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RESUMO

SANT’ANA, V. T. Modelagem aerodinâmica utilizando Neuro-Fuzzy para o aeromodelo
Cessna 182. 2019. 102 p. Dissertação (Mestrado em Engenharia Mecânica) – Faculdade de En-
genharia Mecânica, Universidade Federal de Uberlândia, Uberlândia – MG, 2019.

Este trabalho tem o objetivo construir um modelo aerodinâmico, confiável, para um aeromodelo
rádio controlado, uma réplica do Cessna 182 em escala. Para isso, foi utilizado a técnica
de inteligência computacional conhecida como Neuro-Fuzzy, que pode ser interpretada como
uma ferramenta capaz de imitar o comportamento de algum sistema após treinada. Os dados
experimentais foram adquiridos através de uma placa de aquisição conhecida como Pixhawk-PX4.
Após a aquisição dos dados, os mesmos foram divididos em duas categorias, o de treinamento e o
de validação. Após a otimização feita pela Evolução Diferencial, para as funções de pertinência
do Neuro-Fuzzy, com os dados de treinamento, o modelo foi capaz de prever as forças e os
momentos para diferente atitudes do aeromodelo.

Palavras-chave: Neuro-Fuzzy, Evolução Direfencial, Aeromodelo, Pixhawk, Modelagem Aero-
dinâmica, Otimização, Cessna 182.





ABSTRACT

SANT’ANA, V. T. Aerodynamic Modeling using Neuro-Fuzzy for a scaled model of Cessna
182. 2019. 102 p. Dissertação (Mestrado em Engenharia Mecânica) – Faculdade de Engenharia
Mecânica, Universidade Federal de Uberlândia, Uberlândia – MG, 2019.

This work has the main objective to obtain an aerodynamic model, as fidelity as possible, for an
aircraft remote controlled, a replica of the Cessna 182 in scale. To conduct the idea, was used the
computational intelligence technique known as Neuro-Fuzzy, which is capable of imitating the
behavior of any system, if constructed with the help of a specialist. The experimental data were
acquired through an acquisition board known as Pixhawk-PX4. After data acquisition, the same
was divided into two parts, training and validation. After the optimization made by Neuro-Fuzzy,
with the aid of a differential evolution for the training data, the model should be able to predict
the forces and moments for different attitudes of the air model.

Keywords: Neuro-Fuzzy, Air model, Pixhawk, Aerodynamic Modelling, Optimization, Cessna
182.





LIST OF FIGURES

Figure 1 – Single degree of freedom lift coefficient comparison. . . . . . . . . . . . . 32

Figure 2 – Comparison of aerodynamic forces and moments calculated from ARMA
model and CFD model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3 – Delta Wing Aircraft Coefficients experimental evaluation using SVM. . . . 35

Figure 4 – Training sequence presented by the authors for Mach ≤ 0.4 . . . . . . . . . 37

Figure 5 – Training sequence presented by the authors for Mach > 0.4 . . . . . . . . . 38

Figure 6 – Comparison between ANN predictions and CFD results for the baseline
airplane with different wing sweep angles. . . . . . . . . . . . . . . . . . . 38

Figure 7 – Comparison of the table model with the large amplitude oscillation experiments. 41

Figure 8 – NN architectures; a) FFNN architecture; b) NARX architecture. . . . . . . . 42

Figure 9 – Unsteady aerodynamic derivatives of the pitch moment coefficient, simulated
with RNN (lines) and obtained in the experiment (markers) . . . . . . . . . 43

Figure 10 – The time history of flight variables in severe atmospheric turbulence during
the descending phase in transonic flight. . . . . . . . . . . . . . . . . . . . 44

Figure 11 – The time history of main longitudinal and latero-directional static stability
derivatives along the flight path. . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 12 – Model fit to Normal force coefficient. . . . . . . . . . . . . . . . . . . . . . 45

Figure 13 – Fuzzy Inference System architecture. . . . . . . . . . . . . . . . . . . . . . 48

Figure 14 – Mamdani Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 15 – Takagi-Sugeno Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 16 – Neuro-Fuzzy architecure representation. . . . . . . . . . . . . . . . . . . . 51

Figure 17 – Differential Evolution representation. . . . . . . . . . . . . . . . . . . . . . 52

Figure 18 – Definition of aircraft body axes, generalized velocities, forces, moments and
Euler angles (Mclean 1990). . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 19 – Cessna 182 three reference axis. . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 20 – Real scale Cessna 182. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 21 – Cessna 182 in scale (model airplane). . . . . . . . . . . . . . . . . . . . . . 64

Figure 22 – Cessna 182 air model flight on XPLANE. . . . . . . . . . . . . . . . . . . 65

Figure 23 – Pixhawk 3DR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 24 – Mission Planner interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 25 – Pixhawk servo connections. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 26 – Airplane model assembled and ready to fly. . . . . . . . . . . . . . . . . . . 67

Figure 27 – Savitzky-Golay filter implementation. . . . . . . . . . . . . . . . . . . . . 68



Figure 28 – Numerical correlation between the inputs with the output. . . . . . . . . . . 72
Figure 29 – Numerical X force coefficient training graph. . . . . . . . . . . . . . . . . . 73
Figure 30 – Numerical X force coefficient validation graphs. . . . . . . . . . . . . . . . 73
Figure 31 – Numerical correlation between inputs with the output. . . . . . . . . . . . . 74
Figure 32 – Numerical Z force coefficient training graph. . . . . . . . . . . . . . . . . . 75
Figure 33 – Numerical X force coefficient validation graphs. . . . . . . . . . . . . . . . 75
Figure 34 – Numerical correlation between inputs with the output. . . . . . . . . . . . . 76
Figure 35 – Numerical M moment coefficient training graph. . . . . . . . . . . . . . . . 76
Figure 36 – Numerical M moment coefficient validation graphs. . . . . . . . . . . . . . 77
Figure 37 – Numerical correlation between inputs with the output. . . . . . . . . . . . . 78
Figure 38 – Numerical Y force coefficient training graph. . . . . . . . . . . . . . . . . . 78
Figure 39 – Numerical Y force coefficient validation graphs. . . . . . . . . . . . . . . . 79
Figure 40 – Numerical correlation between inputs with the output. . . . . . . . . . . . . 80
Figure 41 – Numerical L moment coefficient training graph. . . . . . . . . . . . . . . . 80
Figure 42 – Numerical L moment coefficient validation graphs. . . . . . . . . . . . . . 81
Figure 43 – Numerical correlation between inputs with the output. . . . . . . . . . . . . 81
Figure 44 – Numerical N moment coefficient training graph. . . . . . . . . . . . . . . . 82
Figure 45 – Numerical N moment coefficient validation graphs. . . . . . . . . . . . . . 82
Figure 46 – Inputs and output correlation graphs for training. . . . . . . . . . . . . . . . 87
Figure 47 – Experimental X force coefficient training graph. . . . . . . . . . . . . . . . 88
Figure 48 – Experimental X force coefficient validation graphs. . . . . . . . . . . . . . 88
Figure 49 – Experimental inputs and output correlation graphs for training. . . . . . . . 89
Figure 50 – Experimental Z force training graph. . . . . . . . . . . . . . . . . . . . . . 90
Figure 51 – Experimental Z force coefficient validation graphs . . . . . . . . . . . . . . 90
Figure 52 – Experimental inputs and output correlation graphs for M moment coefficient

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 53 – Experimental M moment coefficient training graph. . . . . . . . . . . . . . 91
Figure 54 – Experimental M moment coefficient validation graphs . . . . . . . . . . . . 92
Figure 55 – Experimental Y force coefficient correlation with inputs. . . . . . . . . . . 93
Figure 56 – Experimental Y force coefficient training graph. . . . . . . . . . . . . . . . 93
Figure 57 – Y force coefficient validation graphs. . . . . . . . . . . . . . . . . . . . . . 94
Figure 58 – Experimental L moment coefficient correlation with inputs. . . . . . . . . . 95
Figure 59 – Experimental L moment coefficient training graph. . . . . . . . . . . . . . . 95
Figure 60 – L moment coefficient validation graphs. . . . . . . . . . . . . . . . . . . . 96
Figure 61 – Experimental N moment coefficient correlation with input. . . . . . . . . . 96
Figure 62 – Experimental N moment coefficient training graph. . . . . . . . . . . . . . 97
Figure 63 – N moment coefficient validation graphs. . . . . . . . . . . . . . . . . . . . 97



LIST OF TABLES

Table 1 – Initial state of trajectory simulation. . . . . . . . . . . . . . . . . . . . . . . 33

Table 2 – Range of values involved in aerodynamics coefficients . . . . . . . . . . . . 36

Table 3 – Upper and lower boundaries for the ANN input variables . . . . . . . . . . . 39

Table 4 – Average CPU cost of each drag estimation methodology . . . . . . . . . . . 40

Table 5 – Fuzzy Model Fit Quality with Combined Maneuvers . . . . . . . . . . . . . 45

Table 6 – Dependence of Steady State Aerodynamic Forces and Moments of Variables. 55

Table 7 – Dependence of Perturbed State Aerodynamic Forces and Moments on Variables. 56

Table 8 – Necessary geometric measurements for Cessna 182 model airplane. . . . . . 64

Table 9 – Forces and Moments Pearson correlation coefficient with input variables. . . 69

Table 10 – Input means and standard deviations values from the Gaussian’s membership
functions for Cx training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 11 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 73

Table 12 – Input means and standard deviations values from the Gaussian’s membership
functions for Cz training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 13 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 75

Table 14 – Input means and standard deviations values from the Gaussian’s membership
functions for Cm training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 15 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 77

Table 16 – Input means and standard deviations values from the Gaussian’s membership
functions for CY training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 17 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 79

Table 18 – Input means and standard deviations values from the Gaussian’s membership
functions for Cl training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 19 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 80

Table 20 – Input means and standard deviations values from the Gaussian’s membership
functions for Cn training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 21 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 82

Table 22 – Input means and standard deviations values from the Gaussian’s membership
functions for Cx training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 23 – Output zero order polynomial values for Cx. . . . . . . . . . . . . . . . . . . 87

Table 24 – Input means and standard deviations values from the Gaussian’s membership
functions for Cz training.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 25 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 89



Table 26 – Input means and standard deviations values from the Gaussian’s membership
functions for Cm training.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 27 – Output zero degree polynomial values. . . . . . . . . . . . . . . . . . . . . . 92
Table 28 – Input means and standard deviations values from the Gaussian’s membership

functions for Cy training.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 29 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 94
Table 30 – Input means and standard deviations values from the Gaussian’s membership

functions for Cl training.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 31 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 95
Table 32 – Input means and standard deviations values from the Gaussian’s membership

functions for Cn training.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 33 – Output zero order polynomial values. . . . . . . . . . . . . . . . . . . . . . 97



LIST OF ABBREVIATIONS AND ACRONYMS

ANFIS Adaptive Network-based Fuzzy Inference System

ANN Artificial Neural Networks

ARL Army Research Laboratory

ARMA AutoRegressive Moving Average Approach

CFD Computational Fluid Dynamics

FDR Flight Data Recorder

FFNN Forward Fed Neural Network

FIS Fuzzy Inference System

GNBR Algorithm of Gauss-Newton approximation to Bayesian Regularization

IMU Inertial Measurement Unit

MISO Multi-Input Single-Output

NARX Nonlinear AutoRegressive model with eXogenous variables

NED North-East-Down

PCC Pearson’s correlation coefficient

RNN Recent Neural Network

SRM Structural Risk Minimization





LIST OF SYMBOLS

ax — Acceleration in X axis direction

ay — Acceleration in Y axis direction

az — Acceleration in Z axis direction

c — Mean aerodynamic chord

b — Wing Span

CD — Drag coefficient force

CDinduced — Induced drag coefficient force

CD0 — Parasite drag coefficient force

CDwave — Wave drag coefficient force

CL — Lift coefficient force

Cl — Moment coefficient around X axis

Cm — Moment coefficient around Y axis

Cn — Moment coefficient around Z axis

Cx — Force coefficient for X axis

Cy — Force coefficient for Y axis

Cz — Force coefficient for Z axis

Fx — Aircraft body force in X axis

Fy — Aircraft body force in Y axis

Fz — Aircraft body force in Z axis

Ixx — Moment of inertia around X axis direction

Ixy — Product of inertia between X and Y axis direction

Iyy — Moment of inertia around Y axis direction

Izz — Moment of inertia around Z axis direction

k1 — Longitudinal reduced frequency

k2 — Lateral-directional reduced frequency



L — Moment around X axis

M — Moment around Y axis

m — Aircraft mass

N — Moment around Z axis

P — Body-axis roll rate

Q — Body-axis pitch rate

Rxy — Pearson correlation coefficient

R — Body-axis yaw rate
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CHAPTER

1
INTRODUCTION

The ambition for new technologies is a humanity ambition. For many years the human
race has been trying new ideas to achieve another level of technology, always trying to copy the
mother nature, in almost everything. For example, genetic algorithms are based on our genetic
code, and how it evolves with the aid of mutations and cross-overs between two genes.

In this present master thesis, a logic that contradicts the idea of Boolean logic was
presented, and it is known as fuzzy logic. The fuzzy logic assemble with a differential evolution,
or any other optimization of the Fuzzy Inference System (FIS) parameters, is known as Adaptive
Network-based Fuzzy Inference System (ANFIS) or simply as Neuro-Fuzzy (JANG, 1992).

The Neuro-Fuzzy technique works as a polynomial curve fit, adapts itself with the output
curve through the correlation between the input variables with the output variable, in a Multi-
Input Single-Output (MISO) system (JANG, 1992). With this characteristic, it is possible to
understand the behavior of any dynamic system, which in this case, is an aerodynamic system.

The objective of this master thesis is, evaluate the Neuro-Fuzzy technique, with exper-
imental and numerical data, to get as close as possible to the real aerodynamic model of an
aircraft, which in this case is a Cessna 182 in scale.

After the model construct, with experimental and numerical data, both will be compared
and a conclusion between the numerical method and the experimental acquisition board will be
presented.

This methodology was proposed to ensure that the aerodynamic model will be as close
to reality as possible, to further apply the intelligent control of the Cessna 182, applying the
Neuro-Fuzzy technique with the real aerodynamic stability derivatives for the aircraft in question.
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1.1 Document Structure
This document is structured, as follows:

∙ Chapter 2: it is presented various techniques to perform the aerodynamic model of an
aircraft. Hence, it is exposed some critics about the methods, concluding which method is
the best for the objectives of this work;

∙ Chapter 3: it is exposed all the theories applied in the aerodynamic model construction, in-
cluding the flight dynamics mathematical equations, the FIS and Neuro-Fuzzy architecture
and the differential evolution theory;

∙ Chapter 4: it is performed the step by step from the numerical and experimental data
acquisition, and this chapter consists of the presentation of all necessary instruments used,
including the software and hardware;

∙ Chapter 5: it is presented all the results from the training and from the validation of the
Neuro-Fuzzy model with numerical data, applying a critical analyses;

∙ Chapter 6: it is presented all the results from the training and from the validation of the
Neuro-Fuzzy model with experimental data, also the results are analyzed and compared
with the numerical results;

∙ Chapter 7: it is presented the conclusions from the presented work, encompassing the
expectations and the possible future works.
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CHAPTER

2
STATE OF THE ART

This section aims to evaluate the main aerodynamic modeling methodologies in the
literature using computational intelligence techniques based on machine learning. After the
evaluation of some procedures of performing aerodynamic modeling, a justification about the
chosen method will be performed. The Neuro-Fuzzy method will be presented in an explanatory
and didactic way in the next chapter as the selected modeling approach.

2.1 AutoRegressive Moving Average Approach

This method applied to aerodynamic modeling was used by Xing, Wang and Zhu (2016)
to find the aerodynamic forces and moments of a rocket, flying in a supersonic regime. Besides
the nonlinear aerodynamics, the authors proposed to find the trajectory based on the parameters
identified as well.

Initially, in order to validate the method created (ARMA), the authors performed several
non-stationary simulations using CFD, with supersonic velocities, involving maneuvering cases
with NACA0012 airfoil.

According to the authors, the mathematical logic for AutoRegressive Moving Average
Approach (ARMA) is based on system identification technique for Multi - Input Multi - Output
(MIMO), the mathematical model structure can be expressed as:

y(k) =
na

∑
i=1

Ai.y(k− i)+
nb−1

∑
i=0

Bi.u(k− i) (2.1)

Where y(k) is the aerodynamic force vector of step k, na and nb are the output and input
delay order, respectively, and u(k− i) is the system input parameters. Following the equation, Ai

and Bi are correlation matrices which bound the input to the output variables.

Following the authors reasoning, that the vector Sn = (unvnwnψnφ nθ nPnQnRn) is the
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input variables vector, the Eq. 2.1 can be rewritten as:

Fn =
3

∑
i=1

An−i.Fn−i +
2

∑
i=0

Bn−i.Sn−i (2.2)

Equation 2.2 may be rewriten in matricial form as presented in Eq. 2.3.


F1 F2 F3 S2

1X9 S3
1X9 S4

1X9

F2 F3 F4 S3
1X9 S4

1X9 S5
1X9

... ... ... ... ... ...

Fn−3 Fn−2 Fn−1 Sn−2
1X9 Sn−1

1X9 Sn
1X9

 .



A1

A2

A3

B01X9

B11X9

B21X9


=


F4

F5

...

Fn

 (2.3)

The dimension number n depends on the number of chosen sample points, also the
vectors Fn are the output forces.

To evaluate and validate this modeling approach, Xing, Wang and Zhu (2016) tested
the NACA0012 airfoil in a range of training maneuvers cases, and the aerodynamic loads
were obtained from Computational Fluid Dynamics (CFD) computation and from ARMA
methodology for the comparison, resulting in a good convergence between both techniques, as
presented in Fig. 1.

Figure 1 – Single degree of freedom lift coefficient comparison.

Source: Xing, Wang and Zhu (2016).

After the validation of the ARMA model, Xing, Wang and Zhu (2016) applied the
technique in flight trajectory simulation of a rocket. The spinning projectile used was a missile
from U.S.Army Research Laboratory (ARL), which is an axis-symmetric, consequently the
products of inertia Ixy = Ixz = Iyz = 0.
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The comparison of the aerodynamic forces between the CFD model and the ARMA
model from the spinning projectile shown to the author the great approximation that his model
has. The initial simulation conditions is presented in Tab. 1, also the Fig. 2 shows the comparison
from both methods, with the rigid-body dynamics coupled in the models.

Table 1 – Initial state of trajectory simulation.

Direction n Position (m) Velocity (m/s) Euler Angle (rad) Angular rate (rad/s)
X 4.593 1 030.81 2.051 2518.39
Y -0.2 22.064 0.088 -52.802
Z -0.159 86.278 -0.023 22.233

Source: Adapted from Xing, Wang and Zhu (2016).

Figure 2 – Comparison of aerodynamic forces and moments calculated from ARMA model and CFD
model.

Source: Xing, Wang and Zhu (2016).

According to the authors conclusion, the ARMA model has the ability to substitute CFD
simulations with the same accuracy and with low computational cost. They also affirms that,
when the rigid-body dynamics equation are coupled with ARMA model, it is possible to predict
the flight trajectory.

2.2 Supported Vector Machine
The Supported Vector Machine (SVM) is a statistical method which is capable to model

nonlinear systems, and it was first developed for pattern identification in 1995, according to
Wang, Qian and He (2015). This technique was applied in the unsteady aerodynamic modeling
(WANG; QIAN; HE, 2015) with a large number of experimental data obtained in wind tunnel
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tests and CFD simulations. To conduct to unsteady aerodynamics study, some maneuvers at high
angles of attack were done with the aircraft used in the experiment.

The authors state that SVM exhibits more excellent empirical performance than Fuzzy
Logics and Neural Networks, due the fact that SVM works with a statistical learning strategy,
which takes into account the Structural Risk Minimization (SRM) principle.

The authors state that this is the first SVM approach applied to model high angle-of-attack
unsteady aerodynamics, and it is the only work that was found in the bibliography review till the
publish date.

An error minimization was applied in the SVM, the least squared (LS) minimization,
transforming the method into LS-SVM. The authors selected some input variables according
to his bibliography, for pitching oscillations the author selected the following variables as
input (α, α̇, α̈,k,β ,δe), in which α is the angle-of-attack, k is the reduced frequency, β is the
sideslip angle and δe is the elevator deflection, and for yawing and rolling oscillations they took
(α ,φ ,φ̇ ,k,β ,ψ ,ψ̇), in which φ is the roll angle and ψ is the yaw angle.

The results showed a great adaptability between the optimization and the experimental
results for a delta wing aircraft at high angles of attack and different reduced frequencies (k).

Looking at the Fig. 3 it is evident that the curves starts to be nonlinear near the stall
angle, where the aircraft partially loses the lift force due the discharge of the flow by increasing
the angle of attack, in this condition the reduction of the angle generates an hysteresis effect due
the non-linear condition.

The paper has a great problem approach and a good solution way, but it is not very clear
within the equations and is the unique to apply the SVM technique in the aerodynamic modeling
found in the literature.

2.3 Artificial Neural Network

In this section, some works with Artificial Neural Networks (ANN) application will be
presented, especially in the aeronautical science, most of them will present the efficiency and
speed of this computational technique. The pioneer to apply the ANN in the aeronautical science
was the work published by Rajkumar and Bardina (2002), which predicted the lift coefficient
curve as function of the angle-of-attack (Clxα) of an airfoil, using only sparse data for steady
aerodynamics.

To achieve good results, the authors adopted the angle of attack as input variable of
the ANN model. Also, the authors used numerical simulations and wind-tunnel experiments to
feed the neural network. Rajkumar and Bardina (2002) further argue that is a reliable and fast
method of predicting complex aerodynamics coefficients for flight simulation. The content of the
article is focused in ANN capacity to interpolate sparse data using a nonlinear fit curve, with few
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Figure 3 – Delta Wing Aircraft Coefficients experimental evaluation using SVM.

(a) Drag Coefficient

(b) Lift Coefficient

(c) Moment Coefficient

Source: Wang, Qian and He (2015).
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experimental data. After the training process, the technique is capable to interpolate the linear
and nonlinear relation between input and output variables.

To correlate the inputs with the outputs, the authors used the most effective variables
for aerodynamics control, like angle-of-attack (α), sideslip angle (β ), elevator deflection (δe),
aileron deflection (δa), rudder deflection (δr), speed-break deflection (δsb), landing gear effects
and ground effects. The input variables relate to force and moments equations on three body axis,
defined by Roskam (1998). The input parameters vary according to Tab. 2.

Table 2 – Range of values involved in aerodynamics coefficients

Source: Rajkumar and Bardina (2002).

Firstly the authors trained the Neural Network with the necessary amount of data for the
learning process. After training, some sparse data were presented to the ANN, and the model
interpolates the region between the points, covering all the interval shown in Fig. 4b. The training
sequence for Mach ≤ 0.4 and Mach > 0.4 are shown in Fig. 4 and Fig. 5.

The authors Rajkumar and Bardina (2002) state that Neural Networks are powerful and
important tool that NASA could explore in the near future, because the technique will allow to
move directly from wind tunnel tests to virtual flight simulations. Besides, the authors either
state that an hybrid system using evolutionary theory and neural network could attain an efficient
model to predict the aerodynamic variables.

That was the idea applied recently by Secco and Mattos (2017), which use ANN in the
prediction of the aircraft aerodynamic coefficients and wing parameters, which are presented
in Tab. 3. The authors fed the neural network with results obtained through CFD simulations.
The back-propagation algorithm was applied in the training process and a different number of
neurons were evaluated to minimize the regression error.

The authors used wind tunnel experimental data, Fluent (Navier-Stokes equations solver)
and potential flow code to obtain information about the 40 input variables which describe
the problem. The Tab. 3 shows all the input variables and the the respective boundaries for
optimization.

Each aerodynamic coefficient model was designed with a custom architecture composed
by two layers varying from 20 to 100 neurons in steps of 20 neurons, with exception of lift
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Figure 4 – Training sequence presented by the authors for Mach ≤ 0.4

(a) Initial training data for neural network (Mach ≤ 0.4)

(b) Sparse data presented to neural network

(c) Neural network interpolated data for sparse data (Mach ≤ 0.4)

Source: Rajkumar and Bardina (2002).

coefficient, which could have an architecture varying from 20 to 160 neurons in the first layer,
also varying in steps of 20 neurons.

After finding the best architecture for each aerodynamic coefficient, which are CL (lift
coefficient), CDinduced (induced drag coefficient), CDwave (wave drag coefficient), CD0 (parasite drag
coefficient) and CD (total drag coefficient), some wing parameters from Tab. 3 were separated
and incorporated to obtain the trained ANN model. After the training, the ANN results were
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Figure 5 – Training sequence presented by the authors for Mach > 0.4

(a) Initial training data for neural network (Mach ≥ 0.4) (b) Neural network interpolated data for sparse data
(Mach ≥ 0.4)

Source: Rajkumar and Bardina (2002).

compared with the CFD results, using two different sweep configurations, as Fig. 6 shows.

Figure 6 – Comparison between ANN predictions and CFD results for the baseline airplane with different
wing sweep angles.

Source: Secco and Mattos (2017).

The authors exposed, in an evident way, that the computational cost from ANN tends to
be much lower than the full potential code, and to prove that, they made a comparison between
both methods, as shown in Tab. 4.

At the conclusion, the authors state that ANN is a surrogate model to replace a full-
potential code in airplane MDO framework, they applied 100,000 cases to train and design
the ANN, and they also showed that ANN is able to substitute CFD software to reduce the
computational cost in a multidisciplinary optimization framework, with acceptable errors for
conceptual design phase (SECCO; MATTOS, 2017).
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Table 3 – Upper and lower boundaries for the ANN input variables

Source: Secco and Mattos (2017).

Another recent Neural Networks application was made by Ignatyev and Khrabrov (2015),
which used different experiments to improve the model performance. This work focused on non
linearity of unsteady aerodynamic characteristics, furthermore, the authors explored high-angle-
of-attack simulations to predict non linearity on aerodynamic coefficients caused by the wing
flow separation and reattachment, (IGNATYEV; KHRABROV, 2015).
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Table 4 – Average CPU cost of each drag estimation methodology

Methodology No. of evaluations Overall processing time (s) Average time (s)
Full Potential Code 8,000 174,788 21.8

ANN 8,000 44 0.0055
Source: Secco and Mattos (2017).

The work (IGNATYEV; KHRABROV, 2015) is focused on the pitching moment for
an specific aircraft model, the Transonic CRuiser, which has high-sweep wing and canard
configuration. The experiment set up performed in the wind tunnel were: V = 40 m/s, c̄ = 0.2943
m, S = 0.3056 m2, b = 0.3056 m.

The experiment was executed in three steps, the first was a static aircraft with the angles
of attack varying between -10o and 40o at step of 2o (A0), the second experiment empowered
to obtain the dynamic derivative of the angle of attack due a small oscillation amplitude, the
dynamic derivative was calculated with the following equation:

α = α0 +Aαsin(2π f t + v0) (2.4)

α̇ = 2π f Aαcos(2π f t + v0) (2.5)

The amplitudes of oscillation were Aα = 10o and 20o for the dynamic experiment, and
the frequencies were f = 0.5, 1.0 and 1.5 Hz (corresponding reduced frequencies k = 2π f c̄/2V

= 0.012, 0.023 and 0.035). Ignatyev and Khrabrov (2015) identified a strong non-linear behavior
in the aerodynamic derivatives for the following interval: 16o < α < 24o, being this region of
non-linearity caused by the separation of the flow in the canard. For angles of attack above 24o,
the authors considered to be full developed and there are no significant dynamic contribution
due to canard surface. Figure 7 compares the moment coefficient due the angle of attack results
for the experimental and numerical simulations.

The authors considered two types of ANN architecture in his work. The first one is a
Forward Fed Neural Network (FFNN) and Recent Neural Network (RNN), which was used to
develop a model of unsteady pitch moment coefficient (IGNATYEV; KHRABROV, 2015). FFNN
and RNN of Nonlinear AutoRegressive model with eXogenous variables (NARX) architecture is
illustrated in the Fig. 8 below, which explain the working architecture.

In the training process, the author proposed the Bayes’ rule to define the objective
function parameters, to define the objective function F , that means they used an Algorithm of
Gauss-Newton approximation to Bayesian Regularization (GNBR) for training ANN, once it is
an effective tool to improve ANN generalization.

After the training procedure, the results were compared with the experimental data. The
results obtained using the RNN architecture with NARX configuration is shown in Fig. 9.
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Figure 7 – Comparison of the table model with the large amplitude oscillation experiments.

Source: Ignatyev and Khrabrov (2015).

After the comparative analysis of the methods for modeling the unsteady aerodynamic the
authors concluded that the recurrent architectures were favorable for modeling of unsteady aero-
dynamic characteristics, also complement that RNN has better generalization ability, certifying
that ANN methods are very interesting to model unsteady aerodynamics.

Every paper presented in this section applied the ANN approach in the aeronautical
field, but none of them applied the technique to study experimentally the flight mechanics of an
aircraft, which is the main objective of this master thesis. The ANN proved to be efficient in the
unsteady aerodynamics flow studies, but not as much efficient as the Neuro-Fuzzy technique in
the aerodynamic modeling of an aircraft with unknown aerodynamic characteristics.

2.4 Neuro-Fuzzy

This technique was first developed by Jang (1992), and almost two decades after his
work, the researchers started to apply this methodology in aerodynamics modeling.

An interesting unsteady aerodynamic modeling using Neuro-Fuzzy were made by Chang
(2013), which used a commercial aircraft equipped with a Flight Data Recorder (FDR) to record
the main flight variables, like angle-of-attack, sideslip angle, the Euler angles and its derivatives,
applying it to build a fuzzy logic-based aerodynamic model. Also, the methodology adopted by
the author considered various triangular membership functions for the input variables.
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Figure 8 – NN architectures; a) FFNN architecture; b) NARX architecture.

Source: Ignatyev and Khrabrov (2015).

The data was acquired during the flight with the help of FDR, and only a portion was
applied in the Neuro-Fuzzy training process. The selected section include a clearly atmosphere
perturbation (turbulence) during the transonic descent phase. The Fig. 10 shows this descent
phase at a perturbed atmosphere with the altitude and angle-of-attack (α) variation.

The author choose to use, for the longitudinal aerodynamics, the following input variables
to model the force and moments coefficients:

Cx,Cz,Cm = f (α, α̇,Q,k1,β ,δe,Ma,P,δs, q̄) (2.6)

where the left hand represents the coefficients of the axial force (Cx), normal force (Cz) and
pitching moment (Cm).

For the latero-directional aerodynamics, he chooses:

Cy,Cl,Cn = f (α,β ,φ ,P,R,k2,δa,δr,Ma, α̇, β̇ ) (2.7)

Where the left hand represents the coefficients of the side force (Cy), rolling moment (Cl) and
yawing moment (Cn).
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Figure 9 – Unsteady aerodynamic derivatives of the pitch moment coefficient, simulated with RNN (lines)
and obtained in the experiment (markers)

Source: Ignatyev and Khrabrov (2015).

After the training process, Chang (2013) determined the most important longitudinal and
latero-directional static and oscillatory stability derivatives as a function of time. The Fig. 11
shows the main aircraft stability derivatives for force Z and moments M, L and N.

Chang (2013) concludes that the results could provide the understanding of the aero-
dynamic response of the analyzed aircraft in severe atmospheric turbulence. The author also
states that the correlation between the input and output variables was improved by monitoring a
multivariable correlation coefficient during the modeling process.

The main work which motivates to choose the Neuro-Fuzzy as tool to make the aero-
dynamic modeling of a Cessna 182 air model were presented by Brandon and Morelli (2012),
and similar with Chang (2013) works, they used Neuro-Fuzzy to model unsteady aerodynamic,
the first used advanced maneuvers during training data acquisition and second select a turbulent
flight to do the training step.

The authors (BRANDON; MORELLI, 2012) tested airplane was an Aermacchi Impala
MB-326M operated at the National Test Pilot School in Mojave CA to make the aerodynamic
modeling with experimental data.

During the flight acquisition data, the authors aimed to achieve the biggest range of flight
possibilities with several maneuvers, to include in the training process.

Brandon and Morelli (2012) carried out two interesting flight tests to understand better
the aircraft dynamics and to acquire affinity with data acquisition system, they applied deflections
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Figure 10 – The time history of flight variables in severe atmospheric turbulence during the descending
phase in transonic flight.

Source: Chang (2013).

Figure 11 – The time history of main longitudinal and latero-directional static stability derivatives along
the flight path.

Source: Chang (2013).

of the three main command surfaces (δa,δe,δr) one by one, that means, deflected the elevator
alone, then deflected the rudder and later the aileron without moving any other control surface,
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they called this process as "Doublets", then made all the surfaces deflecting simultaneously and
randomly, denominating as "Fuzzy".

The input variables chosen to correlate with output variables were very similar with
those selected by Chang (2013). The determining factor on the choice of the variables is called
correlation factor (R2), which express, through a number varying between 1 to 0, the correlation
between the input and output variables, if the number is close to 1, means a high correlation, also
if the number is close to 0, means a low correlation between the input and output. The Tab. 5
shows this correlation number between input and output variables.

Table 5 – Fuzzy Model Fit Quality with Combined Maneuvers

Coefficient Correlation Coefficient, (R2) Explanatory Variables
Cx 0.983 α,β ,δe,δa,δr, α̇, p̂, q̂, r̂
Cy 0.967 α,β ,δe,δa,δr, β̇ , p̂, q̂, r̂
Cz 0.997 α,β ,δe,δa,δr, α̇, p̂, q̂, r̂
Cl 0.950 α,β ,δe,δa,δr, β̇ , p̂, q̂, r̂
Cm 0.971 α,β ,δe,δa,δr, α̇, p̂, q̂, r̂
Cn 0.964 α,β ,δe,δa,δr, β̇ , p̂, q̂, r̂

Source: Brandon and Morelli (2012).

Brandon and Morelli (2012) also could predict the hysteresis in the non-linear lift curve,
as a result of the rich amount of data collected during the maneuvers, which possibly faced a
stall condition, as shown in Fig. 12.

Figure 12 – Model fit to Normal force coefficient.

Source: Brandon and Morelli (2012).

One of the authors conclusion is the develop of a highly nonlinear aerodynamic model
without knowing the aircraft structure model. Further, the authors state that fuzzy logic model
results can be sensitive to explanatory variable selection and can also generate very nonlinear
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results (BRANDON; MORELLI, 2012). Still, both authors warns that extrapolation of the model
outside of data used to develop the model can result in unexpected results due to non-linearities.

2.5 Chapter Expectation
All of the articles presented in this section helped to choose which computational

intelligence technique will take in considering in this work to accomplish the Cessna 182
aerodynamic model, and the work presented by Brandon and Morelli (2012) were the closest
approach with the problem resolution. However, this present work will model an scaled aircraft,
once Brandon and Morelli (2012) modeled a full scale aircraft, being this sentence the main
difference between both works. Therefore, the Neuro-Fuzzy was chosen to be studied and applied
in aerodynamic experimental model development.

The following chapters will perform the theoretical foundation, required to construct the
aerodynamic model with experimental and numerical data.
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CHAPTER

3
THEORETICAL FUNDAMENTATION

This chapter presents all theoretical substantiation that was necessary to understand the
workings of the computational intelligence technique known as Neuro-Fuzzy, which uses an
optimization to predict the best parameters of the membership functions. In addition, this chapter
will also present the theory of flight mechanics, focusing on the relationship between inertial and
non-inertial axes and how to transform one axis into another. Last but not least, the equation for
rigid-body kinetics which describes the aircraft flight dynamic.

3.1 Adaptive Network-based Fuzzy Inference Systems
The ANFIS was first presented by Jang (1992) which combines the ability to correlate

inputs with outputs from FIS with the learning and adaptation ability from ANN.

The ANFIS has the same structure in comparison with FIS, with "fuzzification" and
"defuzzification" process combined with rule based to correlate input with outputs variables, as
it can be seen in Pereira et al. (2017).

3.1.1 Fuzzy Inference System

The FIS is defined by 4 central steps: Input processor, rule based, inference machine and
output processor (JAFELICE et al., 2003), presented in Fig. 13 below.

The role of each FIS step is:

∙ Input Processor (Fuzzification): Here occurs the translation of the input variables into
Fuzzy sets in the respective domain. The presence of a specialist is fundamental to create
the correct number of membership function to describe all the input domain.

∙ Rule Based: This component, combined with inference machine, could be considered the
core of the Fuzzy Inference System. It is compound by many Fuzzy proposition of the
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Figure 13 – Fuzzy Inference System architecture.

Source: Elaborated by the author.

type If...Then... Each proposition should be written with the help of a specialist knowledge.
This step is responsible to describe all relations between the linguistic variables.

∙ Inference Machine: In this point, the Fuzzy prepositions are mathematically translated
by means of the approximate reasoning. The mathematical operators are selected to define
the Fuzzy relationship which models the rule based. Therefore, the inference machine
is the most important step to ensure the correct work of the Fuzzy system, once it is in
charge to provide the output for each input from the relation defined by the rule based.
There are two main methods in the literature to make the relation: Mamdani Method and
Takagi-Sugeno Method. The leading difference between both methods is the consequent
type and the defuzzification proceeding.

– Mamdani Method

The Mamdani method combine the rules through a logic operator OR, which is
modeled by the maximum operator and, in each rule, the logic operator AND is
modeled by the minimum operator. Therefore, the rule based could be defined as:

Rule 1: If (x is A1 AND y is B1) Then (z is C1)

Rule 2: If (x is A2 AND y is B2) Then (z is C2)

The output z∈R is obtained by the defuzzification of the output Fuzzy set C =C′
1∪C′

2

through the calculation of the centroid given by the union of the areas below the
curve, as presented in Fig. 14.

– Takagi-Sugeno Method

In this method, the consequent is treated as a function of the input variables. For
example, let suppose the function which characterizes the input and output of each
rule be a linear combination of the inputs, that is, z = px1 +qx2 + r. Following the
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Figure 14 – Mamdani Method.

Source: Adapted from Jafelice et al. (2003).

same previous rule. Also, the Fig. 15 presents how the defuzzification is made by
Takagi-Sugeno method.

Rule 1: If (x is A1 AND y is B1) Then (z is C1)

Rule 2: If (x is A2 AND y is B2) Then (z is C2)

The defuzzification is done, in Takagi-Sugeno’s case, through the weighted average of the
value of the degree of pertinence obtained from the rule base with the function that relates
the input and output of the FIS.

∙ Output Processor (Fuzzification): Here occurs the translation of a Fuzzy set into real
number. Consequently, is necessary to choose one method to realize the output defuzzifi-
cation to obtain a real number which represents the output Fuzzy set. The most comum
method is the gravity center.

– Center of gravity:

This method is similar with the weighted average, with a singular difference which
C(zi) is not the weight, is the compatibility degree for the value of zi with the modeled
concept of the Fuzzy set C.

For a discreet domain:

G(C) =
∑

n
i=0 uiC(zi)

∑
n
i=0C(zi)

(3.1)



50 Chapter 3. Theoretical Fundamentation

Figure 15 – Takagi-Sugeno Method.

Source: Adapted from Jafelice et al. (2003).

For a continuous domain:
G(C) =

∫
R uiC(zi)∫

RC(zi)
(3.2)

where R is the region of integration.

3.1.2 Neuro-Fuzzy

The Neuro-Fuzzy is derived from ANFIS, also developed by Jang (1992), and it consists
by the FIS structure combined with the adaptation and learning ability of the ANN. The Neuro-
Fuzzy architecture is presented in Fig. 16.

The purpose of each layer, using the Takagi-Sugeno inference is given by the the follow-
ing definitions:

First Layer: Each node receives one input variables Ii(k) that will be used in the training
process. The output from i node from the first layer at time k, u(1)i (k) is given by:

u(1)i (k) = Ii(k) (3.3)

Second Layer: In this layer the fuzzification of input variables is performed, that is, the
real numbers are transformed into Fuzzy subsets with a certain degree of pertinence. In this step,
the membership functions (MF) are built for the description of the inputs. Considering that the
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Figure 16 – Neuro-Fuzzy architecure representation.

Source: Adapted from Pereira et al. (2017).

membership functions are approximated by gaussians, the output of node i j from layer 2 at time
k, u(2)i j (k), is given by:

u(2)i j (k) = e
(u(1)i (k)−mi j(k))

2

σ2
i j(k) (3.4)

where mi j(k) e (2)
i j (k) are the mean and standard deviation, respectively, of the Gaussian

membership function MFi j.

Third Layer: Here the propositions of type If...Then... are realized, forming the rule
based for ANFIS. For each rule, operator AND and OR are treated as minimum or maximum,
respectively, so the output of the L node from this layer, u(3)L (k), is a function of the layer 2
selected output from rule RL.

Fourth Layer: The nodes from this layer are treated as constants, and are defined as a
function fL : Rn → R such that fL = f (I1, ..., Ii, ..., In,w1L, ...,w jL, ...,woL,k), where w1L, ...,w jL,

...,woL are weights that will be determined in the ANFIS training phase. Thus the output from
node L of layer 4, u(4)L (k), is calculated by:

u(4)L = u(3)L (k) fL(I1, ..., Ii, ..., In,w1L, ...,w jL, ...,woL,k) (3.5)

Fifth Layer: The last layer releases the ANFIS answer, given by equation:

O(k) =
∑

R
L=1 u(4)L (k)

∑
R
L=1 u(3)L (k)

(3.6)
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3.1.3 Differential Evolution

The optimization method used in this document was first developed by Storn and Price
(1997), which is a minimization function method, it can be non-linear and non-differenciable,
also is a faster heuristic optimization method with greater accuracy in comparison with other
global optimization methods. This robust method requires few variables, and has a facility to be
implemented, also has good adaptability to parallel computation, Storn and Price (1997).

The differential evolution method seek to find the minimum global from an objective
function Fob j(X), therefore is a heuristic method, differently from the classic optimization
methods. It is important to know that X is a vector which the elements represent each optimization
variable of interest.

According to Pereira et al. (2017), the differential evolution carries four important steps,
as the Fig. 17 presents:

Figure 17 – Differential Evolution representation.

Source: Adapted from Pereira et al. (2017).

At the initialization of the optimization, all the useful parameters during the execution
are set, also the limits of the variables of interest. Each individual is a vector Xi,0 which carries a
possible result for the optimization and the aptitude with the objective function of each vector
are calculated.

At the mutation phase, some alterations are made in the vectors Xi,k, according to the Eq.
3.7.

Vi,k = Xi,k +F(X j,k −Xl,k) (3.7)

In which Vi,k is the resultant vector of the vector Xi,k in the k iteration, F is the perturbation
factor of vector Xi,k, generally between [0,2], X j,k and Xl,k are vectors chosen aleatory that belong
to the set (or population) S of the possible solutions. This process is repeated n times, in which n

is the element number of the set S.
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At the crossing stage, the information of the vector Vi,k merges with the vector Xi,k,
ensuring more diversification to the population. Each element e of the vector Vi,k is associated
with an aleatory number contained in the interval [0,1] (rand(0,1)) and is related with the value
of the crossing rate (CR), also defined between the interval [0,1]. The decision is taken according
to the Eq. 3.8.

Ce,i,k =

Ve,i,k, if rand(0,1)≤ OR e = randnum(1,ne)

Xe,i,k, if rand(0,1)> AND e ̸= randnum(1,ne)
(3.8)

In which Ci,k is the candidate vector to join in the set S in the iteration k + 1 and
randnum(1,ne), beeing ne the number of vectors, is a integer organized number generator
scattered in the interval [1,ne]. This proceeding is repeated for all vectors inside the set S.

The selection is the last standard operator of the differential evolution and it is based in
the analyses of the vectors Ci,k generated in the crossing step. The Eq. 3.9 describes the selection
proceeding, also made for all vectors in the set S. After the selection, the code return to the first
step, selection, and the iteration advances to k+1 repeating all the process.

Xi,k+1 =

Xi,k, if fob j(Xi,k)≤ fob j(Ci,k)

Ci,k, if fob j(Xi,k)> fob j(Ci,k)
(3.9)

Differential Evolution was used to predict the coefficients of the membership functions
of the Fuzzy Inference System, that are the mean and the standard deviation from Gaussian
curves, following the architecture of the Neuro-Fuzzy, which was explained in the subsection
3.1.2, the differential evolution optimize the second and the fourth layer.

In this presented work, the fob j is given by:

C f =
∑

n
i=1

√
(ŷi − yi)2

n
(3.10)

Where ŷi is the Neuro-Fuzzy predicted result, yi is the data value and n is the number of data
points.

3.2 Aerodynamics Forces and Moments

First, it is necessary to understand the air craft body axes and its components (forces,
moments and Euler angles). To better describe this coordination system, the Fig. 18 is presented.

This subsection presents a brief review about forces and moments in the aircraft body-
axis and how to correlate with the wind-axis. According to Roskam (1998) there are two types
of flight conditions: 1-) Steady state and 2-) Perturbed state.
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Figure 18 – Definition of aircraft body axes, generalized velocities, forces, moments and Euler angles
(Mclean 1990).

Source: Fossen (2011).

3.2.1 Steady State Flight

Steady state flight is a condition which the variables of motion does not varies through
time. According with Roskam (1998) the most influential variables in the three body-axis forces
and moments are described in the Tab. 6:

The steady state angular rates, P1, Q1 and R1 are zero, that means the steady flight is a
straight line flight condition.

In this case, the aerodynamic forces and moments for longitudinal body-axis is defined
in Eq. 3.11 as:

Fx =−D+T

Fz =−L

M = M

(3.11)

And the Eq. 3.12 demonstrate the lateral-direction aerodynamic forces and moments

Fy = S

L = L

N = N

(3.12)

3.2.2 Perturbed Flight

According to Roskam (1998) each aircraft should have a different mathematical model,
because they differ in configuration, shape and size. The approach made by Roskam (1998) is
to first list the forces and moments to be modeled, then list all the variables of motion which
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Table 6 – Dependence of Steady State Aerodynamic Forces and Moments of Variables.
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experience shows to have a significant effect of the forces and moments. The Tab. 7 shows the
most influent variables:

The structure of Tab. 7 is based on the following assumptions:
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Table 7 – Dependence of Perturbed State Aerodynamic Forces and Moments on Variables.
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∙ Blanks indicate that a particular perturbed variable has NO effect on a particular perturbed
force or moment.

∙ Partial derivatives indicate the slope by which a particular perturbed force or moment is
affected by a particular perturbed variable.
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This document will adopt the perturbed state flight to perform the unsteady aerodynamics
model. The most influential variables in the forces and moments will be tested through the
Pearson’s correlation coefficient in Chapter 5.

3.2.3 Longitudinal

The airplane X force, which is expressed in Fig. 19, can be written as:

Fx =CxqS (3.13)

Where CX is the airplane X force coefficient, S is the wing reference area and q is
the dynamic pressure. The total X force also depends on the Mach number, control surfaces
deflections, airplane average skin friction coefficient and angle of attack, with that in mind, the
X force coefficient equation for perturbed state flight could be written, according to Tab. 7, as:

Cx =Cx0 +Cxuu+Cxww+Cxqq+Cxẇẇ+Cxα
α +Cxα̇

α̇ +Cxδe
δe +Cxδ f

δ f (3.14)

Where the non-linear derivative coefficients are:

Cx0 is the value of Cx for α = u = w = q = ẇ = α̇ = δe = δ f = 0
Cxu = ∂Cx/∂u is the change in airplane X force due to a change in X axis velocity.
Cxw = ∂Cx/∂w is the change in airplane X force due to a change in Z axis velocity.
Cxq = ∂Cx/∂q is the change in airplane X force due to a change in the pitch rate.
Cxẇ = ∂Cx/∂ ẇ is the change in airplane X force due to a change in Z acceleration.
Cxα

= ∂Cx/∂α is the change in airplane X force due to a change in the angle-of-attack.
Cxα̇

= ∂Cx/∂ α̇ is the change in airplane X force due to a change in the angle-of-attack rate.
Cxδe

= ∂Cx/∂δe is the change in airplane X force due to a change in the elevator deflection.
Cxδ f

= ∂Cx/∂δ f is the change in airplane X force due to a change in the flap deflection.

The same reasoning is done for the Z force and the M moment. So the forces and moment
in the longitudinal direction for the aircraft of interest can be written as:

Fx =−D =CxqS = (Cx0 +Cxuu+Cxww+Cxqq+Cxẇẇ+Cxα
α +Cxα̇

α̇ +Cxδe
δe +Cxδ f

δ f )qS

(3.15)

Fz =−L =CzqS = (Cz0 +Czuu+Czww+Czqq+Czẇẇ+Czα
α +Czα̇

α̇ +Czδe
δe +Czδ f

δ f )qS

(3.16)

M =CmqSc = (Cm0 +Cmuu+Cmww+Cmqq+Cmẇẇ+Cmα
α +Cmα̇

α̇ +Cmδe
δe +Cmδ f

δ f )qSc

(3.17)
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3.2.4 Lateral-Directional

The airplane aerodynamic rolling moment is defined (ROSKAM, 1998) as:

L =ClqSb (3.18)

Where Cl is the airplane rolling moment coefficient, S is the wing reference area, q is the
dynamic pressure and b is the wing span. The total rolling moment also depends on the Mach
number and Reynolds number, deflection of lateral control surfaces, deflection of directional
control surfaces, sideslip angle and center of gravity location. With that in mind, the rolling
moment coefficient equation for perturbed flight condition could be written as:

Cl =Cl0 +Clvv+Clp p+Clrr+Clv̇ v̇+Clβ β +Cl
β̇
β̇ +Clδa

δa +Clδ rδr (3.19)

Where the non-linear derivative coefficients are:

Cl0 is the value of Cl for β = v = p = r = v̇ = β̇ = δa = δr = 0
Clv = ∂Cl/∂v is the change in airplane X moment due to a change in Y axis velocity.
Clp = ∂Cl/∂ p is the change in airplane X moment due to a change in the roll rate.
Clr = ∂Cl/∂ r is the change in airplane X moment due to a change in the yaw rate.
Clv̇ = ∂Cl/∂ ẇ is the change in airplane X moment due to a change in Y acceleration.
Clβ = ∂Cl/∂β is the change in airplane X moment due to a change in the sideslip angle.

Cl
β̇
= ∂Cl/∂ β̇ is the change in airplane X moment due to a change in the sideslip angle rate.

Clδ a = ∂Cl/∂δa is the change in airplane X moment due to a change in the aileron deflection.
Clδ r = ∂Cl/∂δr is the change in airplane X moment due to a change in the rudder deflection.

Hence, similarly with the longitudinal equations, the force and moments for lateral-
directional system can be written as:

L =ClqSb = (Cl0 +Clvv+Clp p+Clrr+Clv̇ v̇+Clβ β +Cl
β̇
β̇ +Clδa

δa +Clδr
δr)qSb (3.20)

Fy =CSqS = (Cy0 +Cyvv+Cyp p+Cyrr+Cyv̇ v̇+Cyβ
β +Cy

β̇
β̇ +Cyδa

δa +Cyδr
δr)qS (3.21)

N =CnqSb = (Cn0 +Cnvv+Cnp p+Cnrr+Cnv̇ v̇+Cnβ
β +Cn

β̇
β̇ +Cnδa

δa +Cnδr
δr)qSb (3.22)

3.2.5 Rotation matrices

According with Fossen (2011) there are three axes systems in the aircrafts in general:
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∙ Body axis

∙ Stability axis

∙ Wind axis

Figure 19 – Cessna 182 three reference axis.

Source: Elaborated by the author.

The axes systems are shown in Fig 19 below where the angle of attack α and sideslip
angle β are defined as:

tan(α) =
W
U

sin(β ) =
V
VT

(3.23)

where

VT =
√

U2 +V 2 +W 2 (3.24)
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Finally, the rotation matrices for wind and stability axes could be defined according with
Fossen (2011):

pwind = Rz,−β pstab =

 cos(β ) sin(β ) 0
−sin(β ) cos(β ) 0

0 0 1

 pstab (3.25)

pstab = Ry,α pbody =

 cos(α) 0 sin(α)

0 1 0
−sin(α) 0 cos(α)

 pbody (3.26)

The rotation matrix becomes:

Rwind
body = Rz,−β Ry,α (3.27)

Hence:
pwind = Rwind

body pbody (3.28)

pwind =

 cos(β ) sin(β ) 0
−sin(β ) cos(β ) 0

0 0 1


 cos(α) 0 sin(α)

0 1 0
−sin(α) 0 cos(α)

 pbody (3.29)

pwind =

 cos(α)cos(β ) sin(β ) sin(α)cos(β )

−cos(α)sin(β ) cos(β ) −sin(α)sin(β )

−sin(α) 0 cos(α)

 pbody (3.30)

This gives the following relationship between the velocities in body and wind axes:

vbody =

 U

V

W

= (Rwind
body)

T vwind = RT
y,αRT

z,−β

 VT

0
0

=

 VT cos(α)cos(β )

VT sin(β )

VT sin(α)cos(β )

 (3.31)

The Eq. 3.31 above shows how to find the body-axis velocities from pitot tube velocity
(VT ).

3.2.6 Rigid-body Kinetics

According with Fossen (2011), the aircraft rigid-body kinetics can be expressed as:

m(ν̇1 +ν2xν1) = τ1 (3.32)

ICGν̇2 +ν2x(ICGν2) = τ2 (3.33)
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Where ν1 = [U,V,W ]T , ν2 = [P,Q,R]T , τ1 = [X ,Y,Z]T and τ2 = [L,M,N]T . It is assumed
that the coordinate system is located in the aircraft center of gravity (CG). Therefore, the resulting
model is written:

MRBν̇1 +CRB(ν)ν1 = τRB (3.34)

Where

MRB =

[
mI3x3 O3X3

O3X3 ICG

]
, CRB(ν) =

[
mSν2 O3X3

O3X3 −S(ICGν2)

]
(3.35)

Where I3x3 is the identity matrix and O3x3 is a zero matriz. Also, the inertia tensor is defined as
(assume that Ixy = Iyz = 0 which corresponds to xz plane of symmetry):

ICG =

 IX 0 −IXZ

0 IY 0
−IXZ 0 IZ

 (3.36)

The forces and moments acting on the aircraft can be expressed according with Fossen
(2011):

τRB =−g(η)+ τ (3.37)

Where τ is a generalized vector that includes aerodynamic and control forces. The

gravitational force fG =
[

0 0 mg
]T

acts in the CG (origin of the body-fixed coordinate
system) and this gives the following vector expressed in North-East-Down (NED) axis system:

g(η) =−(Rned
abc)

T

[
fG

O3X1

]
=



mgsin(θ)

−mgcos(θ)sin(φ)

−mgcos(θ)cos(φ)

0
0
0


(3.38)

Hence, the aircraft model can be written in matrix form as:

MRBν̇1 +CRB(ν)ν1 +g(η) = τ (3.39)

Or in component form:

m(U̇ +QW −RV +gsin(θ)) = Fx

m(V̇ +UR−WP−gcos(θ)sin(φ)) = Fy

m(Ẇ +V P−QU −gcos(θ)sin(φ)) = Fz

IxxṖ− Ixz(Ṙ+PQ)+(Izz − Iyy)QR = L

IyyQ̇− Ixz(P2 −R2)+(Ixx − Izz)PR = M

IzzṘ− IxzṖ+(Iyy − Ixx)PQ+ IxzQR = N

(3.40)
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3.3 Chapter Expectation
With Eq. 3.40, all the forces and moments equations are exposed, and all the necessary

theoretical foundation to elaborate a numerical and experimental Neuro-Fuzzy aerodynamic
model for Cessna 182.

The following chapters will present how the numerical and experimental data was
acquired. Also will present the treatment for experimental data.
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CHAPTER

4
METHODOLOGY

The technique applied in this master thesis, to execute the aerodynamic modeling of
the Cessna 182 scaled, is known as Neuro-Fuzzy. The data to feed the ANFIS was collected in
two ways, first with the aid of XPLANE, a flight simulator certified by FAA. The second way,
was during the flight of the scaled aircraft with the help of a data acquisition board known as
Pixhawk PX4. The data was saved on a SD memory card and then imported into the Mission
Planner software to be analyzed, later the data was imported into Matlab R○ and filtered to perform
aerodynamic modeling with the aid of the developed model.

4.1 Cessna 182

The aircraft Cessna 182 Skylane is a very consecrated aircraft introduced in 1957 in
the aircraft market. The land gear is a tricycle gear configuration and the aircraft has high
wing configuration with a single piston powertrain, the motor model is a Lycoming O-540
air-cooled with 230 hp (170 kW). The Fig. 20 illustrate the real scale airplane, also the geometry
configurations of the model airplane are defined according to Tab 8.

The scaled version of Cessna 182 is made by ART-TECH, and has the same geometry
configuration as real scale Cessna 182, with exception of the powertrain, which in the scale
version is an electric motor with 800 RPM/V produced by company itself (rotations per minute
per volt). The Fig. 21 shows the model airplane disassembled.

All the aircraft geometries were measured or estimated, which was the case of the inertia
moments, with the aid of the model aircraft designed in the XPLANE. The Tab. 8 shows the
obtained values.
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Figure 20 – Real scale Cessna 182.

Source: Aeronef.net (2019).

Figure 21 – Cessna 182 in scale (model airplane).

Source: Elaborated by the author.

Table 8 – Necessary geometric measurements for Cessna 182 model airplane.

Parameters Value

Wing span, b [m] 1.3
Aspect ratio,A [-] 7.4
Mean aerodynamic chord, c [m] 0.177
Mass, m [kg] 1.5
Wing area, S [m2] 0.228
Inertia moments, Ixx, Iyy, Izz [kg.m2] 0.05, 0.07, 0.11

Source: Elaborated by the author.

4.2 Numerical Acquisition Data System

Before explore the experimental data with the Cessna 182 scaled aircraft, a simplified
method was adopted to certify that the Neuro-Fuzzy is a good methodology to create an aerody-
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namic model for aircrafts. The software used to acquire the numerical data is known as XPLANE,
and it is a commercial flight simulator certified by the FAA.

In the software data base, it has a certain number of created commercial aircraft, as
Boeing 737 and Cessna 172, which is very similar with Cessna 182, but with a substantially
difference, only in pilots view, between both aircraft, the engine power.

However, the Cessna 182 was designed in the XPLANE flight simulator with the same
dimensions of the scaled aircraft, however, with the parameters in the British unit system. The
flight conditions were very similar, with the same Reynolds number, also was chosen the same
weather conditions (clean with none or a few wind). The numerical data were acquired during
the simulation of the aircraft flight. The Fig. 22 shows the XPLANE flight simulation for the
Cessna 182 air model. The data showed on the left top window, is the telemetry for the aircraft.

Figure 22 – Cessna 182 air model flight on XPLANE.

Source: Elaborated by the author.

The flight scenario chosen was a calm atmosphere and clear weather, with few or none
perturbation. The flight passed by some maneuvers and abrupt flight control deflections, based
on the procedure presented by Brandon and Morelli (2012), justifying the moments oscillations
during the training set that Chapter 5 will show.

4.3 Experimental Acquisition Data System

The acquisition data system used in this master thesis was a Pixhawk-PX4, which is
an independent open-hardware low-cost developed by academic communities. To analyses
the data acquired, it was used an open source software known as Mission Planner, which can
communicate with the data acquisition board to help on data inspection and to create a access
table for Matlab R○.
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Figure 23 – Pixhawk 3DR.

Source: px4.io (2019).

4.3.1 Pixhawk Configuration

The Pixhawk board can be configured through the software Mission Planner. In this case,
the configuration followed the standard set up, with few changes, like an automatic triggering of
data acquisition system as soon as the Pixhawk is powered up. The Fig. 24 shows the Mission
Planner interface and the GPS image from the runaway flight road.

Figure 24 – Mission Planner interface.

Source: Elaborated by the author.

During the flight, the parameters shown in the left bottom part of Fig. 24, like yaw (psi),
vertical velocity (W ), altitude (H), among others, varies in real time, due the telemetry coupled
to the Pixhawk. The Mission Planner also has an altimeter, shown in the left top from Fig. 24,
which express the altitude of the aircraft and the velocity measured by the pitot tube.

4.4 Experimental Procedure

The Pixhawk was connected in the center of gravity of the airplane model, inside the
cockpit, near the aerodynamic center of the wings, more precisely, and some extensions were
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necessary to link the pitot tube and all servo motors, which are responsible to deflect the control
surfaces, with the Pixhawk as shown in Fig. 25.

Figure 25 – Pixhawk servo connections.

Source: Elaborated by the author.

After making all the connections, the airplane model was ready to flight, and the region
chosen to flight was on the access road to UFU Campus Glória, few kilometers from the
laboratory. The Fig. 26 shows the aircraft assembled and ready to fly on the flight runaway.

Figure 26 – Airplane model assembled and ready to fly.

Source: Elaborated by the author.

The flight had the total time duration of about 10 minutes and the same experimented
the autonomous flight mode provided by Pixhawk, also the airplane started to follow the way
points set in the Mission Planner before the flight. After reaching all the way points, the airplane
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entered in the recovery control mode, where it begins to fly in circles whose center of the curve
is the point of activation of the autonomous mode. The flight data were saved into a SD memory
card inserted in the Pixhawk.

After the flight, the saved data was analyzed in the Mission Planner, and the region
chosen to filter the data were around the autonomous flight mode, which the aircraft gained a
great altitude to reach the way points, and then it started the circle movement, being a great
region to train the longitudinal and the lateral-directional forces and moments.

4.4.1 Filter Implementation

The data acquired was very noisy, as a result of the aerodynamic vortexes provided by the
propeller rotation. This problem was solved using a digital filter known as Savitzky-Golay, which
has an implementation done in Matlab R○. The Savitzky-Golay makes a polynomial interpolation
between the desired amount of data points, smoothing the region of interest without distorting
the signal tendency (PRESS et al., 2007). The Fig. 27 shows the application of Savitzky-Golay
filter in the Z axis accelerometer.

Figure 27 – Savitzky-Golay filter implementation.
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After the filter implementation, the signals are ready to be trained as input and output
variables of the Neuro-Fuzzy aerodynamic model.

4.4.2 Peason Correlation Coefficient

It is extremely necessary that the inputs have a similar curve with the output, or otherwise,
the Neuro-Fuzzy will not be trained, because the technique imitates the input behavior to construct
the fit curve for the output.
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In this work, the methodology chosen to verify the correlation between the inputs with
the output was the Pearson’s correlation coefficient (PCC), described in Eq. 4.1. This correlation
provides the relation between the input variable with the output, ensuring that the Neuro-fuzzy
will be capable to be trained.

Rxy =
∑

n
i=1(xi − x)(yi − y)√

∑
n
i=1(xi − x)2

√
∑

n
i=1(yi − y)2

(4.1)

where, Rxy is the correlation between the input variable with the output variable, being x the
input and y the output.

The correlation was applied only in the experimental data, because the numerical one
had a clearly correlation, thus being unnecessary the use of the PCC. The Tab. 9 shows the
correlation between the most influential inputs with the respective output.

Table 9 – Forces and Moments Pearson correlation coefficient with input variables.

Rxy Explanatory Variables
Cx 0.8902, -0.9299 α ,U
Cy 0.9876, 0.9883 δa,δr
Cz -0.8931, 0.9959 α ,U
Cl 0.7616, 0.9598 β , R
Cm 0.7520, 0.7936 α ,W
Cn 0.6266 β̇

Source: Elaborated by the author.

The Tab. 9 provides which input variables, from Tab. 7, had more similarity with the
forces and moments coefficients applied in the center of gravity of the aircraft.

4.5 Chapter Expectation
With all this process described, the data are ready to be trained. Thus, in the next

two chapters, all the training and validation graphs will be presented, as well as the input
variable influence into the output variable through a graph, for numerical and experimental data,
respectively.
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CHAPTER

5
NUMERICAL RESULTS

This chapter presents the aerodynamic modeling for Cessna 182 scaled with aid of
the flight simulator known as XPLANE. The forces and moments will be separated into two
main axis, the longitudinal axis and the lateral-directional axis to facilitate the analysis. In the
following chapter, the experimental results, will be analyzed and, in the last chapter, both will be
compared with to evaluate the accuracy from experimental data collected by the Pixhawk-PX4.

The XPLANE works with the forces in the wind axis as output, fact that implies the
application of the rotation matrix. from Eq. 3.30, to set the lift, drag and side force to the body
XYZ axis.

5.1 Longitudinal

In this subsection, will be presented the training and validation graphs for the forces in
X and Z directions, therefore the moment around the Y axis. All the content of this subsection
were acquired with the aid of the XPLANE flight simulator.

5.1.1 Force X

Applying the rotation matrix from Eq. 3.30, the force in the X axis could be written as:

FX =−Dcos(α)cos(β )−S f cos(α)sin(β )+Lsin(β ) (5.1)

where D is the drag force, S f is the side force, L is the lift force, α is the angle-of-attack and β is
the sideslip angle.

After obtain the Fx with the help of the rotation matrix, the coefficient (CX ) is obtained
through the Eq. 5.2.

Cx = FX/q̂S (5.2)
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Then, the training region was selected, and it was performed using the angle of attack
(α) and the elevator deflection (δe) as input variables. The Fig. 28 shows the behavior of the
input variables and the output variable.

Figure 28 – Numerical correlation between the inputs with the output.
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After selected the training variables, the optimization was performed, using three mem-
bership functions for the input variables, defined as low, medium and high associated with five
output zero order polynomial equations, that is, five constants, according with had been presented
in Chapter 3 with the Takagi-Sugeno inference method. The training graph is presented in Fig.
29.

After the training, the means and standard deviations from the Gaussian’s membership
functions were obtained. It was used three membership functions for each input variable, to
correlate with the output variables. The Tab. 10 shows the means and standard deviations for the
input variables, while Tab. 11 shows the output coefficients.

To validate the training, a portion of the flight data that follows the training region was
selected, as Fig. 30 shows.
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Figure 29 – Numerical X force coefficient training graph.
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Table 10 – Input means and standard deviations values from the Gaussian’s membership functions for Cx

training.

Mean Std
α 1.9416, 2.0647, 3.9132 1.8871, 2.3596, 0.2997
δe -0.1000, -0.0026, 0.0500 0.0279, 0.0076, 0.0074

Source: Elaborated by the author.

Table 11 – Output zero order polynomial values.

Coefficient
CX -0.0414, -0.0480, -0.0395, -0.4400, -0.3486

Source: Elaborated by the author.

Figure 30 – Numerical X force coefficient validation graphs.
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5.1.2 Force Z

Applying the same knowledge from X force coefficient, it is necessary to apply the
rotation matrix presented in Eq. 3.30 to obtain the FZ . Therefore, the FZ can be written as:

FZ =−Dsin(α)cos(β )−S f sin(α)sin(β )−Lcos(α) (5.3)
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After, the CZ coefficient can be written as:

CZ = FZ/qS (5.4)

where q is the dynamic pressure and S is the wing reference area.

The training graph can be observed in Fig. 32 and the correlation between the inputs
with the CZ coefficient can be observed in Fig. 31.

Figure 31 – Numerical correlation between inputs with the output.
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After the training, the means and standard deviations were acquired to correlate the
inputs with the output, which are the same inputs from X force coefficient, angle-of-attack (α)
and elevator deflection (δe).

Tab. 12 shows the means and standard deviations for the input variables, while Tab. 13
shows the output coefficients.

To validate the training process, a portion of the flight data that follows the training
region was selected, as Fig. 33 shows:

5.1.3 Moment M

The XPLANE flight simulator gives the moments value as output data using Eq. 3.40.
Like the forces in longitudinal reference axis, the moment requires two input variables with the



5.1. Longitudinal 75

Figure 32 – Numerical Z force coefficient training graph.
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Table 12 – Input means and standard deviations values from the Gaussian’s membership functions for Cz

training.

Mean Std
α 0.4175, 0.6165, 1.2004 0.3376, 0.4973, 0.4470
δe -0.0600, -0.0611, -0.0600 0.0116, 0.0159, 0.0155

Source: Elaborated by the author.

Table 13 – Output zero order polynomial values.

Coefficient
Cz -0.6000, -0.4280, -0.3224, -0.2041, -0.1945

Source: Elaborated by the author.

Figure 33 – Numerical X force coefficient validation graphs.
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highest correlation between all other variables prescribed by Roskam (1998) in Tab. 7, which
are, in this case, the angle-of-attack rate (α̇) and the elevator deflection rate (δ̇e).

In the same way, the training graph can be observed in Fig. 35 and the correlation between
the inputs with the Cm coefficient can be observed in Fig. 34.

The differential evolution could predict the Gaussian parameters for input variables, in
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Figure 34 – Numerical correlation between inputs with the output.
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Figure 35 – Numerical M moment coefficient training graph.
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addition, predicted the output coefficients as well.

The validation adopted the same portion of flight from the past models, and the graph is
presented in Fig. 36.
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Table 14 – Input means and standard deviations values from the Gaussian’s membership functions for Cm

training.

Mean Std
α̇ -1.0000, 0.5000, 0.6955 0, 0.1892, 0.4415
δ̇e -0.0500, 0.0033, 0.0208 0.0233, 0.0028, 0.0385

Source: Elaborated by the author.

Table 15 – Output zero order polynomial values.

Coefficient
Cm -0.0414, -0.0480, -0.0395, -0.4400, -0.3486

Source: Elaborated by the author.

Figure 36 – Numerical M moment coefficient validation graphs.
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5.2 Lateral-Directional
In this reference axis, the most influential variables are defined in Tab. 7, and two of

them were selected to train the force and moments, by the fact that two variables were chosen in
the experimental models.

5.2.1 Force Y

The force in Y body axis could be written as:

Fy =−Dsin(β )+Scos(β ) (5.5)

Therefore, the Y force coefficient (CY ) is defined as:

CY = FY/qS (5.6)

In the same way, the training graph can be observed in Fig. 38 and the correlation between
the inputs with the CY coefficient can be observed in Fig. 37. Additionally, the Lateral-Directional
has different influential variables, and for Cessna 182 the most influential variables for force Y
are: sideslip angle (β ) and rudder deflection (δr).
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Figure 37 – Numerical correlation between inputs with the output.
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Figure 38 – Numerical Y force coefficient training graph.
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The differential evolution could predict the Gaussian parameters for input variables, in
addition, predicted the output coefficients as well.

To validate the training process, a portion of the flight data that follows the training
region was selected, as Fig. 39 shows:
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Table 16 – Input means and standard deviations values from the Gaussian’s membership functions for CY

training.

Mean Std
β -0.6968, -0.3502, -0.1686 0.2984, 0.3000, 0.3000
δr -0.0405, -0.0300, 0.0497 0.0081, 0.0206, 0.0055

Source: Elaborated by the author.

Table 17 – Output zero order polynomial values.

Coefficient
CY -0.0125, -0.0080, -0.0064, -0.0020, -0.0002

Source: Elaborated by the author.

Figure 39 – Numerical Y force coefficient validation graphs.
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5.2.2 Moment L

Applying the same reason of Force Y, the training graph for the moment L can be
observed in Fig. 38 and the correlation between the inputs with the Cl coefficient can be observed
in Fig. 40. Additionally, the Lateral-Directional has different influential variables, and for Cessna
182 the most influential variables for moment L are: rudder deflection (δr) and aileron deflection
(δa).

The differential evolution could predict the Gaussian parameters for input variables, in
addition, predicted the output coefficients as well.

Table 18 – Input means and standard deviations values from the Gaussian’s membership functions for Cl
training.

Mean Std
δa -0.1331, -0.1000, 0.0209 0.0454, 0.0643, 0.0723
δr -0.0241, 0.0063, 0.0435 0.0289, 0.0050, 0.0476

Source: Elaborated by the author.

To validate the training process, a portion of the flight data that follows the training
region was selected, as Fig. 42 shows:
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Figure 40 – Numerical correlation between inputs with the output.
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Figure 41 – Numerical L moment coefficient training graph.
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Table 19 – Output zero order polynomial values.

Coefficient
Cl -0.0004, -0.0005, 0, -0.0001, 0.0005

Source: Elaborated by the author.
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Figure 42 – Numerical L moment coefficient validation graphs.
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5.2.3 Moment N

The moment N was the last model, ending the numerical modeling. It could be observed,
that the moment N for the Cessna 182 air model does not have many influential variables. As well
as the experimental data training for moment N, only one input variables has high correlation
with the moment, and this variables for the numerical data is the aileron deflection (δa).

The Fig. 43 shows the correlation between the input and output graphs. Also, the
approximation built by the Neuro-Fuzzy with the training numerical data can be observed in Fig.
44.

Figure 43 – Numerical correlation between inputs with the output.
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The parameters predicted by the differential evolution can be seen in Tab 20 and Tab. 21.

To validate the training process, a portion of the flight data that follows the training
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Figure 44 – Numerical N moment coefficient training graph.
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Table 20 – Input means and standard deviations values from the Gaussian’s membership functions for Cn

training.

Mean Std
δa -0.0300, 0.0050, 0.0277 0.0065, 0.0187, 0.0200

Source: Elaborated by the author.

Table 21 – Output zero order polynomial values.

Coefficient
Cn -0.0001, -0.0001, 0.0001
Source: Elaborated by the author.

region was selected, as Fig. 45 shows:

Figure 45 – Numerical N moment coefficient validation graphs.
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5.3 Chapter Expectation
This section exposed every training, validation and correlation graphs for numerical data.

The next chapter will be present the same proceeding, therefore for the experimental results. The
conclusion will be presented in this master thesis last chapter.
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CHAPTER

6
EXPERIMENTAL RESULTS

This chapter will present the aerodynamic modeling for Cessna 182 scaled with the aid
of Pixhawk-PX4 data acquisition system. The forces and moments will be separated into two
main axis, like the past chapter, the longitudinal axis and the lateral-directional axis to facilitate
the analysis. In the following chapter, the results from experimental will be exposed and, in the
next chapter, compared with the numerical results to evaluate the accuracy from experimental
data collected by the Pixhawk-PX4.

According to Fossen (2011), the acceleration in the three body axis, given by the ac-
celerometers, can be written as:

axCG =
X
m

= U̇ +QW −RV +gsin(θ) (6.1)

ayCG =
Y
m

= V̇ +UR−WP−gcos(θ)sin(φ) (6.2)

azCG =
Z
m

= Ẇ +V P−QU −gcos(θ)cos(φ) (6.3)

In addition, according to Chang (2013), the moments coefficients can be calculated
through the gyroscope data (P, Q and R):

ClqSb = IxxṖ− IxzṘ+QR(Izz − Iyy)− IxzPQ (6.4)

CmqSc = IyyQ̇+RP(Ixx − Izz)+ Ixz(P2 −R2)−Tm (6.5)

CnqSb =−IxzṖ+ IzzṘ+PQ(Iyy − Ixx)+ IxzQR (6.6)
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6.1 Longitudinal
This section will present the results from the aerodynamic model created for the analyzed

aircraft in the longitudinal axis. The accelerometer signal multiplied by the aircraft mass, provides
the aerodynamic forces.

6.1.1 Force X

The acceleration on the X axis, from the Inertial Measurement Unit (IMU) directly
connected to the Pixhawk, multiplied by the mass of the aircraft is equivalent to the aerodynamic
force on the X axis, as Eq. 6.1 shows. Thus, the force on X axis is given by:

Fx = m.axCG (6.7)

According to Eq. 3.13, the X force coefficient is:

Cx = Fx/qS (6.8)

The acquisition data was carefully analyzed to decide the most appropriated flight
situation to analyze the longitudinal forces and moments. The portion of the flight selected to do
the Neuro-Fuzzy model training was in the region of the highest altitude variation found in the
telemetry log review.

With the Pearson’s correlation equation, it was possible to find the most influential control
variables for the X force in the Cessna 182 scaled air model. All control variables proposed by
Roskam (1998) cited in Tab. 7 were took in consideration. The Tab. 9 shows the most influential
input parameter for the X force coefficient (Cx). The train time for all forces and coefficient were
about 500 seconds.

In Fig. 46 is possible to observe the correlation between angle-of-attack and u-velocity
(both inputs) with the output CX , being directly and reverse correlation, respectively.

It is notable that the X force coefficient increases proportionately with the angle-of-attack,
which means that the increment of the angle-of-attack increases the induced drag (CDi), reducing
the velocity in X direction (u-velocity). Therefore, the electric motor thrust must increase to
compensate the velocity reduction, increasing the X force.

The Fig. 47 shows the Neuro-Fuzzy fit approximation graph with the flight data graph, it
is possible to observe that the training process resulted in a great polynomial approximation.

The trained mean, standard deviations and constants for Takagi-Sugeno fuzzy inference
method are shown in Tab 22 and 23:

After obtain the Gaussian coefficients and the constant from the first degree polynomial,
values for Cx were obtained from α and u-velocity in a different part of the flight, more precisely,
in the next 30 seconds of flight. The relation between X force coefficient and the input variables
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Figure 46 – Inputs and output correlation graphs for training.
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Table 22 – Input means and standard deviations values from the Gaussian’s membership functions for Cx

training.

Mean Std
α -5.9864, -2.3178, 3.0000 0.8877, 0.9066, 2.5667

u-velocity 11.3172, 12.9712, 18.4247 2.5000, 2.3324, 0.4862
Source: Elaborated by the author.

Table 23 – Output zero order polynomial values for Cx.

Coefficient
Cx -0.0378, 0.0015, 0.0353, 0.0600, 0.1504

Source: Elaborated by the author.

(α and u-velocity) were analyzed, the equation for Cxα
and CxU , were a first or second degree

polynomial, as Fig. 48 shows.



88 Chapter 6. Experimental Results

Figure 47 – Experimental X force coefficient training graph.
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Figure 48 – Experimental X force coefficient validation graphs.
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6.1.2 Force Z

According to Fossen (2011), Fz is the acceleration acquired by the accelerometer coupled
in the IMU from Pixhawk multiplied by the aircraft mass. The equation below shows the Z force
equation for the air model.

Fz = m.azCG (6.9)

In this case, m is the aircraft mass and is equivalent a 1.5 kg, as shown in Tab. 8, with all
embedded electronics, and azCG is the accelerometer measurement for the Z direction acceleration.
The Z force coefficient can be calculated with Eq. 3.16.

In Fig. 49 is possible to observe the correlation between angle-of-attack and u-velocity
(both inputs) with the output Cz, being inverse and directly correlation, respectively. Again, the
angle-of-attack increment decreases the Z force coefficient, because the Z body axis is pointed
to the ground.

The Fig. 50 shows the Neuro-Fuzzy fit approximation graph with the flight data graph, it
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Figure 49 – Experimental inputs and output correlation graphs for training.
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is possible to observe that the training process resulted in a great polynomial approximation.

The trained mean, standard deviations and constants for Takagi-Sugeno fuzzy inference
method are shown in Tab 24 and 25:

Table 24 – Input means and standard deviations values from the Gaussian’s membership functions for Cz

training..

Mean Std
α -5.03, -1.39, -0.36 1.33, 2.66, 1.35

u-velocity 15.00 15.50 20.00 4, 0.1, 2.46
Source: Elaborated by the author.

Table 25 – Output zero order polynomial values.

Coefficient
Cz -0.38, -0.35, -0.18, -0.13, - 0.09

Source: Elaborated by the author.
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Figure 50 – Experimental Z force training graph.
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In this case, the relation between Z force coefficient and the input variables (α and
u− velocity) it was possible to obtain the equation for Czα

and Czu , as shown in Fig. 51.

Figure 51 – Experimental Z force coefficient validation graphs
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6.1.3 Moment M

According to Chang (2013), the moment coefficient in the Y direction, can be calculated
using Eq. 6.5, where q is the dynamic pressure, S is the wing area, b is the wing span, Ixx, Iyy

and Izz are the inertia moments, P is the roll rate, Q is the pitch rate, R is the yaw rate, Ixz is the
inertia product and Tm is the torque, bot are negligible, because of the aircraft symmetry.

In Fig. 52 is possible to observe the correlation between angle-of-attack and w-velocity
(both inputs) with the output Cm. The inputs has directly correlation with the output. The input
variables were chosen according to Tab. 9 shown in the past chapter.

The curve fit for the M moment coefficient training is shown in Fig.53.
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Figure 52 – Experimental inputs and output correlation graphs for M moment coefficient training.
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Figure 53 – Experimental M moment coefficient training graph.
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After the training process, the coefficients from the input membership functions were
acquired as shown in Tab. 26, also the coefficients for the constants zero degree polynomial
values are shown in Tab. 27.
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Table 26 – Input means and standard deviations values from the Gaussian’s membership functions for Cm

training..

Mean Std
α -6.5726, -5.9804, -2.7310 1.0862, 1.1186, 1.1394

w-velocity -1.3620, -1.1373, 0.0532 0.3478, 0.5080, 0.5453
Source: Elaborated by the author.

Table 27 – Output zero degree polynomial values.

Coefficient
Cm −4.75x10−6, 2.09x10−6, −1.91x10−6, 2.00x10−6, 10.0x10−6

Source: Elaborated by the author.

After the training process, the optimized fuzzy parameters were applied in the validation,
using a different portion of the flight, as show in Fig. 54.

Figure 54 – Experimental M moment coefficient validation graphs
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6.2 Lateral-Directional

This subsection will present the results from the aerodynamics model created for the
analyzed aircraft on the lateral-directional axis. The Euler angles rate (roll, pitch and yaw) were
take in considering to estimate the moments coefficients.

6.2.1 Force Y

Similar with the other forces in the longitudinal axis, the force in the Y axis is given as
by the Eq. 3.21, in which Fy is the accelerometer signal in the Y axis (azCG) multiplied by the
aircraft mass (m).

The Fig. 55 shows the correlation between the inputs with the output, which are, accord-
ing to Tab. 9, the aileron deflection (δa) and rudder deflection (δr).
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Figure 55 – Experimental Y force coefficient correlation with inputs.
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Figure 56 – Experimental Y force coefficient training graph.
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The curve fit for the training set can be observed in Fig. 56.

The membership function coefficients and the output constant coefficient optimized are
shown in Tab. 28 and Tab. 29.

Table 28 – Input means and standard deviations values from the Gaussian’s membership functions for Cy

training..

Mean Std
δa -5.1344, -3.5950, -1.9844 0.8577, 0.5348, 0.8603
δr -0.9994, -0.4618, 0.3457 0.3711, 0.4702, 0.4149

Source: Elaborated by the author.
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Table 29 – Output zero order polynomial values.

Coefficient
Cy -0.0092, 0.0005, 0.0087, 0.0120, 0.0238

Source: Elaborated by the author.

To validate the the model created for Y force coefficient, a different portion of the flight
was selected. The Fig. 57 shows the validation graphs and the behavior of CY with the aileron
and rudder deflection.

Figure 57 – Y force coefficient validation graphs.

-5 -4.5 -4 -3.5 -3

Aileron deflection [º]

-0.01

-0.005

0

0.005

0.01

0.015

Y
 F

o
rc

e
 C

o
e
ff

ic
ie

n
t 

(C
Y

)

(a) CY xδa curve

-1 -0.5 0 0.5

Rudder deflection [º]

-0.01

-0.005

0

0.005

0.01

0.015

Y
 F

o
rc

e
 C

o
e
ff

ic
ie

n
t 

(C
Y

)

(b) CY xδr curve

0 2 4 6 8

Time [10
-3

 s] ×10
4

-0.02

-0.01

0

0.01

0.02

C
Y

Neuro-Fuzzy

Flight Data

(c) CY validation.

Source: Elaborated by the author.

6.2.2 Moment L

Similar with the other moment in the longitudinal axis, the moment around the X axis is
given as by the Eq. 3.20.

The Fig. 58 shows the correlation between the inputs with the output.

The curve fit for the training set can be observed in Fig. 59

The membership function coefficients and the output constant coefficient optimized are
shown in Tab. 30 and in Tab. 31.

Table 30 – Input means and standard deviations values from the Gaussian’s membership functions for Cl
training..

Mean Std
β -0.1687, -0.1007, -0.0440 0.0854, 0.0243, 0.0002
R -1.8304, 0.3764, 2.9691 1.2969, 1.8350, 1.8990

Source: Elaborated by the author.

To validate the the model created for L moment coefficient, a different portion of the
flight was selected. The Fig. 60 shows the validation graphs and the relation of Cl with the input
variables.
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Figure 58 – Experimental L moment coefficient correlation with inputs.
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Figure 59 – Experimental L moment coefficient training graph.
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Table 31 – Output zero order polynomial values.

Coefficient
Cl -0.000015, -0.000012, -0.000009, -0.000006, 0.000004

Source: Elaborated by the author.
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Figure 60 – L moment coefficient validation graphs.
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6.2.3 Moment N

The moment around Z axis presented only one variable with a high correlation coefficient,
as shown in Tab. 9. To estimate the N moment, the Eq. 3.22 was used. In the case of the moment
N, only one variable has the PCC above 0.8, and it is the sideslip angle rate (β̇ ).

The Fig. 61 shows the correlation between the input with the output.

Figure 61 – Experimental N moment coefficient correlation with input.
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The curve optimization for the training set, with aid of the differential evolution, can be
observed in Fig. 62.

The membership function coefficients and the output constant coefficient optimized are
shown in Tab. 32 and in Tab. 33.

To validate the the model created for L moment coefficient, a different portion of the
flight was selected. The Fig. 63 shows the validation graphs and the relation of Cn with the input
variables.
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Figure 62 – Experimental N moment coefficient training graph.
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Table 32 – Input means and standard deviations values from the Gaussian’s membership functions for Cn

training..

Mean Std
β̇ -0.0500, 0.1562, 0.2052 0.0717, 0.0090, 0.0889

Source: Elaborated by the author.

Table 33 – Output zero order polynomial values.

Coefficient
Cn -0.0000075, 0.0000155, 0.0000253

Source: Elaborated by the author.

Figure 63 – N moment coefficient validation graphs.
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Source: Elaborated by the author.

6.3 Chapter Expectation

The moment N validation graph showed, was purposeful to demonstrate the conclusion
pointed by Brandon and Morelli (2012), which affirms that the Neuro-Fuzzy can not extrapolate
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the training boundaries. In Fig. 63, the minimum moment N coefficient is almost −2x10−5,
being that in the training graph, presented in Fig. 62, the minimum moment N coefficient is
−0.75x10−5. To close this master thesis, the next chapter will present the conclusions and future
works for the presented work.
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CHAPTER

7
CONCLUSION AND FUTURE WORKS

The numerical and experimental results presented on chapter 5 and chapter 6, showed
that the training process for most forces and moments were successfully done. Therefore the
moments for experimental data did not presented a good validation, because the values of the
moment coefficients are very low.

The validation results, sometimes, presented a inverse correlation between inputs with the
output variable. In Fig. 54 it is evident that the input variables, angle-of-attack (α) and w velocity
do not correlate with the Cm, but in the training flight interval used, they correlated very well.
This incoherence can be due some perturbations during the flight interval or a misunderstand use
of the filters, which can distort the real dynamics of the aircraft.

The acquisition board (Pixhawk-PX4) uses the GPS signal along with the velocity
measured by the pitot tube to calculate the angle-of-attack, during the flight interval applied
to validate the longitudinal forces model, a little interference could happened in the GPS data
signal, because only the u velocity is compatible with the output force coefficient (CX ). However,
is more obviously that the powertrain changed the aircraft characteristic, once this aerodynamic
model did not evaluated the thrust curve for the electric motor used in Cessna 182 air model.

The numerical results are very closely, in scale, if compared with the experimental results,
the main scale difference is presented on the moment graphs, which granted a difference in order
of one or two decimal scale.

The experimental results showed that some stability derivatives are non-linear, like
Cn

β̇
and Czα

expressed in Fig. 51 and Fig. 63, contradicting the approximations proceeded
by numerical and theoretical modelling, which consider the stability derivatives as constant
parameters. The results confirm that sometimes they are just a constant, otherwise, they assume
an equation form.

At the end of the development of this work, from the analysis carried out and the results
obtained, the following suggestions are proposed for its continuity:
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∙ Apply the Neuro-Fuzzy technique on bigger air models, which has more expressive
moments of inertia.

∙ Implement the machine learning technique on the Neuro-Fuzzy models, in order to
extrapolate the training limits.

∙ Acquire richer data from the flight test, encompassing stall recovery, that one may model
non-linear high order aerodynamic stability derivatives.
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