

UNIVERSIDADE FEDERAL DE UBERLÂNDIA - UFU INSTITUTO DE FÍSICA - INFIS PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

Willian Reis Moura do Couto

Estudo de Propriedades Estruturais, Eletrônicas e Magnéticas de folhas de Boro: (i) em Interfaces MoSe₂, WSe₂ e SiO₂-Amorfo; (ii) com adsorção de Metais de Transição

Willian Reis Moura do Couto

Estudo de Propriedades Estruturais, Eletrônicas e Magnéticas de folhas de Boro: (i) em Interfaces MoSe₂, WSe₂ e SiO₂-Amorfo; (ii) com adsorção de Metais de Transição

> Tese apresentada para o Seminário de Defesa de Doutorado para fim de obtenção de título de doutor em Física com área de concentração em Física da Matéria Condensada

Orientador: Roberto Hiroki Miwa

UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE FÍSICA

Uberlândia 2020

	Ficha Catalográfica Online do Sistema de Bibliotecas da UFU com dados informados pelo(a) próprio(a) autor(a).	
C871 2020	Couto, Willian Reis Moura do, 1988- Estudo de Propriedades Estruturais, Eletrônicas e Magnéticas e folhas de Boro: (i) em Interfaces MoSe2, WSe2 e SiO2-Amorfo; (ii) com adsorção de Metais de Transição [recurso eletrônico] / Willian Reis Moura do Couto 2020.	de) 1
	Orientador: Roberto Hiroki Miwa. Tese (Doutorado) - Universidade Federal de Uberlândia, Pós- graduação em Física. Modo de acesso: Internet. Disponível em: http://doi.org/10.14393/ufu.te.2020.383 Inclui bibliografia.	
	 Física. I. Miwa, Roberto Hiroki, 1964-, (Orient.). II. Universidade Federal de Uberlândia. Pós-graduação em Física. III Título. 	
		CDU: 53

Bibliotecários responsáveis pela estrutura de acordo com o AACR2: Gizele Cristine Nunes do Couto - CRB6/2091 Nelson Marcos Ferreira - CRB6/3074

WILLIAN REIS MOURA DO COUTO

Tese apresentada à coordenação do Programa de Pós-graduação em Física do Instituto de Física da Universidade Federal de Uberlândia, para obtenção do título de Doutor em Física.

Uberlândia 19 de março de 2020.

BANCA EXAMINADORA

Dr. Roberto Hiroki Miwa - UFU Universidade Federal de Uberlândia - UFU

Prof. Dr. Raimundo Lora Serrano Universidade Federal de Uberlândia - UFU

Prof. Dr. Tomé Mauro Schmidt Universidade Federal de Uberlândia - UFU

Prof. Dr. Igor Saulo Santos de Oliveira Universidade Federal de Lavras - UFLA

Prof. Dr. José Eduardo Padilha de Souza Instituto Federal do Paraná - UFPR

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Coordenação do Programa de Pós-Graduação em Física Av. João Naves de Ávila, 2121, Bloco 1A, Sala 213 - Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902 Telefone: (34) 3239-4309 - www.infis.ufu.br - cpgfisica@ufu.br

ATA DE DEFESA - PÓS-GRADUAÇÃO

Programa de Pós-Graduação em:	Física				
Defesa de:	Tese de Doutorado				
Data:	Dezenove de Março de 2020	Hora de início:	14:10	Hora de encerramento:	17:20
Matrícula do Discente:	11513FIS006				
Nome do Discente:	Willian Reis Moura do Couto				
Título do Trabalho:	Estudo de Propriedades Estruturais, Eletrônicas e Magnéticas de folhas de Boro: (i) em Interfaces MoSe2, WSe2 e SiO2-Amorfo; (ii) com adsorção de Metais de Transição				
Área de concentração:	Física				
Linha de pesquisa:	Estrutura eletrônica e simulações computacionais				
Projeto de Pesquisa de vinculação:	Simulação computacional aplicada a sistemas 1D e 2D: Estabilidade estrutural, Transporte eletrônico, Fases Topológicas e a interação com superfícies sólidas				

Reuniu-se no Anfiteatro do Bloco 1X, Campus Santa Mônica, da Universidade Federal de Uberlândia, a Banca Examinadora, designada pelo Colegiado do Programa de Pós-graduação em Física, assim composta: Professores Doutores: Raimundo Lora Serrano - INFIS/UFU, Tomé Mauro Schmidt - INFIS/UFU, Igor Saulo Santos de Oliveira - UFLA, José Eduardo Padilha - UFPR e Roberto Hiroki Miwa -INFIS/UFU orientador(a) do(a) candidato(a).

Iniciando os trabalhos o(a) presidente da mesa, Dr(a). Roberto Hiroki Miwa, apresentou a Comissão Examinadora e o candidato(a), agradeceu a presença do público, e concedeu ao Discente a palavra para a exposição do seu trabalho. A duração da apresentação do Discente e o tempo de arguição e resposta foram conforme as normas do Programa.

A seguir o senhor(a) presidente concedeu a palavra, pela ordem sucessivamente, aos(às) examinadores(as), que passaram a arguir o(a) candidato(a). Ultimada a arguição, que se desenvolveu dentro dos termos regimentais, a Banca, em sessão secreta, atribuiu o resultado final, considerando o(a) candidato(a):

Aprovado(a).

Esta defesa faz parte dos requisitos necessários à obtenção do título de Doutor

O competente diploma será expedido após cumprimento dos demais requisitos, conforme as normas do Programa, a legislação pertinente e a regulamentação interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que após lida e achada conforme foi assinada pela Banca Examinadora.

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2212729&infra_siste... 1/2

03/04/2020

SEI/UFU - 1953506 - Ata de Defesa - Pós-Graduação

Documento assinado eletronicamente por Igor Saulo Santos de Oliveira , Usuário Externo , em 20/03/2020, às 16:53, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u> .
Documento assinado eletronicamente por Raimundo Lora Serrano , Professor(a) do Magistério Superior , em 22/03/2020, às 06:04, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u> .
Documento assinado eletronicamente por Roberto Hiroki Miwa , Professor(a) do Magistério Superior , em 26/03/2020, às 07:12, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u> .
Documento assinado eletronicamente por José Eduardo Padilha de Sousa , Usuário Externo , em 30/03/2020, às 10:06, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u> .
Documento assinado eletronicamente por Tome Mauro Schmidt , Professor(a) do Magistério Superior , em 30/03/2020, às 15:32, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u> .
A autenticidade deste documento pode ser conferida no site https://www.sei.ufu.br/sei/controlador_externo.php? acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1953506 e o código CRC CC29F364.

Referência: Processo nº 23117.022139/2020-54

SEI nº 1953506

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2212729&infra_siste... 2/2

Agradecimentos

Agradeço à minha família pelo apoio incondicional durante toda a minha carreira.

Agradeço ao professor Roberto Hiroki pela enorme paciência e dedicação para orientação desse trabalho.

Agradeço à minha esposa Elciane que sempre esteve ao meu lado me dando força nos momentos em que pensei que não conseguiria.

Agradeço aos colegas do grupo do laboratório de Estrutura Eletrônica da UFU por todo suporte fornecido, desde as ferramentas computacionais utilizadas à discussões Físicas dos problemas relacionados ao trabalho.

Agradeço aos orgãos de fomento para pesquisa e desenvolvimento: à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). Ao Centro Nacional de Processamento de Alto Desempenho (CENA-PAD) pelo suporte computacional.

E agradeço Principalmente à Deus pela graça de poder acordar todos os dias e lutar pelos meus objetivos.

Resumo

O sucesso do grafeno despertou grande interesse no desenvolvimento de novos materiais 2D. Assim, nos últimos anos houve um rápido progresso na síntese e caracterização de materiais bidimensionais (2D). Isso porque suas várias propriedades possuem potenciais aplicações em dispositivos tecnológicos diversos. Com isso, investigamos nesse trabalho propriedades eletrônicas, estruturais e magnéticas de monocamadas de folhas de boro, chamadas de borofeno, e a interação dessas com vários outros sistemas. A princípio, foi estudado a interação da interface do borofeno com monocamadas de $MoSe_2$ e WSe_2 , chamadas de dicalcogenetos de metais de transição (TMDC), estabelecendo assim um contato metal-semicondutor. Nesse caso há a formação de uma barreira de potencial chamada de Barreira Schottky. E mostramos que tal barreira pode ser controlada por um campo elétrico externo aplicado. Em seguida investigamos as propriedades magnéticas que surgem ao adsorver metais de transição $(Fe, Co \in Mn)$ em sítios de vacâncias no borofeno. É observado a formação de trilhas magnéticas estáveis, com vários tipos de acoplamento (ferromagnético ou antiferromagnético) dependendo do metal e da fase do borofeno. Por fim, apresentamos também um estudo de incorporação de moléculas de H_2O na superfície do borofeno e também intercalado com um substrato de dióxido de silício amorfo $(a-SiO_2)$. Tal interação é importante na construção de dispositivos diversos como por exemplo os transistores. Mostramos que tanto o borofeno quanto o $a-SiO_2$ apresentam um caráter hidrofóbico.

Palavra Chave: Teoria do Funcional de Densidade. Metais e semicondutores. Barreira de Potencial. Metais de Transição. Amorfo.

Abstract

Graphene's success sparked great interest in the development of new 2D materials. Thus, in recent years there has been rapid progress in the synthesis and characterization of two-dimensional (2D). This is because its various properties have potential applications in diverse technological devices. With that, we investigated in this work electronic, structural and magnetic properties of boron leaf monolayers, called borophen, and their interaction with several other systems. At first, it was studied the interaction of the borophene interface with $MoSe_2$ and WSe_2 monolayers called transition metal dicalcogenides (TMDC), thus establishing a metal-semiconductor contact. In this case, there is the formation of a potential barrier called the Schottky barrier. We show that such a barrier can be controlled by an external electric field. Then we investigate the magnetic properties that arise when adsorbing transition metals (Fe, $Co \in Mn$) in vacancy sites on borophene. The formation of stable magnetic tracks is observed, with various types of coupling (ferromagnetic or antiferromagnetic) depending on the metal and the borophene phase. Finally, we also present a study of incorporation of H_2O molecules on the borophene surface and also intercalated with an amorphous silicon dioxide substrate $(a-SiO_2)$. Such interaction is important in the construction of different devices such as transistors. We show that bothborophen and $a-SiO_2$ have a hydrophobic character.

Keyword: Density Functional Theory. Metals and semiconductors. Potential Barrier. Transition metals. Amorphous.

Sumário

1	Intr	roduçã)	1		
2	Met	Metodologia				
	2.1	Proble	ma Quântico de Elétrons Interagentes	5		
		2.1.1	A Equação de Schrödinger	5		
		2.1.2	Princípio Variacional	7		
		2.1.3	Aproximação de Born-Oppenheimer	8		
		2.1.4	Antissimetria da Função de Onda Eletrônica	11		
	2.2	Teoria	do Funcional da Densidade	12		
		2.2.1	Teoremas de Hohenberg-Kohn	12		
		2.2.2	As Equações de Kohn-Sham	15		
		2.2.3	Aproximações para o funcional de troca-correlação	18		
		2.2.4	Cálculo da Energia Total	20		
		2.2.5	Base de Ondas Planas	21		
		2.2.6	Método do Pseudopotencial	22		
		2.2.7	O método PAW	25		
	2.3	O Cód	igo Computacional VASP	28		
3	A E	Barreira	${f a} \ Schottky \ {f em} \ {f Interfaces} \ {f Metal}/{f Semicondutor}$	29		
3	A E 3.1	Barreir a Propri	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 \in S2 \dots \dots \dots \dots$	29 31		
3	A E 3.1	Barreir Propri 3.1.1	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 \in S2 \dots \dots \dots \dots$ Propriedades Estruturais	29 31 31		
3	A E 3.1	Barreira Propri 3.1.1 3.1.2	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 \in S2 \dots \dots \dots \dots$ Propriedades Estruturais	 29 31 31 32 		
3	A E 3.1 3.2	Barreira Propri 3.1.1 3.1.2 Hetero	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2, WSe_2, S0, S1 \in S2 \dots \dots \dots$ Propriedades Estruturais	 29 31 31 32 33 		
3	A E 3.1 3.2	Barreir: Propri 3.1.1 3.1.2 Heterc 3.2.1	a <i>Schottky</i> em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 \in S2 \dots \dots \dots$ Propriedades Estruturais	 29 31 31 32 33 33 		
3	A E 3.1	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2	a <i>Schottky</i> em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2, WSe_2, S0, S1 \in S2 \dots \dots \dots$ Propriedades Estruturais	 29 31 31 32 33 33 34 		
3	A E 3.1 3.2	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2, WSe_2, S0, S1 \in S2 \dots \dots \dots$ Propriedades Estruturais	 29 31 31 32 33 33 34 36 		
3	A E 3.1 3.2	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3 3.2.4	a <i>Schottky</i> em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 \in S2 \dots \dots \dots \dots$ Propriedades Estruturais	 29 31 31 32 33 33 34 36 38 		
3	A E 3.1 3.2 3.3	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3 3.2.4 Aplica	a Schottky em Interfaces Metal/Semicondutoredades dos sistemas isolados: $MoSe_2, WSe_2, S0, S1 \in S2 \dots \dots$ Propriedades Estruturais $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ Propriedades Eletrônicas $\dots \dots \dots$ ojunções Borofeno/TMDC $\dots \dots \dots$	 29 31 31 32 33 33 34 36 38 38 		
3	A E 3.1 3.2 3.3	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3 3.2.4 Aplica 3.3.1	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 \in S2$ Propriedades Estruturais Propriedades Eletrônicas junções Borofeno/TMDC Propriedades Estruturais e Energéticas Alinhamento de Bandas e Transferência de Carga Alinhamento de Bandas e Transferência de Carga A Barreira Schottky ção de E_{\perp} à superfície Metal/Semicondutor Campo elétrico e a Transferência de Carga $\Delta \rho$	29 31 32 33 33 34 36 38 38 38 39		
3	A E 3.1 3.2 3.3	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3 3.2.4 Aplica 3.3.1 3.3.2	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 e S2 \dots \dots$ Propriedades Estruturais $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ propriedades Eletrônicas $\dots \dots \dots$ junções Borofeno/TMDC $\dots \dots \dots$	29 31 32 33 33 34 36 38 38 39 40		
3	A E 3.1 3.2 3.3 3.4	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3 3.2.4 Aplica 3.3.1 3.3.2 Conche	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 e S2$ Propriedades Estruturais Propriedades Eletrônicas ojunções Borofeno/TMDC Propriedades Estruturais e Energéticas Alinhamento de Bandas e Transferência de Carga Alinhamento de Bandas e Transferência de Carga A Barreira Schottky ção de E_{\perp} à superfície Metal/Semicondutor campo elétrico e a Transferência de Carga $\Delta \rho$ Estrutura Eletrônica e Barreira Schottky em Função do Campo Elétrico	 29 31 32 33 34 36 38 39 40 43 		
3	A E 3.1 3.2 3.3 3.4 Ad	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3 3.2.4 Aplica 3.3.1 3.3.2 Conche	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 e S2$ Propriedades Estruturais Propriedades Eletrônicas junções Borofeno/TMDC propriedades Estruturais e Energéticas Alinhamento de Bandas e Transferência de Carga Estrutura Eletrônica A Barreira Schottky ção de E_{\perp} à superfície Metal/Semicondutor Campo elétrico e a Transferência de Carga $\Delta \rho$ Estrutura Eletrônica e Barreira Schottky em Função do Campo Elétrico esões	 29 31 32 33 34 36 38 39 40 43 44 		
3	A E 3.1 3.2 3.3 3.4 Ad 4.1	Barreir: Propri 3.1.1 3.1.2 Hetero 3.2.1 3.2.2 3.2.3 3.2.4 Aplica 3.3.1 3.3.2 Conclu sorção Adsoro	a Schottky em Interfaces Metal/Semicondutor edades dos sistemas isolados: $MoSe_2$, WSe_2 , $S0$, $S1 e S2$ Propriedades Estruturais Propriedades Eletrônicas junções Borofeno/TMDC Propriedades Estruturais e Energéticas Alinhamento de Bandas e Transferência de Carga Estrutura Eletrônica A Barreira Schottky ção de E_{\perp} à superfície Metal/Semicondutor Campo elétrico e a Transferência de Carga $\Delta \rho$ Estrutura Eletrônica e Barreira Schottky em Função do Campo Elétrico Isões de Metais de Transição em Borofeno ção de Metais de Transição sobre Borofeno	 29 31 32 33 34 36 38 39 40 43 44 45 		

		4.1.2 Estabilidade energética e propriedades eletrônicas de $MT/S1$	47
	4.2	Formação de trilhas de MT em Borofeno	48
		4.2.1 Estrutura eletrônica e Imagens STM de MT -T ₁ e MT -T ₂	54
	4.3	Trilhas de MT em Heterojunções $S0-S1$	58
		4.3.1 Arranjo Estrutural e Propriedades Energéticas.	59
		4.3.2 Estrutura Eletrônica das Heterojunções S0-S1 com Trilhas de $Fe \in Mn$	62
		4.3.3 Estrutura Eletrônica e Imagens STM de S0-S1 com Trilhas de Fe e Mn \ldots .	66
	4.4	Conclusões	68
5	Tril	lhas de Alta Concentração de MT em Junções $S1$ - $S2$	69
	5.1	$MT \text{ em } S1 \text{ e } S2 \dots $	70
	5.2	Alta Concentração de MT em $S1$ e $S2$	71
		5.2.1 Propriedades Estruturais e Energéticas	71
		5.2.2 Propriedades Eletrônicas e Imagens STM	74
	5.3	Alta Concentração de MT em Heterojunções $S1-S2$	78
		5.3.1 Propriedades Estruturais e Energéticas	78
		5.3.2 Propriedades Eletrônicas e Imagens STM	81
	5.4	Conclusões	90
6	Inco	orporação de H ₂ O em Interface Borofeno / a-SiO ₂	92
	6.1	Borofeno Adsorvido sobre a-SiO $_2$	92
	6.2	Adsorção de H_2O sobre Borofeno e sobre a-SiO_2 isolados	96
		6.2.1 $H_2O/Borofeno$	96
		6.2.2 $H_2O/a-SiO_2$	100
	6.3	Incorporação de molécula de H_2O na interface Borofeno/a-SiO_2	101
	6.4	Conclusões	108
A	AE	Barreira Schottky	109
в	Fun	ncionais Híbridos	112
С	Inte	eração de van der Waals	115
D	Car	rgas de Bader	117
\mathbf{E}	\mathbf{DF}'	$\mathbf{T} + \mathbf{U}$	119
\mathbf{F}	Ima	agens STM	122
\mathbf{G}	Inte	eração de Troca	124
Re	eferê	encias Bibliográficas	126

SUMÁRIO

Capítulo 1

Introdução

Após a descoberta experimental do grafeno por Novoselov *et al.* (2004) um imenso número de pesquisas tem se voltado para sistemas compostos por camadas com espessuras atômicas, os chamados sistemas 2D. Nesse sentido, materiais, além do grafeno tem sido reportados na literatura, tais como siliceno, germaneno, fosforeno, dissulfeto metálico, etc. Com base nisso, um material que apresenta várias propriedades únicas a ponto de ser apontado como concorrente direto do grafeno, é chamado de borofeno, que são folhas 2D compostas por átomos de Boro. Assim como grafeno, que possui uma variedade muito grande de alótropos: fulerenos, nanotubos, grafite, etc., o borofeno possui uma variedade de fases estruturais. Isto é, borofeno com várias configurações geométricas têm sido sintetizadas, as quais são destacadas nos trabalhos realizados por (Mannix *et al.*, 2015), (Feng *et al.*, 2016), (Liu *et al.*, 2018) e (Zhang *et al.*, 2017). As propriedades físicas podem variar significativamente de uma estrutura para outra como apontam os autores. O objetivo principal dessa tese é o estudo das várias propriedades do borofeno nessas fases distintas. Além disso, estudaremos também como determinadas propriedades podem variar quando montamos interfaces entre borofenos e outros sistemas.

O marco histórico no estudo da eletrônica foi dado em 1906 com a invenção de Lee de Forest, nos Estados Unidos, da válvula triodo, um dispositivo capaz de amplificar sinais elétricos. A eletrônica passou então a ser o ramo da tecnologia mais marcante do século XX. O funcionamento de uma válvula triodo, assim como todas as válvulas, eram baseados simplesmente no controle do movimento dos elétrons entre os eletrodos por meio da ação de um campo elétrico. Esta é a origem do nome **Eletrônica** (Rezende, 2015). Através disso, foi possível construir o rádio, sistemas de comunicação através de voz e da música, que foi o principal produto da eletrônica durante a primeira metade de século XX. No entanto, os dispositivos baseados à válvulas tinham grandes limitações: as válvulas eram grandes e aqueciam muito, tinham vida curta e difícil fabricação, dentre outras desvantagens técnicas. Com base nisso, surgiu em 1947 o transistor, descoberto por J. Bardeen, W. Brattain e W. Schockley, três físicos dos laboratórios da Bell Telephone. Por suas descobertas do efeito dos transistores eles receberam o prêmio Nobel de Física de 1956.

O princípio básico de funcionamento dos transistores está ligado à heterojunção entre materiais do tipo p e n, em geral semicondutores, assim como ocorre nos diodos. É possível dopar diversas regiões de um mesmo material semicondutor através de diferentes impurezas, o que possibilita a fabricação de uma grande variedade de dispositivos tais como Diodo e Transistores. As figuras (1.1) e (1.2) ilustram um transistor bipolar de junção e um Transistor de Efeito de Campo (FET), respectivamente. A principal diferença entre eles está na forma como o sinal de saída é controlado.

Figura 1.1: Estrutura planar de um transistor bipolar de junção com algumas dimensões típicas. Figura extraída de (Rezende, 2015).

Figura 1.2: Etrutura do Transistor de Efeito de Campo (FET) de junção metal-semicondutor. Figura extraída de (Rezende, 2015).

No Transistor Bipolar, o sinal de saída é controlado por uma corrente de entrada, a qual é constituída por portadores majoritários (elétrons para semicondutor tipo n ou buracos para semicondutor tipo p) em movimento de difusão. Por outro lado, no FET o sinal de saída é controlado por uma tensão de entrada (ou campo elétrico), daí o termo Efeito de Campo, e a corrente de saída é dada por portadores majoritários em movimento de deriva. O grande interesse no estudo dos FET é o fato do terminal metálico da porta (ponto P da figura (1.2) está em contato direto com o semicondutor, formando assim uma junção metal-semicondutor, a qual é caracterizada pela formação de uma barreira de potencial chamada Barreira Schottky. Essa barreira é responsável pela espessura do canal através do qual os portadores são transferidos entre a fonte (ponto F) e o dreno (saída D). Devido ao contato metal-semicondutor e a formação da barreira Schottky, a resposta na variação de espessura do canal é mais rápida do que nas junções de semicondutores p-n, o que possibilita o dispositivo ser usado em aplicações de altas frequências. Um estudo mais detalhado de junção metal-semicondutor é feito no apêndice A.

Para um bom funcionamento de um FET uma boa dopagem do semicondutor é de fundamental importância. Parte desse trabalho, é destinado ao estudo do contato metal-semicondutor, em que o metal considerado é composto por folhas de boro (borofeno fase S0 de (Mannix et al., 2015), $S1 \in S2$ de (Feng *et al.*, 2016)) e o semicondutor composto por monocamadas de $MoSe_2 \in WSe_2$ conhecidos como Dicalcogenetos de Metais de Transição (TMDC). Nesse contato, borofeno-TMDC, o semicondutor é do tipo p. Entretanto, FETs baseados em TMDCs têm uma certa limitação devido a altos valores da altura da barreira Schottky de tipo p nesses materiais e da dificuldade na injeção de buracos em TMDC (a fim de dopar o semicondutor). Chuang et al. (2014) mostram que o óxido de molibdênio $(M_oO_x, x < 3)$ atua de forma eficiente na injeção de buracos no MoS_2 e WSe_2 , e que o contato formado com esses materiais é um bom candidato para formar a fonte e o dreno em um FET tipo p. Da mesma maneira, (Musso et al., 2014) mostram que grafeno oxidado, o qual garante uma eficiente injeção de buracos em monocamadas de MoS_2 , também permite um bom contato para fonte e dreno. Entretanto o controle da barreira Schottky para semicondutores tipo p segue sendo um desafio. Nosso objetivo no estudo de interface metal-semicondutor é tentar obter tal controle na barreira Schottky usando, para isso, folhas de boro e TMDCs ($MoSe_2 \in WSe_2$), como dito anteriormente. A discussão desses resultados é feita no capítulo 3.

Não podemos deixar de mencionar que a fabricação de um transistor ou um diodo simples de junção requer o uso de um substrato (Rezende, 2015). De longe, o mais usado é o óxido de silício, SiO_2 . Dessa forma torna-se interessante estudar as propriedades eletrônicas da interface borofeno/ SiO_2 . Isso foi feito no capítulo 6. Para isso, usamos as fases $S0 \in S1$ do borofeno. Foi

3

possível observar, como será discutido, que os borofenos apresentam-se tipo p, isto é, perdem uma certa quantidade de carga, a qual fica localizada na interface. Esse processo de dopagem também foi notado no grafeno adsorvido em SiO_2 amorfo por Miwa *et al.* (2011). Além disso, estudamos também a incorporação de moléculas de H_2O à interface, as quais podem modificar a densidade de carga na interface de acordo com Scopel *et al.* (2017), que estudaram a interação do SiO_2 amorfo com o fosforeno (monocamada de fósforo).

Assim como uma impureza em semicondutores pode levá-los a uma dopagem tipo-p ou tipo n, e promover aplicações em diodos e transistores, existem impurezas que podem fazer sistemas metálicos, a princípio, adquirir propriedades magnéticas relevantes para aplicações em dipositivos eletrônicos, como por exemplo *spintrônica*. A spintrônica é uma tecnologia que atrai muito a atenção dos pesquisadores, e consiste no estudo da eletrônica baseadas também nas propriedades de spin dos elétrons. Seu principal objetivo consiste no controle de propriedades magnéticas, além é claro, do controle das propriedades eletrônicas como um todo (Krasheninnikov et al., 2009), Sevincli et al. (2008). O conhecimento de propriedades de transporte eletrônico, tais como as características da curva I-V (corrente e tensão) dentre outras, em materiais é de fundamental importância para aplicação em dispositivos como um todo. Nesse sentido, os cálculos de transporte eletrônico em materiais 2D tem chamado muita atenção nos ultimos anos. Por exemplo, Padilha et al. (2016) mostra que borofeno S0 apresenta uma anisotropia de corrente elétrica em relação a direção do transporte. Tal anisotropia pode ser controlada por meio de uma tensão ou compressão externa aplicada ao sistema. De forma semelhante, Shukla et al. (2018) aplicam uma tensão/compressão nas fases $S1 \in S2$ do borofeno, os quais também apresentaram um certa anisotropia direcional em suas propriedades de transporte. Dessa forma, em ambos os casos é possível obter um controle das propriedades de transporte de acordo com as características desejadas por meio de uma tensão ou compressão relativamente baixas da estrutura do sistema, a figura (1.3) mostra algumas curvas características de corrente e voltagem (I-V) em função da tensão/compressão aplicada. Por outro lado, de Oliveira et al. (2018) estudou linhas de defeitos extensas no grafeno e adsorção de uma molécula doadora de elétrons, tetrathiafulvalene (TTF), em tais defeitos. Seus resultados mostram que a molécula induz uma magnetização próxima ao sítio na qual foi adsorvida. Tal magnetização pode ser aumentada ou diminuída mediante aplicação de um campo elétrico externo. Os cálculos de transporte eletrônico revelam que existe uma anisotropia de spin que é mediada pela ação do campo

Figura 1.3: (a)-(d) Características I-V do borofeno S1 (β_{12}), (e)-(h) borofeno S2 (χ) ao longo das direções x e y devido aplicação de uma tensão unidirectional 2 % e 6 %. Figura extraída de (Shukla *et al.*, 2018).

elétrico externo, e assim, dando origem a uma corrente eletrônica de spin polarizada no grafeno.

Seguindo essa linha, estudamos as diversas fases do borofeno S0, S1e S2, mencionadas acima, além das fases Hr-sB (Zhang *et al.*, 2017) e também heterestruturas formadas pelas fases S1 e S2 (Liu *et al.*, 2018), incorporadas com metais de transição (MT) formando trilhas com baixa e alta concentração (átomos de MT/ átomos de Boro). Os metais de transição escolhidos são aqueles que possuem alto valor de momento magnético, a saber: Co, Fe e Mn. Dessa maneira, esperamos obter um conjunto de sistemas com propriedades magnéticas relevantes que possam ser usados para cálculos de transporte eletrônico e aplicações em dispositivos eletrônicos no geral. Resultados e discussões das propriedades eletrônicas e magnéticas de MT adsorvidos em borofeno serão descritas nos capítulos 4 e 5.

No capítulo seguinte, discutiremos a metodologia computacional necessária para descrever todas essas propriedades mencionadas acima.

Capítulo 2

Metodologia

2.1 Problema Quântico de Elétrons Interagentes

Para uma compreensão das propriedades de sólidos e moléculas é necessário analisar os problemas quânticos de sistemas de muitas partículas interagentes, dessa maneira é possível conhecer e entender melhor a estrutura eletrônica de átomos, moléculas, sólidos, etc. Nestes casos, estão presentes interações coulombianas entre pares de elétrons, pares de núcleos e também entre elétrons e núcleos. Nesta seção abordaremos a solução geral para estes sistemas a qual é dada pela solução aproximada da equação de Schrödinger. Discutimos também o *princípio variacional*, com o qual podemos, por exemplo, calcular a energia do estado fundamental, E_o , para um sistema descrito por um hamiltoniano \hat{H} , em que não podemos resolver a equação de Schrödinger independente do tempo. Com este princípio, é possível obter um valor de energia para o estado fundamental que pode ser bem próximo do valor exato E_o .

Abordaremos uma aproximação com a qual podemos desacoplar o movimento eletrônico do movimento nuclear, considerando que os núcleos têm massa muito maior que a massa dos elétrons, sendo assim, os mesmos podem ser considerados como partículas clássicas fixas. Tal aproximação é chamada de *aproximação de Born-Oppenheimer* (de La PEÑA, 1991). Dessa maneira o problema eletrônico reduz-se ao movimento dos elétrons num campo "externo" criado pelos núcleos fixos.

Conceitos, como o princípio da exclusão de Pauli, que traz como consequência a antissimetria para a função de onda eletrônica também são discutidos.

2.1.1 A Equação de Schrödinger

Para sistemas quânticos de muitas partículas tanto a solução do problema quanto o conhecimento e a determinação de propriedades fundamentais podem ser obtidos por meio da equação completa de Schrödinger para o sistema, que por sua vez, é constituído de núcleos e elétrons. Os elétrons de valência (elétrons "menos" presos aos núcleos), que são responsáveis pelas propriedades químicas do sistema, movem-se com velocidades muito menores que a velocidade da luz, sendo, neste caso não-relativísticos. A equação de Schrödinger não-relativística dependente do tempo é:

$$i\hbar\frac{\partial}{\partial t}\Psi(\vec{x_i},\vec{R}_A,t) = \hat{H}(\vec{x_i},\vec{R}_A,t), \qquad (2.1)$$

em que $\vec{x_i}$ representa as coordenadas eletrônicas (com $\vec{x_i} = \vec{x_i}(\vec{r_i}, \sigma_i)$ no qual $\vec{r_i}$ são as coordenadas espaciais e σ_i as coordenadas de spin do *i*-ésimo elétron), \vec{R}_A representa as coordenadas dos núcleos atômicos, \hat{H} é o operador hamiltoniano do sistema que é construído como a soma do operador energia cinética total \hat{T} (energia cinética dos núcleos mais energia cinética dos elétrons), com o operador energia potencial total \hat{V} (operador energia potencial coulombiano de interação: elétronelétron, núcleo-elétron e núcleo-núcleo). Ambos os operadores energia cinética total \hat{T} e o operador energia potencial total \hat{V} são supostos independentes do tempo. Dessa forma a função de onda completa $\Psi(\vec{x_i}, \vec{R}_A, t)$ pode ser descrita como o produto de uma função das coordenadas $\psi(\vec{x_i}, \vec{R}_A)$ por uma função do tempo $\varphi(t)$ como:

$$\Psi(\vec{x_i}, \vec{R}_A, t) = \psi(\vec{x_i}, \vec{R}_A)\varphi(t).$$
(2.2)

Substituindo a equação (2.2) na equação (2.1), temos:

$$i\hbar\psi(\vec{x_i}, \vec{R}_A)\frac{d}{dt}\varphi(t) = \varphi(t)\hat{H}\psi(\vec{x_i}, \vec{R}_A), \qquad (2.3)$$

usando a técnica de separação de variáveis, para resolver a equação (2.3), com constante de separação E obtemos,

$$\hat{H}\psi(\vec{x_i}, \vec{R}_A) = E\psi(\vec{x_i}, \vec{R}_A) \tag{2.4}$$

е

$$\varphi(t) = e^{-i\frac{E}{\hbar}t}.$$
(2.5)

A equação (2.4) é a equação de Schrödinger independente do tempo, e a equação (2.5) nos fornece a parte temporal (a menos de uma constante multiplicativa) da função de onda total.

Para um sistema constituído de N elétrons localizados em $\vec{x_i}$, e M núcleos em $\vec{R_A}$, o hamiltoniano, desconsiderando a interação spin-órbita, e na ausência de campos externos é dado de acordo com (Perdew e Kurth, 2003), em unidades atômicas, por:

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \frac{1}{2} \sum_{A=1}^{M} \frac{\nabla_{A}^{2}}{M_{A}} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{|\vec{r_{i}} - \vec{R}_{A}|} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{|\vec{r_{i}} - \vec{r_{j}}|} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{|\vec{R}_{A} - \vec{R}_{B}|}, \quad (2.6)$$

onde os termos do segundo membro referem-se, respectivamente, ao operador energia cinética para os elétrons \hat{T}_e , o operador energia cinética para os núcleos \hat{T}_n (onde M_A é a massa dos núcleos em unidades atômicas), o operador energia potencial de atração núcleo-elétron \hat{V}_{ne} , o operador energia potencial de repulsão elétron-elétron \hat{V}_{ee} , e por fim o operador energia potencial de repulsão núcleonúcleo \hat{V}_{nn} . Assim, podemos simplificar a notação para escrever o hamiltoniano da equação (2.6) como:

$$\hat{H} = \hat{T}_e + \hat{T}_n + \hat{V}_{ne} + \hat{V}_{ee} + \hat{V}_{nn}.$$
(2.7)

A equação de Schrödinger (2.4) é uma equação de autovalores, e possui soluções da forma,

$$\hat{H}\psi_k(\vec{x_i}, \vec{R}_A) = E_k\psi_k(\vec{x_i}, \vec{R}_A) \tag{2.8}$$

onde $\psi_k(\vec{x_i}, \vec{R_A})$ representa a função de onda do k-ésimo estado do sistema, E_k o autovalor correspondente ao autoestado $\psi_k(\vec{x_i}, \vec{R_A})$ e k o conjunto de números quânticos que especificam completa-

mente o estado do sistema. Com exceção da evolução temporal do sistema dada pela equação (2.5), a função $\psi_k(\vec{x_i}, \vec{R_A})$ contém toda informação que é possível conhecer sobre o sistema. Deste modo, uma vez conhecida a função de onda ψ , podemos calcular o valor esperado de qualquer operador \hat{F} , correspondente à grandeza física F, por meio da expressão:

$$F[\psi] = \frac{\langle \psi | \hat{F} | \psi \rangle}{\langle \psi | \psi \rangle}, \qquad (2.9)$$

onde o denominador da equação (2.9) é unitário se a função de onda for normalizada. De modo geral, a condição de normalização e também de ortogonalidade dessas funções podem ser tomadas como:

$$\langle \psi_k | \psi_l \rangle = \int \psi_k^* \psi_l d\Omega = \delta_{kl}, \qquad (2.10)$$

onde δ_{kl} é a delta de Kronecker, que é igual a 1 se k = l no caso em que os autoestados são normalizado e igual a 0 se $k \neq l$ para o caso em que os autoestados são ortogonais.

2.1.2 Princípio Variacional

Dado um sistema quântico qualquer (átomo, molécula, etc.), todas as propriedades de interesse desse sistema podem ser obtidas por meio da equação (2.9), uma vez conhecida a função de onda ψ_k , que por sua vez, é uma solução da equação de Schrödinger (2.8) desse sistema. Suponha dessa maneira, que precisamos calcular a energia do estado fundamental E_o de um dado sistema caracterizado por um hamiltoniano \hat{H} . De imediato nos deparamos com um problema, uma vez que na prática pouquíssimos sistemas atômicos, que são exceções triviais, têm solução exata da equação de Schrödinger. No entanto com o **princípio variacional**, podemos obter um limite superior para a energia do estado fundamental E_o .

Assim, pode ser mostrado que a equação de Schrödinger é decorrente da condição de extremo do funcional

$$E[\psi] = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}, \qquad (2.11)$$

em que \hat{H} é o operador hamiltoniano do sistema físico Vianna *et al.* (2004). Dessa forma o princípio variacional estabelece que para qualquer estado dinâmico $|\psi\rangle$ do sistema físico, descrito por \hat{H} , o valor médio de sua energia será igual ou maior do que a energia E_o do estado fundamental $|\psi_o\rangle$. De fato, seja a equação de Schrödinger para um estado $|\varphi_a\rangle$ normalizado qualquer, isto é,

$$\hat{H}|\varphi_a\rangle_a = E_a|\varphi_a\rangle. \tag{2.12}$$

Os autovetores de (2.12) formam, dessa maneira, um conjunto completo, $\{|\varphi_a\rangle\}$, de modo que é possível expandir qualquer vetor de estado $|\psi\rangle$ em termos destes vetores, logo

$$|\psi\rangle = \sum_{a} C_{a} |\varphi_{a}\rangle, \qquad (2.13)$$

e supondo $\langle \psi | \psi \rangle = 1$ na equação (2.11), isto resulta em

$$1 = \langle \psi | \psi \rangle = \sum_{a} \sum_{b} C_a^* C_b \langle \varphi_a | \varphi_b \rangle = \sum_{a} |C_a|^2, \qquad (2.14)$$

onde $0 \leq |C_a| \leq 1$ para qualquer a que seja. Assim da equação (2.11), temos que

$$E[\psi] = \langle \psi | \hat{H} | \psi \rangle = \sum_{a,b} \langle \varphi_a | \hat{H} | \varphi_b \rangle C_a^* C_b = \sum_{a,b} E_b \langle \varphi_a | \varphi_b \rangle C_a^* C_b = \sum_a E_a |C_a|^2,$$
(2.15)

é uma relação exata, ou seja, $E[\psi]$ é uma soma ponderada dos autovalores de \hat{H} , para qualquer $|\psi\rangle$. Assim, para o estado fundamental sabemos que

$$E_o \le E_a \tag{2.16}$$

para qualquer estado $|\varphi\rangle$, então

$$E[\psi] = \sum_{a} E_{a} |C_{a}|^{2} \le E_{o} \sum_{a} |C_{a}|^{2} = E_{o}, \qquad (2.17)$$

logo,

$$E[\psi] \ge E_o. \tag{2.18}$$

Como a função de onda exata ψ é, em geral, desconhecida, aproxima-se esta função de onda por uma função de onda aproximada $\tilde{\psi}$, que satisfaça as mesmas condições de contorno que a função de onda exata e possa representar a natureza física do problema. Assim, chegamos a

$$E[\psi] \ge E_o. \tag{2.19}$$

Desse modo minimizando $E[\tilde{\psi}]$, isto é

$$E[\tilde{\psi}]_{min} = E[\tilde{\psi}_o] = \langle \tilde{\psi}_o | \hat{H} | \tilde{\psi}_o \rangle \tag{2.20}$$

chegamos a um valor próximo para a energia do estado fundamental, que pode ser o valor exato se a função de onda aproximada do estado fundamental $\tilde{\psi}_o$ for idêntica à função de onda exata ψ_o do estado fundamental, ou seja, se $\tilde{\psi}_o = \psi_o$.

2.1.3 Aproximação de Born-Oppenheimer

Para um sistema quântico de muitas partículas constituídos de N elétrons e M núcleos interagentes, a equação de Schrödinger, equação (2.8), não pode ser resolvida de forma exata. É possível observar que, como a massa dos núcleos é muito maior que a massa dos elétrons é de se esperar que os mesmos se movam muito mais lentamente do que os elétrons. Logo é possível separar o movimento eletrônico do movimento nuclear, o que é quase invariavelmente o primeiro passo em qualquer aplicação da mecânica quântica à moléculas e cristais Vianna *et al.* (2004).

A separação do movimento nuclear do eletrônico é baseada na aproximação de Born-Oppenheimer, que tem como ideia fundamental justamente o fato de que a razão entre as massas do elétron e do núcleo é suficientemente pequena de tal maneira que os núcleos não acompanham a rápida mudança dos elétrons e dessa forma podem ser considerados fixos Born e Huang (1954); Born e Oppenheimer (1927). Com isso, considera-se com boa aproximação que os elétrons se movem em um campo gerado pelos núcleos fixos. Com base nessa aproximação vemos que o termo de energia cinética nuclear \hat{T}_n em (2.7) é muito pequeno comparado aos outros termos de modo que, partindo da equação de Schrödinger¹ (2.8),

$$\hat{H}\psi(\vec{x_i}, \vec{R}_A) = E\psi(\vec{x_i}, \vec{R}_A), \qquad (2.21)$$

podemos escrever o hamiltoniano do sistema, \hat{H} , como

$$\hat{H} = \hat{T}_e + \hat{T}_n + \hat{V}_{ne} + \hat{V}_{ee} + \hat{V}_{nn} \longrightarrow \hat{T}_e + \hat{V}_{ne} + \hat{V}_{ee} + \hat{V}_{nn} = \hat{H}_T,$$
(2.22)

 $\operatorname{com} \hat{H}_T$, é o hamiltoniano total. Assim podemos escrever,

$$\hat{H}_T = \hat{H}_{ele} + \hat{V}_{nn} \tag{2.23}$$

onde $\hat{H}_{ele} = \hat{T}_e + \hat{V}_{ne} + \hat{V}_{ee}$ é denominado hamiltoniano eletrônico, que tem a propriedade de comutar com {**R**} ([\hat{H}_{ele} , **R**]=0) de forma que eles podem ter autoestados simultâneos, assim os autovalores do hamiltoniano eletrônico podem ser determinados para particulares posições nucleares \vec{R}_A , de modo que:

$$\hat{H}_{ele}\psi^e_m(\vec{x}_i, \vec{R}_A) = \epsilon_m(\vec{R}_A)\psi^e_m(\vec{x}_i, \vec{R}_A), \qquad (2.24)$$

onde $\psi_m^e(\vec{x}_i, \vec{R}_A)$ é a função de onda eletrônica e $\epsilon_m(\vec{R}_A)$ a respectiva energia eletrônica. Podemos observar que a função de onda eletrônica e a respectiva energia eletrônica dependem de forma paramétrica das coordenadas fixas dos núcleos \vec{R}_A . Assim, da equação de Schrödinger (2.21), podemos escrever

$$\hat{H}_T \psi(\vec{x_i}, \vec{R}_A) = (\hat{H}_{ele} + \hat{V}_{nn})\psi(\vec{x_i}, \vec{R}_A) = E_m(\vec{R}_A)\psi(\vec{x_i}, \vec{R}_A),$$
(2.25)

e a energia total $E_m(\vec{R}_A)$ é então,

$$E_m(\vec{R}_A) = \epsilon_m(\vec{R}_A) + \sum_{A=1}^M \sum_{B < A}^M \frac{Z_A Z_B}{|\vec{R}_A + \vec{R}_B|}.$$
 (2.26)

Com a aproximação de Born-Oppenheimer podemos considerar que $\psi(\vec{x_i}, \vec{R}_A)$ (a função de onda total do sistema) possa ser escrita como o produto:

$$\psi(\vec{x_i}, \vec{R}_A) = \psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i, \vec{R}_A), \qquad (2.27)$$

onde $\psi_m^n(\vec{R}_A)$ é a função de onda nuclear. Assim, substituindo esta função de onda na equação de Schrödinger (2.21), temos:

$$\hat{H}\left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i,\vec{R}_A)\right) = E\left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i,\vec{R}_A)\right),\tag{2.28}$$

$$\left(\hat{T}_n + \hat{H}_{ele} + \hat{V}_{nn}\right) \left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i, \vec{R}_A)\right) = E\left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i, \vec{R}_A)\right),\tag{2.29}$$

$$\hat{T}_{n}\left(\psi_{m}^{n}(\vec{R}_{A})\psi_{m}^{e}(\vec{x}_{i},\vec{R}_{A})\right) + E_{m}(\vec{R}_{A})\left(\psi_{m}^{n}(\vec{R}_{A})\psi_{m}^{e}(\vec{x}_{i},\vec{R}_{A})\right) = E\left(\psi_{m}^{n}(\vec{R}_{A})\psi_{m}^{e}(\vec{x}_{i},\vec{R}_{A})\right), \quad (2.30)$$

$$\hat{T}_n\left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i,\vec{R}_A)\right) + \left(E_m(\vec{R}_A) - E\right)\left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i,\vec{R}_A)\right) = 0,$$
(2.31)

¹o índice k foi omitido por simplicidade.

onde \hat{T}_n é dado das equações (2.6) e (2.7), por:

$$\hat{T}_n = -\frac{1}{2} \sum_{A=1}^M \frac{\nabla_A^2}{M_A}.$$
(2.32)

Desse modo, o primeiro termo de (2.31), fica:

$$\hat{T}_n\left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i,\vec{R}_A)\right) = -\frac{1}{2}\sum_{A=1}^M \frac{\nabla_A^2}{M_A}\left(\psi_m^n(\vec{R}_A)\psi_m^e(\vec{x}_i,\vec{R}_A)\right)$$
(2.33)

$$= -\frac{1}{2} \sum_{A=1}^{M} \frac{1}{M_A} \left\{ \left(\nabla_A^2 \psi_m^n(\vec{R}_A) \right) \psi_m^e(\vec{x}_i, \vec{R}_A) + 2 \left(\nabla_A \psi_m^n(\vec{R}_A) \right) \left(\nabla_A \psi_m^e(\vec{x}_i, \vec{R}_A) \right) + \psi_m^n(\vec{R}_A) \left(\nabla_A^2 \psi_m^e(\vec{x}_i, \vec{R}_A) \right) \right\}$$
(2.34)

considerando $\psi_m^e(\vec{x}_i, \vec{R}_A)$ varie pouco quando as coordenadas nucleares variam, tanto o segundo quanto o terceiro termo entre parêntese no segundo membro da expressão anterior podem ser desprezados. Desta maneira a equação (2.31), fica:

$$-\frac{1}{2}\sum_{A=1}^{M}\frac{1}{M_{A}}\left(\nabla_{A}^{2}\psi_{m}^{n}(\vec{R}_{A})\right)\psi_{m}^{e}(\vec{x}_{i},\vec{R}_{A})+\left(E_{m}(\vec{R}_{A})-E\right)\psi_{m}^{n}(\vec{R}_{A})\psi_{m}^{e}(\vec{x}_{i},\vec{R}_{A})=0.$$
 (2.35)

Logo, após multiplicá-la por $\psi_{m'}^{e*}(\vec{x}_i, \vec{R}_A)$ e integrá-la em todas as coordenadas eletrônicas, obtemos:

$$\left(-\frac{1}{2}\sum_{A=1}^{M}\frac{1}{M_{A}}\nabla_{A}^{2}+E_{m}(\vec{R}_{A})\right)\psi_{m}^{n}(\vec{R}_{A})=E\psi_{m}^{n}(\vec{R}_{A}),$$
(2.36)

que é a equação de Schrödinger independente do tempo para o movimento dos núcleos, isto é,

$$\hat{H}_{nucl}\psi_m^n(\vec{R}_A) = E\psi_m^n(\vec{R}_A), \qquad (2.37)$$

 com

$$\hat{H}_{nucl} = -\frac{1}{2} \sum_{A=1}^{M} \frac{1}{M_A} \nabla_A^2 + E_m(\vec{R}_A) = \hat{T}_n + E_m(\vec{R}_A)$$
(2.38)

em que $E_m(\vec{R}_A)$, que é a energia eletrônica dada por (2.26), é agora usada como um potencial efetivo para o hamiltoniano nuclear,

$$V_{ef}(\vec{R}_A) = E_m(\vec{R}_A).$$
(2.39)

Em resumo, a aproximação de Born-Oppenheimer consiste em supor que a função de onda total possa se escrita como o produto da função de onda nuclear com a função de onda eletrônica, equação (2.27), e tratar a energia eletrônica total como um potencial efetivo para o hamiltoniano nuclear, equação (2.39). Dessa forma, sua principal função é separar a equação de Schrödinger (2.21), em uma equação eletrônica, (2.24), e uma equação nuclear, (2.37).

Em geral, a grande maioria de estudos teóricos utiliza a aproximação de Born-Oppenheimer, e o mesmo ocorre neste trabalho. Sendo assim, de agora em diante consideraremos somente o problema eletrônico dos sistemas em questão.

2.1.4 Antissimetria da Função de Onda Eletrônica

Na subseção anterior obtivemos uma equação eletrônica e outra nuclear através da aproximação de Born-Oppenheimer. O hamiltoniano eletrônico, \hat{H}_{ele} , independe das coordenadas de spin dos elétrons, no entanto, devemos incluir o spin do elétron em sua função de onda para descrevê-lo completamente. Isto foi feito quando utilizamos $\vec{x}_i = \vec{x}(\vec{r}_i, \sigma)$ como o conjunto de coordenadas espaciais e de spin. Uma vez que o hamiltoniano depende apenas das coordenadas espaciais dos elétrons, nenhuma alteração ocorre na solução da equação (2.24).

Para um sistema eletrônico com um elétron apenas, podemos criar um spin-orbital, $\chi_j(\vec{x})$, que leva em conta a função de onda espacial para o mesmo estado j, que designaremos por $\Phi_j(\vec{r})$, e uma função de spin, $\alpha(\sigma)$ para spin up ou $\beta(\sigma)$ para spin down. Dessa forma, $\chi_j(\vec{x})$ é dada pelo produto:

$$\chi_j(\vec{x}) = \Phi_j(\vec{r})\alpha(\sigma) \text{ ou } \chi_j(\vec{x}) = \Phi_j(\vec{r})\beta(\sigma), \qquad (2.40)$$

onde $\alpha(\pm \frac{1}{2}) = \beta(\pm \frac{1}{2}) = 1$ e $\alpha(\pm \frac{1}{2}) = \beta(\pm \frac{1}{2}) = 0$.

Para sistemas de muitos elétrons deve-se impor o princípio da exclusão de Pauli, que diz que um orbital espacial $\Phi_j(\vec{r})$ pode ser ocupado por no máximo dois elétrons ou, de forma equivalente, um spin-orbital $\chi_j(\vec{x})$, pode ser ocupado por apenas um elétron Szabo e Ostlund (1996). Com isso, a troca de coordenadas, sendo ela espacial ou de spin, de quaisquer dois elétrons implica uma mudança de sinal na função de onda, ou seja,

$$\psi(\vec{x}_1,\cdots,\vec{x}_i,\cdots,\vec{x}_j,\cdots,\vec{x}_N) = -\psi(\vec{x}_1,\cdots,\vec{x}_j,\cdots,\vec{x}_i,\cdots,\vec{x}_N).$$
(2.41)

Na aproximação conhecida como o potencial médio efetivo, onde a interação elétron-elétron é tratada de forma média, ou na aproximação do elétron independente, em que a interação elétronelétron pode ser desprezada, a função de onda de N-elétrons, $\psi(\vec{x})$, pode ser escrita através do chamado produto de Hartree Hartree (1928) dado por:

$$\psi(\vec{x}) = \chi_1(\vec{x}_1)\chi_2(\vec{x}_2)\cdots\chi_N(\vec{x}_N), \qquad (2.42)$$

onde $\chi_i(\vec{x}_i)$ são funções de onda de um-elétron, em que \vec{x}_i é designado pelo spin-orbital χ_i . É possível observar que essa função de onda, equação (2.42), não satisfaz o princípio da antissimetria, tratando os elétrons como se fossem distinguíveis. E também representa um sistema de N-elétrons completamente não correlacionados.

Levando em conta a indistinguibilidade dos elétrons, *Slater* propôs uma maneira de antissimetrizar os produtos de Hartree Slater (1929). Isso é feito escrevendo a função de onda de N-elétrons como uma combinação linear de todos os N! produtos de Hartree. Essa combinação linear pode ser colocada na forma de um determinante, conhecido como *determinante de Slater*, do sistema de N elétrons,

$$\psi(\vec{x}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(\vec{x}_1) & \chi_2(\vec{x}_1) & \cdots & \chi_N(\vec{x}_1) \\ \chi_1(\vec{x}_2) & \chi_2(\vec{x}_2) & \cdots & \chi_N(\vec{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_1(\vec{x}_N) & \chi_2(\vec{x}_N) & \cdots & \chi_N(\vec{x}_N) \end{vmatrix},$$
(2.43)

onde cada linha representa as coordenadas de um elétron e cada coluna um spin-orbital. Trocando duas linhas quaisquer do determinante implica na troca de coordenadas de dois elétrons, consequentemente, pelas regras de determinantes, o sinal do mesmo é invertido, satisfazendo assim o princípio da antissimetria. Além disso, no caso de dois elétrons com spin-orbital iguais implica em duas colunas iguais no determinante, que zera o mesmo, o que também satisfaz o princípio da exclusão de Pauli (somente um elétron pode ocupar um spin-orbital).

.

2.2Teoria do Funcional da Densidade

A Teoria do Funcional da Densidade (DFT) é uma teoria que tem origem nos artigos de Hohenberg-Kohn Hohenberg e Kohn (1964) e Kohn-Sham Kohn e Sham (1965), e é atualmente uma das teorias mais populares nos estudos de diversos materiais. O sucesso dessa teoria foi tão grande que concedeu a Walter Kohn e John Pople o Prêmio Nobel de Química de 1998.

Através da DFT é possível descrever o problema quântico de muitos corpos usando uma densidade eletrônica como variável básica, ao invés da função de onda. Desta maneira reduz-se um problema de 3N variáveis (três coordenadas espaciais para cada um dos N elétrons) para N problema de três variáveis (três coordenadas espaciais apenas).

A densidade eletrônica é definida como a probabilidade de encontrar qualquer um dos N elétrons em um elemento de volume $d\vec{r_1}$, em torno do ponto $\vec{r_1}$,

$$n(\vec{r}_1) = N \int d\vec{r}_2 \int \vec{r}_3 \cdots \int d\vec{r}_N |\psi(\vec{x}_i)|^2, \qquad (2.44)$$

onde o fator N leva em conta o fato de os elétrons serem indistinguíveis, uma vez que a integral representa somente a probabilidade de encontrar um dado elétron no volume $d\vec{r_1}$.

O artigo de Hohenberg-Kohn Hohenberg e Kohn (1964) nos assegura, por meio de dois teoremas fundamentais, que podemos usar essa densidade eletrônica sem perda de formalismo nas descrições das propriedades dos materiais. Estes teoremas são mostrados a seguir.

Teoremas de Hohenberg-Kohn 2.2.1

O primeiro teorema de Hohenberg-Kohn demonstra justamente que a densidade eletrônica pode ser usada como função básica que caracteriza de forma única o sistema. Assim, por meio do princípio variacional, encontra-se a densidade eletrônica que caracteriza o estado de menor energia do sistema. A partir desta função pode-se encontrar o potencial externo que está relacionado univocamente com a distribuição da densidade eletrônica. Em outras palavras, podemos enunciar o primeiro teorema de Hohenberg-Kohn:

Teorema 1: Para um sistema formado por um número arbitrário de elétrons, o potencial externo, $\nu(\vec{r})$, sentido pelos mesmos é determinado univocamente pela densidade eletrônica do estado fundamental, ou seja, $\nu(\vec{r})$ é um funcional único de $n_o(\vec{r})$ Hohenberg e Kohn (1964):

A prova deste teorema é relativamente simples. Seja um dado sistema no estado ψ caracterizado pelo hamiltoniano com um potencial externo $\nu(\vec{r})$,

$$\hat{H} = \hat{T} + \hat{U} + \hat{V},$$
 (2.45)

onde \hat{T} é o operador energia cinética, \hat{U} é o operador de interação elétron-elétron, e \hat{V} é dado por:

$$\hat{V} = \sum_{i=1}^{N} \nu(\vec{r_i}).$$
(2.46)

Assumindo também que exista outro potencial $\nu'(\vec{r})$, com estado fundamental ψ' , caracterizado dessa maneira por \hat{H}' . Por hipótese, admitimos que os dois potenciais levam à mesma densidade eletrônica $n_o(\vec{r})$. Deste modo, pelo teorema variacional descrito na seção 2.1, temos que:

$$E = \langle \psi | \hat{H} | \psi \rangle < \langle \psi' | \hat{H} | \psi' \rangle, \qquad (2.47)$$

$$E' = \langle \psi' | \hat{H}' | \psi' \rangle < \langle \psi | \hat{H}' | \psi \rangle, \qquad (2.48)$$

ou então,

$$E = \langle \psi | \hat{T} + \hat{U} + \hat{V} | \psi \rangle < \langle \psi' | \hat{T} + \hat{U} + \hat{V} | \psi' \rangle, \qquad (2.49)$$

$$E' = \langle \psi' | \hat{T} + \hat{U} + \hat{V}' | \psi' \rangle < \langle \psi | \hat{T} + \hat{U} + \hat{V}' | \psi \rangle.$$

$$(2.50)$$

Podemos escrever,

$$\begin{aligned} \langle \psi' | \hat{H} | \psi' \rangle &= \langle \psi' | \hat{T} + \hat{U} + \hat{V} | \psi' \rangle \\ &= \langle \psi' | \hat{T} + \hat{U} + \hat{V} + \hat{V}' - \hat{V}' | \psi' \rangle \\ &= \langle \psi' | \hat{T} + \hat{U} + \hat{V}' | \psi' \rangle + \langle \psi' | \hat{V} - \hat{V}' | \psi' \rangle \\ \langle \psi' | \hat{H} | \psi' \rangle &= \langle \psi' | \hat{H}' | \psi' \rangle + \langle \psi' | \hat{V} - \hat{V}' | \psi' \rangle. \end{aligned}$$

$$(2.51)$$

Assim, substituindo a equação (2.51) em (2.47) obtemos

$$\langle \psi | \hat{H} | \psi \rangle < \langle \psi' | \hat{H}' | \psi' \rangle + \langle \psi' | \hat{V} - \hat{V}' | \psi' \rangle.$$
(2.52)

Da expressão (2.44) podemos escrever a densidade eletrônica $n_o(\vec{r})$ como,

$$n_o(\vec{r}) = N \int d\vec{r}_1 \int d\vec{r}_2 \cdots \int d\vec{r}_N \psi^*(\vec{r}_1, \cdots, \vec{r}_N) \psi(\vec{r}_1, \cdots, \vec{r}_N).$$
(2.53)

Dessa maneira usando a equação (2.46), podemos escrever

$$\langle \psi | \hat{V} | \psi \rangle = \sum_{i=1}^{N} \langle \psi | \nu(\vec{r}_i) | \psi \rangle$$

$$= \sum_{i=1}^{N} \int d\vec{r}_1 \cdots \int d\vec{r}_N \psi^*(\vec{r}_1, \cdots, \vec{r}_N) \nu(\vec{r}_i) \psi(\vec{r}_1, \cdots, \vec{r}_N).$$

$$(2.54)$$

Escrevendo $\nu(\vec{r}_i) = \int d\vec{r} \delta(\vec{r} - \vec{r}_i) \nu(\vec{r})$, e substituindo em (2.54) obtemos,

$$\begin{aligned} \langle \psi | \hat{V} | \psi \rangle &= \sum_{i=1}^{N} \int d\vec{r}_{1} \cdots \int d\vec{r}_{N} \int d\vec{r} \delta(\vec{r} - \vec{r}_{i}) \nu(\vec{r}) \psi^{*} \psi \\ &= \sum_{i=1}^{N} \int d\vec{r} \int d\vec{r}_{1} \cdots \int d\vec{r}_{i} \delta(\vec{r} - \vec{r}_{i}) \nu(\vec{r}) \cdots \int d\vec{r}_{N} \psi^{*} \psi. \end{aligned}$$
(2.55)

Logo, como a densidade eletrônica pode ser escrita como

$$n(\vec{r}) = \langle \psi | \sum_{i=1}^{N} \delta(\vec{r} - \vec{r_i}) | \psi \rangle, \qquad (2.56)$$

temos que

$$\langle \psi | \hat{V} | \psi \rangle = \int n(\vec{r}) \nu(\vec{r}) d\vec{r}.$$
(2.57)

E analogamente:

$$\langle \psi' | \hat{V} - \hat{V}' | \psi' \rangle = \int n(\vec{r}) \left[\nu(\vec{r}) - \nu'(\vec{r}) \right] d\vec{r}.$$
(2.58)

Da mesma maneira, repetindo os mesmos processos, agora para a equação (2.48) obtemos,

$$\langle \psi' | \hat{H}' | \psi' \rangle < \langle \psi | \hat{H} | \psi \rangle + \langle \psi | \hat{V}' - \hat{V} | \psi \rangle, \qquad (2.59)$$

com

$$\langle \psi | \hat{V}' - \hat{V} | \psi \rangle = \int n(\vec{r}) \left[\nu(\vec{r}) - \nu'(\vec{r}) \right] d\vec{r}.$$
(2.60)

Logo, as equações (2.52) e (2.59) podem ser escritas, respectivamente, como

$$E < E' + \int n(\vec{r}) \left[\nu(\vec{r}) - \nu'(\vec{r}) \right] d\vec{r},$$
(2.61)

$$E' < E + \int n(\vec{r}) \left[\nu'(\vec{r}) - \nu(\vec{r}) \right] d\vec{r},$$
(2.62)

que somadas nos levam à inconsistência

$$E + E' < E' + E. (2.63)$$

Obtemos uma solução absurda decorrente do fato de termos assumido que dois potenciais diferentes geram a mesma densidade eletrônica. Para evitar o absurdo, concluímos que a unicidade de $n(\vec{r})$ exige considerar $\psi = \psi'$. Por fim, através do primeiro teorema de Hohenberg-Kohn, concluímos que, uma vez que o hamiltoniano do sistema fica definido conhecendo o potencial $\nu(\vec{r})$ gerado pelos núcleos, é possível determinar a função de onda do sistema. Logo, vemos que existe uma relação direta entre a densidade eletrônica do estado fundamental com a função de onda para o mesmo estado. Portanto, assim como a função de onda do estado fundamental, a densidade eletrônica do mesmo estado deve conter as mesmas informações do sistema, ou seja, a função de onda é um funcional da densidade eletrônica $n_o, \psi[n_o]$. Consequentemente, qualquer observável físico, \hat{O} , é um funcional de n_o , de forma que:

$$O = \langle \psi[n_o] | \hat{O} | \psi[n_o] \rangle = O[n_o]. \tag{2.64}$$

Então o primeiro teorema de Hohenberg-Kohn garante que a função de onda do estado fundamental, e consequentemente o valor esperado de todos os observáveis no mesmo estado são funcionais únicos da densidade eletrônica do estado fundamental. Entretanto, como saber se uma determinada densidade é a densidade do estado fundamental? A resposta é dada pelo segundo teorema de Hohenberg-Kohn, que garante a existência de um princípio variacional para a energia eletrônica total. Assim o segundo teorema pode ser enunciado como:

<u>Teorema 2</u>: A energia do estado fundamental é mínima para a densidade eletrônica n_o exata. A energia total de um dado sistema (que não seja o estado fundamental) é dada por:

$$E[n] = \langle \psi | \hat{T} + \hat{U} + \hat{V} | \psi \rangle$$

= $\langle \psi | \hat{T} + \hat{U} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle.$ (2.65)

Fazendo $\langle \psi | \hat{T} + \hat{U} | \psi \rangle = F[n]$, um funcional universal, que é válido para qualquer sistema coulombiano de N elétrons, temos:

$$E[n] = F[n] + \langle \psi | \hat{V} | \psi \rangle, \qquad (2.66)$$

dessa mesma forma, para o estado fundamental temos:

$$E[n_o] = F[n_o] + \langle \psi_o | \hat{V} | \psi_o \rangle.$$
(2.67)

Como n_o determina ψ_o e *n* determina ψ , assumindo que tanto n_o quanto *n* são determinados por um potencial externo, então podemos aplicar o teorema variacional, isto é,

$$E[\psi_{o}] < E[\psi],$$

$$\langle \psi_{o}|\hat{T} + \hat{U}|\psi_{o}\rangle + \langle \psi_{o}|\hat{V}|\psi_{o}\rangle < \langle \psi|\hat{T} + \hat{U}|\psi\rangle + \langle \psi|\hat{V}|\psi\rangle,$$

$$F[n_{o}] + \langle \psi_{o}|\hat{V}|\psi_{o}\rangle < F[n_{o}] + \langle \psi|\hat{V}|\psi\rangle,$$

$$E[n_{o}] < E[n].$$
(2.68)

Portanto se F[n] for conhecido, o problema de determinar a energia do estado fundamental e a densidade para um dado potencial externo poderá ser resolvido, pois requer a minimização desta energia. Neste contexto surge as equações de Kohn-Sham Kohn e Sham (1965). Em seu trabalho eles propõe uma maneira para a obtenção dos operadores como função da densidade eletrônica.

2.2.2 As Equações de Kohn-Sham

A ideia fundamental de Kohn-Sham é que é possível transformar o problema de N elétrons interagentes em um problema de N equações de um-elétron. Assim, substitui-se um problema de 3N variáveis para um de N equações de uma-partícula, isto é, de 3N variáveis para N equações de três variáveis. Isto é feito baseado na ideia principal de Kohn-Sham de que a a densidade eletrônica do estado fundamental do sistema interagente pode ser representada pela densidade de um sistema auxiliar de partículas não interagentes submetidas à um potencial efetivo, V_{KS} . Deste modo, sendo a energia total do sistema de partículas interagentes dada por:

$$E[n] = \langle \psi | \hat{T} + \hat{U} + \hat{V} | \psi \rangle = T[n] + U[n] + V[n], \qquad (2.69)$$

onde \hat{T} é o operador energia cinética dos elétrons, \hat{U} é o operador energia potencial de repulsão elétron-elétron, e \hat{V} é o operador energia potencial de interação núcleo-elétron. No método de Kohn-Sham T[n] pode ser escrito como a soma de dois termos: $T_s[n]$, que é a energia cinética exata de um sistema de N elétrons não interagentes submetidos a um potencial externo, com densidade de elétrons igual à densidade do sistema real; e $T_c[n]$, a energia cinética (não-clássica) que inclui os efeitos de correlação. Da mesma maneira o funcional U[n] também pode ser dividido em três partes: $U_H[n]$, a energia de interação eletrostática clássica (também chamada de energia de Hartree); a parte não-clássica $U_x[n]$ que é o termo de troca, também chamado de *exchange*; e o termo $U_c[n]$ que é o potencial devido à correlação. Os funcionais $U_H[n]$ e $U_x[n]$ são dados por:

$$U_H[n] = \frac{1}{2} \int \int \frac{n(\vec{r})n(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r} d\vec{r'}$$
(2.70)

e

$$U_x[n] = -\frac{1}{2} \sum_{jk} \int \int \frac{\phi_j^*(\vec{r}) \phi_k^*(\vec{r'}) \phi_j(\vec{r'}) \phi_k(\vec{r})}{|\vec{r} - \vec{r'}|} d\vec{r} d\vec{r'}$$
(2.71)

onde $\phi(\vec{r})$ são autoestados de uma-partícula. O termo $U_c[n]$ é desconhecido. Da equação (2.69) temos que,

$$E[n] = T_s[n] + T_c[n] + U_H[n] + U_x[n] + U_c[n] + V[n], \qquad (2.72)$$

que pode ser escrita como

$$E[n] = T_s[n] + U_H[n] + V[n] + E_{xc}[n]$$
(2.73)

onde E_{xc} é definido como a energia de troca-correlação,

$$E_{xc}[n] = T_c[n] + U_x[n] + U_c[n]$$
(2.74)

de modo que os termos de correções de troca e correlação que é a consequência dos efeitos de muitos corpos são colocados neste único termo, $E_{xc}[n]$, que é o único termo desconhecido em (2.73). De algum modo, se conhecêssemos o funcional $E_{xc}[n]$, a energia total e a densidade eletrônica do estado fundamental poderiam ser determinadas. Isso seria feito com base nos teoremas de Hohenberg-Kohn, de que a energia total do estado fundamental é obtida através da minimização da equação (2.73) em relação à densidade eletrônica, levando em conta a ortogonalidade dos estados do sistema de partículas não interagentes como vínculo:

$$\int \phi_i^*(\vec{r})\phi_j(\vec{r})d\vec{r} = \delta_{ij}.$$
(2.75)

A energia mínima do sistema é obtida realizando uma variação em relação aos orbitais $\{\phi^*\}$, com a restrição de manter fixo o número de elétrons do sistema igual a N. Desse modo fazemos a condição de vínculo em termos das funções de onda de um-elétron, ao invés de utilizar a variação em termos

2.2. TEORIA DO FUNCIONAL DA DENSIDADE

da densidade eletrônica:

$$\frac{\delta}{\delta\phi^*(\vec{r})} \left\{ E - \sum_{i=1}^N \epsilon_i \int \phi_i^*(\vec{r}) \phi_i(\vec{r}) d\vec{r} \right\} = 0$$
(2.76)

em que ϵ_i é o multiplicador de lagrange associado ao orbital de um-elétron ϕ_i . A partir das equações (2.73) e (2.76) podemos escrever

$$\frac{\delta E[n]}{\delta \phi^*(\vec{r})} = \frac{\delta T_s[n]}{\delta \phi^*(\vec{r})} + \frac{\delta n(\vec{r})}{\delta \phi^*(\vec{r})} \left[\frac{\delta U_H[n]}{\delta n(\vec{r})} + \frac{\delta V[n]}{\delta n(\vec{r})} + \frac{\delta E_{xc}[n]}{\delta n(\vec{r})} \right],\tag{2.77}$$

com a densidade eletrônica para o sistema auxiliar

$$n_s(\vec{r}) = \sum_j \phi_j^* \phi_j. \tag{2.78}$$

A forma de $T_s[n]$ é conhecida e dada por:

$$T_s[n] = -\frac{1}{2} \sum_{i=1}^{N} \int d\vec{r} \phi_i^*(\vec{r}) \nabla^2 \phi_i(\vec{r}).$$
(2.79)

Aplicando as regras de derivadas de um funcional, as equações (2.78) e (2.79) ficam:

$$\frac{\delta n(\vec{r})}{\delta \phi_i^*(\vec{r})} = \phi_i(\vec{r}), \qquad (2.80)$$

$$\frac{\delta T_s[n]}{\delta \phi_i^*(\vec{r})} = -\frac{\hbar^2}{2m} \nabla^2 \phi_i(\vec{r}).$$
(2.81)

Agora para os termos que envolve os multiplicadores de lagrange temos,

$$\frac{\delta}{\delta\phi_i^*(\vec{r})} \left[\sum_{i=1}^N \epsilon_i \int \phi_i^*(\vec{r}) \phi_i(\vec{r}) d\vec{r} \right] = \epsilon_i \phi_i.$$
(2.82)

Com isso, substuindo as equações (2.82), (2.81), (2.80) e (2.77) na equação (2.76) chegamos à,

$$-\frac{1}{2}\nabla^2\phi_i(\vec{r}) + \left[\frac{\delta U_H[n]}{\delta n(\vec{r})} + \frac{\delta V[n]}{\delta n(\vec{r})} + \frac{\delta E_{xc}[n]}{\delta n(\vec{r})}\right]\phi_i(\vec{r}) = \epsilon_i\phi_i(\vec{r}).$$
(2.83)

Fazendo $\frac{\delta U_H[n]}{\delta n(\vec{r})} = \nu_H(\vec{r}), \ \frac{\delta V[n]}{\delta n(\vec{r})} = \nu(\vec{r}) \ e \ \frac{\delta E_{xc}[n]}{\delta n(\vec{r})} = \nu_{xc}(\vec{r}), \ a \ equação \ anterior \ pode \ ser \ escrita \ como:$

$$-\frac{1}{2}\nabla^2 \phi_i(\vec{r}) + \left[\nu(\vec{r}) + \nu_H(\vec{r}) + \nu_{xc}(\vec{r})\right] \phi_i(\vec{r}) = \epsilon_i \phi_i(\vec{r}).$$
(2.84)

O índice *i* é referente a um estado específico do sistema de elétrons não interagentes. Vemos assim, que é possível obter a densidade eletrônica de um sistema de elétrons interagentes sob um potencial $\nu(\vec{r})$ pela solução da equação de um sistema não interagente sujeito a um potencial $\nu_s(\vec{r})$. Assim, para o sistema auxiliar temos:

$$\left[-\frac{1}{2}\nabla^2 + \nu_s(\vec{r})\right]\phi_i(\vec{r}) = \epsilon_i\phi_i(\vec{r}), \qquad (2.85)$$

$$n(\vec{r}) \equiv n_s(\vec{r}) = \sum_{i=1}^N |\phi_i(\vec{r})|^2, \qquad (2.86)$$

onde fizemos $\nu(\vec{r}) + \nu_H(\vec{r}) + \nu_{xc}(\vec{r}) = \nu_s(\vec{r})$. As equações (2.85) e (2.86) são chamadas de equações de Kohn-Sham. Essas equações devem ser resolvidas de forma autoconsistente, uma vez que o problema é não linear ($\nu_H(\vec{r}) e \nu_{xc}(\vec{r})$ dependem de $n(\vec{r})$ que, por sua vez, depende de $\phi_i(\vec{r})$). O procedimento autoconsistente é uma maneira prática para resolver essas equações e consiste em: assumir uma densidade eletrônica de início; com a densidade em mãos calcula-se o potencial efetivo $\nu_s(\vec{r}) = \nu(\vec{r}) + \nu_H(\vec{r}) + \nu_{xc}(\vec{r})$; encontrado $\nu_s(\vec{r})$ resolve-se a equação de Kohn-Sham (2.85) e encontra os autoestados $\phi_i(\vec{r})$ e os autovalores ϵ_i ; e por fim encontra-se a nova densidade eletrônica por meio da equação (2.86), esta será usada como a densidade de entrada para a próxima interação até que a autoconsistência seja atingida. Existem muitos critérios a serem usados como critério de convergência. Um destes critérios é exigir que a diferença entre as duas últimas densidades seja menor que um valor previamente estipulado. A figura 2.1 mostra um esquema deste processo autoconsistente.

Figura 2.1: Esquema do ciclo autoconsistente

Toda a teoria mostrada nesta seção, até aqui, é formalmente exata. Porém, seu uso requer o conhecimento do termo de energia de troca-correlação, $E_{xc}[n]$, equação (2.74). No entanto, não existe uma solução fechada para este termo, o que nos leva a procurar aproximações para o mesmo. No próximo item desta seção discutiremos algumas destas aproximações.

2.2.3 Aproximações para o funcional de troca-correlação

Para que as equações de Kohn-Sham possam ser resolvidas é necessário fazer aproximações para o termo de $E_{xc}[n]$, uma vez que o termo explícito deste funcional não é conhecido, como foi dito anteriormente. Dentre as várias aproximações existentes, as mais usadas são conhecidas como Aproximação da Densidade Local $(LDA)^2$ e Aproximação do Gradiente Generalizado $(GGA)^3$ e são as que discutiremos a seguir.

Aproximação da Densidade Local (LDA)

A LDA é uma aproximação bastante comum que foi proposta por Kohn e Sham em 1965 Kohn e Sham (1965). Nesta aproximação o termo de troca-correlação é baseada num gás de elétrons. Desta forma, Kohn e Sham afirmam que, em seus limites, sólidos podem geralmente serem considerados como um gás homogêneo de elétrons. Assim, assumi-se que o funcional para a energia de troca-correlação para o gás de elétrons homogêneo de densidade $n(\vec{r})$ no ponto \vec{r} seja igual ao funcional da energia de troca-correlação para o gás homogêneo que tem a mesma densidade. Ainda supõe-se, nessa aproximação, que $n(\vec{r})$ varia suavemente nas proximidades do ponto \vec{r} . Assim podemos escrever a energia de troca-correlação como:

$$E_{xc}^{LDA}[n(\vec{r})] = \int n(\vec{r}) \varepsilon_{xc}(n(\vec{r})) d\vec{r}, \qquad (2.87)$$

onde $\varepsilon_{xc}(n(\vec{r}))$ é a energia de troca-correlação por elétron de um gás homogêneo de densidade eletrônica $n(\vec{r})$. Das equações (2.83) e (2.84) podemos escrever

$$V_{xc}^{LDA}[n(\vec{r})] = \frac{d}{dn(\vec{r})} \Big[n(\vec{r})\varepsilon_{xc}(n(\vec{r})) \Big], \qquad (2.88)$$

que nos leva à

$$V_{xc}^{LDA}[n(\vec{r})] = \varepsilon_{xc}(n(\vec{r})) + n(\vec{r}) \frac{d\varepsilon_{xc}(n(\vec{r}))}{dn(\vec{r})}.$$
(2.89)

Podemos expressar a densidade em termos da distância média entre elétrons, r_s (em unidades atômicas, a_o), como:

$$\frac{1}{n} = \frac{4\pi r_s^3}{3}.$$
 (2.90)

Como a densidade varia suavemente, podemos considerar n como o seu valor médio. Com isso a equação (2.89) fica,

$$V_{xc}^{LDA}[n(\vec{r})] = \varepsilon_{xc}(r_s) + \frac{3}{4\pi r_s^3} \left(-\frac{4\pi r_s^4}{9}\right) \frac{d\varepsilon_{xc}(r_s)}{dr_s}$$
$$= \varepsilon_{xc}(r_s) - \frac{r_s}{3} \frac{d\varepsilon_{xc}(r_s)}{dr_s}$$
(2.91)

Existem muitas propostas para o termo de troca-correlação por elétron, ε_{xc} , e qualquer que seja a parametrização, na aproximação LDA, este termo pode ser dividido em duas partes, o que resulta em:

$$E_{xc}^{LDA}[n(\vec{r})] = E_x[n(\vec{r})] + E_c[n(\vec{r})] = \int n(\vec{r}) \Big[\varepsilon_x(n(\vec{r})) + \varepsilon_c(n(\vec{r}))\Big] d\vec{r}, \qquad (2.92)$$

onde o termo $E_x[n(\vec{r})]$ está relacionado ao princípio da exclusão de Pauli (energia de troca) e o termo $E_c[n(\vec{r})]$ é devido às correlações (energia de correlação). A energia de troca por elétron do gás homogêneo de elétrons de densidade $n(\vec{r})$, $\varepsilon_x(n(\vec{r}))$, pode ser calculada usando o método de

²Do inglês - Local Density Approximation.

³Do inglês - Generalized Gradient Approximation.

Hartree-Fock Fock (1930a,b); Hartree (1928),

$$\varepsilon_x^{LDA}(n(\vec{r})) = -\frac{3}{4}e^2 \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n(\vec{r})^{\frac{4}{3}}, \qquad (2.93)$$

que resulta em

$$E_x^{LDA}[n(\vec{r})] = -\frac{3}{4}e^2 \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \int n(\vec{r})^{\frac{4}{3}} d\vec{r}.$$
 (2.94)

O termo de correlação é mais complexo e não pode ser determinado exatamente. No entanto, Cerpeley e Alder Ceperley e Alder (1980) fizeram cálculos a partir do método de Monte Carlo Quântico para o gás homogêneo de elétrons interagentes e obtiveram valores com alta precisão para $\varepsilon_c(n(\vec{r}))$.

A LDA é uma aproximação de grande importância e vem sendo muito utilizada em cálculos, por exemplo, de estrutura de bandas e energia total na Física do Estado Sólido. Esta aproximação, em geral, subestima a energia de correlação, porém, superestima a energia de troca, consequentemente, embora não esperado, isto resulta em um bom valor para a energia de troca-correlação. Entretanto, ela não é uma boa aproximação se a densidade eletrônica $n(\vec{r})$ for fortemente não uniforme, isto é, se $n(\vec{r})$ variar muito em relação a \vec{r} . Casos como este nos leva à Aproximação do Gradiente Generalizado (GGA), vista a seguir.

Aproximação do Gradiente Generalizado (GGA)

Para casos em que a densidade eletrônica $n(\vec{r})$ for fortemente não uniforme, não é um boa aproximação calcular a energia de troca-correlação utilizando a densidade do gás de elétrons uniforme. Desse modo, um refinamento do método LDA é possível, expressando o funcional de troca e correlação $E_{xc}^{LDA}[n(\vec{r})]$ em termos do gradiente da densidade de carga total. Assim, o funcional conterá informações sobre essa não uniformidade da densidade eletrônica. Essa aproximação é conhecida como GGA e sua fórmula para o funcional de troca-correlação é dada por:

$$E_{xc}^{GGA}[n(\vec{r})] = \int f(n(\vec{r}), \nabla n(\vec{r})) d\vec{r}.$$
(2.95)

Há várias propostas para o funcional E_{xc}^{GGA} . As mais utilizadas atualmente são baseadas nos trabalhos de Perdew, Burke e Ernzerhof (PBE) Perdew *et al.* (1996a).

2.2.4 Cálculo da Energia Total

A energia total é obtida através do ciclo autoconsistente de Kohn-Sham em função dos autovalores ϵ_i utilizando a expressão (2.70), podemos escrever a equação de Kohn-Sham (2.84) como,

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + \nu(\vec{r}) + \int \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r}' + \nu_{xc}(\vec{r})\right)\phi_i = \epsilon_i \phi_i.$$
(2.96)

Fazendo uma multiplicação à esquerda por ϕ_i^* , integrando em todo o espaço e somando sobre todos os orbitais ocupados obtemos,

$$\sum_{i=1}^{N} \epsilon_{i} = T_{o}[n(\vec{r})] + \int \nu(\vec{r})n(\vec{r})d\vec{r} + \int \int \frac{n(\vec{r})n(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r}d\vec{r'} + \int \nu_{xc}(\vec{r})n(\vec{r})d\vec{r}.$$
 (2.97)

Comparando esta expressão com o funcional de energia dado por:

$$E[n(\vec{r})] = T_o[n(\vec{r})] + \int \nu(\vec{r})n(\vec{r})d\vec{r} + \frac{1}{2} \int \int \frac{n(\vec{r})n(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r}d\vec{r'} + \int \varepsilon_{xc}[n(\vec{r})]n(\vec{r})d\vec{r}, \qquad (2.98)$$

terenos assim,

$$E[n(\vec{r})] = \sum_{i=1}^{N} \epsilon_i - \frac{1}{2} \int \int \frac{n(\vec{r})n(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{r} d\vec{r'} + \int n(\vec{r}) \Big[\varepsilon_{xc}[n(\vec{r})] - \nu_{xc}(n(\vec{r})) \Big] d\vec{r},$$
(2.99)

que é a energia total em função dos autovalores de Kohn-Sham, ϵ_i .

2.2.5 Base de Ondas Planas

No estudo de Física da Matéria Condensada é comum expandir as funções de onda ϕ_i em termos de ondas planas para se resolver as equações de Kohn-Sham (2.85) e (2.86). Esse conjunto de ondas planas é chamado de base de ondas planas que, dentre as várias bases existentes, é a que usaremos neste trabalho.

A expansão em termos de ondas planas é feita utilizando-se do teorema de Bloch, no caso em que o sistema em questão for periódico. Neste caso, o teorema de Bloch diz que uma dada função de onda, ϕ_i por exemplo, pode ser escrita como o produto de uma onda plana com uma função que possui a periodicidade da rede Ashcroft e Mermin (1976):

$$\phi_i = e^{-i\vec{k}\cdot\vec{r}} u_i(\vec{r}), \qquad (2.100)$$

onde $u_i(\vec{r})$ é o termo que carrega a tal periodicidade. Este, pode ser expandido usando uma base discreta de ondas planas,

$$u_i = \sum_{\vec{G}} C_i(\vec{G}) e^{-i\vec{G}\cdot\vec{r}}.$$
 (2.101)

Logo, substituindo (2.101) em (2.100), vemos que a função de onda ϕ_i pode ser escrita como:

$$\phi_i = \sum_{\vec{G}} C_i(\vec{G}) e^{-i(\vec{k} + \vec{G}) \cdot \vec{r}},$$
(2.102)

onde \vec{G} são os vetores da rede recíproca e é definido de tal forma que,

$$\vec{G} \cdot \vec{T} = 2\pi m, \tag{2.103}$$

em que \vec{T} é o vetor de translação da rede cristalina e m um número inteiro. Estes vetores \vec{G} , permitem a expansão em ondas planas para os vetores da rede recíproca sendo necessário um número infinito dos mesmos para formarem uma base completa. Entretanto, os coeficientes $C_i(\vec{G})$ das funções de onda decrescem com o aumento de $|\vec{k} + \vec{G}|$. Dessa maneira levando-se em conta somente os coeficientes $C_i(\vec{G})$ mais importantes, podemos truncar a base de ondas planas por meio de uma energia de corte, E_{cut} . Essa energia está relacionada com os coeficientes $C_i(\vec{G})$ através de $|\vec{k} + \vec{G}|$ de modo a satisfazer a relação,

$$\frac{\hbar^2}{2m} |\vec{k} + \vec{G}|^2 < E_{cut}.$$
(2.104)

Dessa maneira a base de ondas planas é formada por aquelas ondas que possuem energia menores que a energia de corte previamente estabelecida. A base de ondas planas por ser uma base relativamente simples, flexível e de fácil implementação computacional, uma vez que pode ser controlada por um único parâmetro (a energia de corte), faz com que sua utilização seja muito vantajosa.

2.2.6 Método do Pseudopotencial

Quando expandimos as funções de onda em uma base discreta de ondas planas, nos deparamos com um problema que dificulta muito os cálculos, que é o grande número de ondas planas que são necessárias para descrever determinadas regiões atômicas. Isto exige um tempo computacional inviável para a maioria dos sistemas estudados. O método do pseudopotencial foi desenvolvido como uma alternativa para tornar estes cálculos mais acessíveis.

Podemos começar com o fato de que a configuração eletrônica de um átomo pode ser dividida em dois grupos: os elétrons de caroço e os elétrons de valência. A figura 2.2 ilustra a situação. Os elétrons de caroço são aqueles que estão mais próximos do núcleo atômico, que devido ao forte potencial sentido pelos mesmos, suas funções de onda praticamente não se alteram ao serem colocado em diferentes ambientes químicos, consequentemente eles não participam de ligações químicas. Já os elétrons de valência estão mais afastados do núcleo e sentem mais fracamente seu potencial, sendo assim, responsáveis pelas ligações químicas.

Figura 2.2: Separação entre os elétrons de caroço e de valência de um átomo hipotético

O uso do pseudopotencial simplifica significativamente os cálculos de estrutura eletrônica pois permite eliminar a necessidade da inclusão dos orbitais de caroço e, consequentemente, o forte potencial associado aos mesmos, no processo de resolução das equações de Kohn-Sham (2.85) no ciclo autoconsistente. Dessa maneira, somente os estados de valência são calculados e sua interação com os núcleos (que são parcialmente blindadas pelos elétrons de caroço) é descrita, em geral com boa aproximação pelo pseudopotencial associado ao átomo em questão. O grande problema na descrição dos elétrons de valência é que, apesar de suas funções de onda se comportarem de maneira suave na região intersticial, que é a região entre átomos, elas devem ter um comportamento bastante oscilatório nas regiões de caroço devido ao fato de que elas devem ser ortogonais aos estados de caroço. Esta situação é indicada na figura 2.3. Isso faz com que seja muito complicado obter um boa descrição dessas regiões mediante o uso de uma base de ondas planas. No entanto, o ponto principal do método do pseudopotencial é justamente suavizar as funções de onda de modo que possam ser bem descritas por base de ondas planas.

Figura 2.3: Comportamento esquemático das funções de onda do elétrons de valência.

O formalismo do pseudopotencial pode ser descrito a partir da construção de Phillips e Kleinman Phillips e Kleinman (1959). Podemos expandir as funções de onda de valência nas chamadas ondas planas ortogonalizadas, na qual a parte suave dessas funções é dada pelo conjunto de onda planas,

$$\phi_{\vec{k}}^{v}(\vec{r}) = \sum_{\vec{G}} C(\vec{G}) e^{i(\vec{k} + \vec{G}) \cdot \vec{r}}.$$
(2.105)

Dessa maneira a função de onda de valência, nessa base, é dada por:

$$\psi_{\vec{k}}^{v}(\vec{r}) = \phi_{\vec{k}}^{v}(\vec{r}) - \sum_{c} \left[\int d\vec{r}' \psi_{\vec{k}}^{c*}(\vec{r}) \phi_{\vec{k}}^{v}(\vec{r}') \right] \psi_{\vec{k}}^{c}(\vec{r}), \qquad (2.106)$$

onde a soma é feita sobre todos os estados de caroço $\psi_{\vec{k}}^c(\vec{r})$, que são assumidos serem conhecidos. Como dito anteriormente estas funções devem ser ortogonais aos estados de caroço. Uma vez que $\psi_{\vec{k}}^c(\vec{r})$ em (2.106) é a exata função de valência, a mesma deve satisfazer a

$$\hat{H}\psi^v_{\vec{k}}(\vec{r}) = \varepsilon^v_{\vec{k}}\psi^v_{\vec{k}}(\vec{r}), \qquad (2.107)$$

em que \hat{H} é o hamiltoniano do sistema. Utilizando as equações (2.106) e (2.107) obtemos a equação para o método do pseudopotencial,

$$(\hat{H} + V^R)\phi^v_{\vec{k}}(\vec{r}) = \varepsilon^v_k \phi^v_{\vec{k}}(\vec{r})$$
(2.108)

na qual temos uma contribuição adicional para o hamiltoniano, V^R . Este potencial é principalmente repulsivo, fazendo como que ocorra um cancelamento parcial do potencial cristalino original. As funções $\phi_{\vec{k}}^v(\vec{r})$ não são as funções reais $\psi_{\vec{k}}^v(\vec{r})$ e sim as pseudofunções mais suaves. Note que estas duas funções tem o mesmo autovalor, e este é o detalhe mais importante desta mudança de cálculo. A soma do pontencial V^R com o potencial total do sistema V é o chamado pseudopontencial V^{ps} . Este deve ser fraco o suficiente para que as pseudofunções possam ser descritas facilmente por bases de ondas planas. Usando este formalismo, V^R pode ser escrito de forma que:

$$V^R \phi^v_{\vec{k}}(\vec{r}) = \sum_c (\varepsilon^v_{\vec{k}} - \varepsilon^c_{\vec{k}}) \Big[\int d\vec{r}' \psi^{c*}_{\vec{k}}(\vec{r}) \phi^v_{\vec{k}}(\vec{r}') \Big] \psi^c_{\vec{k}}(\vec{r})$$
(2.109)

Certamente a parte mais difícil para a utilização deste método está justamente no próprio pseudopotencial. Em outras palavras, a maior complexidade de se resolver problemas de muitas corpos é transferida do cálculo em si, para a geração do pseudopotencial. Dentre os vários pseudopontenciais existentes os mais usados são os *pseudopotenciais de norma conservada*, proposto por Bachelet, Hamann e Schuluter Bachelet *et al.* (1982) e por Troullier e Martins Troullier e Martins (1991), e também os *pseudopotenciais ultra-suave* ou "*ultrasofts*" formulados por David Vanderbilt Vanderbilt (1990).

O pseudopotencial de norma conservada apresentou um grande avanço no sentido de superar as dificuldades de utilização do método de pseudopotencial. A condição de conservação da norma assegura que, a densidade de carga da pseudofunção e a densidade da função real seja a mesma dentro de uma esfera centrada no átomo definida por um raio de corte, r_c , a qual fica dada por:

$$4\pi \int_0^{r_c} \tilde{u}_i(r) \tilde{u}_i^*(r) r^2 dr = 4\pi \int_0^{r_c} u_i(r) u_i^*(r) r^2 dr, \qquad (2.110)$$

sendo $\tilde{u}_i(r)$ e $u_i(r)$ a parte radial da pseudofunção de onda e da função de onda real, respectivamente. Além disso o pseudopotencial é construído de tal forma que $u_i(r) = \tilde{u}_i(r)$ para $r \ge r_c$. Um aspecto importante desta normalização é que, de acordo com o teorema de Gauss, o potencial eletrostático sentido por uma carga elétrica para $r \ge r_c$, é o potencial correto se utilizarmos um pseudopotencial que conserve a norma. Entretanto, este método enfrenta alguns problemas para materiais que envolvem átomos tais como B, C, N, O, etc. e metais de transição (orbitais 3d semiocupado) uma vez que estes átomos possuem orbitais bem localizados 2p e 3d que ficam na sua camada de valência. O problema consiste no grande número de ondas planas necessário para descrever estes orbitais, e neste caso, também foi provado que não é possível obter uma pseudofunção mais suave que a função de onda real. Neste contexto, em 1990, Vanderbilt propõe um método que, a princípio, não conserve a norma: o pseudopotencial ultra-suave Vanderbilt (1990). Com este, é possível obter pseudofunções de onda extremamente suaves. Assim, temos a vantagem de que as pseudofunções de onda devem satisfazer apenas a exigência de concordar com as funções de onda reais a partir de r_c , o raio de corte:

$$\psi^{ps}(\vec{r}) = \psi^{real}(\vec{r}), \text{ para } r \ge r_c, \tag{2.111}$$

de modo que r_c possa ser bem maior do que o exigido nos pseudopotenciais de norma conservada o que permite um ganho computacional ainda maior. Entretanto, com essas mudanças, tanto a ortogonalidade das funções de onda quanto a conservação da carga não são mais asseguradas. Porém, este problema pode ser corrigido com introdução de funções auxiliares. Dessa maneira para dar conta do "déficit" de carga, a densidade de valência é definida como

$$n^{v}(\vec{r}) = \sum_{\vec{k}} \phi_{\vec{k}}^{*} \phi_{\vec{k}} + \sum_{ij} \rho_{ij} Q_{ij}(\vec{r}), \qquad (2.112)$$

onde

$$\rho_{ij} = \sum_{\vec{k}} \langle \beta_i | \phi_{\vec{k}} \rangle \langle \phi_{\vec{k}} | \beta_j \rangle, \qquad (2.113)$$

em $|\beta_i\rangle$ são projetores que dependem das posições iônicas e $|\phi_{\vec{k}}\rangle$ as funções de onda do tipo ultra-
suave, construídas sem a exigência de conservação de carga. E também,

$$Q_{ij}(\vec{r}) = \psi_i^*(\vec{r})\psi_j(\vec{r}) - \phi_i^*(\vec{r})\phi_i(\vec{r})$$
(2.114)

onde $\psi(\vec{r})$ é a função de onda de todos elétrons.

A figura (2.4) mostra uma representação das funções de onda para o orbital 2p do oxigênio, que é um exemplo de sistema onde o orbital atômico de valência é altamente localizado. Neste caso pseudopotenciais de norma conservada não fornecem uma suavização sifnificativa das funções de onda na região do caroço, o que não é o caso para os pseudopotenciais ultra-suaves.

Figura 2.4: Função de onda de todos elétrons (linha sólida - preta), e pseudofunções de onda geradas pelos métodos de norma conservada (linha pontilhada - vermelha) e ultra-suave (linha tracejada - azul). Figura tirada de Vanderbilt (1990).

2.2.7 O método PAW

Em 1994 Blochl Blöchl (1994) desenvolveu um método que combina ideias provenientes dos métodos de pseupotencial Vanderbilt (1990) e do método LAPW ⁴ Singh (2006), o chamado método PAW (*Projector Augmented-Wave*) que é um método que possui toda a informação dos elétrons de caroço, sendo assim muito usado para cálculos de estrutura eletrônica. Este método é muito parecido com o método dos pseudopotenciais ultra-suave descrito anteriormente, porém existem algumas diferenças fundamentais. Por exemplo, no método dos pseudopotenciais modifica-se a função de onda dentro de uma região do raio de corte, r_c , eliminando suas singularidades em tais regiões. Já no método PAW os raios de cortes são menores que os considerados nos pseudopotenciais. Com isso é possível construir funções de onda verdadeira ψ aplicando-se um operador τ , que modifica a suavidade de uma função de onda auxiliar $\tilde{\psi}$ na região atômica, levando a uma função com a estrutura nodal correta. Uma vez que o raio de corte no método PAW é menor que no método dos pseudopotenciais, isso implica que a expansão em ondas planas no método PAW leva à uma energia de corte maior, consequentemente o custo computacional, embora na maiorias das vezes não seja muito diferente de um método para outro, será sempre maior com o método PAW.

No método PAW, a região que contém a "cauda" das funções de onda atômica (região em que existe interação entre átomos) é descrita de maneira conveniente através do conjunto de ondas planas. No entanto, a medida que se aproxima do núcleo, onde existem grandes oscilações nas funções

⁴Do inglês - Linear Augmented Plane Waves

de ondas, um grande número de ondas planas seria necessário. Por outro lado, se substituíssemos o uso das expansão em onda planas por expansões em orbitais atômicos como base, estes podem descrever corretamente a estrutura nodal da função de onda perto do núcleo, mas não nas regiões de ligação e de "cauda". Dessa maneira, o método PAW combina as virtudes das representações numéricas nas duas regiões por meio de um conjunto bem definido de funções de base.

Em princípio, o método PAW, pode recuperar toda a energia total do sistema, com isso a expansão em ondas planas e em orbitais atômicos forma uma base completa. Os coeficientes dos orbitais atômicos são tratados como funções dos coeficientes da ondas planas de modo a diminuir o custo computacional.

Função de Onda

A ideia fundamental do método PAW é transformar a função de onda fisicamente relevante $|\psi\rangle$, relativa à todos elétrons (*all-electron*) e dificilmente descrita devido às suas fortes oscilações perto do núcleo, em uma função que seja suave e computacionalmente adequada, a função auxiliar $|\tilde{\psi}\rangle$. Através da seguinte transformação,

$$|\psi\rangle = \tau |\psi\rangle, \tag{2.115}$$

são recuperadas as oscilações da função de onda real nas regiões próximas do núcleo atômico. Com esse formalismo, o valor esperado de um operador \hat{A} pode ser obtido a partir das funções auxiliares mais suaves. Com isso define-se dois espaços de Hilbert, um das pseudofunções (PS) e outro relativo à todos elétrons (AE) (*all-electron*). Cada pseudofunção de onda $|\tilde{\psi}\rangle$ é expandida em pseudofunções de onda parciais $|\tilde{\phi}\rangle$,

$$|\tilde{\psi}\rangle = \sum_{i \in R} C_i |\tilde{\phi}_i\rangle, \text{ para } |\vec{r} - \vec{R}| < r_c, \qquad (2.116)$$

onde *i* indica o sítio *R*. A função de onda AE é obtida da transformação dada pela equação (2.115), onde τ modifica a função de onda auxiliar dentro de cada região atômica, de forma que a função de onda passa a ter a estrutura nodal correta. Desta maneira, τ pode ser escrito como a soma do operador identidade com o operador das contribuições atômicas que são representadas por S_R , de forma que

$$\tau = \mathbf{1} + \sum_{R} S_R \tag{2.117}$$

Usando o fato de que as funções de caroço não se espalham até os átomos vizinhos, podemos tratá-las separadamente. Deste modo, para uma dada função parcial $|\phi_i\rangle$, escolhemos uma função de onda parcial auxiliar $|\tilde{\phi}_i\rangle$, de modo que,

$$\begin{aligned} |\phi_i\rangle &= \tau |\tilde{\phi}_i\rangle \\ &= (\mathbf{1} + S_R) |\tilde{\phi}_i\rangle, \text{ para } i \in R, \end{aligned}$$
(2.118)

dessa forma temos que

$$S_R |\tilde{\phi}_i\rangle = |\phi_i\rangle - |\tilde{\phi}_i\rangle. \tag{2.119}$$

Como $(\mathbf{1} + S_R)$ modifica apenas localmente a função de onda auxiliar, logo, a função parcial $|\phi_i\rangle$ e sua correpondente auxiliar $|\tilde{\phi}_i\rangle$, devem ser idênticas além do raio de corte, isto é,

$$\phi_i(\vec{r}) = \phi_i(\vec{r}) \text{ se } i \in R \text{ e } |\vec{r} - \vec{R}| > r_c.$$
 (2.120)

2.2. TEORIA DO FUNCIONAL DA DENSIDADE

As funções projetoras $|\tilde{p}_i\rangle$ são escolhidas de tal forma que satisfaça a

$$|\tilde{\psi}\rangle = \sum_{i} |\tilde{\phi}_{i}\rangle \langle \tilde{p}_{i} |\tilde{\psi}\rangle, \text{ para } |\vec{r} - \vec{R}| < r_{c}, \qquad (2.121)$$

$$\sum_{i} |\tilde{\phi}_{i}\rangle \langle \tilde{p}_{i}| = \mathbf{1} \in \langle \tilde{p}_{i}|\tilde{\phi}_{j}\rangle = \delta_{ij}.$$
(2.122)

Deste modo, das equações (2.117), (2.119) e (2.122) o operador transformação pode ser escrito como:

$$\tau = \mathbf{1} + \sum_{i} \left(|\phi_i\rangle - |\tilde{\phi}_i\rangle \right) \langle \tilde{p}_i|.$$
(2.123)

Assim, a função de onda total $|\psi\rangle$ do elétron de valência pode ser escrita como:

$$|\psi\rangle = |\tilde{\psi}\rangle + \sum_{i} (|\phi_i\rangle - |\tilde{\phi}_i\rangle) \langle \tilde{p}_i |\tilde{\psi}\rangle, \qquad (2.124)$$

ou

$$|\psi\rangle = |\tilde{\psi}\rangle + \sum_{i} |\phi_{i}\rangle \langle \tilde{p}_{i} |\tilde{\psi}\rangle - \sum_{i} |\tilde{\phi}_{i}\rangle \langle \tilde{p}_{i} |\tilde{\psi}\rangle, \qquad (2.125)$$

que podemos resumir em,

$$|\psi\rangle = |\tilde{\psi}\rangle + |\psi^1\rangle - |\tilde{\psi}^1\rangle,$$
(2.126)

com $|\psi^1\rangle = \sum_i |\phi_i\rangle \langle \tilde{p}_i | \tilde{\psi} \rangle$ e $|\tilde{\psi}^1\rangle = \sum_i |\tilde{\phi}_i\rangle \langle \tilde{p}_i | \tilde{\psi} \rangle$. Assim, a função de onda total de valência ψ

Figura 2.5: Representação esquemática da função de onda total de valência ψ em termos de três compontes, $\tilde{\psi}, \psi^1 \in \tilde{\psi}^1$.

é escrita em termos de três componentes (esquema ilustrado na figura 2.5): $\tilde{\psi}$, exata na região intersticial e suave na região de caroço; ψ^1 , exata na região de caroço (também chamada de região aumentada, $r < r_c$) descrevendo toda a estrutura nodal da função de onda exata, e suave na região intersticial, tendendo a zero; $\tilde{\psi}^1$, suave em toda a região, sendo idêntica à ψ^1 na região intersticial e idêntica à $\tilde{\psi}$ na região aumentada. Esta descrição da função de onda total de valência ψ em termos

de três componentes constitui a ideia fundamental do método PAW.

2.3 O Código Computacional VASP

Para que as equações de Kohn-Sham possam ser resolvidas, dada a complexidade envolvida no processo, utiliza-se um código computacional. Dentre os vários existente, cada um é embasado nos mais diversos métodos. Neste trabalho foi utilizado o pacote de simulação computacional VASP (Vienna Ab-inition Simulation Package).

O VASP é um dos códigos mais utilizados atualmente, e permite a realização de simulações *abintio*⁵ Kresse e Furthemuller (1996); Kresse e Hafner (1993, 1994), dentro da mecânica quântica, e também cálculos de Dinâmica Molecular (MD - *Molecular Dinamics*) em temperaturas finitas. Os cálculos de primeiros princípios são realizados utilizando o formalismo da Teoria do Funcional da Densidade DFT, para isso o pacote permite tanto a utilização da aproximação LDA quanto várias aproximações GGA, para o funcional de troca-correlação. A interação entre íons e elétrons pode ser descrita usando o método do pseudopotencial ultra-suave ou pelo método PAW. Neste trabalho foi usado a aproximação GGA seguindo o tratamento de Perdew-Burk-Ernzerhof Perdew *et al.* (1996a) e os elétrons descritos pelo método PAW.

 $^{^5 {\}rm Também}$ chamado de cálculo de primeiros princípios, são cálculos que não precisam de parâmtros experimentais para serem feitos.

Capítulo 3

A Barreira *Schottky* em Interfaces Metal/Semicondutor

Cada vez mais, novas pesquisas e estudos têm se voltado à sistemas bidimensionais (2D), isto é, materiais formados por poucas camadas, estudando desde aspectos fundamentais à aplicações tecnológicas centradas no desenvolvimento de dispositivos eletrônicos em geral. A intercalação de heterojunções feitas de camada por camada, pode variar muito as propriedades físicas de um sistema. A estabilidade, nesses casos, pode ser dada através da interação química entre as camadas por meio de uma ligação covalente, por exempo, ou por meio de uma interação mas fraca que surge na interface devido a interação entre momento de dipolos elétricos. Tal interação é chamada de interação de van der Waals. Esse cenário 2D na ciência dos materiais foi previsto por Geim e Grigorieva (2013), onde eles mostram os conceitos de van der Waals (vdW) em várias heterestruturas composta por grafeno e outras monocamadas, e mais recentemente por Novoselov *et al.* (2013). Dessa maneira, as propriedades eletrônicas dessas heterestruturas vdW podem ser ajustadas através do empilhamento de diferentes conjuntos de materiais em camadas, sendo eles semicondutores ou metálicos. Uma descrição mais detalhada de interação vdW é feito no apêndice C.

Dicalcogenetos de metais de transição (TMDCs) têm recebido muita atenção na comunidade científica, pois eles podem se apresentar em uma grande diversidade de morfologia, indo desde materiais tridimensionais até materiais em uma dimensão. Com isso, tais materiais podem apresentar distintas propriedades ópticas, eletrônicas e mecânicas. Nesse sentido, em 2011 Radisavljevic *et al.* (2011) conseguiram sintetizar com sucesso o transistor composto por uma única camada. A partir de então, TMDCs vêm sendo considerado de maneira muito promissora para utilização em heterestruturas 2D de vdW. Por exemplo, a heterojunção vdW de semicondutor/semicondutor composta por camadas de $MoSe_2/WSe_2$ (Huang *et al.*, 2014) e MoS_2/WS_2 (ji Gong *et al.*, 2014). É possível, assim, controlar propriedades eletrônicas de interesse, tais como gap de energia, por meio de uma escolha adequada do número e do tipo de materiais 2D empilhados. Isto é de grande interesse para a engenharia de desenvolvimento de novos materiais semicondutores.

A formação de uma heterestrutura é acompanhada de uma transferência de carga entre os materiais utilizados. O sentido dessa transferência é importante para descrever as propriedades eletrônicas do sistema. Esse sentido pode ser obtido através do alinhamento de bandas (do inglês *band offsets*). Com base em cálculos de primeiros princípios, Kang e colaboradores realizaram um estudo extensivo do alinhamento de bandas dos TMDCs comparando o potencial de ionização,

que é a energia mínima para se tirar um elétron da última banda de valência (ou topo da banda de valência), e o gap de energia dos componentes 2D empilhados (Kang *et al.*, 2013). Assim, eles mostram que a heterojunção $MoSe_2/WSe_2$, MoS_2/WS_2 e MoS_2/WSe_2 apresentam alinhamento de banda do tipo II. De fato, esse alinhamento tipo II foi verificado em uma recente realização experimental da heterojunção p—n de MoS_2/WSe_2 (Lee *et al.*, 2014).

Heterestruturas compostas de metal/semicondutor também foram sintetizadas com sucesso através de (semi)metal 2D sobre camadas de TMDCs. Por exemplo, grafeno sobre TMDCs (Yu et al., 2014), (Shih et al., 2014), ou metais 2D, tipo $H - NbS_2$, sobre, semicondutores TMDCs (Liu et al., 2016). Nesse tipo de heterestrutura é fundamental a consideração da altura da barreira Schottky (Φ_B) , como foi comentado anteriormente. O apêndice A trás uma descrição do cálculo da altura da barreira Schottky. De maneira geral, a Φ_B pode ser estimada comparando a função de trabalho do metal (W_m) e a afinidade eletrônica (Φ_B para semicondutores tipo n) ou o potencial de ionização (Φ_B para semicondutores tipo p) do semicondutor. De forma semelhante ao que acontece em estruturas 3D, a altura da barreira Schottky pode ser ajustada por um campo elétrico externo, como observado em transistores de efeito de campo (FETs). No entanto, a injeção de buracos em FETs baseados em (semicondutores) TMDC foi limitada pelos valores maiores de Φ_B tipo p. Existem algumas propostas visando proporcionar uma melhor eficiência na injeção de buracos em TMDCs; Por exemplo, usando o grafeno oxidado nos contatos fonte/dreno (Chuang et al., 2014), (Musso et al., 2014), e mais recentemente a inclusão de uma monocamada de nitreto de boro BN na interface metal/semicondutor (Farmanbar e Brocks, 2015). No entanto, o controle da Φ_B tipo p, de modo a obter uma injeção eficiente de buracos nas heterojunções de metal/TMDCs, ainda segue sendo um desafio. Entretanto, estamos diante de uma intensa pesquisa sobre novos materiais, o que permite fazer uma série de combinações de materiais a fim de obter uma determinada propriedade eletrônica.

Portanto, baseados em cálculos de primeiros princípios, investigamos neste trabalho a estabilidade energética e propriedades eletrônicas de heterojunções de metal/semicondutor 2D. Assim consideramos como camadas metálicas folhas de Boro: (i) borofeno S0, sintetizadas com sucesso por Mannix *et al.* (2015), caracterizadas estruturalmente por uma forma não-planar; (ii) borofenos S1 e S2, sintetizadas por (Feng *et al.*, 2016), caracterizadas estruturalmente por conter linhas de vacâncias de boro e uma geometria planar. Vários estudos sobre borofeno vêm sendo realizados. Por exemplo, Alvarez-Quiceno *et al.* (2017), apoiado por resultados experimentais (Mannix *et al.*, 2015), verificaram que a oxidação de S0 é bastante provável, dando origem a vacâncias de boro, que se assemelham às geometrias planares de S1 e S2, como verificado por Feng *et al.* (2016). Por outro lado, S1 e S2 são praticamente inertes à oxidação e também são energicamente mais estáveis que a geometria não planar do borofeno S0. No entanto, o uso dessas folhas de boro como contato metal-semicondutor 2D ainda não foi explorado. Nesse caso, o papel semicondutor no contato foi feito pelas monocamadas de TMDCs, $MoSe_2 e WSe_2$.

As propriedades físicas desses sistemas foram estudadas através do cálculo de primeiros princípios. Em todos os casos descrito neste capítulo, foi usado uma energia de corte de 400 eV para expansão em ondas planas dos orbitais de Kohn-Sham, (Hohenberg e Kohn, 1964), (Kohn e Sham, 1965); As posições atômicas foram relaxadas incluindo interações de van der Waals baseadas em (Tkatchenko e Scheffler, 2009) e optB88 (Klimeš *et al.*, 2009); Os átomos foram deixados relaxar com uma tolerância de convergência abaixo de 20 meV/Å para a força total, e a primeira zona de Brillouin foi gerada usando um conjunto de $12 \times 12 \times 1$ pontos k de acordo com o esquema de Monkhorst-Pack, MONKHORST e PACK (1976).

3.1 Propriedades dos sistemas isolados: *MoSe*₂, *WSe*₂, *S*0, *S*1 e *S*2

3.1.1 Propriedades Estruturais

A primeira parte do trabalho consiste em cálculos de propriedades fundamentais dos sistemas a serem estudados. Por exemplo, parâmetro de rede, estruturas de bandas, estabilidade energéticas de cada sistema livre. Isso nos serve para comprovação de que nossos resultados estejam coerentes e de acordo com outros resultados já encontrados na literatura.

Para determinarmos a constante de rede do nosso sistema calculamos a energia total do sistema em função da constante. O valor da constante de rede é aquele que fornece o menor valor da energia total do nosso sistema em questão, como mostrado na Figura (3.1). A Tabela (3.1) mostra os valores otimizados para a constante de rede de cada sistema, bem como os valores encontrados na literatura para comparação. É possível notar que nossos resultados concordam muito bem e dentro de margem de erro esperado, que é menor que 5%.

Figura 3.1: Cálculo da energia total do sistema, em eV, como função da constante de rede, em Á

	$MoSe_2$	WSe_2	S0	S1	S2
$\mathbf{a}(\mathrm{\AA})$	3,32(3,32)	3,32(3,32)	1,61(1,67)	5,01 (5,00)	8,31 (8,60)
$\mathbf{b}(\mathrm{\AA})$	3,32(3,32)	3,32(3,32)	2,85(2,90)	2,96(3,00)	2,95(3,00)

Tabela 3.1: constante de rede otimizada e entre parênteses a experimental (ou outros cálculos) (Mannix *et al.*, 2015), (Feng *et al.*, 2016), (Kang *et al.*, 2013).

A figura (3.2) mostra o modelo estrutural de cada sistema livre: $MoSe_2$ (WSe_2), S0, S1 e S2) bem como a célula unitária utilizada para o cálculo da constante de rede. Em acordo com resultados experimentais, os átomos de boro em S0 apresenta um deslocamento vertical de 0.91 Å, dando origem ao formato zig-zag quando visto ao longo da direção **a**. Entretanto, sob a formação de vacância de boro, os modelos estruturais S1 e S2 tornam-se planares, figuras (3.2-e e 3.2-h).

Figura 3.2: Estrutura de cada sistema livre: (a)-(b) $MoSe_2$ (WSe_2) vista de cima e lateral, respectivamente; (c)-(d) S0; (e)-(f) S1; (g)-(h) S2. Também é ilustrada a célula unitária usada nos cálculos.

3.1.2 Propriedades Eletrônicas

Figura 3.3: Mapeamento da primeira zona de Brillouin para as estruturas hexagonais ($MoSe_2 \in WSe_2$) e quadradas ($S0, S1 \in S2$).

Para as propriedades eletrônicas, realizamos o cálculo da estrutura de bandas desses sistemas. Para tal, percorremos os pontos de alta simetria dentro da primeira zona de Brillouin indicada na figura (3.3). Da figura (3.4), vemos que a estrutura de banda dos semicondutores ($MoSe_2$ e WSe_2) apresentam características semelhantes: ambos apresentam um gap direto de energia na direção do vetor de onda \vec{K} . Essa é uma importante característica no que diz respeito à construções de dispositivos optoeletrônico diversos. Entretanto essa característica (gap direto) só existe para sistema composto por uma única camada de $MoSe_2$ ou $WSe_2(Kang et al., 2013)$. Isto é, se empilharmos duas ou mais camadas destes materiais eles passarão a ter um gap indireto de energia. Já as estrutura de banda de S0, Figura 3-c), apresenta um conjunto de bandas metálicas para vetores de onda paralelas à direção a, isto é, ao longo das faixas de boro; enquanto que não existem bandas metálicas para vetores de onda ao longo das direções $\Gamma Y \in SX$, mostrando assim uma característica anisotrópica. Tal anisotropia é reduzida em $S1 \in S2$, Figura 3 (d) e (e), respectivamente. As bandas de energia das folhas de boro S1 e S2 são caracterizadas pela formação de bandas metálicas sem dispersão ao longo do YS e maior densidade de estados (DOS) perto do nível de Fermi (EF), quando comparado com o DOS de S0. de Oliveira et al. (2018) descobriram que a anisotropia das bandas de energia no borofeno promove uma dependência direcional peculiar de suas propriedades de transporte eletrônicas. Neste trabalho examinamos como essas bandas de energia mudam na formação de heterestruturas 2D metal/semicondutores e seu papel na barreira Schottky.

Figura 3.4: Estrutura de bandas: (a) $MoSe_2$, (b) WSe_2 , (c) S0, (d) S1 e (e) S2.

3.2 Heterojunções Borofeno/TMDC

Figura 3.5: Modelo estrutural do *S*0/TMDC visto de cima em (a) e lateral em (b). *S*1/TMDC visto de cima em (c) e lateral em (d). E *S*2/TMDC visto de cima em (e) e lateral em (f).

Na figura (3.5) apresentamos os modelos estruturais de sistemas metal/semicondutores, semicondutores formados com $MoSe_2 \in WSe_2$, e metal com: S0 (3.5-a, -b), S1 (3.5-c, -d) e S2(3.5-e, -f). A fim de minimizar o descasamento da rede entre as folhas de boro e as monocamadas TMDC, as primeiras foram descritas por supercélulas ortorrômbicas com periodicidade de superfície (2×2) ao longo das direções **a** e **b**. Neste caso, as folhas de boro são forçadas até cerca de $\pm 2, 2\%$ em relação à sua constante de rede de equilíbrio. Para as monocamadas $MoSe_2 \in WSe_2$ (MLs) consideramos as células ortorrômbicas com as seguintes periodicidades de superfície, (1×1) , $(3 \times 1) \in (5 \times 1)$ para $S0/MoSe_2$ ($S0/WSe_2$), $S1/MoSe_2$ ($S1/WSe_2$) e $S2/MoSe_2$ ($S2/WSe_2$), respectivamente. Neste caso, as monocamadas $MoSe_2 \in WSe_2$ são forçadas até cerca de $\pm 0, 9\%$, quando comparadas com a sua constante de rede de equilíbrio.

A estabilidade energética das heteroestruturas 2D foi induzida através do cálculo da energia de

adsorção metal/TMDC (E_{ad}), definida como,

$$E_{ad} = E_{[metal/TMDC]} - E_{[metal]} - E_{[TMDC]}, \qquad (3.1)$$

onde $E_{[metal]}$ e $E_{[TMDC]}$ representam a energia total do metal e do TMDC isolados, respectivamente, e $E_{[metal/TMDC]}$ é a energia total do sistema final, heteroestrutura 2D metal/TMDC.

Inicialmente consideramos quatro configurações possíveis para a formação da interface S0/TMDC, onde encontramos valores de energia E_{ad} entre $-34 \text{ e} -44 \text{ meV}/\text{Å}^2$ para o $S0/MoSe_2$ e entre -29e $-41 \text{ meV}/\text{Å}^2$ para $S0/WSe_2$. Esses resultados estão dispostos na tabela (3.2). Na geometria de equilíbrio, o borofeno S0 e a monocamada de $MoSe_2$ (WSe_2) apresenta uma distância vertical (D) entre 2, 79 (2, 90) e 3, 17 Å (3, 55 Å). Esses resultados de E_{ad} e D são comparáveis com os obtidos para a bicamada de grafeno na superfície de Cu (111) (Souza *et al.*, 2016), e permitem inferir que a estabilidade energética dos sistemas borofeno/TMDC é principalmente regida pela interações vdW. De fato, se omitirmos a contribuição vdW, obtemos E_{ad} de 0, 13 meV/Å² e D = 3, 97 Å para o $MoSe_2$. Os resultados, resumidos para as demais fases do Borofeno estão ilustrados na tabela (3.3), e com dois vdW distintos. No entanto, como será discutido a seguir, a interação química entre S0 e o TMDC não pode ser negligenciada para D < 3 Å. A energia de adsorção reduz para as folhas de boro planares, S1 e S2, ou seja, obtemos $E_{ad} = 33$ e $31 \text{ meV}/\text{Å}^2$ para $S1/\text{ e} S2/MoSe_2$, respectivamente, e D > 3 Å. Nossos resultados de energias de ligação e geometrias de equilíbrio, para as configurações energéticamente mais estáveis, estão resumidos na tabela (3.3).

Metal/Semic.		E_{ad}	d	D
	C1	-33.6	0.84	3.14
$S0/M_0Sc_0$	C2	-33.7	0.81	3.17
50/ <i>M05</i> 2	C3	-43.6	0.82	2.79
	C4	-43.4	0.81	2.81
	C1	-29.1	0.86	3.55
$S0/WSc_{2}$	C2	-31.6	0.82	3.22
$S0/WSe_2$	C3	-40.5	0.82	2.90
	C4	-39.9	0.81	2.97

Tabela 3.2: Energia de adsorção (E_{ad} , em meV/Å²), distância entre planos formado pelo zigzag do S0 (d em Å) e distância média do S0 até o TMDC (D em Å).

	TS		opt	B88
Metal/Semic.	E_{ad}	D	E_{ad}	D
$S0/MoSe_2$	-44	2.79	26	3,03
$S0/WSe_2$	-41	2.90	26	3,03
$S1/MoSe_2$	-33	3.33	24	3,32
$S1/WSe_2$	-31	3.23	24	$3,\!35$
$S2/MoSe_2$	-31	3.36	23	$3,\!37$
$S2/WSe_2$	-30	3.39	23	$3,\!37$

Tabela 3.3: Energia de adsorção (E_{ad} , em m $eV/Å^2$), distância entre planos do Borofeno até o TMDC (D em Å), para dois tipos de vdW: TS (Tkatchenko e Scheffler, 2009) e optB88 (Klimeš *et al.*, 2009).

3.2.2 Alinhamento de Bandas e Transferência de Carga

Para analisar a transferência de carga elétrica entre dois sistemas quando se realiza a heterojunção, um fator importante é a análise do alinhamento de bandas, como foi dito anteriormente. Através da mesma, podemos inferir, a princípio, o sentido da transferência de carga entre os sistema. A figura (3.6) mostra o alinhamento da bandas de condução, nível de Fermi e banda de valência, dos TMDCs com o nível de Fermi dos metais S0, S1, S2. Para uma melhor descrição, o alinhamento foi feito também usando o Funcional Híbrido HSE06 (Heyd *et al.*, 2006), veja apêndice B. Para realizar o alinhamento, utilizamos o nível de vácuo como referência para todos os casos. Isto é, a energia de um elétron longe do material. Para obtermos o sentido da transferência de carga devemos comparar o nível de Fermi de ambos os sistemas quando isolados. Assim, quando um sistema é colocado em

Figura 3.6: Alinhamento de bandas. O nível de vácuo é tomado como referência no zero. As linhas tracejadas indicam os níveis calculados usando funcional híbrido HSE06 (Heyd *et al.*, 2006). As linhas verdes indicam o nível de Fermi dos TMDCs.

contato direto com outro para se formar a heterojunção, ocorrerá a transferência de carga entre eles de modo a igualar os dois níveis de Fermi. Dessa forma, como o nível de Fermi dos TMDCs, indicado pela linha verde na figura (3.6), está acima do nível de fermi do S0, ao fazer a junção dos dois sistemas, o nível de Fermi dos TMDCs desce e do S0 sobe, dessa forma, podemos afirmar então que o TMDCs perderão carga para S0 após a heterojunção. Já nas heterojunções com S1 e S2 ocorrerá o oposto: os TMDCs receberão carga carga das folhas de Boro, tendo em vista que o o nível de Fermi de S1 e S2 estão acima dos níveis de Fermi dos TMDCs.

Figura 3.7: Cáculo de $\Delta \rho$ entre metal/semicondutor calculado a partir dos TMDCs através da Analise de Bader (Bader, 1990).

De fato, através do modelo chamado de Bader charge density analysis desenvolvido por Bader (1990) e algoritmos gerados por (Henkelman et al. (2006) e Tang et al. (2009)) é possível quantificar a transferência de carga total entre os sistemas, veja apêndice D. A figura (3.7) mostra os resultados para esses sitemas. Baseado nessa análise de Bader, verificamos que a densidade de carga total da monocamada de $MoSe_2$ e WSe_2 reduz em $0,75 \times 10^{13} \ e^-/cm^2$ e $1,10 \times 10^{13} \ e^-/cm^2$, respectivamente. Isto é, de fato existe uma transferência de carga líquida a partir das monocamadas de $MoSe_2$ e WSe_2 para a folha de boro S0. E da mesma forma, obtivemos um $\Delta \rho > 0$ nas monocamadas de TMDCs para S1 e S2, como inferido anteriormente pelo alinhamento de bandas.

Podemos ter uma imagem espacial de ($\Delta \rho$) pela comparação das densidades de carga total do sistema ($\rho_{[Metal/TMDC]}$) com os componentes (iniciais) separados, folha de boro metálica ($\rho_{[Metal]}$) e semicondutor $MoSe_2$ e WSe_2 ($\rho_{[TMDC]}$),

$$\Delta \rho = \rho_{[Metal/TMDC]} - \rho_{[Metal]} - \rho_{[TMDC]}.$$
(3.2)

Nas figura (3.8-a) e (3.8-b) apresentamos o nosso resultado de $\Delta \rho$ Para $S0/MoSe_2$ e $S0/WSe_2$, onde verificamos que a região de interface próxima da camada do selênio, Se, apresenta uma perda de densidade de carga ($\Delta \rho < 0$), enquanto que perto da camada de borofeno observamos um ganho líquido de densidade de carga ($\Delta \rho > 0$)

Figura 3.8: Transferência de carga, $\Delta \rho$, nas insterfaces do $S0/MoSe_2(a) \in S0/WSe_2(b)$. Regiões verdes indicam um ganho de carga ($\Delta \rho > 0$), e azuis indicam uma perda de carga ($\Delta \rho < 0$) com relação aos sistemas isolados (*isosourfaces* de $5 \times 10^{-4} e^{-}/\text{Å}^2$).

3.2.3 Estrutura Eletrônica

A eletrônica desses sistemas foi analisada através do cálculo da estrutura de bandas. Primeiramente calculamos a estrutura de bandas dos sistemas isolados, figura (3.9), para em seguida analisar as estruturas dos sistemas compostos. As figuras (3.9) diferem daquelas (3.4) pelo fato que aqui temos umas supercélulas maiores e retangulares em todos os casos.

Figura 3.9: Estrutura de bandas dos sistemas isolados: (a) $MoSe_2$, (b) WSe_2 , (c) S0, (d) S1 e (e) S2.

Nas figuras (3.10) apresentamos as estruturas de bandas de $S0/MoSe_2$ e $S0/WSe_2$, projetadas. A projeção das bandas de energia em S0, figuras (3.10-a1) e (3.10-b1) revela que suas bandas metálicas exibem um deslocamento para baixo em relação ao nível de Fermi (EF). Isso está de acordo com as transferências de carga TMDC $\rightarrow S0$. Além disso, encontramos a formação de uma banda metálica c1 para vetores de onda paralelo à direção Γ Y. Por outro lado a bandas de energia projetadas em $MoSe_2$ e WSe_2 , figuras (3.10-a2) e (3.10-b2), mostram que as MLs também contribuem para a formação de c1. Isso indica que os estados de interface metálicos provêm da hibridização entre os estados eletrônicos de S0 e TMDC. Para obter mais informações, realizamos

Figura 3.10: Estrutura de banda do $S0/MoSe_2$: (a1) projetada em S0;(a2) projetada em $MoSe_2$. (b1) e (b2) são as respectivas bandas para $S0/WSe_2$.

Figura 3.11: Estrutura de bandas para $S0/MoSe_2$ com distância D de aproximadamente (a) 4 Å, (b) 5 Å e (c) 6 Å. A linha tracejada indica a posição do EF.

Figura 3.12: Estrutura de banda do $S1/MoSe_2$: (a1) projetada em S1;(a2) projetada em $MoSe_2$. (b1) e (b2) são as respectivas bandas para $S1/WSe_2$. Da mesma forma (c1) e (c2) são as bandas de $S2/MoSe_2$, e (d1) e (d2) são as bandas de $S2/WSe_2$

cálculos de estrutura de bandas do $S0/MoSe_2$ para valores maiores da distância entre $S0 \in MoSe_2$, figura (3.11). Encontramos que para D com cerca de 4 Å as contribuições eletrônicas do $MoSe_2$ para c1 deixam de ser metálicas; ficando assim, completamente ocupada. Isso evidencia que a banda c1 se dá, realmente, pela interação entre $S0 \in MoSe_2$. Isto é, os estados de interface metálicos em S0/TMDC são suprimidos aumentando a distância vertical, $D \ge 4$ Å. Com relação à estrutura eletrônica de $S1 \in S2$ sobre TMDC, vale ressaltar que as E_{ad} para $S1 \in S2$ sobre $MoSe_2 \in WSe_2$ são menores quando comparados com $S0/MoSe_2 \in S0/WSe_2$; Além disso, a separação entre camadas aumenta para $D \approx 3,5$ Å, conforme a tabela (3.3). Essas conclusões indicam que a interação eletrônica entre $S1 \in S2$ com o semicondutor $MoSe_2 \in WSe_2$ são mais fracas em comparação com os sistemas S0/TMDC. De fato, isso é o que encontramos na figura (3.12), onde podemos ver que as bandas de energia dos componentes separados são, na sua maioria, preservadas.

3.2.4 A Barreira Schottky

Como vimos no alinhamento de bandas, figura (3.6), a posição relativa dos níveis de Fermi, EF, fornece um papel importante quando se analisa o sentido da transferência de carga. Outro fator importante, é dado pela diferença entre as energias mínimas necessárias para se "arrancar" totalmente um elétron do material e levá-lo para longe. Ou seja, para metais, como os elétrons de mais alta energia estão no nível de Fermi, vemos que a energia necessária para o arrancar é igual a energia de Fermi E_F (tomando a energia de vácuo como referência igual a zero). Essa, nada mais é que a função trabalho do metal. Por outro lado, os elétrons mais energéticos nos semicondutores estão no topo da banda de valência, e a energia necessária para arrancá-lo totalmente do material, tomando novamente a energia de vácuo igual a zero, é dada por E_{VBM} , (energia do último estado ocupado no semicondutor). Ao se formar a heterojunção metal-semicondutor a diferença de energia,

$$\Phi_B = E_F - E_{VBM},\tag{3.3}$$

é chamada de barreira Schottky, em homenagem ao Físico W. Schottky que estudou contatos metalsemicondutor na década de 1930, ver apêndice A. O valor de E_{VBM} na heterojunção é aquele dado pela projeção dos estados do TMDC, correspondente ao último estado ocupado, representado pela banda v1 na figura (3.12). Se $\Phi_B > 0$ temos que $E_F > E_{VBM}$ e teremos uma barreira Schottky tipo p. Esse é o caso dos sistemas S1/TMDC e S2/TMDC. Encontramos uma barreira Schottky $\Phi_B = 0, 15$ eV em S1/MoSe₂, enquanto para S1/WSe₂ esse valor é reduzido para $\Phi_B = 0, 01$ eV. Vale ressaltar que, apesar das semelhanças estruturais e energéticas com as interfaces S1/TMDC, as interfaces S2/MoSe₂ e S2/WSe₂ apresentam valores maiores de barreira de Schottky, 0, 44 e 0, 31 eV, respectivamente. A altura dessa barreira, pode ser aumentado ou diminuída mediante a aplicação de um campo elétrico. Assim, nas próximas seções, estudaremos o efeito do campo elétrico nessas propriedades eletrônicas como um todo.

3.3 Aplicação de E_{\perp} à superfície Metal/Semicondutor

Como nossos sistemas são condutores, a aplicação de um campo elétrico pode então dar origem a uma corrente elétrica entre o metal e semicondutor. A seguir vamos então avaliar como se dá a transferência de carga elétrica desses sistemas.

Figura 3.13: Transferência de carga, $\Delta \rho$, em função do campo elétrico perpendicular à superfície (E_{\perp}) . Valores positivos de E_{\perp} indica um campo aplicado do TMDC \rightarrow Borofeno.

3.3.1 Campo elétrico e a Transferência de Carga $\Delta \rho$

A figura (3.13) mostra como a transferência de carga $\Delta \rho$ calculada a partir de TMDC varia com o campo elétrico aplicado perpendicularmente às superfícies, (E_⊥). Como podemos notar, é possível dopar o semicondutor com tipo *n* ou tipo *p* mediante a aplicação correta de E_⊥. Por exemplo, para *S*0/TMDC, os TMDCs perdem elétrons para E_⊥ = 0. No entanto para campos

Figura 3.14: Transferência de carga, $\Delta \rho$, em função do campo elétrico perpendicular à superfície (E_{\perp}). (a) $S1/MoSe_2e$ (b) $S1/WSe_2$. (a1) e (b1) para $E_{\perp} = +0, 4 \text{ eV}/\text{Å}$, (a2) e (b2) para $E_{\perp} = 0 \text{ eV}/\text{Å}$ e (a3) e (b3) para $E_{\perp} = -0, 4 \text{ eV}/\text{Å}$.

 $E_{\perp} \geq +0.3 \text{ eV/Å}$, o TMDC passa a receber elétrons de S0. O mesmo ocorre com os sistemas S1/TMDC e S2/TMDC. Entretanto, nesses casos, para $E_{\perp} = 0$ o TMDCs recebem elétrons, como foi visto anteriormente. E assim, para inverter essa dopagem é necessário $E_{\perp} < +0.3 \text{ eV/Å}$, como pode ser visto na figura (3.13). Essa inversão pode ser melhor visualizada pelo mapeamento da transferência de carga $\Delta \rho$ conforme a figura (3.14). Novamente, regiões verdes indicam aquelas regiões com acúmulo de elétrons, enquanto azuis são falta de elétrons. Nesse caso a redistribuição dessa densidade de carga em função do campo foi calculada por:

$$\Delta \rho(E\perp) = \rho(E_{\perp} \neq 0) - \rho(E_{\perp} = 0) \tag{3.4}$$

em que $\rho(E_{\perp} \neq 0)$ e $\rho(E_{\perp} = 0)$ representam, respectivamente, as densidade de carga com e sem campo elétrico aplicado. Podemos notar claramente a inversão na densidade de carga mediante a mudança de campo elétrico de -0, 4 eV/Å para +0, 4 eV/Å. Assim, existe um contato ôhmico do tipo p em $S1/MoSe_2$ e $S1/WSe_2$ que é caracterizado por transferência de carga líquida da camada de TMDC para S1. Encontramos uma transferência de carga líquida do $MoSe_2$ e WSe_2 MLs para S1 de $6, 9 \times 10^{12} \text{ e/cm}^2$ e $8, 9 \times 10^{12} \text{ e/cm}^2$, respectivamente, para um campo elétrico de $E_{\perp} = -0, 4 \text{ eV}/\text{Å}$.

Figura 3.15: Estrutura de bandas do $S0/MoSe_2$ em função do campo elétrico E_{\perp} : (a) $E_{\perp} = -0.3$ eV/Å e (b) $E_{\perp} = +0.3 eV/Å$. Em azul, projeções em S0 e vermelho em TDMC.

Figura 3.16: Estrutura de bandas do $S0/WSe_2$ em função do campo elétrico E_{\perp} : (a) $E_{\perp} = -0.3 \text{ eV/Å}$ e (b) $E_{\perp} = +0.3 \text{ eV/Å}$. Em azul, projeções em S0 e vermelho em TDMC.

3.3.2 Estrutura Eletrônica e Barreira Schottky em Função do Campo Elétrico

A estruturas de bandas desses sistemas foram calculadas em função do campo elétrico aplicado, E_{\perp} . Como vimos, existe uma transferência de carga líquida do TDMC para as folhas de Boro conforme diminuímos os valores de E_{\perp} , figura (3.13). Dessa forma, as estruturas de bandas desses sistemas devem alterar significativamente. As figuras (3.15) e (3.15), mostram as estruturas de bandas de $S0/MoSe_2$ e $S0/WSe_2$, respectivamente. Como é de se esperar, devido à perda de cargas, à medida que o valor de E_{\perp} aumenta, o topo da banda de valência das bandas dos TMDC (pico vermelho entre os pontos X Γ) se desloca em para baixo (em relação ao EF). No entanto esse deslocamento não é tão pronunciado, quando comparado aos sistemas formados por S1 e S2, que veremos a seguir, devido a presença dos estados metálicos na interface (banda metálica c1 entre Γ Y). Esses estados tendem a fixar o nível de Fermi.

Por outro lado, mudanças maiores ocorrem nas bandas de S1/TMDC, figuras (3.17) e (3.18), e S2/TMDC, figuras (3.19) e (3.20). Nesse caso, há um grande deslocamento das bandas do TMDCs em relação ao EF, tanto para S1 quanto para S2. Tal efeito, também é notando nas bandas do S1, figuras (3.17) e (3.18). No entanto, nesse caso, o S1 está recebendo cargas, logo o deslocamento é em sentido oposto aos dos TMDCs. Isto é, as bandas de S1 se deslocam para cima em relação ao EF, a medida que o valor de E_{\perp} aumenta.

O controle da barreira de Schottky através de um campo elétrico externo foi explorado em outros sistemas de metal/semicondutores 2D (Padilha *et al.*, 2015; Z. *et al.*, 2016). Aqui, com base na mesma abordagem, examinamos a dependência entre Φ_B e o campo elétrico externo perpendicular

Figura 3.17: Estrutura de bandas do $S1/MoSe_2$ em função de E_{\perp} : (a) $E_{\perp} = +0, 4$ e (b) $E_{\perp} = -0, 4$ eV/Å. Em azul, projeções em S1 e vermelho em TDMC.

Figura 3.18: Estrutura de bandas do $S1/WSe_2$ em função de E_{\perp} : (a) $E_{\perp} = +0,4$ e (b) $E_{\perp} = -0,4$ eV/Å. Em azul, projeções em S1 e vermelho em TDMC.

Figura 3.19: Estrutura de bandas do $S2/MoSe_2$ em função de E_{\perp} : (a) $E_{\perp} = +0, 4$ e (b) $E_{\perp} = -0, 4$ eV/Å. Em azul, projeções em S2 e vermelho em TDMC.

Figura 3.20: Estrutura de bandas do $S2/WSe_2$ em função de E_{\perp} : (a) $E_{\perp} = +0, 4$ e (b) $E_{\perp} = -0, 4$ eV/Å. Em azul, projeções em S2 e vermelho em TDMC.

Figura 3.21: Resultados da barreira Schottky (Φ_B em eV) como função do campo elétrico externo, E_{\perp} .

à interface metal/TMDC (E_{\perp}). Aqui encontramos que Φ_B aumenta para E_{\perp} apontando a partir do TMDC ML em direção à folha de boro (isto é, valores positivos de E_{\perp}). Enquanto que para valores negativos de E_{\perp} , a barreira de Schottky reduz, tornando-se negativa para $E_{\perp} = -0, 4 \text{ eV}/\text{Å}$ em $S1/MoSe_2$ e $S1/WSe_2$ dando origem a contatos ôhmicos de tipo p. Os resultados de Φ_B como uma função de E_{\perp} Estão resumidos na figura (3.21). Vale ressaltar que, ao aumentar a intensidade de E_{\perp} , os outros sistemas $S2/MoSe_2$ e $S2/WSe_2$ também apresentarão contato ôhmico do tipo p. Por outro lado, em contraste com Z. *et al.* (2016), não encontramos nenhuma alteração significativa de Φ_B como uma função de E_{\perp} para S0/TDMC, o que pode ser atribuído à presença de estados de interface metálica fixando o nível de Fermi em S0/TMDC.

3.4 Conclusões

Foi investigadas as estabilidades energéticas e as propriedades eletrônicas das heterojunções 2D metal/TMDC vdW. Verificamos que as folhas de boro planas recentemente sintetizadas (S1 e S2) são bons candidatos para formar contatos Schottky de tipo p com os TMDCs ($MoSe_2$ e WSe_2). Existe uma transferência de carga líquida dos TMDCs para as folhas de boro, e que pode ser controlada mediante aplicação de campo elétrico externo. Além disso, com a aplicação de campo elétrico externo, verificamos que as heterojunções $S1/MoSe_2$ e $S1/WSe_2$ exibem um contato ôhmico tipo p para E_{\perp} Cerca de -0,2 eV/Å. Resultados semelhantes são esperados para $S2/MoSe_2$ e $S2/WSe_2$ no entanto para valores maiores de E_{\perp} . Em contraste, tal controle de barreira Schottky não foi verificada para $S0/MoSe_2$ e $S0/WSe_2$. Em vez disso, encontramos a formação de estados metálicos de interface, centrando o nível de Fermi entre o gap dos TMDCs.

Capítulo 4

Adsorção de Metais de Transição em Borofeno

O controle de propriedades magnéticas são importantes em diversas aplicações tecnológicas e motivam um número muito grande de pesquisas nessa área. Existe uma demanda para memória de alta densidade para armazemento de informação. Para isso é necessário novos materiais que armazenem informações em volumes menores. Isso requer que o material tenha uma característica de mudança de fase reversível e de forma rápida (Giusca et al., 2013). A Spintrônica, por exemplo, tenta usar a polarização de spin dos elétrons como chave para armazenamento de informação. Dessa forma aumentaria consideravelmente a velocidade de armazenamento de informação dentre outras aplicações. O spin do elétron é então um grande candidato e são chamados, em Spintrônica, como o qubit (bit quântico). O ajuste e controle de propriedades eletrônicas e magnéticas em materiais bidimensionais pode ser feito pela incorporação de átomos isolados, ou até mesmo moléculas, nesses sistemas. Krasheninnikov et al. (2009) mostram que um átomo de Ferro (Fe) substitucional a um carbono numa folha de grafeno é não-magnético, enquanto que substituindo dois átomos de carbono por um de ferro, este apresenta um alto valor de momento magnético, veja figura (4.1). Além disso, os pesquisadores Sevincli et al. (2008) apontam que o estado semimetálico do grafeno pode mudar para um metal ferromagnético ou antiferromagnético após a adsorção de alguns metais de Transição no sítio de vacância da folha de grafeno. O aumento de concentração de MT próximo à borda de

Figura 4.1: Figura ilustrando diferentes maneiras de adsorver o MT em folha de grafeno (Krasheninnikov *et al.*, 2009).

Figura 4.2: Estrutura de bandas evidenciando a anisotropia na corrente eletrônica com relação a polarização de spin (de Lima e Miwa, 2017).

uma folha de grafeno dão origem a trilhas de metais bastante estáveis. Por meio de uma análise da estrutura de bandas, de Lima e Miwa (2017) mostram que há uma anisotropia na corrente eletrônica ao longo da trilha devido a polarização de spin, veja figura (4.2). de Oliveira *et al.* (2018) estudaram a adsorção da molécula conhecida como *Tetrathiafulvalene* sobre grafeno, com uma extensa linha de defeitos de vacância. Nesse caso há uma considerável transferência líquida de carga entre a molécula e o grafeno, de forma que a folha de grafeno apresenta uma forte dopagem *tipo-n*. Com um acúmulo de carga nos átomos de Carbono ao longo do defeito, há a formação de estados magnéticos no sistema.

Além do grafeno, outros materiais bidimensionais apresentam propriedades com grande potencial de aplicações em dispositivos diversos. Como exemplo, Li *et al.* (2016) estudaram a adsorção de MT 3d em Borofeno fase S0. Os resultados obtidos mostram que propriedades ferromagnéticas no Borofeno podem ser promovidas de maneira controlada mediante adsorção de diferentes MT3d, escolhidos adequadamente. Já Li *et al.* (2019) propuseram uma estratégia para incorporação de Metais de Transição (MT) para introduzir o ferromagnetismo em uma temperatura ambiente para algumas fases do borofeno. Todos esses resultados evidenciam um grande número de possibilidades que podem ser exploradas para obtenção de propriedades eletrônicas e magnéticas controláveis que possam ser aplicadas não só em Spintrônica, mas em dispositivos tecnológicos diversos.

Nesse capítulo, estudaremos a adsorção/incorporação dos Metais de Transição (MT), Cobalto (Co), Ferro (Fe) e Manganês (Mn) em Heteroestruturas formadas pelas junções do Borofeno fases S0, S1e~S2. O objetivo é analisar como as propriedades eletrônicas e magnéticas desses sistemas variam conforme o ordenamento dessas heterojunções. Todas as propriedades físicas aqui calculadas foram realizadas atráves do cálculo de primeiros princípios. Foi usado uma energia de corte de 400 eV para expansão em ondas planas dos orbitais de Kohn-Sham; os átomos foram deixados relaxar com uma tolerância de convergência abaixo de 6 meV/Å para a força total, e a primeira zona de Brillouin foi gerada usando um conjunto de $8 \times 8 \times 1$ pontos k de acordo com o esquema de Monkhorst-Pack, (MONKHORST e PACK, 1976). Esse mesmo método será usado no próximo capítulo.

4.1 Adsorção de Metais de Transição sobre Borofeno

Inicialmente testamos os sítios mais estáveis para adsorção do Metais de Transição (MT) sobre o Borofeno fase S0 e S1. Em todos os sítios testados, verificamos que a ligação do MT como o Borofeno é termodinamicamente favorável, mediante um processo exotérmico. A energia de ligação em cada caso foi calculada pela seguinte expressão:

$$E_b = E_{Borofeno+MT} - (E_{borfeno} + E_{MT}) \tag{4.1}$$

em que E_b é a energia de ligação, $E_{Borofeno+MT}$ a energia total do sistema ligado, $E_{Borfeno}$ a energia do Borofeno livre (sem a presença do MT) e E_{MT} é a energia total de um átomo de MT isolado.

4.1.1 Estabilidade energética de MT/S0

A figura (4.3) ilustra a vista de topo dos sítios testados para adsorção dos MT sobre o Borofeno na fase S0. A diferença entre os sítios 1 e 3 indicada se dá pela altura dos planos caracterizados pelo *buckling* da fase S0. Como indicado na figura (4.3), consideramos uma supercélula de $6 \times 3 \times 1$. Isto é, a célula primitiva, descrita por vetores primtivos **a'**, **b'** e **c'**, dá lugar a supercélula com volume maior formada por vetores 6**a'**, 3**b'** e 1**c'**. Dessa maneira não haverá interação entre dois MT próximos, e assim podemos analisar somente a interação entre o MT e a superfície do Borofeno. Assim a concentração de dopagem medida é 1MT/36 Boro (cerca de 2,8 %). Todos os átomos foram completamente relaxados, juntamente com a célula unitária, para uma melhor precisão nos cálculos. As energias de Adsorção estão representadas na tabela (4.1).

Figura 4.3: Sítios testados para adsorção dos MT sobre o S0. A linha de Boro abaixo dos sitios 1 e 2 estão num plano abaixo da linha que contém os sítios 3 e 4. Formando assim o *buckling* característico da fase S0.

$E_{ad}~({ m em~eV}/MT)$							
Sítios	Co/S0	Fe/S0	Mn/S0				
1	-3.88	-3.64	-1.56				
2	-4.37	-2.70	-3.24				
3	-2.89	-2.67	-2.20				
4	-2.99	-2.50	-2.10				

Tabela 4.1: Energias de adsorção para diferentes sítios.

A figura (4.4) mostra as geometrias de equilíbrio para cada MT adsorvido sobre o S0. Observa-

Figura 4.4: Configurações mais estáveis dos MT sobre S0. (a) Co/S0, (b) Fe/S0e (c) Mn/S0. (x1) vista da direção \vec{a} , (x2) \vec{b} e (x3) \vec{c} .

se que há uma grande reconstrução quando o MT é adsorvido no sítio 2, (ver figura (4.3)), como é o caso dos átomos de $Co \in Mn$, figuras (4.4)-a e (4.4)-b. A figura também mostra a distância de ligação dos MT para o plano de boro diretamente abaixo. Os pesquisadores Li *et al.* (2016), analisaram também a energética desses sistemas, e obtiveram energias de: -7,93 eV para Co, -7,42 eV para Fe e -7,27 eV para Mn. Tais valores são relativamente mais baixas que as expostas na tabela (4.1) apresentada aqui. Tais discrepâncias podem ser explicadas pela concentração de dopagem utilizadas nos cálculos. Li *et al.* (2016) revelam que o a energia energia de ligação aumenta com o aumento da distância entre dois MT próximos. A concentração utilizada por eles é de 12,5 % contra 2,77 % apresentada aqui. Outros fatores também podem ter influenciado tais como: códigos computacionais diferentes, termo de troca e correlação e também constantes de rede diferentes. Em todo caso os sítios favoráveis a adsorção e sequência de estabilidade estão em acordo.

Na próxima seção estudamos a estabilidade energética dos MT adsorvidos em Borofeno fase S1 bem como as propriedades eletrônicas e magnéticas desses sistemas.

4.1.2 Estabilidade energética e propriedades eletrônicas de MT/S1

Como feito na seção anterior, começamos testando os sítios energeticamente favoráveis a adsorção dos MT em S1. Nesse caso existem várias opções de sítios distintos, como ilustrado na figura (4.5). Aqui, usamos uma concentração de dopagem de 1MT/30 Boro (cerca de 3,3 %). Durante a relaxação o volume da célula unitária, (indicada pela linha tracejada na figura (4.5)) foi mantido fixo a fim de identificar o sítio de mais favorável, com um tempo computacional menor. A tabela (4.2) mostra os valores de energia de ligação obtidos. Embora a tabela aponte alguns sítios com mesmo valor de energia, na configuração final, após a relaxação, o MT se liga ao S1 no sítio 1. Isto é, o MT volta ao sítio 1 após a relaxação, mesmo tendo iniciado em um sítio próximo. Dessa maneira, constatamos que o sítio 1 é energeticamente o mais estável. Comparando os valores de energia de ligação do MT/S1, tabela (4.2), com o MT/S0, tabela (4.1), notamos que o MT se liga mais fortemente quando adsorvido à região de vacância do S1. Esse fato nos conduz à ideia de que é possível formar cadeias lineares de MT (ou trilhas) ao longo da região de vacância, seja em S1 ou alguma heteroestruturas formada por S1 e S0.

Sítios	Co/S1	Fe/S1	Mn/S1
1	-5.19	-4.53	-3.49
2	-5.19	-4.64	-3.56
3	-3.38	-2.39	-3.49
4	-3.38	-2.39	-3.56
5	-5.19	-4.49	-3.48
6	-3.42	-2.60	-3.48
7	-3.42	-2.91	-1.31
8	-3.42	-3.00	-1.31
9	-3.42	-4.52	-1.31
10	-3.42	-2.91	-1.32

Figura 4.5: Sítios testados para ados
rção dos MT sobre oS1.

Tabela 4.2: Energias de adsorção para diferentes sítios (em eV/MT).

Uma vez determinado o sítio mais estável para Adsorção de MT em S1, uma nova relaxação foi feita, agora permitindo também que o volume da célula unitária também relaxe assim como feito

no caso do MT/S0, para uma maior precisão e descrição realística dos cálculos. As geometrias dos sistemas estáveis são ilustradas na figura (4.6). Nota-se que o S1 deixa de ser planar, apresentando uma certa depressão linear na região próxima ao MT. Os valores de altura D, da energia de ligação e momento magnético estão ilustrados na tabela (4.3). Como é possível observar, a superfície do Borofeno altera de modo significativo os valores dos momentos magnéticos dos MT se comparados aos valores dos átomos isolados (3 μ_B para Co, 4 μ_B para Fe e 5 μ_B para Mn). Ainda assim, os átomos de Fe e Mn apresentam um alto valor de momento magnético, enquanto o Co sofre grande influência da superfície do Borofeno S1 e tem seu momento praticamente zerado, se comparado aos demais.

	Co/S1	Fe/S1	Mn/S1
D	0,71	0,63	0,39
d	1,88	2,03	2,16
m	0,12	2,70	3,64
E_b	-5,26	-4,68	-3,59

Tabela 4.3: Deslocamento vertical da superfície do Borofeno S1 (D, em Å), distância de ligação MT - boro mais próximo (d, em Å), momento magnético (m, em μ_B) e Energias de adsorção (em eV/átomo de MT).

Figura 4.6: Configuração estável após a relaxação do MT sobre o S1. As distâncias $D \in d$ dependem do MT adsorvidos. Essas distâncias estão indicadas na tabela (4.3).

Quanto à eletrônica desses sistemas, figura (4.7), há um forte hibridização dos orbitais p dos átomos de Boro com os orbitais d dos MT, isso modifica de maneira significativa as estruturas de bandas quando comparadas às bandas do Borofeno sem incorporação de MT (figura (4.7-a)). Como é de se esperar, existe uma quebra de degenerescência nas bandas devido a magnetização dos sistemas. Quanto maior a magnetização dos sistemas menor a degenerescência das bandas. Ou seja, quanto maior a magnetização maior a separação das bandas em estados Up e Down. De fato, para o Co/S1, figura (4.7-b), em que a magnetização é praticamente nula, os níveis de energia são praticamente degenerados com relação à polarização de spin. E para os átomos de Fe e Mnexiste uma forte separação dos estados Up e Down em que a componente de spin down tem maior contribuição para os estados desocupados ao longo de toda a banda de condução.

Nas próximas seções iremos investigar como tais propriedades eletrônicas, magnéticas, energéticas e estruturais se modificam na presença de trilhas lineares de Metais de Transição nos Borofenos fase S1 e também em heteroestruturas formadas pela junção das fases S0 e S1. Pois, como vimos pelas tabelas (4.1) e (4.3), a fase S1 é energeticamente mais estável à adsorção de MT que a S0e com isso pode haver um confinamento eletrônico capaz de modular, ou ajustar de maneira desejada, tais propriedades investigadas. Isso seria bastante interessante no ponto de vista de aplicações diversas.

4.2 Formação de trilhas de *MT* em Borofeno

Na figura (4.8), mostramos algumas configurações possíveis para formação de trilhas de metais de transição na estrutura S1 levando em conta a adsorção nos sítios mais favoráveis, isto é, no sítio de vacância. As figuras (4.8-a) e (4.8-c) representam uma trilha de MT ao longo da direção y (ou da constante de rede **b**) com concentração de 1/10 (10,0 %) e de 1/25 (4,0 %), as quais chamaremos

Figura 4.7: Estrutura de bandas: (a) Borofeno livre; (b) Co/S1; (c) Fe/S1; (d) Mn/S1. Os níveis vermelhos na estrutura de bandas indicam a contribuição up referentes aos orbitais d do átomo de MT, enquanto verdes indicam as contribuição down dos mesmos.

de T_1 e T_3 , respectivamente. Já as figuras (4.8-b) e (4.8-d) mostram trilhas de MT ao longo da direção x (direção **a**) com concentração de 1/15 (6,67 %) e de 2/45 (4,4 %), chamadas de T_2 e T_4 , respectivamente. Pelos cálculos da energia de adsorção, tabela (4.4), é possível observar que as trilhas formadas ao longo da direção **b**, T_1 e T_3 , são mais estáveis que as trilhas formadas na direção **a**. Para as trilhas T_1 e T_3 , vemos que o aumento da concentração de MT aumenta a estabilidade do sistema para os 3 metais de transição analisados. Isto é, em todos os casos, a estabilidade é maior para T_1 que para T_3 . Por outro lado, esse comportamento não é notado nas trilhas formadas na direção **a**. Neste caso o aumento da concentração diminui a estabilidade, onde T_4 é mais favorável que T_2 .

A tabela (4.4) também mostra os valores da energia de acoplamento ferro e antiferromagnético, $\Delta E_{FM/AFM}$, e de momento magnético total por átomo, m. Os valores obtidos foram calculados usando a seguinte expressão:

$$\Delta E_{FM/AFM} = (E_{FM} - E_{AFM})/N_{MT}, \qquad (4.2)$$

onde E_{FM} e E_{AFM} são as energias totais dos estados ferro e antiferromagnético, respectivamente, e N_{MT} é número de MT por supercélula. Sendo assim, valores negativos (positivo) indicam que o sistema é ferromagnético (antiferromagnético). Além disso, os valores de $\Delta E_{FM/AFM}$ e m foram

Figura 4.8: Sítios testados para adsorção dos MT sobre o S1: (a) T_1 ; (b) T_2 ; (c) T_3 ; (c) T_4 .

estimado via DFT e DFT_{+U} . Nesse último, é incluído o termo de interação Coulombiano repulsivo entre orbitais localizados 3d dos MT. Para a escolha do valor de U a ser utilizado, fizemos um cálculo de $\Delta E_{FM/AFM}$ para vários valores de U para a T_1 . Os resultados estão plotados na figura (4.9). Podemos observar que para o átomo de Fe, $\Delta E_{FM/AFM}$ praticamente não se altera a partir de U = 2 eV. Para Co, a magnetização é nula para qualquer valor de U. Assim, a escolha de U foi feita com base no valor que se aproxima ao valor de $\Delta E_{FM/AFM}$ calculada com o funcional híbrido HSE06. Assim, como $\Delta E_{FM/AFM}$ para o Fe varia pouco a partir de U = 2 eV, escolhemos o valor de U = 5 eV em todos os casos. Pois nesse caso, U = 5 eV, é o valor mais próximo para Mn/T_1 .

Figura 4.9: diferença de energia dos estados ferro e antiferromagnético para T_1 em função de U.

Portanto, a tabela (4.4) mostra que, para o átomo de Co, o sistema é praticamente não magnético (NM) em todos os casos. Já no caso do Fe, vemos que há uma alternância entre fase ferromagnética (FM) e antiferromagnética (AFM) para diferentes configurações. Para T_1 os sistema é AFM, para T_2 o sistema não apresenta fase AFM, sendo puramente FM. T_3 é também FM e T_4 o sistema é não magnético. Já o átomo de Mn apresenta um comportamento bastante singular. Em todos os casos, o sistema é FM.

Vemos então que superfície do Borofeno S1 exerce forte influência na magnetização dos átomos

		T_1			T_2		T_3		T_4	
		DFT	DFT_{+U}	DFT	DFT_{+U}	DFT	DFT_{+U}	DFT	DFT_{+U}	
	E_{ad}	-5,68	-	-4,68	-	-5,12	-	-5,05	-	
Co	$\Delta E_{FM/AFM}$	NM	NM	NM	\mathbf{FM}	-0,36	-5,32	NM	NM	
	m , $$	0	0	0	$1,\!821$	$0,\!015$	$0,\!12$	0	0	
	E_{ad}	-5,08	-	-4,18	-	-4,51	-	-4,30	-	
Fe	$\Delta E_{FM/AFM}$	$18,\!34$	88,99	\mathbf{FM}	\mathbf{FM}	$1,\!58$	$-57,\!59$	0	0	
	m , $$	1,804	2,774	$2,\!498$	$3,\!086$	0,72	$0,\!184$	0	0	
	E_{ad}	-4,29	-	-3,22	-	-3,41	-	-3,39	-	
Mn	$\Delta E_{FM/AFM}$	-134,20	-413,33	\mathbf{FM}	\mathbf{FM}	$-19,\!64$	-19,93	$37,\!30$	-34,89	
	m , $$	$2,\!672$	3,762	3,729	$4,\!330$	$1,\!378$	$3,\!099$	$3,\!618$	$4,\!386$	

Tabela 4.4: Energia de adsorção (E_{ad} em eV/átomo de MT), diferença de energia ferro e antiferro magnética ($\Delta E_{FM/AFM}$ em meV/MT) e momento magnético (m, em μ_B). NM indica que o sistema não possui magnetização alguma e FM que o sistema só apresenta a fase ferromagnética.

de Fe. Para tentar entender essa influência, fizemos um cálculo da energia $\Delta E_{FM/AFM}$ para o Fe/S1 variando a distância entre o Fe e a superfície, como mostra a figura (4.10). Essa figura indica a energia $\Delta E_{FM/AFM}$ para T_1 em função da distância entre Fe e S1. É possível observar que a medida que afastamos o Fe da superfície o acoplamento muda de AFM ($\Delta E_{FM/AFM}$ positivo) para FM ($\Delta E_{FM/AFM}$ negativo). Ou seja, a medida que os átomos de ferro distanciam da superfície de S1 a fase magnética se torna FM. Esse resultado coincide com os cálculos de $\Delta E_{FM/AFM}$ para dímeros de Fe feitos por Mokrousov *et al.* (2007) no qual cadeias formados por Fe são ferromagnéticas. Já a figura (4.11) mostra como a densidade de estado varia ao aproximarmos os átomos de Fe da superfície de Boro. Como era de se esperar, os estados do Fe hibridizam com os estados dos borofenos próximos, e a medida que os Fe se aproximam do borofeno os orbitais p_z dos Boro próximos começam a ser ocupados, como pode ser observado pela diferença da PDOS das figuras (4.11-a3 e b3) com (4.11-a1 e b1). Isso é observado tanto para fase FM quanto para AFM.

Da mesma forma, aproximando o átomo de Fe da superfície de S1 em T_2 para a fase AFM, observamos que a superfície reage de tal forma com os átomos de Fe que os mesmos deixam de apresentar a fase AFM. Isto é, os átomos deixam de apresentar momento magnético (Up em verdes e *Down* em vermelho), como mostra a figura (4.10-b).

Figura 4.10: (a) Diferença de energia ferro e anti-ferro magnética ($\Delta E_{FM/AFM}$) do átomo de Ferro adsorvido na T_1 em função da distância até a configuração mais estável do Fe/MT. (b) Momento magnético (m, em μ_B) dos átomos de Ferro adsorvidos na T_2 em função da distância até o S1 para a configuração anti-ferromagnética.

Figura 4.11: Densidade de estados projetada nos átomos de Fe (figuras à esquerda) e Boros primeiros vizinhos do Fe (figuras à direita) para fase (a) FM e (b) AFM, em função da distância dos átomos de Fe para a superfícies do borofeno.

Figura 4.12: Energia de banda em preto (eV) e momento magnético em azul (μ_B) para (a) Fe/T_1 FM e (b) Fe/T_1 AFM.

A fim de confirmar a estabilidade do sistema, e mostrar que realmente os átomos de ferro se acoplam AFM na presença das folhas de Boro em T_1 , realizamos um cálculo da energia de banda, conforme feito por Morell *et al.* (2019). Nesse caso, calculamos a energia dos átomos de *Fe* e dos Boros primeiros vizinho através da expressão:

$$E = \int_{-\infty}^{\varepsilon_F} \varepsilon g(\varepsilon) d\varepsilon \tag{4.3}$$

onde $g(\varepsilon)$ representa a PDOS para uma dada energia ε , e ε_F representa a energia de Fermi. O resultado dessa expressão, além de outros termos associados à energia dos íons, como por exemplo a interação dos elétrons de caroço com o núcleo, é uma maneira de fornecer a energia total para cada átomo. Os resultados estão disposto na figura (4.12) na cor preta. Como pode-se observar a diferença FM - AFM para cada átomo calculado é cerca de 0,3 eV. Confirmando assim que a estrutura AFM é mais estável que a FM.

A presença do MT produz uma forte modulação na densidade de carga ao seu redor. A figura (4.13-a1 e -b1) mostra regiões azuis apresentando falta de elétrons (ou seja, positivamente carregadas) e regiões verdes com excesso de elétrons (negativamente carregadas) para T_1 . Comparando a transferência de carga de Fe-S1 e Mn-S1 é possível observar que a transferência de carga entre o Mn e o S1 é mais concentrada próxima do átomo de MT e os boros vizinhos. Através da Bader charge analysis (Bader, 1990), calculamos a transferência de carga do MT para o S1. Observamos na figura (4.13-a1) que o Fe perde cerca de 0,81 e^-/MT para o S1, enquanto que o Mn perde 1,22 e^-/MT . Convertendo esses valores para e^-/cm^2 obtemos, respectivamente, 1,27 e 1,85 ×10¹⁴ e^-/cm^2 . Em geral, uma dopagem acima de 10¹³ e^-/cm^2 é considerada alta. Assim, vemos que há uma forte dopagem entre o MT e o Borofeno. A figura (4.13-a2 e -b2) mostram a densidade de spin para essas duas configurações, onde as regiões verdes representam densidades de spin Down e vermelhas up. Assim notamos que há um acoplamento do tipo superexchange no sistema ferromagnético Mn- T_1 com o Mn induzindo assim uma magnetização antiparalela nos átomos de Boro vizinhos, veja Apêndice G. Já para o sistema AFM Fe- T_1 , vemos que a polarização dos átomos de boro é imperceptível comparada ao sistema Mn- T_1 .

É observado um comportamento semelhante com relação a transferência de carga do sistema

Figura 4.13: Trilha T_1 : (a1) Transferência de carga, $\Delta \rho$, entre o Fe e o Borofeno calculada a partir dos átomos de Fe. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin. Região vermelha para spin Up e verde para spin Down. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de Mn. $Isosurface = 7, 0 \times 10^{-3} \text{ e}/\text{Å}^3$ em ambos os gráficos.

Figura 4.14: Trilha T_2 . (a1) Transferência de carga, $\Delta \rho$, entre o Fe e o Borofeno calculada a partir dos átomos de Fe. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin. Região vermelha para spin Up e verde para spin Down. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de Mn. $Isosurface = 7, 0 \times 10^{-3} \text{ e}/\text{Å}^3$ em ambos os gráficos.

MT- T_2 , figura 4.14, onde há uma maior transferência de carga do Mn para o $S1 (1,09 \ e^{-}/MT)$ que do Fe para os $S1(0,77 \ e^{-}/MT)$. Nesse caso, a densidade de carga é bem centrada na vacância a qual o MT está adsorvido, tanto para Fe quanto para Mn, como mostram as regiões azuis e vermelhas das figuras (4.14-a1 e -b1). Além disso, como mostrado na tabela (4.4), vemos pelo plote da densidade de spin, figura (4.14-a2 e -b2), que tanto Fe quanto Mn são ferromagnéticos na presença do Borofeno em T_2 .

4.2.1 Estrutura eletrônica e Imagens STM de MT- T_1 e MT- T_2

A estrutura eletrônica desses sistemas, $T_1 \in T_2$, foram estudadas através do cálculo de estrutura de bandas conforme figuras (4.15), (4.16), (4.17) e (4.18). Em todos esses casos foi considerado o termo de repulsão Coulombiano, DFT_{+U} , com U = 5 eV, como foi dito anteriormente.

Da figura (4.15), notamos que as contribuição $Up \in Down$ dos orbitais do $Fe \in T_1$ são totalmente degenerados, como deveria ser, tendo em vista que o sistema é antiferromagnético. Nesse caso, podemos notar que não há contribuição para bandas metálicas vindo dos átomos de Fe, exceto na direção X Γ onde podemos observar uma banda com alta dispersão proveniente do orbital d_{xy} do Fe.

Por outro lado, a estrutura de bandas projetadas do Mn/T_1 exibe um carácter diferente das bandas do Fe/T_1 , conforme figura (4.16). Nesse caso, as contribuições Up e Down diferem bastante tanto com relação à energia quanto à direção de alta simetria. Enquanto os estados Up apresentam contribuições para bandas metálicas ao longo da direção ΓY (orbitais $d_{x^2-y^2}$ e d_{xz} do Mn), os estados Down apresentam bandas com alta dispersão ao longo de SX e X Γ (orbitais d_{xy} e d_{yz} do Mn, respectivamente). No entanto, em todos esses casos, vemos que a contribuição dos átomos de Mn é menor (tamanho das bolas) devido a hibridização desses orbitais com orbitais p do Borofeno.

A figura (4.17), mostra a estrutura de bandas do $Fe-T_2$. Ao contrário do $Fe-T_1$, este sistema é ferromagnético. As contribuições para bandas metálicas são provenientes apenas de estados *Down* dos átomos de Fe, vindas dos orbitais $d_{x^2-y^2}$ e d_{xy} conforme pode ser observado na figura (4.17-b).

Figura 4.15: Bandas projetadas por orbitais do Fe/T_1 . (a) Vermelho estados Up do Fe e (b) verde Down.

Figura 4.16: Bandas projetadas por orbitais do Mn/T_1 . (a) Vermelho estados Up do Mn e (b) verde Down.

Figura 4.17: Bandas projetadas por orbitais do Fe/T_2 . (a) Vermelho estados Up do Fe e (b) verde Down.

Os estados Up não apresentam contribuições significativas próximas ao nível de Fermi e, assim, não estão ilustradas na figura (4.17).

Por fim, a figura (4.18) mostra a estrutura de bandas do $Mn-T_2$, onde podemos observar que não há bandas metálicas proveniente dos átomos de Mn. Nesse caso, as bandas metálicas e bandas próximas ao nível de Fermi se deve unicamente aos estados do Borofeno.

Para que possamos dar um indicativo de propriedades estruturais e também eletrônicas, no ponto de vista experimental, fizemos simulação de imagens STM, Microscopia de Tunelamento por varredura (do inglês Scanning Tunelling Microscopy), dessas estruturas de maior interesse. A metodologia de geração de imagens STM pode ser vista no Apêndice F. Nas figuras (4.19-a) e (4.19b) mostramos as imagens STM dos sistema $Fe-T_1 \in Mn-T_1$, respectivamente. Onde as imagens à esquerda (a1 e b1) são referentes a estados ocupados com intervalo de energia de -0.3 eV abaixo do nível de Fermi, e as imagens à direita são de estados desocupados com energia de até 0.3 eV. E possível notar que os sítios contendo átomos de ferro apresentam um contraste bem acentuado em relação a maioria dos sítios contendo átomos de Boro, tanto para estados ocupados (4.19-a1) quanto para estados desocupados (4.19-a2). Esse fato pode ser explicado devido a alta densidade de estados provenientes dos átomos de Fe nesse intervalo de energia, como é mostrado na figura (4.20-a) em que é ilustrado a densidade de estados projetada (Pdos) nos átomos de Fe (em azul) e nos Boros primeiros vizinhos (em lilás). Essa maior densidade de estados do Fe é devido as orbitais $d_{x^2-y^2}$, d_{xy} e d_{yz} , conforme mostrado na estrutura de bandas da figura (4.15). Além disso, se compararmos estados ocupados do Fe figura (4.19-a1), com estados desocupados, figura (4.19-a2), podemos notar pontos mais brilhantes nos estados desocupados. Esse fato é, também, devido a maior densidade de estados do Fe que aparece nos estados desocupados.

Figura 4.18: Bandas projetadas por orbitais do Mn/T_2 . (a) Vermelho estados Up do Mn e (b) verde Down.

Com relação às imagens STM do $Mn-T_1$ notamos que não há tanta diferença nas imagens de estados ocupados, figura (4.19-b1) e desocupados, figura (4.19-b2). Nesse caso, os picos luminosos se devem à organizações estruturais dos átomos, tendo em vista a baixa contribuição eletrônica para os estados próximos ao nível de Fermi, tanto para estados ocupados quanto desocupados, como mostra a densidade de estados projetada, figura (4.20-b).

A figura (4.21) mostra imagens STM dos sistema $Fe-T_2$, figura (4.21-a), e $Mn-T_2$, figura (4.21-b). E, assim como observado em $Mn-T_1$, os picos luminoso se devem a fatores estruturais, pois, como mostrando na Pdos, figura (4.22), não há contribuição eletrônica para estados próximo ao

Figura 4.19: STM dos MT em T_1 : (a) Fe e (b)Mn. Figuras 1 e 2 indicam intervalos de energia de 0,3 eV abaixo do nível de Fermi (estados ocupados) e acima do nível de Fermi (estados desocupados), respectivamente. Altura da ponta da STM igual a 1,0 Å constante.

Figura 4.20: Pdos com MT em azul e B em lilás: (a) $Fe-T_1$, (b) $Mn-T_1$. Em cinza a densidade de estados total (DOS).

Figura 4.21: STM dos MTem T_2 : (a) Fe e (b)Mn. Figuras 1 e 2 indicam intervalos de energia de 0, 3 eV abaixo do nível de Fermi (estados ocupados) e acima do nível de Fermi (estados desocupados), respectivamente. Altura da ponta da STM igual a 1,0 Å constante.

Figura 4.22: Pdos com MT em azul e B em lilás: (a) $Fe-T_2$, (b) $Mn-T_2$.

Figura 4.23: Ilustração esquemática das estruturas convergidas de (a) MT- T_1 e (b) MT- T_2 . Vistas de cima e vista lateral.

nível de Fermi. Além disso, como pode ser observado, o pico luminoso na região dos MT em T_2 se apresentam muito mais acentuados se comparados à T_1 . Tal fato decorre da maneira na qual os MT's se incorporam ao longo das trilhas T_1 e T_2 . Como pode ser observado na figura (4.23) vemos que os MT se ligam menos nas trilhas T_2 , o que explica o maior contraste dos átomos de MT comparados aos Boros em T_1e em relação a T_1 . Para as geometrias de equilíbrio, a distância d, indicada nas figuras (4.23-a2 e -b2), entre o MT e o plano inferior de Boro são de 0,91 e 0,04 Å para $Fe-T_1$ e $Mn-T_1$, respectivamente, e, 1,24 e 1,39 Å para $Fe-T_2$ e $Mn-T_2$, respectivamente. O que evidencia a maior adsorção dos MT em T_1 que em T_2 .

4.3 Trilhas de MT em Heterojunções S0-S1.

Nesta seção vamos discutir como as propriedades físicas vistas nas seções anteriores podem variar quando fazemos a heterojunção dos borofenos nas fases $S0 \in S1$. Liu *et al.* (2018) mostram que para condições adequadas de crescimento, as fases $S1 \in S2$ podem se misturar dando origem à novas fases, estáveis energeticamente, do borofeno. Algumas dessas fases serão descritas no próximo capítulo. Aqui, consideraremos apenas as junções feitas por $S0 \in S1$. Começamos, assim, analisando

as propriedades energéticas desses sistemas.

4.3.1 Arranjo Estrutural e Propriedades Energéticas.

A figura (4.24) mostra as geometrias de equilíbrio do Fe, como exemplo, sobre essas heterojunções. Como é possível observar nas figuras vistas de cima, temos heterojunções de 1S0-1S1, 2S0-1S1 e 3S0-1S1, conforme figuras (4.24-a3), (4.24-b3) e (4.24-c3), respectivamente. Observe que a fase 1S0-1S1, indica uma estrutura semelhante à estrutura S1 mas com uma fila extra de átomos de boro, conforme indica a região sombreada da figura (4.24-a3). Da mesma forma as estruturas 2S0-1S1 e 3S0-1S1são obtidas incorporando mais filas de átomos de boro. Dessa maneira a região central, entre vacâncias, tende a uma estrutura do tipo S0. Por isso o nome, junção S0-S1.

Figura 4.24: Trilhas de MT em heterojunções S0-S1. (a) MT sobre heterojunções 1s0-1s1; (b) MT sobre heterojunções 2s0-1s1; (c) MT sobre heterojunções 3s0-1s1.

Como pode ser observado na tabela (4.5), os valores de acoplamento ferro e antiferro, $\Delta E_{FM/AFM}$, podem variar bastante dependendo da heterojunção na qual a trilha é formada. Começando pelo Co, observamos que as trilhas Co/1S0-1S1 e Co/2S0-1S1 são ferromagnéticas e antiferromagnéticas, respectivamente. Entretanto, o valor de momento magnético por átomo de cada uma dessas trilhas é praticamente desprezível, assim como a energia de acoplamento, $\Delta E_{FM/AFM}$. No caso de Co/3S0-1S1, o sistema é antiferromagnético. Assim, como verificado anteriormente nas trilhas de MT-S1, o cobalto, novamente, não apresenta propriedades magnéticas relevantes para esses sistemas.

Por outro lado, as trilhas de Fe apresentam características magnéticas que variam conforme a heterojunção. A trilha Fe/1S0-1S1 tem energia de acoplamento de -110,94 meV/MT., e uma fase Ferrimagnética, pois o momento magnético dos dois íons de Fe, embora sejam paralelos, não possuem o mesmo módulo. Ao passar para a trilha Fe/2S0-1S1 percebemos que o sistema continua Ferrimagnético, no entanto, agora com os momentos magnéticos antiparalelo. E por fim, para Fe/3S0-1S1, vemos que o sistema é agora antiferromagnético. Há, assim, uma tendência natural da trilha de Fe virar antiferromagnética a medida que aumentamos a quantidade de S0 na heterojunção.

	Junção S0-S1							
		1s0-1s1		2s0-	2s0-1s1		3s0-1s1	
		DFT	DFT_{+U}	DFT	DFT_{+U}	DFT	DFT_{+U}	
	E_{ad}	-6,13		-6,26		-6,18		
Co	$\Delta E_{FM/AFM}$	-0,25	-0,08	-0,08	$0,\!25$	$21,\!42$	$147,\!92$	
	m	0	0	0	0	0	0	
	E_{ad}	-6,24		-6,35		-6,28		
Fe	$\Delta E_{FM/AFM}$	-0,16	-110,94	-12,06	$58,\!49$	-3,89	$240,\!62$	
	m	-0,064/0,662	$1,\!011/2,\!294$	$0,\!601/0,\!854$	$2,\!365/-2,\!397$	$0,\!85$	2,576	
	E_{ad}	-6,20		-6,18		-6,00		
Mn	$\Delta E_{FM/AFM}$	$121,\!58$	268,76	$5,\!47$	-129,37	$142,\!35$	$338,\!81$	
	m	2,500	$3,\!639$	$2,\!155/-2,\!179$	$3,\!620$	$2,\!125$	$3,\!444$	

Tabela 4.5: Energia de adsorção (E_{ad} em eV/átomo de MT), diferença de energia ferro e anti-ferro magnética ($\Delta E_{FM/AFM}$ em meV/MT) e momento magnético (m, em μ_B) para junção S0-S1

Já as trilhas de Mn apresentam um comportamento distinto das trilhas de Fe. Nesse caso, há uma alternância entre fases ferro e antiferro. Como observado, as trilhas Mn/1S0-1S1 são antiferromagnéticas. Aumentando a heterojunção para 1S0-1S1 o sistema passa a ser ferromagnético, com energia de acoplamento de -128,37 meV/MT. No entanto, a fase volta a ser antiferromagnética para heterojunção 3S0-1S1, $\Delta E_{FM/AFM} = 338,81 \text{ meV}/MT$. Isso nos mostra que podemos obter um controle sobre o acoplamento mediante a escolha correta de heterojunção a ser usada.

Olhando para figura (4.25-a1 e b1) vemos que existe regiões de separação de cargas muito bem definida. Próximo da região do MT podemos notar uma maior área azul, indicando assim uma perda de carga elétrica do MT para o Borofeno. Através da análise de Bader, estimamos os valores dessa transferência de carga, no qual obtivemos $\Delta \rho = -0,70 \ e^-/MT$ para o sistema Fe/1S0-1S1

Figura 4.25: Heterojunções 1s0-1s1. (a1) Transferência de carga, $\Delta \rho$, entre o Fe e o Borofeno calculada a partir dos átomos de Fe. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin. Região vermelha para spin Up e verde para spin Down. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de $Mn.Isosurface = 7, 0 \times 10^{-3} \text{ e}/\text{Å}^3$ em ambos os gráficos.
e $\Delta \rho = -1, 19 \ e^{-}/MT$ para Mn/1S0-1S1, conforme mostra as figuras (4.25-a1 e -b1). Ainda com relação a essa transferência de cargas, é possível notar que a região próxima ao Borofeno, primeiros vizinhos, também existe um déficit de cargas (regiões azuis). Dessa forma há um acumulo de cargas no espaço entre os MT e o Borofeno, como pode ser facilmente observado (regiões verdes). Em relação a magnetização, figuras (4.25-a2 e b2), é possível identificar que os átomos de ferro se acoplam tipo ferro, figura (4.25-a2) e os átomos de Mn antiferro, figura (4.25-b2), confirmando os valores descritos na tabela (4.5). Em ambos os casos, nota-se que existe uma pequena magnetização dos Boros vizinhos aos MT.

Figura 4.26: Heterojunções 2s0-1s1. (a1) Transferência de carga, $\Delta \rho$, entre o Fe e o Borofeno calculada a partir dos átomos de Fe. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin. Região vermelha para spin Up e verde para spin Down. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de $Mn.Isosurface = 7, 0 \times 10^{-3} \text{ e}/\text{Å}^3$ em ambos os gráficos.

Padrão semelhante, com relação às transferências de cargas, são notadas nas trilhas de MTsobre 2S0-1S1, figura (4.26). Podemos ver que tanta as regiões de acumulo de cargas quanto o valor numérico de $\Delta \rho$, são semelhantes. No entanto, como mostra a figura (4.26-a2 e -b2) que ilustra as densidades de spins, a magnetização dos átomos de boro próximos ao Mn são maiores neste caso. Além disso o sistema Mn/2S0-1S1 é agora ferromagnético, como já exposto na tabela (4.5).

Da mesma fora que nas trilhas MT/1S0-1S1 figura (4.25), e trilhas MT/2S0-1S1 figura (4.26), as trilhas MT/3S0-1S1 (4.27), possuem regiões semelhante com relação às transferências de cargas e aos valores numéricos das mesmas. Isso nos mostra que a intercalação de Borofeno S0 em Borofeno S1 não altera a transferência de carga entre o MT e o Borofeno. Já com relação a magnetização, como foi visto na tabela(4.5), podemos afirmar que a heterojunção teve um papel importante. Tendo em vista que os trilhas de Fe passaram de ferro para antiferro a medida que aumentamos a quantidade de S0 intercalados, e Mn alternou entre ferro e antiferro. As figuras (4.27-a2 e -b2), mostram as densidades de spins do Fe/3S0-1S1 e Mn/3S0-1S1 a qual podemos observar que há também uma magnetização dos átomos de boro próximos a cada MT. Tais boros possuem magnetização com momento magnético antiparalelo aos momentos do MT. O mesmo fato é observado nas trilhas de MTsobre 1S0-1S1 e 2S0-1S1.

Figura 4.27: Heterojunções 3s0-1s1. (a1) Transferência de carga, $\Delta \rho$, entre o Fe e o Borofeno calculada a partir dos átomos de Fe. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin. Região vermelha para spin Up e verde para spin Down. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de $Mn.Isosurface = 7, 0 \times 10^{-3} \text{ e}/\text{Å}^3$ em ambos os gráficos.

4.3.2 Estrutura Eletrônica das Heterojunções S0-S1 com Trilhas de Fe e Mn

Para analisar a estrutura eletrônica desses sistemas, primeiramente calculamos as estruturas de bandas de cada um desses sistemas (1S0-1S1, 2S0-1S1 e 3S0-1S1) isolados. Isto é, sem a presença de MT. Com isso poderemos avaliar o quão significativo é a presença dos MT na eletrônica desses sistemas. Podemos observar que a quantidade de S0 intercalados ao S1 modifica a estrutura eletrônica do sistema. Por exemplo, a banda metálica de alta dispersão presente na direção YS de 1S0-1S1, não existe nos sistemas 2S0-1S1 e 3S0-1S1.

Figura 4.28: Estrutura de bandas do Borofeno isolado: (a) 1S0-1S1; (b) 2S0-1S1; (c) 3S0-1S1.

Aqui, assim como no caso do MT/S1 vamos discutir apenas os sistemas formados com trilhas de Fe e Mn, tendo em vista que os átomos de Co não apresentaram características magnéticas relevantes. As figuras (4.29) e (4.30) mostram as estruturas de bandas dos sistemas Fe/1S0-1S1e Mn/1S0-1S1, respectivamente. Para o sistema ferromagnético Fe/1S0-1S1, podemos ver que não há contribuição para estados Up próximos ao nível de Fermi. E as contribuição para estados Down só aparecem em estados desocupados próximos ao nível de Fermi vindas de orbitais $d_{x^2-y^2}$ e d_{xy} , como podem ser observados na figura (4.29). Por outro lado, o sistema antiferromagnético

Figura 4.29: Bandas projetadas por orbitais do Fe/1S0-1S1. (a) Vermelho estados Up do Fe e (b) verde *Down*.

Figura 4.30: Bandas projetadas por orbitais do Mn/1S0-1S1. (a) Vermelho estados Up do Mn e (b) verde *Down*.

Figura 4.31: Bandas projetadas por orbitais do Fe/2S0-1S1. (a) Vermelho estados Up do Fe e (b) verde *Down*.

Mn/1S0-1S1 apresenta uma uma banda metálica na direção de X Γ provenientes de orbitais d_{xy} do Mn, figura (4.30). Os demais orbitais, assim como nas trilhas de Fe, não apresentam contribuição significativa para a eletrônica vindas do Mn. Comparando as duas estruturas de bandas, das trilhas de Fe e de Mn, podemos observar que existe muito mais estados no sistema Fe/1S0-1S1. Isso se deve a uma maior distorção da rede cristalina do borofeno devido a presença dos átomos de Fe para esses sistemas. A falta de simetria é um dos fatores que pode quebrar a degenerescência dos estados.

Com relação as trilhas em 2S0-1S1, sabemos que os átomos de Fe formam sistemas Ferrimagnéticos enquanto os átomos de Mn acoplam de maneira Ferromagnética, tabela (4.5). As figuras (4.31) e (4.32) ilustram, respectivamente, a estrutura eletrônica desses casos. Para a trilha de ferro, existe uma forte contribuição metálica de estados Up na direção ΓY referentes ao orbital $d_{x^2-y^2}$. Isso nos permite obter correntes elétricas de alta mobilidade, devido à grande dispersão da banda, nessa direção devido aos átomos de Fe. Além disso, há também fortes contribuições para estados ocupados e desocupados vindos de orbitais $d_{x^2-y^2}$ e d_{xz} do Fe, respectivamente. Já para o sistema Mn/2S0-1S1, figura (4.32), é possível notar que existe também uma banda metálica devido a orbitais $d_{x^2-y^2}$ na direção ΓY . No entanto, a mesma é proveniente de estados Down do Mn e não tem um contribuição tão expressiva quanto à do Fe. De fato, como observado na figura, as contribuições do Mn em bandas próximas do nível de Fermi não são tão significativas. Tais bandas são devidos, então, a orbitais p dos átomos de Boro.

Por fim, as figuras (4.33) e (4.34), nos mostram as estruturas de bandas do Fe/3S0-1S1 e Mn/3S0-1S1. A princípio podemos observar que há uma similaridade nas duas estruturas de bandas. De fato, à medida que aumentamos a largura de S0 na heterojunção com S1 a distorção da

Figura 4.32: Bandas projetadas por orbitais do Mn/2S0-1S1. (a) Vermelho estados Up do Mn e (b) verde *Down*.

Figura 4.33: Bandas projetadas por orbitais do Fe/3S0-1S1. (a) Vermelho estados Up do Fe e (b) verde *Down*.

Figura 4.34: Bandas projetadas por orbitais do Mn/3S0-1S1. (a) Vermelho estados Up do Mn e (b) verde *Down*.

rede devido aos MT se tornam menores. Pois nesse caso, reduzimos a concentração de MT por átomos de boro. Quanto à eletrônica, nota-se uma certa contribuição dos MT apenas próximo do ponto de alta simetria X, tanto para Fe, figura (4.33), quanto para o Mn, figura (4.34). Em ambos os casos, a contribuição são de orbitais $d_{x^2-y^2}$, e, como são sistema antiferro, há contribuições tanto de estados Up quanto Down.

4.3.3 Estrutura Eletrônica e Imagens STM de S0-S1 com Trilhas de Fe e Mn

A simulação de imagens STM desses sistemas foram calculadas usando a altura da ponta da STM constante igual 1,0 Å. Assim como o cálculo da estrutura de bandas, focamos nos sistemas contendo trilhas de $Fe \in Mn$.

O contraste do pico luminoso correspondente aos átomos de Fe é acentuado comparado aos Boros primeiros vizinhos, como mostra a figura (4.35-a), a qual ilustra as imagens STM de Fesobre 1S0-1S1. De fato, a densidade de estados próximo ao nível de Fermi, tanto para estados ocupados quanto para estados desocupados, são maiores para os átomos de Fe que para os Boros vizinhos, como mostra a figura (4.36). Já as imagens STM do Mn sobre 1S0-1S1 apresentam um contraste distinto entre estados ocupados e desocupados, na região de interface entre os Mn e os Boros, como revela a figura (4.35-b). Como mostrado na figura (4.38), a densidade de estados projetadas nos Mn e nos Boros vizinhos não revela diferença significativa nas contribuições do número de estados entre estados ocupados e desocupados. Dessa forma, a diferença do brilho entre estados ocupados e desocupados. Dessa forma, a diferença do brilho entre estados ocupados e desocupados. Dessa forma, a diferença do brilho entre

Figura 4.35: Imagens STM dos MT em heterojunções 1s0-1s1: (a) Fe e (b) Mn. Figuras (x1) indicam um intervalo de energia de 0, 3 eV abaixo do nível de Fermi e (x2) 0, 3 eV acima do nível de Fermi. Altura da ponta da STM e igual a 1,0 Å constante.

Figura 4.36: Pdos com MT em azul e B em lilás: (a) Fe-1s0-1s1, (b) Mn-1s0-1s1.

Figura 4.37: Imagens STM dos MT em heterojunções 2s0-1s1: (a) Fe e (b) Mn. Figuras (x1) indicam um intervalo de energia de 0, 3 eV abaixo do nível de Fermi e (x2) 0, 3 eV acima do nível de Fermi. Altura da ponta da STM igual a 1,0 Å constante.

Figura 4.38: Pdos com MT em azul e B em lilás: (a) Fe-2s0-1s1, (b) Mn-2s0-1s1.

Com relação as imagens STM das trilhas de MT sobre 2S0-1S1, figuras (4.37), notamos que não há um contraste muito grande entre os brilhos referentes aos átomos de Fe para estados ocupados e desocupados. Isso ocorre devido à contribuição de estados tanto acima quanto abaixo do nível de Fermi, esse ultimo um pouco maior, como mostrado na figura (4.38-a). O mesmo pode ser dito sobre os átomos de Boro. A contribuição para a densidade de estados não varia tanto entre estados ocupados e desocupados. Assim o brilho ilustrado nas figuras (4.37-a1) e (4.37-a2) são semelhantes tanto para os Fe quanto para os boros vizinhos. Mesmo fato ocorre para as trilhas de Mn sobre 2S0-1S1. Em ambos os casos, é possível notar que algumas linhas de átomos de B apresentam um brilho mais intenso que outras. Por exemplo, a figura (4.37-a1), a linha de boro adjacente ao Feinferior possui um brilho intenso, enquanto a linha adjacente ao Fe superior tem um brilho quase nulo. De modo geral, a diferença entre regiões claras e escura tanto para estados ocupados quanto para desocupados é regida principalmente por fatores estruturais. Conforme mostra a figura (4.39) a linha de boro 1 está em um plano abaixo da linha 2. Sendo assim, após a passagem da ponta da STM nessa estrutura a linha 1 apresentará, de fato, um brilho menos intenso. A distância D indicadas na figura para os sistemas Fe- 2S0-1S1e Mn- 2S0-1S1, vale respectivamente, 0.52 e 0.56 Å.

Figura 4.39: Ilustração da configuração convergida dos MT/2S0-1S1, indicando que a linha de boro na direção da reta 1 está em um plano inferior à linha de Boro 2.

As imagens das trilhas antiferromagnética de MT sobre 3S0-1S1, não deve existir diferença de contraste entre estados ocupados e desocupados , pois como vimos nas estrutura de bandas para esses sistema, figuras (4.33) e (4.34), não há contribuição alguma próximo ao nível de Fermi, tanto das trilhas de Fe quanto de Mn.

4.4 Conclusões

Através do cálculo da energia de adsorção vimos que os MT são mais estáveis em S1 que em S0e para trilhas de MT analisadas são mais estáveis as trilhas T_1 , direção do vetor **b**. Para essas trilhas os átomos de Fe formam trilhas AFM e os átomos de Mn trilhas FM enquanto que para T_2 os átomos de ferro passam a formar trilhas FM, assim como os de Mn. Há uma transferência de carga líquida da ordem de $\approx 0, 80 e^-$ ($\approx 1, 20 e^-$) para o Fe (Mn), para as fases mais estáveis analisadas. Pela estrutura de bandas, há uma contribuição do MT para bandas próximas ao nível de Fermi. As imagens STM desses sistemas, $T_1 \in T_2$, revelam um forte brilho na região dos MT devido ao fato da estrutura da rede não serem completamente planas.

Para trilhas formadas com heterojunção S0 e S1 notamos que ao intercalar fases S0 com S1, a estabilidade energética dos sistemas aumenta. Indicando assim, um forte efeito de confinamento nessas trilhas devido a intercalação de S0 com S1. Entretanto o perfil da transferência de carga, e valor de transferência permaneceram praticamente inalterados. Quanto à eletrônica, de um modo geral, pode-se notar que com o aumento da largura S0 intercalada a S1 houve uma certa redução de contribuições metálicas dos átomos de MT próximas ao nível de Fermi.

Capítulo 5

Trilhas de Alta Concentração de MT em Junções S1-S2

Além dos Borofenos, fases S0 e S1 estudados no capítulo anterior (4), outra fase bastante importante é a do Borofeno S2 estudada também no capítulo 3 a qual foi sintetizada simultaneamente à S1 por Feng *et al.* (2016), mostrando ser ambas estáveis e inertes à oxidação. Uma vez que essas fases do Borofeno são materiais sintéticos, não ocorrendo espontaneamente na natureza, os defeitos intrínsecos que ocorrem nesses materiais 2D ainda são pouco explorados. Com base nisso, Liu *et al.* (2018) conseguiram sintetizar novas fases de Borofeno, intercalando linhas de Borofeno fase S1 com linhas de Borofeno fase S2. A figura (5.1) mostram as estruturas formadas pelas linhas S1 e S2obtidas por Liu *et al.* (2018). Cálculos teóricos usando DFT e também imagens obtidas por Microscopia de Tunelamento por Varredura (STM) e de Espectroscopia de Tunelamento por Varredura (STS) foram usados para descrição das propriedades físicas obtidas desses sistemas. Os resultados obtidos revelam que todas essas estruturas são estáveis energeticamente e há uma preservação do caráter metálico de S1 e S2. No entanto uma modulação na densidade eletrônica de carga é obser-

Figura 5.1: Modelos estruturais obtidos pela intercalação de S1 e S2 e imagens STM de alta resolução. Figura extraída do artigo de Liu *et al.* (2018).

vada entre as linhas de Borofeno. Os resultados abrem um leque grande de pesquisas nessas novas fases do Borofeno, e que serão também consideradas nesse capítulo.

Outra fase do borofeno com características muito relevantes foi proposta teoricamente por Zhang *et al.* (2017), como mostra a figura (5.2). Essa estrutura é composta de hexágonos de átomos e losangos de átomos de Boro, rotulados por $B_h \in B_r$, respectivamente, como mostra a figura (5.2-a). Os autores mostram que o sistema exibe uma excepcional estabilidade, comprovada através da relação de dispersão de fônons, figura (5.2-b), e o mais importante, é notado a presença de dois pontos de Dirac, representado pelos cruzamentos das bandas D1 e D2, e D3 e D4 na figura (5.2-b). Esse resultado é interessante, pois nenhuma das outras folhas de Borofeno livres sintetizadas (S0, S1 e S2) apresentam elétrons de Dirac próximo ao nível de Fermi.

Figura 5.2: (a) Geometria do borofeno fase *Hr-sB*. (b) Dispersão de Fônons. (c) Estrutura de bandas revelando os pontos de Dirac próximos ao nível de Fermi. Figura extraída do artigo de Zhang *et al.* (2017).

Nesse capítulo, vamos continuar estudando formação de trilhas de Metais de Transição de Ferro (Fe) e Manganês (Mn), assim como foi estudado no capítulo anterior (4). No entanto, aqui adicionaremos um MT por sítio de vacância do Borofeno. Isto é, assim como no capítulo anterior, os metais de transição são adsorvidos nos sítios de maior estabilidade energética, que são as vacâncias de Boro nas fases S1 e S2. Entretanto, neste caso, teremos trilhas com alta Concentração de MT/Boro. O objetivo principal é analisar: (i) Uma das fases do borofeno sintetizada por Feng *et al.* (2016) descrita na figura(5.1-e), a qual apresenta um linha de borofeno S1 e uma linha S2, e rotularemos como HS_1S_2 ; (ii) A fase Hr-sB descrita por Zhang *et al.* (2017); (iii) Uma fase semelhante à (i) que apresentaremos nas próximas seções que chamaremos de $HS_1S_2^{1/2}$, pois é composta por uma linha de S1 e meia de S2. Começamos então analisando as diferenças das propriedades estruturais e energéticas desses MT em cada uma dessas fases do Borofeno. E nas seções seguintes, analisaremos as trilhas desses MT nas fases S1 e S2, e nas heterojunções das mesmas.

5.1 *MT* **em** *S*1 **e** *S*2

Começando analisando as propriedades estruturais de um único átomo de MT sobre o borofeno nas fases S1 e S2. Isto é, um átomo por célula unitária, de forma que a distância entre o MTe sua "imagem", seja grande o suficiente para que não haja interação entre eles. Para a situação ilustrada na figura (5.3) a concentração de átomos de MT é de 1MT/30Boros (3,33%) para MT/S1e MT/24Boros (4.16%) para MT/S2. Observamos então que existe uma menor reconstrução da superfície do borofeno S2 em relação à S1. A superfície S2 permanece praticamente planar, mesmo após a adsorção do MT. Dessa forma, há uma menor distorção da rede devido a presença dos MTsobre a superfície de S2. Isso pode ser evidenciado pela maior distância D entre o MT e a superfície

Figura 5.3: Ilustração esquemática da geometria convergida do: (a) MT/S1; (b)MT/S2. figuras 1, 2, 3 representam as vistas nas direções dos vetores **a**, **b** e **c**, respectivamente.

	Fe/S1	Mn/S1
D	0,63	0,39
d	$2,\!03$	2,16
m	2,70	3,64
E_b	-4,68	-3,59
	Fe/S2	Mn/S2
D	1,22	1,50
d	$1,\!93$	2,09
\overline{m}	0,004	2,93
	1.0.0	0.15

Tabela 5.1: Deslocamento vertical da superfície do borofeno S1 (D, em Å), distância de ligação MT - boro mais próximo (d, em Å), momento magnético (m, em μ_B) e Energias de adsorção (em eV/átomo de MT).

de Borofeno S2 se comparados ao S1. Da mesma forma, vemos que a energias de adsorção do Fe/S2e Mn/S2 são menores, em módulo, que as respectivas energias de Fe/S1 e Mn/S1. De forma que, podemos concluir que a adsorção de MT sobre a superfície S2 é menos favorável energeticamente que na superfície S1. Os valores de energia de adsorção, distância D e distância de ligação do MTcom Boro mais próximo estão representadas na tabela (5.1). Um fato interessante, é que o sistema Fe/S2 é não-magnético, tendo em vista que o momento magnético dos átomos de Fe é praticamente nulo para o sistema Fe/S2, conforme visto na tabela (5.1). Em todos os casos analisados até aqui, o Fe sempre se apresentou, ou na fase FM ou AFM.

Figura 5.4: Bandas projetadas por orbitais: (a) Fe/S2 e (b) Mn/S2. Os níveis vermelhos, figuras x1, representam projeções de spin Up enquanto que verdes, figura x2, Down.

Quanto à eletrônica, a podemos notar que a presença do MT em S2 modifica bastante a estrutura de bandas do S2. Existe uma forte contribuição do Fe para bandas metálicas próximas ao nível de Fermi ao longo de praticamente todos os pontos de alta simetria considerados, figura (5.4-a). Já o sistema ferromagnético Mn/S2 figura (5.4), apresenta contribuições para bandas metálicas próximas ao nível de fermi na direção ΓY e uma banda metálica cruzando o nível de fermi na direção X Γ . Nas demais direções as bandas próximas ao nível de Fermi vêm de contribuições apenas do S2, ambas de estados Down.

5.2 Alta Concentração de *MT* em *S*1 e *S*2

Antes de analisar a adsorção de MT nas heterojunções formadas por $S1 \in S2$, vamos analisar a adsorção dos MT em $S1 \in S2$ de maneira isoladas. Ou seja, $MT/S1 \in MT/S2$. Nessa seção, assim como não seção seguintes, vamos considerar 1MT por sítio de vacância do $S1 \in S2$. Ou seja, caso com alta concentração, como já foi mencionado anteriormente.

5.2.1 Propriedades Estruturais e Energéticas

Começamos analisando a preferência quanto as várias configurações de alinhamento ferromagnético e antiferromagnético. Para a adsorção de MT/S1 analisamos 4 configurações possíveis, figura (5.5), enquanto que para MT/S2, analisamos 3, (5.6). Em cada uma dessas figuras, os símbolos α e β representam MT com spin Up e Down, respectivamente. As 4 configurações possíveis na figura (5.5) são: AA (alinhamento ferromagnético na direção \mathbf{a} – horizontal); BB (alinhamento ferromagnético na direção \mathbf{b} – vertical); AFM (alinhamento antiferromagnético na direção \mathbf{a} e \mathbf{b}); FM (alinhamento ferromagnético na direção \mathbf{a} e \mathbf{b}). O mesmo procedimento foi adotado para rotular as configurações possível nos sistemas MT/S2, e também nas configurações das seções seguintes.

Figura 5.5: configuração possíveis de acoplamento para MT/S1: (a) AA; (b) AFM; (c) BB; (d) FM.

Figura 5.6: configuração possíveis de acoplamento para MT/S2: (a) AFM; (b) BB; (c) FM.

Pela tabela (5.2) vemos que tanto Fe quanto Mn formam trilhas com alinhamento ferromagnético na direção **b**, isso é, configuração BB, nos sistemas MT-S1. Esse resultado é interessante, tendo em vista que para baixas concentrações, como visto no capítulo anterior, o Fe se acoplava antiferromagnético na direção **b**. Assim, percebemos que aumentando a concentração, o sistema passa ser ferro na direção **b** e antiferro se olharmos na direção **a**. Comparando as energias de adsorção dessa configuração BB, com aquelas obtidas em T_1 , vemos que tanto o Fe quanto o Mn ligam

		$\mathrm{Fe}/\mathrm{S1}$	$\mathrm{Fe}/\mathrm{S2}$	Mn/S1	Mn/S2
A A	E_{ad}	-4,90		-4,03	
AA	m	2,52		3,74	
	E_{ad}	-4,43	-4,70	-3,95	-3,76
	m	2,77	2.65	3,79	$3,\!61$
BB	E_{ad}	-4,92	-4,63	-4,18	-3,79
DD	m	$2,\!63$	2-61	$3,\!78$	-3,51/3,72
БМ	E_{ad}	-4,91	-4,63	-3,29	-3,93
1, 1/1	m	$2,\!68$	$2,\!45$	4,28	3,62

Tabela 5.2: Energia de adsorção, E_{ad} , e módulo do momento magnético por átomo de MT, m.

		$\mathrm{Fe}/\mathrm{S1}$	$\mathrm{Fe}/\mathrm{S2}$	Mn/S1	Mn/S2
Δ.Δ.	DFT	20		146	
AA	DFT_{+U}	445		445	
AFM	DFT	494	0	227	171
	DFT_{+U}	65	0	65	242
BB	DFT	0	75	0	133
	DFT_{+U}	0	322	0	179
FM	DFT	11	75	879	0
	DFT_{+U}	125	225	125	0

Tabela 5.3: Diferença de energia para as diferentes configurações indicadas nas figuras (5.5) e (5.6) em em meV/MT. Configurações com energias iguais a zero, correspondem à configurações mais favorável.

mais fracamente ao S1 em altas concentrações. Tais energias são de -4,92 eV/MT(-5,08) para o Fe/S1-BB (Fe/S1- $T_1)$ e -4,18 eV/MT(-4,29) para o Mn/S1-BB (Fe/S1- $T_1)$, como indica a tabela (5.2). Dessa forma, pode-se concluir que a maior interação entre átomos de MT torna o sistema menos estável. Já olhando para os resultados de energia da adsorção de MT/S2 percebemos que os átomos de Fe formam sistemas antiferromagnéticos AFM enquanto os átomos de Mné ferromagnético. Entretanto, mesmo os Fe se acoplando de maneira AFM, vemos que os átomos individuais possuem uma polarização de spin com momento magnético de módulo igual a 2,65 μ_B . Ou seja, aumentando a concentração a ponto que átomos de Fe interajam mutuamente, vemos que existirá uma polarização de spin por átomo. fato que não ocorreu na adsorção de um átomo isolado de Fe, visto na seção anterior, onde o momento magnético do Fe foi de apenas 0,004 μ_B , praticamente nulo conforme a tabela (5.1). A tabela (5.3) mostra a diferença de energia total nas diferentes configurações de polarização de spins, com valores do termo de interação Coulombiana, U, mantido em 5 eV, como no capítulo anterior. Observamos que a presença desse termo não altera a preferência na configuração de spin mais estável.

Embora tenhamos amentado a concentração de átomos de MT sobre o Borofeno, a transferência de carga $\Delta \rho$, calculados através da análise de Bader, do MT para o Borofeno permanece praticamente inalterada em relação aos sistemas já estudados até o momento. Assim, mais uma vez obtivemos um valor de aproximadamente $0, 8 e^-/MT$ para os sistemas Fe/S1 e Fe/S2, e o valor de aproximadamente $1, 2 e^-/MT$ para Mn/S1 e Mn/S2. Esses valores estão representados nas figuras (5.7-a1) e (5.7-b1) que indicam também um mapa da densidade de transferência de carga. Essas regiões de acúmulos de cargas negativas (verdes) e positivas (azuis) também se assemelham aos casos já estudados até aqui, indicando assim uma maior concentração de elétrons na região de vacância entre os MT e os Boros vizinhos. As figuras (5.7-a2) e (5.7-b2), mostram a densidade de spins desses sistemas. Há uma forte magnetização dos átomos de Boro adjacente a cada MT, e com polarização oposta, principalmente nos sistemas com maior magnetização, Mn/S1 e Mn/S2.

Figura 5.7: Alta concentração em S1: (a1) $\Delta\rho$ dos átomos de Fe. Em azuis estão indicadas regiões positivamente carregadas e as verdes estão negativamente carregadas. $\Delta\rho$ (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin. Região vermelha para spin Up e verde para spin *Down*. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de *Mn. Isosurface* = $7, 0 \times 10^{-3}$ e/Å³ em ambos os gráficos.

Figura 5.8: Alta concentração em S2: (a1) $\Delta \rho$ dos átomos de Fe. Em azuis estão indicadas regiões positivamente carregadas e as verdes estão negativamente carregadas. $\Delta \rho$ (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin. Região vermelha para spin Up e verde para spin Down. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de Mn. Isosurface = 7,0 × 10⁻³ e/Å³ em ambos os gráficos.

5.2.2 Propriedades Eletrônicas e Imagens STM

Nesta seção apresentamos as propriedades eletrônica através do cálculo da estrutura de bandas para os sistemas com maior estabilidade energética discutidos na seção anterior. Antes de mais nada, mostramos como é a estrutura de bandas para Borofeno S1 e S2 sem a presença dos metais, e com a mesma supercélula usada na adsorção, figura (5.9-a) para S1 e (5.9-b) para S2.

Figura 5.9: Estrutura de bandas do borofeno livre: (a) S1; (b) S2.

Comparando essa estrutura de bandas dos Borofenos livres, às estruturas de bandas com a presença de Fe, figura (5.10), e Mn, figura (5.11), no S1, podemos ver que a presença dos MT causa um forte caráter anisotrópico na estrutura de bandas, em relação às bandas metálicas. Existe um gap de energia nas direções paralelas YS e X Γ . Em contrapartida, há bandas metálicas de alta

Figura 5.10: Bandas projetadas por orbitais do Fe/S1. (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

Figura 5.11: Bandas projetadas por orbitais do Mn/S1. (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

dispersão linear nas direções SX. Tais bandas ainda possuem forte contribuições tanto do Fe, figura (5.10), quanto do Mn, figura (5.11), ambas provenientes de orbitais $d_{x^2-y^2} e d_{xy}$, como mostram as figuras.

Figura 5.12: Bandas projetadas por orbitais do Fe/S2. (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

Características semelhantes de anisotropia observadas em MT/S1 ainda são notadas também em MT/S2. Porém, de maneira menos acentuada e em direções diferentes, conforme revelam as figuras (5.12) e (5.13). Aqui, o gap de energia em ambos os casos, Fe/S2 e Mn/S2, são notados apenas na direção SX. No caso do sistema antiferromagnético Fe/S2, a relação de dispersão se torna menos linear próximas ao nível de Fermi. Assim, esse sistema apresentará então uma menor condutividade elétrica em relação ao Fe/S1. Além disso, as bandas metálicas próximas ao nível de Fermi com maior contribuição dos átomos de ferro são provenientes apenas de orbitais $d_{x^2-y^2}$, próxima do ponto de alta simetria X, e d_{xz} do ponto Y. Por outro lado, o sistema ferromagnético Mn/S2 apresenta características totalmente distintas. Este, apresenta uma alta dispersão ao longo de praticamente todos os pontos de alta simetria. Ainda há uma forte contribuição para bandas metálicas provenientes de estados *Down* do Mn nas direções YS. A alta dispersão das bandas metálicas tanto na direção ΓY quanto na direção perpendicular X Γ revela que este sistema apresentará, então, uma alta condutividade elétrica mediante aplicação de um campo elétrico tanto na direção **a** quanto na direção **b** dos vetores de rede.

As figuras (5.14) e (5.15) mostram, respectivamente, as imagens STM e Pdos dos sistemas MT/S1, no mesmo intervalo de energia, $-0, 3 \approx +0.3$ eV em torno do nível de Fermi. As figuras (5.14-a1) e (5.14-a2), mostram respectivamente estados ocupados e desocupados do Fe/S1. Existe o brilho intenso tanto para estado desocupados quanto para ocupados em torno do sítio do ferro. Isso

Figura 5.13: Bandas projetadas por orbitais do Mn/S2. (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

Figura 5.14: Imagens STM do: (a) Fe/S1 e (b) Mn/S1. Figuras (x1) indicam um intervalo de energia de 0,3 eV abaixo do nível de Fermi e (x2) 0,3 eV acima do nível de Fermi. Altura da ponta da STM igual a 0.6 Å, constante.

Figura 5.15: Pdos com MTem azul e B em lilás: À esquerda, Fe/S1, com a Pdos dos Boros que estão na mesma linha horizontal dos MT. À direita Mn/S1, com a Pdos dos Boros que formam a linha horizontal entre os MT.

é explicado com base na quantidade de estados vindas dos átomos de Fe ser praticamente a mesma como mostra a (5.15) à esquerda. Já para os átomos de boro há um contraste maior entre estados ocupados e desocupados que também podem ser explicados pela diferença de quantidade de estados. Além disso, em ambos os casos, ocupados e desocupados, o brilho proveniente dos átomos de Feé maior que para os átomos de boro adjacentes, o que está também de acordo com a quantidade de estados fornecidos por eles. Este fato não observado para Mn/S1. Aqui, a linha de átomos de Boro horizontal entre os átomos de Mn apresentam maior brilho que os átomos de Mn tanto para estados ocupados quanto para desocupados. Tal fato, está de acordo com a maior densidade de estados fornecidas por esses Boros como mostra a figura (5.15) à direita. Além disso, notamos pela densidade de estados que há mais estados em níveis ocupados, o que deixa a imagens STM da figura (5.14-b2) com brilho maior que (5.14-b1).

Figura 5.16: Imagens STM do: (a) Fe/S2 e (b) Mn/S2. Figuras (x1) indicam um intervalo de energia de 0,3 eV abaixo do nível de Fermi e (x2) 0,3 eV acima do nível de Fermi. Altura da ponta da STM igual a 0,7 Å, constante.

Figura 5.17: Pdos com MT em azul e B em lilás: À esquerda, Fe/S2, com a Pdos dos Boros que estão na primeira linha vertical paralela aos MT. À direita Mn/S2.

Em Fe/S2 observamos que há pouco contrastes entre estados ocupados e desocupados tantos para Fe quanto para Boro, figuras (5.16-a1) e (5.16-a2). Além disso em cada caso observamos um brilho maior para átomos de Fe que para Boro. Tudo isso pode ser explicado pela Pdos da figura (5.17) à esquerda. De fato, há maior densidade de estados abaixo do nível de Fermi, e maior densidade para átomos de Fe que para Boro. O mesmo pode ser dito para Mn/S2. Porém neste caso, o brilho proveniente dos átomos de Boro é mais intenso que dos Mn, o qual não apresenta brilho algum. Fato também explicado pela maior densidade de estados dos átomos de Boro que para Mn, figura (5.17) à direita. Nos dois casos, $Fe/S2 \in Mn/S2$, os átomos de Boro projetados na Pdos foram aqueles que formam primeira linha vertical vizinha à linha vertical dos átomos de MT.

5.3 Alta Concentração de MT em Heterojunções S1-S2

Por fim, analisaremos agora as propriedades físicas da formação de trilhas de alta concentração em nas heterojunções HS_1S_2 e $HS_1S_2^{1/2}$ e também na estrutura Hr-sB conforme foi mencionado na introdução deste capítulo.

5.3.1 Propriedades Estruturais e Energéticas

Conforme feito na seção anterior, analisamos a princípios as propriedades básicas destes sistemas. Assim, primeiramente a formação mais favorável para o alinhamento de spin em cada uma dessas estruturas. Como pode ser visto na figura (5.18), para a estrutura Hr-sB há 5 configurações possíveis

Figura 5.18: Possíveis geometrias de trilhas magnéticas de MT na superestrutura Hr-sB: (a) FM; (b) BB; (c) BB²; (d) AA; (e) AFM.

Figura 5.19: Possíveis geometrias de trilhas magnéticas de MT na superestrutura $HS_1S_2^{1/2}$. (a) FM; (b) BB; (c) AA; (d) AFM.

Figura 5.20: Possíveis geometrias de trilhas magnéticas de MT na superestrutura HS_1S_2 . (a) FM; (b) BB; (c) AA; (d) AFM.

para o ordenamento desses spins. Novamente, α indicam polarização de spin $Up \in \beta$ Down. A maneira de rotularmos cada uma dessas configurações foi a mesma que da seção anterior, (5.2.1). As energias de adsorção e momento magnéticos estão apresentadas na tabela (5.6). Comparando as energias

de adsorção para uma dada fase do Borofeno, concluímos que todas as configurações de spin são praticamente degeneradas em relação à energia de adsorção. Comparando as energias de adsorção vemos que o sistema mais estável dentre essas três heteroestruturas de Borofeno é o Hr-sB, com energias variando de -4,92 (-4,05) a -4,97 eV/MT (-4,12 eV/MT) para o Fe/Hr-sB (Mn/Hr-sB). Com isso, para uma melhor análise da estabilidade e das propriedades eletrônica e magnéticas, incluímos o termo de repulsão de Coulombiana, U = 5 eV, e notamos que há algumas mudanças significativas na energia, tabela (5.5). Nesta tabela (5.5) indicamos a diferença de energia para cada configuração de spin com e sem U. Nessas duas tabelas, (5.6) e (5.5), o asterisco, (*), foi usado para indicar que o sistema, após a relaxação, retornou a fase ferromagnético, que é a mais estável na maioria dos casos.

JUNÇÃO S1-S2							
	Fe				Mn		
		Hr- sB	$HS_1S_2^{1/2}$	HS_1S_2	Hr- sB	$HS_1S_2^{1/2}$	HS_1S_2
БМ	E_{ad}	-4,94	-4,69	-4,74	-4,05	-3,93	-3,85
I' IVI	m	2,71	$2,\!56$	$2,\!61$	3,78	3,70	$3,\!94$
BB	E_{ad}	*	-4,69	-4,68	-4,05	-3,93	-3,90
DD	m	*	$2,\!60$	$2,\!85$	3,79	3,71	$3,\!97$
BB ₂	E_{ad}	-4,97	-4,69	-4,68	-4,06	-3,88	-3,85
m	$2,\!61$	$2,\!61$	2,92	3,83	3,75	$3,\!96$	
Ead		-4,95			-4,06		
m	$2,\!64$			3,76			
	E_{ad}	-4,92	-4,73	-4,71	-4,12	-4,01	*
	m	2,60	$2,\!62$	2,57	3,78	3,72	*

Tabela 5.4: Energia de adsorção, E_{ad} , e módulo do momento magnético por átomo de MT, m, para as diferentes configurações indicadas nas figuras (5.18), (5.19) e (5.20) em em meV/MT. O asterisco (*) indica que a configuração retornou à configuração ferremognética após a relaxação. O valor de m foi calculado considerando U = 5 eV.

JUNÇÃO S1-S2							
			Fe			Mn	
		Hr- sB	$HS_1S_2^{1/2}$	HS_1S_2	Hr- sB	$HS_1S_2^{1/2}$	HS_1S_2
БМ	DFT	0	0 NM	0	0	0	0
L IAI	DFT_{+U}	0	0	0	0	0	0
DD	DFT	*	NM	64,71	$53,\!25$	*	-44,99
DD	DFT_{+U}	40,15	-29,38	$287,\!97$	$51,\!121$	$52,\!84$	$159,\!05$
$\mathbf{P}\mathbf{P}^2$	DFT	-25	NM	64,87	-9,06	$53,\!25$	0
DD	DFT_{+U}	86,82	$37,\!92$	$363,\!59$	-2,90	$79,\!93$	115,73
ΔΔ	DFT	-12,39			-6,54		
AA	DFT_{+U}	111,58			$54,\!21$		
	DFT	18,08	-41	33	-70,81	-31	*
AFM	DFT_{+U}	66,59	-184	15	7,6	29	*

Tabela 5.5: Diferença de energia para as diferentes configurações indicadas nas figuras (5.18), (5.19) e (5.20) em em meV/MT. zero (0) indica as configurações de referência e asterisco (*) indica que a configuração retornou à configuração de referência após a relaxação.

Afim de focar nas propriedades físicas dos sistemas com maior estabilidade energética, consultamos a tabela (5.5) e vemos que os sistemas mais estáveis devido ao alinhamento de spins dos MTsão: FM para Fe/Hr-sB e Mn/Hr-sB; AFM para $Fe/HS_1S_2^{1/2}$ e FM para $Mn/HS_1S_2^{1/2}$; FM para Fe/HS_1S_2 e Mn/HS_1S_2 . Observe que Mn/Hr-sBa configuração BB² possui, praticamente a mesma estabilidade energética de Mn/Hr-sBFM. Assim, vamos considerar esses sistemas também em nossas discussões seguintes. Os valores de momento magético para os sistemas compostos por Fe (Mn) varia entre 2, 61-2, $71 \mu_B$ (3, 70-3, $94 \mu_B$), indicando assim que todos possuem alto valor de momento magnético. Além disso, como podemos observar, a maior parte desses sistemas são FM com exceção do $Fe/HS_1S_2^{1/2}$. O que os tornam muito importantes em aplicações em dispositivos diversos. Para melhor visualização, ilustramos essas configurações mais estáveis na tabela (5.6).

Sistemas com maior estabailidade							
	Fe Mn						
	Hr- sB	$HS_1S_2^{1/2}$	HS_1S_2	Hr- sB	$HS_1S_2^{1/2}$	HS_1S_2	
Configuração	\mathbf{FM}	AFM	\mathbf{FM}	$FM (BB^2)$	\mathbf{FM}	\mathbf{FM}	
Momento magnético	2,71	$2,\!62$	$2,\!61$	3,78(3,83)	3,70	$3,\!94$	

Tabela 5.6: Configuração mais estável e valor do módulo do momento magnético em (μ_B)

As transferências de cargas de todos esses sistemas, permanecem constantes em relação aos sistemas já estudados até aqui. Os átomos de Fe (Mn) perdem cerca de 0, 80 e^-/MT (0, 80 e^-/MT) para o Borofeno em todos os casos, Hr-sB, $HS_1S_2^{1/2}$ e HS_1S_2 , calculados através da Analise de Bader. Além disso, os perfis da densidade de transferência de carga também são semelhantes. Isto é, um déficit de carga tanto na região do MT quanto na dos Boros vizinhos, e um acumulo de carga na vacância entre os dois, formando uma espécie de canal de elétrons ao longo das bordas das trilhas de MT, como mostra as regiões verdes, nas figuras (5.21), (5.22) e (5.23). Além disso, é possível observar pelas figuras que existe uma perda maior de carga dos átomos de Boro, nos sistemas compostos por Fe. Por exemplo, no sistema Fe/Hr-sB da figura (5.21-a1), pode-se notar uma maior região azul (indicando uma região com perda de elétrons) em torno dos átomos de Boro, comparado ao sistema Mn/Hr-sB, principalmente em torno dos Boros que formam o losango. Tais características são observadas também nas outras fases do Borofeno devido a adsorção do MT. Devido a essa contribuição extra dos átomos de Boro, as regiões verdes se tornam maiores nos sistemas com Fe, como de fato é observado.

Com relação à densidade de spins, é observado um maior efeito de Superexchange, nos sistemas compostos por Mn. Isto é, a polarização dos átomos de Boro vizinhos ao MT é maior para os sistemas compostos por Mn que para os sistemas com Fe. Isso é razoável, tendo em vista que o módulo do momento magnético dos átomos Mn é maior que para os átomos de Fe em todos os sistemas analisados.

5.3.2 Propriedades Eletrônicas e Imagens STM

A estrutura eletrônica de todos esses sistemas mais estáveis foi analisada com base na estrutura de bandas, como fizemos até aqui. Novamente, em todos os casos seguintes, projetamos as contribuições dos MT separadas em *spins Up* e *Down*, e também de seus orbitais *d*. Começando

Figura 5.21: heterojunção *hrsb.* (a1) Transferência de elétrons, $\Delta \rho$, do *Fe* para o Borofeno calculada. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin: Região vermelha para spin Up e verde para spin Down. (b) e (c) São as respectivas figuras para as trilhas de átomos de *Mn*na configuração estável FM e BB² respectivamente. *Isosurface* = 7, 0 × 10⁻³ e/Å³ em ambos os gráficos.

Figura 5.22: Heterojunções $HS_1S_2^{1/2}$. (a1) Transferência de elétrons, $\Delta\rho$, do Fe para o Borofeno calculada. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin: Região vermelha para spin *Down* e verde para spin *Down*. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de $Mn.Isosurface = 7, 0 \times 10^{-3} \text{ e/Å}^3$ em ambos os gráficos.

então analisando os sistemas com MTadsorvidos em Hr-sBÅ figura (5.24) mostramos a estrutura de bandas do sistema FM Fe/Hr-sB. Esse sistema é caracterizado com bandas de alta dispersão nas direções de alta simetria paralelas ΓY e SX, no entanto a dispersão é menor na direção perpendicular YS, configurando bandas com estados quase que localizados. Não há contribuições de significativas do Fe próximas ao nível de Fermi, exceto no ponto próximo do eixo X, provenientes de orbitais d_{xy} . Já o sistema FM Mn/Hr-sB, figura (5.25), exibe além de bandas com alta dispersão, um banda metálica cruzando o nível de Fermi, provenientes do orbital d_{xy} de spin Downnas direções ΓY e X Γ , e também outra banda metálica, porém com menor contribuição, vindas de orbitais d_{xy} Up, na direção SX. Como essa contribuição é menor que as de estados Down, vemos que este sistema apresenta uma certa anisotropia de spin. Ou seja, a corrente elétrica formada nesses materiais, ou apresentaria polarização de spin Down ou não apresentaria polarização alguma. Já o sistema formado por trilhas BB², figura (5.26), é antiferromagnético, porém com forte contribuição

Figura 5.23: Heterojunções HS_1S_2 . (a1) Transferência de elétrons, $\Delta\rho$, do Fe para o Borofeno calculada. Regiões azuis estão positivamente carregadas e as verdes estão negativamente carregadas. O valor absoluto (em vermelho) foi calculado pela análise de Bader. (a2) Mostra a densidade de spin: Região vermelha para spin *Down* e verde para spin *Down*. (b1) e (b2) São as respectivas figuras para as trilhas de átomos de $Mn.Isosurface = 7, 0 \times 10^{-3} \text{ e}/\text{Å}^3$ em ambos os gráficos.

Figura 5.24: Bandas projetadas por orbitais do Fe/Hr-sB. (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

dos átomos de Mn próximo ao nível de Fermi vindas de orbitais $d_{x^2-y^2} \in d_{xy}$.

Para as estruturas de bandas dos Borofenos $HS_1S_2^{1/2}$ percebemos que há contribuições significaticas dos átomos de Fe tanto para estados Up quanto Down, vindas de vários orbitais d do Fe, como mostra a figura (5.27). O que não ocorreu para o sistema Hr-sB. Já para $Mn/HS_1S_2^{1/2}$, figura (5.28), percebemos que as maiores contribuições de bandas metálicas ainda são provenientes de orbitais $d_{x^2-y^2}$ e d_{xy} de spin Down, como no Hr-sB. No entanto, neste caso, há também bandas metálicas provenientes de orbitais $d_{x^2-y^2}$ e d_{xz} Up, porém com menores contribuições.

Por fim, ao analisarmos a estrutura de bandas do Borofeno HS_1S_2 , vemos que há uma mudança significativa com relação às bandas de $HS_1S_2^{1/2}$. Neste caso, as bandas possuem alta dispersão tanto

Figura 5.25: Bandas projetadas por orbitais do Mn/Hr-sBna configuração FM. (a) Em vermelho contribuição de estados Up e (b) verdes Down.

Figura 5.26: Bandas projetadas por orbitais do Mn/Hr-sBna configuração BB². (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

Figura 5.27: Bandas projetadas por orbitais do $Fe/HS_1S_2^{1/2}$. (a) Em vermelho contribuição de estados $Up \in (b)$ verdes *Down*.

para Fe/HS_1S_2 , quanto para Mn/HS_1S_2 , figuras (5.29) e (5.30), respectivamente. Notamos que não há contribuições do Fe de estados Up nos sistemas Fe/HS_1S_2 . Entretanto, há contribuições de alta dispersão para bandas metálicas vidas de estados *Down* dos orbitais d_{xy} e d_{xz} , revelando assim um carácter anisotrópico semelhante ao de Mn/Hr-sB, veja figura (5.25). Por outro lado, Mn/HS_1S_2 , apresenta algumas bandas metálicas vindas novamente de orbitais $d_{x^2-y^2}$ e d_{xy} , como nos casos anteriores, e com maior contribuições novamente de estados *Down*, conforme figura (5.30).

As imagens STM dessas três estruturas do Borofeno com MT adsorvidos estão ilustradas nas figuras (5.31), (5.33) e (5.35). Vamos começar analisando as imagens de MT/Hr-sB, figura (5.31). É possível notar que existe um grande contraste nos brilhos entre imagens do sistema ocupado e desocupado para o Fe/Hr-sB, figuras (5.31-a1 e a2). Ta diferença resulta da maior densidade de estados disponibilizada para estados ocupados como observado na figura (5.34-a). Tal Pdos foi calculada de acordo com os átomos selecionados pelos pontos azuis, lilás e verdes mostrado nas imagens STM. Da mesma forma que o Fe o Mn também exibe um pequeno contraste entre os brilhos de imagens de estados ocupados e desocupados tanto para configuração FM, figuras (5.31b1 e b2), quanto para a configuração BB², figuras (5.31-b1 e b2). Esses contrastes também são perfeitamente compreendidos com base na densidade de estados projetadas nos átomos conforme a figura (5.32-b e c). No entanto, neste caso os átomos de Mn apresentam um brilho um pouco maior (linhas azuis da Pdos) para estados desocupados, contrário ao Fe. Mas que também é entendido pela maior Densidade de estados dos átomos de Mn acima do nível de Fermi. Outro fato que deve ser levado em consideração, é que os átomos de Mn. Tal fato decorre devido a baixa difusão dos

Figura 5.28: Bandas projetadas por orbitais do $Mn/HS_1S_2^{1/2}$. (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

Figura 5.29: Bandas projetadas por orbitais do Fe/HS_1S_2 . (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

Figura 5.30: Bandas projetadas por orbitais do $Fe/HS_1S_2^{1/2}$. (a) Em vermelho contribuição de estados Up e (b) verdes *Down*.

Figura 5.31: Imagens STM dos MT em heterojunção Hr-sB: (a) Fe, (b) e (c) Mn nas configurações FM e BB², respectivamente. Figuras (x1) indicam um intervalo de energia de 0, 3 eV abaixo do nível de Fermi e (x2) 0, 3 eV acima do nível de Fermi. Altura da ponta da STM igual a 0,8 Å constante. Os pontos azul, lilás e verde sobres alguns átomos indicam os átomos seleciondados para Pdos da figura (5.32).

átomos de Fe no sítio de vacância do Borofeno. Isso faz com que as trilhas de átomos de Fe ficam num plano superior às dos átomos de Boro, conforme pode ser visto nas figura (5.37-a), na qual mostra que a distância dos átomos de Fe para o Boro mais inferior do Borofeno Hr-sB é de cerca de 0,65 Å. Por outro lado, a figura (5.37-d) mostra que o Mn difunde bastante com a superfície do Borofeno, mantendo-a, planar. E como os estados do Mn próximos ao nível de Fermi vêm de orbtias d, muito localizados, o corte nas imagens STM na altura descrita, não consegue capitar estados do

Figura 5.32: Densidade de estados projetada: (a) Fe/Hr-sB; (b) Mn/Hr-sB - FM; (c) Mn/Hr-sB - BB². Linhas azuis para os átomos de MT, e lilás e verde, para os Boros, selecionados conforme as imagens STM da figura (5.31).

Figura 5.33: Imagens STM dos MT em heterojunção $HS_1S_2^{1/2}$: (a) Fe e (b) Mn. Figuras (x1) indicam um intervalo de energia de 0, 3 eV abaixo do nível de Fermi e (x2) 0, 3 eV acima do nível de Fermi. Altura da ponta da STM igual a 1,0 Å constante. Os pontos azuis e lilás sobres alguns átomos indicam os átomos seleciondados para Pdos da figura (5.34).

Figura 5.34: Densidade de estados projetada: (a) $Fe/HS_1S_2^{1/2}$; (b) $Mn/HS_1S_2^{1/2}$. Linhas azuis para os átomos de MT, e lilás, para os Boros, selecionados conforme as imagens STM da figura (5.33).

As imagens STM dos átomos de MT em $HS_1S_2^{1/2}$ figura (5.33), também podem ser explicadas com base na Densidade de estados para diferença de brilho entre estados ocupados e desocupados. Para o sistema AFM $Fe/HS_1S_2^{1/2}$ basicamente não há tanto contraste principalmente para os

átomos de Fe, figura (5.33-a). Existem alguns átomos de Boro, presentes na região do S2 com brilho maior para estados ocupados. Mas que pode ser compreendido pela maior dos, figura (5.34). Mesmo fato ocorre para átomos de Mn, figura (5.33-b). Os átomos de Boro selecionados que apresentam maior brilho possuem maior densidade de estados para estados ocupados. E novamente, o brilho mior na região próxima do átomo de Fe decorre da maior distância desse átomos para o plano de Boro, conforme figura (5.37-b).

Figura 5.35: Imagens STM dos MT em heterojunções HS_1S_2 : (a) Fe e (b) Mn. Figuras (x1) indicam um intervalo de energia de 0,3 eV abaixo do nível de Fermi e (x2) 0,3 eV acima do nível de Fermi. Altura da ponta da STM igual a 1,0 Å constante. Os pontos azuis e lilás sobres alguns átomos indicam os átomos seleciondados para Pdos da figura (5.36).

Figura 5.36: Densidade de estados projetada: (a) Fe/HS_1S_2 ; (b) Mn/HS_1S_2 . Linhas azuis para os átomos de MT, e lilás, para os Boros, selecionados conforme as imagens STM da figura (5.35).

Por fim, a figura (5.35) mostra as imagens STM dos sistemas $Fe/HS_1S_2 e Mn/HS_1S_2$. Como nos casos anteriores, as alterações nos brilhos das imagens são bem analisadas com base nas Pdos dos átomos. Praticamente não há diferença entre estados ocupados e desocupados para Fe/HS_1S_2 . Apenas um maior brilho na região dos átomos de Fe, no sítio de vacância do Borofeno S2, e primeiros vizinhos. Já para a Mn/HS_1S_2 , observa-se que há uma diferença de brilho na região do Borofeno S2 e também na região S1. A região S2 apresenta um brilho maior para estados ocupados enquanto a para S1 o caso é o oposto. E assim como em Hr-sB e $HS_1S_2^{1/2}$ os átomos de ferro estão em um plano acima dos átomos de Boro, por isso o bilho mais intenso nas figuras (5.35-a), enquanto que os Mn estão no mesmo planos que os Boro, e assim não apresenta brilho algum, nem para estados ocupados nem para desocupados, (5.35-b).

Figura 5.37: Geometrias convergidas, com vista lateral na direção do vetor b.

5.4 Conclusões

Nossos cálculos revelaram que dentre os sistemas MT/Hr-sB, $MT/HS_1S_2^{1/2} \in MT/HS_1S_2$, os sistemas mais estáveis energeticamente são compostos pela fase Hr-sB tanto com Fe quanto com Mn adsorvidos, e com maior estabilidade para o Fe em comparação ao Mn. Para os sistemas mais estáveis, vimos que há uma forte polarização de spin com momento magnético variando de 2,61 a 3,94 μ_B . A transferência de carga manteve-se na mesma ordem das demais analisadas. Ainda, para os sistemas mais estáveis, vimos que praticamente todos são ferromagnéticos, com exceção do $Fe/HS_1S_2^{1/2}$, que é antiferromagnético e para o Mn/Hr-sB que apresenta tanto uma fase ferromagnética quanto uma fase BB² com praticamente mesma energia de adsorção; As fases ferromagnéticas foram mediadas pela interação de Superexchange.

Com relação à eletrônica desses sistemas, foram calculados estruturas de bandas que nos revelaram que, em todos os casos, temos bandas metálicas de alta dispersão: Fe/Hr-sB não apresenta grandes contribuições para bandas metálicas próxima ao nível de Fermi vindas do Fe. Já Mn/Hr-sB apresenta sim, fortes contribuições para bandas metálicas vindas de orbitais $d_{x^2-y^2}$ e d_{xy} do Mn tanto para fase FM quanto para BB²; $Fe HS_1S_2^{1/2}$ apresenta uma separação entre bandas com alta dispersão e bandas mais localizadas ambas com forte contribuições para bandas metálicas vindas de orbitais $d_{x^2-y^2}$ e d_{xy} do Mn; $S_1^{1/2}$ manteve o padrão de Mn/Hr-sB com fortes contribuições para bandas metálicas vindas de orbitais $d_{x^2-y^2}$ e d_{xy} do Mn; Fe/HS_1S_2 possui bandas metálicas de alta dispersão vindas dos orbitais $d_{x^2-y^2}$ e d_{xy} do Mn; Fe/HS_1S_2 , a contribuições para bandas metálicas do Mn são de orbitais $d_{x^2-y^2}$ e d_{xy} , mantendo assim a mesma tendência para todas as estruturas mais estáveis.

Com relação às imagens STM, foi observado que existe um maior brilho dos átomos de Fe em relação aos Boros que dos átomos de Mn, uma vez que as contribuições eletrônicas desses átomos são de orbitais d que por sua vez são bem localizados, então tal diferença no brilho ocorre

devido ao arranjo estrutural, no qual os átomos de Fe ficam acima do plano dos átomos de Boro, o que não acontece com os átomos de Mn. Estes mantêm-se no mesmo plano dos átomos de Boro configurando, assim, sistemas completamente planares. As diferenças entre brilhos para estados ocupados e desocupados foram bem entendidas com base na diferença entre as densidades de estados nos dois intervalos.

Capítulo 6

Incorporação de H_2O em Interface Borofeno / $a-SiO_2$

Nos capítulos anteriores investigamos propriedades de algumas fases do borofeno quando adsorvido em superfícies semicondutoras formadas por Dicalcogenetos de Metais de Transição, os TMDCs, e também estudamos algumas propriedades magnéticas que surgem quando Metais de Transição são adsorvidos em sítios de vacâncias formando uma linha ou trilha ao longo de algumas fases do Borofeno. Nesse capítulo vamos investigar as propriedades energéticas, eletrônicas e estruturais do Borofeno quando depositado sobre um substrato isolante de dióxido de Silício amorfo $(a-SiO_2)$. $a-SiO_2$ já foi utilizado como substrato para estudo do grafeno (Miwa *et al.* (2011), Ishigami *et al.* (2007) e Sinitskii *et al.* (2010)) e Fosforeno (Scopel *et al.*, 2017). Além disso, pesquisas mostram que adsorção de moléculas sobre esses materias 2D pode alterar de forma significativa as suas propriedades Físicas e Químicas. Assim, o segundo objetivo é fazer a intercalação de moléculas de água, H_2O , e estudar o que muda nessas propriedades com a presença dessa molécula.

Assim como nos capítulos anteriores, fizezmos cálculos de primeiros princípios para obtenção das propriedades físicas descritas aqui. Foi usado uma energia de corte de 400 eV; os átomos foram deixados relaxar com uma tolerância de convergência abaixo de 6 meV/Å para a força total, e a primeira zona de Brillouin foi gerada usando um conjunto de $12 \times 12 \times 1$ pontos k de acordo com o esquema de Monkhorst-Pack, (MONKHORST e PACK, 1976).

6.1 Borofeno Adsorvido sobre a-SiO₂

A figura (6.1) mostra as estruturas do Borofenos que analisaremos neste trabalho, as fases S0, figura 6.1 a1-a2, e S1 figura (6.1) (b1)-(b2). Tais estruturas, são aquelas estruturas sintetizadas por Mannix *et al.* (2015) e Feng *et al.* (2016). Nas figuras (6.1) (a1), e (6.1) (b1), ilustramos os vetores da rede unitária usados para otimização dos parâmetros de rede. Nossos resultados estão de bom acordo com os experimentais: Para a estrutura S0 obtivemos a = 1,61 Å e b = 2,86 e um *buckling* de 0.91 Å, que concordam muito bem com os obtidos por Mannix *et al.* (2015) (a = 1,67 Å, b = 2,90 Å e 0,80 para o *buckling*). Já os resultados otimizados para a fase S1 são a = 5,01 Å e b = 2,96 Å e planar, os quais também estão de acordo com aqueles obtidos por Feng *et al.* (2016) (a = 5,00 Å e b = 3,00 Å).

A estrutura eletrônica de S0, figura (6.1-a3) revela uma característica anisotrópica. Podemos

Figura 6.1: Fase estrutural do Borofeno $S0 \in S1$: (a1) e (b1) vista de topo, (a2) e (b2) vista lateral e (a3) e (b3) estruturas de bandas

ver que exitem várias bandas metálicas ao longo da direção $\hat{\mathbf{a}}$, o que não é observado na direção $\hat{\mathbf{b}}$. Tais característica anisotrópicas não são observadas na estrutura eletrônica de S1, figura (6.1-b3).

Figura 6.2: modelo estrutural do $S0/a-SiO_2 e S1/a-SiO_2$: (a) e (d) Vistas nas direções $\hat{\mathbf{a}}$; (b) e (f) Vistas nas direções $\hat{\mathbf{b}}$; (c) e (f) Vistas nas direções $\hat{\mathbf{c}}$.

A figura (6.2) mostra o modelo estrutural da adsorção do Borofeno sobre $a-SiO_2$. A supercélula, indicadas pelas figuras (6.2-c) e (6.2-f) (tracejadas), possuem vetores com periodicidade de (6 × 3) para $S0/a-SiO_2$ e (2 × 3) para $S1/a-SiO_2$ em relação aqueles da figura (6.1-a1) e (6.1-b1). Inicialmente examinamos a estabilidade energética desses sistemas. Foram testadas quatro configurações distintas para adsorção do Borofeno / $a-SiO_2$, isso é, quatro sítios diferentes para adsorção. A energia de adsorção foi calculada, assim como nos capítulos anteriores, por meio da seguinte expressão:

$$E_{ad} = E_{boro/SiO_2} - E_{boro} - E_{SiO_2},\tag{6.1}$$

onde E_{boro} e E_{SiO_2} são as energia do Borofeno e $a-SiO_2$ isolados, respectivamente, e E_{boro/SiO_2} a energia do sistema Borofeno/ $a-SiO_2$ relaxado. Os resultados dessas energias são listados na tabela (6.1).

	$BS0/SiO_2$		$BS1/SiO_2$		
	E_{ad}	d	E_{ad}	d	
C1	-21	2.80	-17	3.08	
C2	-21	2.87	-17	3.05	
C3	-21	2.86	-17	3.07	
C4	-21	2.90	-17	3.08	

Tabela 6.1: Energia de adsorção, E_{ad} em (meV/Å²), e distância entre planos, d (em Å), para quatro configurações distintas (C1, C2, C3 e C4).

A energias obtidas são de -21 e -17 meV/Å² para o S0 e S1, respectivamente, para todos os sítios testados. Para comparação, As energias de adsorção para interface Fosforeno/a $-SiO_2$ é de -14 meV/Å² (Scopel *et al.*, 2017) e para grafeno/a $-SiO_2$ de -6, 3 meV/Å² (Miwa *et al.*, 2011). A distância vertical entre planos, *d*, varia entre 2,80 a 2,90 Å para a interface $S0/a-SiO_2$, e de 3.05 - 3.08 Å para $S1/a-SiO_2$. Isso nos mostra que não há formação de ligações químicas na interface Borofeno e substrato. Neste caso a interação entre Borofeno e a $-SiO_2$ é do tipo van der Waals.

Calculamos também a transferência de carga, $\Delta \rho$, do Borofeno para o $a-SiO_2$, figura (6.3). Podemos observar que a transferência de carga não é homogênea na região do Borofeno. Há assim, uma transferência líquida de carga na região da interface $S0/a-SiO_2 \in S1/a-SiO_2$. O mapeamento das regiões onde houve uma transferência de cargas, isto é, regiões azuis e verdes na figura (6.3a1 -a2) e (6.3-b1 -b2), foram calculadas através da difereça entre a densidade eletrônica total dos sistemas isolados, $\rho_{boro} \in \rho_{SiO_2}$, e do sistema final, ρ_{boro/SiO_2} :

$$\Delta \rho = \rho_{boro/SiO_2} - \rho_{boro} - \rho_{SiO_2}. \tag{6.2}$$

As figuras (6.3-a3) e (6.3-b3) mostram a média de $\Delta\rho$ tomada perpendicularmente às superfícies, ou seja, ao longo do eixo z. Assim como feito nos capítulos anteriores, através do modelo chamado de *Bader charge density analysis* desenvolvido por Bader (1990) e algoritmos gerados por (Henkelman *et al.* (2006) e Tang *et al.* (2009)) é possível quantificar a transferência de carga total. Dessa maneira encontramos que a densidade total de cargas no Borofeno S0 é reduzida de $7,32 \times 10^{12} \ e/\text{cm}^2$ enquanto que no S1 esse valor é ligeiramente menor, $3,56 \times 10^{12} \ e/\text{cm}^2$. Esse valores estão próximos aqueles encontrados por Scopel *et al.* (2017) para o Fosforeno adsorvido em $a-SiO_2$ (6, $7 \times 10^{12} \ e^{-}/\text{cm}^2$). Esses valores também estão indicados na figura (6.3-a2) e (6.3-b2).

Quanto à eletrônica, podemos verificar pela figura (6.4) que os níveis do $S0 \,\mathrm{e}\,S1$ praticamente não são alterados pela presença do substrato, principalmente o S1. Isto está de acordo com a transferência de carga $\Delta \rho$, pois neste caso, a perca de elétrons no S1 é menor que no S0, de acordo com figura (6.3). Com isso é possível observar, que ocorre um pequeno deslocamento para cima (em relação ao nível de Fermi) das bandas do Borofeno S0 principalmente em torno dos pontos $\Gamma \in S$

Figura 6.3: transferência de carga $\Delta \rho$ entre Borofeno e a $-SiO_2$. Regiões verdes indicam indicam um $\Delta \rho > 0$ enquanto que regiões azuis um $\Delta \rho < 0$. *Isosurface* = 3, 0 × 10⁻⁴.

Figura 6.4: Estrutura de bandas: (a) S0 isolado; (b) $S0/a-SiO_2$ projetado em S0 (níveis azuis) e em $a-SiO_2$ (níveis vermelhos). (c) S1 isolado; (d) $S1/a-SiO_2$ projetado em S1 (níveis azuis) e em $a-SiO_2$ (níveis vermelhos).

de alta simetria, indicando assim que o S0 Perdeu elétrons após a adsorção em $a-SiO_2$.

Em seguida, estudamos como essas propriedades mudam pela adsorção/incorporação de moléculas de H_2O a estes sistemas.

6.2 Adsorção de H₂O sobre Borofeno e sobre a-SiO₂ isolados

=

Com o objetivo de estudar a incorporação de moléculas de água, H_2O na interface Borofeno - amorfo, que será analisada na seção (6.3), começamos primeiramente analisando interação de molécula de H_2O quando adsorvida sobre o Borofeno isolado e sobre o $a-SiO_2$ isolado.

6.2.1 H₂O/Borofeno

	H_2O	S/S0	$H_2O/S1$	
	E_{ad}	d	E_{ad}	d
C1	-0,20	$2,\!35$	-0,20	$2,\!19$
C2	-0,18	$2,\!22$	-0,12	$2,\!48$
C3	-0,29	$1,\!61$	-0,18	$2,\!57$
C4	-0,20	2.90	-0,16	2,77
C5	-1,77	-	-0,15	2,71
C6	-	-	-0,14	-
C7	-	-	-0,17	-
C8	-	-	-0,25	-
C9	-	-	-0,29	-
C10	-	-	-0,21	-

Tabela 6.2: Energia de adsorção, E_{ad} em (eV/molécula) e distância de entre a molécula e o Borofeno, d em Å.

Começamos calculando a adsorção dessas moléculas de H_2O em vários sítios do Borofeno S0 isolado, como indicado pela figura (6.5).

Como é possível observar, os casos em que a molécula de H_2O não liga com o Borofeno (configurações C1, C2 e C4, figura (6.5-a, b e d)) a energia de adsorção varia entre -18 e -20 eV/molécula (calculada da mesma forma que na equação (6.1)). Esses valores são exatamente os mesmos encontrados por Scopel *et al.* (2017) para o caso da molécula adsorvida sobre o Fosforeno. No entanto, as geometrias mais favoráveis energeticamente são as configurações três e cinco designadas por C3 e C5 na figura (6.5). A energia de adsorção são respectivamente $-29 \text{ eV/molécula e } -1.77 \text{ eV/mol$ $lécula. A configuração C3 preserva a geometria estrutural da molécula de <math>H_2O$ e há formação de ligação química entre a molécula e o Borofeno. Neste caso podemos dizer que o Bofeno S0 apresenta um caráter hidrofílico. Já a configuração C5, configuração mais estável, observamos que a geometria estrutural do H_2O não é preservada. Há a quebra da molécula dando origem a um Hidrogênio isolado mais uma Hidroxila ($H_2O \rightarrow H + OH$) e ambos se ligam quimicamente ao Borofeno. Em todos os casos o processo é exotérmico. Os valores das energias de adsorção e distância entre a molécula e o Borofeno estão resumidos na tabela (6.2).

A figura (6.6) mostra a adsorção de H_2O em diversos sítios do Borofeno S1. Devido ao fato do S1 ser planar e possuir vacâncias, existem vários sítios disponíveis para adsorção além daqueles estudados no caso S1, figura (6.5). Nas cinco primeiras geometrias, C1 - C5, vemos que a molécula de H_2O não se liga com o S1, ficando assim semelhantes as configurações C1, C2 a C4 para o caso S0, figura (6.5). Neste caso as energias de adsorção também são semelhantes, variando de -0, 12 a -0, 20 eV/molécula. No entanto, a configuração mais estável para o caso onde a estrutura do H_2O é preservada não é com a molécula ligada ao Borofeno como aconteceu com o $H_2O/S0$. Aqui, a

Figura 6.5: Geometrias convergidas da Adsorção de H_2O sobre S0 em vários sítios distintos. O número em preto representa a distância entre H_2O e S0 em Å e em azuis a energia de adsorção em eV/molécula. Os índices (1), (2) e (3) indicam vistas nas direções $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ e $\hat{\mathbf{c}}$, respectivamente.

geometria C6 (configuração com H_2O ligado) é menos favorável que as configurações C1, C3, C4 e C5 nas quais a molécula está suspensa. Em todas essas geometria (C1 a C6) é notado que a interação da molécula de H_2O provoca certas "ondulações"na superfícies do S1 variando de 0, 21 a 0, 27 Å, fazendo com que o S1 deixe de ser totalmente planar.

Assim como ocorre em $H_2O/S0$, as geometrias mais favoráveis são aquelas onde a molécula se quebra na superfície $(H_2O \rightarrow H + OH)$, nesse caso, geometrias **C7**, **C8**, **C9** e **C10**. Dessa maneira a interação do H_2O com o S1 modifica bastante a estrutura do Borofeno, como mostra as figuras (6.6-g e -j). Nesse caso, o Boro que liga à molécula (ou ao Hidrogênio e à Hidroxila) é deslocado em direção a ela (para fora da superfície). Esse deslocamento varia de 0, 54 Å, figura (6.6-f2), a 0, 63 Å, figura (6.6-i2). A diferença de energia de adsorção entre as configurações com a molécula de H_2O livre, ligada e quebrada é ligeiramente diferente entre uma configuração e outra. Os resultados das energias de adsorção e distância entre a molécula e o Borofeno estão resumidos também na tabela

Figura 6.6: Geometrias convergidas da Adsorção de H_2O sobre S1 em vários sítios distintos. O número em preto representa a distância entre H_2O e S1 em Å e em azuis a energia de adsorção em eV/molécula. Os índices (1), (2) e (3) indicam vistas nas direções $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ e $\hat{\mathbf{c}}$, respectivamente.

(6.2).

A figura (6.7) mostra a transferência de carga, $\Delta \rho$, calculada entre a molécula de H_2O e o S0 para as configurações C1, figura (6.7-a), C3, figura (6.7-b) e C5, figura (6.7-c). Analisamos essas três configurações por se tratarem de três configurações distintas: uma com a molécula livre suspensa, outra com a molécula ligada; e a ultima com a molécula quebrada na superfície. Podemos observar que há uma dopagem significativa do S0 em todos os casos, mas principalmente nas estruturas C3 e C5 onde a molécula (ou hidroxila) está ligada (da ordem de 10^{12} e/cm^2), mostrando assim uma dopagem maior que aquela calculada do $S0/a-SiO_2$ e $S1/a-SiO_2$, figura (6.3). O número indica a carga líquida transferido do S0 calculado usando a análise de Bader novamente Bader (1990). Como podemos observar o S0 perde elétrons, ficando assim dopados positivamente em todos os casos.

Fizemos também a mesma análise para a estrutura $H_2O/S1$, conforme figura (6.8). Assim, Analisamos as estruturas estáveis **C1**, **C6** e **C9** mostradas na figura (6.6). Neste caso, um fato

Figura 6.7: Transferência de carga $\Delta \rho$ entre Borofeno e H_2O . Regiões verdes indicam indicam um $\Delta \rho > 0$ enquanto que regiões azuis um $\Delta \rho < 0$. *Isosurface* = 3, 0×10^{-4} figura (a) e 3, 0×10^{-3} nas figuras (b) e (c).

importante é que quando a molécula se liga ao S1, configuração C6 ou figura (6.8-b), houve uma

inversão na dopagem do S1 em relação às outras configurações. Assim, o S1 recebe elétrons ($\Delta \rho = 1, 0 \times 10^{12} \text{ e/cm}^2$). Este fato é interessante pois pode nos permitir um certo controle na dopagem do Borofeno S1 (*tipo-n* ou *tipo-p*) mediante a forma com que a molécula de H_2O é adsorvida nesse Borofeno.

A figura (6.9) mostra a estrutura de bandas para o $H_2O/S0$ para as três configurações analisadas na figura (6.3): configurações **C1**, **C3** e **C5**. A figura (6.9-a) mostra a estrutura de bandas para o S0 isolado. Podemos observar que os níveis mudam muito pouco com a presença do H_2O na configuração **C1**, isto é, figura (6.9-b), pois nesse caso além da molécula induzir uma transferência de carga menor no S0, ela não distorce a estrutura cristalina do mesmo. Os níveis em azul indicam a contribuição do Borofeno enquanto os níveis em verdes indicam a contribuição do H_2O . Nesse caso, figura (6.9-b), a presença do H_2O induz um nível de energia próximo de -2 eV abaixo do nível de Fermi. Por outro lado, essas características não são mantidas nas figuras (6.9-c e -d) (configurações **C3** e **C4**). Nesses casos, a presença de H_2O formando ligação com o S0, induz uma forte transferência de carga na interface, conforme figura (6.7-b e -c). Além disso, há uma reconstrução na superfície do S0. Isso faz com que os níveis na estrutura de bandas desses materiais se modifiquem bastante em comparação ao S0 isolado. Aqui, os níveis de energia devido ao H_2O aparecem muito abaixo dos -2 eV indicados na figura.

As mesmas característica observadas nas estruturas de bandas do $H_2O/S0$ podem ser notadas na estrutura de bandas do $H_2O/S1$, figura (6.10). A figura (a) mostra a estrutura de bandas para o S1 isolado e as demais mostram as estruturas de bandas projetadas sobre o S1 níveis azuis, e

Figura 6.8: Transferência de carga $\Delta \rho$ entre Borofeno e H_2O . Regiões verdes indicam indicam um $\Delta \rho > 0$ enquanto que regiões azuis um $\Delta \rho < 0$. *Isosurface* = 5, 0×10^{-4} figura (a) e 2, 0×10^{-3} nas figuras (b) e (c).

projetada sobre o H_2O , níveis verdes. Novamente, os níveis da molécula de água são muito profundos nas figuras (6.10-c e -d) e não aparecem no intervalo mostrado.

6.2.2 H₂O/a-SiO₂

A estrutura do $a-SiO_2$ por se tratar de um amorfo, permite adsorção de H_2O em inúmeros sítios distintos. Assim, consideramos várias geometrias nas quais a molécula é adsorvida sem que a mesma se quebra, e geometrias nas quais a molécula se quebra $(H_2O \rightarrow H + OH)$. A tabela (6.3) contém os valores de energias de adsorção calculadas.

Considerando as geometrias mais estáveis, vemos que a adsorção da molécula no $SiO_2(S0)$ e $SiO_2(S1)$ apresentam energia não tão próximas àquelas calculadas por Scopel *et al.* (2017) que obtiveram uma energia de adsorção de -2.64 eV/molécula. Aqui obtivemos uma energia de 0,49 eV/molécula maior quando usamos o $a-SiO_2(S0)^1$, e 0,65 eV/molécula menor quando usamos $a-SiO_2(S1)^2$. Em todos os casos, no entanto, a molécula quebrada na superfície do amorfo é energeticamente mais favorável, o que está de acordo com os cálculos por Scopel e colaboradores. A geometria das configurações mais estáveis está ilustradas na figura (6.11).

¹a $-SiO_2$ usado para interface $S0/a-SiO_2$.

 $^{^{2}}a-SiO_{2}$ usado para interface $S1/a-SiO_{2}$.

Figura 6.9: Estrutura de bandas: (a) S0 isolado; (b) $H_2O/S0$ configuração C1; (b) $H_2O/S0$ configuração C3; (c) $H_2O/S0$ configuração C5. Os níveis em azul representam a contribuição total do S0 enquanto os verdes a contribuição do H_2O .

Figura 6.10: Estrutura de bandas: (a) S1 isolado; (b) $H_2O/S1$ configuração C1; (b) $H_2O/S1$ configuração C6; (c) $H_2O/S1$ configuração C9. Os níveis em azul representam a contribuição total do S0 enquanto os verdes a contribuição do H_2O .

6.3 Incorporação de molécula de H_2O na interface Borofeno/a-SiO₂

Nas figuras (6.12) e (6.13) estão ilustradas várias configurações distintas para incorporação do H_2O na interface $S0/a-SiO_2$ e $S1/a-SiO_2$, respectivamente. Em cada caso estudado as energias de adsorção foram calculadas de acordo com a expressão:

$$E_{ad} = E_{final} - E_B - E_{SiO_2 + H_2O}, (6.3)$$

em que E_{final} é a energia total da interface Borofeno/ $H_2O/a-SiO_2$, E_B a energia do Borofeno livre e $E_{SiO_2+H_2O}$ é a energia total do sistema mais estável da molécula de H_2O adsorvida no $a-SiO_2$, figura (6.11).

Começando então pela estrutura $S0/H_2O/a-SiO_2$, figura (6.12), podemos observar que a configuração energeticamente mais favorável é a aquela onde a molécula de H_2O quebra na superfície do $a-SiO_2$ e se liga a ele ($H_2O \rightarrow H + OH$), configuração **C4** ou figura (6.12-d2). Nesse caso a energia adsorção é de -1, 8 eV/molécula, que é bem mais baixa que as demais analisadas. Além disso, a presença da molécula de H_2O praticamente não afeta a energia de ligação do S0 com o

	$H_2O/SiO_2(S0)$	$H_2O/SiO_2(S1)$
C1	-0.26 (ML)	-0.23 (ML))
C2	-0.26 (ML)	-0.09 (ML)
C3	-2.15 (QC)	-2.03 (MC)
C4	-2.10 (QC)	-2.44 (QC)
C5	-0.45 (QC)	-3.29 (QC)
C6	-1.64 (QC)	$+0.59~(\mathrm{QC})$
C7	-1.39 (QC)	-3.16 (QC)
C8	-0.96 (QB)	-0.76 (QB)

Tabela 6.3: Energia de adsorção, E_{ad} em (eV/molécula). ML significa que a molécula fica livre; MC a molécula fica ligado ao $a-SiO_2$; Q a molécula se quebra $(H_2O \rightarrow H + OH)$ na superfície de cima; Q a molécula se quebra $(H_2O \rightarrow H + OH)$ na superfície de baixo.

Figura 6.11: Geometria otimizada das estruturas mais estáveis conforme tabela (6.3).

 $a-SiO_2$ (-21 eV/Å² sem H_2O , tabela (6.1), contra -22 eV/Å² com H_2O na interface, tabela (6.4)), comparando os sistemas mais estáveis. Podemos observar também que a presença da molécula de H_2O causa um ligeiro aumento na distância vertical entre S0 e $a-SiO_2$, antes da incorporação da molécula essa distância era da ordem de 2,80 Å passando a ser agora de 2,91 Å.

Já no caso da estrutura $S1/H_2O/a-SiO_2$, figura (6.13), podemos ver que a configuração mais estável continua sendo favorável a formação das hidroxila lingando ao $a-SiO_2$, configuração **C1**, com energia de adsorção de -2, 04 eV/molécula. No entanto, existe também uma configuração energeticamente favorável na qual a molécula de H_2O não se quebra, configuração **C1**, com energia de -0,57 eV/molécula. Assim, a passagem da configuração **C3** para **C1** seria um processo exotérmico com liberação de energia de -1,47 eV/molécula. Esse valor é próximo ao encontrado por Scopel *et al.* (2017) para a diferença de energia das interfaces Fosforeno/ $H_2O/a-SiO_2$ e Fosforeno/ $H + OH/a-SiO_2$, o qual obteve -1,23 eV/molécula. Por outro lado, vemos que o S1 é mais ligado ao substrato com a presença da molécula de água na interface (-17 eV/Å² sem H_2O , tabela (6.1), contra -23 eV/Å² com H_2O na interface, tabela (6.4)). A distâncias vertical entre S1 e $a-SiO_2$ para essas duas configurações (**C1** e **C3**) é de 3, 26 e 3, 23 Å, que é um pouco um pouco maior que na ausência do H_2O , 3, 08 Å.

As figuras (6.14) e (6.15) mostram o mapeamento das transferências de carga nas interfaces $S1/H_2O/a-SiO_2$ e $S1/H_2O/a-SiO_2$, respectivamente, para as configurações mais estáveis. Como é possível notar, em ambos os casos, existe uma formação de regiões ricas e pobres em elétrons, principalmente na região da interface próxima ao Borofeno. Isto é, há uma modulação na densidade de carga nessas regiões. Pela análise de Bader, o valor da transferência de carga líquida calculada

sobre o Borofeno é: $\Delta \rho = -5, 5 \times 10^{12} \text{ e/cm}^2$ para o S0 e $\Delta \rho = -4, 7 \times 10^{12} \text{ e/cm}^2$ para o S1. Assim, ambos os casos, o Borofeno perde elétrons para o sistema.

As estruturas de bandas para essas estruturas mais estáveis também foram calculadas como mostram as figuras (6.16) e (6.17). De acordo com a figura (6.16-a) podemos ver que a presença do H_2O modifica pouco a bandas vindas do S0 (projeções em azul). Entretanto, como é de se perceber, a dispersão das bandas do S0 se tornam menos acentuadas com a presença do H_2O , deixando alguns estados do S0 mais localizados logo abaixo do nível de Fermi. Já no caso $S1/H_2O/a-SiO_2$ podemos observar que há uma certa hibridização entre os estados da molécula com os do amorfo, pois os

Figura 6.12: Incorporação de H_2O na interface $S0/a-SiO_2$: (x1) mostra a geometria antes da relaxação (vista $\hat{\mathbf{a}} \in \hat{\mathbf{b}}$); (x2) após a relaxação (vista $\hat{\mathbf{a}}, \hat{\mathbf{b}} \in \hat{\mathbf{c}}$).

Figura 6.13: Incorporação de H_2O na interface $S1/a-SiO_2$: (x1) mostra a geometria antes da relaxação (vista $\hat{\mathbf{a}} \in \hat{\mathbf{b}}$); (x2) após a relaxação (vista $\hat{\mathbf{a}}, \hat{\mathbf{b}} \in \hat{\mathbf{c}}$).

estados do S1 praticamente não se alteram, conforme pode ser visto pela figura (6.17).

Para uma boa descrição estrutural e também eletrônica desses sistemas mais estável, calculamos também as imagens STM dos mesmos. A figura (6.18) mostra as imagens obtidas usando uma altura da ponta da STM constante de 1,0 Å, para o sistema $S0/H_2O/a-SiO_2$. As imagens capturam

	$BS0/SiO_2$		$BS1/SiO_2$	
	$BS0/SiO_2$	d	$BS1/SiO_2$	d
C1	-0,09 (-1)	$_{3,12}$	-2,04 (-23)	$3,\!26$
C2	-0,25 (-3)	$3,\!06$	$+1,\!31\ (+15)$	3,10
C3	$+0,\!12\ (+1)$	3,15	-0,57 (-6)	$_{3,23}$
C4	-1,81 (-22)	$3,\!91$	$+1,\!20\ (+13)$	$_{3,12}$
C5	-0,34 (-4)	$3,\!14$	$+1,\!81\ (+20)$	$3,\!40$
C6	-0,03 (0)	$2,\!97$	$+0,\!20\;(+2)$	$3,\!42$
C7	-		-1,79 (-20)	$3,\!45$

Tabela 6.4: Energia de adsorção, E_{ad} em eV/molécula (meV/Å²), e distância entre planos, d em Å, para quatro configurações distintas (C1, C2, C3 e C4).

Figura 6.14: Transferência de carga $\Delta \rho$ entre S0 e H_2O . Regiões verdes indicam indicam um $\Delta \rho > 0$ enquanto que regiões azuis um $\Delta \rho < 0$. Isosurface = $6, 0 \times 10^{-4} \text{ e/Å}^3$.

Figura 6.15: Transferência de carga $\Delta \rho$ entre S1 e H_2O . Regiões verdes indicam indicam um $\Delta \rho > 0$ enquanto que regiões azuis um $\Delta \rho < 0$. Isosurface = $6, 0 \times 10^{-4} \text{ e/Å}^3$.

estados com energias que variam de -0, 9 eV (0, 9 eV abaixo do nível de Fermi, indicando estados ocupados) até +0, 9 eV (0, 9 eV acima do nível de Fermi, indicando estados desocupados). Como é possível notar, há um maior brilho nos átomos do Boro ao longo da direção **a**, que se devido ao fator estrutural, uma vez que esses átomos estão num plano acima dos demais e, consequentemente, mais próximo da ponta da STM. Quanto à eletrônica, podemos ver que, dentro do intervalo de energia analisados, os estados devem vir somente do S0. Que está em acordo com a estrutura de bandas calculada, uma vez que os estados próximos ao nível de Fermi são predominantemente do S0, conforme figura (6.16). Além disso, a figura (6.19) mostra a um corte da densidade parcial de cargas ao longo da linha amarela da figura (6.18-a). Tal corte passa exatamente sobre a hidroxila

Figura 6.16: Estrutura de bandas: (a) S0 isolado; (b) $S0/a-SiO_2$; (c) $S0/H_2O/a-SiO_2$. O níveis azuis indicam uma projeção sobre o S0, vermelhos sobre o $a-SiO_2$ e verdes sobre o H_2O .

Figura 6.17: Estrutura de bandas: (a) S1 isolado; (b) $S1/a-SiO_2$; (c) $S1/H_2O/a-SiO_2$. O níveis azuis indicam uma projeção sobre o S1, vermelhos sobre o $a-SiO_2$ e verdes sobre o H_2O .

Figura 6.18: Imagens STM da estrutura c4 (figura (6.12)). Altura da ponta da STM de 1,0 Å.

obtida da quebra da molécula de H_2O . Através desse corte, podemos ver também que os estados

Figura 6.19: Densidade Parcial de cargas indicadas pelas pretas. O corte da densidade foi feita ao longo da linha amarela tracejada da figura (6.18). a) estados ocupados de até 0,3 eV abaixo do nível de Fermi, e b) estados desocupados até 0,3 eV acima do nível de Fermi.

que contribuem para a formação dos brilhos na STM vêm, na maior parte dos Boro, que estão no plano superior indicado na figura. Por essa figura, também vemos porque existe o pequeno contraste entre o brilho de estados ocupados e desocupados. Vemos que a densidade parcial de carga próxima dos átomos de Boro para estados ocupados é um pouco menor que para estados ocupados.

Figura 6.20: Imagens STM da estrutura c1 (figura (6.13)). Altura da ponta da STM de 0,9 Å.

Da mesma maneira que em S0 as imagens STM dos sistemas formado pelo Borofeno S1 apresentam brilhos mais intensos para os átomos de Boro, figura (6.20). O que está de acordo com a estrutura de bandas calculada, que mostra que próximo do nível de Fermi, teremos predominância de estados vindos do S1, figura (6.17). No entanto, é possível observar que as imagens fornecem pontos luminosos com brilho maior para aqueles átomos de Boro nos vértices dos hexágonos, dando a "falsa" visão de uma estrutura tipo Grafeno. No entanto, isso se deve ao fato de os átomos de Boro situados no centro dos hexágonos apresentarem estados mais localizados. Isso pode ser percebido na figura (6.21), onde vemos que as *isosurfaces* próximas dos átomos de Boro no centro do hexágono estão mais concentradas em relação aos demais. Dessa forma, ao passar a ponta da STM a altura indicada, 0,09 Å, vemos que teremos uma maior captura de estados dos Borofeno situados nos vértices do hexágonos.

Figura 6.21: Densidade Parcial de cargas indicadas pelas pretas. O corte da densidade foi feita ao longo da linha amarela tracejada da figura (6.18). a) estados ocupados de até 0,3 eV abaixo do nível de Fermi, e b) estados desocupados até 0,3 eV acima do nível de Fermi.

6.4 Conclusões

Através de cálculos de Primeiros Princípios foi possível concluir que: Para Borofeno/a $-SiO_2$: (i) tanto S0 quanto S1 interagem com a $-SiO_2$ via van der Walls; (ii) A carga do S0 S1 são reduzidas de $\Delta \rho = 7,32 \times 10^{12} \ e/\text{cm}^2$ e $\Delta \rho = 3,56 \times 10^{12} \ e/\text{cm}^2$, e há a formação de modulação na densidade de carga na região da interface Borofeno/a $-SiO_2$; (iii) A estrutura de bandas do S0 e S1 é basicamente preservada com a presença do a $-SiO_2$.

Para a adsorção da molécula de H_2O sobre o Borofeno isolado e sobre o $a-SiO_2$ isolado obtivemos: (i) a estrutura energeticamente mais favorável é aquela que ocorre a formação de hidroxila $(H_2O \rightarrow H + OH)$, tanto em S0 quanto em S1; (ii) para S0 a barreira de energia para quebra da molécula é de 0, 14 eV/molécula, muito menor que para o S1 que é de 0, 66 eV/molécula; (iii) o S0 perde carga considerando as estruturas mais estáveis, enquanto que o S1 perde carga na estrutura mais estável (molécula quebrada na superfície de S1) mas ganha carga em um caso onde a molécula de H_2O é preservada; (iv) A eletrônica do S0 e S1 são bastante modificadas em virtude das distorções da estrutura cristalina causada pela presença de H_2O , no entanto, o caráter metálico de ambos é preservado; (v) para a adsorção de H_2O sobre $a-SiO_2$ verificamos também que a formação de hidroxilas é mais estáveis energeticamente, como já era previsto por outros estudos.

Com relação a incorporação de H_2O na interface Borofeno/a $-SiO_2$ temos: (i) A formação de hidroxilas ligadas ao a $-SiO_2$ é mais favorável; (ii) O Borofeno, tanto S0 quanto S1 perde carga elétrica e há forte formação de regiões ricas e pobres em elétrons na interface do sistema; (iii) S1 é mais ligado ao a $-SiO_2$ quando há moléculas de H_2O na interface $S1/a-SiO_2$. (iv) As estruturas de bandas do S0 e S1 são preservadas mesmo com a presença da molécula de H_2O . (v) As imagens STM confirmam que os estados próximos ao nível de Fermi, são de contribuições dos Borofenos S0 ou S1.

Apêndice A

A Barreira Schottky

Ao realizar a junção de um semicondutor tipo p e outro n, figura (A.1-a) o nível de Fermi dos dois materiais se ajustam e haverá a formação de uma depleção de carga na interface entre os dois materiais. Essa região de interface, em que aparece esse acúmulo de cargas são chamadas de carga espacial. Tal carga espacial dá origem a um campo elétrico ε que aponta do material tipo n para o material tipo p. Esse campo elétrico corresponde a uma diferença de potencial V_o entre os lados n e p. Essa diferença de potencial impede a passagem de carga de um lado para outro. Devido à forma da variação do potencial ele é chamado de barreira de potencial, ou potencial de contato, como ilustrado na figura (A.1-b).

Figura A.1: (a) Materiais semicondutores p e n isolados. (b) carga espacial, campo elétrico e potencial na junção p-n. V_0 indica o potencial de contato.Figura extraída e modificada de (Rezende, 2015).

De maneira semelhante ao que ocorre numa junção p-n de dois semincondutores, ao colocarmos um metal em contato com um semicondutor haverá transferência de carga de um lado para o outro afim de igualar o nível de Fermi. Deste modo, o metal e o semincodutor terão densidades de cargas iguais, mas de sinais opostos, cuja condição de neutralidade de carga é dada por:

$$q_m + q_s = 0, \tag{A.1}$$

onde q_m e q_s são as cargas do metal e semicondutor, respectivamente. A diferença é que na junção metal-semicondutor os buracos não podem passar do semicontuor para o metal, pois nos metáis apenas elétrons são portadores de carga transferíveis. O resultado dessa transferência de carga é uma barreira de potencial que agora é chamada de barreira Schottky (BS), em homenagem ao físico W. Schottky que estudou contatos metal-semicondutor por volta de 1930 (Rezende, 2015). A BS depende do tipo de semicondutor, dos valores relativos das função trabalho nos materiais e da afinidade eletrônica. A figura (A.2) ilustra a formação de uma BS para um contato metal-semicondutor tipo n (A.2-a) e metal-semicondutor tipo p (A.2-b).

Figura A.2: Diagramas de energia de junções metal-semicondutor em equilíbrio: Formação de barreira de Schottkky para contato: (a) metal-semicondutor tipo n e (b) metal-semicondutor tipo p. figura 1 e 2 indicam antes e depois do contato. O alinhamento de energia é feito tomando a energia de vácuo, E_0 , como referência. Figura extraída e modificada de (Rezende, 2015).

Modelo de Schottky-Mott

Quando um semicondutor apresenta níveis de energia resultantes de ligações covalentes incompletas na sua supefície dizemos que ele apresenta estados de superfície. Assim, um contato metal-semicondutor é chamado de ideal quando não possue estados de superfície no semicondutor. Dessa maneira, sistemas metal-semicondutores cuja interação não há formação de ligação química, uma interação do tipo van der Waals, por exemplo, podem ser tratados como um contato ideal. Dessa maneira a determinação da altura da BS, Φ_B , pode ser feita pelo modelo de Schottkky-Mott (E. H. Rhoderick (1987); Mönch (1995)) que estabelece que: (i) para contato metal-semicondutor tipo n,

$$\Phi_B = \chi_s - \phi_m,\tag{A.2}$$

onde ϕ_m e χ_s representam a função trabalho do metal e a afinidade eletrônica do semicondutor, respectivamente, conforme a figura (A.2).

(ii) para contato metal-semicondutor tipo p,

$$\Phi_B = (\phi_m - \chi_s) - E_g, \tag{A.3}$$

onde E_g é o gap de energia do semicondutor. Essa expressão pode ser escrita de maneira equivalente como:

$$\Phi_B = \phi_m - E_{ip},\tag{A.4}$$

onde é E_{ip} é o potencial de ionização do semicondutor, correspondente a energia do topo da banda de valência, E_v , em relação ao vácuo, E_0 , figura (A.2).

Os diodos formados por metal-semicondutor são chamados de diodos de barreira Schottky. A diferença da região da carga espacial no contato metal-semicondutor, figura (A.2), em relação aos diodos de junção p-n, semicondutor-semicondutor da figura (A.1), faz com que o tempo de resposta no chaveamento dos diodos de barreira schottky seja muito menor. Assim esses diodos são de grande aplicação em dispositivos detectores de alta frequência. Por outro lado, quando a barreira Schottky torna-se negativa, isto é, $\phi_m < \chi_s$ para interfaces metal-semicondutor tipo n ou com $\phi_m > E_{ip}$ para metal-semicondutor tipo p, não haverá do potencial de contato. Nesse caso, os contatos são chamados de **ôhmicos**, porque a resistência não dependerá do sentido da corrente (Rezende, 2015).

Apêndice B

Funcionais Híbridos

Os funcionais de Energia de troca e correlação LDA e GGA fornecem bons resultados para muitas propriedades físicas, dependendo do sistema. No entanto, em algumas situações seus resultados difere significativamente dos resultados experimentais, por exemplo, subestimam os valores do GAP de energia (Vianna *et al.*, 2004). Por outro lado, a teoria de Hartree-Fock (HF) fornece uma descrição muito precisa de átomos ou íons individuais, tendo em vista que essa teoria considera o termo de troca exato, levando em conta a auto-interação. Mas essa teoria limita-se a sistemas atômicos, pois os efeitos de correlação não estão inclusos. Para sistemas maiores o método pode, por exemplo, não descrever muito bem a ligação química com precisão (Becke, 1993), além de ser de alto custo computacional. Assim, levando em consideração que o termo de correlação são bem descritos pelos funcionais (LDA e GGA), Becke (1993) propôs uma mistura do funcional XC, a princípio LDA, com o funcional de troca de HF, por meio da conexão adiabática.

Em resumo, a conexão adiabática relaciona o sistema de N elétrons interagentes com o sistema de N elétrons não interagentes. Tal conexão pode ser obtida explicitamente definindo um hamiltoniano no qual a contribuição da interação elétron-elétron seja controlada por um parâmetro λ :

$$\hat{H}_{\lambda} = \hat{T} + \lambda \hat{V}_{ee} + \hat{V}_{ext}^{\lambda} \tag{B.1}$$

onde λ é uma constante que varia entre 0 (N elétrons não interagentes) e 1 (N elétrons interagentes). \hat{V}_{ext}^{λ} é um potencial externo definido de forma que a densidade eletrônica do estado fundamental do hamiltoniano \hat{H}_{λ} seja a mesma que a densidade eletrônica do estado fundamental do sistema completamente interagente \hat{H}_1 (Harris, 1984). A partir deste hamiltoniano, é possível chegar ao termo de Energia de XC, escrito por (Becke, 1993) como:

$$E_{XC}[n] = \int_0^1 E_{xc,\lambda}[n] d\lambda, \qquad (B.2)$$

em que $E_{xc,\lambda}[n]$ contém todos os efeitos de troca e correlação para um dado valor de λ . A maneira menos complexa de se resolver a equação (B.2) é feita considerando um funcional descrito por meio de uma combinação linear em termos de λ . Esse é o ponto de partida para a descrição dos funcionais híbridos, no qual o ponta-pé incial foi dado por (Perdew *et al.*,

1996b) (mesmos autores do funcional GGA-PBE), conhecido como funcional PBE0, dado por:

$$E_{XC}^{PBE0} = E_{XC}^{DFA} + \frac{1}{\beta} (E_X^{HF} - E_X^{DFA}),$$
(B.3)

em que β é um número inteiro que fornece a quantidade ideal de troca exata a ser combinada com uma aproximação do funcional de densidade (DFA) (DFA = LDA ou GGA). Segundo Perdew *et al.* (1996b), para maioria das moléculas $\beta = 4$ o qual foi determinado por eles através de teoria de pertubação. Assim, separando o termo E_{XC}^{DFA} em,

$$E_{XC}^{DFA} = E_X^{DFA} + E_C^{DFA}, (B.4)$$

e fazendo

$$a = \frac{1}{\beta},\tag{B.5}$$

a equação (B.3) pode ser escrita como:

$$E_{XC}^{PBE0} = aE_X^{HF} + (1-a)E_X^{DFA} + E_C^{DFA}.$$
 (B.6)

Dessa forma, fazendo $\beta = 4 \rightarrow a = 1/4$ e DFA = PBE, o funcional PBE0 de Perdew *et al.* (1996b), pode ser escrito como:

$$E_{XC}^{PBE0} = \frac{1}{4}E_X^{HF} + \frac{3}{4}E_X^{PBE} + E_C^{PBE}.$$
 (B.7)

Em 2003, motivados pelo trabalho de Perdew *et al.* (1996b), J. Heyd, G. E. Scuseira e M. Ernzerhof (HSE), propuzeram um funcional híbrido que realiza a mistura do termo de troca exata apenas para interações de curto alcance tanto na teoria de HF quanto em DFT. Dessa forma, o buraco de troca se deslocaliza entre os vizinhos próximos de um ponto de referência, mas não muito longe disso. O buraco de troca e correlação é uma maneira de interpretar a energia de troca e correlação como uma interação coulombiana entre a densidade eletrônica do sistema e outra densidade de cargas deslocadas. Assim o buraco de troca e correlação representa um depleção da densidade de cargas devido à efeitos de troca e correlação.

A partir de (B.6), usando DFA = PBE e dividindo as energias de troca em curto (SR) e longo (LR) alcance, Heyd *et al.* (2003) escreveram o funcional híbrido HSE03 como:

$$E_{XC}^{HSE03} = aE_x^{HF,SR}(\omega) + aE_x^{HF,LR}(\omega) + (1-a)E_x^{PBE,SR}(\omega) + (1-a)E_x^{PBE,LR}(\omega) + E_C^{PBE},$$
(B.8)

onde $E_x^{HF,SR}$ e $E_x^{PBE,SR}$ são as componentes de curto alcance para HF e PBE, respectivamente. Da mesma forma $E_x^{HF,LR}$ e $E_x^{PBE,LR}$ são as respectivas componentes para longo alcance. E o ultimo termo E_C^{PBE} é a energia de correlação na aproximação PBE. ω é um parâmetro ajustável que rege a extensão das interações de curto e também de longo alcance, chamado de parâmetro de blindagem. Assim, a determinação de ω foi feita através de testes numéricos. Dessa forma foi o ultilizado para o HSE3 dois valores distintos de parâmetros de parâmetros de curto e também de longo de curto de de curto e também de longo alcance, chamado de parâmetro de blindagem. Assim, a determinação de ω foi feita através de testes numéricos. Dessa forma foi o ultilizado para o HSE3 dois valores distintos de parâmetros de curtos de curto

de blindagem: $\omega = 0, 15/2^{1/2} \approx 0, 106 a_0^{-1}$ para o funcional HF e $\omega = 0, 15 \times 2^{1/3} \approx 0, 189 a_0^{-1}$ para o funcional PBE. Nesse caso, observou-se que os termos de longo alcance $E_x^{HF,LR}$ e $E_x^{PBE,LR}$ é tão pequeno e tendem a se cancelar. Assim a equação (B.8) para o HSE03, pode ser reescrita como:

$$E_{XC}^{HSE03} = a E_x^{HF,SR}(\omega) + (1-a) a E_x^{PBE,SR}(\omega) + E_x^{PBE,LR} + E_C^{PBE},$$
(B.9)

em que o coeficiente $a = 1/4 a_0^{-1}$ foi mantido como em PBE0.

Através de uma otimização dos cálculos para ω , Krukau *et al.* (2006) chegaram a uma nova versão para o funcinonal híbrido HSE, chamada de HSE06. Nesse caso um único valor de $\omega = 0, 11 a_0^{-1}$ foi usado tanto para HF quanto para PBE. Os resultados por eles apresentados sugerem que o HSE06 com os parâmetros a = 0, 25 e $\omega = 0, 11 a_0^{-1}$ prediz entalpias de formação, potenciais de ionização e afinidades eletrônicas um pouco melhores que o HSE03, preservando a boa precisão para gap e constantes de rede.

Apêndice C

Interação de van der Waals

Ao aproximarmos um átomo de outro (ou uma molécula, etc) aparecerá uma força de interação entre eles sem que ocorra a formação de ligação química. Tais forças, dependentes da distância entre os átomos ou moléculas, são chamadas de forças de Van der Waals, em homenagem ao físico holandês Johannes Van der Waals que estudou a existência dessas forças em 1873. Em seu estudo, ele propõe uma equação de estado que descreve um gás confinado em um recipiente de volume v. Para um gás ideal, onde não são levados em consideração as colisões entre moléculas e suas interações, a equação de estado é do tipo: Pv = kT. Levando em conta o volume das moléculas e suas interações, a equação de estado para o gás pode ser escrita como:

$$\left(P + \frac{a}{v^2}\right)(v - b) = kT,\tag{C.1}$$

a qual é chamada de Equação de van der Waals (van der Waals, 1873). A troca $v \to (v - b)$ leva em consideração que as moléculas não tem acesso a todo o volume do recipiente devido ao volume ocupado pelas outroas moléculas (b). Da mesma forma a correção na pressão $P \to (P + a/v^2)$ ocorre devido a interação atrativa entre moléculas que estão próximas uma das outras. Isso implica que a energia cinética que as moléculas possuem ao atingir as paredes do recipiente será menor, o que baixará então a pressão. Sendo a distância de separação entre as moléculas do gás dada por R (em média), essa correção será proporcional a $1/R^6$

As forças de van der Waals (vdw) podem ser entendidas como interações intermoleculares que surgem devido a interação entre dipolos elétricos. Podemos ter então três tipos de interação: (i) entre dois dipolos elétricos permanentes conhecidas como forças de Keeson, em homenagem a Willem hendrik Keesom; (ii) Entre um dipolo permanente e um induzido correspondente. Essas são chamadas de forças de Debye, devido à Peter Debye; (iii) interação entre dois dipolos instantaneamente induzidos, conhecidas como forças de London, ou dispersão london, devido à Fritz London (Vianna *et al.*, 2004). As forças de Keesom são capazes de explicar as forças de vdW para moléculas com dipolo permanente a baixas temperaturas, enquanto que as forças de Debye introduzem uma atração adicional que persiste mesmo em altas temperaturas. Ambas são de origem puramente clássica. Dessas, apenas as forças de London não possuem origens clássicas. Nesse caso, London utilizou teoria de pertubação da Mecânica Quântica para mostrar que existe uma força de atração entre duas moléculas apolares, ou seja, com nenhum momente de dipolo permanente. Essa força, simplesmente chamada de vdW na comunidade de matéria condensada, origina-se da correlação dinâmica dos elétrons em um sistema de muitos elétrons (London, 1930). A energia de interação de London, é dada por $-C_6/R^6$, em que C_6 é uma constante que depende da polarizabilidade e dos potenciais de ionização do átomo ou molécula (Vianna *et al.*, 2004).

Como as forças de vdW de London, ou simplesmente forças de vdW, podem ser entendidas então como efeitos de correlação no sistema. É comum referir-se então às forças vdW, principalmente no contexto de DFT, como forças de correlação não local. Dentro de DFT foram desenvolvidos funcionais de vdW tanto para sistemas 2D (Rydberg *et al.*, 2003), quanto para geometrias de forma geral Dion *et al.* (2004), chamados de vdW-DF (do inglês, *van der Waals – density funcional*). Assim, o vdW-DF tem como objetivo fornecer um método eficiente para cálculos de funcionais não locais de vdW para sistemas eletrônicos dentro de DFT. Essa correlação não local é introduzida dentro do funcional de troca e correlação E_{XC} , da seguinte forma

$$E_{xc} = E_x^{GGA} + E_c^{LDA} + E_c^{nl}, \qquad (C.2)$$

onde E_x^{GGA} é o termo para energia de troca GGA (Perdew *et al.*, 1996a). O funcional desse tipo é conhecido como PBE-vdW. No vdW-DF original, a expressão (C.2) é obtida com a versão revisada das funções de Perdew, Burke e Ernzerhof (PBE) dadas por Zhang e Yang (revPBE) (Zhang e Yang, 1998), nesse caso temos o funcional revPBE-vdW. Além desses outros funcionais são construidos mediante uma modificação no termo de troca, dando origem aos funcionais optPBE, optB88 de Klimeš *et al.* (2009).

Outro funcionais também foram desenvolvidos para permitir que a dispersão seja contabilizada no DFT de maneira mais ou menos aproximada (Antony e Grimme (2006); Grimme *et al.* (2007); Tkatchenko e Scheffler (2009)). Para esses casos, é adicionado uma correção para às energias de Kohn-Sham (Kohn e Sham, 1965), E_{DFT} ,

$$E_{DFT-vdW} = E_{DFT} + E_{vdW} \tag{C.3}$$

onde o termo E_{vdW} , é calculado por:

$$E_{vdW} = -\frac{1}{2} \sum_{A,B} f_{damp}(R_{AB}, R_A^0, R_B^0) \frac{C_{6AB}}{R_{AB}^6}$$
(C.4)

com R_{AB} indicando a distância entre o átomo/molécula A e B, C_{6AB} é o correspondente coeficiente C_6 , e R_A^0 e R_B^0 são os raios vdW. R_{AB}^{-6} apresenta uma singularidade para pequenas distância, a qual é eliminada pela função de amortecimento a curta distância $f_{damp}(R_{AB}, R_A^0, R_B^0)$ (Tkatchenko e Scheffler, 2009).

Apêndice D

Cargas de Bader

Como visto no capítulo 2, sobre o método computacional, a densidade eletrônica $n(\vec{r})$ é um dos fatores mais importantes que influenciam nas propriedades físicas e químicas de um sistema. E conhecer a distribuição de carga em torno de átomos ou moléculas, é muito importante no estudos de ligações químicas e de propriedades eletrônica dos sistemas como um todo. Embora Hohenberg e Kohn (1964) garantirem que a densidade eletrônica seja a variával fundamental a qual determina a função de onda e portanto todas as propriedades eletrônicas do estado fundamental de um sistema atômico ou molecular, a carga atômica em si não é um observável física. Isto é, não existe um operador em mecânica quântica correspondente que retorne um autovalor de carga atômica. Nesse sentido, vários formalismos para o cálculo da carga eletrônica em torno de um átomo ou molécula foram desenvolvidos, dentro dos quais se destaca o modelo de Bader (Bader, 1985), (Bader, 1990), chamado de Átomos em Moléculas.

Bader particiona os sistemas/moléculas em subsistemas atômicos (átomos em moléculas) baseados nas propriedades topológicas da densidade eletrônica total $n(\vec{r})$. Tais propriedades são descritas por um vetor que aponta na direção da máximo variação da densidade de carga, isto é, $\nabla n(\vec{r})$. Um subsistema atômico de uma molécula pode então ser definido como:

$$\nabla n(\vec{r}) \cdot \vec{N}(\vec{r}) = 0 \tag{D.1}$$

em que $\vec{N}(\vec{r})$ é um vetor normal à superfície de partição e \vec{r} é um ponto pertencente a essa superfície. Em outras palavras, essa equação estabelece que a superfície que delimita um subsistema atômico possui em todos os seus pontos um vetor $\nabla n(\vec{r})$ com componente nula ao longo de toda a superfície, que são chamadas de superfícies de fluxo zero. A figura (D.1) ilustras as superfícies de $\nabla n(\vec{r})$ e de $\nabla n(\vec{r}) \cdot \vec{N}(\vec{r}) = 0$ para uma molécula de C_2H_4 .

É importante ressaltar que as trajetórias de $n(\vec{r})$ terminarão em pontos de máxima densidade eletrônica - que são os núcleos atômicos. Dessa forma, os núcleos atômicos se comportam como absorvedores das linhas do campo vetorial do gradiente de densidade.

Uma vez delimitada as regiões dos subsistemas, as cargas atômicas, também chamada de carga de Bader q, são obtidas através da integração da densidade eletrônica total na região do espaço atribuída ao átomo, Ω , por:

Figura D.1: Ilustração de uma molécula de C_2H_4 extraída do artigo de (Bader, 1985). Representação das trajetórias dos gradientes da densidade eletrônica $\nabla n(\vec{r})$, linhas claras, e trajetórias de fluxo zero $\nabla n(\vec{r}) \cdot \vec{N}(\vec{r}) = 0$, linhas escuras. Os círculos vazios representam as posições atômicas, e os cículos sólidos (em preto) são chamados de pontos críticos de ligação, obtidos quando há o cruzamento de duas superfícies de fluxo zero.

$$q_i = Z_i - \int_{\Omega} n(\vec{r}) d\vec{r} \tag{D.2}$$

onde o índice *i* representa o *i*-ésimo átomo do sistema. Podemos ver que as cargas de Bader q dependem exclusivamente da densidade eletrônica $n(\vec{r})$. Elas possuem portante uma grande vantagem, comparado a outros métodos, e podem ser calculadas utilizando a densidade eletrônica obtida de diversas maneira, como através de Teorida do Funcional da Densidade - DFT, como foi feito no neste trabalho, e até mesmo experimentalemente, (Bader, 1985), (Bader, 1990).

Neste trabalho, foi utilizado o algorítimo proposto por Henkelman *et al.* (2006) para delimitar as regiões dos subsistemas de Bader. Dessa maneira, quantificamos então a variação na densidade de carga ao longo das superfícies do Borofeno (e outros sistemas), capítulos 3 ao 6. Por exemplo, o cálculo da transferência de carga de um sistema A com X átomos na célula unitária para um sistema B qualquer, pode ser feito através de:

$$\Delta \rho = \rho - \rho_o \tag{D.3}$$

em que $\rho = \sum_{i=1}^{X} q_i$ do sistema A na presença do sistema B, e $\rho_o = \sum_{i=1}^{X} q_i$ do sistema A isolado.

Apêndice E

DFT + U

A descrição dos sistemas físicos, seja ela por HF ou DFT, tem como objetivo principal alcançar, o mais próximo possível, a descrição exata da energia total do sistema. Infelizmente, essa energia exata é impossível de se obter e aproximações devem ser empregadas. Entretanto, uma descrição correta da estrutura eletrônica, por exemplo, é fundamental. Daí surge o problema, o termo de troca e correlação eletrônico. Para resolver esse problema, trabalhos computacionalmente mais pesados devem ser empregados, usando conjuntos de bases maiores ou funcionais híbridos, que incluem a solução exata das equações de Hartree-Fock (HF), a fim de alcançar precisões relativamente mais altas (Sholl e Steckel, 2009), como foi visto no apêndice B. Mesmo assim, em alguns casos, podem falhar ao prever corretamente o GAP para uma certa classe de semicondutores que possuem fortes correlações entre elétrons, como isolantes de Mott (Himmetoglu *et al.*, 2014), (Cococcioni, 2012).

O problema da DFT para descrever sistemas correlacionados pode ser atribuído à tendência das funções de troca e correlação (XC) em super-deslocalizar elétrons de valência e super-estabilizar estados fundamentais metálicos (Himmetoglu *et al.*, 2014), (Cococcioni, 2012). E por isso, a DFT falha significativamente na previsão das propriedades de sistemas cujo estado fundamental é caracterizado por uma localização mais pronunciada dos elétrons.

Isolantes de Mott e o modelo Hubbard

De acordo com as teorias de banda convencionais, materiais fortemente correlacionados tem características de condutores, enquanto mostram comportamento isolante quando medidos experimentalmente. Essa falha da teoria de bandas foi apontada por Sir Nevil Mott, que enfatizou que as forças entre elétrons não podem ser negligenciadas, o que leva à existência de falsas previsões desses materiais. Tais materiais são chamados de isolantes de mott (Anisimov *et al.*, 1991).

Nestes "isolantes metálicos", o caráter isolante do estado fundamental deriva da forte repulsão de Coulomb entre elétrons que os obriga a se localizar em orbitais atômicos (localização de Mott). Esse potencial de Coulomb, responsável pela localização, é descrito pelo termo U e, quando os elétrons são fortemente localizados, eles não podem se mover livremente entre átomos e, em vez disso, saltam de um átomo para outro por um mecanismo chamado de "hopping¹" entre átomos vizinhos, com uma amplitude t que é proporcional à dispersão (a largura de banda) dos estados eletrônicos da valência. Dessa forma, a formação de um gap de energia pode ser estabelecida como a competição entre o potencial Ude Coulomb entre elétrons 3d, por exemplo, e a integral de transferência t da aproximação de ligação forte dos elétrons 3d entre átomos vizinhos. Portanto, o GAP pode ser descrito pelo U, t e um termo z extra que denota o número de átomos vizinhos mais próximos como (Cococcioni, 2012):

$$E_{GAP} = U - 2zt. \tag{E.1}$$

Como o problema está enraizado no modelo de banda dos sistemas, modelos alternativos foram formulados para descrever os sistemas fortemente correlacionados. Um dos modelos mais simples é o Modelo "Hubbard" (Bruus e Flensberg, 2004). Nesse modelo pode-se incluir a chamada repulsão local que decorre da repulsão de Coulomb entre elétrons nos mesmos orbitais atômicos, e pode, portanto, explicar a transição entre o comportamento condutor e isolante desses sistemas. Com base neste modelo, o novo Hamiltoniano pode ser formulado com um aditivo Hubbard, o termo que descreve explicitamente interações eletrônicas. Para esse aditivo Hubbard, o Hamiltoniano pode ser redigido na sua forma mais simples, dado por (Cococcioni, 2012):

$$H_{Hub} = t \sum_{\langle i,j \rangle,\sigma} (c_{i,\sigma}^{\dagger} c_{i,\sigma} + h.c.) + U \sum_{i} \alpha_{i,\uparrow} \alpha_{i,\downarrow}.$$
 (E.2)

Como previsto, o Hamiltoniano de Hubbard deve ser dependente dos dois termos $t \in U$, com $\langle ij \rangle$ denotando sítios atômicos do vizinho mais próximo e $c_{i,\sigma}^{\dagger}$ e $c_{i,\sigma}$,são os operados de criação e aniquilação eletrônicos e $\alpha_{i,\uparrow}$ e $\alpha_{i,\downarrow}$ o número de elétrons de spin Up e Down no sítio i, respectivamente. Vemos assim, que a amplitude do hopping t é proporcional à largura de banda (dispersão) dos elétrons de valência, enquanto o termo de repulsão Coulomb no local U é proporcional ao produto dos números de ocupações de estados atômicos no mesmo local (Cococcioni, 2012). O caráter isolante do sistema se desenvolve quando elétrons não têm energia suficiente para superar o potencial de repulsão de outros elétrons em sítios vizinhos, ou seja, quando $t \ll U$. Assim, a capacidade da DFT de prever propriedades eletrônicas é bastante preciso quando $t \gg U$, enquanto que para valores grandes de U, a DFT falha significativamente na descrição da Física dos isolantes Mott.

DFT + U

O método DFT + U é inspirado no modelo de Hubbard e formulado para melhorar a descrição do estado fundamental dos sistemas com forte correlação. Uma das principais vantagens do método DFT + U é que está dentro do domínio da DFT, portanto não requer esforço significativo para ser implementado nos códigos DFT existentes e seu custo computacional é apenas ligeiramente superior aos cálculos de DFT. Esta correção "U"pode ser adicionada às aproximações da densidade local LDA ou gradiente generalizado, sendo, portanto, descritos como LDA + U e GGA + U. O papel básico da correção U é tratar a forte

¹Hopping significa salto em inglês

interação Coulomb no local de elétrons mais localizados com um termo adicional semelhante ao Hubbard. O Hamiltoniano de Hubbard descreve a forte correlação estados eletrônicos (orbitais d e f), enquanto o tratamento do resto dos elétrons de valência são descritos pelas aproximações de DFT simplesmente. Na prática, a implementação de DFT + U em Química/Física Computacional, a força das interações no local é descrita por alguns parâmetros: o termo U e o termo de troca local J. Estes parâmetros, U e J, podem ser extraídos dos cálculos *abinitio*, mas geralmente são obtidos semi-empiricamente (Himmetoglu *et al.*, 2014), (Cococcioni, 2012). Portanto, a energia total do sistema, E_{LDA+U} , em LDA + U por exemplo, é normalmente o somatório da energia funcional LDA padrão para todas os estados mais as energia devido ao termo de Hubbard, E_{Hub} , que descreve os estados fortemente correlacionados (orbitais d ou f, em geral). Assim, teremos:

$$E_{LDA+U} = E_{LDA} + U = E_{LDA}[n(\vec{r})] + E_{Hub}[\alpha_{mm}^{I\sigma}] - E_{dc}[\alpha^{I\sigma}],$$
(E.3)

onde o termo E_{dc} surge para corrigir um erro de dupla contagem no termo aditivo de Hubbad (Himmetoglu *et al.*, 2014). Com base nesse modelo LDA + U, tem sido habitual utilizar, em vez do parâmetro de interação U apenas, um parâmetro U efetivo: $U_{eff} = U - J$, onde o parâmetro J, como dito anteriormente, é conhecido como o termo de interação de troca que é responsável pela regra de Hund. O U_{eff} é geralmente preferido porque o termo J pode ser crucial para descrever a estrutura eletrônica de certas classes de materiais, normalmente aquelas sujeitas a forte acoplamento de spin-órbita. Nesse trabalho, foi usado esse modelo do U_{eff} , e a implementação em DFT feita por Dudarev *et al.* (1998).

Apêndice F

Imagens STM

Para o conhecimento da estrutura atômica e molecular dos sistemas, é necessário um equipamento que fornece imagens com alta precisão. Para isso, em 1982 Gerd Binnig e Heinrich Rohrer (IBM Zürich) desenvolveram a Microscopia de Corrente de Tunelamente ou Microscopia de Tunelamento por varredura — STM (do inglês *Scanning Tunelling Microscopy*), que nos permite assim obter imagens a nível atômico, e com isso receberam o prêmio Nobel de Física em 1986 (Binnig *et al.*, 1982). O STM é baseado no conceito de tunelamento quântico. Uma ponta condutora muito fina é posicionada muito próxima da superfície a ser analisada. Tal proximidade, gera uma superposição nas funções de onda da superfície e da ponta. Em seguida, a ponta e a superfície são submetidas a uma diferença de potencial a qual estabelece uma corrente chamada de corrente de tunelamento. Essa corrente permite que elétrons passem através do vácuo entre ambos. Para determinada tensão, elétrons tunelam de estados ocupados da ponta para desocupados da superfície, e assim obtemos imagens referentes a estados desocupados da superfície. Invertendo a polaridade da tensão, eletrons são tunelados no sentido oposto, ou seja, de estados ocupados da superfície para estados de-

Figura F.1: Imagen esquemática do funcionamento de um STM, extraída de Michael Schmid (2011).

Figura F.2: Modos de operação do STM: (a) Corrente constante; (b) altura constante.

socupados da ponta. As imagens assim obtidas são então de estados ocupados da superfície. A figura (F.1) ilustra um aparato experimental do STM.

Para o obtenção das imagens é possível fazer a varredura ao longo da superfície de duas maneiras: (i) mantendo a corrente de tunelamento constante. Nesse caso a ponta da STM muda de altura em relação a superfície durante a verredura. Dessa forma a altura para cada ponto da supefície é registrada conforme mostra a figura (F.2-a). (ii) Por outro lado, é possível manter a altura da ponta da STM constante, nesse caso a corrente de tunelamento é que varia durante a varredura. A intensidade da corrente em função da posição da ponta pode ser registrada assim como a altura z, como mostra a figura (F.2-a).

Existem várias propostas teóricas para obtenção de imagens STM. Uma das mais usadas é fornecida por Tersoff e Hamann (1985). A corrente de tunelamente é dada, de acordo com Bardeen (1961), por:

$$I = \frac{2\pi e}{\hbar} \sum_{\mu,\nu} f(E_{\mu}) [1 - f(E_{\nu} + eV)] |M_{\mu\nu}|^2 \delta(E_{\mu} - E_{\nu})$$
(F.1)

em que f(E) é a função de Fermi, eV é a tensão aplicada, $M_{\mu\nu}$ é o elemento de matriz de tunelamento entre os estados ψ_{μ} da ponta da STM e ψ_{ν} da supefície, e E_{ν} é a energia do estado ψ_{μ} na ausência de tunelamento. A partir da equação (F.1), Tersoff e Hamann (1985) lança algumas aproximações para viabilizar as imagens teóricas de STM. Como resultado pôde-se mostrar, que a corrente de tunelamento (e consequentemente as imagens STM) é uma função da posição da ponta, tensão aplicada e a densidade local de estados LDOS da amostra.

Vale ressaltar que para obtenção de imagens STM de boa resolução a tensão aplicada é de cerca de 1 V, que pode variar um pouco dependendo do gap. Já para metais, essa tensão é da ordem de alguns mV, (Kubby e Boland, 1996). Para a altura da ponta considera-se cerca de 1 Å de distância lateral e 0.1 Å vertical. Tais parâmetros foram usados durante esse trabalho. Além disso, ao longo de todo o texto, quando mencionamos, por exemplo, uma imagem de estados ocupados de -0.3 eV, significa uma imagem de uma isosuperfície da densidade parcial de carga. Isso é, gerada pelo somatório de todos os estados ocupados que estão entre o nível de Fermi e 0.3 eV abaixo dele.

Apêndice G

Interação de Troca

O magnetismo que surge nos materiais tem uma forte depedência num efeito quântico que ocorre entre partículas idênticas, neste caso, a interações entre os elétrons. Tal efeito recebe o nome de troca, ou *Exchange*. Embora seja um fenômeno quântico, a interação de troca está associada à interação de *Coulomb* e foi descoberta de maneira independente por Dicac e Heisenberg em 1926 (Blundell, 2001). Ela é resultado da diferença de energia eletrostática de dois elétrons em situações de spins paralelos e antiparalelo. Para melhor compreensão imagine dois elétrons de íons vizinhos, nos quais os spins de cada um deles são $\vec{S_1} \in \vec{S_2}$. Devido ao princípio da exclusão de Pauli a função de onda total desses elétrons deve ser antissimétrica e pode ser escrita como um produto da função espacial e da que descreve o stado de spin (Sakurai, 2017). Assim, quando a função de onda espacial é simétrica, e vice-versa, conforme mostra a figura (G.1). A energia eletrostática total do conjunto difere conforme a distribuição espacial de carga elétrica, dando origem ao estado ligante e antiligante, figura (G.1). A diferença de energia devido a essas duas configurações é chamada de energia de troca (*Exchange*) entre os dois spins, $\vec{S_1} \in \vec{S_2}$, e pode ser calculada através da expressão:

$$U_{12} = -2J_{12}\vec{S}_1 \cdot \vec{S}_2 \tag{G.1}$$

onde o termo J_{12} é chamado de integral de Heisenberg que depende da distribuição eletrônica dos átomos e da distância entre os mesmos. Como a interação eletrostática diminui a medida que a distância entre os íons aumenta, J_{12} diminui rapidamente e como pode ser visto na equação (G.1), se J_{12} é positivo o estado de menor energia correspoderá aos dois spins paralelos e, assim, o sistema será então ferromagnético.

A interação de troca entre os íons magnéticos e seus vizinhos pode forçar o alinhamento de momento magnéticos individuais conforma a distância entre os íons. Isso dá origem a três tipos de efeitos de troca:

i) *Exchange direto*: A distância de interção entre os íons é pequena o suficiente, de forma que haverá uma sobreposição das funções de ondas dos elétrons de cada íon, figura (G.2 - a).

ii)Superexchange: Neste caso, a distância entre íons magnéticos são maiores que no Exchange direto e os íons magnéticos são separados por íons cujos obitais de valência estão

Figura G.1: Iteração de troca: A direção dos spins, dependem da distribuição espacial de cargas, ou seja, da função de onda espacial. Figura adaptada de (Blundell, 2001).

Figura G.2: a) Exchange direto: sobreposição de funções de onda magnéticos entre íons vizinhos. b) Superexchange: Sobreposição de funções de onda entre de dois íons magnéticos com um íons não-magnético. c) Exchange indireto: Acoplamento acorre indiretamente por intermédio dos elétrons de condução. Figura adaptada de (Ashcroft e Mermin, 1976)

completamente preenchidos, ou seja, íons não-magnéticos. Este fato ocorre em vários tipos de materiais. Assim, há uma iteração entre os íons magnéticos com os elétrons dos íons não magnético, figura (G.2 - b).

iii) *Exchange indireto*: Ocorre nos metais, onde a interação de troca entre íons magnéticos é mediada pelos elétrons de condução. Um íon com momento magnético localizado polariza os elétrons de condução próximos, e essa polarização, portanto, acopla-se a um momento magnético em outro íon magnético vizinho, figura (G.2 - c). Neste processo, não há sobreposição direta entre os íons magnéticos, por isso é chamada de permuta indireta e é conhecida como interação RKKY (ou também como troca intinerante) em homenagem aos descobridores Ruderman, Kittel, Kasuya e Yosida (Blundell, 2001).

Referências Bibliográficas

- Alvarez-Quiceno et al.(2017) J C Alvarez-Quiceno, R H Miwa, G M Dalpian e A Fazzio. Oxidation of free-standing and supported borophene. 2D Materials, 4:025025. URL 10. 1088/2053-1583/aa55b6. Citado na pág. 30
- Anisimov et al.(1991) Vladimir I. Anisimov, Jan Zaanen e Ole K. Andersen. Band theory and mott insulators: Hubbard u instead of stoner i. *Phys. Rev. B*, 44:943–954. URL https://doi.org/10.1103/PhysRevB.44.943. Citado na pág. 119
- Antony e Grimme(2006) Jens Antony e Stefan Grimme. Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. *Phys. Chem. Chem. Phys.*, 8:5287–5293. URL https://doi.org/10.1039/b612585a. Citado na pág. 116
- Ashcroft e Mermin(1976) Neil W. Ashcroft e N. David Mermin. Solid State Physics. Philadelphia: Sunders College. Citado na pág. 21, 125
- Bachelet et al. (1982) G. B. Bachelet, D. R. Hamann e M. Schluet. Pseudopotentials that work: From h to pu. Physical Review B, 26:4199. URL https://doi.org/10.1103/PhysRevB. 26.4199. Citado na pág. 24
- Bader (1985) R. F. W. Bader. Atoms in molecules. Accounts of chemical research, 18:9–15. URL https://doi.org/10.1021/ar00109a003. Citado na pág. 117, 118
- Bader (1990) Richard F. W. Bader. Atoms in Molecules: a Quantum Theory. (New York: Oxford University Press). Citado na pág. 35, 53, 94, 98, 117, 118
- Bardeen(1961) J. Bardeen. Tunnelling from a many-particle point of view. *Physical Review Letters*, 6:57–59. URL https://doi.org/10.1103/PhysRevLett.6.57. Citado na pág. 123
- Becke(1993) Axel D. Becke. A new mixing of hartree fock and local density-functional theories. The Journal of Chemical Physics, 98:1372–1377. URL https://doi.org/10.1063/ 1.464304. Citado na pág. 112
- Binnig et al.(1982) G. Binnig, H. Rohrer, Ch. Gerber e E. Weibel. Surface studies by scanning tunneling microscopy. *Physical Review Letters*, 49:57–61. URL https://doi.org/ 10.1103/PhysRevLett.49.57. Citado na pág. 122
- Blöchl(1994) P. E. Blöchl. Projector augmented-wave method. *Phys. Rev. B*, 50:17953–17979. URL https://doi.org/10.1103/PhysRevB.50.17953. Citado na pág. 25
- Blundell(2001) Stephen Blundell. Magnetism in Condensed Matter. (New York: Oxford University Press), 1 edição. Citado na pág. 124, 125
- Born e Huang(1954) M. Born e K. Huang. *Dynamical Theory of Cristal Lattice*. Oxford University Press, N. Y. Apêndice VII. Citado na pág. 8

- Born e Oppenheimer(1927) M. Born e J. R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der Physik, 84:257. URL https://doi.org/10.1002/andp.19273892002. Citado na pág. 8
- Bruus e Flensberg(2004) Henrik Bruus e Karsten Flensberg. Many-Body Quantum Theory in Condensed Matter Physics, volume 38. Citado na pág. 120
- Ceperley e Alder(1980) D. M. Ceperley e D. J. Alder. Ground state of the electron gas by a stochastic method. *Physical Review Letter*, 45:566. URL https://doi.org/10.1103/ PhysRevLett.45.566. Citado na pág. 20
- Chuang et al.(2014) Steven Chuang, Corsin Battaglia, Angelica Azcatl, Stephen McDonnell, Jeong Seuk Kang, Xingtian Yin, Mahmut Tosun, Rehan Kapadia, Hui Fang, Robert M. Wallace e Ali Javey. Mos2 p-type transistors and diodes enabled by high work function moox contacts. Nano Letters, 14:1337–1342. URL https://doi.org/10.1021/nl4043505. Citado na pág. 2, 30
- Cococcioni(2012) M. Cococcioni. he LDA+U Approach: A Simple HubbardCorrection for Correlated Ground States. Forschungszentrum Julich, Germany. Citado na pág. 119, 120, 121
- de La PEÑA(1991) L. de La PEÑA. Introducción a la mecánica quántica. Ediciones Científicas Universitar ias, México. Citado na pág. 5
- de Lima e Miwa(2017) F.D.C. de Lima e R.H. Miwa. Nanolines of transition metals ruled by grain boundaries in graphene: an ab initio study. *Materials Chemistry and Physics*, 194: 118–127. URL https://doi.org/10.1016/j.matchemphys.2017.03.031. Citado na pág. 44, 45
- de Oliveira et al.(2018) J. B. de Oliveira, I. S. S. de Oliveira, J. E. Padilha e R. H. Miwa. Tunable magnetism and spin-polarized electronic transport in graphene mediated by molecular functionalization of extended defects. *PHYSICAL REVIEW B*, 97:45107–45114. URL https://doi.org/10.1103/PhysRevB.97.045107. Citado na pág. 3, 32, 45
- Dion et al.(2004) M. Dion, H. Rydberg, E. Schröder, D. C. Langreth e B. I. Lundqvist. Van der waals density functional for general geometries. *Physical Review Letters*, 92:246401. URL https://doi.org/10.1103/PhysRevLett.92.246401. Citado na pág. 116
- Dudarev et al.(1998) S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys e A. P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+u study. *Physical Review B*, 57:1505–1509. URL https://doi.org/10.1103/PhysRevB. 57.1505. Citado na pág. 121
- E. H. Rhoderick(1987) R. H. Williams E. H. Rhoderick. *Metal-semiconductor contacts*. Nova York: Oxford Science. Citado na pág. 110
- Farmanbar e Brocks (2015) Mojtaba Farmanbar e Geert Brocks. Controlling the schottky barrier at mos₂/metal contacts by inserting a bn monolayer. *Phys. Rev. B*, 91:161304. URL https://doi.org/10.1103/PhysRevB.91.161304. Citado na pág. 30
- Feng et al.(2016) Baojie Feng, Jin Zhang, Qing Zhong, Wenbin Li, Shuai Li, Hui Li, Peng Cheng, Sheng Meng, Lan Chen e Kehui Wu. Experimental realization of two-dimensional boron sheets. NATURE CHEMISTRY, 8:563–568. URL https://doi.org/10.1038/nchem. 2491. Citado na pág. 1, 2, 30, 31, 69, 70, 92
- Fock(1930a) V. Fock. N\"aherungsmethode zur l\"osung des quantenmechanischen mehrk\"orperproblems. Z. phys, 61:126. URL https://doi.org/10.1007/BF01340294. Citado na p\"age. 20

- Fock(1930b) V. Fock. "selfconsistent field"mit austausch fur natrium. Z. phys, 61:795–805. Citado na pág. 20
- Geim e Grigorieva(2013) A. K. Geim e I. V. Grigorieva. Van der waals heterostructures. NATURE, 499:419–425. URL https://doi.org/10.1038/nature12385. Citado na pág. 29
- Giusca et al.(2013) Cristina E. Giusca, Vlad Stolojan, Jeremy Sloan, Felix Börrnert, Hidetsugu Shiozawa, Kasim Sader, Mark H. Rümmeli, Bernd Büchner e S. Ravi P. Silva. Confined crystals of the smallest phase-change material. Nano Letters, 13(9):4020–4027. URL https://doi.org/10.1021/nl4010354. Citado na pág. 44
- Grimme et al.(2007) Stefan Grimme, Jens Antony, Tobias Schwabe e Christian Mück-Lichtenfeld. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org. Biomol. Chem., 5:741–758. URL https://doi.org/10.1039/B615319B. Citado na pág. 116
- Harris(1984) J. Harris. Adiabatic-connection approach to kohn-sham theory. *Physical Review A*, 29:1648–1659. URL https://doi.org/10.1103/PhysRevA.29.1648. Citado na pág. 112
- Hartree(1928) D. R. Hartree. The wave mechanics of an atom a non-coulomb central field. part i. theory and methods. *Proc. Camb. Phil. Soc.*, 24:89. URL https://doi.org/10.1017/S0305004100011919. Citado na pág. 11, 20
- Henkelman et al. (2006) Graeme Henkelman, Andri Arnaldsson e Hannes Jónsson. A fast and robust algorithm for bader decomposition of charge density. COMPUTATIONAL MATERIALS SCIENCE, 36:354–360. URL https://doi.org/10.1016/j.commatsci.2005.04. 010. Citado na pág. 35, 94, 118
- Heyd et al.(2003) Jochen Heyd, Gustavo E. Scuseria e Matthias Ernzerhof. Hybrid functionals based on a screened coulomb potential. The Journal of Chemical Physics, 118: 8207–8215. URL https://doi.org/10.1063/1.1564060. Citado na pág. 113
- Heyd et al.(2006) Jochen Heyd, Gustavo E. Scuseria e Matthias Ernzerhof. Erratum: "hybrid functionals based on a screened coulomb potential" [j. chem. phys. 118, 8207 (2003)]. The Journal of Chemical Physics, 124:219906. URL https://doi.org/10.1063/1.2204597. Citado na pág. 34, 35
- Himmetoglu et al.(2014) Burak Himmetoglu, Andrea Floris, Stefano de Gironcoli e Matteo Cococcioni. Hubbard-corrected dft energy functionals: The lda+u description of correlated systems. International Journal of Quantum Chemistry, 114:14–49. URL https://doi.org/10.1002/qua.24521. Citado na pág. 119, 121
- Hohenberg e Kohn(1964) P. Hohenberg e W. Kohn. Inhomogeneus electron gas. *Physical Review*, 136(3B):B864. URL https://doi.org/10.1103/PhysRev.136.B864. Citado na pág. 12, 30, 117
- Huang et al.(2014) Chunming Huang, Sanfeng Wu, Ana M. Sanchez, Jonathan J. P. Peters, Richard Beanland, Jason S. Ross, Pasqual Rivera, Wang Yao, David H. Cobden e Xiaodong Xu. Lateral heterojunctions within monolayer mose₂ wse₂ semiconductors. Nature Materials, 3:1096–1101. URL https://doi.org/10.1038/nmat4064. Citado na pág. 29
- Ishigami et al.(2007) Masa Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer e E. D. Williams. Atomic structure of graphene on SiO₂. NANO LETTERS, 7:1643–1648. URL https://doi.org/10.1021/nl070613a. Citado na pág. 92

- ji Gong et al.(2014) Yong ji Gong, Junhao Lin, Xingli Wang, Gang Shi, Sidong Lei, Zhong Lin, Xiaolong Zou, Gonglan Ye, Robert Vajtai, Boris I. Yakobson, Humberto Terrones, Mauricio Terrones, Beng Kang Tay, Jun Lou, Sokrates T. Pantelides, Zheng Liu, Wu Zhou e Pulickel M. Ajayan. Vertical and in-plane heterostructures from ws₂/mos₂ monolayers. Nature Materials, 13:1135–1142. URL https://doi.org/10.1038/nmat4091. Citado na pág. 29
- Kang et al.(2013) Jun Kang, Sefaattin Tongay, Jian Zhou, Jingbo Li e Junqiao Wu. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters, 102:12111. URL https://doi.org/10.1063/1.4774090. Citado na pág. 30, 31, 32
- Klimeš et al. (2009) Jiří Klimeš, David R Bowler e Angelos Michaelides. Chemical accuracy for the van der waals density functional. Journal of Physics: Condensed Matter, 22:022201. URL https://doi.org/10.1088/0953-8984/22/2/022201. Citado na pág. 30, 34, 116
- Kohn e Sham(1965) W. Kohn e L. J. Sham. Self-consistenc equations including exchange and correlation effects. *Physical Review*, 140(4A):A1133. URL https://doi.org/10.1103/ PhysRev.140.A1133. Citado na pág. 12, 15, 19, 30, 116
- Krasheninnikov et al.(2009) A. V. Krasheninnikov, P. O. Lehtinen, S. Foster, Pyykko e R. M. Nieminen. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. PHYSICAL REVIEW LETTERS, 102:126807–126811. URL https://doi.org/ 10.1103/PhysRevLett.102.126807. Citado na pág. 3, 44
- Kresse e Furthemuller(1996) G. Kresse e J. Furthemuller. Efficient iterative schemes for ab inition total-energy calculation using a plane-wave basis set. *Physical Review B*, 54 (16):11169. URL https://doi.org/10.1103/PhysRevB.54.11169. Citado na pág. 28
- Kresse e Hafner(1993) G. Kresse e J. Hafner. Ab initio molecular dinamics for liquid metals. *Physical Review B*, 47(1). URL https://doi.org/10.1103/PhysRevB.47.558. Citado na pág. 28
- Kresse e Hafner(1994) G. Kresse e J. Hafner. Ab initio molecular-dinamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. *Physical Review* B, 49(20):14251. URL https://doi.org/10.1103/PhysRevB.49.14251. Citado na pág. 28
- Krukau et al.(2006) Aliaksandr V. Krukau, Oleg A. Vydrov, Artur F. Izmaylov e Gustavo E. Scuseria. Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of Chemical Physics, 125. URL https: //doi.org/10.1063/1.2404663. Citado na pág. 114
- Kubby e Boland(1996) J.A. Kubby e J.J. Boland. Scanning tunneling microscopy of semiconductor surfaces. Surface Science Reports, 26. URL https://doi.org/10.1016/ S0167-5729(97)80001-5. Citado na pág. 123
- Lee et al.(2014) Chul-Ho Lee, Gwan-Hyoung Lee, Arend M. van der Zande, Wenchao Chen, Yilei Li, Minyong Han, Xu Cui, Ghidewon Arefe, Colin Nuckolls, Tony F. Heinz, Jing Guo, James Hone e Philip Kim. Atomically thin p-n junctions with van der waals heterointerfaces. Nature Nanotechnology, 9:676–682. URL https://doi.org/10.1038/nnano. 2014.150. Citado na pág. 30
- Li et al.(2016) J.Y. Li, H.Y. Lv, W.J. Lu, D.F. Shao, R.C. Xiao e Y.P. Sun. Tuning the electronic and magnetic properties of borophene by 3d transition-metal atom adsorption. *PHYSICS LETTERS A*, 380:3928 – 3931. URL https://doi.org/10.1016/j.physleta.2016. 09.052. Citado na pág. 45, 47

- Li et al.(2019) Xiangyang Li, Xiangxing Li e Jinlong Yang. Room-temperature ferromagnetism in transition metal embedded borophene nanosheets. THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 10:4417–4421. URL https://doi.org/10.1021/acs. jpclett.9b01667. Citado na pág. 45
- Liu et al. (2018) Xiaolong Liu, Zhuhua Zhang, Luqing Wang, Boris I. Yakobson e Mark C. Hersam. Intermixing and periodic self-assembly of borophene line defects. Nature Materials, 17:783–788. URL https://doi.org/10.1038/s41563-018-0134-1. Citado na pág. 1, 4, 58, 69
- Liu et al.(2016) Yuanyue Liu, Paul Stradins1 e Su-Huai Wei1. Van der waals metalsemiconductor junction: Weak fermi level pinning enables effective tuning of schottky barrier. Science Advances, 2:1600069. URL https://doi.org/10.1126/sciadv.1600069. Citado na pág. 30
- London(1930) F. London. Zur theorie und systematik der molekularkrafte. Zeitschrift für Physik. URL https://doi.org/10.1007/BF01421741. Citado na pág. 116
- Mannix et al. (2015) Andrew J. Mannix, Xiang-Feng Zhou, Brian Kiraly, Joshua D. Wood, Diego Alducin, Benjamin D. Myers, Xiaolong Liu, Brandon L. Fisher, Ulises Santiago, Jeffrey R. Guest, Miguel Jose Yacaman, Arturo Ponce, Artem R. Oganov, Mark C. Hersam e Nathan P. Guisinger. Synthesis of borophenes: Anisotropic,two-dimensional boron polymorphs. SCIENCE, 350:1513–1516. URL https://doi.org/10.1126/science.aad1080. Citado na pág. 1, 2, 30, 31, 92
- Michael Schmid(2011) Michael Schmid, 2011. URL http://www.iap.tuwien.ac.at/www/ surface/stm_gallery/stm_schematic#copyright_notice. Access date: 99 nov. 2019. Citado na pág. 122
- Miwa et al.(2011) R. H. Miwa, Tome M. Schmidt, W. L. Scopel e A. Fazzio. Doping of graphene adsorbed on the a-SiO₂ surface. APPLIED PHYSICS LETTERS, 99:163108. URL https://doi.org/10.1063/1.3653261. Citado na pág. 3, 92, 94
- Mokrousov et al.(2007) Y. Mokrousov, G. Bihlmayer S. BlA¹/₄gel e S. Heinze. Magnetic order and exchange interactions in monoatomic 3d transition-metal chains. *PHYSICAL REVIEW B*, 75:104413 – 104423. URL https://doi.org/10.1103/PhysRevB.75.104413. Citado na pág. 51
- Mönch(1995) Winfried Mönch. Semiconductor Surfaces and Interfaces. Berlin: Springer. Citado na pág. 110
- MONKHORST e PACK(1976) H. J. MONKHORST e J. D. PACK. Special points for brillouin-zone integrations. *PHYSICAL REVIEW B*, 13:5188–5192. URL https://doi.org/ 10.1103/PhysRevB.13.5188. Citado na pág. 31, 45, 92
- Morell et al.(2019) E Suárez Morell, Andrea León, R Hiroki Miwa e P Vargas. Control of magnetism in bilayer CrI₃ by an external electric field. 2D Materials, 6(2):025020. URL https://doi.org/10.1088/2053-1583/ab04fb. Citado na pág. 52
- Musso et al.(2014) Tiziana Musso, Priyank V. Kumar, Adam S. Foster e Jeffrey C. Grossman. Graphene oxide as a promising hole injection layer for mos2-based electronic devices. ACS Nano, 8:11432–11439. URL https://doi.org/10.1021/nn504507u. Citado na pág. 2, 30
- Novoselov et al.(2004) K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva e A. A. Firsov. Electric field effect in atomically thin carbon films. *Science*, 306:666–669. URL https://doi.org/10.1126/science.1102896. Citado na pág. 1

- Novoselov et al. (2013) K. S. Novoselov, A. Mishchenko, Carvalho e A. H. Castro Neto. 2d materials and van der waals heterostructures. *Science*, 353:461–464. URL https://doi. org/10.1126/science.aac9439. Citado na pág. 29
- Padilha et al.(2015) J. E. Padilha, A. Fazzio e Antônio J. R. da Silva. van der waals heterostructure of phosphorene and graphene: Tuning the schottky barrier and doping by electrostatic gating. *Physical Review Letter*, 114:066803. URL https://doi.org/10.1103/ PhysRevLett.114.066803. Citado na pág. 41
- Padilha et al.(2016) José Eduardo Padilha, Roberto Hiroki Miwa e Adalberto Fazzio. Directional dependence of the electronic and transport properties of 2d borophene and borophane. Phys. Chem. Chem. Phys., 18:25491–25496. URL https://doi.org/10.1039/ C6CP05092A. Citado na pág. 3
- Perdew e Kurth(2003) J. P. Perdew e S. Kurth. Density Functionals for Non-relativistic Coulomb System in the New Century. Springer-Verlag, Berlin Heidelberg. URL https: //doi.org/10.1007/3-540-37072-2_1. Citado na pág. 6
- Perdew et al.(1996a) J. P. Perdew, K. Burke e M. Ernzerhof. Generalized gradient approximation made simple. *Physical Review Letter*, 77:3865. URL https://doi.org/10.1103/ PhysRevLett.77.3865. Citado na pág. 20, 28, 116
- Perdew et al.(1996b) John P. Perdew, Matthias Ernzerhof e Kieron Burke. Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 105:9982–9985. URL https://doi.org/10.1063/1.472933. Citado na pág. 112, 113
- Phillips e Kleinman(1959) J. C. Phillips e L. Kleinman. New method for calculating wave functions crystals and molecules. *Physical Review*, 116(2):287. URL https://doi. org/10.1103/PhysRev.116.287. Citado na pág. 23
- Radisavljevic et al.(2011) B. Radisavljevic, A.Radenovic, J. Brivio, V. Giacomettil e A. Kis. Single-layer mos₂ transistors. *Nature Nanotechnology*, 6:147–152. URL https: //doi.org/10.1038/nnano.2010.279. Citado na pág. 29
- Rezende(2015) Sergio M. Rezende. *Materiais e Dispositivos Eletrônicos*. Livraria da Física, São Paulo. Citado na pág. 1, 2, 109, 110, 111
- Rydberg et al.(2003) H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S. I. Simak, D. C. Langreth e B. I. Lundqvist. Van der waals density functional for layered structures. *Physical Review Letters*, 91:126402. URL https://doi.org/10.1103/ PhysRevLett.91.126402. Citado na pág. 116
- Sakurai(2017) J. J. Sakurai. Modern Quantum Mechanics. Cambridge University Press, 2 edição. Citado na pág. 124
- Scopel et al.(2017) Wanderlã L Scopel, Everson S Souza e R H Miwa. H₂O incorporation in the phosphorene/a-SiO₂ interface: a first-principles study. JOURNAL PHYSICS CON-DENSED MATTER, 29:075002. URL https://doi.org/10.1088/1361-648X/29/7/075002. Citado na pág. 3, 92, 94, 96, 100, 102
- Sevincli et al.(2008) H. Sevincli, M. Topsakal, Durgun e S. Ciraci. Electronic and magnetic properties of 3d transition-metal atom adsorbed grapheneand graphene nanoribbons. *PHYSICAL REVIEW B*, 77:195434–195441. URL https://doi.org/10.1103/PhysRevB.77. 195434. Citado na pág. 3, 44

- Shih et al.(2014) Chih-Jen Shih, Qing Hua Wang, Youngwoo Son, Zhong Jin, Daniel Blankschtein e Michael S. Strano. Tuning on-off current ratio and field-effect mobility in a mos₂-graphene heterostructure via schottky barrier modulation. ACS Nano, 8:5790– 5798. URL https://doi.org/10.1021/nn500676t. Citado na pág. 30
- Sholl e Steckel(2009) David S. Sholl e Janice A. Steckel. *DENSITY FUNCTIONALTHE-ORY: A Practical Introduction*. John Wiley. Citado na pág. 119
- Shukla et al.(2018) Vivekanand Shukla, Anton Grigoriev, Naresh K. Jena e Rajeev Ahuja. Strain controlled electronic and transport anisotropies in two-dimensional borophene sheets. *Phys. Chem. Chem. Phys.*, 20:22952–22960. URL https://doi.org/10. 1039/C8CP03815E. Citado na pág. 3
- Singh(2006) David J. Singh. Planewaves, Pseudopotentials and the LAPW method. Springer. Citado na pág. 25
- Sinitskii et al.(2010) Alexander Sinitskii, Dmitry V. Kosynkin, Ayrat Dimiev e James M. Tour. Corrugation of chemically converted graphene monolayers on SiO₂. ACS NANO, 4: 3095–3102. URL https://doi.org/10.1021/nn100306r. Citado na pág. 92
- Slater(1929) J. C. Slater. The theory of complex spectra. *Physical Review*, 34(10):1293. URL https://doi.org/10.1103/PhysRev.34.1293. Citado na pág. 11
- Souza et al. (2016) Everson S. Souza, Wanderlä L. Scopel e R. H. Miwa. Switchable magnetic moment in cobalt-doped graphene bilayer on cu(111): An ab initio study. *Physical Review B*, 93:235308. URL https://doi.org/10.1103/PhysRevB.93.235308. Citado na pág. 34
- Szabo e Ostlund(1996) A. Szabo e N. S. Ostlund. Moderna Quantum Chemistry: Introduction to Advanced Eletronic Estructure Theory. Dover Publication, Mineola, New York. Citado na pág. 11
- Tang et al.(2009) W. Tang, E. Sanville e G. Henkelman. A grid-based bader analysis algorithm without lattice bias. JOURNAL OF PHYSICS: CONDENSED MATTER, 21: 7pp. URL https://doi.org/10.1088/0953-8984/21/8/084204. Citado na pág. 35, 94
- Tersoff e Hamann(1985) J. Tersoff e D. R. Hamann. Theory of the scanning tunneling microscope. *Phys. Rev. B*, 31:805–813. URL https://doi.org/10.1103/PhysRevB.31.805. Citado na pág. 123
- Tkatchenko e Scheffler(2009) Alexandre Tkatchenko e Matthias Scheffler. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. *Phys. Rev. Lett.*, 102:073005. URL https://doi.org/10.1103/PhysRevLett. 102.073005. Citado na pág. 30, 34, 116
- Troullier e Martins(1991) N. Troullier e J. L. Martins. Efficient pseudopotentials for plane-waves calculations. *Physical Review B*, 43:1993. URL https://doi.org/10.1103/ PhysRevB.43.1993. Citado na pág. 24
- van der Waals(1873) J. D. van der Waals. Over de continuiteit van den gasen vloeistoftoestand. Tese de Doutorado, Universidade de Leiden, Holanda. Citado na pág. 115
- Vanderbilt(1990) D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. *Physical Review B*, 41:7892. URL https://doi.org/10.1103/PhysRevB. 41.7892. Citado na pág. 24, 25
- Vianna et al. (2004) José David M. Vianna, Adalberto Fazzio e Sylvio Canuto. Teoria Quântica de Moléculas e Sólidos: Simulação Computacional. Livraria da Física, São Paulo. Citado na pág. 7, 8, 112, 115, 116
- Yu et al.(2014) Lili Yu, Yi-Hsien Lee, Xi Ling, Elton J. G. Santos, Yong Cheol Shin, Yuxuan Lin, Madan Dubey Effhimios Kaxiras, Jing Kong, Han Wang e Tomás Palacios. Graphene/mos₂ hybrid technology for large-scale two-dimensional electronics. Nano Letters, 14:3055–3063. URL https://doi.org/10.1021/nl404795z. Citado na pág. 30
- Z. et al.(2016) Liu L. Z., S. J. Xiong e X. L. Wu. Monolayer borophene electrode for effective elimination of both the schottky barrier and strong electric field effect. Applied Physics Letters, 109:061601. URL https://doi.org/10.1063/1.4960768. Citado na pág. 41, 42
- Zhang et al.(2017) Honghong Zhang, Yuee Xie, Zhongwei Zhang, Chengyong Zhong, Yafei Li, Zhongfang Chen e Yuanping Chen. Dirac nodal lines and tilted semi-dirac cones coexisting in a striped boron sheet. PHYSICAL CHEMISTRY LETTERS, 8:1707–1713. URL https://doi.org/10.1021/acs.jpclett.7b00452. Citado na pág. 1, 4, 70
- Zhang e Yang(1998) Yingkai Zhang e Weitao Yang. Comment on "generalized gradient approximation made simple". *Physical Review Letters*, 80:890–890. URL https://doi.org/ 10.1103/PhysRevLett.80.890. Citado na pág. 116