$

Onde x e y são o menor e o maior lado do retângulo que compõe a seção transversal laje-pilar.

4.7.2 Cálculo da rigidez à torção (Kt)

Da mesma forma, conforme a seção transversal de torção, tem-se, a seguir, o cálculo da rigidez à torção para o pórtico equivalente

$$Kt = \sum \frac{9 \cdot E_{cs} \cdot C}{L_2 \cdot (1 - \frac{C_2}{L_2})^3}$$

Onde L_2 é a largura do pórtico equivalente analisado, E_{cs} é o módulo de elasticidade secante do concreto, C a constante de torção e C_2 a largura do pilar na direção analisada.

4.7.3 Cálculo da rigidez à flexão (Kc)

O cálculo da rigidez à flexão dos pilares para os pórticos equivalentes, conforme o comprimento do pilar (L_c) leva em conta os coeficientes de rigidez para colunas K_{AB} obtidos na tabela A.1 (ANEXO A) de Wight e McGregor (2009, p. 1100), que leva em consideração a ligação do pilar com a laje e a presença de engrossamento ou capitéis nos pilares.

$$K_C = \frac{K_{AB} \cdot E_{cs} \cdot I_c}{L_c}$$

Onde E_{cs} é o módulo de elasticidade secante do concreto, I_c é o momento de inércia da seção transversal do pilar, e L_c o comprimento do pilar.

4.7.4 Cálculo da rigidez equivalente do pilar (Kec)

A partir da rigidez à flexão e da rigidez à torção, calcula-se a rigidez equivalente do pilar para o pórtico equivalente.

$$\frac{1}{\sum K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t}$$

Onde K_c é a rigidez do pilar e K_t a rigidez do elemento torcional.

4.7.5 Cálculo do comprimento equivalente dos pilares

Por fim, partindo da rigidez equivalente do pilar, pode-se extrair o comprimento equivalente do pilar, por meio da equação já apresentada. São apresentados os resultados finais dos pilares equivalentes para os pórticos na tabela 4 e na tabela 5.

Pilar equivalente, Interno						
I eq (cm ⁴)	H eq (cm)	Leq				
1442751,62	25,87	678,56				

Tabela 4 – Pilar equivalente – pórtico equivalente interno

Fonte:	Autor
rome:	Auto

Tabela 5 - Pilar equivalente – pórtico equivalente interno

Pilar equivalente, Externo					
I eq (<i>cm</i> ⁴) H eq (<i>cm</i>) Leq					
1057075,94	26,27	485,91			

Fonte: Autor

4.8 Carregamentos nos pórticos equivalentes

Para a obtenção dos carregamentos nos pórticos equivalentes, é aplicada a totalidade das cargas em ambas as direções, onde aqui são representados os carregamentos na direção y conforme os pórticos já apresentados na figura 24.

Os Pórticos serão lançados no FTOOL (PUC-RIO, 2017), sendo necessário conhecer as ações por metro, multiplicando-se as ações calculadas anteriormente pela largura de influência do pórtico analisado.

Como já foram determinados os carregamentos equilibrados pela protensão após as perdas finais no item 4.5, pode-se lança-los nos pórticos equivalentes, considerando as propriedades dos materiais já calculados no item 4.1 e dos comprimentos equivalentes dos pilares no item 4.7.

Figura 26 - Pórtico equivalente interno com carregamento balanceado pela protensão

Fonte: Autor

Figura 27 - Pórtico equivalente externo com carregamento balanceado pela protensão

Fonte: Autor

O diagrama de momentos fletores e reações de apoio são mostrados na figura 28 e na figura 29 para o pórtico equivalente interno e externo respectivamente.

Figura 28 – Diagrama pórtico equivalente interno com carregamento balanceado pela protensão

Fonte: Autor

Figura 29 – Diagrama pórtico equivalente interno com carregamento balanceado pela

protensão

Fonte: Autor

4.9 Combinações das ações

Para o dimensionamento das seções em concreto protendido, considera-se a seção no estádio I, o estado com concreto não fissurado e comportamento linear dos materiais. Primeiramente é determinada a força de protensão para atender as tensões limites na transferência da força de protensão, e no estado limite de serviço (ELS) considerando as perdas de protensão correspondentes. E após isso verifica-se o equilíbrio da seção no Estado limite último (ELU), colocando uma armadura passiva caso o momento resistente seja menor que o momento atuante. Assim, serão feitas as combinações de carregamento para cada etapa de dimensionamento e verificação citadas anteriormente. Os carregamentos calculados nos itens 4.3 e 4.5 são resumidos na tabela 6, onde a orientação positiva é para cima e negativa para baixo.

carregamentos					
$g_1 \ (\mathrm{kN/m^2})$	-6,25				
$g_2 (kN/m^2)$	-1				
par (kN/m)	-5,4				
q_1 (kN/m ²)	-1				
<i>q</i> ₂ (kN/m ²)	-2,5				
Balanço	P. Interno/Externo				
$q_{b1,i}$ (kN/m)	488,22 / 339,63				
$q_{b1,f}$ (kN/m)	457,06 / 317,95				
Vão	P. Interno/Externo				
$q_{b1,i}$ (kN/m)	-781,16 / -543,41				
$q_{b2,i}$ (kN/m)	195,29 / 135,85				
$q_{b1,f}$ (kN/m)	-731,30 / -508,73				
$q_{b2,f}$ (kN/m)	182,82 / 127,18				

Tal	bel	a 6) -	Carregamentos
-----	-----	-----	-----	---------------

Fonte: Autor

4.9.1 Combinação 1: verificação das tensões normais na transferência pelo ACI 318 e pela NBR 6118

De acordo com a ABNT NBR 6118:2014, item 17.2.4.3, deve ser feita a verificação do estado limite último no ato da protensão, sendo os coeficientes de ponderação para as cargas atuantes $\gamma_p = 1,1 \text{ e } \gamma_f = 1$, na pós-tração. Assim será determinado os carregamentos nos pórticos, na figura 30 e na figura 31 para esse estado. E depois gerado os diagramas de momento fletores na figura 38 e na figura 39.

 $q_i = 1. g_1 + 1.1. qB_1$

4.9.1.1 – Pórtico interno

Para o pórtico interno temos os seguintes carregamentos, no balanço

 $q_1 = -6,25 \cdot 10 + 1,1 \cdot (488,22) = 474,55 \text{ kN/m}$

E no vão

$$q_1 = -6,25 \cdot 10 + 1,1 \cdot (-781,16) = -921,77 \text{ kN/m}$$

 $q_2 = -6,25 \cdot 10 + 1,1 \cdot (195,29) = 152,32 \text{ kN/m}$

Figura 30 – Pórtico Interno - carregamentos na combinação 1

Fonte: Autor

4.9.1.2 – Pórtico externo

Para o pórtico externo temos os seguintes carregamentos, no balanço

 $q_1 = -6,25.7 + 1,1.(339,63) = 329,85 \text{ kN/m}$

E no vão

$$q_1 = -6,25.7 + 1,1.(-543,41) = -641,5 \text{ kN/m}$$

 $q_2 = -6,25.7 + 1,1.(135,85) = 105,69 \text{ kN/m}$

Fonte: Autor

4.9.2 Combinação 2: verificação do Estado-Limite de Deformação Excessiva no ELS (DEF) pela NBR 6118

Para verificar posteriormente o estado limite de descompressão utiliza-se a combinação quase permanente das ações. Assim é feita essa combinação, com a ação variável considerada com seus valores quase permanente ψ_2 . F_{qk} , sendo $\psi_2 = 0.4$, definido de acordo com a tabela 11 da ABNT NBR 6118:2014. Assim será determinado os carregamentos nos pórticos, na figura 32 e na figura 33 para esse estado. E depois gerado os diagramas de momento fletores na figura 40 e na figura 41.

$$q_i = g_1 + g_2 + par + 0.4.(q_1 + q_2) + qB_f$$

4.9.2.1 – Pórtico interno

Para o pórtico interno temos os seguintes carregamentos, no balanço

$$q_1 = (-6,25 - 1) \cdot 10 + 0,4 \cdot 10 \cdot (-1 - 2,5) + 457,06 = 370,56 \text{ kN/m}$$

E no vão

$$q_1 = (-6,25 - 1) \cdot 10 + 0,4 \cdot 10 \cdot (-1 - 2,5) - 731,3 = -817,8 \ kN/m$$
$$q_2 = (-6,25 - 1) \cdot 10 + 0,4 \cdot 10 \cdot (-1 - 2,5) + 182,82 = 96,32 \ kN/m$$

Figura 32 – Pórtico Interno - carregamentos na combinação 2

Fonte: Autor

4.9.2.2 – Pórtico externo

Para o pórtico externo temos os seguintes carregamentos, no balanço

$$q_1 = (-6,25-1).7 + 0,4.7.(-1-2,5) + 317,95 = 257,4 \text{ kN/m}$$

E no vão

$$q_1 = (-6,25 - 1).7 + 0,4.7.(-1 - 2,5) - 508,73 = -569,28 \, kN/m$$

$$q_2 = (-6,25 - 1).7 + 0,4.7.(-1 - 2,5) + 127,18 = 66,63 \ kN/m$$

Figura 33 - Pórtico Externo - carregamentos na combinação 2

Fonte: Autor

4.9.3 Combinação 3: verificação das tensões normais para o ELS-F (CF) e o ELS-W (CF) pela NBR 6118

As verificações do estado limite de formação de fissuras ELS-F e o estado limite de abertura de fissuras (ELS-W) são feitas por meio da combinação frequente de ações. Assim é feita essa combinação, com a ação variável considerada com seus valor frequente ψ_1 . F_{qk} , sendo $\psi_1 = 0,6$, definido de acordo com a tabela 11 da ABNT NBR 6118:2014. Assim será determinado os carregamentos nos pórticos, na figura 34 e na figura 35 para esse estado. E depois gerado os diagramas de momento fletores na figura 42 e na figura 43.

$$q_i = g_1 + g_2 + par + 0,4.q_1 + 0,6.q_2 + qB_f$$

4.9.3.1 - Pórtico interno

Assim temos no balanço

$$q_{1} = (-6,25 - 1). 10 + 0,4 . 10 . (-1) + 0,6 . 10 . (-2,5) + 457,06 = 365,56 \ kN/m$$

E no vão
$$q_{1} = (-6,25 - 1). 10 + 0,4 . 10 . (-1) + 0,6 . 10 . (-2,5) - 731,3 = -822,8 \ kN/m$$

$$q_{2} = (-6,25 - 1). 10 + 0,4 . 10 . (-1) + 0,6 . 10 . (-2,5) + 182,82 = 91,32 \ kN/m$$

Figura 34 - Pórtico Interno - carregamentos na combinação 3

Fonte: Autor

4.9.3.2 – Pórtico externo

Assim temos no balanço

$$q_{1} = (-6,25 - 1).7 + 0,4.7.(-1) + 0,6.7.(-2,5) + 317,95 = 253,9 \ kN/m$$

E no vão
$$q_{1} = (-6,25 - 1).7 + 0,4.7.(-1) + 0,6.7.(-2,5) - 508,73 = -572,78 \ kN/m$$

$$q_{2} = (-6,25 - 1).7 + 0,4.7.(-1) + 0,6.7.(-2,5) + 127,18 = 63,13 \ kN/m$$

Figura 35 – Pórtico Interno - carregamentos na combinação 3

4.9.4 Combinação 4: verificação no Estado-Limite Último

Neste trabalho será feito a verificação da ruptura por flexão e cisalhamento no estádio limite último (estádio III), sendo portando necessário realizar essa combinação por meio da equação a seguir, onde a priori, desconsidera-se o efeito do hiperestático de protensão F_{HP} , que será calculado separadamente neste trabalho. Assim será determinado os carregamentos nos pórticos, na figura 36 e na figura 37 para esse estado. E depois gerado os diagramas de momento fletores na figura 44 e na figura 45.

 $q_i = 1,4 \cdot (G_1 + G_2 + PAR + Q_1 + Q_2) + (1,2 \text{ ou } 0,9) \cdot F_{HP}$

4.9.4.1 – Pórtico interno

Assim temos no balanço e no vão

$$q_1 = q_2 = 1.4 \cdot (-6.25 - 1 - 1 - 2.5) \cdot 10 = -150.5 \text{ kN/m}$$

Figura 36 - Pórtico Interno - carregamentos na combinação 4

Fonte: Autor

4.9.4.2 – Pórtico externo

Assim temos no balanço e no vão

$$q_1 = q_2 = 1.4 \cdot (-6.25 - 1 - 1 - 2.5) \cdot 7 = -105.35 \, kN/m$$

Fonte: Autor

Assim são representados nas figuras a seguir os diagramas de momentos fletores e reações de apoio das combinações já calculadas para os pórticos equivalentes internos e externos. Como existe simetria no diagrama, será mostrado apenas uma região para uma melhor visualização dos valores.

Figura 38 - Diagrama de momentos para a combinação 1 - Pórtico interno

Fonte: Autor

Figura 39 – Diagrama de momentos para a combinação 1 - Pórtico Externo

Fonte: Autor

Figura 40 – Diagrama de momentos para a combinação 2 - Pórtico interno

Fonte: Autor

Figura 41 – Diagrama de momentos para a combinação 2 - Pórtico Externo

Fonte: Autor

Figura 42 – Diagrama de momentos para a combinação 3 - Pórtico interno

Fonte: Autor

Figura 43 – Diagrama de momentos para a combinação 3 - Pórtico Externo

Fonte: Autor

Figura 44 – Diagrama de momentos para a combinação 4 - Pórtico interno

Fonte: Autor

Figura 45 – Diagrama de momentos para a combinação 4 - Pórtico Externo

4.10 Distribuição dos momentos

Os diagramas de momentos fletores obtidos nos pórticos equivalentes devem ser distribuídos para as faixas dos pilares e para as faixas centrais conforme já citado no item 3.7. As faixas são mostradas na figura 46.

Os valores máximos de momentos fletores obtidos em cada combinação são representados na primeira coluna das tabelas 7. Na segunda coluna são definidos a localização dos momentos, sendo os pórticos simétricos, tem-se a representação de 2 apoios e 1 vão.

Também são representados os percentuais de distribuição dos momentos fletores para as faixas dos pilares e para as faixas centrais conforme citado no item 3.7 e os valores finais após a distribuição. Esses, foram obtidos pela multiplicação dos momentos totais pelo coeficiente de distribuição e dividido pelas larguras das faixas mostradas na figura 46.

Fonte: Autor

Distribuição transversal dos momentos COMBINAÇÃO 1								
Pórtico interno								
Mtotal (kN m)	Apoio/Vão	Coeficiente	M1 (kN.m/m)	M1 (kN.m/m)				
	7 1 p010/ v d0	Coefficiente	Faixa dos pilares	Faixa central				
	Apoio							
963,3	P1=P7	0,75/0,25	144,495	48,165				
-497.5	Vão	0 55/0 45	-54,725	-44 775				
137,0	, ac	0,00,00,10	132 315	11,770				
882,1	Apoio P4	0,75/0,25	152,515	44,105				
		Pórtico exte	erno					
Mtotal (kN m)	Anoio/Vão	Cooficiento	M1 (kN.m/m)	M1 (kN.m/m)				
Witotai (KIN.III)	Ap010/ V a0	Coefficiente	Faixa dos pilares	Faixa central				
	Apoio							
664,1	P2=P8	0,75/0,25	110,68	66,41				
-346,1	Vão	0,55/0,45	-42,30	-62,298				
613,7	Apoio P5	0,75/0,25	102,28	61,37				

Tabela 7 – distribuição dos momentos nas faixas - combinação 1

Fonte: Autor

Tabela 8 -	- distribuição	dos	momentos nas	faixas	- combinacé	ão 2
	- uisti ibuiçac	u03	s momentos nas	Tainas	- comomaça	$a0 \Delta$

Distribuição transversal dos momentos COMBINAÇÃO 2								
Pórtico interno								
Mtotal (kN m)	Apoio/Vão	Cooficiento	M1 (kN.m/m)	M1 (kN.m/m)				
WIOTAI (KIN.III)	Apolo/ vao	Coefficiente	Faixa dos pilares	Faixa central				
	Apoio							
687,1	P1=P7	0,75/0,25	103,06	34,35				
-290,3	Vão	0,55/0,45	-31,933	-26,127				
463	Apoio P4	0,75/0,25	69,45	23,15				
		Pórtico exte	erno					
Mtotal (IN m)	Anoio/Vão	Cooficiento	M1 (kN.m/m)	M1 (kN.m/m)				
Milotal (KN.III)	Apolo/ vao	Coefficiente	Faixa dos pilares	Faixa central				
	Apoio							
460,8	P2=P8	0,75/0,25	76,80	46,08				
-204,6	Vão	0,55/0,45	-25,01	-36,828				
330,4	Apoio P5	0,75/0,25	55,07	33,04				

Fonte: Autor

Distribuição transversal dos momentos COMBINAÇÃO 3								
	Pórtico interno							
Mtotal (ItN m)	Anoio/Vão	Cooficiento	M1 (kN.m/m)	M1 (kN.m/m)				
Witotai (KIN.III)	Apolo/ vao	Coenciente	Faixa dos pilares	Faixa central				
	Apoio							
672,6	P1=P7	0,75/0,25	100,89	33,63				
-270	Vão	0,55/0,45	-29,7	-24,3				
420,5	Apoio P4	0,75/0,25	63,07	21,025				
		Pórtico exte	erno					
Mtotal (ItN m)	Anoio/Vão	Cooficiento	M1 (kN.m/m)	M1 (kN.m/m)				
Ivitotal (KIN.III)	Apolo/ vao	Coenciente	Faixa dos pilares	Faixa central				
	Apoio							
453,8	P2=P8	0,75/0,25	75,63	45,38				
-190,6	Vão	0,55/0,45	-23,30	-34,308				
301,5	Apoio P5	0,75/0,25	50,25	30,15				

Tabela 9 - distribuição dos momentos nas faixas - combinação 3

Fonte: Autor

Tabela 10 - Distribuição dos momentos nas faixas - combinação 4

Distribuição transversal dos momentos COMBINAÇÃO 4				
Pórtico interno				
Mtotal (IN m)	Anoio/Vão	Cooficiento	M1 (kN.m/m)	M1 (kN.m/m)
Mitotal (KN.III)	Apolo/ vao	Coenciente	Faixa dos pilares	Faixa central
	Apoio			
-767,7	P1=P7	0,75/0,25	-115,15	-38,385
666,9	Vão	0,55/0,45	73,359	60,021
-1721,4	Apoio P4	0,75/0,25	-258,21	-86,07
Pórtico externo				
Mtotal (IN m)	Anoio/Vão	Cooficiento	M1 (kN.m/m)	M1 (kN.m/m)
Milotai (KIN.III)	Apolo/ vao	Coenciente	Faixa dos pilares	Faixa central
	Apoio			
-606,2	P2=P8	0,75/0,25	-101,03	-60,62
445,9	Vão	0,55/0,45	54,50	80,262
-1165,4	Apoio P5	0,75/0,25	-194,23	-116,54

Fonte: Autor

4.11 VERIFICAÇÃO DAS TENSÕES PELA NBR 6118

4.11.1 Estado-limite último no ato da protensão

De acordo com a ABNT NBR 6118:2014 a verificação das tensões na transferência é feita no Estádio III, podendo ser simplificada no estádio I de acordo com o item 17.2.4.3.2, onde a tensão máxima de compressão no concreto prevista para a aplicação na idade da protensão não pode ultrapassar 70% da resistência característica

correspondente a idade. Também é necessário que a tensão máxima de tração não ultrapasse 1,2 vezes a resistência à tração correspondente ao fckj valor especificado.

Assim, os limites de tensões de compressão e tração no concreto na transferência são dados, respectivamente, por:

$$\sigma_{c,max} = 0.7 \cdot f_{ck,5} = 0.7 \cdot 31,98 = 22,4 MPa$$

$$\sigma_{t,max} = 1,2 \cdot f_{ctm,5} = 1,2 \cdot 3,02 = 3,6 MPa$$

Para o cálculo das tensões solicitantes, utiliza-se a combinação 1, pois essa representa a transferência dos esforços, onde devem ser verificados os maiores valores de momento positivo e negativo na laje. Os mesmos ocorrem no pórtico equivalente interno para a faixa dos pilares, e no pórtico equivalente externo para a faixa central.

Assim tem-se para a faixa dos pilares de largura de 5 metros temos

$$M_{sd,pos} = 144,49 \ kN. \ m/m$$

$$M_{sd,neg} = -54,72 \ kN.m/m$$

e para a faixa central de largura de 2,5 metros temos

$$M_{sd,pos} = 66,41 \text{ kN}.\text{ }m/m$$
$$M_{sd,neg} = -62,3 \text{ kN}.\text{ }m/m$$

As tensões normais atuantes de compressão e de tração máximas na transferência devidas à Combinação 1 são dadas, na faixa dos pilares do pórtico equivalente interno, por:

$$\sigma_{c,max} = \frac{P}{A} + \frac{M}{W}$$

$$\sigma_{c,pos} = \frac{30.140.10^3 \, 0.94}{1.25} + \frac{144.49.10^3}{0.052} = 5.93.10^6 \, Pa = 5.93 \, MPa < \sigma_{c,max}$$

$$\sigma_{c,neg} = \frac{30.140.10^3.0.94}{1.25} + \frac{54.72.73.10^3}{0.052} = 4.21.10^6 Pa = 4.21 MPa < \sigma_{c,max}$$

$$\sigma_{c,t} = \frac{30.140.10^3.0.94}{1.25} - \frac{144.49.10^3}{0.052} = 0.38.10^6 Pa = 0.38 MPa < \sigma_{t,max}$$

Sendo

$$A = b_w \cdot h = 5 \cdot 0,25 = 1,25 m^2$$

$$W = \frac{\frac{b_W \cdot h^3}{12}}{h/2} = 0,052 \ m^3$$
E para a faixa central do pórtico equivalente externo

$$\sigma_{c,max} = \frac{P}{A} + \frac{M}{W}$$

$$\sigma_{c,pos} = \frac{11.140.10^3.0.94}{0.625} + \frac{66.41.10^3}{0.026} = 4.87.10^6 Pa = 4.87 MPa < \sigma_{c,max}$$

$$\sigma_{c,neg} = \frac{11.140.10^3.0.94}{0.625} + \frac{62.3.10^3}{0.026} = 4.71.10^6 Pa = 4.71 MPa < \sigma_{c,max}$$

$$\sigma_{c,t} = \frac{11.140.10^3.0.94}{0.625} - \frac{66.41.10^3}{0.026} = -0.23.10^6 Pa = -0.23 MPa < \sigma_{t,max}$$

Sendo

$$A = b_w \cdot h = 2,5 \cdot 0,25 = 0,625 m^2$$
$$W = \frac{\frac{b_w \cdot h^3}{12}}{h/2} = 0,026 m^3$$

4.11.2 Tensões no ELS-F conforme a NBR 6118

O estado limite de formação de fissuras ocorre quando no início da formação das primeiras fissuras, onde a ABNT NBR 6118:2014 estabelece que para todas as classes de agressividade ambiental, seja atendida o limite de tração do concreto, para que não se atinja a fissura limite. Tal verificação é feita pela combinação frequente de ações e considerando a peça no estádio I.

O limite de tensão de tração no concreto para um fck de 45 MPa, calculado no item 4.1 é:

$$\sigma_{t,max} = f_{ctk} = 2,7 MPa$$

Para a Combinação 3 (frequente), conforme as Tabelas, os maiores momentos obtidos, em módulo, ocorreram para a faixa dos pilares no pórtico equivalente interno, e para a faixa central no pórtico equivalente externo. Assim tem-se para a faixa dos pilares de largura de 5 metros temos

$$M_{sd,pos} = 100,89 \ kN. \ m/m$$

e para a faixa central de largura de 2,5 metros temos

$$M_{sd,pos} = 45,38 \, kN. \, m/m$$

As tensões normais atuantes de compressão e de tração máximas na transferência devidas à Combinação 3 são dadas, na faixa dos pilares, por

$$\sigma_{c,max} = \frac{P}{A} + \frac{M}{W}$$

$$\sigma_{c,t} = \frac{30.140.10^3.0,88}{1,25} - \frac{100,89.10^3}{0,052} = 1,02.10^6 Pa = 1,02 MPa < \sigma_{t,max}$$

Sendo

$$A = b_w \cdot h = 5 \cdot 0,25 = 1,25 m^2$$
$$W = \frac{\frac{b_w \cdot h^3}{12}}{h/2} = 0,052 m^3$$

E para cada faixa interna

$$\sigma_{c,max} = \frac{P}{A} + \frac{M}{W}$$

 $\sigma_{c,t} = \frac{11.140.10^3.0,88}{0,625} - \frac{45,38.10^3}{0,026} = 0,43.10^6 Pa = 0,43 MPa < \sigma_{t,max}$

Sendo

$$A = b_w \cdot h = 2,5 \cdot 0,25 = 0,625 m^2$$
$$W = \frac{\frac{b_w \cdot h^3}{12}}{h/2} = 0,026 m^3$$

As tensões solicitantes de tração são inferiores aos limites de tensão de tração máxima no concreto calculado, sendo, portanto, satisfeita essa verificação.

4.11.3 Tensões no ELS-W conforme a NBR 6118

O limite de tensão de tração no concreto para um fck de 45 MPa, calculado no item 4.1 é:

$$\sigma_{t,max} = f_{ctk,inf} = 2,7 MPa$$

Para a Combinação 3, conforme as Tabelas, os maiores momentos obtidos, em módulo, ocorreram para a faixa dos pilares no pórtico equivalente interno, e para a faixa central no pórtico equivalente externo. Assim tem-se para a faixa dos pilares de largura de 5 metros temos

$$M_{sd.pos} = 100,89 \ kN.m/m$$

e para a faixa central de largura de 2,5 metros temos

$$M_{sd.pos} = 45,38 \, kN. \, m/m$$

As tensões normais atuantes de tração máximas, já calculadas no item anterior, para cargas em serviço (ELS), devidas à Combinação 3, na faixa dos pilares, admitindose que a seção esteja no Estádio I, são dadas por

$$\sigma_t = 0,13 MPa$$

E para a faixa interna

$$\sigma_t = 1,41 MPa$$

As tensões solicitantes de tração são inferiores aos limites de tensão de tração máxima no concreto calculado, sendo, portanto, satisfeita essa verificação.

Vale ressaltar que nesse trabalho não foi verificado as flechas limites máximas permitidas pela ABNT NBR 6118:2014 pois o mesmo não é possível de ser feito com o método dos pórticos equivalentes, devendo ser utilizado outro método como elementos de placa ou analogia de grelha para o mesmo.

4.12 Cálculo do efeito hiperestático de protensão

A partir do esquema de forças (carregamento distribuído equivalente após as perdas finais de protensão) que representa o efeito da protensão, obtém-se o diagrama de momentos fletores, conforme a figura 28 para o pórtico equivalente interno e figura 29 para o pórtico equivalente externo, devido à força protensão. Para obtenção do diagrama foram considerados 46 Ø12,7 *mm* para uma força de protensão final de 5667,2 kN no pórtico interno e 32 Ø12,7 *mm* para uma força de protensão final de 3942,4 kN no pórtico externo.

Simplificadamente, para o cálculo do efeito hiperestático pode-se obter os mesmos diagramas utilizando 1 Ø12,7 mm que equivale a uma força de protensao de 123,2 kN mostrado na figura 47 para o pórtico interno e na figura 48 para o pórtico externo.

Fonte: Autor

Figura 48 – Diagrama de momentos devido ao carregamento balanceado de 1 Ø12,7 mm (P =123,2 kN) no pórtico externo

Fonte: Autor

Apartir desse diagrama pode-se determinar os momentos hiperestáticos em cada ponto utilizando a seguinte equação e mostrados na figura 49 e na figura 50.

$$M_{HIP} = M_{bal} - P.e_p$$

Figura 49 - momento hiperestático de protensão no pórtico interno

Fonte: Autor

Pode ser obtido o esforço cortante devido ao efeito hiperestático para os pórticos interno e para o pórtico externo mostrados na figura 51 e 52 respectivamente.

Figura 51 - esforços cortantes devido ao efeito hiperestático no pórtico interno

Figura 52 - esforços cortantes devido ao efeito hiperestático no pórtico externo

4.13 Verificação da ruptura por flexão no estado-limite último

Dando prosseguimento às etapas de dimensionando do modelo em concreto protendido, após o cálculo da força de protensão para equilibrar um percentual do carregamento externo (método da carga balanceada) e verificação das tensões normais na seção transversal na transferência e em serviço (ELS), verifica-se, a ruptura por flexão no ELU, de acordo com a ABNT NBR 6118:2014.

Esta verificação é realizada para a faixa dos pilares do pórtico equivalente interno (com 5 m de largura), pois observou-se que os maiores momentos máximos por metro linear ocorreram nesta região, para a Combinação 4 das ações referente ao ELU.

4.13.1 Taxa de armadura ativa

Considerando a distribuição dos cabos ao longo da laje, tem-se a seguinte taxa de armadura ativa na faixa dos pilares do pórtico equivalente interno:

$$A_p = 30 \ \emptyset \ 12,7 \text{mm em 5 m} = 30. \frac{1,01}{5} = 6,06 \ \text{cm}^2/m$$

 $\rho_p = \frac{A_p}{b.d} = \frac{6,06}{100.20,56} = 0,295\%$

4.13.2 Armadura passiva mínima

Com o objetivo de melhorar o desempenho, dutilidade e controlar a fissuração utiliza-se a armadura passiva com seus valores mínimos definidos a seguir. A taxa de armadura passiva mínima segundo a tabela 17.3 da ABNT NBR 6118:2014 deve ser para um f_{ck} de 45 MPa

$$\rho_{min} = 0,194\%$$

Logo as armaduras passivas mínimas, conforme a tabela 19.1 (item 19.3.3.2, ABNT NBR 6118:2014), para elementos estruturais com armadura ativa não aderente, devem ser para a armadura negativa

$$\rho_{s,min} = \rho_{min} - 0.5 . \rho_p \ge 0.67 \rho_{min}$$

$$\rho_{s,min} = 0.194\% - 0.5 .0.295\% \ge 0.67 . 0.194\%$$

$$\rho_{s,min} = 0.13\%$$

$$A_{s,min} = A_c. \ \rho_{s,min}$$

$$A_{s,min} = 20.56 . 100 . 0.13 = 2.67 \ cm^2/m$$

Para a armadura negativa de bordas sem continuidade

$$\rho_{s,min} = 0,67. \rho_{s,min}$$

$$\rho_{s,min} = 0,67. 0,194\% = 0,13\%$$

$$A_{s,min} = A_c. \rho_{s,min}$$

$$A_{s,min} = 25.100. 0,13 = 3,25 \ cm^2/m$$

Para a armadura positiva para lajes armadas nas duas direções:

$$\begin{split} \rho_{s,min} &= \rho_{min} - 0.5 \,.\, \rho_p \geq 0.5 \rho_{min} \\ \rho_{s,min} &= 0.194\% - 0.5 \,.\, 0.295\% \geq 0.5 \,.\, 0.194\% \\ \rho_{s,min} &= 0.097\% \end{split}$$

$$A_{s,min} = A_c. \ \rho_{s,min}$$

 $A_{s,min} = 20,56.100.0,097 = 2 \ cm^2/m^2$

De acordo com o item 19.3.3.2 da ABNT NBR 6118:2014, para evitar que ocorra ruptura brusca da seção, deve-se utilizar uma armadura mínima, distribuída na largura do apoio mais 1,5h de cada lado. Para lajes lisas, tal armadura possui o valor de:

$$A_{s,min} = 0,00075.h.L$$

$$A_{s,min} = 0,00075.25.100 \frac{cm}{m} = 1,87 \ cm^2$$

4.13.3 Verificação da ruptura por flexão no Estado-Limite Último

A verificação à ruptura é feito considerando-se que o momento externo total de cálculo, incluindo o valor de cálculo do momento hiperestático de protensão, deve ser menor ou igual ao momento resistente", representado pelo binário na Figura 53, que é composto pelo somatório das forças de tração (armaduras ativa e passiva) e pela força de compressão no concreto.

Fonte: ALBUQUERQUE (2017)

para peças com relação vão-espessura L/h > 35:

$$\sigma_{p} = \sigma_{pn} + 70 + \frac{f_{ck}}{300\rho_{n}} \le \sigma_{pe} + 200 \le f_{pyk} \text{ (MPa)}$$

4.13.3.1 Cálculo da tensão na armadura ativa

Valor de cálculo da protensão

Na faixa dos pilares do pórtico equivalente interno temos

Sendo
$$A_p = 30 \ 0 \ 12,7 \text{mm} \ \text{em} \ 5 \ \text{m} = 30. \frac{1,01}{5} = 6,06 \ \text{cm}^2/m$$

 $P_d = 140.0,88.6 = 739,2 \ kN$

$$\alpha_p = \frac{E_s}{E_c} = \frac{200}{41,1347} = 4,86$$

$$\sigma_{cp} = \frac{739,2}{100.25} + \frac{739,2.8,065^2}{100.25^3/12} = 0,66 \ kN/cm^2$$

$$P_n = P_d + \alpha_p.A_p.\sigma_{cp} = 739,2 + 4,86.6,06.0,66 = 758,63 \ kN/m$$

$$\varepsilon_{pn} = \frac{P_n}{A_p \cdot E_s} = \frac{758,63}{6,06.200.100} = 6,26.10^{-3}$$

Cálculo das tensões na armadura

$$\sigma_{pn} = \frac{P_n}{A_p}$$

$$\sigma_{pn} = \frac{758,63}{6,06} = 125,19 \text{ kN/cm}^2$$

$$d = h - c_{nom} - \phi_{st} - \frac{\phi_{lpt}}{2} = 25 - 3 - 0.8 - \frac{1,27}{2} = 20,56 \text{ cm}$$

$$\rho_p = \frac{A_p}{b.d} = \frac{6,06}{100.20,56} = 0,295\%$$

A relação $\frac{L}{h} = \frac{10}{0.25} = 40 > 35$, sendo portanto a tensão no aço protendido de acordo com o ACI-318 é

$$\begin{aligned} \sigma_p &= \sigma_{pn} + 700 + \frac{fck}{300\rho_p} \le \sigma_{pe} + 2000 < f_{pyk} \left(\frac{kgf}{cm^2}\right) \\ \sigma_p &= 12519 + 700 + \frac{450}{300.0,295*0,01} = 13727,47 \frac{kgf}{cm^2} = 137,27 \frac{kN}{cm^2} \\ \sigma_{pe} + 2000 &= 6.0,88 \frac{14000}{6,06} + 2000 = 14198,02 \frac{kgf}{cm^2} = 141,98 \frac{kN}{cm^2} \\ \text{Logo } \sigma_p &= 137,27 \frac{kN}{cm^2} \\ \sigma_{pd} &= \frac{\sigma_p}{1,15} = \frac{137,27}{1,15} = 119,36 \, kN/cm^2 \end{aligned}$$

A resultante de tração no aço de protensão será

$$R_{pt} = \sigma_{pd} \cdot A_p$$

 $R_{pt} = 119,36.6,06 = 723,35 \text{ kN}$

4.13.3.2 Cálculo da armadura passiva

Momento negativo apoio 5 – faixa dos pilares

O momento de cálculo será o valor indicado na tabela 10 acrescentando o efeito hiperestático já calculado, sendo portanto considerando uma faixa de 1metro de largura

$$M_d = -258,21 + 0,9.18,77 = -241,31 \, kN.m$$

л*л*

Da equação de equilíbrio da seção temos

$$\begin{split} M_d &= R_{cc}.z\\ M_d &= 0.85.\frac{f_{ck}}{1.4}.b.0.8x.(d-0.4x)\\ 241.31.100 &= 0.85.\frac{4.5}{1.4}.100.0.8x.(20.56-0.4x)\\ &-0.4\,x^2 + x.20.57 - 110.4 = 0\\ x^2 - 51.42\,x + 276.01 = 0\\ x &= 6.09cm\\ R_{cc} &= 0.85.\frac{f_{ck}}{1.4}.b.0.8x\\ R_{cc} &= 0.85.\frac{4.5}{1.4}.100.0.8.6.09 = 1331.11 > R_{pt} = 723.35 \text{ kN} \end{split}$$

Portando a seção não esta em equilíbrio e deve-se adicionar armadura passiva

$$R_{st} = R_{cc} - R_{pt} = 1331,11 - 723,35 = 607,58 \text{ kN}$$

A armadura passiva necessária será

$$A_{s} = \frac{R_{st}}{f_{yd}} = \frac{607,58}{43,5} = 13,97 \frac{cm^{2}}{m} > A_{s,min}$$
$$A_{s,adot} = \emptyset 16 \ c. \ 15 \ cm = 14,07 \ cm^{2}$$

De acordo com a ABNT NBR 6118:2014 a tensão gerada na armadura passiva no estádio 2 não deve produzir acréscimos de tensão superiores a 250 MPa para barras nervuradas. Para efeitos de cálculo, nessa fase da construção, a força nessa armadura pode ser considerada igual à resultante das tensões de tração no concreto no estádio I.

$$R_{st} = 25.14,07 = 351,75 \text{ kN} > R_{cc} \text{ Ok!}$$

Assim pode-se realizar o detalhamento das armaduras negativas para o apoio 5 na figura 54. Foi demonstrado a verificação da ruptura por flexão no estado limite último, e cálculo da armadura passiva complementar apenas para a faixa dos pilares desse apoio, onde o mesmo foi feito para os demais e para os vãos, sendo apresentado o detalhamento final na figura 54.

A NBR 6118:2014 estabelece que as barras devem ser espaçadas em no máximo 30 cm e estendidas até uma distância mínima de 1/6 do vão livre na direção da armadura considerada, a partir da face do apoio. Os comprimentos das barras foram determinados para toda a região de diagramas de momento negativo.

Figura 54 - detalhamento das armaduras passivas negativas na direção y

Fonte: Autor

Para a armadura positiva, os cálculos foram os mesmos, onde foi necessário em todas as faixas uma armadura de $\emptyset 6,3 c. 15cm$, onde adotou-se aqui uma armadura

positiva tipo malha em toda a laje com espaçamentos de 15 cm entre as barras, para facilitar o processo construtivo.

4.14 Verificação da Ruptura por Cisalhamento no ELU (PUNÇÃO)

Para a verificação da ruptura por cisalhamento no ELU são realizados de acordo com o item 19.5 da norma ABNT NBR 6118:2014. As reações e momentos nos pilares, considerando a Combinação 4, são obtida na figura 46 e na figura 47, sendo os momentos da direção y, devendo ser superpostos para encontrar os efeitos totais nos pilares, os valores finais enstão apresentados na tabela 11.

Esforços totais nos pilares									
	Normal (kN)	Mx (kN.m)	My (kN.m)						
P1	721,91	332,93	332,93						
P2	1165,25	18,46	403,61						
P3	721,91	332,93	332,93						
P4	1165,25	403,61	18,46						
P5	1694,40	18,77	18,77						
P6	1165,25	403,61	18,46						
P7	721,91	332,93	332,93						
P8	1165,25	18,46	403,61						
P9	721,91	332,93	332,93						
Fonte: Autor									

Tabela 11 – Esforços totais nos pilares

Fonte: Autor

O modelo de cálculo consiste na verificação do cisalhamento nas superfícies críticas nas proximidades da força concentrada. A primeira superfície é o contorno do pilar, chamada contorno C, sendo verificado o esmagamento das bielas de compressão através da tensão de cisalhamento. Na segunda superfície, distante 2. *d* da face do pilar, deve-se verificar a punção, associada a resistência à tração diagonal.

4.14.1 Verificação do contorno C (Pilar P4)

Tensão resistente, conforme o item 19.5.3.1 da ABNT NBR 6118:2014

$$\begin{aligned} \tau_{Rd2} &= 0,27 \cdot \alpha_v \cdot f_{cd} \\ \alpha_v &= 1 - f_{ck}/250 \\ \tau_{Rd2} &= 0,27 \cdot \left(1 - \frac{45}{250}\right) \cdot \frac{4,5}{1,4} = 0,711 \ kN/cm^2 \end{aligned}$$

O perímetro interno do pilar, retangular, em questão:

$$u = 2.(c_1 + c_2) = 2.(50 + 50) = 200cm$$

Tensão solicitante, de acordo com o item 19.5.2.1 da NBR 6118 (ABNT, 2014):

$$\tau_{sd} = \frac{F_{sd}}{u.d} + k.\frac{M_{sd}}{W_p.d}$$

Para elementos protendidos deve ser adicionada na verificação o efeito positivo da força de protensão, reduzindo a tensão solicitante τ_{sd} para $\tau_{sd,ef}$, sendo

$$\tau_{sd,ef} = \tau_{sd} - \tau_{pd}$$

$$\tau_{pd} = \sum \frac{P_{k,inf,i} \cdot sen(\alpha)}{u.d}$$

$$d = \frac{dx + dy}{2} = 19,59$$

$$dx = 25 - 3 - 1,27 - \frac{1,25}{2} = 20,1 \text{ cm}$$

$$dy = 25 - 3 - 1,27 - 1,25 - \frac{0,8}{2} = 19,08 \text{ cm}$$

$$\frac{c_1}{c_2} = \frac{50}{50} = 1, k = 0,6$$

$$W_p = \frac{c_1^2}{2} + c_1 \cdot c_2 + 4 \cdot c_2 \cdot d + 16 \cdot d^2 + 2 \cdot \pi \cdot d \cdot c_1$$

$$W = 19962,67 \text{ cm}^2$$

$$\tau_{sd} = \frac{1165,25}{200 \cdot 19,59} + 0,6 \cdot \frac{403,61.100}{19962,67 \cdot 19,59} = 0,359 \frac{kN}{cm^2} < \tau_{Rd2} \text{ (ok!)}$$

A protensão final é de

$$P_{inf} = 0,88.140 = 123,2 \ kN/cabo$$

A redução devido ao efeito da protensão é de

$$P_{k,inf,i} = 0.8.P_{inf} = 0.8.123.2.8 = 788.48 \, kN$$

sen(2)

 $\tau_{pd} = 788,48. \frac{sen(2)}{200.19,59} = 7,02.10^{-3} \, kN/cm^2$

 $\tau_{sd,ef} = \tau_{sd} - \tau_{pd}$

$$\tau_{sd,ef} = 0.359 - 5.27.10^{-3} = 0.352 \ kN/cm^2$$

4.14.2 Verificação do contorno C'

Para a verificação do contorno C' calcula-se a taxa de armadura ρ_x e ρ_y considerando uma faixa de largura igual a dimensão do pilar mais 3. *d* para cada lado.

$$L = 3.19,59 + 50 + 3.19,59 = 167,54 \ cm$$

Para a armadura negativa na direção y

$$A_{s} = 11,04 \frac{cm^{2}}{m} = 9 \ \emptyset 12,5 \ mm$$

$$\rho_{y} = \frac{A_{s,min}}{A_{c}} = \frac{11,04 \cdot 1,6754}{1 \cdot 167,54 \cdot 19,59} = 5,6.10^{-3} < 0,02$$

Para a armadura negativa na direção x

$$A_s = 3,52 \frac{cm^2}{m} = 7 \ \emptyset 8 \ mm$$

$$\rho_x = \frac{A_{s,min}}{A_c} = \frac{3,52.1,6754}{1.167,54.19,59} = 1,8.10^{-3} < 0,02$$

$$\rho = \sqrt{\rho_x \cdot \rho_y} = 3,2.10^{-3}$$

A tensão resistente, segundo o item 19.5.3.2 da NBR 6118 ABNT, 2014):

$$\tau_{Rd1} = 0,13.k.(100.\rho.fck)^{\frac{1}{3}} + 0,1.\sigma_{cp} =$$

$$\tau_{Rd1} = 0,13.2,01.(100.2,5.10^{-3}.45)^{\frac{1}{3}} + 0,1 \frac{8 \ cord.123,2 \ kN/cord}{0,1959.1,67.1000}$$

$$\tau_{Rd1} = 0,634 + 0,3 = 0,934MPa$$

Tensão solicitante, conforme o item 19.5.2.2 da NBR 6118 (ABNT, 2014):

$$\begin{aligned} \tau_{sd} &= \frac{F_{sd}}{u.d} + k. \frac{M_{sd}}{W_p.d} \\ u &= 2. \left(c_1 + c_2 \right) + 4 . \pi . d \\ u &= 2. \left(50 + 50 \right) + 4 . 3, 14 . 19, 59 = 446, 17 \ cm \\ \frac{c_1}{c_2} &= \frac{50}{50} = 1, k = 0, 6 \\ W_p &= \frac{c_1^2}{2} + c_1. c_2 + 4. c_2. d + 16. d^2 + 2. \pi . d. c_1 \\ W_p &= 19962, 67 \ cm^2 \\ K &= 0, 6, \text{ para} \frac{c_1}{c_2} = \frac{50}{50} = 1 \\ \tau_{sd} &= \frac{1165, 25}{446, 17. 19, 59} + 0, 6 . \frac{403, 61.100}{19962, 67. 19, 59} = 0, 2 \frac{kN}{cm^2} = 2 \ MPa > \tau_{Rd1} \end{aligned}$$

Portanto é necessário armadura de punção. Sendo utilizado conectores metálicos conforme a figura 55.

Figura 55 - Pinos de cisalhamento

Fonte: MELGES (2001)

As tensões nos estribos, de acordo com o item 19.4.2 da ABNT NBR

$$6118:2014$$

$$\frac{435 - 250}{35 - 15} = \frac{435 - f_{ywd}}{35 - 25}$$

$$f_{ywd} = 342.5 MPa$$

$$\tau_{Rd3} = 0.13 . k . (100. \rho. fck)^{\frac{1}{3}} + 0.1 . \sigma_{cp} + 1.5 . \frac{d}{s} . \frac{A_{sw}}{u d} . f_{ywd} . sen(\alpha)$$

O diâmetro da armadura de estribos não pode superar h/20 da laje, ou seja, 12,5 mm, sendo utilizado para esse pilar o diâmetro de 10mm e a configuração mostrada na figura 56.

Figura 56 - Armadura transversal tipo pino - Pilar P4

Smax = 0,75.d = 14,69 cm Sr = 0,5.d = 9,79 cm Contorno C'= 2.d = 39,18 cm

Fonte: Autor

$$\begin{split} A_{sw} &= 0,79\ cm^2\\ s_{max} &= 0,75.\ d = 0,75\ .19,59 = 14,69\ cm\\ s &= 14\ cm\\ k &= 1 + \sqrt{\frac{20}{d}} = 1 + \sqrt{\frac{20}{19,59}} = 2,01\\ \tau_{Rd1} &= 0,13\ .2,01\ .\ (100\ .2,5.10^{-3}.45)^{\frac{1}{3}} + 0,1\ \frac{8\ cord.\ 123,2\ kN/cord}{0,1959\ .1,67.1000}\\ &+ 1,5.\ \frac{19,59}{10}\ .\ \frac{16.\ 0,79}{446,17.19,59}\ .342,5.1\\ \tau_{Rd1} &= 2,38 > \tau_{sd}\ (Ok!) \end{split}$$

4.14.3 Verificação do contorno C"

Como foi necessário armadura de punção, detalhada no item anterior, deve ser verificado o contorno C'' distante a 2. d da última linha de conectores, definido na figura 57.

Fonte: Autor

A tensão resistente τ_{Rd1} já foi calculada no item 5.14.2 com seu valor de

 $\tau_{Rd1}=0,935 MPa$

Para a nova tensão solicitante no contorno C", tem-se

$$\tau_{sd} = \frac{F_{sd}}{u.d} + k.\frac{M_{sd}}{W_{p.d}}$$

Perímetro crítico a 2. d da face do pilar

Assim é necessário usar armadura de punção até o contorno C", sendo o mesmo detalhado na figura 58.

Figura 58 - Armadura tipo pino no contorno C"

Fonte: Autor

Assim utilizando a distribuição de armadura na figura 58 tem-se a mesma resistência do cortorno C', sendo de

$$\tau_{Rd1} = 3,2 > \tau_{sd} (Ok!)$$

4.14.4 Verificação ao colapso progressivo

De acordo com a ABNT NBR 6118 a norma vigente, deve ser verificado a possibilidade de colapso progressivo, causado pela ruptura das barras inferiores da laje na região de contato com o pilar, devendo garantir que essa armadura atravesse o contorno C do pilar e comprimento de ancoragem suficiente até o contorno C'', tal que

Cada pilar é atravessa

De acordo com o detalhamento da figura 54 cada face do pilar é atravessada por 4 barras de 12,5mm na direção y e 3 barras de 8 mm na direção x.

$$A_{s,ccp} = 4 \cdot 1,23 + 3 \cdot 0,5 = 6,42 \ cm^2$$
$$f_{yd} \cdot A_{s,ccp} \ge 1,5 \ F_{sd}$$
$$43,5 \cdot 6,42 \ge 1,5 \cdot 1165,25$$
$$279,27 \ \le 1.747,87 \ (Não \ Ok!)$$

Portando é necessário adicionar uma armadura complementar, além da armadura utilizada na região inferior, para aumentar a resistência ao colapso progressivo com valor de

$$A_{s,ccp} = 40,18 \ cm^2$$

Assim é adotado em ambas as direções

$$\begin{aligned} A_{s,ccp,adot} &= \emptyset 16 \ c / \ 10 cm = 40,21 \ cm^2 \\ f_{yd}.A_{s,ccp} &\geq 1,5 \ F_{sd} \\ 43,5.40,21 &\geq 1,5.1165,25 \\ 1749,24 &\geq 1.747,87 \ (Ok!) \end{aligned}$$

Para os outros pilares foram feitos os mesmos procedimentos, sendo mostrado na figura 59 os pilares de canto, na figura 60 os pilares de extremidade e na figura 61 o pilar de centro com os detalhamentos finais.

Figura 59 - Pilar P1=P3=P7=P9

Fonte: Autor

Figura 60-Pilar P2=P4=P6=P8

Fonte: Autor

4.15 Especificações finais

Assim como foi dimensionado no item 4.5 a quantidade de cabos de protensão para os pórticos pode-se realizar o detalhamento dos mesmos de acordo com as especificações. Como exemplo será feito o detalhamento da faixa dos pilares do pórtico equivalente interno de 5m com 30 cordoalhas, sendo, portanto, o espaçamento entre as mesmas de

$$e = \frac{500}{31} = 16,13 \text{ cm}$$

Também deve ser colocada armadura de fretagem para aumentar a resistência na localização das ancoragens devido ao alto esforço que ocorre nessa região. Como os cabos serão protendidos em apenas um lado, em uma região é feita a ancoragem ativa e na outra a ancoragem passiva dos cabos, onde o detalhamento é mostrado na figura 62 e 63 com ancoragem ativa e figura 64 e 65 com ancoragem passiva, onde as figuras representam a região das extremidades da laje.

Figura 62 - Detalhamento cabos e ancoragens ativas c/ fretagem - vista superior

Figura 63 - Detalhamento cabos e ancoragens ativas c/ fretagem - vista lateral

Fonte: Autor

O mesmo detalhamento pode ser feito para as outras faixas dos pórticos.

6. CONCLUSÃO

A elaboração do trabalho proporcionou um amplo conhecimento teórico em relação ao método dos pórticos equivalentes e das etapas de dimensionamento de uma laje em concreto protendido, principalmente na possibilidade do dimensionamento da laje no estádio I e posterior verificação da seção no estádio III.

Vale ressaltar que a geometria do projeto escolhido foi definida para garantir a aplicação correta do método dos pórticos equivalentes, ele proporcionou uma melhor visualização dos resultados, por ser de simples entendimento e de fácil aplicação dentro dos limites estabelecidos pela ABNT NBR 6118:2014.

Destaca-se também a importância desse trabalho por demonstrar de forma simples o método utilizado, podendo ser útil em trabalhos futuros para obtenção dos esforços com ferramentas simples como o FTOOL e o EXCEL.

Para um trabalho mais completo sugere-se que seja calculado as perdas de protensão e verificadas se as mesmas correspondem aos valores estimados, bem como o cálculo das flechas para comparar a flecha máxima permitida da ABNT NBR 6118:2014. Também pode ser aplicado o mesmo trabalho com solução em laje nervurada, e a comparação das armaduras.

Sugere-se também, para o mesmo projeto, uma comparação dos esforços obtidos aqui com o modelo dos pórticos equivalentes com outro método consagrado, como o método das grelhas, com o objetivo de comparar e avaliar os esforços.

REFERÊNCIAS BIBLIOGRÁFICAS

AMERICAN CONCRETE INSTITUTE. ACI 318: Building Code Requirements for Structural Concrete. Committee 318. Detroit, 2005.

AMERICAN CONCRETE INSTITUTE. ACI 423: Recommendations for Concrete Members Prestressed with Unbonded Tendons. Detroit, 1983.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118**: Projeto de estruturas de concreto – procedimento. Rio de Janeiro, 2014. 256 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6120: Cargas para o cálculo de estruturas de edificações. Rio de Janeiro, 1980. 5 p.

ALBUQUERQUE. D. F. Análise Comparativa do Dimensionamento e Detalhamento de Lajes Lisas em Concreto Armado e Protendido. Trabalho de Conclusão de Curso. Universidade Federal de Roraima. 2017.

BASTOS, P.S.S. Concreto protendido: notas de aula. Bauru: UNESP, 2015.

BOROWSKI.G.C. Cálculo de Deslocamentos em Lajes Nervuradas. Dissertação de Mestrado. Universidade Federal de Santa Maria. 2005.

Building Code Requirements for Structural Concrete - ACI 318M-05. American Concrete Institute. 2005

BRITISH STANDARD. BS 8110:1997: Structural use of concrete. Sheffield, 2002.

CARLOS, T.B.Análise e Dimensionamento Estrutural de uma Laje Lisa com Protensão não Aderente. Trabalho de Conclusão de Curso. Universidade Federal do Pampa, 2013.

CARVALHO, R. C.; FILHO, J. R. F. Cálculo e detalhamento de estruturas usuais de concreto armado segundo a NBR 6118:2014: volume 1. 4 ed. São Carlos: EdUFSCar, 2014. 416 p.

EMERICK, A. A. Projeto e execução de lajes protendidas. Brasília, 2002.

EMERICK, A. A. Projeto e execuções de lajes protendidas. Rio de Janeiro: Interciência, 2005. 191 p.

FERNANDES. A.F.L. Dimensionamento de Laje Lisa Protendida com Verificação de Punção. Trabalho de Conclusão de Curso. Universidade Federal de Uberlândia. 2018.
GIONGO J.S. Projeto Estrutural de Edifícios. Universidade de São Paulo. 2007
HANAI, J.B. Fundamentos do concreto protendido. São Carlos: USP, 2005.
LIN, T. Y.; BURNS, N, H. Design of Prestressed Concrete Structures. 3. ed. Wiley, 1981. 646 p.

LOUREIRO. G.J. **Projeto De Lajes Protendidas Com Cordoalhas Engraxadas**. VI Simpósio EPUSP sobre Estruturas de Concreto. 2006.

MELGES.J.L.P. Análise Experimental da Punção em Lajes de Concreto Armado e Protendido. Dissertação de doutorado. Universidade de São Paulo.2001.

NAAMAN, A. E. Prestressed Concrete Analysis and Design. New York, 1982.

NBR 6118/2014 - Projeto de Estruturas de Concreto - Procedimento. Associação Brasileira de Normas Técnicas.

PEREIRA. J.L.S; CARVALHO. R.G; LACERDA. I.G; Concreto Protendido E Lajes Protendidas Com Monocordoalhas Engraxadas. Comunidade da contrução. 2005.

PINHEIRO L.M. Concreto armado: Tabelas e Ábacos. São Carlos. EESC-USP,1993.

PREFOR. Lajes maciças protendidas. Disponível em< http://www.preforengenharia.com.br/lajes-macicas-protendidas.html>. Acesso em: 18 de setembro de 2019

SILVA, M. A. F. Projeto e construção de lajes nervuradas de concreto armado. 2005.
239 f. Dissertação (Mestrado em Construção Civil). Departamento de Engenharia Civil,
Universidade Federal de São Carlos. São Carlos, 2005.

SILVA. M. Estudo Comparativo Entre O Método Dos Pórticos Equivalentes E O Método Dos Elementos Finitos Para Análise De Lajes Nervuradas. Trabalho de Conclusão de Curso. Universidade de Santa Cruz do Sul. 2019.

SILVEIRA. M.; JUCA.D. S. Lajes planas protendidas: determinação da força de protensão e pré-dimensionamento dos cabos – um processo prático. MD Eng. Associados Ltda. 2010.

SOUZA. CG.S;LOPES. R.C. Estudo Comparativo Entre Laje Maciça Convencional e Lajes Nervuradas. Trabalho de Conclusão de Curso. Universidade Federal de Goiás, 2016.

SOUZA. V.C.M; CUNHA.A.J.P. Lajes de concreto armado e protendido. Editora da Universidade Federal Fluminense. Niterói 1994.

WIGHT; J. K.; MACGREGOR, J. G. Reinforced concrete: mechanics and design. 6 ed. Prentice Hall, 2009. 1176 p.

Anexo A – Tabela WIGHT E MACGREGOR (2009)

TABLE A-17 Stiffness and Carryover Factors for Columns

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$K_c = k \frac{E L_c}{c}$ $A [1] = \frac{b_c}{c}$ $A [1] = \frac{b_c}{c}$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ce.	-			577		57					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				6	6		1. 2		1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				16-7		10-0	-	6-+ B					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				* 음음	=		=++		÷				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				11	in		10	76	6				
		ℓ_c/ℓ_u											
	t_a/t_b		1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	k _{AB}	4.20	4,40	4.60	4.80	5.00	5.20	5.40	5.60	5.80		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	CAR	0.57	0.65	0.73	0.80	0.87	0.95	1.03	1.10	1.17		
	0.2	KAB	4.31	4.62	4.95	5.30	5.65	6.02	6.40	6.79	7.20		
$ 0.4 \qquad k_{AB} \qquad 4.38 \qquad 4.79 \qquad 5.22 \qquad 5.67 \qquad 6.15 \qquad 6.65 \qquad 7.18 \qquad 7.74 \qquad 8.7 \qquad 9.8 \\ C_{AB} \qquad 0.55 \qquad 0.60 \qquad 0.65 \qquad 0.70 \qquad 0.74 \qquad 0.79 \qquad 0.83 \qquad 0.87 \qquad 0.9 \\ C_{AB} \qquad 4.44 \qquad 4.91 \qquad 5.42 \qquad 5.96 \qquad 6.54 \qquad 7.15 \qquad 7.81 \qquad 8.50 \qquad 9.2 \\ C_{AB} \qquad 0.55 \qquad 0.59 \qquad 0.63 \qquad 0.61 \qquad 0.64 \qquad 0.67 \qquad 0.70 \qquad 0.72 \qquad 0.77 \qquad 0.80 \qquad 0.8 \\ s_{AB} \qquad 4.49 \qquad 5.01 \qquad 5.58 \qquad 6.19 \qquad 6.85 \qquad 7.56 \qquad 8.31 \qquad 9.12 \qquad 9.9 \\ C_{AB} \qquad 0.54 \qquad 0.54 \qquad 0.58 \qquad 0.61 \qquad 0.64 \qquad 0.67 \qquad 0.70 \qquad 0.72 \qquad 0.75 \qquad 0.71 \qquad 0.7$		CAB	0.56	0.62	0.68	0.74	0.80	p.85	0.91	0.96	1.01		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,4	K _{AB}	4.38	4.79	5.22	5.67	6.15	6.65	7.18	7.74	8.32		
$ 0.6. k_{AB} 4.44 4.91 5.42 5.96 6.54 7.15 7.81 8.50 9.2 \\ C_{AB} 0.55 0.59 0.63 0.67 0.70 0.74 0.77 0.80 0.8 \\ k_{AB} 4.49 5.01 5.58 6.19 6.85 7.56 8.31 9.12 9.9 \\ C_{AB} 0.54 0.58 0.61 0.64 0.67 0.70 0.72 0.75 0.7 \\ C_{AB} 0.54 0.57 0.60 0.62 0.65 0.67 0.69 0.71 0.7 \\ C_{AB} 0.53 0.56 0.59 0.61 0.63 0.65 0.66 0.66 0.68 0.61 \\ 1.4 k_{AB} 4.55 5.16 5.82 6.54 7.51 8.41 9.38 10.43 11.5 \\ C_{AB} 0.53 0.55 0.58 0.60 0.61 0.63 0.65 0.66 0.66 0.66 0.66 \\ 1.6 k_{AB} 4.50 5.25 0.58 0.60 0.61 0.63 0.64 0.62 0.66 0.66 0.66 \\ 1.6 k_{AB} 4.60 5.26 5.99 6.79 7.66 8.61 9.64 10.75 11.9 \\ $		CAR	0.55	0,60	0.65	0.70	0.74	0.79	0.83	0.87	0.91		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6	RAH	4,44	4.91	5.42	5.96	6.54	7.15	7.81	8.50	9.23		
$ 0.8 \qquad k_{AR} \qquad 4.49 \qquad 5.01 \qquad 5.58 \qquad 6.19 \qquad 6.85 \qquad 7.56 \qquad 8.31 \qquad 9.12 \qquad 9.9 \\ C_{AR} \qquad 0.54 \qquad 0.57 \qquad 0.66 \qquad 0.64 \qquad 0.67 \qquad 0.70 \qquad 0.72 \qquad 0.75 \qquad 0.71 \\ 1.0 \qquad k_{AR} \qquad 4.52 \qquad 5.09 \qquad 5.71 \qquad 6.38 \qquad 7.11 \qquad 7.89 \qquad 8.73 \qquad 9.63 \qquad 10.6 \\ C_{AR} \qquad 0.54 \qquad 0.57 \qquad 0.60 \qquad 0.62 \qquad 0.65 \qquad 0.667 \qquad 0.69 \qquad 0.71 \qquad 0.71 \\ C_{AR} \qquad 0.53 \qquad 0.56 \qquad 0.59 \qquad 0.61 \qquad 0.63 \qquad 0.65 \qquad 0.66 \qquad 0.66 \qquad 0.66 \\ 1.4 \qquad k_{AR} \qquad 4.58 \qquad 5.21 \qquad 5.91 \qquad 6.68 \qquad 7.51 \qquad 8.41 \qquad 9.38 \qquad 10.43 \qquad 11.5 \\ C_{AR} \qquad 0.53 \qquad 0.55 \qquad 0.58 \qquad 0.60 \qquad 0.61 \qquad 0.63 \qquad 0.64 \qquad 0.65 \qquad 0.66 \qquad 0.66 \\ 1.6 \qquad k_{AR} \qquad 4.58 \qquad 5.21 \qquad 5.91 \qquad 6.68 \qquad 7.51 \qquad 8.41 \qquad 9.38 \qquad 10.43 \qquad 11.5 \\ C_{AR} \qquad 0.53 \qquad 0.55 \qquad 0.58 \qquad 0.60 \qquad 0.61 \qquad 0.63 \qquad 0.64 \qquad 0.65 \qquad 0.61 \\ 1.6 \qquad k_{AR} \qquad 4.60 \qquad 5.26 \qquad 5.99 \qquad 6.79 \qquad 7.66 \qquad 8.61 \qquad 9.64 \qquad 10.75 \qquad 11.9 \\ C_{AR} \qquad 0.53 \qquad 0.55 \qquad 0.56 \qquad 0.58 \qquad 0.59 \qquad 0.60 \qquad 0.61 \qquad 0.62 \qquad 0.63 \\ 1.8 \qquad k_{AR} \qquad 4.62 \qquad 5.30 \qquad 6.06 \qquad 6.89 \qquad 7.30 \qquad 8.79 \qquad 9.87 \qquad 11.03 \qquad 12.2 \\ C_{AR} \qquad 0.52 \qquad 0.54 \qquad 0.56 \qquad 0.58 \qquad 0.59 \qquad 0.69 \qquad 0.61 \qquad 0.61 \qquad 0.61 \qquad 0.61 \qquad 0.61 \\ 0.61 \qquad 0.61 \\ C_{AR} \qquad 0.52 \qquad 0.54 \qquad 0.55 \qquad 0.56 \qquad 0.58 \qquad 0.59 \qquad 0.59 \qquad 0.59 \qquad 0.60 \qquad 0.61 \\ 0.61 \qquad 0.62 \qquad 0.88 \qquad 0.59 \qquad 0.59 \qquad 0.60 \qquad 0.61 \qquad 0.61 \qquad 0.61 \qquad 0.61 \qquad 0.61 \qquad 0.61 \\ C_{AR} \qquad 0.52 \qquad 0.54 \qquad 0.55 \qquad 0.56 \qquad 0.57 \qquad 0.58 \qquad 0.59 \qquad 0.59 \qquad 0.50 \qquad 0.52 \qquad 0.53 \qquad 0.55 \qquad 0.56 \qquad 0.55 $		CAB	0.55	0.59	0.63	0.67	0.70	0.74	0.77	0.80	0.83		
	0.8	KAB	4.49	5.01	5.58	6.19	6.85	7.56	8.31	9.12	9.98		
		CAR	0.54	0.58	0.61	0.64	0.67	0.70	0.72	0.75	0.77		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	KAB	4.52	5.09	5.71	6.38	7.11	7.89	8.73	9.63	10.60		
	198311	CAR	0.54	0.57	0.60	0.62	0.65	0.67	0.69	0.71	0.73		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2 k	KAB	4.55	5.16	5.82	6.54	7.32	8.17	9.08	10.07	11.12		
		CAB	0.53	0.56	0.59	0.61	0.63	0.65	0.66	0.68	0.69		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4	KAB	4.58	5.21	5.91	6.68	7.51	8.41	9.38	10.43	11.57		
1.6 k_{AB} 4.60 5.26 5.99 6.79 7.66 8.61 9.64 10.75 11.9 C_{AB} 0.53 0.55 0.55 0.55 0.56 0.89 0.60 0.61 0.62 0.63 0.66 1.8 k_{AB} 4.62 5.30 6.06 6.89 7.80 8.79 9.87 11.03 12.2 C_{AB} 0.52 0.54 0.56 0.58 0.59 0.60 0.61 0.61 0.60 2.2 k_{AB} 4.65 5.37 6.17 7.05 8.02 9.08 10.24 11.49 12.8 C_AB 0.52 0.54 0.55 0.56 0.57 0.58 0.59 0.50 0.60 C_AB 0.52 0.53 0.55 0.56 0.57 0.58 0.59 0.50 0.50 2.4 k_{AB} 4.66 5.40 6.22 7.12 8.11 9.20 10.39 11.68 13.0 2.6 k_{AB} 4.67 5.42 6.26 7.18		CAR	0.53	0.55	0.58	0.60	0.61	0.63	0.64	0.65	0.66		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6	KAB	4.60	5.26	5.99	6.79	7.66	8.61	9.64	10.75	11.95		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAR	0.53	0.55	0.57	0.59	0.60	0.61	0.62	0.63	0.64		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8	KAB	4.62	5.30	6.06	6.89	7.80	8.79	9.87	11.03	12.29		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAR	0.52	0.55	0.56	0.58	0.59	0.60	0,61	0.61	0.62		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	KAB	4.63	5.34	6.12	6.98	7.92	8.94	10.06	11.27	12.59		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAB	0.52	0.54	0.56	0.57	0.58	0.59	0.59	0.60	0.60		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	KAH	4.65	5.37	6.17	7.05	8.02	9.08	10.24	11.49	12.85		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAR	0.52	0.54	0.55	0.56	0.57	0.58	0.58	0.59	0.59		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4	KAB	4.66	5.40	6.22	7.12	8.11	9.20	10.39	11.68	13.08		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAB	0.52	0.53	0.55	0.56	0.56	0.57	0.57	0.58	0.58		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.6	RAR	4.67	5.42	6.26	7.18	8.20	9.31	10.53	11.86	13.29		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAR	0.52	0.53	0.54	0.55	0.56	0.56	0.56	0.57	0.57		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8	KAR	4.68	5.44	6.29	7.23	8.27	9.41	10.66	12.01	13.48		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAN	0.52	0.53	0.54	0.55	0.55	0.55	0.56	0.56	0.56		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	KAR	4.69	5.46	6.33	7.28	8.34	9.50	10.77	12.15	13.65		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAR	0.52	0.53	0.54	0.54	0.55	0.55	0.55	0.55	0.55		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5	KAH	4.71	5.50	6.40	7.39	8.48	9.69	11.01	12.46	14.02		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAR	0.51	0.52	0.53	0.53	0.54	0.54	0.54	0.53	0.53		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.0	KAN	4.72	5.54	6.45	7,47	8.60	9.84	11.21	12.70	14.32		
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		CAR	0.51	0.52	0.52	0.53	0.53	0.52	0.52	0.52	0.52		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 5.0	KAB	4.73	5.56	6.50	7.54	8.69	9.97	11.37	12.89	14.57		
		CAR	0.51	0.52	0.52	0.52	0.52	0.52	0.51	0.51	0.51		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		KAR	4.75	5.59	6.54	7.60	8,78	10.07	11.50	13.07	14.77		
		CAR	0.51	0.51	0.52	0.52	0.51	0.51	0.51	0.50	0.49		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0	KAR	4.76	5.63	6.60	7.69	8.90	10.24	11.72	13.33	15.10		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CAR	0.51	0.51	0.51	0.51	0.50	0.50	0.49	0.49	0.48		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.0	KAR	4,78	5.66	6.65	7,76	9.00	10.37	11.88	13.54	15.34		
		CAR	0.51	0.51	0.51	0.50	0.50	0.49	0.48	0.48	0.47		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.0	KAN	4,78	5.68	6.69	7.82	9.07	10.47	12.01	13.70	15.54		
9.0 k _{AB} 4.80 5.71 6.74 7.89 9.18 10.61 12.19 13.93 15.8		CAR	0.51	0.51	0.50	0.50	0.49	0.49	0.48	0.47	0.46		
C 0.50 0.50 0.50 0.49 0.48 0.47 0.46	9.0	KAN	4,80	5.71	6.74	7.89	9.18	10.61	12.19	13.93	15.83		
1 40 11 11 11 11 11 11 11 11 11 11 11 11 11		Can	0.50	0.50	0.50	0.49	0.48	0.48	0.47	0.46	0.45		

Source: [13-15], courtesy of the Portland Cement Association.

Fonte: Wight e MacGregor (2009, p. 1100).