Uma abordagem inteligente para suporte a
deteccao e classificacao automatica de design
smells em sistemas de software orientados a

objetos através de ontologias

Vinicius Jonathan Santos Silva

G

UFU

UNIVERSIDADE FEDERAL DE UBERLANDIA
FACULDADE DE COMPUTAGAO
PROGRAMA DE POsS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

Uberlandia
2019

Vinicius Jonathan Santos Silva

Uma abordagem inteligente para suporte a
deteccao e classificacao automatica de design
smells em sistemas de software orientados a

objetos através de ontologias

Dissertacao de mestrado apresentada ao
Programa de Pos-graduagao da Faculdade
de Computacdo da Universidade Federal de
Uberlandia como parte dos requisitos para a
obtengao do titulo de Mestre em Ciéncia da

Computacao.
Area de concentracao: Ciéncia da Computacio

Orientador: Fabiano Azevedo Dorga

Uberlandia
2019

Ficha Catalografica Online do Sistema de Bibliotecas da UFU
com dados informados pelo(a) proprio(a) autor(a).

S586 Silva, Vinicius Jonathan Santos, 1992-

2019 Uma abordagem inteligente para suporte a deteccéo e
classificagdo automatica de design smells em sistemas de
software orientados a objetos através de ontologias [recurso
eletrbnico] / Vinicius Jonathan Santos Silva. - 2019.

Orientador: Fabiano Azevedo Dorga.

Dissertagao (Mestrado) - Universidade Federal de Uberlandia,
Pés-graduacgéo em Ciéncia da Computacao.

Modo de acesso: Internet.

Disponivel em: http://doi.org/10.14393/ufu.di.2019.2566

Inclui bibliografia.

Inclui ilustracdes.

1. Computagéo. |. Dorga, Fabiano Azevedo,1979-, (Orient.). Il
Universidade Federal de Uberlandia. Pés-graduagao em Ciéncia da
Computagéo. Ill. Titulo.

CDU: 681.3

Bibliotecarios responsaveis pela estrutura de acordo com o AACR2:
Gizele Cristine Nunes do Couto - CRB6/2091
Nelson Marcos Ferreira - CRB6/3074

06/01/2020 SEI/UFU - 1569385 - Ata de Defesa - P6s-Graduacgéo

UNIVERSIDADE FEDERAL DE UBERLANDIA

Coordenacdo do Programa de Pés-Graduacdo em Ciéncia da Computacdo
Av. Jodo Naves de Avila, n2 2121, Bloco 1A, Sala 243 - Bairro Santa Ménica, Uberlandia-MG, CEP 38400-902
Telefone: (34) 3239-4470 - www.ppgco.facom.ufu.br - cpgfacom@ufu.br

ATA DE DEFESA - POS-GRADUACAO

Programa de Pds-

Graduacio em: Ciéncia da Computacao

Defesa de: Dissertacdo de Mestrado Académico, 15/2019, PPGCO

Data: 23 de setembro de 2019 | Hora de inicio: 09hrs00min Hora de 11hrs30min
encerramento:

Matricula do

. 11722CCP0O12
Discente:

Nome do Discente: | Vinicius Jonathan Santos Silva

Uma Abordagem Inteligente para Suporte a Deteccdo e Classificacdo Automatica de Design

Titulo do Trabalho: , .
ttulo do frabaiho Smells em Sistemas de Software Orientados a Objetos Através de Ontologias

Area de A x
~ Ciéncia da Computacao

concentragdo:

Linha de pesquisa: Inteligéncia Artificial

Projeto de Pesquisa
de vinculagao:

Reuniu-se na sala 1B132, Bloco 1B, Campus Santa Mbnica, da Universidade Federal de Uberlandia, a
Banca Examinadora, designada pelo Colegiado do Programa de Pds-graduacdo em Ciéncia da
Computacédo, assim composta: Professores Doutores: Marcelo de Almeida Maia - FACOM/UFU, Bernardo
Pereira Nunes - DINF/PUC e Fabiano Azevedo Dor¢a - FACOM/UFU, orientador do candidato.

Ressalta-se que o Prof. Dr. Bernardo Pereira Nunes participou da defesa por meio de videoconferéncia
desde a cidade do Rio de Janeiro -RJ. Os outros membros da banca e o aluno participaram in loco.

Iniciando os trabalhos o presidente da mesa, Prof. Dr. Fabiano Azevedo Dorca, apresentou a Comissdo
Examinadora e o candidato, agradeceu a presenca do publico, e concedeu ao Discente a palavra para a
exposicdo do seu trabalho. A duracdo da apresentacdo do Discente e o tempo de arguicdo e resposta
foram conforme as normas do Programa.

A seguir o senhor presidente concedeu a palavra, pela ordem sucessivamente, aos examinadores, que
passaram a arguir o candidato. Ultimada a arguicdo, que se desenvolveu dentro dos termos regimentais,
a Banca, em sessdo secreta, atribuiu o resultado final, considerando o candidato:

Aprovado
Esta defesa faz parte dos requisitos necessarios a obtencao do titulo de Mestre.

O competente diploma sera expedido apds cumprimento dos demais requisitos, conforme as normas do
Programa, a legislacdo pertinente e a regulamentacdo interna da UFU.

Nada mais havendo a tratar foram encerrados os trabalhos. Foi lavrada a presente ata que apds lida e
achada conforme foi assinada pela Banca Examinadora.

eil Documento assinado eletronicamente por Fabiano Azevedo Dorga, Professor(a) do Magistério
;zimm'; E Superior, em 25/09/2019, as 16:49, conforme horério oficial de Brasilia, com fundamento no art. 69,
eletrénica § 12, do Decreto n2 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Marcelo de Almeida Maia, Professor(a) do Magistério

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=1779550&infra_siste...

1/2

06/01/2020 SEI/UFU - 1569385 - Ata de Defesa - Pés-Graduagao

_ rI i Superior, em 30/09/2019, as 14:34, conforme horario oficial de Brasilia, com fundamento no art. 62,
."r@l. L’ﬁ § 19, do Decreto n? 8.539, de 8 de outubro de 2015.

SETIRAIUFE

1 eletrdnica

ei' Documento assinado eletronicamente por Bernardo Pereira Nunes, Usuario Externo, em
ﬁlnm:‘ fﬁ 11/10/2019, as 16:14, conforme horério oficial de Brasilia, com fundamento no art. 62, § 12, do
| eletrdnica Decreto n? 8.539, de 8 de outubro de 2015.

Referéncia: Processo n? 23117.084737/2019-83 SEI n2 1569385

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=1779550&infra_siste... 2/2

Este trabalho ¢é dedicado aos meus pais que, com grande esforco e trabalho duro, me

ajudaram a chegar até aqui.

Agradecimentos

Agradeco, primeiramente a Deus, por me abengoar todos os dias proporcionando satde
e forca para realizar meus objetivos.

Ao meu orientador, Professor Doutor Fabiano Azevedo Dorca, pelos ensinamentos e
por me ajudar nos momentos de dificuldade.

Aos meus pais, Roberto e Vanilda, que sempre batalharam para proporcionar uma
vida melhor aos seus filhos. Com certeza eu nao seria quem sou hoje se nao fosse por eles.

A minha irma Monique, por sempre estar comigo nos momentos bons e ruins.

A minha namorada Jordana, por toda a paciéncia e compreensao durante os anos da
pos graduagao e por sempre me apoiar e nunca me deixar desistir.

Aos Professores Doutores Bernardo Pereira Nunes e Marcelo de Almeida Maia, por
aceitarem o convite para compor a banca de avaliacao.

Aos Professores da PPGCO por todo o ensinamento passado.

Aos amigos e colegas que me ajudaram direta ou indiretamente.

“O sucesso € a soma de pequenos esforcos repetidos dia apos dia.”
(Robert Collier)

Resumo

Programagao Orientada a Objetos (POO) é uma disciplina bastante complexa que
exige o conhecimento de varios conceitos como heranca, encapsulamento e polimorfismo.
Esses conceitos sao muito importantes para o aprendizado de conceitos mais avancados,
como padroes de projeto e refatoracao de cédigo. Alguns conceitos quando aplicados de
maneira incorreta podem levar ao surgimento de falhas de design, também conhecidas
como design smells. Design smells sao estruturas de software que podem indicar proble-
mas de codigo ou design que tornam complexo o processo de evolug¢ao e manutengao do
software. Aprender como evitar essas falhas e como refatora-las é uma das habilidades
mais importantes para se tornar um bom desenvolvedor orientado a objetos. Dessa forma,
esse trabalho tem como objetivo o desenvolvimento de um plug-in para o ambiente de de-
senvolvimento Eclipse, para tornar a identificacao de smells em cédigos OO mais simples
e rapida. Nosso método foi testado contra 4 ferramentas de propésito similar(DECOR,
JDeodorant, CheckStyle e PMD), executando todas elas em 3 projetos open-source (JU-
nit, Log4dJ e ArgoUML) com a finalidade de identificacao de 4 design smells (Insufficient
Modularization, Long Method, Long Parameter List e Deficient Encapsulation). Logo
apo6s, realizamos uma andlise por amostragem com o objetivo de demonstrar o poder de
expressividade da utilizacao de ontologias ao identificar todos os 14 design smells pro-
postos nesse trabalho. Os resultados obtidos mostraram que nossa ferramenta apresentou
acuracia de 100% em todos os testes, resultados estes que se igualaram a algumas ferra-

mentas em alguns casos ou foi superior a elas em outros.

Palavras-chave: Aprendizado. Refatoragdo. Programagao orientada a objetos. Enge-

nharia de Software. Design smells.

Abstract

Object oriented programming is a fairly complex discipline that requires knowledge of
various concepts such as inheritance, encapsulation, and polymorphism. These concepts
are very important for learning more advanced concepts such as design patterns and code
refactoring. Some concepts when applied incorrectly can lead to design flaws, also known
as design smells. Design smells are software structures that may indicate code or design
problems that make the process of software evolution and maintenance complex. Learning
how to avoid these failures and how to refactor them is one of the most important skills
for becoming a good object-oriented developer. Thus, this work aims to develop a plug-
in for the Eclipse development environment to make the process of identifying smells in
OO code simpler and faster. Our method has been tested against 4 similar purpose tools
(DECOR, JDeodorant, CheckStyle and PMD), running them all in 3 open source projects
(JUnit, Log4J and ArgoUML) for the purpose of identifying 4 design smells (Insufficient
Modularization, Long Method, Long Parameter List and Deficient Encapsulation). Soon
after, we performed a sample analysis in order to demonstrate the expressive power of
using ontologies by identifying all 14 design smells proposed in this work. The results
obtained showed that our tool presented 100 % accuracy in all tests, results that were

equal to some tools or were superior to them in others.

Keywords: Learning. Refactoring. Object-oriented programming. Software Enginee-

ring. Design smells.

Lista de ilustracoes

Figura 1 — Projeto Java representado em JDT 37
Figura 2 — Ontology 101 40
Figura 3 — Data Properties o 42
Figura 4 — Object Properties oo 43
Figura 5 — Grafo da ontologia 44
Figura 6 — Exemplo de c6digo usando JDT 50
Figura 7 — Carregando uma ontologia utilizando a OWL APT 51
Figura 8 — Criando individuos utilizando a OWL APT 51
Figura 9 — Tornando individuos diferentes utilizando a OWL API 52
Figura 10 — Resultado da execucao do OWLSmell em um projeto OO 52
Figura 11 — Projeto Java contendo todos os smells 65

Figura 12 — Todos os smells validados pelo OWLSmell 66

Lista de tabelas

Tabela 1 — Matriz de Confusao 55
Tabela 2 — Quantidade de smells Insufficient Modularization encontrados por cada
ferramentao 59
Tabela 3 — Quantidade de ocorréncias existentes do smell Insufficient Modulariza-
tion por sistema L. Lo 59
Tabela 4 — Quantidade vélida de smells Insufficient Modularization segundo (SURYA-
NARAYANA; SAMARTHYAM; SHARMA, 2014) 59
Tabela 5 — Precision and Recall do smell Insufficient Modularization 60

Tabela 6 — Quantidade de smells Long Method encontrados por cada ferramenta . 60
Tabela 7 — Quantidade de ocorréncias existentes do smell Long Method por sistema 61
Tabela 8 — Quantidade véalida de smells Long Method segundo (FOWLER, 1999) . 61
Tabela 9 — Precision and Recall do smell Long Method 61
Tabela 10 — Quantidade de smells Long Parameter List encontrados por cada fer-
ramenta o e e e 62

Tabela 11 — Quantidade de ocorréncias existentes do smell Long Parameter List

por sistemao L 62
Tabela 12 — Quantidade valida de smells Long Parameter List segundo (FOWLER,

1999) . L 63
Tabela 13 — Precision and Recall do smell Long Parameter List 63

Tabela 14 — Quantidade de smells Deficient Encapsulation encontrados por cada
ferramenta L. 63

Tabela 15 — Quantidade de ocorréncias existentes do smell Deficient Encapsulation

por sistemao oL 64
Tabela 16 — Quantidade véalida de smells Deficient Encapsulation segundo (SURYA-

NARAYANA; SAMARTHYAM; SHARMA, 2014) 64
Tabela 17 — Precision and Recall do smell Deficient Encapsulation 64
Tabela 18 — Identificagao dos smells propostos 67

Tabela 19 — Comparacao dos smells analisados nos trabalhos correlatos 73

Lista

AST Abstract Syntax Tree

DMP Declarative Meta Programming
GOF Gang of Four

JDT Java Development Tools

OO Orientacao a Objetos

OWL Web Ontology Language

POO Programagao Orientada a Objetos
SWRL Semantic Web Rule Language
UML Unified Modeling Language

W3C World Wide Web Consortium

de siglas

1.1
1.2
1.3

2.1
2.2
2.3
2.4

3.1
3.2
3.3

5.1
5.2
5.3

6.1

6.1.1
6.1.2
6.1.3
6.1.4

Sumario

INTRODUGCAOttt e e e e e e e e e e e e 23
Problema e Motivacao 24
Objetivos e Contribuigées 24
Estrutura da Dissertacao 25
FUNDAMENTACAO TEORICA 27
Design Smells 27
Sistemas Especialistas 32
Ontologias e Web Semantica 34
O projeto Eclipse JDT 37
METODOLOGIA e s e 39
Perguntas de pesquisa 39
Criacdo da ontologia 40
Inferéncia de conhecimento 45
O PLUG-IN OWLSMELL 49
VALIDACAO DO METODO PROPOSTO 53
Comparacgao de ferramentas 53
Anilise por amostragem00 54
Métricas Precision and Recall 54
EXPERIMENTOS E ANALISE DOS RESULTADOS 57
Comparacgao de ferramentas 57
Smell Insufficient Modularization 58
Smell Long Method o 60
Smell Long Parameter List 62

Smell Deficient Encapsulation 63

6.2
6.3

7

8

8.1
8.2
8.3

Analise por amostragem 64

Avaliacao dos Resultados 67
TRABALHOS CORRELATOS 69
CONCLUSAO oottt e e e e e e e e e e e e e e 75
Principais Contribuicoes 75
Produgao Bibliografica 76
Trabalhos Futuros 76

REFERENCIAS . . . ot o e e e e e e e e e e s s s s s s s s s, 79

23

CAPITULO

Introducao

A programacao orientada a objetos surgiu com o objetivo de tornar o desenvolvimento
de softwares mais parecido com o mundo real, de forma a representar um conjunto de
dados em forma de objetos e permitir que um sistema funcione através da comunicagao e
relacionamento entre esses objetos.

Para isso o paradigma orientado a objetos apresenta alguns conceitos basicos como
heranca (capacidade de um objeto herdar caracteristicas de outro objeto), encapsulamento
(capacidade de um objeto se proteger contra agoes exteriores) e polimorfismo (capacidade
de um objeto possuir diversas formas).

A primeira vista, esses conceitos podem ser bastante simples. No entanto, sdo conceitos
que podem ser considerados complexos de se aplicar em determinados casos. Um exemplo
bastante comum é aplicar esses conceitos para refatorar um codigo ja existente e que possui
baixa qualidade.

A utilizacao desses conceitos deve ser bem planejada, pois a ma utilizagao dos mesmos
pode desencadear problemas no design de um software orientado a objetos. Tais proble-
mas, também conhecidos como design smells ou code smells, tornam o software incapaz
de evoluir e aumentam a complexidade e o custo de manutencao. Assim, é de grande
importancia para a qualidade de um software que esses problemas sejam identificados e
refatorados.

No entanto, os smells podem ser removidos do codigo aplicando-se boas praticas de
refatoracdo e fazendo bom uso dos conceitos basicos da Orientagao a Objetos (OO). To-
davia, esse processo tende a ser complexo e custoso, uma vez que o ciclo de vida de um
software nao acaba, e todos os dias surgem novos requisitos a serem implementados, tor-
nando quase impossivel para o desenvolvedor conhecer todo o cddigo que foi implementado
no projeto.

Apesar de serem problemas relacionados a utilizagao de mas praticas de programagao,
code smells e design smells possuem caracteristicas bastante distintas. Atualmente, é pos-
sivel encontrar diversos estudos a respeito dos code smells: (FOWLER, 1999), (SOBRI-
NHO; LUCIA; MAIA, 2018), (MOHA et al., 2010), (FONTANA; BRAIONE; ZANONI,

24 Capitulo 1. Introdugio

2012) etc.

Desde o surgimento do termo em 1999, quando Martin Fowler apresentou o termo
a comunidade, os estudos sobre code smells tém sido bastante difundidos. Mas com o
passar dos anos, varios pesquisadores comecaram a encontrar problemas de codigo mais
amplos, associados ao design de um projeto de software e que impactaria uma porgao
maior de codigo fonte. Entdao em 2004, surgiu o termo design smell apresentado em
(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014).

Dessa forma, é importante destacar que o nivel de complexidade ao se trabalhar com
design smells ¢ maior do que code smells, pois enquanto o segundo trabalha em um nivel
de caracteristicas de cada classe, como quantidade de variaveis e/ou métodos, o primeiro
trabalha em um nivel mais profundo, analisando uma estrutura de classes e como essa

estrutura impactara no design implementado.

1.1 Problema e Motivacao

Melhorar a qualidade de um software é uma tarefa extremamente importante que
deve ser realizada em toda a fase de desenvolvimento. Mas na maioria das vezes, os
desenvolvedores de software nao realizam essa tarefa por uma série de motivos, entre elas
a quantidade excessiva de requisitos e/ou a falta de tempo.

Essa melhoria ocorre quando desenvolvedores aplicam boas praticas de desenvolvi-
mento para resolugao de problemas e criacao de regras de negocio. Praticas simples como
clean code ja tornam o c6digo mais facil de ser entendido e, por consequéncia, melhora a
qualidade de manutencao.

No entanto, a implementagdo de més praticas de desenvolvimento podem levar ao
surgimento de design smells e/ou code smells tornando o software dificil de manter e
evoluir.

O processo de identificar um smell em um projeto é considerado custoso e complicado,
pois o desenvolvedor precisa conhecer toda a estrutura de cédigo implementada, e essa
estrutura sofre alteracdes constantemente devido a implementacao de novos requisitos.

Sabendo desses problemas, esse trabalho tem como principal motivacdo auxiliar o
processo de identificacao de design smells de maneira automatica e inteligente para que

esse processo se torne mais simples e mais pratico para o desenvolvedor.

1.2 Objetivos e Contribuicoes

Apresentado os problemas e motivacoes, o objetivo deste trabalho é fornecer uma
ferramenta que identifique design smells em projetos orientados a objetos e que também

apresenta sugestoes de como refatora-los.

1.8. Estrutura da Dissertagdo 25

Tal ferramenta foi desenvolvida como um plug-in do ambiente de desenvolvimento
Eclipse! onde foram utilizados recursos como o Eclipse Java Development Tools (JDT)
para extracao de informacoes do codigo fonte (como nome das classes, quantidade de
métodos, nivel de heranca, entre outros) e também foi utilizada uma ontologia para re-
presentar os principais conceitos da OO e inferir novos conhecimentos através de regras
logicas no padrao estabelecido pela Web Seméantica conhecidas como Semantic Web Rule
Language (SWRL).

Também comparamos o nivel de acuracia da nossa ferramenta com as ferramentas mais
comuns encontradas na literatura: Decor? (MOHA et al., 2010), JDeodorant® (TSANTA-
LIS; CHATZIGEORGIOU, 2009), PMD* (FONTANA; BRAIONE; ZANONI, 2012) e
Checkstyle® (FONTANA; BRAIONE; ZANONI, 2012). Essa comparagao foi realizada
através da identificacao de smells dessas ferramentas em projetos open source e logo apés
foram analisados os niveis de Precision e Recall de cada teste.

E importante ressaltar que nossa ferramenta funciona como um sistema especialista,
onde contamos com uma base de conhecimento composta por uma ontologia, onde todo o
conhecimento a respeito dos projetos OO e das caracteristicas necessarias para identifica-
¢ao dos design smells estarao armazenadas. Também contamos com o motor de inferéncia
representado aqui pela OWLAPpi, que é uma biblioteca que nos permite manipular os da-
dos de nossa ontologia e apresentar ao usuario. Dessa forma, garantimos que, de forma
inteligente, nossa ferramenta apresente os melhores resultados.

Assim, podemos dizer que nossa abordagem utiliza um modelo deterministico, onde
o resultado serd determinado pelos fatos contidos na base de conhecimento, diferente das
outras ferramentas analisadas, que dependem de varidveis e métricas para realizarem suas

execucoes.

1.3 Estrutura da Dissertacao

O restante deste trabalho estéd estruturado da seguinte forma: no capitulo 2 serao apre-
sentados os principais conceitos teéricos utilizados no desenvolvimento deste trabalho; o
capitulo 3 apresentard a metodologia aplicada para desenvolver este trabalho; o capi-
tulo 4 apresentara como foi realizado o desenvolvimento do plug-in; no capitulo 5 serao
apresentados os recursos utilizados para validar a abordagem proposta; o capitulo 6 apre-
sentara como foram conduzidos os experimentos e os resultados encontrados; no capitulo
7 apresentaremos os trabalhos correlacionados a nossa pesquisa; e, por fim, no capitulo 8

apresentaremos as conclusoes obtidas, principais contribuicoes e trabalhos futuros.

https://www.eclipse.org/
https://wiki.ptidej.net/
https://github.com/tsantalis/JDeodorant
https://pmd.github.io/
http://checkstyle.sourceforge.net /index.html

TR W N

26

Capitulo 1.

Introducao

27

CAPITULO

Fundamentacao Teorica

Nesse capitulo serao apresentados os conceitos utilizados para desenvolvimento deste
trabalho.

2.1 Design Smells

Design smells sao determinadas estruturas que indicam violagao dos principios fun-
damentais de design e impactam negativamente a qualidade do codigo (SURYANA-
RAYANA; SAMARTHYAM; SHARMA, 2014) tornando o software dificil de evoluir e
manter podendo desencadear a necessidade de refatoracao do cédigo (FONTANA; BRAI-
ONE; ZANONI, 2012).

O termo smell foi definido a primeira vez por Martin Fowler (FOWLER, 1999) que
descreveu vinte e um code smells no livro "Refactoring: Improving the Design of Existing
Code'". Desde entao, muitas pesquisas tém sido realizadas no intuito de melhorar a quali-
dade de codigo fonte através da detecgao e identificacao de smells (SOBRINHO; LUCIA;
MAIA, 2018).

Os smells citados por Fowler podem ser encontrados logo abaixo:

1. Duplicated code: Esse smell ocorre quando a mesma estrutura de cédigo existe
em mais de um lugar. O exemplo mais comum de duplicated code é quando a mesma
expressao aparece em dois métodos de uma mesma classe. Assim, tudo o que se tem
a fazer é extrair essa expressao para um método e chama-lo nos locais onde havia o

c6digo duplicado.

2. Long method: Esse smell ocorre quando um método possui muitas linhas de
c6digo. Na maioria dos casos, métodos muito grandes precisam ser comentados
para que possam ser entendidos, e se um método precisa de um comentario, entao

o mesmo deve ser refatorado para métodos menores.

28

Capitulo 2. Fundamentac¢io Teorica

10.

11.

12.

13.

14.

15.

Large class: Esse smell ocorre quando uma classe possui muitas responsabilidades,

e geralmente classes assim possuem muitas variaveis.

Long parameter list: Esse smell ocorre quando um método possui excessivos

parametros em sua assinatura.

Divergent change: Esse smell ocorre quando uma classe é comumente alterada em
diferentes maneiras por diferentes motivos. Por exemplo, se for necessario alterar
muitos métodos de uma classe toda vez que um novo banco de dados surgir no

sistema.

Shotgun surgery: Esse smell é basicamente o oposto do divergent change. Nesse
caso, toda vez que surge alguma alteracao no sistema, o desenvolvedor precisa fazer

pequenas alteragoes em diversos lugares.

Feature envy: Esse smell ocorre quando uma determinada classe estd mais inte-

ressada em métodos de outras classes do que os seus préprios métodos.

Data clumps: Esse smell ocorre quando um conjunto de dados aparecem separados

no codigo mas deveriam fazer parte de um objeto.

Primitive obsession: Esse smell ocorre quando uma classe possui muitos atri-

butos primitivos que poderiam ser transformados em uma classe.

Switch statements: Esse smell ocorre quando ha varias ocorréncias de switchs

no codigo que poderiam ser trocados por polimorfismo.

Parallel inheritance hierarchies: FEsse smell ¢ um caso especial do shotgun
surgery. Nesse caso, toda vez que é necessario criar uma subclasse de uma classe,

também é necessario criar uma subclasse de outra classe.

Lazy class: Esse smell ocorre quando uma classe nao esta fazendo o suficiente
para permanecer no sistema. Geralmente é uma classe que foi adicionada pensando

em alguma mudanca que foi planejada mas nao foi desenvolvida.

Speculative generality: Esse smell ocorre quando uma classe é criada pensando
em um requisito que pode ser necessario no futuro, mas tal requisito acaba nao

sendo implementado.

Temporary field: Esse smell ocorre quando um atributo de uma classe ¢é utilizado

somente em certas circunstancias.

Message chains: Esse smell ocorre quando um objeto pede uma referéncia de
outro objeto que por sua vez pede referéncia a outro objeto que também pede

referéncia a outro objeto e assim por diante.

2.1.

Design Smells 29

16.

17.

18.

19.

20.

21.

Middle man: FEsse smell ocorre quando uma classe é utilizada somente para

delegar tarefas para outras classes.

Inappropriate intimacy: Esse smell ocorre quando diversas classes dependem

muito umas das outras para realizar suas tarefas.

Alternative classes with different interfaces: Esse smell ocorre em classes
que possuem métodos com nomes e implementagoes iguais mas assinaturas diferen-

tes.

Incomplete library class: Esse smell ocorre quando o sistema depende de uma
biblioteca externa que precisa ser atualizada, pois nao esta fornecendo mais os re-

quisitos esperados.

Data class: Esse smell ocorre em classes que possuem somente atributos e mé-
todos acessores e nada mais, sendo bastante provavel que esse tipo de classe seja

manipulada por varias outras classes no sistema.

Refused bequest: FEsse smell ocorre quando subclasses herdam métodos de suas

superclasses mas negam a implementacao desse método.

Além de Fowler, Suryanarayana (SURYANARAYANA; SAMARTHYAM; SHARMA,

2014) também descreve um total de vinte e cinco design smells divididos em quatro

categorias: smells de hierarquia, smells de modularizacao, smells de abstracao e smells

de encapsulamento. Abaixo segue a lista dos vinte e cinco design smells apresentados em
(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014):

1.

Missing Abstraction: Esse smell ocorre quando grupos de dados ou strings sao

utilizados em vez de criar uma classe ou interface.

. Imperative Abstraction: Esse smell ocorre quando um método é transformado

em uma classe. Esse smell se manifesta em classes que possuem somente um método,

e na maioria das vezes o nome do método e da classe sdo idénticos.

Incomplete Abstraction: Esse smell ocorre quando uma abstracdo nao suporta
completamente métodos complementares ou inter-relacionados (simétricos). Por

exemplo, uma interface prové um método add() mas nao prové um método delete().

Multifaceted Abstraction: Esse smell ocorre quando uma abstracao tem mais

de uma responsibilidade atribuida a ela.

Unnecessary Abstraction: Esse smell ocorre quando uma abstragdo que nao é

necessaria (e poderia ser evitada) ¢ introduzida no design.

30

Capitulo 2. Fundamentac¢io Teorica

10.

11.

12.

13.

14.

15.

16.

17.

Unutilized Abstraction: Esse smell pode ocorrer de duas maneiras: (i) classes
concretas que nao sdo mais utilizadas; (ii) classes abstratas e/ou interfaces que nao

estao sendo implementadas por ninguém.

Duplicate Abstraction: Esse smell ocorre quando duas ou mais classes tém nomes

idénticos e/ou implementacoes idénticas.

Deficient Encapsulation: Esse smell ocorre quando a acessibilidade de um ou
mais membros da classe ¢ mais permissivel que o necessario. Por exemplo, uma

classe que possui atributos ptublicos.

Leaky Encapsulation: Esse smell ocorre quando uma classe expoe ou vaza deta-

lhes de implementagao por meio de uma interface ptublica.

Missing Encapsulation: Esse smell ocorre quando variagoes de implementagao

nao sao encapsuladas em uma abstragdo ou hierarquia.

Unezxploited Encapsulation: Esse smell ocorre quando o cddigo usa verificagdes
de tipo explicitas (usando instrugoes encadeadas if-else ou switch que verificam o
tipo do objeto) em vez de explorar a variagdo em tipos ja encapsulados em uma

hierarquia.

Broken Modularization: Esse smell ocorre quando dados e/ou métodos que
idealmente deveriam ter sido localizados em uma tunica abstracao sao separados e

espalhados por varias abstragoes.

Insufficient Modularization: Esse smell ocorre quando existe uma abstracao
que nao foi completamente decomposta, e uma decomposicdo adicional poderia re-

duzir seu tamanho, complexidade de implementagao ou ambos.

Cyclically-dependent Modularization: Esse smell ocorre quando duas ou mais
abstragoes dependem uma da outra direta ou indiretamente (criando um acopla-

mento rigido entre as abstragoes).

Hub-like Modularization: Esse smell ocorre quando uma abstragao tem depen-

déncias (entrada e saida) com um grande nimero de outras abstragoes.

Missing Hierarchy: Esse smell ocorre quando um segmento de codigo usa logica
condicional (geralmente em conjunto com "tipos marcados') para gerenciar expli-
citamente a variacdo no comportamento em que uma hierarquia poderia ter sido

criada e usada para encapsular essas variacoes.

Unnecessary Hierarchy: Esse smell ocorre quando toda a hierarquia de heranca
¢ desnecessaria, indicando que a heranga foi aplicada desnecessariamente para o

contexto de design especifico.

2.1.

Design Smells 31

18.

19.

20.

21.

22.

23.

24.

25.

Unfactored Hierarchy: Esse smell ocorre quando ha duplicagdo desnecessaria

entre tipos em uma hierarquia.

Wide Hierarchy: Esse smell ocorre quando uma hierarquia de heranga é muito

ampla, indicando que tipos intermediarios podem estar ausentes.

Speculative Hierarchy: Esse smell ocorre quando um ou mais tipos em uma
hierarquia sao fornecidos especulativamente (ou seja, com base em necessidades

imaginadas, em vez de requisitos reais)

Deep Hierarchy: Esse smell ocorre quando uma hierarquia de heranca é excessi-

vamente profunda.

Rebellious Hierarchy: Esse smell ocorre quando um subtipo rejeita os métodos

fornecidos pelos seus supertipos.

Broken Hierarchy: Esse smell ocorre quando um supertipo e seu subtipo concei-
tualmente nao compartilham uma relacdo "é-um', resultando em substituibilidade

quebrada.

Multipath Hierarchy: Esse smell ocorre quando um subtipo herda direta e in-
diretamente de um supertipo, levando a caminhos de heranca desnecessarios na

hierarquia.

Cyclic Hierarchy: Esse smell ocorre quando um supertipo em uma hierarquia

depende de qualquer um de seus subtipos.

Além de catalogar vinte e cinco design smells, (SURYANARAYANA; SAMARTHYAM;

SHARMA, 2014) também cita os principais motivos que levam ao surgimento de smells

em projetos orientados a objetos.

1 Violacao dos principios de design

Os principios de design guiam os desenvolvedores a criar solugoes de software efetivas
e de alta qualidade. Quando esses principios sao violados, o resultado se manifesta

como um smell.

Considerando a classe Calendar do Java que foi criada para abstrair as funciona-
lidades de um calendario do mundo real, verifica-se que nela é violado o princi-
pio da abstragdo, pois ela também suporta funcionalidades relacionadas a tempo.
Portanto, é possivel encontrar um smell na classe Calendar por possuir multiplas

responsabilidades.

(1 Uso inapropriado de padroes

32

Capitulo 2. Fundamentac¢io Teorica

Muitas vezes desenvolvedores se deparam com problemas que em um primeiro mo-
mento parece perfeito para ser resolvido com um design pattern, e sem entender tal
problema e como a utilizacao do pattern implicara o projeto, o desenvolvedor realiza

a refatoragao acreditando que é a melhor solucao.

O problema é que um design pattern mal aplicado cria uma estrutura que sofre de

sintomas como muitas classes ou classes altamente acopladas com poucas responsa-

bilidades.

Assim, cabe ao desenvolvedor entender a melhor utilizagao dos design patterns para

ter certeza se sera a melhor solucao para acabar com determinado smell.

Limitacoes de linguagens de programacao

Algumas linguagens de programacao nos seus primérdios de existéncia nao possuiam
muitos recursos, assim desenvolvedores teriam que encontrar solugoes alternativas a
seus problemas. Por exemplo, as versoes iniciais do Java que nao suportava enums,
obrigando desenvolvedores a inserir classes ou interfaces para conter constantes. Isso

implicava na violacao da abstracao, surgindo assim um smell.

Pensamento procedural em orientacao a objetos

Geralmente quando programadores com conhecimento de alguma linguagem proce-
dural comegam a desenvolver no paradigma orientado a objetos, a forma de pensar
nao acompanha tal transicdo, pois nao basta utilizar uma linguagem orientada a

objetos. Mais importante que isso é aplicar os conceitos da OO no codigo.

Isso faz com que na maioria das vezes, técnicas procedurais sejam aplicadas juntas

de técnicas orientadas a objetos, violando alguns principios e criando smells.

Nao aderir a melhores praticas e processos

Ao longo dos anos, softwares das mais diversas utilidades sao criados para atender a
um numero cada vez maior de usudrios. Essa demanda implicou a criagdo de proces-
sos e praticas para melhor gerenciar tempo e mao de obra para o desenvolvimento.
Porém, algumas empresas nao conseguem seguir tais praticas e acabam atingindo os
programadores, que para atender a expectativa desejada no tempo estipulado pre-
cisam passar por cima dos padroes utilizados no projeto violando, assim, principios

fundamentais para um codigo de qualidade.

2.2 Sistemas Especialistas

Um sistema especialista é definido como um sistema computacional interativo e confia-

vel que utiliza fatos e heuristica para resolver problemas complexos de tomada de decisao
(GURU99, 2019).

2.2. Sistemas Especialistas 33

A ideia basica por trds de um sistema especialista é a transferéncia de uma vasta
quantidade de conhecimento especialista de um humano para um computador. Esse
conhecimento é armazenado e entao o computador pode fazer inferéncias e chegar a con-
clusoes especificas. Entao, como um especialista humano, o sistema apresenta sugestoes
e explica, caso necessario, a légica realizada até chegar a conclusao(LIAO, 2005).

O conhecimento especialista possui uma natureza dindmica, ou seja, o conhecimento e
a experiéncia estao continuamente sujeitos a mudangas. A percepc¢ao dessas propriedades
levou a visao de que a separacao explicita de algoritmos para aplicacao de conhecimento
altamente especializado do préprio conhecimento ¢ altamente desejavel, se nao mandato-
rio, para o desenvolvimento de sistemas especialistas (LUCAS; GAAG, 1991).

Essa compreensao para desenvolvimento de sistemas especialistas na atualidade é for-

mulada pela equagao 1, as vezes chamada de paradigma de design de sistemas especialistas
(LUCAS; GAAG, 1991):

SistemaE specialista = Conhecimento + In feréncia (1)
Consequentemente, um sistema especialista possui dois componentes essenciais, apre-

sentados a seguir:

d Uma base de conhecimento que captura o conhecimento especifico do dominio; e

(d Um motor de inferéncia que consiste em algoritmos para manipulacao de conheci-

mento representado pela base de conhecimento.

O processo de criacao de sistemas especialistas pode ser resumido pelos items abaixo
(GURU99, 2019):

(d Determinar caracteristicas do problema;

(1 Engenheiro de conhecimento e especialista no dominio trabalham em coeréncia para

definir o problema;

d O engenheiro de conhecimento traduz o conhecimento em uma linguagem compre-
ensivel por computadores. Ele projeta um mecanismo de inferéncia, uma estrutura

de raciocinio, que possa usar o conhecimento quando necessario.

(d O especialista em conhecimento também determina como integrar o uso de conhe-

cimento incerto no processo de raciocinio e que tipo de explicacao seria util.

H& ainda varios pré-requisitos para um formalismo de representagao do conhecimento
antes que ele possa ser considerado adequado para codificar o conhecimento do dominio.
Um formalismo adequado de representacao do conhecimento deve (LUCAS; GAAG, 1991):

34 Capitulo 2. Fundamentac¢io Teorica

(Possuir poder de expressividade suficiente para codificar o conhecimento do dominio

especifico;

(1 Possuir uma base semantica limpa, de modo que o significado do conhecimento

presente na base de conhecimento seja facil de entender, especialmente pelo usuario;
(Permitir interpretacao algoritmica eficiente;

1 Permitir explicagoes e justificativas das solu¢oes obtidas, mostrando por que certas

perguntas foram feitas ao usuario e como certas conclusoes foram tiradas.

Parte dessas condicoes diz respeito a forma (sintaxe) de um formalismo de represen-
tagdo do conhecimento; outros dizem respeito ao seu significado (seméntica) (LUCAS;
GAAG, 1991).

Um formalismo amplamente utilizado para construcao de sistemas baseados em co-
nhecimento, ou sistemas especialistas, sao as ontologias, devido a sua capacidade de re-
presentar um conhecimento rico e complexo sobre coisas, grupos de coisas e relacoes entre

elas.

2.3 Ontologias e Web Semantica

Uma ontologia é uma descri¢ao formal explicita de conceitos em um dominio de dis-
curso (classes, as vezes chamadas de conceitos), propriedades de cada conceito descrevendo
varias caracteristicas e atributos dos conceitos (slots, as vezes chamados de papeis ou pro-
priedades) e restrigdes nos slots (facets, as vezes chamados de restrigoes de papeis). Uma
ontologia juntamente com um conjunto de instancias individuais de classes constituem
uma base de conhecimento. Na verdade, existe uma linha ténue onde a ontologia termina
e a base de conhecimento comeca (NOY; MCGUINNESS, 2001).

Segundo (NOY; MCGUINNESS, 2001) os principais beneficios em se construir uma

ontologia sao:

(1 Compartilhar o entendimento comum da estrutura de informagoes entre pessoas ou

agentes de software;
(A Permitir a reutilizacao de conhecimento de dominio;
d Tornar as suposi¢oes de dominio explicitas;
1 Separar o conhecimento do dominio do conhecimento operacional;

1 Analisar o conhecimento do dominio.

2.8. Ontologias e Web Semantica 35

Uma ontologia é tipicamente composta de uma hierarquia de termos que descrevem
objetos, relacionamentos entre os objetos e suas caracteristicas. Em geral, ontologias sao
compostas pelos seguintes conceitos (CHENG; LIAO, 2007)

1 Classe: Uma classe representa um conceito ou um conjunto de conceitos com ca-
racteristicas proprias no dominio. Uma classe ainda pode ter sub-classes que repre-

sentam conceitos mais especificos.

1 Propriedade: Propriedades sao utilizadas para dar significado as classes, uma vez
que uma classe por si s6 nao quer dizer nada na ontologia. As propriedades podem

ser definidas como propriedades descritivas e propriedades de relacionamento.

1 Relacionamento: Relacionamentos descrevem como as classes interagem entre si

no dominio.

Uma ontologia apenas define um vocabulario para compartilhar e padronizar o en-
tendimento de determinadas informacoes sobre o dominio no qual se deseja trabalhar.
Esse entendimento pode ser descrito em forma de tripla como "descri¢ado-representacao-
interpretagao" (ISOTANI; BITTENCOURT, 2015).

Uma das formas de descrever e representar um conhecimento de um modo que possa
ser entendido e interpretado tanto por sistemas computacionais como pelos seres humanos
¢ utilizar mecanismos e linguagens de representacao/modelagem (visual ou l6gica/formal)
que explicitam as relagoes (restrigdes e hierarquias) entre conceitos(ISOTANI; BITTEN-
COURT, 2015).

Atualmente a linguagem mais utilizada para representagdo de ontologias é a Web
Ontology Language (OWL), desenvolvida e aprovada pelo World Wide Web Consortium
(W3C) para satisfazer ao formalismo exigido pela comunidade de Web Seméantica e para
que programas possam compreender e responder a consultas de agentes.

OWL é uma linguagem baseada em l6gica computacional de modo que o conhecimento
expresso em OWL possa ser explorado por programas de computador, por exemplo, para
verificar a consisténcia desse conhecimento ou para tornar explicito o conhecimento im-
plicito. Os documentos OWL conhecidos como ontologias podem ser publicados na World
Wide Web e podem se referir a ou ser referidos por outras ontologias OWL (W3C, 2012).

(ISOTANTI; BITTENCOURT, 2015) destacam que ha uma ideia errada sobre o que é a
OWL e como aplica-la. Tal fato ocorre pela complexidade inerente ao termo "ontologia'e
pela expressividade da linguagem OWL. Os autores também destacam trés caracteristicas

nao inerentes a OWL:

1. Nao é uma linguagem de programacao: OWL é uma linguagem declarativa
que descreve um determinado universo do discurso de forma légica. A partir do
momento que descreve conhecimento, pode-se fazer uso de ferramentas conhecidas

como reasoners para inferir novas informagcoes sobre o universo de discurso.

36 Capitulo 2. Fundamentac¢io Teorica

2. Nao é uma linguagem de esquema para conformidade sintatica: Nao faz
parte do escopo da OWL prescrever como certo documento deve ser sintaticamente

estruturado.

3. Nao é um banco de dados: A principal diferenca entre banco de dados e OWL
¢ a semantica utilizada em cada um. Os bancos de dados sao mundos fechados,
o que quer dizer que, se determinado fato ndo estd presente, ele é considerado
falso. Enquanto isso ontologias sao considerados mundos abertos, implicando que
se determinado fato nao estd presente ele é considerado desconhecido, porque é

possivel que seja verdadeiro.

A especificagao da W3C define trés subconjuntos da linguagem OWL baseado na sua
capacidade de representacao e propriedades formais: OWL Lite, OWL-DL e OWL Full.

OWL Lite é o subconjunto com menor expressividade. Possui construtos para repre-
sentacao de taxonomias simples e algumas restri¢des sobre propriedades. O OWL-DL
estende ao maximo a expressividade da OWL Lite, mantendo as suas propriedades com-
putacionais de complexidade e decidibilidade. O conjunto mais completo, OWL Full,
permite maior nivel de representatividade de OWL, permitindo construgoes de meta mo-
delagem. Porém, em OWL Full nao ha garantias computacionais para maquinas de infe-
réncia (ABEL; FIORINI, 2013).

Como dito anteriormente, a linguagem OWL permite a utilizacdo de ferramentas cha-
madas reasoners para inferir novos conhecimentos a partir do conhecimento modelado.
Para isso é necessario um conjunto de regras que descrevem logicamente um conhecimento
novo que se espera ser obtido. Os reasoners mapeiam a base de conhecimento através dos
conceitos, relagoes e fatos para que sejam inferidos e apresentados informagoes implici-
tas. Os principais motores de inferéncia disponiveis na literatura sdo: Pellet®, Hermit” e
Fact++8(NONATO et al., 2017).

A Semantic Web Rule Language (SWRL) é um exemplo as regras légicas utilizadas
pelos motores de inferéncias. A SWRL foi criada pelo W3C para ser a linguagem padrao de
inferéncia para ontologias e web semantica. Ela é composta por um antecedente conhecido
como "corpo'e um consequente conhecido como "cabeca'. Informalmente, isso quer dizer
que se o antecendente ¢ verdadeiro, o consequente também ¢ verdadeiro. Como pode ser
visto na equagao 2, a regra SWRL verifica se a informagao (Y é pai de X e Z é irmao de

Y) é verdadeira, entao a informacao (Z é tio de X) também é verdadeira.

pai(?y, 7x) Adirmao(?z,y) = tio(?z,7x) (2)

Desta forma, a SWRL prové um formalismo para representacao das regras de produ-
¢a0, no qual o conhecimento real sobre a solu¢ao de problemas é expresso.

6 https://www.w3.org/2001/sw/wiki/Pellet
" http://www.hermit-reasoner.com/
8 http://owl.man.ac.uk/factplusplus/

2.4. O projeto Eclipse JDT 37

2.4 O projeto Eclipse JDT

O projeto Eclipse JDT (Java Development Tools) prové APlIs para acessar e manipular
c6digo fonte Java através de modelos Java e Arvore de Sintaxe Abstrata (AST?). No
modelo Java, cada projeto Java é representado internamente por meio de um modelo que
é uma representacao leve e tolerante a falhas do projeto Java. Ele ndo contém tantas
informagbes quanto a AST, mas é mais rapido para criar (VOGEL; SCHOLZ; PFAFF,
2018).

O modelo Java é representado por um estrutura em arvore que pode ser descrita como

a seguir:

1 Projeto Java (IJavaProject): o projeto Java em si que contém todos os outros ar-

quivos e objetos;

[Pasta Src/bin ou bibliotecas externas (IPackageFragmentRoot): mantém os codigos

fonte ou arquivos bindrios, pode ser uma pasta ou uma biblioteca;

0 Pacote (IPackageFragment): cada pacote estd abaixo do IPackageFragmentRoot, os
subpacotes nao sao folhas do pacote, eles sao listados diretamente sob IPackage-

FragmentRoot;
0 Cédigo fonte Java (ICompilationUnit): o arquivo de origem é sempre o n6 do pacote;

O Tipos/Atributos/Métodos (1Type/IField/IMethod): Tipos, atributos e métodos.

Na figura 1 ¢é posssivel visualizar como os componentes do JDT sao representados em

um projeto Java.

JavaCore.create({resourc

IProject R & & Mymﬁt «—— WavaProject
IFolder gl : L_:‘: ::: = IPackageFragmentRoot
T ae@p IPackageFragment
IFile ‘—_____‘_h:—» q ICompilationUnit
| LB et IType iy
i INethod ! & W-ia—D:\idi?i]-?tjlretlilb] * element Childr

.classpath
prcqa:t

Figura 1 — Projeto Java representado em JDT

Fonte: (VOGEL; SCHOLZ; PFAFF, 2018)

A Arvore de Sintaxe Abstrata é uma representacio em arvore detalhada do cédigo-

fonte Java. A AST define uma Interface de Programagao de Aplicativos (API'?) para
9

Do inglés, Abstract Syntax Tree
10 Do inglés, Application Programming Interface

38 Capitulo 2. Fundamentac¢io Teorica

modificar, criar, ler e excluir o codigo-fonte. Cada elemento de origem Java é represen-
tado como uma subclasse da classe ASTNode. Cada né especifico fornece informagoes

especificas sobre o objeto que o representa (VOGEL; SCHOLZ; PFAFF, 2018).

39

CAPITULO

Metodologia

Neste capitulo serao apresentados as perguntas de pesquisa e, logo apds, a metodologia
utilizada para responder tais perguntas. Serao apresentados os métodos abordados na

construcao da ferramenta, assim como as etapas de desenvolvimento e validacao.

3.1 Perguntas de pesquisa

Como dito no capitulo 1, a proposta desse trabalho é analisar o uso de tecnologias da
web seméantica no processo de identificacao e classificacao de design smells em codigos
orientados a objetos. Sendo mais especifico, o uso de ontologias e regras SWRL para
criagdo de uma base de conhecimento e inferéncia de contetido implicito. Assim, com

os resultados obtidos através desse trabalho, propoe-se responder as seguintes perguntas

(R@s#):

O RQ #1 E possivel e vidvel detectar e classificar design smells automaticamente

através de ontologias e tecnologias da web semantica?

Essa pergunta de pesquisa busca avaliar até que ponto é possivel detectar e classificar

design smells utilizando tecnologias da web semantica e o quao viavel é esse processo.

O RQ #2 A identificagdo e classificagao de design smells apoiados pelo uso de on-
tologias e tecnologias da web seméantica apresentam resultados significativamente

positivos quando comparados com as técnicas de deteccao mais comuns?

Neste caso sera analisado o nivel de acuracia entre as ferramentas propostas. Assim
conseguiremos medir o nivel de melhoria que nosso método apresentou sobre as

outras ferramentas.

40 Capitulo 3. Metodologia

3.2 Criagcdo da ontologia

Diversas metodologias tém sido criadas para apoio ao processo de criacao de ontologias.
Algumas das mais utilizadas sdo: Toronto Virtual Enterprise [TOVE|, ENTERPRISE
[Uschold et al.], METHONTOLOGY [Fernandez et al.] e Ontology Development 101
[Noy & McGuinness] (HOSS, 2006).

A metodologia escolhida para realizagao desse trabalho foi a Ontology Development
101 (NOY; MCGUINNESS, 2001), pois ela fornece um guia pratico de como comegar a
criacao de sua ontologia, incluindo uma série de etapas préticas e dicas de erros comuns
a serem evitados.

A figura 2 ilustra a sequéncia de etapas criadas por (NOY; MCGUINNESS, 2001) para
apoio na criacdo de ontologias. Através desta figura podemos observar que o processo é
continuo, ou seja, cada etapa leva a proxima e todas as etapas sempre se repetirdao no

decorrer do desenvolvimento da ontologia.

DBEt:rmina:
copo l
Criar Considerar
Instancias Reuso
_ Definir Enumerar
Restrigoes Termos

b

'

Propriedades (Classes

Figura 2 — Ontology 101

Fonte: Adaptado de (NOY; MCGUINNESS, 2001)

Seguindo o modelo acima, comecamos o desenvolvimento da nossa ontologia determi-
nando o escopo do nosso trabalho. Como iremos trabalhar com identificacao e classificagao

de design smells no paradigma orientado a objetos, foi necessario pesquisar e estudar so-

3.2. Criag¢do da ontologia 41

bre tais conceitos. Dessa forma, fomos capazes de obter conhecimento adequado para a

modelagem da nossa ontologia.

Apés a aquisicao de tal conhecimento, era importante considerarmos possiveis ontolo-
gias ja existentes. Contudo, nao fomos capazes de encontrar uma ontologia que modelasse

o conhecimento da forma que precisavamos, entao decidimos criar nossa ontologia do zero.

Precisavamos, entao, definir quais os conceitos mais importantes do nosso dominio.
Definimos que os conceitos mais gerais seriam: classe, atributo, método, pardmetro e

interface. E entao, a partir desses conceitos surgiriam conceitos mais especificos.

Dessa forma fomos capazes de criar nossa hierarquia de classes na ontologia. Con-
ceitos como classe e atributos seriam ramificados para representacao de conceitos mais
especificos. Assim, definimos as classes ClassOO (para representacao das classes OO),
AbstractClassOO (para representagao das classes OO abstratas), NormalAttribute (para
representagao de atributos gerais), ConstantAttribute (para representacao de atributos
constantes), Method (para representagdo de métodos), Paremeter (para representacao de
parametros contidos na assinatura de métodos) e Interface (para representacao de inter-

faces).

Definidas as classes, precisariamos definir as propriedades responsaveis por gerar sig-
nificado as classes e as relagoes entre elas. A figura 3 apresenta as propriedades que
darao significado as classes definidas em nossa ontologia. Como é possivel notar, todas
elas comegam com um prefixo para definicao de qual conceito tal propriedade fara parte.
Os prefixos foram definidos como at (para classe NormalAttribute e ConstantAttribute),
cl (para classe ClassOO e AbstractClassOO), enum (para classe Enum), in (para classe

Interface), mt (para classe Method) e pm (para classe Parameter).

42 Capitulo 3. Metodologia

Data property hierarchy:

¥l owl:topDataProperty
----- I atAccessType
----- e gtModificator

----- I mtAccessType

----- B mtName

----- B mtNotInherited

----- B mtNumberOfLines

----- B mtNumberParameters

Figura 3 — Data Properties

Fonte: Dados do trabalho

Ja a figura 4 apresenta as propriedades utilizadas para representacao das relagoes entre
as classes na ontologia. A propriedade hasAttribute define uma relacao de uma classe que
contém um atributo. A propriedade hasMethod define uma relagdo de uma classe que
contém um método. A propriedade hasParameter define uma relacdo de um método
que contém um parametro. A propriedade hasSub define uma relacdo de uma classe que
possui outra classe filha. A propriedade hasSuper define uma relagdo de uma classe que
possui outra classe pai. A propriedade implementss define uma relagdo de uma classe que
implementa uma interface. E a propriedade isTypeOf define uma relacao de um atributo

que ¢é do tipo de alguma classe.

3.2. Criag¢do da ontologia 43

Object property hierarchy:

v owl:topObjectProperty
----- I hasAttribute

----- ™ hasMethod

----- M hasParameter

----- M hasSub

----- M hasSuper

----- M implementss

----- M isTypeOf

Figura 4 — Object Properties

Fonte: Dados do trabalho

Com nossas classes e propriedades criadas, o ultimo passo foi a instanciacao dos indi-
viduos na nossa ontologia através dos dados extraidos com o JDT. Uma vez que os indi-
viduos foram criados, bastava o reasoner realizar a inferéncia através das regras SWRL

modeladas.

Como estamos trabalhando com identificacao e classificagdo de design smells em pro-
jetos orientados a objetos, é importante também modelarmos as caracteristicas dos smells
que espera-se serem identificados. Nossa abordagem é capaz de identificar um total de 14
design smells, nos quais tiveram suas classes criadas na ontologia e suas caracteristicas
modeladas através de regras SWRL. Utilizamos essa abordagem pois os smells ndo sao
conceitos concretos em um projeto OO como uma classe por exemplo, mas sim um con-

junto de caracteristicas de uma ou mais classes que levam ao seu surgimento no projeto.

A figura 5 apresenta o grafo completo da ontologia modelada. Nela é possivel observar
como sao realizados os relacionamentos das principais classes. Na proxima secao, serao
apresentadas as regras SWRL criadas para a realiza¢ao de inferéncia do conhecimento no

qual se espera a ser obtido.

3.8. Inferéncia de conhecimento 45

3.3 Inferéncia de conhecimento

Para criacao da ontologia foi utilizada a linguagem OWL (Web Ontology Language)
para modelagem dos dados. Contudo, a OWL nao consegue inferir conhecimento por si s6
e para auxilar nessa tarefa, o W3C criou a Semantic Web Rule Language SWRL que é uma
linguagem baseada em regras de primeira ordem no formato "se-entdo'que permite aos
seus usuarios realizarem inferéncias de novos conhecimentos através dos dados modelados
pela OWL.

Nesse trabalho foram criadas 14 regras para inferéncia dos design smells identificados
nesse trabalho, sendo 2 citados por (FOWLER, 1999) e 12 por (SURYANARAYANA,;
SAMARTHYAM; SHARMA, 2014).

1 Regra 1: Smell Cyclically Dependent Modularization

ClassOO(?a) A ClassOO(?b) A Normal Attribute(?al) A Normal Attribute(?b1) A
hasAttribute(?a, 7b1) A hasAttribute(?b, 7al) A isTypeO f(?al, Ta) A

isTypeO f(7b1,7b) — SmellCyclically Dependent M odularization(?a) A
SmellCyclically Dependent M odularization(7h)

Na regra 1 é verificado se uma classe A possui um atributo com o tipo de uma classe
B e vice-versa através das propriedades hasAttribute(?a, 7b1) e hasAttribute(?b,
?al). Caso essa afirmagao seja verdadeira, ambas as classes A e B sdo consideradas

ocorréncias do design smell Cyclically Dependent Modularization

1 Regra 2: Smell Cyclic Hierarchy

ClassOO(?a) A ClassOO(?b) A hasSuper(?a,?b) A Normal Attribute(?al) A
Normal Attribute(?b1) A isTypeO f(7al, ?a) N isTypeO f(7b1,70) A
hasAttribute(?b, 7al) — SmellCyclicHierarchy(?b)

Na regra 2 é verificado se uma Classe B que é pai de uma classe A possui um
atributo com o tipo da propria classe filha. Tal verificacao é realizada através
das propriedades hasSuper(?a, ?b) e hasAttribute(?b, ?a1). Caso essa afirmacao
seja verdadeira, a classe B é considerada uma ocorréncia do design smell Cyclic

Hierarchy.

1 Regra 3: Smell Deep Hierarchy

ClassOO(?c) Al DepthO f Inheritance(?c, Ta) AgreaterThan(?a, "6” AAxsd : int) —
SmellDeepHierarchy(?c)

Na regra 3 é verificado através das propriedades clDepthOfInheritance(?c, %a) e

greaterThan(?a,”6” A Axsd : int) se uma classe possui hierarquia de heranga com

46

Capitulo 3. Metodologia

nivel maior ou igual a 6. Caso a afirmacao seja verdadeira, essa classe é considerada

uma ocorréncia do design smell Deep Hierarchy.

Regra 4: Smell Deficient Encapsulation

ClassOO(?c)ANormal Attribute(?a) AhasAttribute(?c, 7a) Aat AccessType(?a, "public” A\
Axsd : string) — Smell De ficient Encapsulation(?c)

Na regra 4 é verificado através da propriedade at AccessType(?a, "public” A N\xsd :
string) se uma classe possui algum atributo com o encapsulamento do tipo publico.
Caso a afirmacao seja verdadeira, essa classe é considerada uma ocorréncia do design

smell Deficient Encapsulation .

Regra 5: Smell Duplicate Abstraction

ClassOO(?a) ANClassOO(?b) AclName(?a, Tal) AcLName(?b, 7b1) Aequal(?al, 7b1)A
Dif ferentFrom(?a,?b) — Smell Duplicate Abstraction(?h) A
Smell Duplicate Abstraction(?a)

Na regra 5 ¢é verificado se diferentes classes (propriedade DifferentFrom (?a, ?b))
possuem nomes iguais (propriedade equal(?al, ?b1)) em um mesmo projeto. Caso
a afirmacao seja verdadeira, essas classes sao consideradadas ocorréncias do design

smell Duplicate Abstraction.

Regra 6: Smell Imperative Abstraction

ClassOO(?¢) A equal(?a,”1” A Azxsd : int) A clNumberO f Methods(?c, 7a) —

SmellImperative Abstraction(?c)

Na regra 6 é verificado através da propriedade equal(?a,”1” A Axsd : int) se uma
classe possui somente um método. Caso a afirmagcao seja verdadeira, essa classe é

considerada uma ocorréncia do design smell Imperative Abstraction.

Regra 7: Smell Insufficient Modularization

ClassOO(?¢) A cdlNumberO f Attributes(?c, 7a) A greaterThan(?a,”50” A Azxsd :
int) — Smelllnsuf ficient M odularization(?c)

Na regra 7 é verificado através das propriedades clNumberOfAttributes(?c, ?a) e
greaterThan(?a,”50” A Axzsd : int) se uma classe possui 50 ou mais atributos. Caso
a afirmacao seja verdadeira, essa classe é considerada uma ocorréncia do design

smell Insufficient Modularization.

3.8. Inferéncia de conhecimento 47

1 Regra 8: Smell Multipath Hierarchy

ClassOO(7c) A ClassOO(?b) A Inter face(?i) N\ implementss(?b, 7i) A
implementss(?c, 71) A hasSuper(?c, 7b) — Smell MultipathHierarchy(?c)

Na regra 8 é verificado através da propriedade se duas classes implementam a mesma
interface (propriedade implementss) e se uma é pai da outra (propriedade hasSu-
per(?c, ?b)). Caso a afirmagao seja verdadeira, as classes sdo consideradas ocorrén-

cias do design smell Multipath Hierarchy.

1 Regra 9: Smell Speculative Hierarchy

ClassOO(?c) A ctNumberO fSons(?c, 7a) A equal(?a, ”1” A Axsd : int) —
SmellSpeculative Hierarchy(?c)

Na regra 9 é verificado se uma classe possui somente um filho através da propriedade
cINumberOfSons(?c, ?a). Caso a afirmagao seja verdadeira, a classe é considerada

uma ocorréncia do design smell Speculative Hierarchy.

(1 Regra 10: Smell Unfactored Hierarchy

ClassOO(?a) A ClassOO(?b) A ClassOO(?¢c) N Method(?m) A Method(?n) A
Parameter(?p) A Parameter(?q) A\ hasSuper(?a,?c) A hasSuper(?b, ?c) A
hasMethod(?a, ?m)ANhasMethod(?b, ?n) AmtName(?m, ?m1) AmtName(?n, nl)A
pmName(?p, 7pl) A pmName(?q, 7ql) A hasParameter(?m, 7p) A
hasParameter(tn,?q) A pmType(?p, 7p2) A pmType(?q, 7q2) N equal(?pl,7ql) A
equal(?m1, Inl)Aequal(?p2,7q2)ADif ferent From(?a, ?b)ADif ferent From(?p, 7q) A
Dif ferentFrom(?m,™n) — SmellUn factoredHierarchy(?b) A

SmellUn factoredHierarchy(?a)

Na regra 10 é verificado se duas classes que possuem o mesmo pai (proprieade has-
Super) possuem métodos com nomes e paramétros iguais (propriedades hasMethod
e equal). Caso a afirmacdo seja verdadeira, as classes sdo consideradas ocorréncias

do design smell Unfactored Hierarchy

1 Regra 11: Smell Unutilized Abstraction

AbstractClassOO(?c) A clNumberO fSons(?c, 7a) A equal(?a,”0” A Azsd : int) —
SmellUnutilized Abstraction(?c)

Na regra 11 é verificado se uma classe abstrata nao possui nenhum filho (propriedade

cINumberOfSons(?c, ?a)), ou seja, nao esta sendo implementada por ninguém. Caso

48

Capitulo 3. Metodologia

a afirmacao seja verdadeira, essa classe é considerada uma ocorréncia do design smell

Unutilized Abstraction.

Regra 12: Smell Wide Hierarchy

ClassOO(?c) N cdNumberO fSons(?c,?a) A greaterThan(?a,”9” A Axsd : int) —
SmellWideHierarchy(?c)

Na regra 12 é verificado através da propriedade ciNumberOfSons(?c, ?a) e
greaterThan(?a,”9” N Axsd : int) se uma classe possui 9 ou mais filhos. Caso a
afirmacao seja verdadeira, essa classe é considerada uma ocorréncia do design smell
Wide Hierarchy.

Regra 13: Smell Long Method

ClassOO(?c) N Method(?m) AhasMethod(?c, ?m) A greaterThan(?a, "150” A Azxsd :
int) A mtNumberO f Lines(?m, 7a) — Smell LongMethod(?c)

Na regra 13 é verificado através das propriedades mtNumberOfLines(?m, ?a) e
greaterThan(?a,”150” A Axzsd : int) se um método possui mais de 150 linhas de
codigo. Caso a afirmacao seja verdadeira, essa classe é considerada uma ocorréncia

do design smell Long Method.

Regra 14: Smell Long Parameter List

ClassOO(?c) N Method(?m) A hasMethod(?c,?m) A greaterThan(?a,”7” A Axsd :
int) A mtNumber Parameters(?m,?a) — Smell LongParameter List(?c)

Na regra 14 ¢é verificado através das propriedades mtNumberParameters(¢m, %a) e
g prop)

greaterThan(?a,”7” A Axsd : int) se um método possui mais de 7 pardmetros em

sua assinatura. Caso a afirmagao seja verdadeira, a classe que contém tal método é

considerada uma ocorréncia do design smell Long Parameter List.

49

CAPITULO

O plug-in OWLSmell

A escolha por desenvolver um plug-in para o Eclipse!! ¢ devido ao fato de que tal
ambiente é bastante utilizado por desenvolvedores no mundo todo. E também, procura-
mos desenvolver um artefato que seria de facil utilizagao uma vez que o plug-in ja estara

integrado na IDE.

O codigo fonte do plug-in OWLSmell pode ser encontrado no repositorio do github
<https://github.com/viniciusjns/owlsmellplugin>.

Para alcancar este objetivo, nés usamos uma série de ferramentas providas pelo Eclipse
que permite extrair e manipular cédigo fonte na linguagem de programacao Java. Essas

ferramentas sdo conhecidas como Java Development Tools (JDT).

A figura 6 apresenta um exemplo de uso do Eclipse JDT para extrair informacoes de
um projeto Java. Na linha 60 é obtido o nome de todos os pacotes do projeto, uma vez
que a funcao println estd dentro de uma estrutura de repeticdo. Na linha 85 é obtido o
nome das classes do projeto, e na linha 87 é informado quantas linhas de codigo contém
cada classe. No método printIMethodDetails encontrado na linha 91, encontram-se trés
chamadas a fun¢do println: a primeira para apresentar o nome do método (linha 95),
a segunda para apresentar os tipos de parametros encontrados na assinatura do método

(linha 96) e o terceiro para informar o tipo de retorno do método (linha 97).

1 https://www.eclipse.org/

50

Capitulo 4. O plug-in OWLSmell

[J] SampleHandlerjava &1
package sampleplugin.jdt;

i

% import org.eclipse.core.commands.ExecutionEvent;[]

public class SampleHandler {

B D W

PRI R R

Gira b

e public Object execute(ExecutionEvent event) throws ExecutionException {
// Get the root of the workspace
IWorkspace workspace = ResourcesPlugin.getiorkspace();
IWorkspaceRoot root = workspace.getRoot();
/{ Get all projec the workspace
IProject[] projects = root.getProjects();
/{ Loop over al ojects
for (IProject project : projects) {
try {
printProjectInfo(project);
} catch (CoreException) {
e.printStackTrace();

th B

BB R R

3 g1~ o

[

ra

b

return null;

W
]

}

w
50

private void printProjectInfo(IProject project) throws CoreException,
JavaModelException {

i
L

&

1 System.out.println("Working in project " + project.getName(});
42 /{ check if we have a Java project
43 if (project.isNatureEnabled("org.eclipse.jdt.core.javanature”)) {
- IJavaProject javaProject = JavaCore.create(project);
45 printPackageInfos(javaProject);
45 3
47 ¥
8

s

private void printPackageInfos(IJavaProject javaProject)
throws JavaModelException {
IPackageFragment[] packages = javaProject.getPackageFragments();
for (IPackageFragment mypackage : packages) {
/{ Package fragments include 21l packages in the

only look at the package from the source

System.out.printIn("Package " + mypackage.getElementName());
printICompilationUnitInfo(mypackage);

-

private void printICompilationUnitInfo(IPackageFragment mypackage)
throws JavaModelException {
for (ICompilationUnit unit : mypackage.getCompilationUnits()) {
printCompilationUnitDetails{unit);

1
I

7 private void printIMethods(ICompilationUnit unit) throws JavaModelException {
77 IType[] allTypes = unit.getAllTypes();

78 for (IType type : allTypes) {

73 printIMethodDetails(type);

a8 3

81 }

82

832 private void printCompilationUnitDetails(ICompilationUnit unit)
& throws JavaModelException {

a System.out.println("Source file " + unit.getElementName());

Document doc = new Document(unit.getSource());
System.out.println("Has number of lines: " + doc.getNumberCfLines());
printIMethods(unit);

}

g R R

oo oo

e private void printIMethodDetails(IType type) throws JavaModelException {
IMethod[] methods = type.getMethods();
for (IMethod method : methods) {

System.out.println{"Method name " + method.getElementName());
System.out.println("Signature " + method.getSignature());
System.out.println({"Return Type " + method.getReturnType());

Figura 6 — Exemplo de c6digo usando JDT

Fonte: Adaptado de (VOGEL; SCHOLZ; PFAFF, 2018)

Utilizando esses conceitos, fomos capazes de adquirir informagoes de um projeto Java

como classes, métodos, variaveis, heranga, encapsulamento, entre outros. Apds as infor-

macoes serem coletadas, elas foram salvas em uma base de conhecimento.

Para representar a base de conhecimento, foi utilizada uma ontologia. Essa escolha é

justificada por dois motivos(NOY; MCGUINNESS, 2001):

o1

1. A ontologia permite representacao de conceitos e propriedades a fim de ser facilmente

reutilizada e, se necessario, ser extendida em diferentes contextos e/ou aplicagoes;

2. Ontologias permitem o raciocinio de informagoes que estao sendo representadas;

Para instanciar os individuos na ontologia com os dados obtidos do Eclipse JDT, uti-
lizamos a OWL API'? versao 4.2.8 que nos fornece operacoes para criacao e manipulacao
de ontologias utilizando a linguagem OWL. A figura 7 apresenta um exemplo de c6édigo
Java utilizando a OWL API.

72 private OWLOntologyManager manager;

73 private File file;

74 private OWLOntology ontology;

75 private OWlLDataFactory factory;

77S private void loadOntology() {

7B try |

79 manager = OWLManager.createOWLOntologyManager();

8e file = new File("C:‘\‘\ontology.owl");

81 ontology = manager.loadOntologyFromOntoelogyDocument(file);
82 factory = ontology.getOWlOntologyManager().getOWlDataFactory();
83 System.out.println("Ontology loaded!™);

84 } catch (OWLOntologyCreationException e) {

85 e.printStackTrace();

86 }

87 }

Figura 7 — Carregando uma ontologia utilizando a OWL API
Fonte: Dados do trabalho
Na figura 7 é apresentado um método para auxiliar no carregamento da ontologia.

Carregar a ontologia é essencial para realizar a manipulacao da mesma, seja para criacao

de individuos, associacao de propriedades, tornar individuos diferentes e etc.

1282 public void createIndividualByClass(String individualName, OWLSmellClass owlSmellClass) {

129 try {

138 OWLClass owlClass = factory.getOWLClass(IRI.cregte(URL + owlSmellClass.name()));

131 OWLIndividual individual = factory.getOWLNamedIndividual(IRI.create(URL + individualName));
132 OWLClassAssertionAxiom classAssertionAxiom = factery.getOWLClassAssertionfAxiom(owlClass, individual);
133 AddAxiom addAxiom = new AddAxiom(cntology, classAssertionAxiom);

134 manager.applyChange (addAxiom);

135 manager.saveOntology (ontology);

136

137 } catch (OWLOntologyStorageException e) {

138 e.printStackTrace();

139 1

148 H

Figura 8 — Criando individuos utilizando a OWL API

Fonte: Dados do trabalho

Na figura 8 é apresentado um método para criagdo de individuos utilizando a OWL

API. O cbédigo é bem simples e intuitivo, o tinico detalhe a ser notado é o enum OWL-

12 http://owlapi.sourceforge.net /

52 Capitulo 4. O plug-in OWLSmell

ClassSmell passado como segundo paramétro na assinatura do método. Esse enum é um

dado interno da nossa aplicagao criado para representar as classes criadas na ontologia.

=

P

¥
I

public void makeAllIndividualsDifferent() {
try {

S
-

145 OWLDifferentIndividualsAxiom diff = factory.getOWlLDifferentIndividualsAxiom(
146 ontology.getIndividualsInSignature(Imports. EXCLUDED));

147 AddAxiom addAxiom = new AddAxiom(ontology, diff);

148 manager.applyChange(addaxiom);

149 manager.savelntology (ontology);

158 } catch (OWLOntologyStorageException e) {

151 e.printStackTrace();

152 1

153 T

Figura 9 — Tornando individuos diferentes utilizando a OWL API

Fonte: Dados do trabalho

A figura 9 apresenta o método criado para tornar todos os individuos diferentes um
dos outros. Como citado anteriormente, a OWL faz parte de um paradigma de mundo
aberto, o que quer dizer que a cria¢ao de individuos com nomes diferentes nao significa que
ambos sao distintos. Isso deve ser configurado na ontologia a partir de uma propriedade
especifica para tal agao.

E, por fim, a figura 10 apresenta o resultado final do plug-in OwlSmell aplicado a um
projeto OO. Como demonstrado na figura, a ferramenta apresenta no console do préprio

Eclipse quais as classes apresentaram smells e como refatorar os smells apresentados.

[#]l Problems (@ Javadoc [GA Declasation | B Console 53 =% RH E | MM E N~ &
1 - smell3.AbstractQueue is a SmellSpeculativeHierarchy

- smell2.DecimalFormat is & SmellUnfactoredHierarchy

- smell3.Queue iz a SmellUnutilizedibstraction

- smelll.Component is a SmellInsufficientModularization

smell2.ChoiceFormat is a SmellUnfactoredHierarchy

- smelld.Order is a SmellCyclicallyDependentModularization

- smelld.OrderImpl is a SmellCyclicallyDependentModularization

- smell3.ConcurrentlinkedQueue is a SmellMultipathHierarchy

(=R R R RN PV N)
'

How to refactor the identified smells?

SmellSpeculativeHierarchy: The class is being extended by only one other class. Extract the method and variables to su
SmellUnfactoredHierarchy: There are some methods that exists in the class and in its superclass. Remove the methods fr
SmellUnutilizedAbstraction: The class or interface is not being used by anyone. Verify if the class is really need in
SmellInsufficientModularization: The class has too many methos and/or wvariables. Extract common methods and/or wvariabl
smellCyclicallyDependentModularization: The class belongs to a cyclically dependency.

SmellMultipathHierarchy: The class is implementing a interface that is already implemented by its superclass. Remove t

Figura 10 — Resultado da execu¢ao do OWLSmell em um projeto OO

Fonte: Dados do trabalho

93

CAPITULO

Validacao do método proposto

Nesse capitulo serao abordadas as validacoes que determinaram as respostas para as
perguntas de pesquisa apresentadas no capitulo 3.

Primeiramente, comparamos nosso plug-in com outras ferramentas para medir a acu-
racia de cada uma delas ao identificar um mesmo conjunto de smells. Nessa validacao,
conseguimos demonstrar apenas uma pequena parte do poder de expressividade da nossa
abordagem, pois as outras ferramentas nao identificam a maioria dos smells que a nossa

identifica.

Assim, realizamos um experimento demonstrativo, quando criamos um projeto Java
contendo instancias de todos os design smells propostos nesse trabalho. Com isso, conse-

guimos demonstrar as vantagens da utilizacdo de ontologias para identificacao de smells.

Por fim, com os dados obtidos nessas analises, utilizamos as métricas Precision and

Recall para determinar a acuracia de cada experimento.

5.1 Comparacao de ferramentas

Na primeira validagao, nosso método foi comparado com algumas ferramentas de iden-
tificagao e classificacao de smells ja existentes. A avaliacao sera realizada através da exe-
cucao de ferramentas bastante conhecidas e conceituadas pela comunidade de engenharia

de software em projetos open source.

As ferramentas escolhidas foram DECOR!?, JDeodorant!4, PMD' e CheckStyle!®. A
escolha das ferramentas foi baseada no estudo de (SOBRINHO; LUCIA; MAIA, 2018)
onde os autores apontam as ferramentas de identificacao e classificacdo de smells mais
estudadas no periodo de 1990 até 2017.

http://www.ptidej.net/tools/designsmells
14 https://github.com/tsantalis/JDeodorant
15 https://pmd.github.io/
http://checkstyle.sourceforge.net/

54 Capitulo 5. Valida¢do do método proposto

Os projetos escolhidos para serem validados por todas as ferramentas sdo: JUnit
v4.12'7, Log4J v1.2.1'® e ArgoUML v0.19.8'. Esses projetos foram escolhidos por possui-
rem propositos distintos (um framework para testes unitarios, um framework para debug
de cédigo fonte e um sistema para modelagem de diagramas UML, respectivamente) além
de ja terem sido estudados nos trabalhos (PAIVA et al., 2017) e (MOHA et al., 2010).

Os smells inclusos na validacao do método foram escolhidos com base em dois critérios:
1) os smells mais estudados segundo o estudo de (SOBRINHO; LUCIA; MAIA, 2018); 2)
os smells que faziam parte dos métodos de deteccao de duas ou mais ferramentas. Dentre
os smells citados no capitulo 2, quatro foram selecionados seguindo os critérios acima,
sendo dois abordados por (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014) e
dois abordados por (FOWLER, 1999).

Q Insufficient Modularization: Esse smell ocorre em classes que possuem muitas res-

ponsabilidades e/ou muitos métodos e atributos.

 Long Method: Esse smell ocorre em classes que contém métodos com muitas linhas

de cédigo.

Q Long Parameter List: Esse smell ocorre em classes que contém métodos que possuem

muitos paramétros em sua assinatura.

Q Deficient Encapsulation: Esse smell ocorre em classes que os atributos da mesma

tem sua visibilidade mais exposta que o necessario.

5.2 Anadlise por amostragem

Como dito anteriormente, criamos um projeto Java para realizar essa validacao. O
projeto pode ser encontrado no repositério do github <https://github.com/viniciusjns/
ProjetoValidacaoMestrado>.

Com esse projeto, fomos capazes de demonstrar todos os design smells identificados
pelo OWLSmell e também demonstrar que a utilizacdo da ontologia para identificacao
de smells apresentou um avanco no estado da arte devido sua facilidade de configuracao,

utilizagao e capacidade de compartilhamento de conhecimento.

5.3 Meétricas Precision and Recall

Para avaliar a acuracia dos dados analisados na se¢ao anterior serao utilizadas métricas
conhecidas como Precision and Recall, que sdo comumente utilizadas para avaliar com

mais precisao os resultados, a fim de separar resultados positivos dos negativos.

17 https://junit.org/junit4/
18 https://logging.apache.org/log4j/1.2/source-repository.html
19 http://argouml.tigris.org

5.8. Métricas Precision and Recall 55

Precision determina a fracao de registros que realmente se mostra ser positivo no grupo
que o classificador declarou como positivo. Quanto maior o precision, menor sera o nu-
mero de erros falsos positivos cometidos pelo classificador (TAN; STEINBACH; KUMAR,
2005).

Recall mede a fracao de exemplos positivos corretamente previstos pelo classificador.
(Classificadores com grande recall tém muito poucos exemplos positivos mal classificados
como negativos, sendo o valor de recall equivalente a verdadeira taxa positiva (TAN;

STEINBACH; KUMAR, 2005).

Pode-se definir precision and recall com as fungoes abaixo:

Precisi TP
recision B —
P TP FP
TP
R@CCLH, T = m

A func¢ao acima tem suas variaveis estabelecidas a partir de uma matriz de confusao,
que ¢ mais comumente conhecida como uma tabela em que se organiza os dados levando
em consideragao a taxa de erro e acerto de cada classificacdo. Ela é dividida em quatro
secoes utilizadas para representar os valores verdadeiros positivos, verdadeiros negativos,
falsos positivos e falsos negativos. Na tabela 1 é apresentado como é dividida a matriz de

confusao e, logo abaixo, explicado cada valor.

Tabela 1 — Matriz de Confusao
Predicted Class

+ -

+ | True Positive | True Negative

- | False Positive | False Negative

Fonte: (TAN; STEINBACH; KUMAR, 2005)

Actual Class

0 Verdadeiro Positivo (True Positive): corresponde ao niimero de exemplos positivos

corretamente classificados pelo modelo de classificacao;

1 Verdadeiro Negativo (True Negative): corresponde ao nimero de exemplos negativos

corretamente classificados pelo modelo de classificacao;

[Falso Positivo (False Positive): corresponde ao nimero de exemplos negativos erro-

neamente classificados como positivos pelo modelo de classificagao;

0 Falso Negativo (False Negative): corresponde ao nimero de exemplos positivos er-

roneamente classificados como negativos pelo modelo de classificacao.

56 Capitulo 5. Valida¢do do método proposto

A contagem em uma matriz de confusao também pode ser expressada em termos
de porcentagem. A taxa de verdadeiros positivos é definida como a fragao de exemplos

positivos classificados corretamente pelo modelo (TAN; STEINBACH; KUMAR, 2005).

TP

TPR=—
R=TprFn

A taxa de verdadeiros negativos pode ser definida como a fracao de exemplos negativos

classificados corretamente pelo modelo.

TN

TNR = ——+
R TN+ FP

A taxa de falsos positivos é definida como exemplos negativos classificados como po-

sitivos pelo modelo.

FP

FPR= ———
R=TNyFP

E, finalmente, a taxa de falsos negativos é a fracao de exemplos negativos classificados

como negativos pelo modelo.

FN

FNR = ————
TP+ FN

o7

CAPITULO

Experimentos e Analise dos Resultados

Neste capitulo serao apresentados os experimentos e resultados obtidos com as vali-

dagoes apresentadas no capitulo anterior.

6.1 Comparacao de ferramentas

Como dito anteriormente, o primeiro experimento foi realizado com base em compa-
racao de ferramentas ja existentes e bastante conceituadas na comunidade de engenharia
de software. Todas as ferramentas foram executadas em trés sistemas open source com
a finalidade de detectar quatro smells distintos. Apds isso, foram aplicadas as métricas
precision and recall para mensurar a acuracia da deteccao de cada ferramenta.

E importante ressaltar que nossa ferramenta utiliza um método de deteccao distinto
das outras ferramentas. Nossa abordagem ¢é baseada em um modelo deterministico,
quando extraimos somente os dados necessarios para a identificacdo dos smells e utili-
zamos regras de primeira ordem que estao explicitamente configuradas na ontologia para
identificacao dos smells.

As outras ferramentas por sua vez, utilizam modelos nao deterministicos e nao neces-
sitam de regras ou arquivos explicitamente configurados, possuindo cada uma sua prépria
técnica de detecgao, o que resulta em ntmeros distintos de ocorréncias de smells identifi-
cadas por cada uma. Assim, todas as ocorréncias foram avaliadas segundo a literatura de
(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014) e (FOWLER, 1999) de forma
que fosse possivel haver paramétros de comparacao iguais para todas as detecgoes.

E importante dizer também que os sistemas analisados sdo open source e os autores
deste trabalho nao possuem conhecimento total do c6digo fonte nem das regras de negocio
de cada um. Assim, para avaliar quais classes realmente continham o smell sendo estu-
dado, todas as ferramentas foram executadas nos sistemas e as ocorréncias encontradas
contabilizadas. Logo apds, as ocorréncias foram manualmente validadas segundo os pa-
ramétros de comparacao para descobrir a quantidade real de smells por sistema. Pois, s6

assim, teriamos um valor de referéncia para realizar os calculos de Precision and Recall.

58 Capitulo 6. FEzperimentos e Andlise dos Resultados

A ferramenta DECOR foi a mais complexa para uso e configuragao. O codigo fonte
¢ disponibilizado pela desenvolvedora para fins académicos, no entanto, a mesma nao
proveu a documentacdo necessaria para configuracao e utilizacao. Por fim, depois de
muitas pesquisas e estudos em cima do cédigo fornecido, conseguimos executar um arquivo
com extensao .java que analisava um projeto (através de uma varidvel que determinava o

caminho do projeto) e identificava os smells previamente configurados.

A ferramenta JDeodorant apesar de ser de facil utilizacdo, nao fornece opgoes para
configuragdo. Em alguns experimentos, ela apresentou resultados abaixo do esperado,

fato que pode ser justificado pela falta de configuracao dos parametros utilizados.

As ferramentas PMD e Checkstyle foram as mais faceis de configurar e utilizar. Utili-
zamos as ferramentas em forma de plug-in e o0 mesmo nos forneceu opgoes para realizacao
da configuracao da quantidade de métodos e atributos utilizados na validagao dos smells

a seguir.

Assim, verificamos que a ferramenta OWLSmell demonstrou o melhor grau de configu-
racao e utilizagdo. Como ela foi desenvolvida em forma de plug-in, a utilizacao é bastante
facil, uma vez que o plug-in é integrado a IDE. E, utilizando ontologias, nossa abordagem
se torna altamente configuravel e extensivel, ou seja, a criagao de regras para identificacao

de novos smells é simples e nao modifica o codigo da aplicagao nem o nicleo da ontologia.

6.1.1 Smell Insufficient Modularization

O primeiro smell analisado foi o smell Insufficient Modularization apresentado por
(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014). Para identificagao desse smell
foram consideradas classes que continham uma quantidade maior ou igual a 50 métodos

e/ou atributos.

Na tabela 2 é apresentado a quantidade total de instancias do smell Insufficient Mo-
dularization identificado por cada ferramenta nos trés sistemas avaliados. Como pode ser
visto, a ferramenta DECOR identificou 0 ocorréncias no JUnit, 1 ocorréncia no Log4J e
4 no ArgoUML. O JDeodorant foi a ferramenta que mais apresentou ocorréncias, sendo
24 no JUnit, 16 no LogdJ e 72 no ArgoUML. Por outro lado, a ferramenta CheckStyle
nao apresentou nenhuma ocorréncia do smell em questao, enquanto o plug-in OWLSmell
apresentou um total de vinte e sete ocorréncias, sendo duas para o projeto JUnit, trés

para o Log4J e vinte e duas para o ArgoUML.

6.1. Comparagao de ferramentas 59

Tabela 2 — Quantidade de smells Insufficient Modularization encontrados por cada ferra-

menta
Sistema DECOR JDeodorant PMD CheckStyle OWLSmell
JUnit 4.12 0 24 3 0 2
Log4J 1.2.1 1 16 16 0 3
ArgoUML 0.9.18 4 72 72 0 22
Total 5} 112 91 0 27

Apébs a execugao das ferramentas nos sistemas, foi realizada uma analise manual em
cada classe classificada como uma ocorréncia de smell a fim de verificar se a classe re-
almente apresentava um erro de design segundo os paramétros usados. Essa andlise foi
realizada para identificar possiveis ocorréncias falsas-positivas em alguma ferramenta.

A tabela 3 apresenta o resultado dessa andlise, contendo a quantidade real de smells

do tipo Insufficient Modularization em cada sistema.

Tabela 3 — Quantidade de ocorréncias existentes do smell Insufficient Modularization por

sistema
Sistema Qtde de ocorréncias
JUnit 4.12 2
Log4J 1.2.1 3
Argo UML 0.19.8 22
Total 27

O proximo passo foi comparar os dados obtidos na tabela 2 com os dados da tabela
3 para descobrir o nimero de ocorréncias que poderiam ser consideradas validas. O

resultado é apresentado na tabela 4.

Tabela 4 — Quantidade vélida de smells Insufficient Modularization segundo (SURYANA-
RAYANA; SAMARTHYAM; SHARMA, 2014)

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell
JUnit 4.12 0 0 0 0 2
Log4J 1.2.1 0 0 3 0 3

ArgoUML 0.19.8 0 6 20 0 22
Total 0 6 23 0 27

Sabendo-se os valores encontrados por cada ferramenta, os valores reais de cada sistema
e a quantidade total de smells Insufficient Modularization validos, foi realizado o cédlculo

de Precision and Recall para avaliar a acuracia de cada ferramenta.

60 Capitulo 6. FEzperimentos e Andlise dos Resultados

Tabela 5 — Precision and Recall do smell Insufficient Modularization

. DECOR JDeodorant PMD CheckStyle OWLSmell
Sistema

P R P R P R P R P R

JUnit 4.12 0% 0% 8% 0% 66% 0% 0% 0% 100% 100%

Log4J 1.2.1 100% 0% 18% 0% 18% 100% 0% 0% 100% 100%
ArgoUML 0.19.8 100% 0% 30% 27% 30% 90% 0% 0% 100% 100%

O DECOR ¢ atualmente a ferramenta mais famosa e utilizada por pesquisadores
no mundo inteiro (SOBRINHO; LUCIA; MATA, 2018). No entanto, foi a ferramenta
que apresentou o pior resultado para o smell Insufficient Modularization, seguido pelo
CheckStyle que apesar de ser uma ferramenta bastante conhecida, nao faz parte do top 5
das mais estudadas (SOBRINHO; LUCIA; MAIA, 2018). O JDeodorant mostrou péssi-
mos resultados para os sistemas JUnit e Log4J, mas demonstrou uma pequena melhora
no ArgoUML. Por outro lado, o PMD apresentou resultados baixos de Precision no Log4J
e ArgoUML mas apresentou resultados muito bons de Recall nos mesmos sistemas com
100% e 90%, respectivamente. E, por tltimo, o plug-in OWLSmell foi a ferramenta que
apresentou os melhores resultados na avaliacao, com 100% de Precision and Recall para

todos os trés sistemas.

6.1.2 Smell Long Method

O segundo smell analisado foi o Long Method (FOWLER, 1999). Para identificacao
desse smell foram consideradas classes que continham métodos com uma quantidade de
linhas de cédigo maior ou igual a 150.

Como apresentado anteriormente na tabela 2 para o smell Insufficient Modularization,
a tabela 6 apresenta a quantidade de ocorréncias do smell Long Method encontradas por

ferramenta em cada sistema analisado.

Tabela 6 — Quantidade de smells Long Method encontrados por cada ferramenta

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 46 0 0 0 0

Log4J 49 0 1 1 1
ArgoUML 315 0 10 10 10

Total 410 0 11 11 11

A partir dos dados encontrados na tabela 6, foi realizado uma andalise manual para des-
cobrir as ocorréncias reais em cada sistema. O resultado dessa andlise pode ser encontrado

na tabela 7.

6.1. Comparagao de ferramentas 61

Tabela 7 — Quantidade de ocorréncias existentes do smell Long Method por sistema

Sistema Qtde ocorréncias
JUnit 4.12 0
Log4J 1.2.1 1
Argo UML 0.19.8 10
Total 11

Como pode ser visto na tabela 6, o DECOR encontrou uma quantidade muito superior
a existente na tabela 7, enquanto as outras ferramentas encontraram a mesma quantidade.
No entanto, vale lembrar que mesmo encontrando a mesma quantidade apresentada na
tabela 7, nao significa que as classes identificadas sao validas. As quantidade de classes

que realmente contém smell sdo apresentadas na tabela 8.

Tabela 8 — Quantidade valida de smells Long Method segundo (FOWLER, 1999)

Sistema ~ DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 0 0 0 0 0
Log4J 0 0 1 1 1
ArgoUML 0 0 10 10 10
Total 0 0 11 11 11

A tabela 9 mostra os resultados da aplicacdo das métricas Precision and Recall nos

dados apresentados na tabela tabela 6, 7 e 8.

Tabela 9 — Precision and Recall do smell Long Method

. DECOR JDeodorant PMD CheckStyle OWLSmell
Sistema

p R P R p R p R P R

JUnit 4.12 0% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Log4J 1.2.1 2% 0% 0% 0% 100% 100% 100% 100% 100% 100%
ArgoUML 0.19.8 3% 0% 0% 0% 100% 100% 100% 100% 100% 100%

Os resultados apresentados pela tabela 9 mostram que para o smell Long Method, a
ferramenta DECOR e JDeodorant apresentaram os piores resultados. PMD, CheckStyle
e OWLSmell tiveram resultados idénticos tanto para Precision quanto para Recall. Por
outro lado, a ferramenta JDeodorant teve bons resultados somente para o sistema JUnit.
Esses resultados apresentam a eficiéncia das ferramentas PMD, CheckStyle e OWLSmell

para detectar o smell Long Method.

62 Capitulo 6. FEzperimentos e Andlise dos Resultados

6.1.3 Smell Long Parameter List

O préximo smell estudado nos experimentos foi o Long Parameter List. Para identifi-
cagao desse smell foram consideradas classes que continham métodos com uma quantidade

de parametros maior ou igual a sete.

A tabela 10 mostra as ocorréncias encontradas pelas ferramentas em cada sistema. A
coluna da ferramenta JDeodorant se encontra sem resultados pois a mesma nao identifica

esse smell.

Tabela 10 — Quantidade de smells Long Parameter List encontrados por cada ferramenta

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 1 - 0 0 0
Log4J 7 - 0) D
ArgoUML 235 - 0 1 1
Total 243 - 0 6 6

A lista contendo a quantidade real de ocorréncias em cada sistema é apresentada pela
tabela 11.

Tabela 11 — Quantidade de ocorréncias existentes do smell Long Parameter List por sis-

tema
Sistema Qtde ocorréncias
JUnit 4.12 0
Log4J 1.2.1 5
Argo UML 0.19.8 1
Total 6

Como pode ser visto na tabela 10, as ferramentas CheckStyle e OWLSmell tiveram
a mesma quantidade de ocorréncias apresentadas pela tabela 11. Por outro lado, a fer-
ramenta PMD nao identificou nenhuma ocorréncia desse smell. Enquanto isso, a ferra-

menta DECOR encontrou 235 ocorréncias contra uma das outras ferramentas no sistema
ArgoUML.

Na tabela 12 sao apresentados os resultados da validacdo de todas as ocorréncias
encontradas pelas ferramentas. Apesar do nimero de ocorréncias encontradas pelo DE-
COR no sistema ArgoUML, somente uma classe demonstrou ser valida contendo o smell

Long Parameter List. Todos os resultados encontrados pelas ferramentas CheckStyle e
OWLSmell sao validos.

6.1. Comparagao de ferramentas 63

Tabela 12 — Quantidade vélida de smells Long Parameter List segundo (FOWLER, 1999)

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 0 - 0 0 0
Log4J 5) - 0 5)
ArgoUML 1 - 0 1 1
Total 6 - 0 6 6

Com esses resultados os calculos de Precision and Recall para esse smell sao apresen-
tados na tabela 13.

Tabela 13 — Precision and Recall do smell Long Parameter List

. DECOR JDeodorant PMD CheckStyle OWLSmell
Sistema

P R P R P R P R P R

JUnit 4.12 0% 100% - 100% 100% 100% 100% 100% 100%
Log4J 1.2.1 1% 100% - 0% 0% 100% 100% 100% 100%
ArgoUML 0.19.8 0% 100% - 0% 0% 100% 100% 100% 100%

Como esperado, as ferramentas CheckStyle e OWLSmell tiveram os melhores resul-
tados. O PMD apresentou bons resultados para o sistema JUnit porque nesse sistema
nao existe nenhuma ocorréncia de smell Long Parameter List e a ferramenta identificou
0 ocorréncias. Ja a ferramenta DECOR apresentou bons resultados de Recall em todos

os sistemas, mas os resultados de Precision nao foram tao bons.

6.1.4 Smell Deficient Encapsulation

O ultimo smell estudado nesse trabalho foi o Deficient Encapsulation apresentado
por (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014). Para identificagdo desse
smell foram consideradas classes que continham pelo menos um atributo com tipo de
acesso publico.

A tabela 14 apresenta o nimero de ocorréncias encontradas por cada ferramenta. As

Unicas ferramentas que identificam esse smell sao o CheckStyle e o OWLSmell.

Tabela 14 — Quantidade de smells Deficient Encapsulation encontrados por cada ferra-
menta

Sistema ~ CheckStyle OWLSmell

JUnit 59 86
Log4J 101 116
ArgoUML 18 115

Total 178 317

64 Capitulo 6. FEzperimentos e Andlise dos Resultados

A lista com a quantidade real de ocorréncias para esse smell é apresentada na tabela
15.

Tabela 15 — Quantidade de ocorréncias existentes do smell Deficient Encapsulation por

sistema
Sistema Qtde ocorréncias
JUnit 4.12 86
Log4J 1.2.1 116
Argo UML 0.19.8 115
Total 317

A tabela 16 apresenta o nimero de ocorréncias validas em cada sistema. Como pode

ser visto, esse smell parece ser bem comum nos trés sistemas analisados.

Tabela 16 — Quantidade valida de smells Deficient Encapsulation segundo (SURYANA-
RAYANA; SAMARTHYAM; SHARMA, 2014)

Sistema CheckStyle OWLSmell

JUnit 59 86

Log4J 101 116
ArgoUML 18 115

Total 178 317

A tabela 17 apresenta os resultados da aplicacao das métricas Precision and Recall. A
ferramenta CheckStyle apresentou bons resultados para Precision mas nao tao bons para

Recall. A ferramenta OWLSmell apresentou 6timos resultados para ambas as métricas.

Tabela 17 — Precision and Recall do smell Deficient Encapsulation

CheckStyle ~ OWLSmell
P R P R

JUnit 100% 68% 100% 100%
Log4J 100% 87% 100% 100%
ArgoUML 100% 15% 100% 100%

Sistema

6.2 Analise por amostragem

No segundo experimento, criamos um projeto Java contendo ocorréncias de todos os
design smells abordados nesse trabalho. Cada smell foi separado por pacote, facilitando
a visualizacao das ocorréncias ao executar a ferramenta OWLSmell, como pode ser visto

na figura 11.

6.2. Andlise por amostragem 65

[Package Bxplorer &2 = %l e - = O
v"_,:‘,J- ProjetoValidacacMestrado
=\, JRE System Library [jdk1.2.0_161]
v i sre

if CyclicallyDependentMadularization
i CyclicHierarchy
1 DeepHierarchy
4 DeficientEncapsulation
4 Duplicatefbstraction.java.sql
4 Duplicatefbstraction java.util
f Imperativefbstraction
1 InsufficienthModularization
B LongMethod
if LongParameterlist
B MultipathHierarchy
4 SpeculativeHierarchy
B4 UnfactoredHierarchy
f UnutilizedAbstraction
B WideHierarchy

[= out

|=| ProjetoValidacacMestrado.iml

Figura 11 — Projeto Java contendo todos os smells

Fonte: Dados do trabalho

Nesse projeto, foi criado apenas uma ocorréncia de cada smell, com excecao de alguns
smells como o CyclicHierarchy que apresenta mais de uma ocorréncia, pois é necessario
mais de uma classe para o smell surgir no codigo. Com essa validacao, conseguimos provar

que a acurdcia de nossa ferramenta chega aos 100%.

Como ja dito anteriormente, a utilizacdo de regras ldgicas nos permite atingir altos
niveis de acuracia, uma vez que as regras trabalham apenas com hipdteses binarias, ou
seja, sim e ndao. Entao, uma vez que os dados forem extraidos de forma correta pelo
plug-in e esses mesmos dados forem compativeis com as regras modeladas, a acurdcia serd

sempre alta.

A figura 12 apresenta o console do Eclipse com o resultado da identificagdo no projeto

mencionado anteriormente.

Experimentos e Andlise dos Resultados

Capitulo 6.

66

"Spoylaw J3Yl0 UT PIWJOLSUBJ] 3 30U PTNOD PoyIaw STYI 4T ¥23y) "2po2 40 S3UTT Auew 003 UTEIUCD 3EBYI POYIAW JWOS InBy SSeTD 2yl :poylapBuolTraws
"sJajauweded Jo Jaqunu 3yl aseaddap o} 3dalqo eael ojut suajaweded uowwod wJojsued] :3sTiuajauwededSuoiTTaws

"S3SSETD JATTEWS UT SafgeTJen JO/pUE SPOY}aul UOWWIOD JIBJ3XI "SaTgeTJen Jo/pue soylaw Auew 00} SeY SSETD 3yl UOTIRZTJETNPOWIUITITLIINSUITTIWS

"3T S553d2e 03 spoylaw 32s/328 aieaud pue azeatad IINQTUAIIE Ayl A¥El "S3INGTJ3LE OTTgqnd awos sey sSeTd ayl :uoTIPTNsSdeduIlUaTITIAQTTaWS

"30ELJ3IUT Ay} 4O UOT1EIUAWATAWT 3yl anowsy "ssefdsadns syT Ag peyuswapdwr ApeasTe ST eyl adefsa3uT e BurjuswaTdwT ST SseTd ayl :AydJesaTHYIEdTITNWITaWS
*333foud ayy ut pasu ATTead ST sserd ayl 4T AyTaap -auckue g pasn Buraq Jou ST 232BLJ3IUT JO SSETD 3YL :UDTIDRJISOYPAIZTTTINUNTTIWS

"SIHEISTW PIOAE O3 WYL 40 2uo 4o sweu 2yl 23uey) -aweu swes ayi aaey 3oaload ayz ut
"sasseTaqns s3T Jo Aue wody 33alqo

"sasseTIqns

"adn1onals 317240 e Butwdoy Jayle yoes yitm sidalqo Sutseys ade sassed adow

SISSETD SJOW JO OM] IUOTIDBRJISOyRIEdTTdngTTaws
ue sutejuod sseTldadns v :AydJedaTHITTIADTTawS
Auew ool aney sseTadadns y :AYoJelaTHapTMTTawS
JO OM] UOTIEZITJETNpoiuapuadagiTTesTraioTTaus

"paJoldesad aq jou prnod AYoJedaTy 3yl UT SSETD AWOS 4T X2I8Y) "SASSeT awos uaamiaq Aydsedaty daap e sT adayl :AysdesaTHdasqrraws

"ITUBITJIYUT IYI IA0WSJ puR SSETIQNS 03 SITHETJEA PUE POYIaW 3L 1DBJIXI "SSETD Jayio auo fTuo Aq papusixa Butaq ST sser> ayl :AYsdesaTHaaTieTnoadsTTaws

rsseToJdadns ayy ut ATUO wayl IARAT pue SSETIGNS WOJL SPOYIaW 3yl aAoway sseTdJadns S3T UT pue SSeTd a3y} UT SISTHa eyl Spoylaw 3wos ade 3J3ay] :AYdJedaTHpaJ032ejunTTaws
"poylaw auo ATuo aney 3SSETD 3yl :UOTIDRJISqyaaTiedaduITTaws

FSTTAWS PaTLTIUAPT Sy JOIDELAJ 03 MOH

UoT}oRJ}SqyaATIesaduTTTaWS B ST UOT3E>TTddy uoTioea}sqyanTiedaduT - of

UOT}DRJ}SqYaATIEJ2duITTaWS B ST JOJeTNITEDIASLL0 UDTIDRJYSqyanTIeJadu] - §E

poyzanBuolTTaws e sT utey-poylapBuo

UOT12BJ}SOyaATIRJAdUITTAWS B ST uTey poylawBuol - gc

1sTlJalauededBucTTaws B ST BOSSad 1s5TlJalawededSuo] - zg

UOTIDBJISqyaATIESSdUITTaWS B ST B0sSsad isTiJaiawesedSuey - 1¢

AYoaeaaTHpaJoldRLUNTTaWS B ST JewJoJTewTIaq" AYdJesaTHpaJdolzequn - @c

uoT3oRJ}SqyaATIesaduITTaws B ST JewJoJdTewrdaq-AYdJedaTHpasoldetun - 62
UOTIRZTJETNPOWILATITLINSUITTAWS B ST 3TQEL(UOTIRZTJRTNPOWILUATITLINSUT - 87
UOTIETNSAEIU3IUSTITLAQTTAWS B ST IUTOd UCTIRTNSdedIU3IUaTITIAA - /LT

UOTI2BJISAYPIZTITINUATIANS & ST SSeTd AYsJesaTHIpTM - 9T

AYoaeJaTHYIRATITNWITAWS B ST 2nanppayuT]iuaJgdnaucd’AysJedatyyiedTiTny - &2
UOT30BJ}Sqya3edTTdNgITaws & ST 2a3eg TTin-eael uoTidedysqyaledTrdng - +2
UOTI0RJISqYPaZTTIINUATTAWS B ST anand ' AysJedaTHyiedTaTng

UOTIOEJ1SqYPAZTTTINUATTAWS B ST delyseH’ uoTIdeJ1sqypazITIdnug - 2T

UoT30BJ3SqyR3edTTdngrTaws e sT 23eq-Tbs-eael-uotioedisqyazedtrdng - 17

AysaedatyaaTieTnoadsTTaws & T jJodayiTnessgr AysaesaTHaATyETNoRdS - @z

AY2J013THAATIETNOAdSTTaWS B ST UDIINGIDRJISqY ' AYDJeJaTHITT2AD - 61

AYoaedaTHOTTOTTaWS B ST u0lyNgldeslsqy AYddesatHoTT2M) - 81

AYoaesaTHaATIRTNOAdSTTAWS B ST aNanpideJisqy AydJesaTHYedTITNW

AysaedatHanTieTnaadsTTaws & ST yaseq-AyzdedatHdasag - 91

AYzdedaTHaATIETND2dSTTAWS & ST JJodaypaiesouuy AyaJedaTHaATIETNRdSs - ST
UOT}0RJ}SqyaATIesaduITTaws B ST JITPUBRHIARS *UOTIORJRSqyanTIesaduT - $T

AYoaeaaTHapIMTTawWS & ST sserdaseq AYdJeJaTHIpTM - €1

AyoaeaaTHanTaeTndads Taws & sT caseg-AysdesaTHdaag - ZT

UOTIEZTJETNPOIUAPUadagATTEITTOADTTAWS B ST JUSWNI0QaJINIaS " UOTIRZTJeTnpoyauapuadagfTTeoTI2A) - 11
AYsdedatHanTieTN>adSTTaWS B ST 3Jodayioedisqy AyodesaTHastieTnaads - a1

AyzaedatHaaTieTnoadsTTaws & T zasegrAysdedatHdaag - 6

AyaaedaTHaaTieTnoadsTTaws B =T Taseg-AyddedatHdaag - g

UOTIRZTJRTNpoWILapuadaglTTeo T2/ aws & ST uoTidAuou3s3g-uoTiezTJeTnpoyiuapuadaagfTTesTTafy - £
AYyzaesaTHdaagrTaws & ST faseg-AysuesatHdaag - 9

AyzaeaatHantaeTnoadsTTaws & sT gaseg-AysdedatHdaag - s

AYsaesaTHdaagrTaws & ST gasegtAysJesatHdaag - ¢
MLULmLuﬂIu>ﬂumH:uuanHuEmmmﬂmummm_MLULmLuﬂInuuaum
N
._”
I._

'
e
m

'
[l
3]

'
[
Ll

AYzaeaaTHpaJo3dBLUNTTAWS B ST 1BWJ0433Toy) " AYdJedaTHpadolydeun -
UOT12BJ3SOYRATIEJAdUITTAWS B ST 1EWJ04adToy) AYdJesaTHpaJoldequn -

G ALl a | = [%= 57 2josuo) [| uoneieaq) dopeasr @ sWwl|goid

Figura 12 — Todos os smells validados pelo OWLSmell

Dados do trabalho

Fonte

6.3. Awalia¢io dos Resultados 67

A tabela 18 apresenta de forma mais clara a quantidade real e a quantidade encontrada
de cada smell pela ferramenta OWLSmell. Nela, conseguimos observar claramente que
todas as ocorréncias existentes foram encontradas, e também podemos observar que como
proposto nesse trabalho, a ferramenta é capaz de identificar 14 smells; mais que as outras

ferramentas analisadas anteriormente.

Tabela 18 — Identificacdo dos smells propostos

Smell Ocorréncias reais QOcorréncias encontradas

SmelllmperativeAbstraction 7
SmellUnfactoredHierarchy 2
SmellSpeculative Hierarchy
SmellDeepHierarchy
SmellCyclicallyDependentModularization
SmellWideHierarchy
SmellCyclicHierarchy

SmellDuplicate Abstraction
SmellUnutilized Abstraction
SmellMultipathHierarchy

SmellDeficient Encapsulation
SmelllnsufficientModularization
SmellLongParameterList
SmellLongMethod

—_
—_

R R R, R R WNDR RN DD

= R R =W R - NN

Com essa validagao conseguimos provar o poder de identificacao de smells que a uti-
lizagdo de ontologias proporciona. O dominio da OO pode ser considerado bastante
complexo, com muitas regras e muitas caracteristicas. Contudo, a ontologia consegue
expressar os conceitos de forma clara e simples, e quando associada a regras logicas, o
poder de expressividade aumenta ainda mais.

Dessa forma, conseguimos demonstrar que mesmo smells, com caracteristicas comple-

xas, podem ser identificados com a utilizagao de ontologias.

6.3 Avaliacao dos Resultados

Nessa secao serao apresentados os resultados para as perguntas de pesquisa apresen-

tadas no capitulo anterior.

O RQ #1 E possivel e viavel detectar e classificar design smells automati-

camente através de ontologias e tecnologias da web semantica?

Esse trabalho teve como objetivo a identificacdo e classificacao automatica de design
smells em codigos orientados a objetos através do uso de ontologias e tecnologias da

web semantica. Durante todo seu desenvolvimento, foi criada uma ontologia de forma a

68 Capitulo 6. FEzperimentos e Andlise dos Resultados

modelar o conhecimento do dominio da OO e da engenharia de software, quando tivemos
que lidar com muitos desafios, mudar nossa forma de pensar e de desenvolver a ontologia.
Por fim, como visto nas se¢bes anteriores, conseguimos criar uma ontologia capaz de
identificar e classificar automaticamente quatorze design smells citados por (FOWLER,
1999) e (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014).

Também conseguimos avaliar a viabilidade da identificacdo de smells automatica com
o uso de ontologias através do desenvolvimento de um plug-in para o ambiente Eclipse
e a validacdo do mesmo em comparac¢ao com outras ferramentas existentes que possuem
o proposito similar. Como visto na secao de experimentos, nosso plug-in obteve resulta-
dos tao bons quanto as melhores ferramentas criadas para tal, e em alguns casos, nossa
ferramenta ainda apresentou resultados superiores.

Logo, conseguimos validar a hipétese de que é totalmente possivel e viavel a mode-
lagem, identificacao e classificacdo de design smells através do uso de ontologias e web

semantica.

U RQ #2 A identificagdo e classificacao de design smells apoiados pelo
uso de ontologias e tecnologias da web seméantica apresentam resulta-
dos significativamente positivos quando comparados com as técnicas de

deteccao mais comuns?

Como visto anteriormente nos experimentos, a ferramenta OWLSmell, que tem todo
seu nucleo de identificagdo e classificagdo formado por uma ontologia e regras SWRL,
apresentou melhores resultados que as outras ferramentas que utilizam técnicas diferentes
para identificacao de smells.

Em alguns casos, a ferramenta OWLSmell demonstrou resultados similares a de ou-
tras ferramentas, como por exemplo na identificacdo do smell Long Parameter List na
ferramenta CheckStyle, o que demonstra que o OWLSmell consegue acompanhar de perto
os resultados de outras ferramentas ja existentes ha muito tempo.

Isso é proporcionado principalmente pelo uso da ontologia e sua capacidade de realizar
inferéncias a partir das regras SWRL. Como a ontologia faz parte de um paradigma de
mundo aberto, qualquer dominio de conhecimento é aceito e pode ser modelado, basta
saber exatamente o que se quer representar no modelo e o que pretende-se inferir.

A ontologia da ferramenta OWLSmell foi muito bem planejada para abordar conceitos
da POO de modo que as regras SWRL fossem as mais eficazes possiveis no momento da
identificagao e classificacao dos smells. Os resultados podem ser vistos nas tabelas 5, 9,
13 e 17 apresentadas na secao anterior.

Sendo assim, é valido afirmar que o uso de ontologias e regras SWRL sao altamente
eficazes na busca por erros em codigos orientados a objetos e bastante recomendado a sua

utilizacao em qualquer tipo de projeto que demande a inferéncia de conhecimento.

69

CAPITULO

Trabalhos Correlatos

Neste capitulo serao apresentados os trabalhos encontrados na literatura que possuem
alguma relacdo com este trabalho e que, de alguma forma, foram essenciais para a criacao
do mesmo.

No trabalho de (STOIANOV; SORA, 2010) foi proposto um método para deteccao de
padroes de projeto e antipatterns utilizando uma abordagem logica baseada em predicados
da linguagem Prolog.

Também foram avaliados os seguintes padroes de projeto definidos pelo Gang of Four
(GOF) em (GAMMA et al., 1994): Observer, Singleton, Strateqy, Adapter e Decorator.
E o conjunto de antipatterns avaliados sao descritos em (FOWLER, 1999) e (BROWN et
al., 1998): Data class, Call super, Constant interface, The blob, Refused interface, Yoyo
problem e Poltergeist.

Para avaliar a precisao de identificagdo do mecanismo desenvolvido, os autores com-

t20 executando ambas as ferramentas em 6

param sua abordagem com a ferramenta Pino
projetos desenvolvidos na linguagem Java: JHotDraw6.0b1, Java AWT 1.3, Java Swing
1.4, Java.io 1.4.2, Java.net 1.4.2 e Apache Ant 1.6.2.

Como resultados a respeito dos padroes de projeto, os autores verificaram que sua
abordagem apresentou resultados relativamente similares aos da outra ferramenta, com
excecao aos padroes Observer e Adapter. Com relacdo ao Adapter, apesar dos resultados
apresentarem maiores ocorréncias do que a ferramenta Pinot, foi realizada uma verifi-
cacao manual para validagdo das ocorréncias. Com essa verificacdo, concluiu-se que as
ocorréncias encontradas eram validas segundo a definigdo encontrada no (GAMMA et al.,
1994).

Por outro lado, para o padrao Observer, os resultados apresentaram menores ocor-
réncias, devido ao fato de que a abordagem desenvolvida pelos autores ser mais rigorosa
quanto as regras de deteccao. Contudo, os autores consideraram sua abordagem mais
precisa que a ferramenta Pinot, segundo as defini¢oes encontradas em (GAMMA et al.,

1994).

20 http://www.cs.ucdavis.edu/ shini/research/pinot/index.html

70 Capitulo 7. Trabalhos Correlatos

Por fim, os resultados encontrados na deteccao de antipatterns identificaram que nao
havia a existéncia de falsos positivos entre as ocorréncias. No entanto, estudos futu-
ros foram propostos para identificacdo de falsos negativos (antipatterns que nao foram
identificados pela abordagem).

No trabalho de (TOURWE; MENS, 2003) é proposto um método para, automatica-
mente, identificar oportunidades de refatoracdo de uma aplicacdo e propor técnicas de
refatoracdo adequadas para cada oportunidade. Tal abordagem é realizada através do
uso de programacao meta logica.

Para avaliar a abordagem, os autores buscaram a identificacdo de dois bad smells
(Obsolete parameter e Inappropriate interface) executando o método em uma ferramenta
desenvolvida por eles proprios, devido a necessidade de conhecimento do cédigo fonte e
regras de negdcio.

Apesar de propor técnicas para refatoragao, nao foi o objetivo desse trabalho realizar
refatoracdo automatica, uma vez que pode haver diversas maneiras de refatorar um certo
trecho de codigo e nem sempre fica claro qual a melhor técnica. Diante disso, os autores
proporam listar uma série de técnicas de forma a permitir o desenvolvedor escolher a mais
adequada.

Com o resultado da execucao, chegou-se a seguinte conclusao: a maioria das refatora-
¢Oes propostas foram efetivamente aplicada para obter um design mais limpo e melhor.
Se uma refatoracao especifica nao foi aplicada, por qualquer motivo, uma analise mais
detalhada do bad smell identificado revelou que havia realmente um problema que deveria
ser resolvido. Assim, foi suposto que esses problemas s6 agravam os aplicativos em larga
escala trabalhados por muito mais desenvolvedores.

Uma desvantagem potencial da abordagem é que muitas refatoragoes podem ser pro-
postas. Assim, o desenvolvedor pode receber uma grande lista de refatoragoes e pode
nao ver mais resultados. Isso é inevitavel, no entanto, uma vez que um bad smell em
particular pode ser sanado por uma infinidade de refatoragoes.

No trabalho de (FONTANA; BRAIONE; ZANONI, 2012) os autores fazem uma re-
visdo sobre o estado atual de ferramentas que detectam smells automaticamente. Sao
analisados os resultados da execucao de quatro ferramentas em seis versoes diferentes do
GanttProject?!, um sistema open source escrito na linguagem Java.

Para escolher as quatro ferramentas que seriam utilizadas no estudo, os autores pri-
meiro avaliaram as ferramentas mais citadas na literatura, sendo elas: CheckStyle, DE-
COR, inFusion, iPlasma, JDeodorant, PMD e Stench Blossom. Apés isso, foi realizado
um estudo sobre quais smells abordados por (FOWLER, 1999) sao detectados por cada
ferramenta. Apods esses estudos, foram escolhidas as ferramentas JDeodorant, inFusion,
PMD e CheckStyle, devido ao fato dessas ferramentas estarem disponiveis para download

e até o momento do estudo elas eram ativamente mantidas.

21 https://www.ganttproject.biz/

71

Sobre os smells analisados, o experimento considerou um total de seis smells, sendo
eles compartilhados por pelo menos duas ferramentas: Duplicated Code, Feature Enuvy,
God Class, Large Class, Long Method, Long Parameter List.

Com esse estudo, os autores buscaram responder as seguintes perguntas: 1) Diferen-
tes ferramentas de deteccao apresentam resultados similares quando aplicadas ao mesmo
sistema? 2) Quao relevante é a detecgdo automatica de smells para a evolugdo de um
software? 3) A presenga de smells esta relacionada a alguma caracteristica observavel do

codigo-fonte ou do processo? E as respostas encontradas sao listadas abaixo:

1. Os experimentos demonstraram que diferentes ferramentas para o mesmo smell pro-
duziram diferentes resultados mesmo quando elas possuiam técnicas de identificagao

similares. A tnica excecao foi a respeito das ferramentas que identificam o smell

God Class.

2. Os experimentos mostraram um nimero bastante positivo na porcentagem de smells
refatorados de uma versao para a proxima. Isso sugere que as ferramentas sao aptas
a detectar regides de codigo sensiveis a refatoracao. Esse resultado demonstra que a

deteccao automatica de smells é bastante relevante para a evolugao de um software.

3. Os experimentos mostraram que a presenca de smells estd aparentemente relacio-
nada com caracteristicas observaveis dos sistemas analisados. Nao foi possivel verifi-
car uma significante correlacao estatistica devido ao tamanho do conjunto de dados
analisado serem pequenos e porque caracteristicas observaveis nao sao facilmente

mensuraveis.

No trabalho (ITO et al., 2014), os autores desenvolveram um método para detectar bad
smells em cédigo utilizando Declarative Meta Programming (DMP) e arvore de sintaxe
abstrata (Abstract Syntax Tree (AST)), associados com o Prolog.

O método DMP é essencialmente o uso de uma linguagem de programacao declarativa
para raciocionar e manipular programas em uma linguagem base subjacente. Esse método
permitiu aos autores descrever varios bad smells como uma notac¢ao unificada que consiste
em um programa declarativo.

A arvore de sintaxe abstrata foi utilizada para melhorar o processo de deteccao, uma
vez que uma AST representa o cddigo fonte de maneira que cada né da arvore contém
uma informacao detalhada sobre o c6digo, como por exemplo o nome de uma classe, ou
informagoes a respeito de varidveis e métodos.

Utilizando esses métodos juntamento com o Prolog, os autores foram capazes de ana-
lisar a estrutura do cédigo fonte em detalhes, e criar regras de inferéncia utilizando logica

de primeira ordem para detectar os smells.

72 Capitulo 7. Trabalhos Correlatos

Entao, a partir do método proposto foi desenvolvida uma ferramenta em forma de plug-
in para o ambiente de desenvolvimento Eclipse. O Eclipse foi escolhido, pois, segundo os
autores, é um ambiente bastante conhecido e muito utilizado por desenvolvedores.

Dessa forma, os autores buscaram aplicar tal ferramenta na educagao para que alunos
pudessem aprender conceitos da engenharia de software com mais facilidade. Eles chega-
ram a conclusao que a melhor forma de aprender sobre qualidade de software seria através
da habilidade pratica. Assim, aprender o conceito de bad smells e como refatora-los seria
de grande importancia para os alunos.

Baseado nessa ideia, eles determinaram que o plug-in seria integrado também a uma

t22, por exemplo. Assim, os estudantes iriam

plataforma de controle de versao, como o Gi
desenvolver seus codigos, commitar no repositorio, e o plug-in analisaria os commits e en-
viaria a um servidor logs contendo informagcdes a respeito de possiveis smells encontrados
no codigo.

Logo, os estudantes teriam um histérico das modificagoes realizadas, quais modifica-
¢Oes apresentaram problemas e quais foram as solugdes que removeram os problemas do
codigo.

Com a andlise dos trabalhos mencionados acima, foi possivel realizar um comparativo
entre os smells analisados pelas principais ferramentas de deteccao abordadas. A partir
da tabela 19 é possivel ter um panorama geral sobre os smells estudados.

Na tabela 19 pode-se observar que a ferramenta desenvolvida nesse trabalho é capaz
de identificar uma maior quantidade de smells quando comparadas as outras ferramentas.
Tal caracteristica foi possivel devido a utilizagdo de um sistema especialista que utiliza
uma ontologia como motor de inferéncia e regras légicas em sua base de conhecimento.

Ao utilizar uma ontologia e regras légicas, nossa abordagem se torna capaz de ser
extensivel e compartilhavel, uma vez que a ontologia nao fica associada ao cédigo fonte
do sistema, possuindo ainda a capacidade de ser reaproveitada em outros contextos e
poder ser reutilizada para o desenvolvimento de diferentes tipos de sistemas, seja plug-
ins, sistemas web, sistemas mobile e etc.

A abordagem proposta é implementada em OWL e SWRL, linguagens estas que se
baseiam em um formalismo légico (16gica de predicados de primeira ordem) para represen-
tagdo de conhecimento, caracterizadas pela decidibilidade (existe um algoritmo de prova
para um conjunto de sentengas), consisténcia (um algoritmo de inferéncia gera apenas
sentencas dedutiveis) e completude (é possivel achar a prova de todo predicado deduti-
vel). Dessa forma, como resultado obteve-se uma acuracia de 100% em todos os testes
realizados (como poder ser visto no capitulo 4).

Portanto, quando comparados os beneficios da nossa abordagem com as outras exis-
tentes, pode-se visualizar um avango no estado da arte a respeito de técnicas de identifica-

cao de smells, ressaltando novamente os beneficios na utilizacao de sistemas especialistas

22 https://git-scm.com/

73

associados a tecnologias da web seméantica para modelagem e compartilhamento de co-

nhecimento.

Tabela 19 — Comparacao dos smells analisados nos trabalhos correlatos

Smell DECOR JDeodorant PMD CheckStyle OWLSmell
Cyclic Hierarchy °
Deep Hierarchy °
Multipath Hierarchy °
Speculative Hierarchy °
Unfactored Hierarchy °
Wide Hierarchy °
Cyclically Dependent Modular. °
Insufficient Modularization ° . ° ° °
Duplicate Abstraction °
Imperative Abstraction °
Deficient Encapsulation . °
Unutilized Abstraction .
Long Method ° ° ° ° °
Long Parameter List ° ° ° °
Refused Bequest °

Functional Decomposition °

Spaghetti Code)

Swiss Army Knife °

Feature Envy °

Type Checking °

Duplicate Code ° °

Illegal Type °

74

Capitulo 7. Trabalhos Correlatos

75

CAPITULO

Conclusao

Neste trabalho, foram avaliados os resultados da execugao de quatro ferramentas iden-
tificadores de smells em trés projetos open source, sendo eles, JUnit, LogdJ e ArgoUML.
As perguntas de pesquisa tiveram suas respostas baseadas nessa analise a partir da apli-
cagao das métricas Precision and Recall. A seguir, serdo apresentadas as principais con-

tribuicoes deste trabalho.

8.1 Principais Contribuicoes

Este trabalho apresentou uma ferramenta para apoiar o processo de melhroria de
qualidade de codigo fonte OO. A validacao dessa ferramenta foi realizada através da
comparagao com outras ferramentas ja abordadas na literatura, e os resultados foram

extremamente positivos quando usado um sistema especialista para representar o dominio.

O principal objetivo desse trabalho foi verificar a importancia da utilizacao de onto-
logias e tecnologias da web semantica para modelagem de conhecimento do dominio da
engenharia de software. Para atingir esse objetivo foi necessario criar uma ontologia se-
guindo os conceitos de um diagrama de classe da Unified Modeling Language (UML) para
representacao de projetos orientados a objetos e identificagao de design smells seguindo os
principios catalogados por (FOWLER, 1999) e (SURYANARAYANA; SAMARTHYAM,;
SHARMA, 2014).

Esse trabalho provou que a abordagem utilizada possui vantagens quando comparadas
com as outras analisadas. Em primeiro lugar, apresentamos os beneficios em se utilizar um
sistema especilista para identificacao e classificacao de smells. Em segundo, esse trabalho
demonstrou que é possivel modelar um dominio bastante complexo e realizar inferéncia a
partir desse conhecimento, provando o enorme poder de expressividade da web semantica

aliada a utilizacao de ontologias.

E a ferramenta desenvolvida ainda foi integrada a um ambiente de desenvolvimento

bastante utilizado para desenvolvimento de softwares OO. Isso garante que desenvolve-

76 Capitulo 8. Conclusao

dores possam validar seus cddigos utilizando somente uma aplicacao, tornando assim o
processo mais rapido.

Nossa ontologia também foi colocada em prova quando a ferramenta OWLSmell pre-
cisou ser validada com as ferramentas DECOR, JDeodorant, CheckStyle e PMD. Logo,
os resultados apresentados pela OWLSmell foram superiores as outras abordagens, o que
reforca o fato de que sistemas especialistas apoiados por web semantica sao extremamente
eficazes.

Como visto nos experimentos, nossa abordagem apresentou melhores resultados para
todos os testes. Isso ocorreu pois nossa ferramenta utiliza um modelo deterministico em
sua execucao. Uma vez que temos os dados corretamente recuperados de um projeto
de software orientado a objetos, e tais dados combinem com as regras que estao expli-
citamente configuradas na ontologia, nosso resultado serd sempre 6timo, pois o nicleo
de inferéncia de nossa abordagem é composto por regras "se-entao", logo, sempre que a
primeira parte da regra for verdadeira, consequentemente a segunda parte também serd
verdadeira, implicando em um resultado acertivo em 100% dos testes.

Assim esse trabalho buscou contribuir para a disseminacao de informagao sobre o
dominio de engenharia de software, avaliar as principais abordagens existentes e melhorar
qualidade da identificagdo de smells em ferramentas propondo a utilizagao de ontologias e
regras SWRL bem como utilizar o conhecimento gerado para lecionar conceitos complexos.

E, por fim, a ontologia utilizada nesse trabalho possui a capacidade de ser compar-
tilhada, uma vez que essa é uma das principais caracteristicas em se utilizar ontologias.

Com isso, diversos pesquisadores podem evolui-la e também contribuir com esse projeto.

8.2 Producao Bibliografica

O Silva, V. J. S.; Dorga, F. A. (2019). An automatic and intelligent approach for
supporting teaching and learning of software engineering considering design smells in
object-oriented programming. In (ICALT 2019) 19th IEEE International Conference
on Advanced Learning Technologies - Qualis B1.

8.3 Trabalhos Futuros

Esse trabalho buscou introduzir a utilizacao de ontologias e conceitos da web seman-
tica no dominio da engenharia de software. Nele foi desenvolvida a primeira versao da
ferramenta OWLSmell, que utiliza uma ontologia para realizar a identificacao de smells
em projetos OO. Como projeto futuro, pretendemos evoluir o design visual da ferramenta,
para que a apresentacao das informagoes fique mais amigavel para os usuérios.

Também pretendemos evoluir mais a ontologia, criar mais regras, aumentar a quanti-

dade de smells e também melhorar o c6digo utilizado para recuperar os dados dos projetos

8.3. Trabalhos Futuros it

e popular a ontologia.

E, por ultimo, também pretendemos realizar testes com estudantes da disciplina de
programacao orientada a objetos para melhorarmos nossa ferramenta de forma a adequé-la

para ambos os contextos, mercado e académico.

78

Capitulo 8. Conclusdo

79

Referencias

ABEL, M.; FIORINI, S. Uma revisao da engenharia do conhecimento: Evolugao,
paradigmas e aplicagoes. International Journal of Knowledge Engineering and
Management (IJKEM), v. 2, p. 1-35, 01 2013.

BROWN, W. et al. AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. [S.l.: s.n.], 1998.

CHENG, Y.-P.; LIAO, J.-R. An ontology-based taxonomy of bad code smells. ACTA
Press, Anaheim, CA, USA, p. 437-442, 2007.

FONTANA, F. A.; BRAIONE, P.; ZANONI, M. Automatic detection of bad smells in
code: An experimental assessment. Journal of Object Technology, v. 11, 01 2012.
Disponivel em: <http://dx.doi.org/10.5381/jot.2012.11.2.a5>.

FOWLER, M. Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley, 1999. ISBN 0-201-48567-2.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented
Software. [S.1.: s.n.], 1994.

GURU99. Expert System in Artificial Intelligence: What is, Applications,
Example. 2019. <https://www.guru99.com/expert-systems-with-applications.html>.
Acessado em: 26,/09/2019.

HOSS, A. M. Ontology-based methodology for error detection in software design. 07
2006.

ISOTANI, S.; BITTENCOURT, I. Dados Abertos Conectados: em Busca
da Web do Conhecimento. [s.n.], 2015. ISBN 978-85-7522-449-6. Disponivel em:
<http://dx.doi.org/10.13140/RG.2.1.4355.6329> .

ITO, Y. et al. A method for detecting bad smells and its application to software
engineering education. p. 670-675, 2014. Disponivel em: <http://dx.doi.org/10.1109/
ITAI-AAI.2014.139>.

LIAO, S.-H. Expert system methodologies and applications - a decade review from 1995
to 2004. Expert Systems with Applications, v. 28, p. 93-103, 01 2005. Disponivel
em: <http://dx.doi.org/10.1016/j.eswa.2004.08.003>.

80 Referéncias

LUCAS, P. J.; GAAG, L. C. Principles of expert systems. In: [S.L: sn.], 1991.

MOHA, N. et al. Decor: A method for the specification and detection of
code and design smells. IEEE Trans. Softw. Eng., IEEE Press, Piscataway,
NJ, USA, v. 36, n. 1, p. 20-36, jan. 2010. ISSN 0098-5589. Disponivel em:
<http://dx.doi.org/10.1109/TSE.2009.50>.

NONATO, H. et al. Uma abordagem baseada em ontologias para modelagem e avaliagao
do estudante em sistemas adaptativos e inteligentes para educacao. 10 2017. Disponivel
em: <http://dx.doi.org/10.5753/cbie.sbie.2017.1197>.

NOY, N. F.; MCGUINNESS, D. Ontology development 101: A guide to creating your
first ontology. Knowledge Systems Laboratory, v. 32, 01 2001.

PAIVA, T. et al. On the evaluation of code smells and detection tools. Journal of
Software Engineering Research and Development, v. 5, p. 7, 12 2017. Disponivel
em: <http://dx.doi.org/10.1186/s40411-017-0041-1>.

SOBRINHO, E. Vicente de P.; LUCIA, A. D.; MAIA, M. A systematic literature review
on bad smells — 5 w’s: which, when, what, who, where. IEEE Transactions on
Software Engineering, PP, p. 1-1, 11 2018. Disponivel em: <http://dx.doi.org/10.
1109/TSE.2018.2880977>.

STOIANOV, A.; SORA, 1. Detecting patterns and antipatterns in software
using prolog rules. In: . [s.n.], 2010. p. 253 — 258. Disponivel em: <http:
//dx.doi.org/10.1109/ICCCYB.2010.5491288>.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Refactoring for
Software Design Smells: Managing Technical Debt. 1st. ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2014. ISBN 0128013974, 9780128013977.

TAN, P.-N.; STEINBACH, M.; KUMAR, V. Introduction to Data Mining, (First
Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.
ISBN 0321321367.

TOURWE, T.; MENS, T. Identifying refactoring opportunities using logic meta
programming. In: . [s.n.], 2003. p. 91— 100. ISBN 0-7695-1902-4. Disponivel em:
<http://dx.doi.org/10.1109/CSMR.2003.1192416>.

TSANTALIS, N.; CHATZIGEORGIOU, A. Identification of move method refactoring
opportunities. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA,

v. 35, n. 3, p. 347-367, maio 2009. ISSN 0098-5589. Disponivel em: <http:
//dx.doi.org/10.1109/TSE.2009.1>.

VOGEL, L.; SCHOLZ, S.; PFAFF, F. Eclipse JDT - Abstract Syntax Tree (AST)
and the Java Model. 2018. <https://www.vogella.com/tutorials/EclipseJDT /article.
html>. Acessado em: 18/03/2019.

W3C. Eclipse JDT - Abstract Syntax Tree (AST) and the Java Model. 2012.
<https://www.w3.org/OWL/>. Acessado em: 18/09/2019.

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de siglas
	Sumário
	Introdução
	Problema e Motivação
	Objetivos e Contribuições
	Estrutura da Dissertação

	Fundamentação Teórica
	Design Smells
	Sistemas Especialistas
	Ontologias e Web Semântica
	O projeto Eclipse JDT

	Metodologia
	Perguntas de pesquisa
	Criação da ontologia
	Inferência de conhecimento

	O plug-in OWLSmell
	Validação do método proposto
	Comparação de ferramentas
	Análise por amostragem
	Métricas Precision and Recall

	Experimentos e Análise dos Resultados
	Comparação de ferramentas
	Smell Insufficient Modularization
	Smell Long Method
	Smell Long Parameter List
	Smell Deficient Encapsulation

	Análise por amostragem
	Avaliação dos Resultados

	Trabalhos Correlatos
	Conclusão
	Principais Contribuições
	Produção Bibliográfica
	Trabalhos Futuros

	Referências

