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RESUMO 

A febre chikungunya é uma doença causada pelo vírus Chikungunya (CHIKV) transmitida 

pela picada da fêmea do mosquito Aedes sp. Os sintomas incluem febre, dores musculares, 

erupção cutânea e fortes dores nas articulações. A doença pode evoluir para uma condição 

crônica apresentando dores nas articulações por meses ou anos. Atualmente, não existe 

tratamento antiviral eficaz contra a infecção pelo CHIKV, sendo necessário o 

desenvolvimento de novas terapias. Tratamentos baseados em compostos naturais têm sido 

amplamente estudados, pois muitos medicamentos foram produzidos usando moléculas 

naturais e seus derivados. O para-cimeno (pCYM) é um composto orgânico aromático de 

ocorrência natural que é um ligante comum para o rutênio, formando o complexo 

organometálico de rutênio e pCYM. Os complexos organometálicos mostraram-se 

promissores como uma nova geração de compostos que apresentaram propriedades biológicas 

relevantes, no entanto, há um desconhecimento sobre a atividade anti-CHIKV desses 

complexos. Neste contexto, o presente trabalho avaliou os efeitos do complexo de rutênio e 

pCYM ([Ru2Cl4 (η6-p-cimeno) 2]) (RcP) e seus precursores na infecção por CHIKV in vitro. 

Para isso, as células BHK21 foram infectadas com CHIKV-nanoluciferase (CHIKV-nanoluc), 

uma construção viral com o gene repórter -nanoluc, na presença ou ausência dos compostos 

por 16 horas e taxas de citotoxicidade (MTT) e infectividade (luciferase) foram acessados. Os 

resultados demonstraram que oRcP exibiu um forte índice terapêutico avaliado pelo índice 

seletivo de 43,1 (razão entre citotoxicidade e potência antiviral). Os efeitos antivirais da RcP 

em diferentes estágios do ciclo replicativo do CHIKV foram investigados e os resultados 

mostraram que reduziu 77% da entrada do vírus nas células hospedeiras em concentrações 

não tóxicas. Ensaios adicionais demonstraram a atividade virucida do composto que inibiu 

completamente a infectividade do vírus. Análises de docking molecular foram realizados para 

investigar possíveis interações entre as glicoproteínas pCYM e CHIKV e os resultados 

sugeriram ligações entre pCYM e um local localizado atrás do loop de fusão entre as 

glicoproteínas E3 e E2. Além disso, a análise espectral por espectroscopia de infravermelho 

indicou interações de RcP com glicoproteínas CHIKV. Esses dados sugerem que a RcP pode 

atuar nas partículas virais do CHIKV, impedindo a entrada do vírus nas células hospedeiras. 

Análises adicionais estão sendo realizadas para avaliar o modo de ação desse complexo. 

Palavras-chave: vírus Chikungunya; antiviral; areno complexo; complexo de rutênio e para-

cimeno; complexos organometálicos. 
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LISTA DE ABREVIATURAS E SIGLAS 

 

C  Proteína do capsídeo 

CHIKV Vírus do Chikungunya 

DMEM Dulbecco's Modified Eagle Medium (Meio básico modificado por Dulbecco)  

DMSO Dimetilsulfóxido 

E  Proteína do envelope 

ECSA  East/Central/South Africa (Leste/Centro/Sul da África) 

HSV   Vírus do herpes simples 

MOI  Multiplicityofinfection (Multiplicidade de infecção) 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (Brometo de 3-

(4’,5’-dimetiltiazol-2’-ila)-2,5-difeniltetrazol) 

nsP  non-structural proteins (Proteínas não estruturais) 

OMS  Organização Mundial da Saúde 

ORFs  Open Reading Frame (Regiões de leitura aberta) 

RE  Retículo endoplasmático 

RNA  Ribonucleicacid (Ácido ribonucleico) 

Ru   Rutênio 

WA  West African (Oeste Africano) 

uL  Microlitro 

uM  Micromolar 
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INTRODUÇÃO 

Histórico e epidemiologia 

O vírus Chikungunya (CHIKV) é o agente causador da febre Chikungunya e está 

relacionado a epidemias principalmente em regiões tropicais e subtropicais (KHAN et al., 

2002; PAIXÃO et al., 2018; STEGMANN-PLANCHARD et al., 2019). O CHIKV foi isolado 

pela primeira vez durante uma epidemia na Tanzânia em 1953  (Robinsson, 1955; Wintachai 

et al., 2012).  Por muitos anos o vírus permaneceu endêmico apenas em áreas da África e Ásia 

(NJENGA et al., 2008), mas nos anos de 2005 e 2006, foram notificados surtos de CHIKV em 

várias ilhas do Oceano Índico e cerca de 250 pessoas morreram devido à doença na ilha 

francesa de La Réunion (SCHUFFENECKER et al., 2006). Já no ano de 2007 foram 

registrados casos na Europa, em países como França e Itália (GRANDADAM et al., 2011; 

REZZA et al., 2007). 

Em 2013, o vírus chegou às Américas com casos relatados nas ilhas do Caribe  

(CARVALHO; LOURENÇO-DE-OLIVEIRA; BRAGA, 2014; KAUR; CHU, 2013)(Figura 

1). No Brasil, os primeiros casos alóctones foram registrados em 2010 no estado de São Paulo 

(DO SOCORRO SOUZA et al., 2012), mas só em 2014 foi registrado o primeiro caso 

autóctone em Oiapoque, na Amazônia.A partir de então, relatou-se diversos casos no nordeste 

do Brasil (CARVALHO; LOURENÇO-DE-OLIVEIRA; BRAGA, 2014; CUNHA; TRINTA, 

2017). 

O CHIKV foi responsável por mais de 47.000 casos nos anos de 2014 e 2015, e mais 

de 63.000 casos confirmados até o ano de 2016(SILVA et al., 2018). Em 2017, foram 

registrados 184.694 casos prováveis de febre de CHIKV com 192 óbitos confirmados. No ano 

de 2018 foram registrados 85.221 casos prováveis da doença e 36 óbitos confirmados 

(EPIDEMIOLÓGICO et al., 2018). Segundo o ministério da saúde, os casos da doença 

voltaram a aumentarem 2019, sendo notificados 132.205 casos prováveis, com 92 óbitos 

confirmados. A taxa de letalidade por CHIKV foi maior entre pessoas a partir dos 60 anos. 

Além disso, o CHIKV também acometeu morte em crianças menores de 1 ano 

(EPIDEMIOLÓGICO, 2020).  
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Figura 1: Locais com transmissão de CHIKV. Países que registraram casos de Chikungunya de acordo com o 

Centro de Controle e Prevenção de Doenças (CDC). Não estão inclusos países e/ou territórios onde foram 

identificados somentes casos importados. 

 

 

Adaptado de (CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC), 2018). 

 

O vírus Chikungunya 

O CHIKV é um vírus de aproximadamente 70 nm de diâmetro (KHAN et al., 2002). A 

partícula viral é formada por um capsídeo icosaédrico, envolto por um envelope lipídico 

derivado da membrana plasmática de célula hospedeira, onde as glicoproteínas virais E1, E2 e 

E3 estão inseridas (KHAN et al., 2002; RASHAD; MAHALINGAM; KELLER, 2014; 

SCHUFFENECKER et al., 2006; THIBERVILLE et al., 2013)(Figura 2). 
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Figura 2: Vírus CHIKV. Esquema representativo da partícula viral do CHIKV.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adaptado de Instituto de Bioinformática da Suiça (SwissInstituteofBioinformatics). 

Fonte: (http://viralzone.expasy.org/625?outline=all_by_species) 

 

 

 

O genoma viral é constituído de RNA de fita simples polaridade positiva, de 

aproximadamente 12 kb(SCHUFFENECKER et al., 2006). Possui duas regiões de leitura 

aberta (open read frame - ORF) que codificam proteínas não estruturais (nsP1 - nsP4), 

relacionadas ao complexo replicativo, e proteínas estruturais (C, E1, E2, E3), presentes no 

capsídeo ou envelope do vírus (LUM; NG, 2015; STRAUSS; STRAUSS, 1994)(Figura 3).  

 

 

Figura 3: Ilustração do genoma do CHIKV. Genes que codificam proteínas não estruturais e proteínas não 

estruturais. 

 

Adaptado de (SOLIGNAT et al., 2009). 

 

 

 

http://viralzone.expasy.org/625?outline=all_by_species)
http://viralzone.expasy.org/625?outline=all_by_species)
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O ciclo replicativo do CHIKV ocorre no citoplasma das células hospedeiras (Figura 

4). Inicialmente, a glicoproteína de envelope viral denominada E2 se liga aos receptores 

proibitina (PHB) (WINTACHAI et al., 2012), fosfatidilserina (PtdSer) (MOLLER-TANK et 

al., 2013a), glicosaminoglicanos (SILVA et al., 2014) ou ATP sintase β(FONGSARAN et al., 

2014) da membrana da célula, onde se constitui um poro celular. A glicoproteína de envelope 

E1 facilita o reconhecimento de receptores de membrana, permitindo que o vírus seja 

endocitado. O desnudamento do capsídeo faz com que o genoma viral seja liberado no 

citoplasma celular. A replicação viral se inicia a partir da tradução do genoma viral em 

proteínas não estruturais (nsP) do vírus, denominadas nsP1, nsP2, nsP3 e nsP4, formando 

então um complexo replicativo. O complexo catalisará a síntese de uma fita de RNAm de 

polaridade negativa, que servirá de molde para sintetizar novas fitas com polaridade positiva e 

de RNA subgenômico 26S (KHAN et al., 2002). O RNA subgenômico 26S é traduzido em 

uma poliproteína precursora que será posteriormente clivada nas proteínas estruturais C, E3, 

E2, 6K e E1. No retículo endoplasmático, essas proteínas sofrem modificações pós-

traducionais, e complexo de Golgi, são amadurecidas e depositadas na membrana plasmática. 

Ocorre então a montagem dos componentes virais, onde a proteína E3 parece estar envolvida 

(UCHIME; FIELDS; KIELIAN, 2013). As novas partículas virais são liberadas por 

brotamento na membrana plasmática (ABDELNABI; NEYTS; DELANG, 2015)(Figura 4). 
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Figura 4: Esquema representativo do ciclo replicativo do CHIKV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adaptado de (ABDELNABI; NEYTS; DELANG, 2015). 

 

Análises filogenéticas identificaram que a partir de uma linhagem comum se originou 

duas linhagens distintas, sendo uma do Oeste Africano (WA) e outra do Leste/Centro/Sul da 

África (ECSA) (CUNHA et al., 2017; VOLK et al., 2010). A ocorrência de um surto causado 

pela linhagem ECSA cerca de 70 a 150 anos atrás na Ásia levou uma diferenciação a uma 

nova linhagem conhecida como Asiática (BURT et al., 2017; CUNHA et al., 2017; VOLK et 

al., 2010)(Figura 5).  
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Figura 5: Linhagens de CHIKV e espécies de Aedes sp no mundo. Distribuição das linhagens de CHIKV em 

cada país, relacionado à presença das espécies de mosquitos Aedes aegypti e Aedes albopictus. 

 

Adaptado de (JOHANSSON,2015). 

 

Transmissão 

O CHIKV é transmitido através da picada do mosquito fêmea de Aedes sp(VU; 

JUNGKIND; LABEAUD, 2017).As espécies que mais se destacam na transmissão são o 

A.aegypti e A. albopictus, ambas distribuídas amplamente em zonas tropicais e subtropicais, 

destacando a capacidade de adaptação do A.albopictus a áreas mais frias (KRAEMER et al., 

2015b). O A. aegypti e concentra em áreas mais quentes como as regiões norte, nordeste e 

centro-oeste do Brasil (CARVALHO; LOURENÇO-DE-OLIVEIRA; BRAGA, 2014; 

KRAEMER et al., 2015a)(Figura 5).  

Patogênese e implicações na saúde 

A febre de Chikungunya apresenta sintomas como febre, prostração, dores musculares, 

linfopenia e a artralgia, o principal sintoma relacionado a esta doença (CUNHA et al., 2017; 

PAIXÃO et al., 2018). A dor associada à artralgia nas falanges, pulsos e tornozelos é 

recorrente em até 98% dos casos (THIBERVILLE et al., 2013).A infecção pode progredir 

para uma fase crônica em até 70% dos pacientes infectados (DE ANDRADE et al., 2010; 
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SIMON et al., 2011), causando dores musculares e artralgias persistentes por períodos que 

variam de meses a anos (MATHEW et al., 2017)(Figura 6).  

Através da picada da fêmea do mosquito Aedessp,o vírus é disseminado para as células 

epiteliais, se multiplicando em fibroblastos e macrófagos (HER et al., 2010). Através da 

corrente sanguínea, o CHIKV atinge articulações e tecidos musculares, havendo relatos de 

infecção de células do fígado e cérebro (HOARAU et al., 2010). Durante a infecção aguda, há 

uma extensiva multiplicação do CHIKVem macrófagos nos tecidos, levando a uma resposta 

inflamatória. Há ativação da resposta imunidade inata, estando relacionada com elevado nível 

de citocinas pro-inflamatórias, tais como interferon e interleucinas. Devido à alta 

multiplicação do vírus nas articulações e sua consequente resposta inflamatória, surge a 

artralgia, um dos sintomas mais marcantes da febre Chikungunya (CASTRO; LIMA; 

NASCIMENTO, 2016; HER et al., 2010; HOARAU et al., 2010; RODRÍGUEZ-MORALES 

et al., 2016)(Figura 6).  

 

Figura 6: Esquema demonstrativo da infecção pelo CHIKV e sintomas consequentes da infecção. 

 

 

Adptado de (BRASIL, 2020)e(SCHWARTZ; ALBERT, 2010). 
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Estudos demonstram que aproximadamente 43% dos pacientes diagnosticados com 

CHIKV desenvolvem a infecção crônica 3 meses após a infecção, e 21% após 1 ano. Nesses 

casos, o movimento das articulações fica limitado devido às fortes dores na região estão 

observados altos níveis de interleucinas nos pacientes (HOARAU et al., 2010; PAIXÃO et al., 

2018).  

Tratamento 

Atualmente, não existe vacina (ROUGERON et al., 2015)ou terapia específica contra 

a infecção pelo CHIKV (DEY et al., 2019; YANG et al., 2017). O tratamento de infecções 

sintomáticas é paliativo, baseado no uso de analgésicos não salicilatos e anti-inflamatórios 

não esteroides para amenizar os sintomas provocados pela infecção (MATHEW et al., 2017; 

PARASHAR; CHERIAN, 2014). 

O desenvolvimento de antivirais contra o CHIKV é de extrema importância devido à 

habilidade que os vetores possuem em instalar a infecção em várias regiões, podendo gerar 

epidemias, e pela falta de vacinas e terapêuticas eficazes para tratar os indivíduos infectados 

(KAUR; CHU, 2013). 

Compostos com potencial terapêutico 

Os produtos naturais sempre tiveram importante papel na produção de fármacos, dada 

a diversidade de substâncias químicas com estruturas variadas, permitindo a sobrevivência de 

diversas populações ao clima e às doenças (VIEGAS; DA SILVA BOLZANI; BARREIRO, 

2006).Muitos dos medicamentos utilizados atualmente para diversas patologias são de origem 

natural, ou foram desenvolvidos com base em modelos isolados da natureza (DA SILVA-

JÚNIOR et al., 2017; TEIXEIRA et al., 2014). 

O para-cimeno (p-cimeno) é um hidrocarboneto aromático orgânico natural, 

proveniente da classe dos monoterpenos(FAVRE; POWELL, 2013),que demonstrou possuir 

propriedades biológicas como antioxidante natural (DE OLIVEIRA et al., 2015), anti-

inflamatória(Kummer et al., 2015), antifúngica(KORDALI et al., 2008)e antiviral(ASTANI; 

REICHLING; SCHNITZLER, 2009).  
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O rutênio é um metal pertencente ao grupo do ferro que demonstra possuir atividades 

biológicas efetivas, como antimicrobianas, quando complexado a outras moléculas (PAVAN 

et al., 2010). 

O p-cimeno é um ligante comum para o rutênio (BENNETT et al., 2007) e esse 

complexo denominado complexo de rutênio e para-cimeno(Figura 7) já demonstrou possuir 

atividades antitumorais (CLARKE; ZHU; FRASCA, 1999; DOUGAN; SADLER, 2007; 

DYSON, 2007; HABTEMARIAM et al., 2006; SAVIĆ et al., 2020; VAJS et al., 2015).  

 

Figura 7: Estrutura do complexo de rutênio e para-cimeno. 

 

 

 

 

 

 

 

(JENSEN; RODGER; SPICER, 1998) 

 

As moléculas orgânicas que podem ser complexadas com metais podem ter sua 

biodisponibilidade aumentada no organismo. Portanto, se apresentam como uma abordagem 

alternativa para o desenvolvimento de novas terapias, uma vez que estes se apresentam de 

forma vantajosa para a produção em escala comercial de um possível tratamento contra o 

CHIKV.  
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OBJETIVOS 

Objetivo geral 

O presente trabalho teve como objetivo avaliar o potencial antiviral do para-cimeno 

complexado ao rutênio (RcP) e seus precursores no ciclo replicativo do CHIKV in vitro. 

Objetivos específicos 

 Avaliar a citotoxicidade do RcP e seus precursores na linhagem de células BHK 21, 

por meio de ensaios de viabilidade celular (MTT), e estabelecer a concentração viável 

para tratamento das células; 

 Produzir CHIKVin vitro para infecção de células BHK 21, na presença ou na ausência 

dos compostos em concentrações específicas, e avaliar a atividade antiviral do RcP e 

seus precursores; 

 Determinar a concentração efetiva de inibição em 50% (EC50), concentração citotóxica 

em 50% (CC50) e Índice de Seletividade (IS = CC50/EC50) de cada composto ativo, 

avaliando assim os valores ótimos de concentração para o tratamento celular e o 

potencial antiviral de cada composto; 

 Analisar as etapas do ciclo replicativo do CHIKV inibidas pelo tratamento com os 

compostos ativos; 

 Investigar in silico as interações dos compostos ativos com proteínas do CHIKV por 

meio de dockingmolecular; 

 Analisar por espectroscopia de infravermelho(FTIR) as interações químicas dos 

compostos ativos com o CHIKV. 
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Abstract 

Chikungunya fever is a disease caused by the Chikungunya virus (CHIKV) that is transmitted 

by the bite of the female of Aedessp mosquito. The symptoms include fever, muscle aches, 

skin rash e and severe joint pains. The disease may develop into a chronic condition and joint 

pain that may last for months or years. Currently, there is no effective antiviral treatment 

against CHIKV infection, being necessary the development of novel therapies. Treatments 

based on natural compounds havebeen widely studied, as many drugs were produced by using 

natural molecules and their derivatives.Para-cymene (pCYM) is a naturally occurring 

aromatic organic compound that is a common ligand for ruthenium, forming the 

organometallic ruthenium and pCYM complex. Organometallic complexes have shown 

promising as a new generation of compounds that presented relevant biological properties, 

however, there is a lack of knowledge concerning the anti-CHIKV activity of these 

complexes. In this context, the present work evaluated the effects of the ruthenium and pCYM 

complex ([Ru2Cl4(η
6
-p-cymene)2]) (RcP) and its precursors on CHIKV infection in vitro. To 

this, BHK21 cells were infected with CHIKV-nanoluciferase (CHIKV-nanoluc), a viral 

construct with the reporter gene -nanoluc, at the presence or absence of the compounds for 16 

hours, and citotoxicity (MTT) and infectivity (Luciferase) rates were accessed. The results 

demonstrated that RcPexhibited a strong therapeutic index judged by the selective index of 

43.1(ratio of cytotoxicity to antiviral potency). Antiviral effects of RcPon different stages of 

the CHIKV replicative cycle were investigated and the results showed that it reduced 77% of 

virus entry to the host cells at non-toxic concentrations. Further assays demonstrated the 

virucidal activity of the compound that completely knocked down virus infectivity. Molecular 

docking calculations were performed in order to investigate possible interactions between 

pCYM and CHIKVglycoproteins and results suggested bindings between pCYM and a 

sitelocated behind the fusion loop between glycoproteins E3 and E2. Additionally, infrared 

spectroscopy spectral analysisindicated interactions of RcP with CHIKV glycoproteins.This 

data suggests that RcP may acts on CHIKV viral particles, disrupting virus entry to the host 

cells. Additional analyses are being performed to evaluate the mode of action of this complex. 

 

Keywords: Chikungunya virus; antiviral; arene complex; ruthenium andpara-cymene 

complex;organometallic complexes. 
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1. Introduction 

 

The Chikungunya virus (CHIKV) belongs to the genus Alphavirus of the 

familyTogaviridae(ICTV, 2019). This virus is the causative agent ofChikungunya fever being 

related to epidemics mainly in tropical and subtropical regions (KHAN et al., 2002; PAIXÃO 

et al., 2018; STEGMANN-PLANCHARD et al., 2019).  

CHIKV is a positive single strand RNA virus with a genome of approximately 12 kb 

(SCHUFFENECKER et al., 2006). The icosahedral capsid is covered by a lipid envelope 

derived from the host cell plasma membrane where the viral glycoproteins E1 and E2 are 

inserted into(KHAN et al., 2002; SCHUFFENECKER et al., 2006; THIBERVILLE et al., 

2013).  

CHIKV is transmitted through the bite of the female mosquito of Aedes sp(VU; JUNGKIND; 

LABEAUD, 2017). It was first isolated during an epidemic in Tanzania in 1953 (Robinsson, 

1955; Wintachai et al., 2012). In 2006, CHIKV outbreaks were reported on several Indian 

Ocean islands and about 250 people died from the disease on the French island of La Réunion 

(SCHUFFENECKER et al., 2006). In 2013, the virus was detected inthe Americas with 

reported cases in the Caribbean islands (KAUR; CHU, 2013). The first case in Brazil was 

reported in 2014 (CARVALHO; LOURENÇO-DE-OLIVEIRA; BRAGA, 2014).  

Chikungunya fever presents symptoms as fever, prostration, muscle aches, lymphopenia and 

arthralgia, being the latest the main symptom related to this disease(CUNHA et al., 2017; 

PAIXÃO et al., 2018). Pain associated to arthralgia in the phalanges, wrists and ankles occurs 

in up to 98% of cases (THIBERVILLE et al., 2013).The infection can progress to a chronic 

infection in around 70 % of infected patients (DE ANDRADE et al., 2010; SIMON et al., 

2011), causing muscle pain and persistent arthralgia for periods ranging from months to years 

(MATHEW et al., 2017).  

Currently, there is no vaccine or specific therapy against CHIKV infection (DEY et al., 2019; 

YANG et al., 2017). The treatment of symptomatic infections is palliative, based on the use of 

non-salicylate analgesics and non-steroidal anti-inflammatory drugs(MATHEW et al., 2017; 

PARASHAR; CHERIAN, 2014).Severalof the currently used drugs for differentpathologies 

are either fromnatural origin synthesized based on natural scaffolds(DA SILVA-JÚNIOR et 

al., 2017; TEIXEIRA et al., 2014).  
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Para-cymene (pCYM) is a naturally occurring organic aromatic hydrocarbon from the 

monoterpene class that has shown to possess important biological activities as antioxidant 

(DE OLIVEIRA et al., 2015), anti-inflammatory(Kummer et al., 2015), antifungal(KORDALI 

et al., 2008) and antiviral (ASTANI; REICHLING; SCHNITZLER, 2009). Ruthenium is a 

metal belonging to the iron group and studies have shown that the ruthenium complexed 

molecules possess effective biological properties as antimicrobial(PAVAN et al., 

2010)(PAVAN et al., 2010).  pCYMis a common binder for ruthenium (BENNETT et al., 

2007)and the antitumoral activity of this complex has also been described(CLARKE; ZHU; 

FRASCA, 1999; DOUGAN; SADLER, 2007; DYSON, 2007; HABTEMARIAM et al., 2006; 

SAVIĆ et al., 2020; VAJS et al., 2015).  

Here we evaluated the activity of ruthenium and pCYMcomplex (RcP)and its precursors on 

the CHIKV replicative cycle.These data are the first description of the ruthenium and 

pCYMcomplexpossessing anti-CHIKV activity. 

 

2. Material and methods 

 

2.1.Compounds 

The ruthenium andpara-cymene complex([Ru2Cl4(η
6
-p-cymene)2]) (RcP)(Figure 

1A)evaluated in this work was synthesized as previously described(JENSEN; RODGER; 

SPICER, 1998). The precursors ruthenium trichloride (RuCl3.3H2O) and para-cymene (α-

phellandrene), used in the synthesis of complex were purchased by Sigma Aldrich.The 

complex was dissolved in dimethyl sulfoxide (DMSO) and stored at - 20°C. Dilutions of the 

compounds in complete media were made immediately prior to the experiments. For all the 

assays performed, control cells were treated with media added of DMSO at the final 

concentration of 0.3%. 

 

2.2.Cell culture 

BHK 21 cells were maintained in Dulbecco’s modified Eagle’s media (DMEM; Sigma-

Aldrich) supplemented with 100U/mL of penicillin (Hyclone Laboratories, USA), 100 mg/mL 

of streptomycin (Hyclone Laboratories, USA), 1% of non-essential aminoacids (Hyclone 28 

Laboratories, USA) and 1% of fetal bovine serum (FBS, HycloneLaboratoires, USA) in a 

humidified 5% CO2 incubator at 37°C. 
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2.3.Virus 

The CHIKV-nanoluciferase (CHIKV-nanoluc) construct (Figure 1A) used for the antiviral 

assays was designed from a CHIKV sequence based on CHIKV LR (Lá reunion) added of 

CMV promoter and nanoluciferaseprotein sequence (MATKOVIC et al., 2018; POHJALA et 

al., 2011). For virus production, 2.3 x 10
7
 BHK 21 cells seeded in a T175 cm

2
 were 

transfected with 1.5 μg of CHIKV-CMV-nanolucplasmid, using lipofectamine 3000® and 

Opti-Mem media to produce CHIKV-nanolucvirus particles. Forty-eight hours post 

transfection the supernatant was collected and stored at -80°C. To determine viral titer, 5 x 

10
5
 BHK 21 cells were seeded in each of 6 wells plate 24 hours prior to the infection. Then, 

the cells were infected with 10-fold serially diluted of CHIKV-nanolucfor 1hour at 37°C. The 

inoculums were removed and the cells were washed with PBS to remove the unbound virus 

and added of cell culture media supplemented with 1% penicillin, 1% streptomycin, 2% FBS 

and 1% carboxymethyl cellulose (CMC). Infected cells were incubated for 2 days in a 

humidified 5% CO2 incubator at 37°C, followed by fixation with 4% formaldehyde and 

stained with 0.5% violet crystal. The viral foci were counted to determine CHIKV-

nanoluctiter. 

 

2.4.Cell viability through MTT assay 

Cell viability was measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide] (Sigma-Aldrich) assay. For viability assay, 5 x 10
4
BHK 21 cells were cultured in 48 

well plates and treated with different concentrations of each compound for 16h at 37°C with 

5% of CO2. Sixteen hours post treatment, compound-containing media was removed and 

MTT solution at 1 mg/mL was added to each well, incubated for 1 hour and replaced with 100 

μL of DMSO (dimethyl sulfoxide) to solubilize the formazan crystals.The absorbance was 

measured at 560 nm on Glomax microplate reader (Promega). Cell viability was calculated 

according to the equation (T/C) × 100%, which T and C represented the optical density of the 

treated well and control groups, respectively. DMSO was used as untreated control. The 

cytotoxic concentration of 50% (CC50) was calculated using Prism (Graph Pad).  

 

2.5.Antiviral assays 
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To access the antiviral activity of compounds, BHK 21 cells were seeded at density of 5x 10
4
 

cells per well into 48 well plates 24 hours prior to the infection. CHIKV-

nanoluc(MATKOVIC et al., 2018) at a multiplicity of infection (MOI) of 0.1 and compounds 

were simultaneously added to cells. Samples were harvested in Renilla luciferase lysis buffer 

(Promega) at 16 hours post-infection (h.p.i.) and virus replication levels were quantified by 

measuringnanoluciferaseactivity using the Renilla luciferase Assay System (Promega). The 

effective concentration of 50% inhibition (EC50) was calculated using Prism (Graph Pad). 

The values of CC50 and EC50 were used to calculate the selectivity index (SI = CC50/EC50).  

To investigate in which step of CHIKV replicative cycle the compound was active, BHK 21 

cells at the density of 5 x 10
4
 were seeded in 48 well plate 24 hours prior to infection and 

treatment. To evaluate if the compound possesses protective activity to the host cells, cells 

were treated for 1 hour with the compound before infection, extensively washed to remove 

compound and added CHIKV-nanoluc. The effect on the entry steps was analyzed by 

incubating virus and compound simultaneously with BHK 21 cells for 1 hour. To investigate 

the activity of the compound on postentry stages of viral replicative cycle, cells were infected 

with CHIKV for 1 hour, washed extensively with PBS (phosphate buffered saline) to remove 

unbound virus and added with compound containing media. 

To further investigate entry stage, the virucidalactivity was investigated by previously 

incubating virus and compound for 1 hour and then adding to the cells for extra 1 hour. Then, 

compound was removed and as cells added of media. To evaluatethe attachmentstep, the cells 

were treated with virus and compound at for 1 hour at 4°C, and then the cells were washed to 

the complex removal and replaced by media. For the uncoating step, cell, virus and compound 

were also incubated for 1 hour at 4°C followed by 30 minutes at 37°Cand then washed and 

replaced by media. All experiments were conducted with virus at MOI of 0.1. Luminescence 

levels were accessed 16h.p.i. to analyze the virus replication rates. 

 

 

2.6.Docking Protein Binder 

The interaction of the para-cymene ligand with the envelope glycoprotein of the CHIKV 

(PDB: 3N42) was evaluated using the GOLD program, using the parameters predefined by 

the program except the flexibility of the ligand, which was defined as 200%. The seven 

glycoprotein binding sites defined by(RASHAD; KELLER, 2013)were defined for this 
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purpose. Each docking was performed 10 times and the best docking positions were assessed 

using a ranking of the ChemPLP scoring function. The post-docking images were generated 

in the DS Visualizer program, Dassault Systèmes BIOVIA, Discovery Studio Visualizer, 

version 17, San Diego: Dassault Systèmes, 2016. The interaction between the ruthenium 

ligand and the complex was not evaluated due to the program not having parameters for 

loading metals. 

 

2.7 Infrared spectroscopy Spectral data analysis 

An ATR-FTIR spectrophotometer Vertex 70 (Bruker Optics, Reinstetten, Germany) 

connected to a micro-attenuated total reflectance (ATR) platform was used to record sample 

signature at 1800 cm
-1

 to 400 cm
-1

regions. The ATR unit is composed by a diamond disc as 

internal-reflection element. The sample dehydrated pellicle penetration depth ranges between 

0.1 and 2 μm and depends on the wavelength, incidence angle of the beam and the refractive 

index of ATR-crystal material. The infrared beam is reflected at the interface toward the 

sample in the ATR-crystal. All samples (1µL) were dried using airflow on ATR-crystal for 3 

min before sample spectra recorded in triplicate. The air spectrum was were used as a 

background in all ATR-FTIR analysis. Sample spectra and background was taken with 4 cm
-1

 

of resolution and 32 scans were performed for sample analysis. The spectra were normalized 

by the vector method and adjusted to rubber band baseline correction. The original data were 

plotted in the Origin Pro 9.0 (OriginLab, Northampton, MA, USA) software to create the 

second derivative analysis. The second derivative was obtained by applying Savitzky-Golay 

algorithm with polynomial order 5 and 20 points of the window. The value heights indicated 

the intensity of functional group evaluated. 

 

2.8.Statistical analysis 

Individual experiments were performed in triplicate and all assays were performed a 

minimum of three times in order to confirm the reproducibility of the results. Differences 

between means of readings were compared using analysis of variance (one way or two-way 

ANOVA) or Student’s t-test using Graph Pad Prism 8.0 software (Graph Pad Software). P 

values ≤ than 0.01 was considered to be statistically significant. 

 

3. Results 
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3.1. Ruthenium (Ru)and para-cymene(pCYM) complex (RcP) inhibits CHIKV in vitro 

The anti-CHIKV activity of the complexRcP(Figure 1A)and its precursorswas evaluated by 

using a recombinant CHIKV that expresses the nanoluciferase reporter (CHIKV-nanoluc) 

(Figure 1B). To assess the effect of compounds on cell viability and virus infection, MTT and 

luminescence assays were performed. For this, the cells were infected with CHIKV-nanoluc 

and treated with the compounds at 125 µM, a concentration previously determined as non-

cytotoxic for RcP (dada not shown). The efficiency of viral replication and cell viability were 

evaluated at 16 h.p.i.(Figure 1C). The results showed that RcP complex significantly 

inhibited 91% of CHIKV infectivity and presentedno toxicity to cells (Figure 1D). 

Alternatively,pCYMand Ru at the same concentration decreased cell viability or had no 

effective antiviral activity, respectively (Figure 1D). This data demonstrated that 

RcPexhibited the best therapeutic index (favorable ratio of cytotoxicity to antiviral potency) 

and was selected for extra analysis. 

We therefore performed a dose response assay to determine effective concentration 50% 

(EC50) and cytotoxicity 50% (CC50) values forRcP. BHK 21 cells were infected with CHIKV-

nanolucand treated with RcP at concentrations ranging from 500 to 3.9 µM and viral 

replication efficiency was evaluated at 16 h.p.i..In parallel cell viability was measured by 

MTT assay.The results showed that the RcPwas able to completely knocked down the virus 

infectivity while the minimum cell viability was 93%(Figure 1E). By the use ofthis range of 

concentrations, it was determined that the RcPcomplex has an EC50 of 31,99 µM, CC50 of 

1379 µM and Selective Index (SI) of 43.1 (Figure 1E). 

 

3.2.RcP inhibits CHIKV entry to the host cells 

The antiviral activity of the RcPat different stages of CHIKV replication was analyzed. First, 

cells were pretreated with RcP for 1hour at 37 °C, washed with PBS to completely remove the 

compound and then were infected with CHIKV-nanoluc. Luminescence levels were measured 

16 h.p.i. (Figure 2A). The RcP demonstrated a modest yet significant reduction of 23 % of 

luminescence levels when cells were pretreated (p <0.01)(Figure 2A) 

To evaluate virus entry to the host cells, virus and RcPwere simultaneously added to BHK 21 

cells for 1 hour, then washed with PBS and replaced with media. Luminescence levels were 
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measured 16 h.p.i. (Figure 2B). The results showed that RcP at 125 µMsignificantly reduced 

77% of the virus entry to the host cells (p <0.01)(Figure 2B). 

For the post-entry steps, the cells were first infected with CHIKV-nanoluc for 1 hour at 37 ° 

C, washed to remove unbound virus and then added with compound containing media. 

Luminescence levels were measured 16 h.p.i. (Figure 2C).RcP also demonstrated a modest 

yet significant reduction of 21% of luminescence levels when the treatment was performed 

after virus entry to the cells (p <0.01)(Figure 2C). Altogether, these data suggest that the 

main antiviral activity of RcP is related to its ability to inhibit the entry stage of the virus 

lifecycle. 

Based on the results obtained, we further evaluated the activity of RcP on CHIKV entry to the 

cells. First, supernatant containing CHIKV-nanoluc was incubated with RcP125μM for 1 hour 

at 37 °C prior to the infection of cells to investigate virucidal effect. The inoculum of virus 

and RcP was transferred to the naïve cells and incubated for 1 hour. Cellswere washed for the 

complete removal of the inoculum and replaced with fresh media for 16 h.p.i. (Figure 3A). 

The results showed a strong significant virucidal activity ofRcPby blocking100% of virus 

entry (p <0.01) (Figure 3A). 

We also analyzedRcP effect on the virus attachment. For this, virus and RcPwere incubated 

with the cells at 4°C for 1 hour, when virus is able to attach to cell membrane receptor, but 

not to entry to the host cells. Then, cells were washed with PBSand a fresh media was added. 

Luminescence levels were measured 16 h.p.i. (Figure 3B). Data obtained from this assay 

showed that RcP reduced 90% of virus entry to the host cells (p <0.01) (Figure 3B). 

Next, antiviral activity of RcP on virus uncoating was investigated by incubating virus and 

compound for 1 hour at 4°C and then at 37°C for 30 minutes. Therefore, the period of 

treatment may include virus attachment, entry and uncoating. Cells were washed with PBS 

and a fresh media was added. Luminescence levels were measured 16 h.p.i. (Figure 3C).  The 

results demonstrated that under this protocol of treatment, the complex inhibited up to55% of 

the virus entry to the host cells (p <0.01) (Figure 3C). These data demonstrated that RcP was 

able to abrogate different stages of virus entry to the host cells (Figure 3). However, the 

strongest effect was observed in virucidal and attachment protocol. This might suggest that an 

anti-CHIKV mechanism of actionfor this complex might be related to a direct action on the 

virus chemical structure. 
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3.3.Possible interactionsbetween pCYM and CHIKV E2 glycoprotein 

Based on the results that showed RcP interfering on CHIKV entry to the host cells, molecular 

docking calculations were performed in order to investigate possible binding mode and the 

interactions between pCYM and CHIKVglycoproteins.Docking analysis are not feasible with 

metallocenes as RcP because their chemical structure presents an unforeseen conformation 

named “half sandwich piano stool”. Therefore, The pCYM ligand was used for in silico 

analysis, Seven possible glycoprotein complex binding sites were explored and the scores 

generated by the ChemPLP scoring function of the Gold program are presented inTable 1.The 

p-cymene showed the best result with site 4, score 39.71(Table 1). The best docking scores 

were obtained between the site 4, located behind the fusion loop between glycoproteins E3 

and E2(Figure 4). 

 

3.4.RcP causes molecular changes in CHIKV 

To further investigate the interaction between RcP and CHIKV particles, infrared 

spectroscopy spectral analysiswas performed. The vibrational analysis between virus and RcP 

are shown in Table 2. A representative infrared average spectrum of RcP, CHIKV orRcP plus 

CHIKV, which contains different biochemical functional groups such as lipids, proteins, 

glycoproteins and nucleic acid, are represented in Figure 5. We wereparticularly interested in 

the interaction of RcP with CHIKV. A representative infrared average spectrum of second 

derivative analysis from RcP, CHIKV orRcP plus CHIKV was displayed in Figure 6A. In the 

second derivative analysis, which the value heights indicated the intensity of each functional 

group, a reduction in intensity of Amide II [ ν (N–H), ν (C–N) ] at 1540 cm
-1

 with the 

association of RcP with CHIKV indicates interaction with proteins of CHIKV (Figure 

6B).The binding interaction was also revealed by spectral shifting of the1013 cm
-1

 to 1005 

cm
-1

, which indicates interaction with vs (CO-O-C) presents in Glycoprotein derived from 

RcP and/or CHIKV (Figure 6C).The binding interaction was also revealed by increase in 

intensity of 724 cm-1, 679 cm-1, 645 cm-1 and 609 cm-1 in RcP plus CHIKV, which indicate 

formation of C-H rocking of CH2 and S-O bending. The binding interaction was additionally 

confirmed bythe decrease in intensity of 704 cm-1, 652 cm
-1

and 632 cm
-1

 in RcP plus 

CHIKV, which indicate reduction in the presence of OH out-of-plane bend (Figure 6C). 

 

4. Discussion 
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Chikungunya virus (CHIKV) has obtained attention from the public health worldwide due to 

the recent outbreaks(GOULD et al., 2017), but alsobecause the infection may persist for 

months or even years(CUNHA; TRINTA, 2017). CHIKV was first described in the 

1950s(Robinsson, 1955), however, there is still no specific treatment or vaccine against this 

virus (MATHEW et al., 2017; STEGMANN-PLANCHARD et al., 2019). Thus, the search for 

new molecules with anti-CHIKV activity is necessary. 

In this study, the anti-CHIKV activity of the ruthenium(Ru) and para-cymene (pCYM) 

complex (RcP) wasinvestigated. ThepCYM molecule has already been described to 

demonstrate biological activities as antioxidant, anti-inflammatory and antifungal(DE 

OLIVEIRA et al., 2015; KORDALI et al., 2008; KUMMER et al., 2015). It was also 

demonstrated that pCYM in lower concentrations showed moderate antiviral activity against 

the Herpes simplex virus (HSV), partially inhibiting the viral infection in RC-37 

cells(ASTANI; REICHLING; SCHNITZLER, 2009; GAROZZO et al., 2009).However, there 

is a lack of studies on the effects of pCYM against CHIKV.  

Ourresults showed that Ru or pCYM treatment did not significantly reduced CHIKV 

infectivity in BHK21 cells. However, the complexed molecule of Ru and pCYM, the 

organometallic complex RcP, demonstrated to be effective against the virus, exhibiting a 

strong therapeutic index judged by the high selective index.The data demonstrated that RcP 

showed moderate yet significant inhibitory activity when the cells were pretreated, exerting a 

protective effect to the host cells. Similar data was observed when the cells were treated after 

viral infection.Alternatively, RcP significant reduced virus entry to the host cells at non-toxic 

concentrations. As the complex demonstrated to interfere on virus entry, wereevaluated the 

early stages of CHIKV infection.RcP demonstrated a moderate activity on the virus uncoating 

and strong action on inhibiting virus attachment or as a virucide.Arecent study demonstrated 

that pCYMpresented virucidal activity against HSV. The results showed that when p-cymene 

and HSV were incubated together, virus entry was reduced by 80%.(SHARIFI-RAD et al., 

2017). 

The strong virucidal effect observed for RcP might suggest that an anti-CHIKV mechanism of 

actionfor this complex might be related to a direct action on the viral particle 

envelope(RUSSO et al., 2019; SCHUHMACHER; REICHLING; SCHNITZLER, 2003; 

TANG et al., 1990), which could also be responsible for the effect observed on virus 

attachment (CARRAVILLA et al., 2017; KONG et al., 2019).Possible interactions between 
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Chikungunya envelope proteins and RcP could be a reasonable explanation for the observed 

virucidal effect. Based on this data, molecular docking calculations were performed in order 

to investigate possible binding mode and the interactions between pCYM and 

CHIKVglycoproteins. Our results suggested that pCYMmay bind toa site located behind the 

fusion loop between glycoproteins E3 and E2. Glycoprotein E2 is responsible for binding the 

virus to cell receptors (FONGSARAN et al., 2014; MOLLER-TANK et al., 2013b; SILVA et 

al., 2014). When small molecules attach to that site, the movement of the glycoprotein 

domains can be frozen and then prevent the virus from entering the cell (RASHAD; 

KELLER, 2013). We suggest that pCYM may be binding to such a site and preventing the 

virus from binding to the cell. Similarly, we can suggest that, through molecular interactions 

observed bythe FTIR methodology, the RcP compound alters CHIKV glycoprotein and lipid 

sites, reaffirming that there is an interaction between the viral envelope and the complex. 

In summary, we showed that ruthenium and para-cymene complexis able to strongly inhibit 

CHIKV infectivity, acting mainly on the entry of virus to the host cells. This is the first 

description of the antiviral activity of an organometalliccomplex against CHIKV. This dada 

may be useful for the development of future antivirals against CHIKV that will provide a 

relevant advance to the public heath to treat Chikungunya fever. 
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Tables  

Table 1.Maximum score resulting from the dosage for each evaluated site. 

 
Binder color ChemPLP Coordinates (x, y, z) Volume (Å

3
) Localization 

Site 1 Yellow 32.53 −15.687, 2.019, −19.939 651.375 
Between E1 domain II and E2 

domain 

Site 2 Green 38.98 
−33.937, −18.731, 

−31.939 
357.375 

Between E1 domain II and E2 

beta-sheet 

Site 3 Blue 37.10 
−33.437, −6.731, 

−33.189 
156.125 Adjacentto site 2 

Site 4 Purple 39.71 
−42.937, −28.731, 

−22.939 
183.875 

Behind the fusion loop, 

between E3 B domains, E2 

domain B, and E2 domain A 

Site 5 Brown 18.38 
−44.437, −14.731, 

−23.439 
124 

Between the E2 and E3 beta 

sheet 

Site 6 - * 
−16.187, −18.231, 

−36.439 
20.5 Insidethe E3 cavity 

Site 7 Black 4.56 
−59.187, 

−15.731,−26.189 
22.5 Replacingthefurin loop 

* No docking results 

FONT: Adapted (RASHAD E KELLER, 2013) 

 

 

Table 2. Vibrational modes present in each vibrational mode and identification of the 

respective functional group in the sample. 

Vibrationalmode (cm
-1

) Proposedvibrationalmode Molecular source 

   

1540 Amide II [ ν (N–H), ν (C–N) ] Protein 

1013 vs (CO-O-C) Glycoprotein/ Carbohydrates 

1005 vs (CO-O-C) Glycoprotein/ Carbohydrates 

724 

704 

679 

652 

645 

632 

609 

C-H rocking of CH2 

Unsaigment band 

S-O bending  

OH out-of-plane bend 

Unsaigment band 

OH out-of-plane bend 

S-O bending  

Fattyacids, proteinsInespecific 

Sulphates components 

Protein and lipids 

Inespecific 

Protein, Lipids 

Sulphates components 

 

Assignments of main wavenumbers of sample ATR-FTIR spectra. Abbreviations: ν = 

stretching vibrations, δ = bending vibrations, s= symmetric vibrations and as = asymmetric 

vibrations.  
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Figures and legends 
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Figure 1. CHIKV activity ofruthenium(Ru) andparacymene(pCYM) complex (RcP). (A)RcP chemical structure(B)Schematic 

representation of CHIKV-nanolucconstruction. (C) Schematic representation of infectivity assays. (D)  BHK 21 cells were infected with 

CHIKV-nanoluc at MOI 0.1 and treated with compounds at 125 μM for 16h.  Infectivity and cell viability assays were performed. (E) Cells 

were treated with concentrations of RcPranging from 500 a 3,9 µMand the effective concentration of 50% (EC50) and cytotoxic 

concentration of 50% (CC50) of RcP were determined

viability measured using an MTT assay (indicated by •). Mean values of three independent experiments each measured in quadruple 

including the standard deviation are shown. 
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Figure 2.Antiviral effects of RcP at different stages of CHIKV replicative cycle. (A) BHK 21 cells were treated with RcP at125 μM for 

1h. Then, cells were extensively washed and infected with CHIKV-nanoluc at a MOI 0.1 for 1h, compound containing media was removed 

and replaced by fresh media. (B) BHK 21 cells were infected with CHIKV-nanoluc(MOI 0.1) and simultaneously treated with 

RcPat125μM for 1 h. Cells were washed and replaced with fresh media. (C) The cells were first infected with CHIKV-nanoluc (MOI 0.1) 

for 1h, washed to remove unbound virus and added of compound containing media.For all assays, CHIKV replication was measured by 

nanoluc activity at 16 h.p.i. Mean values of a minimum of three independent experiments each measured in triplicate. P<0.01 was 

considered significant. 
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Figure 3. RcP activity on CHIKV entry to the host cells. (A) CHIKV-nanoluc and compound were incubated for 1 h and then for 

oneadditional hour in the cells. Then, the compound was removed and the cells added of media. (B) BHK 21 cells were infected with virus 

and simultaneously treated for 1 h at 4°C. The cells were washed to remove virus and compound and replaced with fresh media. (C) BHK 

21 cells were infected with virus and simultaneouslytreated for 1 h at 4°C. Then, cells were incubated for a further 30 min with compound 

and virus at 37°C, were then washed to remove virus and compound and replaced with media.For all assays, CHIKV replication was 

measured by nanoluc activity at 16h.p.i.. Mean values of a minimum of three independent experiments each measured in triplicate P<0.01 

was considered significant. 

 

 

 

Figure 4. The CHIKV envelope glycoproteins E1 (Brown), E2 (Blue) and E3 (green), complexed with para-cymene, sites 1 (yellow), 2 

(green), 3 (blue), 4 (purple), 5 (brown) and 7 (black). 
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Figure 5. Representative infrared average spectrum of RcP, CHIKV and RcP plus CHIKV, which contains different biochemical 

functional groups such as lipids, proteins, glycoproteins and nucleic acid. 
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Figure 6. (A) Representative infrared average spectrum of second derivative analysis from 

RcP, CHIKV and RcP plus CHIKV.  (B, C, D) Second derivative analysis, which the value 

heights indicate the intensity of each functional group.  
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CAPÍTULO III 

 

 

Considerações finais  
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Considerações Finais 

Os resultados deste estudo demonstram que o composto avaliado neste trabalho pode servir 

de base para novos estudos em busca de novos antivirais. Mais estudos são necessários para 

avaliar mecanismos de ação antiviral desse complexo, além dos testes in vivo e o estudo das 

vias de entrega desse composto. 

Este trabalho fornecerá informação potencial para o desenvolvimento de novas terapias 

antivirais.  
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Abstract: The worldwide outbreaks of the chikungunya virus (CHIKV) in the last years 

demonstrated the need for studies to screen antivirals against CHIKV. The virus was first isolated 

in Tanzania in 1952 and was responsible for outbreaks in Africa and Southwest Asia in subsequent 

years. Between 2007 and 2014, some cases were documented in Europe and America. The infection 

is associated with low rates of death; however, it can progress to a chronic disease characterized 

by severe arthralgias in infected patients. This infection is also associated with Guillain–Barré 

syndrome. There is no specific antivirus against CHIKV. Treatment of infected patients is 

palliative and based on analgesics and non-steroidal anti-inflammatory drugs to reduce 

arthralgias. Several natural molecules have been described as antiviruses against viruses such as 

dengue, yellow fever, hepatitis C, and influenza. This review aims to summarize the natural 

compounds that have demonstrated antiviral activity against chikungunya virus in vitro. 

Keywords:chikungunya virus; antiviral; natural compounds 

 

1. Introduction 

Chikungunya fever is a tropical disease caused by the chikungunya virus (CHIKV) which is 

transmitted to humans by the bite of an infected mosquito of Aedes sp. The first case of 

chikungunya fever was reported in 1952 in Tanzania [1]. In February 2005, a major outbreak of 

chikungunya occurred on the islands of the Indian Ocean [2]. A large number of cases occurred in 

Europe and India in 2006 and 2007, respectively [2]. Several other countries in Southeast Asia were 

also affected [3]. In December 2013, autochthonous cases were confirmed in the French part of the 

Caribbean island of St Maarten [4]. Since then, local transmission has been confirmed in over 60 

countries in Asia, Africa, Europe, and the Americas. In 2014, more than 1 million suspected cases 

were reported in the Americas, with 1,379,788 suspected cases and 191 deaths in the Caribbean 

islands, Latin American countries, and the United States of America (USA) [5]. Canada, Mexico, 
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and USA have also recorded imported cases. The countries reporting the most cases were Brazil 

(265,000 suspected cases), and Bolivia and Colombia (19,000 suspected cases each) [6]. The first 

autochthonous transmission of chikungunya reported in Argentina occurred in 2016 following an 

outbreak of more than 1000 suspected cases [7]. In the African region, Kenya reported an outbreak 

of chikungunya resulting in more than 1700 suspected cases. In 2017, Pakistan continues to respond 

to an outbreak which started in 2016 [8]. These virus outbreaks have raised concerns on studies of 

CHIKV epidemiology and antiviral research [9]. 

CHIKV belongs to the Alphavirus genus and the Togaviridaefamily. It is a positive-sense, 

single-stranded RNA (12 kb in length) virus, with an enveloped icosahedral capsid [10]. The virus 

lifecycle starts via the attachment of the viral glycoproteins to the cell membrane receptors, mainly 

to MXRA8 [11,12] but also to prohibitin (PHB) [13], phosphatidylserine (PtdSer) [14], and 

glycosaminoglycans (GAGs) [15] receptors in mammalian and to ATP synthase β in mosquito cells 

[16], forming a pore. Then, a virus capsid is released into the cytoplasm, where the replication 

process takes place. Viral genome is uncoated and directly translated into nonstructural (NS) 

proteins nP1–4. The NS proteins form the viral replicase complex that catalyzes the synthesis of a 

negative strand, a template to synthesize the full-length positive sense genome, and the subgenomic 

mRNA. The subgenomic mRNA is translated in a polyprotein, which is cleaved to produce the 

structural proteins C, E3, E2, 6k, and E1, followed by the assembly of the viral components and 

virus release (Figure 1) [17,18]. 

 

Figure 1. Schematic representation of chikungunya virus (CHIKV) replication cycle: Natural compounds with 

antiviral activity against CHIKV are indicated in each step of virus replication cycle (entry, replication, and 

release). 

Chikungunya fever is characterized by strong fever, arthralgia, backache, headache, and 

fatigue. In some cases, cutaneous manifestation and neurological complications can occur [19,20]. 

There is no Food and Drug Administration (FDA) approved specific antiviral or vaccine against 

CHIKV. Therefore, the treatment of infected patients is based on palliative care, using analgesics for 

pain and non-steroidal anti-inflammatory drugs to reduce arthralgia in chronic infections [10]. 

Due to the lack of efficient anti-CHIKV therapy, researches have been developed to identify 

new drug candidates for the future treatment of chikungunya fever [21]. Among them, antiviral 

research based on natural molecules is a potential approach. Many natural compounds showed 

antiviral activity against a variety of human viruses such as dengue (DENV) [22–25], yellow fever 
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(YFV) [25–27], hepatitis C (HCV) [28–32], influenza [33,34], and zika (ZIKV) [33,35,36]. Here, we 

aim to summarize the natural compounds previously described to possess anti-CHIKV activity. 

2. Inhibitors of CHIKV Replicative Cycle 

2.1. Epigallocatechin Gallate (Green Tea) 

Epigallocatechin gallate (EGCG) is the major catechin constituent in green tea that has shown 

antiviral activity against CHIKV in vitro [37]. HEK 293T cells (human kidney cells) were infected 

with the pseudo particles CHIKV-mCherry-490 with a multiplicity of infection of 1 (MOI = 1) in the 

presence or absence of EGCG at 10 μg/mL, which blocked up to 60% of CHIKV entry. Through 

lentiviral expression of CHIKV glycoprotein, the authors evaluated the antiviral activity of EGCG 

on entry steps and suggested that EGCG interferes with CHIKV entry due to their effect on CHIKV 

envelope protein [37]. 

2.2. Chloroquine 

According to the studies of Khan and coworkers, a synthetic compound derived from the 

natural Chloroquine used to treat malaria infection has shown antiviral activity against CHIKV [38]. 

To do this, Vero cells were infected with the African East-Central-South (ECSA) CHIKV genotype, 

DRE-06 strain, and incubated with the compound at 5, 10, or 20 μM to evaluate its antiviral activity. 

Three treatment strategies were used for the plaque assay: 1) pretreatment of the cells 24 h before 

infection; 2) concurrent treatment by simultaneously adding virus and chloroquine; and 3) 

treatment of cells up to 6 h post-CHIKV infection of Vero cells. Chloroquine at 20 μM was nontoxic 

to the cells and inhibited CHIKV entry by approximately 94% when cells were pretreated, 70% in 

the concurrent treatment, and 65% in the post-infection treatment. The results suggested that this 

compound presents strong antiviral activity, mainly when administered 24 h prior to infection [38]. 

2.3. Apigenin, Chrysin, Luteonin, Narigerin, Silybin, and Prothipendyl 

Pohjala and colleagues demonstrated the anti-CHIKV activity of five natural compounds by 

using either a replicon cell line expressing the nonstructural proteins of CHIKV and the eGFPand 

Renilla luciferase (Rluc) markers or the full-length virus genetically modified with the reporter Rluc. 

Firstly, BHK21 (baby hamster kidney) cells were infected with the full length CHIKV-Rluc (MOI = 

0.001) and simultaneously treated with different concentrations of each compound ranging from 

0.01 to 100 µM for 16 h. The compounds apigenin (inhibitory concentration (IC50) = 70.8 µM), 

chrysin (IC50 = 126.6 µM), narigenin (IC50 = 118.4 µM), silybin (IC50 = 92.3 µM), and prothipendyl 

(IC50 = 97.3 µM) significantly inhibited CHIKV-Rlucreplication [39]. 

In addition, Muralli and coworkers also tested the antiviral activity of apigenin and luteonin 

ethanolic fraction from Cynodondactylonin Vero cells and found that the fractions inhibited 98% of 

CHIKV activity at concentration of 50 µg/mL through the cytopathic effect [40]. Using a reverse 

transcriptase polymerase chain-reaction (RT-PCR) the authors also demonstrated that virus RNA 

levels decreased under treatment. In another study, apigenin and luteonin were isolated from a 

fraction of the Cynodondactylon plant, obtained from the National Institute of Virology of India, and 

were used to assess the cytotoxicity and antiviral activity in Vero cells. Results showed that 

concentrations ranging from 5 to 200 μg/mL were nontoxic as determined by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assay (MTT assay). In 

addition, treatment of cells at 10, 25, and 50 μg/mL showed a reduction of viral activity by 

decreasing 68%, 88%, and 98% of the cytopathic effect of the virus, respectively [39,40]. 

2.4. Flavaglines 

As CHIKV uses prohibitin as a receptor to entry into mammalian cells [13], Wintachai and 

colleagues investigated the anti-CHIKV activity of the plant-derived compounds sulfonyl amidines 



59 
 

1M and the flavaglines FL3 and FL23 [41], previously reported to interact with this receptor. These 

compounds demonstrated antiviral activity against the CHIKV strain E1:226V East-Central-South-

Africa (ECSA) genotype of a Thai isolate. The cell line HEK-293T/17 was added to each compound 

at specific concentrations (1, 5, 10, and 20 nM) for one hour and then infected with 10 pfu/cell of 

CHIKV. After 20 h, cell pellets were submitted to flow cytometry and the supernatant to a plaque 

assay to measure CHIKV titers. All three compounds significantly reduced the percentage of viral 

production in the infected cells at 10 and 20 nM concentrations. Sulfonyl amidine 1M and FL23 at 20 

nM reduced viral cytopathic effect by approximately 40%, and FL3 at 20 nM reduced viral yield by 

50% [41]. 

2.5. Compounds from Tectona grandis 

The antiviral activity of three isolated and characterized compounds from Tectonagrandishad its 

antiviral activity tested against the CHIKV strains ECSA KC 969208 and Asian KC969207 in Vero 

cells [42]. The authors determined IC50 of the compounds 2-(butoxycarbonyl) benzoic acid (BCB), 

3,7,11,15-tetramethyl-1-hexadecanol (THD), and benzene-1-carboxylic acid-2-hexadeconate 

(BHCD). They demonstrated that the most potent anti-CHIKV activity was observed for BHCD 

with selectivity index (SI) of 116 for the Asian strain and 4.66 for ECSA. In silico analyses were 

performed and showed that the compound possessed strong interactions with CHIKV envelope 

protein 1 (E1) and poor interactions with nonstructural proteins (nSP) that may suggest that this 

compound could act on CHIKV entry [42]. 

2.6. Trigocherrierin A 

The work of Bourjot and colleagues showed that compounds isolated from the 

Trigonostemoncherrieri presented inhibitory activity against CHIKV replication [43]. Vero cells were 

used in cell proliferation assay (MTS) to evaluate the anti-CHIKV activity of compounds by 

decreasing the cell death induced by the virus infection [43]. Among the isolated compounds, 

trigocherrierin A inhibited death of cells caused by the virus with a concentration that induced half 

of the maximum effect (EC50) of 0.6 ± 0.1 μM, CC50 of 43 ± 16 μM, and the SI of 71.7. Thus, 

trigocherrierin A has been shown to be the most potent tested compound against CHIKV 

replication in this study [43]. 

2.7. Harringtonine 

Harringtonine, a natural compound derived from the Japanese plant Cephalotaxusharringtonia, 

demonstrated antiviral activity against CHIKV replication [44]. The authors investigated the anti-

CHIKV activity of this compound by using the cell lines BHK-21, C6/36 (embryonic tissue cells of 

the Aedes albopictus mosquito), and HSMM (human skeletal muscle myoblasts) and the virus strains 

CHIKV-0708 (Singapore 07/2008, lacking the A226V mutation in E1 protein) and CHIKV-122508 

(SGEHICHD 122508, having the A226V mutation in the E1 protein) [44]. In BHK-21 cells, 

harringtonine at 1 and 10 μM showed potent anti-CHIKV action, inhibiting up to 90% of viral 

replication with cell viability higher than 80%. Aiming to investigate the harringtonine mechanism 

of action, the authors performed a time addition assay. Compounds were added at different 

concentrations, prior to infection (−2 h) and at 0, 2, 6, 12, and 16 hours post infection (h.p.i.). 

Treatments showed inhibition of CHIKV replication at 2 h.p.i, indicating that harringtonine inhibits 

the early steps of the CHIKV replicative cycle. Additionally, cells were infected and treated for 6 h, 

and western blot and qRT-PCR assays were performed. The results showed that harringtonine 

reduced negative- and positive-sense RNAs of CHIKV and the production of nSP3 and E2 proteins 

[44]. 

2.8. Diterpene Ester (phorbol-12,13-didecanoate) 
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Twenty-nine diterpenoids isolated from Euphorbiaceaespecies had their antiviral activity tested 

against CHIKV (Indian Ocean strain 899) in vitro through MTS assay [45,46]. First, media with 

serial dilutions of each compound was added to empty 96-well microplate, and then, each well was 

added of media containing Vero cells (2.5 × 103 cells per well) and CHIKV for 6–7 days. Among the 

tested compounds, phorbol-12,13-didecanoate was shown to be the strongest candidate as an 

antivirus against CHIKV replication, with an EC50 6.0 ± 0.9 nM [45,46]. 

2.9. Daphanane Diterpenoid Ortho Esters 

A panel of diterpenoids or thioesters isolated from Trigonostemoncherrieri was used to evaluate 

the antiviral activity against CHIKV [47]. Vero cells were used to determine the cytotoxicity of 

compounds, and antiviral properties were accessed by plaque assay. Among the tested compounds, 

Trigoocherrins A, B, and F were shown to be potent inhibitors of CHIKV replication with SIs of 23, 

36, and 8, respectively [45]. 

2.10. Aplysiatoxin-Related Compounds 

Five bioactive compounds from the cyanobacteriaTrichodesmiumerythraeuma had their antiviral 

activity evaluated [47]. Cell viability was measured and a dose-dependent anti-CHIKV assay was 

performed to access the antiviral activity of the compounds under pre- or post-treatment 

conditions. The Debromo analogues 2 and 5 showed significant antiviral activity in post-treatment 

of infected BHK 21 cells with EC50of 1.3 and 2.7 μM and SI of 10.9 and 9.2, respectively. The authors 

suggested that the antiviral activity of these compounds blocks the replication step of the CHIKV 

replicative cycle [47]. 

2.11. Tannic Acid 

Tannic acid (TA) is a compound found in different species of plants, but its structure varies 

according to their sources. It previously demonstrated antiviral activity against viruses as Herpes 

(HSV) and HCV [48,49]. The anti-CHIKV activity of TA was investigated by KONISHI and HOTTA 

by performing plaque reduction assay using BHK-21 cells [50]. TA reduced 50% of the virus 

infectivity in lower concentrations and demonstrated inhibition of virus post-entry steps in BHK-21 

cells. To investigate which chemical group of TA is associated with its antiviral activity, the authors 

tested TA analogues on their virus-inhibiting capacities. The results demonstrated that phenolic 

hydroxyl groups may be related to the antiviral activity, since the displacement of these groups 

make the molecule ineffective [50]. 

2.12. Silymarin 

Silymarin is a polyphenolic compound from flavonoids family, is extracted from 

Silybummarianum, andis described to possesses antiviral activity against HCV [51]. A study tested 

the activity of silymarin on CHIKV genotype ECSA with A226V mutation in E1 protein from a 

clinical strain isolated in an outbreak in 2008. BHK-21 and Vero cells were used to evaluate different 

steps of the viral replicative cycle, and silymarin showed inhibition of post-entry stages of CHIKV 

with an EC50 of 16.9 µg/mL and SI of 25.1. By using a stable cell line expressing CHIKV replicon and 

EGFP and Rluc markers [39], it was demonstrated that silymarin suppressed 93.4% of CHIKV 

replication. Western blot assay was performed, showing that silymarin treatment decreased the 

amounts of nSP1, nSP3, and E2 proteins [52]. 

2.13. Baicalein, Fisetin, and Quercetagetin 

Baicalein, fisetin, and quercetagetin are compounds from the flavonoids family that exhibited 

antiviral activity against DENV [22] and enterovirus A71 [53]. Lani and colleagues infected Vero 

cells with the CHIKV genotype ECSA strain from the outbreak of 2008 and evaluated their effects in 

reducing the cytopathic effect resulting from viral infection [54]. All three compounds were found 
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to inhibit CHIKV replication in a dose-dependent manner and reduced E2, nSP1, and nSP3 protein 

synthesis, as showed by Western blot analysis. Baicalein and quercetagetin showed anti-CHIKV 

activity by inactivating the virus, preventing the attachment of the virus to the host cells and 

blocking post-entry stages, with EC50 of 1.891 µg/mL and 13.85 µg/mL, respectively. Fisetin only 

inhibited post-entry steps with EC50 of 8.44 µg/mL [54]. 

2.14. Bryostatin 

Bryostatin is a macrolide lactone derived from a marine animal named Bugula neritina [55]. It 

was described by the antineoplastic activity [56], affects Alzheimer’s disease [57], and has been 

related to the eradication of human immunodeficiency virus reservoirs [58]. The anti-CHIKV 

activities of the Bryostatin analogs salicylate-derived analog 1, C26-capped analog 2, and C26-

capped analog 3 were assessed by evaluating the cytopathic effect (CPE) caused by CHIKV Indian 

Ocean lineage strain 899 replication under treatment with these three compounds [59]. All of the 

Bryostatin analogs inhibited the CHIKV replicative cycle, decreasing infectious progeny and viral 

RNA copies, confirmed by supernatant titration and RT-PCR. A time-addition assay showed that 

these compounds inhibited late stages of CHIKV replication, with EC50 rates of 4 µM, 8 µM, and 7.5 

µM, respectively. Additionally, salicylate-derived analog 1 but not the other compounds blocked 

entry of CHIKV pseudoparticles into Buffalo green monkey kidney cells (BGM) [59]. 

2.15. Prostatin 

Bourjot and coworkers described the effect of prostratin, a compound derived from 

Trigonostemonhowii, on CHIKV infection in Vero cells by a CPE assay (EC50 = 2.6 µM) [60]. Another 

work used CHIKV lineage Indian Ocean 899 to infected Vero, BGM, or Human embryonic lung 

fibroblasts (HEL) cells at MOI of 0.001 under the treatment with prostratin and obtained EC50 of 8 

µM, 7.6 µM, and 7.1 µM, respectively. Using a delay treatment associated with a RT-PCR or CHIKV 

pseudoparticle techniques, it was demonstrated that prostratin decreased both the number of 

CHIKV genome copies and the production of infectious progeny virus particles. A western blot 

assay was used to detect CHIKV proteins and showed that prostratin also reduced the 

accumulation of nSP1 and capsid proteins [60]. 

2.16. Berberine 

Berberine is a compound found in plants from the Berberis genus, family Berberidaceae, that 

previously demonstrated antiviral activity against other viruses [61]. Varghese and colleagues 

analyzed the antiviral effect of berberine on the CHIKV replication cycle using the CHIKV lineage 

LR2006 OPY1 with theRluc marker to infect HEK-293T, HOS (humam bone osteosarcoma), and 

CRL-2522 cells. The berberine EC50 for each cell line were 4.5, 12.2, and 35.3 µM, respectively. This 

compound was also active against the different CHIKV strains LR2006 OPY1, SGP11, and 

CNR20235, showing EC50 of 37.6, 44.2, and 50.9 µM, respectively. Berberine showed no inhibition 

on CHIKV entry or replication but decreased viral RNA and viral protein synthesis, suggesting that 

berberine is indirectly perturbing CHIKV replication by affecting host components [61]. 

2.17. Avermectin derivates 

Avermectin is naturally produced in Streptomyces avermitilis bacteria and showed different 

biological properties including antiparasitic [62], antiviral [63], and antibacterial [64,65] activities. 

Ivermectin (IVN) and abamectin (ABN) are chemically modified derivatives of avermectin. The 

activity of these derivatives on the CHIKV replication cycle was described in a study that used 

BHK-21 with CHIKV containing the Rluc gene [66]. IVN and ABN demonstrated EC50 of 0.6 µM and 

1.5 µM, respectively, and strongly reduced nSP1 and nSP3 even in high MOIs. A time-of-addition 

assay demonstrated that IVN and ABN interfered in earlier stages of CHIKV cycle but not when 
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cells were pretreated. Alternatively, the activity of these compounds was decreased in the later 

stages of the CHIKV replicative cycle [66]. 
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Compound Structure Inhibition SI or EC50 Cell Line 

Abamectin [66] 

 

Replication 1.5 µM BHK-21 

Apigenin [40,39] 

 

Infection/Replication 70.8 µM BHK 21 

Baicalein [54] 

 

Infection and replication 1.891 µg/mL BHK-21 

Baicalein [54] 

 

Entry, binding 6.997 µM Vero 
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Berberine [61] 

 

Replication (interfering in 

host components) 
≤35.3 μM 

CRL-2522, 

HEK-293T, and 

HOS 

BHCD [42] 

 

Entry 

116 (Asian 

strain) and 4.66 

(ECSA) 

Vero and in 

silico 

C26-capped bryostatin 

analog 2 [59] 

 

Replication 8 µM Vero 

C26-capped bryostatin 

analog 3 [59] 

 

Replication 7.5 µM Vero 

Chloroquine [38] 

 

Entry 37.14 Vero 

Chrysin [39] 

 

Infection 126.6 µM BHK 21 
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EGCG [37] 

 

Entry steps; cell attachment 6.54 µg/mL HEK 293T 

Fisetin [54] 

 

Replication 8.44 µg/mL BHK-21 

Harringtonine [44] 

 

Early stages of replication 0.24 µM BHK 21 

Ivermectin [66] 

 

Replication 0.6 µM BHK-21 
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Luteolin [40] 

 

Replication NS Vero 

Narigenin [39] 

 

Infection 118.4 µM BHK 21 

Prostratin [60] 

 

Replication and release 
2,6 µM and ± 8 

µM 

Vero, BGM, 

and HEL 

Prothipendyl [39] 

 

Replication 97.3 µM BHK 21 
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Quercetagetin [54] 

 

Entry and binding 43.52 µM Vero 

Quercetagetin [54] 

 

Entry and replication 13.85 µg/mL BHK-21 

Salicylate-derived 

bryostatin analog [59] 

 

Entry and replication 4 µM Vero 

Silybin [39] 

 

Infection 92.3 µM BHK 21 
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Silymarin [52] 

 

Replication 16.9 µg/mL 
BHK-21 and 

Vero 

Tannic Acid [50] 

 

Replication NS BHK-21 

Phorbol-12,13-dideca-

noate [46] 

 

Replication 6 ± 0.9 nM Vero 

Trigocherrierin [43] 

 

Replication 0.6 ± 0.1 µM Vero 

NS = Not shown, data not shown. 
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3. Prospects 

The aim of this review was to summarize data from literature concerning the natural compounds 

described to possess anti-CHIKV activity. Altogether, data is heterogeneous since authors developed a 

variety of assays using different cell lines and CHIKV strains or replicons. Some studies did not 

elucidate the mechanism of action (MOA) of the compound, retaining their information as EC50, 

CC50,and/or SI. For most of the compounds presented in this review, it would be desirable to 

demonstrate the MOA in order to elucidate the biochemical and molecular basis of the compound–

virus or compound–cell interactions and to be able to predict and promote strategies for 

pharmacological outcomes in further studies [67]. Also, the investigation of the effects of each 

compound in different cell lines would provide important information concerning the effects of these 

compounds on the host cells [68,69]. Besides that, all data summarized here represent a relevant 

source of knowledge concerning the antiviral potential of molecules isolated from nature. 

From the natural compounds cited in this review, chloroquine was the only compound tested in 

vivo, in non-human primates, and in human clinical trials. Chloroquine is already used for the 

treatment of malaria [70]. However, despite the in vitro results, chloroquine demonstrated no relevant 

results in vivo in decreasing viremia or in reducing clinical manifestations during acute stage of 

CHIKV infection [71]. Therefore, the results demonstrated by in vitro analysis were not correlated 

with the in vivo analysis that showed that chloroquine was not suitable for patients with CHIKV. 

Additionally, the remaining compounds described here have not been tested in vivo yet, representing 

a delay in anti-CHIKV drug development. 

Apart from the chloroquine case, all compounds that demonstrated antiviral activity have the 

potential to be further investigated by their therapeutically properties against chikungunya fever. 

Furthermore, natural compounds may present as a source of molecules with potent biological 

activities that could be used as templates to the development of novel antivirals. 

4. Conclusion 

The spread of CHIKV in the last years demonstrated the need to develop effective antiviruses to 

treat chikungunya fever and to prevent future outbreaks. In this context, natural compounds have 

shown potent antiviral activity against a range of viruses. This review summarized the natural 

compounds described to possess anti-CHIKV activity by blocking early and/or late stages of virus 

replication in vitro. Apart from the great antiviral activity of the described compounds, further 

research is needed for the development of future treatments. 
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