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RESUMO

O uso de resinas compostas bulk fill para confec¢do de restauragdes posteriores tem
crescido nos ultimos anos. No entanto, se as resinas compostas receberem menos energia
do que necessitam, elas serdo insuficientemente polimerizadas e, consequentemente,
terdo suas propriedades alteradas. Portanto, a fonte de luz ¢ essencial no processo de
polimerizacdo das resinas compostas, especialmente acerca da interagdo entre tempo de
ativacao, irradiancia e caracteristicas das resinas compostas. O objetivo deste estudo foi
avaliar o efeito do tempo de fotoativagdo e da irradidncia de uma fonte de luz multi-
espectro nas resinas compostas bulk fill de viscosidade regular e fluida por meio de testes
laboratoriais e computacionais. Este estudo foi dividido em trés objetivos especificos que
caracterizam os capitulos dessa dissertacdo; objetivo 1: avaliar o efeito do tempo de
ativagdo (10, 20 e 40s) e da irradidncia (400, 800 ¢ 1200 mW/cm?) nas propriedades
fisico-mecanicas expressas por radiopacidade, contragdo pds-gel, grau de conversdo,
dureza e modulo de elasticidade de resina compostas bulk fill; ebjetivo 2: avaliar, por
meio de analise por elementos finitos, o efeito dos parametros recomendados pelos
fabricantes acerca do tempo de fotoativagdo para uma fonte de luz com 1200 mW/cm? e
ainda, o efeito do tempo (10, 20 e 40s) na irradidncia de 1200 mW/cm? e a variagdo da
irradiancia (400, 800 e 1200 mW/cm?) associada ao tempo de 40s de fotoativagdo na
geracdo de tensdes de contragdo durante a confeccdo da restauracdo e tensdes residuais
durante o carregamento oclusal fisiologico (100N) em molares restaurados com diferentes
resinas bulk fill; ebjetivo 3: analisar o efeito de diferentes niveis de irradidncia na
transmissdo da luz através de resinas bulk fill de viscosidade fluida e regular durante a
polimerizacdo e ap6s a cura das resinas compostas. Cinco resinas compostas bulk fill de
consisténcia fluida (Tetric N-Flow Bulk Fill, Ivoclar Vivadent; Filtek Bulk Fill Flow, 3M
Oral Care; Opus Bulk Fill Flow APS, FGM; Admira Fusion x-base, VOCO; e SureFil SDR
Flow, Dentsply) e cinco de consisténcia regular (Tetric N-Ceram Bulk Fill, Ivoclar
Vivadent; Filtek One Bulk Fill, 3M Oral Care; Opus Bulk Fill APS, FGM; Admira Fusion
x-tra, VOCO; e SonicFill 2, Kerr) foram fotoativadas com VALO Cordless, variando a
irradiancia de 1200, 800 ¢ 400 mW/cm? definidas pelo distanciamento de 1, 5 € 13 mm,
das amostras, respectivamente. Os métodos experimentais utilizados foram extensometria
para célculo de contracdo pos-gel, FTIR para grau de conversao, teste de indentagao para

calculo da dureza Knoop e modulo de elasticidade, radiografia digital para mensurar a
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radiopacidade, andlise por elementos finitos 2D para avaliar tensdes de contracdo e
tensdes residuais durante carregamento oclusal, e camera a laser para medir o perfil do
feixe de luz transmitida através do material. Apds andlise dos dados, pode-se concluir que
a irradiancia teve mais influéncia nas propriedades mecanicas dos materiais testados do
que o tempo de fotoativagdo; o uso de 1200 mW/cm? com 20s ou 40s é uma estratégia
clinica mais indicada ao invés de utilizar tempo de fotoativa¢do reduzido, como
recomendado por alguns fabricantes; o tempo de fotoativacdo e a irradidncia ndo
influenciaram a radiopacidade dos materiais testados. Foram observadas menores tensdes
em molares restaurados com resinas bulk fill flow associada a resinas de consisténcia
regular; a irradiancia influenciou a geragdo de tensdes em molares restaurados com
diferentes resinas compostas bulk fill mais significativamente do que o tempo de
fotoativagdo; o nivel de irradiancia afetou a transmissdo de luz através de resinas
compostas bulk fill; as resinas bulk fill de consisténcia regular e fluida apresentam

translucidez diferentes apds a polimerizagao.

PALAVRAS-CHAVE: resinas compostas bulk fill, irradidncia, fonte de luz,
propriedades mecanicas, radiopacidade, tensdes de contragcdo, andlise por elementos

finitos, transmissao de luz, opacidade
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ABSTRACT

The use of bulk fill resin composites to posterior restorations has increased in recent years.
However, if resin composites receive less energy than required, they will be insufficiently
polymerized and, consequently, have their properties impaired. Therefore, the light curing
unit (LCU) is an essential part in the polymerization process of resin composites, and
more studies about the interaction between light activation time, irradiance of LCU and
characteristics of resin composites are necessary. The aim of this study was to evaluate
the effect of light activation time and irradiance of multi-peak LCU on flowable and high
viscosity bulk-fill resin composites though laboratory and computational tests. This study
was sctutured into three specific objectives; objective 1: to evaluate the effect of light
activation time (10, 20, 40s ) and irradiance (400, 800, 1200 mW/cm?)of multi-peak LCU
on physical-mechanical properties expressed by radiopacity, degree of conversion, post-
gel shrinkage, hardness and elastic modulus of bulk-fill resin composites; objective 2: to
evaluate, by finite element analysis, the effect of the parameters recommended by
manufacturers about light activation time for a LCU with 1200 mW/cm?; and also the
effect of time (10, 20 and 40s) on the irradiance of 1200 mW/cm? and the irradiance
variation (400, 800 and 1200 mW/cm?) associated with 40s of light activation time in the
generation of shrinkage stresses during the restoration and residual stresses during
physiological occlusal loading (100N) in restored molars with different bulk fill resins;
objective 3: to analyze the effect of the different irradiance and the real time light
translucency on the light transmission of flowable and high viscosity bulk-fill resin
composites. Five flowable bulk-fill resin composites (Tetric N-Flow Bulk Fill, Ivoclar
Vivadent; Filtek Bulk Fill Flow, 3M Oral Care; Opus Bulk Fill Flow APS, FGM; Admira
Fusion x-base, VOCO; e SureFil SDR Flow, Dentsply) and five high viscosity bulk-fill
resin composites (Tetric N-Ceram Bulk Fill, Ivoclar Vivadent; Filtek One Bulk Fill, 3M
Oral Care; Opus Bulk Fill APS, FGM; Admira Fusion x-tra, VOCO; e SonicFill 2, Kerr)
were light cured, using VALO Cordless, varying the irradiances of 1200, 800 and 400
mW/cm?, according to distances of 1, 5 and 13 mm, respectively. The methods used on
the all studies were post-gel measurements by strain gage test, degree of conversion using
FTIR, indentation test for calculation of hardness Knoop and elastic modulus, digital
radiographic to calculate radiopacity, finite element analysis 2D to evaluate shrinkage

stresses and residual occlusal stress and a laser beam profiler camera to measure light
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beam profile of light transmitted. After data analysis it can be concluded that the irradiance
level had more influence on mechanical properties than light activation time; the use of 1200
mW/cm? with longer light activation time is a better strategy than the reduced light activation
time recommender by some manufactures; the light activation time and irradiance had no
influence on radiopacity for all tested resin composites; lower shrinkage and residual stresses
were observed on molar tooth restored with flowable associated with high viscosity bulk fill
resin composites; irradiance level influences the generation of shrinkage and residual
stresses on molar teeth restored with different bulk fill resin composites more significantly
than light activation time; the irradiance level affected the light transmission of bulk fill resin
composites; flowable and high viscosity bulk fill resin composite had different light

transmission after cured.

KEYWORDS: bulk fill resin composites, irradiance, light curing unit, mechanical
properties, radiopacity, shrinkage stresses, finite element analysis, light transmission,

opacity
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1. INTRODUCAO E REFERENCIAL TEORICO

A contragdo por polimeriza¢do ¢ uma caracteristica inerente as resinas compostas
devido a conversdao de mondmeros em cadeias poliméricas, resultando em aproximagao
das moléculas e reducao de volume (Marchesi et al., 2010; Jafarpour et al., 2012). Quando
o material contrai, tesdes de contragdo e, consequentemente, deformacgdes estruturais e
falhas na interface dente/restauragdo podem ocorrer (Versluis & Tantbirojn, 2009).
Clinicamente, as tensdes de contra¢do se manifestam como sensibilidade pos-operatoria,
microtrincas no esmalte, pigmentacao e infiltragdes marginais (Burgess & Carkir, 2010;
Ferracane & Hilton, 2016; Soares ef al., 2017a). As cargas mastigatorias podem gerar
processo de fadiga que contribui para a concentragdo de tensdes no complexo
dente/restauragdo, acentuando a ocorréncia desses sinais e sintomas (Versluis & Versluis-

Tantbirojn, 2011; Soares et al., 2017a).

O uso das resinas compostas bulk fill para restaurar dentes posteriores cresceu nos
ultimos anos devido a vantagem de reduzir as tensdes de contragdo em comparagdo com
as resinas compostas convencionais (Rosatto et al., 2015). De acordo com alguns
fabricantes, as resinas compostas bulk fill sdo consituidas por diferentes tipos de
particulas de carga e monomeros capazes de atenuar as tensdes geradas na reacdo de
polimerizacdo. As resinas compostas bulk fill podem ser classificadas de acordo com a
consisténcia em flow (baixa viscosidade) ou regular (alta viscosidade) (Rosatto et al.,

2015).

A escolha correta da fonte de luz ¢ essencial para a confec¢ao de restauracdes de
resina composta bulk fill de maneira eficiente (Soares et al., 2017b). Diferentes fontes de
luz apresentam variagdes no didmetro interno da ponta, no perfil do feixe de luz, no
espectro de emissdo, na poténcia e na irradiancia, o que pode levar a diferentes resultados
na polimerizacdo das resinas compostas (Price et al., 2015; Soares et al., 2017b). A
poténcia esta relacionada a quantidade de luz emitida pela fonte de luz, sendo importante
para a geragdo de radicais livres que iniciam a reacdo de polimeriza¢do (Shimokawa et
al., 2016). A irradiancia depende da area da superficie que esta recebendo luz, e a
concentragdo de saida em area especifica da ponta da fonte de luz (Price et al., 2015).Se

as resinas compostas recebem menos energia do que necessitam, elas serdo
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insuficientemente polimerizadas e, consequentemente, terdo propriedades mecanicas

inferiores (Shimokawa et al., 2018).

A distancia entre a fonte de luz e a superficie da restauracdo também pode
influenciar na energia recebida pelo material e, consequentemente, na qualidade da
polimerizacao (Price et al., 2011). Esse aspecto ganhou maior importancia para as resinas
compostas bulk fill pois trata-se de material que pode ser inserido em incrementos de até
4-5 mm, caracteristica que contribui para a redu¢do no tempo clinico de confec¢ao das
restauragdes posteriores (Rosatto et al., 2015). Uma preocupacao sobre esse material € se
a luz tem a capacidade de penetrar o material até o fundo da restaurag@o para que ocorra
polimerizacdo adequada (Durner et al., 2012). Para garantir maior profundidade de
polimerizacao, as resinas bulk fill possuem maiores particulas de carga (Ilie & Hickel,
2011), modificagcdes nos mondmeros ¢ moduladores de reacdo, ¢ ainda aumento na
translucidez para que a luz passe com maior eficiéncia pelo material (Besegato et al.,
2019). Além disso, diferentes tempos de ativagdo da luz podem resultar em diferentes
propriedades dos compositos (Bennett & Watts, 2004), e as recomendagdes dos
fabricantes sobre o tempo de ativagdo da luz podem nao ser apropriadas (Jafarpour et al.,
2012). Um maior tempo de fotoativa¢dao pode induzir a melhor polimerizagdo da resina
composta desde que ndo tenha atingido a conversdo maxima de mondmeros em polimeros

(Ilie & Stark, 2014).

O espectro de emissdo pode influenciar na transmissao da luz emitida pela fonte
de luz através das restauragdes de resina composta bulk fill (Shimokawa et al., 2017).
Maiores comprimentos de onda — 460 nm (azul) — possuem maior poder de penetragao
através do material do que comprimentos de onda menores, como o de 400 nm (violeta)
(Price et al., 2010). Alguns fabricantes inseriram novos fotoiniciadores em resinas bulk
fill para garantir a polimerizacao em grandes profundidades (Rueggeberg et al., 2017). O
Ivocerin ¢ um fotoiniciador mais reativo comparado a canforquinona, porém seu espectro
de absor¢ao nao ¢ emitido por fontes de luz monowave (Shimokawa et al., 2017). As
tensdes de contragcdo dependem de varios fatores, incluindo a intensidade e o tempo da
fotoativagdo (Versluis et al., 1996; Calheiros et al., 2014). Maiores tempos de ativagdoe
o uso de fontes de luz com maiores irradidncias podem resultar em melhores propriedades
do material, porém podem ao mesmo tempo gerar maiores tensdes de contracdo de

polimerizacdo (Feng & Suh, 2006). O estabelecimento de equilibrio entre esses dois
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pilares, contragdo de polimeriza¢do e adequadas propriedades mecanicas e opticas é o
grande desafio dos fabricantes e dos clinicos. A energia que chega a superficie da amostra
associada ao tempo de fotoativa¢do influenciam na qualidade da polimerizagdo de resinas
compostas (Shimokawa et al., 2018). Um material restaurador polimerizado de forma
inadequada determina propriedades mecénicas inferiores, aumentando as chances de
fratura do material e do remanescente dental quando fragilizado (Palagummi et al., 2019).
A avaliacdo das propriedades mecanicas dos materiais restauradores ¢ importante para
melhor entender o comportamento biomecanico durante as cargas mastigatérias. Quando
o dente é submetido a carga oclusal de compressao, tensdes de tracdo também sao geradas
na estrutura dental; no entanto, o dente ¢ capaz de resistir melhor as tensdes de
compressdo do que as tensdes de tragdo (Versluis et al., 1996). As resinas compostas
também mantém esse comportamento durante carregamento oclusal (Rosatto et al.,
2015). Porém, quando o material restaurador ndo ¢ adequadamente polimerizado, os
dentes posteriores ndo suportardo adequadamente as tensdes e as forgas de tracdo

causadas pelas cargas mastigatorias fisiologicas.

O modulo de elasticidade ¢ uma propriedade fisica ligada a rigidez do material,
associada ao desenvolvimento de tensdes (Soares et al., 2017a; Han et al., 2019).
Materiais com alto modulo de elasticidade tendem a gerar maior contracdo de
polimerizacdo e, consequentemente, causar maiores tensdes nas estruturas adjacentes
(Soares et al., 2013). No entanto, se o mddulo de elasticidade é baixo, o material pode
ndo recuperar a integridade estrutural do dente para aplicar cargas mastigatdrias (Soares
et al., 2013). As resinas compostas bulk fill de viscosidade regular tendem a ter valores
mais altos de modulo de elasticidade ¢ dureza em relagdo as resinas bulk fill de
viscosidade fluida (Rosatto ez al., 2015). Essa diferenga de propriedades mecanicas indica
que as resinas compostas bulk fill flow apresentam maior fragilidade quando expostas ao
meio bucal (Taubock ef al., 2019) e, quando utilizadas para restaurar a regido oclusal de
dentes posteriores, requerem uma camada final (2 mm) de resina convencional ou de
resina bulk fill de consisténcia regular, que apresentam maior resisténcia ao desgaste
(Rosatto et al., 2015, Cerda-Rizo et al., 2019). Entdo, as melhores estratégias para
restaurar dentes posteriores se baseiam na polimeriza¢ao adequada do material, que deve
proporcionar um equilibrio entre boas propriedades mecénicas e tensdes de contragdo

reduzidas (Bicalho et al., 2014a, 2014b; Soares et al., 2017a).
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Resinas compostas bulk fill apresentam maior translucidez em relagdo as resinas
compostas convencionais, ou seja, proporcionam maior transmissdo de luz através do
material (Bucuta & Ilie, 2014). Embora seja essencial para promover a polimerizagdono
fundo da restauracdo, maior translucidez pode comprometer a capacidade de mascarar a
cor da dentina esclerdtica ou a pigmentacdo do substrato manchado por amalgama
(Miletic et al., 2019). As resinas bulk fill flow apresentam maior translucidez quando
comparadas com as resinas de viscosidade regular devido a menor concentracdo de
particulas de carga (Ilie & Hickel, 2011). No entanto, a consequéncia dessa modificagdo

na composicao resulta em menor resisténcia ao desgaste do material (Flury et al., 2012).

Os materiais usados para restaurar cavidades em dentes posteriores devem
apresentar radiopacidade adequada para permitir o diagndstico de caries secundarias,
auséncia de contato com dentes adjacentes, falhas na adaptagdo marginal, fendas e bolhas
(Fonseca et al., 2006; Fronza et al., 2015). Embora as resinas compostas bulk fill
apresentem radiopacidade suficiente para facilitar a detec¢do desses defeitos (Soares et
al., 2017c), ndo ha estudos na literatura que analisaram a influéncia da qualidade da

polimerizacdo na radiopacidade de resinas compostas bulk fill de viscosidade regular ou
fluida.

Portanto, sdo necessarios estudos que avaliem o efeito da irradiancia e do tempo
de fotoativacdo nas propriedades fisico-mecénicas, na contracdo de polimerizagdo e
tensdes residuais durante o carregamento oclusal, e na transmissao de luz e opacidade e
radiopacidade de resinas compostas bulk fill, tendo em vista os aspectos mencionados
anteriormente para melhor orientar ao clinico na tomada de decisdes que envolva selecao
de materiais, escolha de tempo adequado de fotoativagdo e da irradidncia adequada para
que as diferentes resinas possam entregar aos profissionais e seus pacientes o que se

propdem.
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Light activation time and irradiance on flowable and high viscosity bulk fill resin

composites — Part 1: effect on the physical-mechanical properties

ABSTRACT

Objectives. To evaluate the effect of light activation time and irradiance of multi-peak
light curing unit (LCU) on physical-mechanical properties expressed by radiopacity, post-
gel shrinkage, degree of conversion, hardness and elastic modulus of bulk-fill resin
composites.

Methods. Five flowable bulk-fill resin composites (Tetric N-Flow Bulk Fill, Ivoclar
Vivadent; Filtek Bulk Fill Flow, 3M Oral Care; Opus Bulk Fill Flow APS, FGM; Admira
Fusion x-base, VOCO; SureFil SDR Flow, Dentsply Sirona) and five high viscosity bulk-
fill resin composites (Tetric N-Ceram Bulk Fill, Ivoclar Vivadent; Filtek One Bulk Fill,
3M Oral Care; Opus Bulk Fill APS, FGM; Admira Fusion x-tra, VOCO; SonicFill 2,
Kerr) were light activated using VALO Cordless for 10, 20 and 40s with irradiance of
1200, 800 and 400 mW/cm?. Post-gel shrinkage (Shr) was calculated using strain-gauge
test. Degree of conversion (DC, %) was calculated using FTIR; Knoop hardness (KNH,
N/mm?) and elastic modulus (E, Mpa) using Knoop indentation on top and bottom
surfaces. Radiodensity was calculated using digital radiographic.

Results. Increasing light curing time and irradiance higher mechanical properties
expressed by KNH, E and DC values were observed. However, higher Shr was also
obtained. Lower mechanical properties and post-gel shrinkage were observed for
flowable than high viscosity bulk fill resin composites. All bulk fill resin composite resin
had higher radiopacity level than 3 mm of aluminum step wedge.

Conclusion. The irradiance level had more influence on mechanical properties than light
activation time. The use of 1200 mW/cm? with longer irradiation time is better strategy
than the reduced light activation time recommender by some manufactures. All bulk fill
resin composite resin had higher radiopacity level than 3 mm of aluminum. The light
activation time and irradiance had no influence on radiopacity for all tested resin
composites.

Clinical Significance. High irradiance (1200mW/cm?) with longer light activation time
(20s and 40s) improved the mechanical properties of flowable and high viscosity bulk-fill
resin composites. The radiopacity level of tested bulk fill resin composites fill the

recommendations for posterior restorations.
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INTRODUCTION

Polymerization shrinkage is an inherent problem of resin composite due to the
conversion of monomers into polymeric chains, resulting in approximation of molecules
and volume reduction.> When the material contracts, shrinkage stresses and,
consequently, structural deformation and failures at tooth/restoration interface can be
occurred.® Clinically the resin shrinkage stress manifest as postoperative sensitivity,
enamel cracks, pigmentation and infiltrations marginal.*® Chewing loads can generate
fatigue process that contributes to stress concentration in the restorative and interfaces,

accentuating the occurrence of these signs and symptoms.’

Bulk fill resin composites have been gained popularity due the time reduction and
also due the advantage to reduce shrinkage stresses compared to conventional resins,® and
the use of these materials to restore posterior teeth has increased in recent years.’
According to manufacturers, bulk fill resin composites have different filler types and
monomers able to soften stresses generated in polymerization reaction.!® They also can
be classified according to consistency in flowable (low viscosity) or high viscosity resin
composites. Flowable resin composites require a final layer of high bulk-fill or
conventional resin composites to restore occlusal layer restorations because they have

lower mechanical properties.®

The irradiance, power and time of light activation are essential parts in the
polymerization process of resin composites.!! If resin composites receive less energy than
required, they will be insufficiently polymerized and consequently have lower
mechanical properties.!?> The distance of the light curing unit (LCU) to the resin
composite surface can influence on the energy received and consequently to the quality
of polymerization.'® This aspect gained more importance for bulk fill resin composite that
are inserted in unique increments of up to 4-5 mm.® This characteristic results in a
reduction in clinical time; however, a concern about these materials is whether light has
the ability to penetrate the resin composite to the bottom surface of the restoration for
correct polymerization.!>!* Manufacturers have modified the components of bulk fill
resin composites, '3 increasing the size of filler particles to ensure a greater polymerization
depth.’> Each resin composite needs an amount of energy necessary for adequate

polymerization, and the speed with that energy is given to the material can influence its
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mechanical properties.'® Different light activation times may result in different properties
of resin composites,!” and the manufacturers instructions about light activation timemay
not be appropriate.! Longer light activation time can induce to better resin composite
polymerization as long as it has no achieved its maximum conversion of monomers to
polymers.!” New strategies have been recommended by manufactures reducing
substantially the light activation time, expecting that all clinicians will use high

irradiance.

Materials used to restore cavities in posterior teeth must provide proper
radiopacity to allow for the diagnosis of secondary caries, defects in adaptation, the
contour of a restoration, contact with adjacent teeth, interfacial gaps, and voids in the
restoration.??! Bulk fill resin composites have sufficient radiodensity to facilitate
detection of secondary caries in marginal defects located at the proximal areas.?
However, no prior studies have analyzed the influence of polymerization quality on

radiopacity of flowable or high viscosity bulk fill resin composites.

Studies about the interaction between light activation time, irradiance of LCU and
resin composites are necessary. Therefore, the aim of this study was to evaluate the
physical-mechanical properties expressed by radiopacity, post-gel shrinkage, hardness
and elastic modulus of bulk-fill resin composites influenced by the light activation times
and irradiance levels of multi-peak LCU. The null hypotheses tested were: 1) post-gel
shrinkage, degree of conversion, Knoop hardness and elastic modulus of bulk fill resin
composites will be not influenced by the light activation time and irradiance level of
multi-peak LCU; 2) radiopacity of bulk-fill resin composites will be not influenced by

the light activation time and irradiance level of LCU.
METHODS AND MATERIALS
Study design

Five flowable bulk-fill resin composites (Tetric N-Flow Bulk Fill, Ivoclar
Vivadent; Filtek Bulk Fill Flow, 3M Oral Care; Opus Bulk Fill Flow APS, FGM; Admira
Fusion x-base, VOCO; SureFil SDR Flow, Dentsply Sirona) and five high viscosity bulk-
fill resin composites (Tetric N-Ceram Bulk Fill, Ivoclar Vivadent; Filtek One Bulk Fill,
3M Oral Care; Opus Bulk Fill APS, FGM; Admira Fusion x-tra, VOCO; SonicFill 2,
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Kerr) were tested in this study. The compositions of the 10 resin composites were listed
in Table 1. All materials were light activated using a multi-peak LCU (VALO Cordless;
Ultradent, South Jordan, UT, USA) for 10, 20 and 40 seconds with irradiance of 1200,
800 and 400 mW/cm?, obtained from the distance between LCU and sample surface of 1,
5 and 13 mm, respectively. The distance equivalent to each irradiance was determined by
using a MARC resin calibrator. Post-gel shrinkage (Shr, %) was calculated using strain-
gauge test. Degree of conversion (DC, %), Knoop hardness (KNH, N/mm?) and elastic
modulus (E, Mpa) were tested on top and bottom surfaces of the resin composite
specimens. Radiodensity was calculated using digital radiography and compared with the

aluminum step wedge.
Post-gel shrinkage (Shr)

The post-gel linear shrinkage was determined using the strain gauge method with
5 for each group.?* The materials were shaped into a hemisphere (1mm thick and 2mmx
2mm) on top of a biaxial strain gauge (CEA-06-032WT-120) that measured shrinkage
strains in two perpendicular directions. A strain conditioner (ADS0500Ipg) converted
electrical resistance changes in the strain gauge to voltage changes through a quarter-
bridge circuit with an internal reference resistance. The strain values measured along the
two axes were averaged since the material properties were homogeneous and isotropic on
a macro scale. All materials were inserted in by the same operator and light activated
using VALO Cordless, with 1, 5 or 13 mm of distance between LCU and sample surface,
determining the referred irradiance levels. All tests were performed in a dark room with
yellow light to avoid any effect on polymerization reaction. The strain values were
collected for ten minutes after light activation to monitor the real time measurement of
shrinkage strain. The mean shrinkage strain, which represented the linear shrinkage, was

converted to volumetric percentage by multiplying by 3 and 100%.
Sample preparation

The samples of each group (n=3) were prepared using plastic ring molds (with an
internal aperture of 8 mm diameter and depth of 4 mm) in a dark room with yellow light.
To minimize the presence of bubbles and obtain a smooth surface, the ring mold was
placed on a glass plate and a polyester strip was positioned between the glass plate and

ring mold. Then the resin composite was inserted with a condenser to better adaptation
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of the material, another polyester strip was placed over the resin composite, and a second
glass plate was used to press the material in order to force out excess resin composite.
The samples were positioned directly on the surface of the MARC-RC bottom sensor, so

the LCU was activated.
Degree of conversion (DC)

The degree of conversion of resin composites at the top and bottom of samples
were assessed after 24 hours. They were stored dry at 37 °C protected from light. The DC
were assessed using Fourier transform infrared (FTIR) spectroscopy (Vertex 70, Bruker
Optik GmbH, Ettlingen, Germany) with attenuated total reflectance sampling, mid-
infrared (MIR) and deuterated triglycine sulfate detector elements (Bruker Optics). The
spectra were obtained between internal standard aromatic C=C bonds stretching
vibrations (1608 ¢cm™) and aliphatic C=C bonds stretching vibrations (1638 cm'), at a 4
cm! resolution and 32 scans were averaged. All analyses were performed under
controlled temperature (25+1°C) and humidity (60£5%) conditions. DC was calculated
from the equivalent aliphatic (1638 cm™) and aromatic (1608 cm™) ratios of cured © and
uncured (U) resin composites. Admira x-base, Admira x-tra and SDR do not include an
aromatic C=C bond peak and were measured without this internal standard.?* Filtek One
does not contain Bis-GMA or Bis-EMA, so the 1450 cm™! peak was used an alternative
internal standard.?’ The formula used to calculate the degree of conversion was: DC (%)

= (1-C/U) x 100.

Knoop hardness (KNH) and elastic modulus (E)

After measuring degree of conversion, the samples from each group were used for
analysis of KNH (N/mm?) and E (MPa) of the resin composites at top and bottom
surfaces. The surfaces were polished with metallographic diamond pastes (6, 3, 1 and
0.25 um; Arotec, Sao Paulo, SP, Brazil). The Knoop indentation values were determined
with a microhardness tester (FM700; FutureTech Corp., Kawasaki, Japan) by applying a
load of 500 g for 15 s. Five indentations were made on the middle of each surface with
interval of 1 mm between them to obtain an average value. The elastic modulus was

calculated from Knoop indentations and the relationship for the decrease in the length of
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the indentation diagonals by elastic recovery: b’/a’ = b/a - w(H/E), where b/a is the ration
of the diagonal dimensions a and b, in the fully loaded state, given by a constant 0.140647.
b’/a’ is ratio of the altered dimensions when fully recovered and p=0.45 is a

proportionality constant.

Radiopacity

The samples of each group were positioned over a phosphor plate. The aluminium
step wedge (Odeme, Lucerna, SC, Brazil) was also placed on phosphor plate and the set
was positioned inside a device developed for the standardization for in vitro studies. The
radiographic exposure was performed using Timex 70 E (Gnatus, Ribeirdo Preto, Brazil)
with exposure of 0.28s at 70kV and 7.0 mA. The phosphor plate was placed 20
centimeters away from radiographic cylinder. The radiographs were transferred fromthe
phosphor plate to a computer using a digital scanner (VistaScan, Diirr Dental, Bietigheim-
Bissingen, Germany). Radiopacity was determined using the resident software provided
by the manufacturer (DBSWIN). Five points were previously defined on each sample
where the mouse cursor was positioned to collect the value of radiopacity. The mean of
the five calculated values was used as radiopacity level for each resin compositesample.
The final value of each group was obtained from the mean of the three radiodensity

values.

Statistical analysis

The Shr, DC, KHN, E, and Radiopacity data were tested for normal distribution
(Shapiro—-Wilk) and equality of variances (Levene’s test), followed by parametric
statistical tests. Three-way analysis of variance (ANOVA) was performed for each
mechanical property. Multiple comparisons were made using Tukey’s test. All tests
employed a = 0.05 significance level and all analyses were carried out with the statistical

package Sigma Plot version 13.1.
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RESULTS

Shr (%) of resin composites

The Shr mean and standard deviation values of flowable and high viscosity resin
composites activated using different irradiance levels and light activation times are shown
in Figure 1. Three ANOVA showed significant difference between the resin composites
(P <0.001), between irradiance level (P <0.001), and between light activation time (P
<0.001).”Tukey's test showed that for flowable resin composites, the Admira x-base had
the highest and Opus Flow had the lowest Shr values. For high viscosity resin composites,
the Tetric N-Ceram had the highest and SonicFill 2 had the lowest Shr values. In general,
increasing the light curing time and also the irradiance level increased Shr values were

observed, with more sensitivity for flowable than high viscosity resin composites.

E (MPa) and KHN (N/mm?) of resin composites

The E mean and standard deviation values of flowable and high viscosity resin
composites activated using different irradiance and time are shown in Figure 2. Three
ANOVA showed significant difference between the resin composites (P <0.001),
between irradiance level (P <0.001), and between light curing time (P <0.001) and also
for the interaction between the three study factors (P <0.001). *Tukey's test showed that
for flowable resin composites, the SDR had the highest and Admira x-base had the lowest
E values. For High viscosity resin composites, the Tetric N-Ceram had the highest and
SonicFill 2 had the lowest E values. In general, the E values were higher in the top than
at the bottom; when using 40s curing time and 1200mW/cm? of irradiance this difference
was not observed for Admira x-base, Tetric N-Ceram, Filtek One, Opus APS and
SonicFill 2. Increasing the irradiance level increased E values were observed for both
groups of bulk fill resin composites; these differences were slightly reduced when used
40s associated with irradiance of 800 and 1200mW/cm?. The light curing time
significantly influence negatively the E values mainly in the bottom region when was
used 400 mW/cm?. The use of 10s of light activation time used 800 and mainly 400
mW/cm? reduced significantly the E values at the top for the most tested and at the bottom

for all resin composites. The use of 40s with 1200mW/cm? tended to maintain the E values
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between top and bottom for all High viscosity resin composites, exception for Admira x-
tra.

The KHN mean values and standard deviations of flowable and high viscosity
resin composites activated using different irradiance and time are shown in Figure 3.
Three ANOVA showed significant difference between the resin composites (P <0.001),
between irradiance level (P <0.001), and between light curing time (P <0.001) and also
for the interaction between the three study factors (P <0.001). Tukey's test showed that
for flowable resin composites, the Tetric N-Flow had the highest and Admira x-base had
the lowest KHN values. Regarding high viscosity resin composites, the Tetric N-Ceram
had the highest and SonicFill 2 had the lowest KHN values. The KHN values were always
significantly higher at the top than at the bottom. Increasing the irradiance level increased
KHN values were observed for both groups of bulk fill resin composites. These
differences were more clearly observed when used irradiance of 400mW/cm? for all tested
resin composites, except for Admira x-base and Admira x-tra. The light curing time
significantly influence negatively the E values mainly in the bottom region when was
used 400 mW/cm?. The use of 10s of light activation time used 800 and mainly 400

mW/cm? reduced significantly the KHN values for the most resin composites.

DC% of resin composites

The DC mean and standard deviation values of flowable and high viscosity resin
composites activated using different irradiance and time are shown in Figure 4. Three
ANOVA showed significant difference between the resin composites (P <0.001),
between irradiance level (P <0.001), and between light curing time (P <0.001) and also
for the interaction between the three study factors (P <0.001). Tukey's test showed that
for flowable resin composites, the Filtek Flow had the highest and Opus Flow had the
lowest DC values. For high viscosity resin composites, the Admira x-tra had the highest
and Filtek One had the lowest DC values. DC values were significantly higher in the top
than at the bottom for all resin composites activated using all tested conditions, expect for
Admira x-tra when activated for 40s. In general, increasing the irradiance level and light
activation time, increased DC values were observed for both groups of bulk fill resin
composites. The light activation reduction time significantly influence negatively the DC

values mainly in the bottom region when was used 400 mW/cm?. The use of 10s of light
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activation time used 800 and mainly 400 mW/cm? reduced significantly the DC values at

the top for the most tested and at the bottom for all resin composites.

Radiopacity of resin composites

The radiopacity mean and standard deviation values of flowable and high
viscosity resin composites activated using different irradiance and light activation times
are shown in Figure 5. Three ANOVA showed significant difference between the resin
composites (P <0.001), however no difference was found between irradiance level (P
=0.426), between light curing time (P =0.709) and neither for the interaction between the
three study factors (P =0.360). *'Tukey's test showed that, for flowable resin composites,
the SDR had the highest followed by Tetric N-Flow, Filtek Flow, Admira x-base and
Opus Flow had the lowest DC values (Figure 6). All flowable resin composites
demonstrated radiopacity level similar or higher than 4mm of aluminum step-wedge,
except for and Opus Flow that was similar to 3mm of aluminum step-wedge. For high
viscosity resin composites, Tetric N-Ceram, followed by Admira x-tra, SonicFill 2, Filtek
One and Opus APS had the lowest radiopacity values (Figure 6). All high viscosity resin
composites demonstrated radiopacity level similar or higher than Smm of aluminum step-
wedge. The activation time and irradiance had no influence on radiopacity level for all

tested resin composites.

DISCUSSION

The results of the present study confirmed that post-gel shrinkage, degree of
conversion, Knoop hardness and elastic modulus of flowable and high viscosity viscosity
bulk fill resin composites were affected by the light activation time and irradiance of

LCU. Therefore, the first null hypothesis was rejected.

Polymerization shrinkage is an inherent problem associated with light-cure resin
composites, which depends on the filler concentration, light curing protocols, volume of
increments and cavity size.?® Resin composites contain an inorganic phase, composed by
filler particles the main component that determine the mechanical properties of the
material, and an organic phase that is responsible for network formation and consequently

the polymerization shrinkage.?” Although SonicFill 2 has a methacrylate-based matrix,
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which can have up to 12.5% volumetric shrinkage,?® this material had the lowest Shr

values because a greater amount of filler was used in its composition.

To ensure proper polymerization of restorative materials, sufficient radiant energy
emitted by LCU associated with the material characteristics is required.!® An inadequate
polymerization of resin composites can cause decreasing in their mechanical properties.'’
and less volumetric shrinkage of the material.>® Low irradiance associated with a shorter
light curing time resulted in lower Shr values because there is a decrease in degree of
conversion, increasing the number of residual monomers. Although resin composites with
low Shr values provide lower stresses on interface with dental substrate, reducing the
appearance of clinical signs such as marginal clefts, postoperative sensitivity, the degree
of conversion is directly related to mechanical properties of the material; therefore, a

lower degree of conversion leads to insufficient mechanical properties.

The DC represents the conversion of monomers to polymers during the
polymerization reaction of resin composites. Unsatisfactory polymerized resin composite
restorations have low degrees of conversion, and consequently, a large number of residual

monomers, which are soluble substances that can affect the pulp and periodontal tissue
health.*°

Since the initiation of polymerization reaction occurs from the activation of
photoinitiators by photons, it depends on the power density and emission spectrum that
arrives in material.3! As light goes through the material, there is a reduction in the number
of photons that reach photoinitiators due to absorption and scattering, mainly caused by
inorganic particles, which compromises the polymerization depth.*? This study showed
significantly high DC values in the top when compared to DC values in the bottom for all
resin composites activated using all tested conditions. Increasing the amount of filler in
material composition is a method that has been used to reduce the polymerization
shrinkage, but the material become more rigid.** Resin composites with higher elastic
modulus are less able to deform during polymerization due to difficulty of rearranging
the molecules, which reduces the possibility of stress relief.?* The elastic modulus similar
to dentin is essential to obtain an adequate resistance of the tooth/restoration complex.?*
Thus, an elastic modulus value between 12 and 20 MPa is critical for the longevity of

restorations in oral cavity.*® A restorative material with a low elastic modulus, especially
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when placed in areas subjected to high loads, can suffer significant deformation and
consequently lead to major failures.® In this study, flowable resin composites showed
significantly lower E values than high bulk fill composites. Therefore, flowable resin
composites should not be used to restore posterior cavities without an additional layer of
bulk fill resin composites with high viscosity to ensure greater wear resistance to

restoration.

There is a direct correlation between hardness measurement and the degree of
conversion of resin composites.?” Lower hardness and degree of conversion at the bottom
surface of the samples were observed, which is caused by light attenuation and lower
energy received by resin composites. This effect is accentuated when was used lower
irradiance and lower light activation time. It occurs because light does not adequately
reach deeper depths, and polymerization is impaired, resulting in lower mechanical
properties. Larger number of residual monomers can be present in the depth areas close

to pulp tissues resulting consequently in lower biocompatibility.!*

The success of a resin composite restoration may be directly associated with
mechanical properties such as hardness and elastic modulus.*® Hardness is linked to the
restoration ability to resist chewing forces, while elastic modulus reflects on generation
of shrinkage stresses that are dissipated through the tooth/restoration complex.?® The
results of this study confirm that bulk fill resin composites with high consistency have
higher elastic modulus and greater hardness, and bulk fill resin composites with flowable
consistency have lower elastic modulus and hardness. Therefore, flowable resin
composites are more fragile when exposed to the oral environment, and only high
viscosity resin composites can be used to replace at the same time dentin and enamel

concurrently.®

The Shr, DC, E and KNH values obtained in this study show that light activation
time and irradiance level are factors that influence the mechanical properties of bulk fill
resin composites tested. Considering an irradiance of 1200 mW/cm?, it is possible to
observe that in general, no significant changes in the mechanical properties of these
materials at different times of light activation. However, significant lower mechanical
properties of the bulk fill resin composites were observed when they light activation with

400 mW/cm? was used, regardless of the light activation time. These results confirm that
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the adequate irradiance level is essential for the proper polymerization of the bulk fill
resin composite. Light activation protocols that delivered to top and also to the entire
cavity depth, expressed by use of high power LCU associated with careful follow of bulk
fill resin composite clinical guideline, are fundamental for doing satisfactory bulk fill

restorations.

The polymerization reaction is self-limiting; as the material polymerizes, there is
a reduction in the mobility of remaining monomers and forming polymer chains. The
consequence of this is that, considering a high irradiance level, an increase in light
activation time is not effective to increase the degree of conversion due to polymerization
saturation, limiting the optimization of mechanical properties.’* Longer light activation
time can lead to better material polymerization if it has not reached its maximum degree
of conversion, so the light activation time becomes a less significant factor in the
polymerization process when the clinical advocates the use of LCU that can be provide a

sufficient amount of energy.

The second null hypothesis was accepted; the results confirmed that radiopacity
was not affected by the light activation time and irradiance of LCU. Radiopacity is an
important property for restorative material, enabling detection of marginal integrity and
secondary caries.?> Several factors can affect the radiodensity of posterior tooth
restorations, such as material properties and x-ray intensity and direction.’®4° However,
in this study, the results showed that the radiopacity of the materials is not influenced by
irradiance or light activation time. The present study confirmed that all bulk fill resin
composites have adequate radiopacity for posterior restorations, similar to 3-5 mm of
aluminum step-wedge. International organizations recommend procedures for
quantifying the radiopacity of resin composite using an aluminum step as a reference.*!
Although resin composites tested in this study show differences in radiopacity, they all
reach the expected and desired minimum limit of radiopacity for resin composites used

in posterior tooth, which is 1 mm of aluminum step-wedge.*?

The results of this study also showed that there is a significant difference in
radiopacity level among materials tested. The degree of radiopacity of resin composites
depends on the amount, type and size of particles, filler volume and polymer thickness

and density,*" but a factor that can most affect radiopacity is an inorganic phase of the
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material,*** Tetric N-Ceram groups presented higher radiodensity values than others
high viscosity resin composites groups, as well as SDR groups, which radiodensity values
were significantly higher than others flowable resin composites groups. This finding can
be explained by the type of fillers used in both materials, which have barium glass in
composition, a highly radiopaque glass.** Opus APS showed lower radiodensity values
than others high viscosity resin composites groups, as well as Opus Flow APS, which
radiodensity values were significantly lower than others flowable resin composites
groups. This result can be explained by the reduced capacity of silicon dioxide to absorb
x-ray.* Additionally, the results of the present study showed that flowable resin
composites had lower radiopacity values because the radiopacity level increases with the
amount of filler present on material composition and flowable resin composites tend to

have a smaller amount of filler to ensure their low viscosity.

It is essential the clinical understands the effects of irradiance level and light
activation time on the polymerization process of resin composites and consequently on
their mechanical properties. Evaluating the mechanical properties of resin composites is
an important tool for estimating the performance of materials subjected to large chewing
efforts, such as bulk fill resin composites, which are used in posterior tooth. Thus, light
activation protocols that consider high irradiance level (1200mW/cm?) and light

activation time (20 or 40s) provide efficient restoration, so should be prioritized.

CONCLUSION

The polymerization of bulk fill resin composites was influenced by light activation
time and irradiance level. In general, high irradiance level (1200 mW/cm?) associated
with a longer light activation time (20 or 40s) result in greater mechanical properties,
including degree of conversion, hardness and elastic modulus. However, in consequence
result also in higher post-gel shrinkage. The radiopacity depends on composition of bulk
fill resin composites was not influenced by light activation time and irradiance level. All
resin composites tested presented adequate radiopacity required for posterior restorations.
Flowable bulk fill resin composites presented lower mechanical properties, lower post-

gel shrinkage and lower radiopacity than high viscosity bulk fill resin composites.
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Table 1. Resin composites composition.

Material Shade Increment size and Organic Matrix Filler Filler Manufacturer
light activation time % (wt)
Tetric N-Ceram IVA 40mm-10s Dimetacrylates Barium glass, 75-77 Ivoclar Vivadent,
Bulk Fill prepolymer, ytterbium Schaan,
trifluoride, mixed oxides Liechtenstein,
Germany
Filtek One Bulk A3 4.0 mm AUDMA, diurethane- Silica, zirconia, 76.5 3M-ESPE,
Fill 20 s ->1000 mW/cm> DMA, 1,12-dodecane- ytterbium trifluoride St. Paul, MN, USA
40 s - <1000 mW/cm?> DMA
Opus Bulk Fill A3 5.0 mm —40s Urethanedimethacrylate Silicon dioxide 79 FGM,
APS Joinville, SC, Brasil
Admira Fusion x- Universal 4.0 mm — 20s ORMOCER® Silicon dioxide 84 VOCO,
tra Cuxhaven, Germany
SonicFill 2 A3 5.0 mm Bis-GMA, TEGDMA, Silicon dioxide, oxides, 83.5 Kerr Corporation,
10s->1000 mW/cm*> EBPADMA glass Orange, CA, USA
20 s - <1000 mW/cm?
Tetric N-Flow IVA 40mm-10s Monomethacrylates, Barium glass, ytterbium 68.2 Ivoclar Vivadent,
Bulk Fill dimethacrylates trifluoride, copolymers Schaan,
Liechtenstein,
Germany.
Filtek Bulk Fill A3 40mm-20s Bis-GMA, UDMA, Bis- Silica, zirconia, 64.5 3M-ESPE,
Flow EMA, Procrylat ytterbium trifluoride St. Paul, MN, USA.
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Opus Bulk Fill A3 50mm-40s Urethanedimethacrylate Silicon dioxide 68 FGM.

Flow APS Joinville, SC, Brasil.

Admira Fusion x- Universal 4.0 mm-20s ORMOCER® Silicon dioxide 72 VOCO,

base Cuxhaven, Germany

SureFil SDR Flow  Universal 4.0 mm—20s Modifed UDMA, Barium and strontium 68 Dentsply,
Dimethacrylate and alumino-fluoro-silicate Konstanz, BW,
difunctional diluents glasses Germany.

Abbreviations: Bis-GMA: bisphenol-A glycol dimethacrylate; Bis-EMA: bisphenol-A hexaethoxylated dimethacrylate; TEGDMA, triethylene glycol
dimethacrylate; UDMA, urethane dimethacrylate; EBPADMA, ethoxylated bisphenol A dimethacrylate; AUDMA, aromatic dimethacrylate; DMA,
dimethacrylate
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Figure 1. A. Means and standard deviation of post-gel shrinkage of flowable resin composites. B.
Means and standard deviation of post-gel shrinkage of high viscosity resin composites. Different
letters indicate significant difference — upper case used for comparing irradiance level and

lowercase letters used for comparing light curing time, P <0.001.
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lowercase letters used for comparing light curing time. * means interaction between the three study

factors, P <0.001.
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Figure 4. A. Means and standard deviation of degree of conversion of flowable resin composites.
B. Means and standard deviation of degree of conversion of high viscosity resin composites.
Different letters indicate significant difference — upper case used for comparing irradiance level
and lowercase letters used for comparing light curing time (P <0.001). * means interaction between

the three study factors, P <0.001.
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3. CAPITULO 2

ARTIGO 2

Light activation time and irradiance on flowable and high viscosity bulk fill resin composites - Part

2: effect on the shrinkage stress and residual occlusal stress

*Artigo a ser enviado para o periodico Operative Dentistry
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Light activation time and irradiance on flowable and high viscosity bulk-fill resin composites

- Part 2: effect on the shrinkage stress and residual occlusal stress

ABSTRACT

Objectives. Evaluate the effect of different light activation time and irradiance levels on shrinkage
stresses and residual occlusal stress in molars restored with different bulk fill resin composites
using finite element analysis (FEA).

Methods. Molar tooth restored with five flowable/high viscosity bulk fill resin composites (Tetric
N-Flow Bulk Fill/ Tetric N-Ceram Bulk Fill; Filtek Bulk Fill Flow/ Filtek One Bulk Fill, Opus
Bulk Fill Flow APS/ Opus Bulk Fill APS, Admira Fusion x-base/Admira Fusion x-tra, SureFil
SDR Flow/SonicFill 2) and with only high viscosity bulk fill resin composites (Tetric N-Ceram
Bulk Fill, Filtek One Bulk Fill, Opus Bulk Fill APS, Admira Fusion x-tra, SonicFill 2) were
simulated in a two-dimensional FEA. Post-gel shrinkage and elastic modulus for different light
activation time and irradiance levels were measured in study - Part 1. Compressive strength and
diametral tensile strength were measured by laboratory tests. Shrinkage stress and residual occlusal
stress were expressed in modified von Mises.

Results. Admira x-base/Admira x-tra and SonicFill 2 showed the lowest and Tetric N-Flow/Tetric-
Ceram and Tetric N-Ceram the highest stress concentration regardless the moment of analysis
(shrinkage or 100N occlusal loading moments). Molar tooth restored with different flowable/high
viscosity bulk fill resin composites result in lower shrinkage and residual stresses when compared
with molar tooth restored with only high viscosity bulk fill resin composites. The irradiation level
influenced in more intensity the shrinkage stress than the light curing time. The irradiance of
400mW/cm? resulted in significantly lower shrinkage stress than 800 and 1200 mW/cm?.
Conclusion. Lower shrinkage and residual stresses were observed on molar tooth restored with
different flowable/high viscosity bulk fill resin composites. Irradiance level influences the
generation of shrinkage and residual stresses on molar teeth restored with different bulk fill resin

composites more significantly than light activation time.
Clinical Significance. High irradiance (1200mW/cm?), regardless of light activation time, results

in higher shrinkage and residual stresses on molar teeth restored with different bulk fill resin

composites.
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INTRODUCTION

Bulk fill resin composites have been developed to reduce time, and also to decrease

13 such as microcracks and fractures in tooth

polymerization shrinkage and its clinical effects,
structure, marginal staining, microleakage and secondary caries.*¢ Shrinkage polymerization is an
inherent feature of polymeric materials, that reflects negatively on the tooth/restoration interface
and also on the weakened tooth structure mainly in posterior teeth.” Polymerization stress causes
residual stresses that could modify the behavior of restored teeth, even if they are not in chewing

function.®

Shrinkage stresses depend on several factors, including the intensity and light activation
time used during resin composite polymerization.”!° The energy that arrives at sample surface
associated with light activation time also influence the polymerization quality of bulk fill resin

1

composites.!! Improperly polymerized restorative material determines inferior mechanical

properties, increasing the chance of material fracture.!>!?

Evaluating mechanical properties of
restorative materials is important to better understand biomechanical behavior during occlusal
loading. When the tooth is subjected to a compressive occlusal load, tensile stresses are also
generated in the tooth structure, however the tooth is better able to resist compressive stresses than
tensile stresses.” Resin composites also keep this behavior during an occlusal loading.'* However,
when the resin composite is not adequately polymerized the restored posterior teeth will not support

properly the stress/strain caused by physiologic loading.

The elastic modulus is a physical property linked to hardness of the material, which is
associated with the development of stress.!>!¢ Materials with high elastic modulus tend to generate
higher polymerization shrinkage and consequently causing higher stresses in adjacent structures.!’
However, if the elastic modulus is low, the material cannot recover the structural integrity of the
tooth to apply as chewing loads.!” High viscosity bulk fill resin composites tend to have higher
elastic modulus and hardness than flowable resin composites.!*!> These mechanical properties
difference determines more fragility for flowable material when exposed to the oral environment.!®
Then, they need 2 mm covering with conventional or high viscosity bulk fill resin composites,'”
which have greater wear resistance.'* The adequate balance between properly polymerization
which generate expected mechanical properties which lower shrinkage stress as possible is the best

strategies for restoring posterior teeth.”!>20
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A previous study referred to as Part I evaluated the effect of light activation time and
irradiance on post-gel shrinkage, degree of conversion, Knoop hardness and elastic modulus of
flowable and high viscosity bulk fill resin composites. It was found that bulk fill resin composites
have better mechanical properties when light activated with longer time (20s or 40s) and with
higher irradiance (1200 mW/cm?). However, the influence of these factors on the shrinkage stress
inside the restorative material, into the tooth structures and along the tooth/restoration interface
could not be determined by laboratory tests. Therefore, the aim of this study was to evaluate the
effect of the elastic modulus and polymerization shrinkage calculated experimentally when used
different light activation time and irradiance levels of flowable covered by high viscosity or
restored by only high viscosity bulk fill resin composites on shrinkage stresses and residual stresses
during occlusal generated by physiologic load by using finite element analysis (FEA). The null
hypotheses were: 1) molar tooth restored with different flowable/high viscosity bulk fill or restored
with high viscosity bulk fill resin composites would result in similar shrinkage and residual
stresses; 2) different elastic modulus and polymerization shrinkage values obtained using low and
high activation time and low and high irradiation would not influence the shrinkage and residual

stresses on molar teeth restored with different bulk fill resin composites.

METHODS AND MATERIAL

Study design

Ten restorative protocols were tested in this study generated by using 5 flowable associated
with 5 high viscosity bulk fill resin composites (Tetric N-Flow Bulk Fill/ Tetric N-Ceram Bulk
Fill, Ivoclar Vivadent AG; Filtek Bulk Fill Flow/ Filtek One Bulk Fill, 3M-ESPE; Opus Bulk Fill
Flow APS/ Opus Bulk Fill APS, FGM; Admira Fusion x-base/Admira Fusion x-tra, VOCO;
SureFil SDR Flow, Dentsply/ SonicFill 2, Kerr) and restored only with 5 high viscosity bulk fill
resin composites (Tetric N-Ceram Bulk Fill, Ivoclar Vivadent; Filtek One Bulk Fill, 3M-ESPE;
Opus Bulk Fill APS, FGM; Admira Fusion x-tra, VOCO; SonicFill 2, Kerr). Considering a high
irradiance level (1200mW/cm?), and according to the manufacturer directions, Tetric N-Ceram and

Tetric N-Flow were light cured in increments up to 4 mm thick for 10s; Filtek One and Filtek Flow
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were light-cured in increments up to 4 mm thick for 20s; Opus APS and Opus Flow APS were
light-cured in increments up to 5 mm thick for 40s; Admira Fusion x-tra and Admira Fusion x-base
were light-cured in increments up to 4 mm thick for 20s; SonicFill 2 was polymerized in increments
up to 5 mm thick for 10s; and SureFil SDR was light-cured in increments up to 4 mm thick for 20s.
Additionally, to evaluate the effect of the light activation time and irradiance level, was simulated
the post-gel shrinkage and elastic modulus values obtained in study - Part 1, when was used 3 light
activation time (10s, 20s and 40s) with the higher irradiance level (1200mW/cm?) and 3 irradiance
levels (400mW/cm?, 800mW/cm?, and 1200mW/cm?) with the higher light activation time (40s)
for the shrinkage stress analyses. All resin composites were tested for compressive strength and
diametral tensile strength, which were used to determine the modified von Mises stresses by using

a 2D finite element analysis.

Compressive and diametral tensile strength

Compressive and diametral tensile strength of each resin composite were obtained
experimentally (n=10). The resin composite was placed into a cylindrical metallic mold for the
compressive strength test (6mm height x 3mm diameter) and into another mold for the diametral
tensile strength test (4mm height x 2mm diameter). The samples for the compressive test were light
activated with 4 or Smm for the first increment and 2 or Imm for the second increment,according
to manufacturer’s instructions. The LCU used was VALO Cordless (Ultradent, South Jordan, UT,
USA), following recommended curing times. The samples were stored for 24h at 37 °C in dark
box. The samples were tested in an universal testing machine (DL2000, EMiC, Sao Jos¢ dos
Pinhais, PR, Brazil) at a crosshead speed of 0.5mm/min until failure. Compressive strength values
(N/mm?) were calculated by dividing the fracture load (F) by the cross-sectional area (mr?), using
CS = F/ar?, and converted into MPa. Diametral tensile strength values (N/mm?) were calculated
using the equation DTS = 2F/ndh, where d is the sample diameter, and /4 is the height of the sample.

DTS values were converted into MPa.
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Finite elements stress analysis

A two-dimensional (2D) finite element analysis was carried out of an occlusal cavity with
the cavity floor in dentin of a maxillary human first molar in occlusal conditions with antagonist
contact (Figure 1A). The models were created by using a sagittal cross-sectional tomography image
as a template. This image was imported to ImagelJ software (National Institutes of Health) and the
coordinates were drawn by using multi-point tool, the scale was set according to real measure of
first molar of tomography image and imported to FEA software (MSC.Marc/Mentat; MSC
Software Corporation). Thirty models were generated simulating cavity with 4mm in depth
restored with a single increment of each high viscosity bulk fill resin composite (Figure 1B). Other
30 models were generated simulating cavity with 6mm in depth restored with 4mm of each
flowable bulk fill resin composites and covered with 2mm of high viscosity bulk fill resin

composites (Figure 1C).

The mesh using four-node isoparametric quadrilateral elements was created manually. The
number of elements on the entire mesh of flowable/high viscosity bulk fill finite element models
was 74620 and 74635 elements for models restored only with high viscosity bulk fill resin
composites. Plane strain condition was assumed for tooth and plane stress elements for the resin
composites.!”?! Using MARC subroutines, polymerization shrinkage was simulated by thermal
analogy reducing temperature by 1°C. The linear post-gel shrinkage and the elastic modulus values
obtained with resin composites light-activated for 10s, 20s and 40s with irradiance of 1200
mW/cm? and with irradiance 400, 800 and 1200 mW/cm? for 40s, obtained in the experiments of
part 1 study were applied as the coefficient of linear thermal expansion (Table 1-5).!7-2! A total of

60 finite element models were created.

After polymerization shrinkage simulation, the models were submitted to an occlusal
contact of 100 N of the mandibular molar with the maxillary molar, then a sliding movement was
simulated by using contact between lower and upper occlusal surfaces. Displacement was limited
at the nodes of the base of the maxillary and mandibular molars in X and Y directions. The contact
condition was applied between enamel, resin composite structures of maxillary molar touching the
enamel of mandibular molar. All structure interfaces were defined as glued contacts. The models
were performed with 50 increments of load steps. Since the materials have higher strength in

compression than in tension, a failure criterion that considers strength differential effect (SDE) #
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1 should be used.?? The modified von Mises (mvm) criterion considering the difference between
compressive and tensile strength was used as parameter for stress comparison. The SDE was
obtained by the division of CS by DTS values. The SDE data are presented on Table 1. The
compressive and tensile strengths of enamel were 384.0 and 10.3 MPa and for dentin 297.0 and

98.7 MPa.?

The occlusal contact of 100N of the mandibular molar with the maxillary molar, followed
by a sliding movement, was simulated by using friction contact between the lower and upper
occlusal surfaces (Frictional Coefficient — 0.5). The mvm stress distributions were visualized using
a linear color scale in which blue indicates the lowest stress values, and yellow and light gray the
highest values (MPa) representing shrinkage stress (light-curing moment) and residual occlusal
loading stress (100N occlusal load). The mvm stress values were recorded in the integration points
of each element and in isolated nodes along material interfaces. The mean values of the 10% highest

stresses were determined for the enamel, dentin, and resin composite structures.

RESULTS

Modified von Mises stress distribution at shrinkage and occlusal contact final movement
on finite element models restored flowable/high viscosity bulk fill resin composites and with only
high viscosity bulk fill resin composites when light-cured following the recommended time by
manufacture using 1200 mW/cm? are shown in Figure 2. Regarding the flowable/high viscosity
bulk fill resin composites technique, Admira x-base/Admira x-tra showed the lowest and Tetric N-
Flow/Tetric-Ceram the highest stress concentration regardless the moment of analysis (shrinkage
stress or residual stress of 100N occlusal load). Regarding the high viscosity resin composites
technique, Tetric N-Ceram showed the highest and SonicFill 2 the lowest stress concentration
regardless the moment of analysis (shrinkage stress or residual stress of 100N occlusal load). The
residual stress generated with 100N occlusal load had similar values of shrinkage stress at the
restoration material and at the interface. However, the residual occlusal stress concentrated at
enamel structure and at the pulp chamber ceiling were clearly higher than shrinkage stress only,

irrespective of bulk fill resin composite type.
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The mean values of the 10% highest mvm shrinkage stresses concentrated in the enamel
and dentin at shrinkage and occlusal contact final movement on finite element models restored
flowable/high viscosity bulk fill resin composites and with only high viscosity bulk fill resin
composites when light-cured following the recommended time by manufacture using
1200mW/cm? are shown in Figure 3. The occlusal contact generated high stress concentration at
the enamel/resin composite occlusal interface, the stress level ranking of resin composites followed
the same sequence of the intensities verified for shrinkage stress, irrespective of bulk fill resin
composite type. The mean values of the 10% highest bulk stresses concentrated in the enamel was
always higher than concentrated in dentin structure, irrespective of resin composite and moment of
evaluation. Comparing the moment of analysis, the peak values were slightly lower during
restorative procedure (shrinkage stress) than during occlusal contact load (residual occlusal contact
stress) in the enamel and dentin. All flowable/high viscosity resin composites demonstrated similar
stress concentration in dentin, however regarding the moment of evaluation the stress concentration
was higher during occlusal loading than during restorative procedure. No difference was observed
in the stress concentration in dentin for high viscosity resin composite, irrespective of themoment
of analysis. Regarding the enamel structure, the resin composite type influenced clearly the stress
concentration, irrespective of moment of evaluation. Regarding flowable/high viscosity bulk fill
resin composite techniques, Tetric N-Flow/Tetric N-Ceram showed the highest and SDR/SonicFill
2 the lowest stress concentration. Regarding high viscosity bulk fill resin composite technique,

Tetric N-Ceram showed the highest and SonicFill 2 the lowest stress concentration (Figure 3).

The mean values of the 10% highest mvm concentration along the interface at shrinkage on
finite element models restored flowable/high viscosity bulk fill resin composites and with only
high viscosity bulk fill resin composites when light cured following the recommended time by
manufacture using 1200mW/cm? are shown in Figure 4. The stress concentration along the
interface was higher at enamel than at dentin, with the highest peak verified at the occlusal margin
of the restoration. The differences between the resin composites when using flowable/high
viscosity bulk fill resin were clearly evidenced at the enamel/restoration margins. Tetric N-
Flow/Tetric N-Ceram showed the highest and SDR/SonicFill 2 the lowest stress concentration at
the interface. However, for high viscosity resin composites, differences were evidenced in the
enamel and dentin interfaces. Tetric N-Ceram showed the highest and SonicFill 2 the lowest stress

concentration along the interface.
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Modified von Mises stress distribution and the 10% highest stresses concentrated in the
enamel and dentin at shrinkage on finite element models when light cured using 1200mW/cm? with
10, 20 and 40s and using 40s with 400, 800 and 1200mW/cm? are shown in Figure 5 and 6 (models
restored flowable/high viscosity bulk fill resin composites) and Figure 7 and 8 (models restored
with high viscosity bulk fill resin composites), respectively. The irradiation level influenced in
more intensity the shrinkage stress than the light curing time. For models restored with
flowable/high viscosity bulk fill resin composite, higher irradiance used for 40s resulted in higher
shrinkage stress for all resin composites, except for Admira x-base/Admira x-tra group. When
using 1200mW/cm?, increasing the light activation time also increased the shrinkage stress was
verified with more intensity for Tetric N-Flow/Tetric N-Ceram and when compared 10s with 40s
for Opus Flow APS/Opus APS and Surefill SDR/SonicFill 2 (Figure 5 and 6). The variation of
light activation time and irradiance caused more increasing on shrinkage stress in enamel than in
dentin (Figure 6). The increasing of light activation time and mainly the irradiance resulted in more
shrinkage stress mainly for Tetric N-Ceram, Opus APS (Figure 7 and 8). The light activation time
had lower influence on the shrinkage stress for Filtek One. In general, the increasing of irradiance
level when used 40s the use of 400mW/cm? resulted in significant lower shrinkage stress than 800
and 1200mW/cm?. The variation of light activation time and irradiance caused more increasing on

shrinkage stress in enamel than in dentin (Figure 8).

DISCUSSION

The results of the present study confirmed that molar tooth restored with different
flowable/high viscosity bulk fill or restored only with high viscosity bulk fill resin composites,
light cured with 1200 mW/cm? for 10, 20 or 40s, or even when followed the manufacturer
recommendation time, do not present similar shrinkage and residual stresses, therefore, the first

null hypothesis was rejected.

Bulk fill resin composites are available in two presentations: high and flowable viscosity.
Flowable resin composite provide better adaptation to restored cavity walls due to good
flowability,?® besides presenting lower post-gel shrinkage values, as can be seen in results of Part
I. It means reduction on stress generation in the tooth/restoration complex during polymerization.

Consequently, the occurrence of symptoms and clinical signs such as marginal clefts, propagation
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of enamel microcracks, postoperative sensitivity, infiltration and secondary caries are also
dimished.?® However, flowable bulk fill resin composites have lower mechanical properties
according to the Knoop hardness and elastic modulus values obtained in part I, which makes it
more fragile when exposed to the oral environment. Therefore, it is recommended to use a layer of
high viscosity to cover these resin composites in posterior tooth restorations. High viscosity resin

composites have higher resistance to wear,'**°

as well as greater elastic modulus and greater
hardness according to the results shown in part I; on the other hand, higher polymerization
shrinkage values are also observed for these resin composites. Therefore, stress distribution at
shrinkage and occlusal contact final movement was lower on finite element models restored with
flowable/high viscosity bulk fill resin composites than with only high viscosity bulk fill resin

composites.

The residual stress generated with 100N occlusal load had similar values of shrinkage stress
generated during the restoration in the enamel, dentin or at the interface, irrespective of bulk fill
resin composite type. Chewing loads can generate fatigue process that contributes to stress
concentration in restorative complex and interfaces.”> However, when a tooth is subjected to
normal occlusal loading (100N), the stresses and deformations generated are dissipated by the
material if the adhesive integrity between tooth and restoration is maintaned.'* Different elastic
modulus and polymerization shrinkage values obtained using low and high activation time and low
and high irradiance influenced the shrinkage and residual stresses on molar teeth restored with

different bulk fill resin composites. So, the second null hypothesis was rejected.

The elastic modulus and the volumetric shrinkage are important properties that influence
the generation of stresses and strain in dental structured due to the polymerization shrinkage of the
material or the functional occlusal loading.®! A rigid material (high elastic modulus), as the enamel,
has lower flowability capacity during polymerization, resulting in higher stress generation.
However, the elastic modulus similar to dentin leads to a decrease in polymerization shrinkage
transferred to dental structure.?*? Materials with low elastic modulus also allow greater strain
under load, which results in adequate strength of the tooth/restoration complex.®? As well as the
present study, several studies also show a significant positive correlation between elastic modulus
and stress. Higher elastic modulus values of the material cause higher shrinkage stresses.** In part

I, Admira x-base, Admira x-tra and SonicFill 2 present low values of elastic modulus; Tetric N-
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Ceram and Tetric N-Flow present high values of elastic modulus. Therefore, Admira x-
base/Admira x-tra and SonicFill 2 presented the lowest stress concentration in both moments of
analysis (shrinkage stress or residual strees of 100N occlusal load), while Tetric N-Ceram and

Tetric N-Flow/Tetric-Ceram showed the highest values.

Higher irradiance values may lead to more stresses during the polymerization reaction.>-3¢

The reaction happens faster and stresses relief is not possible as when using low irradiance. The
present study shows that shrinkage stress distribution in finite element models restored with
flowable/high viscosity and restored with only high viscosity bulk fill resin composites increased
with irradiance level, considering the same light activation time. The present study also showed
higher shrinkage stress distribution when was used flowable/high viscosity and restored with only
high viscosity bulk fill resin composites with high irradiance level (1200mW/cm?), regardless of
light activation time. It is important to consider that irradiance level may influence the clinical

performance of the material.

Characterizing mechanical properties of restorative materials is important to better
understand biomechanical behavior during oral function. Associate data extracted from the post-

720 and combined with finite element models

gel shrinkage of resin composites and elastic modulus,
using these values can be a more comprehensive analysis for developing products, techniques and
clinical protocols. FEA studies have allowed a considerable progression of our understanding about
the development of stresses within materials, on interfaces with the dental structure and within
enamel and remaining dentin,®’ since stresses are quantified indirectly.?® Therefore, a validated
finite element model can be used to predict mechanical failures or answer questions that is not
possible to access with laboratory tests.*® Part I and part II of this study illustrated that the clinical
success of bulk fill restorations in posterior teeth depends on the balance between the mechanical
properties of the materials. High elastic modulus ensures better wear resistance, while lower
shrinkage values result in lower stresses. It is crucial that clinicians understand that different
clinical light activation protocols influence the mechanical properties of materials, and
consequently the biomechanical performance of restorations. High irradiance promotes proper
restoration polymerization, resulting in good mechanical properties, but higher residual stresses are
generated. So, the quality of the materials used and the light activation clinical protocols can

interfere in the quality of the treatment.
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Clinical failures in posterior teeth are much more related to poor mechanical properties than
higher shrinkage stress.* The results of the part II of this study should be interpreted with caution
and never considered isolated without considering the results demonstrated in part I. Is always
expected that resin composites present lower shrinkage as possible, however this information
should always be accompanied by higher mechanical properties as possible, which is mandatory

for posterior resin composite restorations present long-term survival.

CONCLUSION

Molar tooth restored with different flowable/high viscosity bulk fill resin composites result
in lower shrinkage and residual stresses when compared with molar tooth restored with only high
viscosity bulk fill resin composites, regardless of light activation time and irradiance level.
Additionally, irradiance level and light activation time influence the generation of shrinkage and
residual stresses on molar teeth restored with different bulk fill resin composites, however
irradiance level affects more significantly than light activation time, high irradiance results in
higher shrinkage and residual stresses on molar teeth restored with different bulk fill resin
composites, regardless of light activation time. The combination of adequate mechanical properties
with low shrinkage is an important approach and is essential to justify the use of high irradiance

(1200mW/cm?) associated with at least 20s for resulting in good balance for posterior restorations.
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Table 1. Properties applied for dental structures and resin composites (light cured with

1200mW/cm? using the light curing tome recommended by manufactured).

Materials/ Elastic Poisson’s  Compressive Tensile SDE* Shr*
Structures Modulus Ratio strength strength
(MPa)* (MPa) (MPa)

Enamel 84100 2* 0.33 % 384.0 % 10.3% 37.3 -

Dentin 18600 2 0312 297.0% 98.7 % 3.0 -

Pulp 2% 0.45 % 2.9% 2.9% 1.0 -
Tetric N-Ceram 21600 0247 2735 48.4 5.7 0.42
Filtek One 18300 0.24727 2382 64.6 3.7 0.30
Opus APS 18100 0.24727 216.8 46.1 4.7 0.42
Admira x-tra 10600 0247 187.2 27.8 6.7 0.35
SonicFill2 9800 0.24 7 163.0 34.5 4.7 0.21
Tetric N-Flow 5800 0352 212.6 454 4.7 0.30
Filtek Flow 5400 0.35 24 323.9 68.6 4.7 0.45
Opus Flow 6200 0.35 % 262.9 50.1 5.2 0.37
Admira x-base 2900 0352 207.2 42.6 4.9 0.45
SDR 8400 0.35 % 2232 497 4.5 0.35

* Resin composite values obtained from laboratorial tests of part I.
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Table 2. Mechanical properties (E, Elastic Modulus - GPa; and Shr, Post-gel shrinkage - %) applied

for dental resin composites light cured for 40s with the irradiance of 400, 800 and 1200mW/cm?

when used flowable/ viscosity technique.

1200mW/cm? 800mW/cm? 400mW/cm?
Resin Composite Thickness

E Shr E Shr E Shr
Admira x-tra 0-2mm  12.6-11.7 037 122-109 036 102-92 031
Admira x-tuse/ Admira x-base ~ 0-4mm 33-29 050 3.1-3.1 040 3.1-30 039
Filtek Flow/ Filtek Flow 0-2mm 63-49 047 6.10-480 030 5.10-4.10 0.20
Filtek Flow Filtek One 0-4mm  22.4-222 031 21.9-205 031 183-155 031
SDR 0-2mm 98-86 041 88-79 030 87-69 0.16

SDR/ SonicFill 2
SonicFill 2 0-4mm  10.8-10.7 027 93-85 025 9.0-87 024
Tetric N-Flow  0-2mm 74-51 037 72-51 041 7.0-34 034
Tetric N-Flawin Tetric N-Ceram  0-4mm  21.6-21.5 050 21.5-21.4 037 16.6-159 032
Opus Flow APS/ Opus Flow APS  0-2mm 72-49 037 71-48 023 7.0-34 0.10
Opus APS Opus APS 0-4mm  18.1-18.0 042 17.8-17.0 037 17.5-16.6 0.25

*Values obtained from laboratorial tests of part I.
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Table 3. Mechanical properties (E, Elastic Modulus - GPa; and Shr, Post-gel shrinkage - %) applied

for dental resin composites light cured with irradiance of 1200mW/cm? for 10s, 20s and 40s when

used flowable/ viscosity technique.

40s 20s 10s
Resin Composite Thickness

E Shr E Shr E Shr
SDR 0-2mm 97-86 041 94-78 035 93-74 028

SDR/ SonicFill 2
SonicFill 2 0-4mm  10.8-10.7 027 10.1-99 025 104-99 021
Opus Flow APS/  Opus Flow APS  0-2mm 72-49 037 65-31 032 60-32 0.12
Opus APS Opus APS 0-4mm  18.1-18.0 042 163-162 039 157-156 0.38
Tetric N-Flow/ Tetric N-Flow 0-2mm 74-51 041 68-55 035 58-51 030
Tetric N-Ceram Tetric N-Ceram  0-4mm  21.6-21.5 050 215-21.4 037 16.6-163 0.32
Filtek Flow/Filtek  Filtek Flow 0-2mm 63-49 047 62-39 045 61-35 039
Filtek Flow Filtek One 0-4mm  22.4-223 031 189-18.6 030 19.1-18.7 0.30
Admira x-base/ Admira x-base  0-2mm 33-29 050 29-29 045 3.0-24 042
Admira x-tra Admira x-tra 0-4mm  12.6-122 036 11.8-11.3 035 10.6-10.0 0.34

*Values obtained from laboratorial tests of part I.
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Table 4. Mechanical properties (E, Elastic Modulus - GPa; and Shr, Post-gel shrinkage - %) applied
for dental resin composites light cured for 40s with the irradiance of 400, 800 and 1200mW/cm?

when used viscosity technique.

40s 208 10s
Resin Composites

E Shr E Shr E Shr
Tetric N-Ceram 21.6-21.4 0.50 21.5-21.2 0.37 16.6 - 14.8 0.32
Filtek One 224-21.8 0.31 21.9-183 0.31 183-11.2 0.24
Opus APS 18.1-17.9 0.42 17.8-15.7 0.37 17.5-12.9 0.25
Admira x-tra 12.6 - 10.3 0.37 122-8.9 0.36 10.2-7.8 0.31
SonicFill 2 10.8 - 10.5 0.27 93-74 0.25 9.0-7.6 0.24

*Values obtained from laboratorial tests of part I.

70



Table 5. Mechanical properties (E, Elastic Modulus - GPa; and Shr, Post-gel shrinkage - %) applied
for dental resin composites light cured with irradiance of 1200mW/cm? for 10s, 20s and 40s when

used viscosity technique.

40s 208 10s
Resin Composites

E Shr E Shr E Shr
Tetric N-Ceram 21.6-21.4 0.50 21.5-213 0.42 21.0-20.8 0.40
Filtek One 224-21.8 0.31 18.9-18.2 0.30 19.1-16.9 0.30
Opus APS 18.1-17.9 0.42 16.3-16.2 0.39 15.7-15.0 0.38
Admira x-tra 12.6 - 10.3 0.36 11.8-9.0 0.35 10.6-7.4 0.34
SonicFill 2 10.8 - 10.5 0.27 10.1-9.3 0.25 104-79 0.21

*Values obtained from laboratorial tests of part 1.
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Figure 1. A. Finite element mesh. B. Two-dimensional strain model of simulating cavity with 6mm

depth restored with 4mm of each flowable bulk fill resin composites and covered with 2mm of high
viscosity bulk fill resin composites. C. Two-dimensional strain model of simulating cavity with

4mm in depth restored with a single increment of each high viscosity bulk fill resin composite.
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light cured with 1200mW/cm? for the time recommended for manufacturer of each resin composite.

B. Modified von Mises stress distribution at shrinkage and occlusal contact final movement on

finite element models restored with only high viscosity bulk fill resin composites light cured with

1200mW/cm? for the time recommended for manufacturer of each resin composite.
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Light activation time and irradiance on flowable and high viscosity bulk fill resin composites

- Part 3: effect on the light transmission

ABSTRACT

Objectives. To evaluate the effect of the exposure time and the irradiance of a mult-peak light
curing unit (LCU) on the light transmission of bulk-fill resin composites.

Methods. Five flowable bulk fill resin composites (Tetric N-Flow Bulk Fill, Ivoclar Vivadent;
Filtek Bulk Fill Flow, 3M Oral Care; Opus Bulk Fill Flow APS, FGM; Admira Fusion x-base,
VOCO; SureFil SDR Flow, Dentsply) and five viscosity bulk fill resin composites (Tetric N-
Ceram Bulk Fill, Ivoclar Vivadent; Filtek One Bulk Fill, 3M Oral Care; Opus Bulk Fill APS, FGM;
Admira Fusion x-tra, VOCO; SonicFill 2, Kerr) were light cured for 40 seconds, using VALO
Cordless, varying the irradiances of 1200, 800 and 400 mW/cm?, according to distances of 1, 5 and
13 mm, respectively. The light beam profile of light transmitted was measured using a laser beam
profiler camera both during real time polymerization and after polymerization. Images were
collected using BeamGage Professional 6.14.0.355 software.

Results. All bulk-fill resin composites decreased the light transmission as the irradiance decreased.
SF showed the lowest light transmission at all different LCU irradiances. Tetric N-Ceram and
Admira Fusion x-tra showed the highest light transmission among all bulk-fill resin composites at
1200 mW/cm?. None of them was similar to the VALO images through the 60-degree screen. As
the polymerization process occurs, there is a progressive decrease of light transmission through the
material, regardless of bulk-fill resin composites

Conclusion. The irradiance level affected the light transmission of bulk-fill resin composites;
flowable and high viscosity bulk fill resin composite had different light transmission after cured.
Moreover, as the polymerization process occurs, there is a progressive decrease of light

transmission through the material for all resin composites tested, except for Opus Bulk Fill APS.

Clinical Significance. LCUs with low irradiance (400 mW/cm?) affect significantly the light
transmission though the material, and it can decrease the mechanical properties of flowable and
high viscosity bulk-fill resin composites. So, it is recommended to use higher irradiance level to

results in a proper polymerization process.
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INTRODUCTION

The light transmission into resin composite restorations depends on several factors, such as
the composition of the restorative material and characteristics of the light curing unit (LCU).! If
the light does not reach adequately on the bottom of restorations, the material polymerization may
be impaired.? Lower energy delivered into deep areas, can result in resin composites insufficiently

polymerized, compromising the mechanical properties.?

Different LCUs present vary as on internal tip diameter, light beam profile, emission
spectrum, radiant exposure and irradiance, which may result in different outcomes in the
polymerization of resin composites.* Radiant exposure is related to the amount of light emitted by
the LCU, and it is important for the generation of free radicals that start the polymerization
reaction.’ Resin composite restorations need to be light cured properly so that the mechanical
properties intended by manufacturer are achieved, ensuring long-term clinical success.” Resin
composite that receives lower irradiance can have the polymerization impaired at the surface and
mainly in deep areas of the restorations.®” This aspect gained more relevance nowadays due the
increasing use of bulk fill resin composites. The correct choice of LCU is essential for making

adequate polymerized bulk fill resin composite restorations.®

LCU is an essential factor in the resin composite light curing process, as the material must
receive sufficient energy for effective polymerization.* It is important to measure irradiance and
power of the LCUs to know how much light reaches the surface of resin composites; the irradiance
value is obtained from the total power emitted by the LCU that affects the surface of known
dimensions, while the light output is evaluated from power radiant and diameter of LCU tip.* The
emission spectrum can also influence the transmission of light emitted by LCUs into resin
composite restorations.!® Light with long wavelength as 460 nm (blue) has greater penetration
through the resin composite than a short wavelength as 400 nm (violet).!! Some manufacturers
have inserted new photoinitiators in bulk fill resin composites to ensure polymerization in great
depths.!? Tvocerin, is a photoinitiator more reactive compared to camphorquinone, usually used in
conventional and bulk fill resin composites.!® The absorption spectrum of this photoinitiator is not
emitted by high monowave LCUs and also the violet light wavelengths has lower capacity of the
penetration.!®!* The APS system is a combination of different photoinitiators in which

camphorquinone is the main photoinitiator, this system are also presented in conventional and bulk
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fill resin composites. The interaction of the camphorquinone with other compounds enhances the

light curing ability of the monowave LCUs to polymerize these materials.

Bulk fill resin composites have greater translucency than conventional resin composites. !>
Higher translucency results in greater light transmission essential to promote the polymerization
on the bottom surface.!> However, the correlation of the light transmitted through the bulk fill resin
composite measured using beam profiling mapping with the calculated properties can clarify this
statement.!? Flowable bulk fill resin composites have a higher translucency compared to bulk fill
materials with high viscosity because of their smaller amount of filler particles.'® However, the
consequence of this modification is a lower wear resistance of the material.!” The capacity of the
light transmission can also modify during the polymerization process increasing or decreasing the
translucency of the resin composite.!® Optical properties such as color, translucency and
fluorescence are important characteristics of bulk fill resin composites for mimic color of natural
teeth.!” Increased translucency of bulk fill resin composite can compromise the capacity of the
masking the color pigmentation of the dentin substrate when stained by amalgam or sclerotic
dentin.' The expected behavior is the resin composites permit the more light transmission as
possible, and after polymerization process the bulk fill resin composite should gain more opacity,
increasing the capacity of the masking the color of the substrate. Therefore, this study aimed to
evaluate the effect of the different irradiance and the real time light translucency on the light
transmission of flowable and high viscosity bulk fill resin composites. The null hypotheses were:
1) the irradiance and the real time light translucency would not affect the light transmission of the
bulk fill resin composite; 2) flowable and high viscosity bulk fill resin composite will present

similar light transmission after cured.

METHODS AND MATERIALS

Five flowable bulk fill resin composites (Tetric N-Flow Bulk Fill, Ivoclar Vivadent; Filtek
Bulk Fill Flow, 3M-ESPE; Opus Bulk Fill Flow APS, FGM; Admira Fusion x-base, VOCO;
SureFil SDR Flow, Dentsply) and five high viscosity bulk fill resin composites (Tetric N-Ceram
Bulk Fill, Ivoclar Vivadent; Filtek One Bulk Fill, 3M-ESPE; Opus Bulk Fill APS, FGM; Admira
Fusion x-tra, VOCO; SF- SonicFill 2, Kerr Corporation) were tested in this study.
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The light beam profile of light transmitted through 4.0 mm bulk fill resin thickness was
measured using a laser beam profiler camera both during real time polymerization and after
polymerization. The samples were prepared as described in the part I of this study. The LCU guide
tip was placed on one side of the resin mold, and the transmitted light beam was examined from
the other side using a profile camera with a 50 mm focal length lens (SP928, Ophir-Spiricon,
Logan, UT, USA) with two blue filters (HOYA UV-VIS colored glass bandpass filter, Edmund
Industrial Optics, Barrington, NJ, USA) and two neutral density filters (1.0 and 3.0, Edmund
Optics). They were used to flatten the spectral response of the CCD camera. All materials were
light cured using a multi-peak LCU (VALO Cordless; Ultradent, South Jordan, UT, USA) varying
the distances of 1, 5 and 13 mm correlated to the irradiances of 1200, 800 and 400 mW/cm?,
respectively. The distances between the LCU and the sample top surface were measured to be
equivalent to each irradiance checking using a MARC resin calibrator (BlueLight Analytics Inc,
Halifax, NS, Canada). In order to capture the images during the 40 seconds of light curing, the
number of frames and exposure time were calculated to each bulk fill resin composite on itsscale.
After that, the beam profile camera took an image of each bulk fill resin composite after
polymerization in the same scale compared to the VALO Cordless image characterized using a
holographic diffuser (60° holographic diffuser screen, Edmund Optics). Images were collected
using Beam Gage Professional 6.14.0.355 software (Ophir-Spiricon, North Logan, UT, USA).

RESULTS

The three-dimensional representations of the beam profile captured at the irradiance of 1200
mW/cm? during the light curing through 4.0 mm thickness of flowable and capacity of the masking
the color pigmentation of the dentin substrate when stained by amalgam or sclerotic dentin bulk
fill resin composites are shown in Figure 1. Tetric N-Ceram kept the same light transmission during
the different periods of times of 5, 10, 20 and 40 seconds. The other flowable bulk fill resin
composites increased the light transmission through the exposure time of 40 seconds. Opus Bulk
Fill APS had an opposite behavior, was observed the decreasing of the light transmission through
the material during the exposure time from 5s to 40s. Admira Fusion x-base and Admira Fusion x-
tra showed the highest differences between 5 seconds and 40s. Figure 2 illustrates the three-

dimensional representations of the beam profile captured at different irradiances at 40s of the light
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curing of resin composites. All bulk fill resin composites decreased the light transmission as the

irradiance level decreased.

The two-dimensional beam profile images after polymerization captured at different LCU
irradiances through flowable and high bulk fill resin composites compared to the VALO beam
profile images through the 60-degree screen are shown in Figure 3. The light beam profile oflight
transmitted through 4.0 mm bulk fill resin thickness is higher for Admira Fusion x-base and SDR
than other bulk fill resin composites at 800 mW/cm?. Tetric N-Ceram and Admira Fusion x-tra
showed the highest light transmission among all bulk fill resin composites at 1200 mW/cm?. At
400 mW/cm?, lower light transmission is showed through all bulk fill resin composites. SonicFill
2 showed the lowest light transmission at all different LCU irradiances. None of them was similar

to the VALO images through the 60-degree screen.

DISCUSSION

The irradiance of the VALO LCU affected the light transmission of bulk fill resin
composite; flowable and high viscosity bulk fill resin composite presented different light
transmission behavior during the curing process, most of the resin composite increase the capacity
of light transmission after cured. Additionally, flowable bulk fill resin composites had higher light
transmission capacity than high viscosity bulk fill resin composites. Therefore, both null

hypotheses were rejected.

Part I study shows that low irradiance level affects the quality of mechanical properties of
bulk fill resin composites; all materials tested results low values of degree of conversion, elastic
modulus and Knoop hardness when light cured with 400 mW/cm?. According to the results of this
study, resin composites light cured with low irradiance level (400 mW/cm?) had light transmission
substantially impaired. Therefore, materials that do not receive sufficient energy at the bottom of

cavity shown inferior mechanical properties.

The beam profile images of this study showed that flowable bulk fill resin composites allow
a greater light transmission regarding high viscosity bulk fill resin composites, regardless of
irradiance level. In general, flowable bulk fill resin composites have a lower filler concentration

than high viscosity bulk fill resin composites. A larger amount of filler can result in greater light
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scattering; the light scatters through the filler particles, and it is absorbed by the photoinitiator
molecules.?’ It means that as light passes through the resin composite, its intensity is attenuated,
resulting in decreased irradiance and polymerization effectiveness.?’ SDR presented also larger
filler particles that permits higher light transmission though the resin composite depth.!> Although,
Sonic Fill 2 and Admira Fusion x-tra have a high filler concentration (approximately 84%), beam
profile images showed that Admira Fusion x-tra allows for greater light transmission than SF at
any irradiance level. According to the manufacturer, Admira Fusion x-tra is a restorative material
based on ceramics (silicates), ensuring greater translucency to the composite; SonicFill 2 has larger
and irhigh filler particles, which decreases their translucency.?! SonicFill 2 shows translucency
comparable to conventional resin composites,'¢ showing the worst light transmission results for all

irradiance levels when compared to others bulk fill resin composites tested.

Light is a type of electromagnetic radiation with wavelengths ranging from 400 to 700 nm.
When an electromagnetic wave collides with particles in its path, it undergoes the absorption,
reflection and refraction processes, inducing a progressive drop in intensity as it advances in depth
into the material.>?> Beam profile images of all bulk fill resin composites tested confirm this fact;
as the polymerization process occurs, there is a progressive decrease of light transmission through
the material, except for Opus APS. The light transmission also depends on the amount and type of
monomers, the size and quantity of filler particles, the presence of pigments and the differencesin

the refractive index.?

High light transmission is expected optical properties of bulk fill resin composite for
resulting in properly polymerization in the entire depth of the restoration resulting in higher
mechanical properties. However, higher light transmission is in the optical perspective
accompanied by lower capacity of the opacification the tooth substrates. The posterior cavities that
were restored with amalgam for long term and cause tooth structure staining or cavities with darker
dentin caused by obliteration and mineralization of the bellow the caries cannot be blocked. The
combination of the adequate light transmission and opacity gained after curing process can be the
nest balance for achieving the properly mechanical and esthetic properties of bulk fill resin

composite.

CONCLUSION
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All bulk fill resin composites decreased the light transmission as the irradiance decreased,
flowable and high viscosity bulk fill resin composite did not present similar light transmission after
cured. Moreover, as the polymerization process occurs, there is a progressive decrease of light

transmission through the material for all tested resin composites, except for Opus APS.
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Nota a banca de defesa de mestrado: o artigo intitulado Light activation time and irradiance on
flowable and high viscosity bulk fill resin composites - Part 3: effect on the light transmissionesta
em desenvolvimento. Serdo inseridos dados de poténcia provenientes da esfera integradora, a qual
encontra-se em calibracdo na empresa fabricante. Com essas mesmas amostras geradas com a
passagem da luz, sera mensurada a opacidade de todas as resinas polimerizadas em todas as
condi¢des utilizando o espectrofotdometro (Ci6X Spectrophotometer, X-rite) para correlacionar
com a capacidade de bloquear a alteragdo de cor de substrato. Em sequéncia, as analises de
irradiancia serdo feitas a partir destes resultados e em conjunto com as imagens exportadas do
software BeamGage. Portanto, este arquivo consta apenas os resultados parciais e analises
qualitativas. Os autores se comprometem a concluir este trabalho apds a defesa, momento este, em

que o equipamento terd retornado ao laboratério de pesquisa.
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Figure 1. Three-dimensional representations of the beam profile captured at the irradiance of 1200
mW/cm? during the light curing through flowable and high composite resins. Each material is
showed in its own maximum scale. A. Flowable bulk-fill resin composite beam profile images, and

B. High viscosity bulk- fill resin composite beam profile images.
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Figure 2. Three-dimensional representations of the beam profile captured at different irradiances
at 40 seconds of the light curing of resin composites. Each material is showed in its own maximum
scale. A. Flowable bulk-fill resin composite beam profile images, and B. High bulk- fill resin

composite beam profile images.
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Figure 3. Two-dimensional beam profile images captured at different LCU irradiances through
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flowable and high bulk-fill resin composites. All materials are showed in the same scale compared

to the VALO beam profile image through the 60-degree screen.
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