
Uma abordagem inteligente para suporte à

detecção e classiĄcação automática de design

smells em sistemas de software orientados a

objetos através de ontologias

Vinicius Jonathan Santos Silva

Universidade Federal de Uberlândia

Faculdade de Computação

Programa de Pós-Graduação em Ciência da Computação

Uberlândia

2019

Vinicius Jonathan Santos Silva

Uma abordagem inteligente para suporte à

detecção e classiĄcação automática de design

smells em sistemas de software orientados a

objetos através de ontologias

Dissertação de mestrado apresentada ao

Programa de Pós-graduação da Faculdade

de Computação da Universidade Federal de

Uberlândia como parte dos requisitos para a

obtenção do título de Mestre em Ciência da

Computação.

Área de concentração: Ciência da Computação

Orientador: Fabiano Azevedo Dorça

Uberlândia

2019

06/01/2020 SEI/UFU - 1569385 - Ata de Defesa - Pós-Graduação

https://www.sei.ufu.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=1779550&infra_siste… 2/2

Superior, em 30/09/2019, às 14:34, conforme horário oficial de Brasília, com fundamento no art. 6º,
§ 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Bernardo Pereira Nunes, Usuário Externo, em
11/10/2019, às 16:14, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do
Decreto nº 8.539, de 8 de outubro de 2015.

A auten�cidade deste documento pode ser conferida no site
h�ps://www.sei.ufu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1569385 e
o código CRC 0EAB55BD.

Referência: Processo nº 23117.084737/2019-83 SEI nº 1569385

Este trabalho é dedicado aos meus pais que, com grande esforço e trabalho duro, me

ajudaram a chegar até aqui.

Agradecimentos

Agradeço, primeiramente a Deus, por me abençoar todos os dias proporcionando saúde

e força para realizar meus objetivos.

Ao meu orientador, Professor Doutor Fabiano Azevedo Dorça, pelos ensinamentos e

por me ajudar nos momentos de diĄculdade.

Aos meus pais, Roberto e Vanilda, que sempre batalharam para proporcionar uma

vida melhor aos seus Ąlhos. Com certeza eu não seria quem sou hoje se não fosse por eles.

À minha irmã Monique, por sempre estar comigo nos momentos bons e ruins.

À minha namorada Jordana, por toda a paciência e compreensão durante os anos da

pós graduação e por sempre me apoiar e nunca me deixar desistir.

Aos Professores Doutores Bernardo Pereira Nunes e Marcelo de Almeida Maia, por

aceitarem o convite para compor a banca de avaliação.

Aos Professores da PPGCO por todo o ensinamento passado.

Aos amigos e colegas que me ajudaram direta ou indiretamente.

“O sucesso é a soma de pequenos esforços repetidos dia após dia.“

(Robert Collier)

Resumo

Programação Orientada a Objetos (POO) é uma disciplina bastante complexa que

exige o conhecimento de vários conceitos como herança, encapsulamento e polimorĄsmo.

Esses conceitos são muito importantes para o aprendizado de conceitos mais avançados,

como padrões de projeto e refatoração de código. Alguns conceitos quando aplicados de

maneira incorreta podem levar ao surgimento de falhas de design, também conhecidas

como design smells. Design smells são estruturas de software que podem indicar proble-

mas de código ou design que tornam complexo o processo de evolução e manutenção do

software. Aprender como evitar essas falhas e como refatorá-las é uma das habilidades

mais importantes para se tornar um bom desenvolvedor orientado a objetos. Dessa forma,

esse trabalho tem como objetivo o desenvolvimento de um plug-in para o ambiente de de-

senvolvimento Eclipse, para tornar a identiĄcação de smells em códigos OO mais simples

e rápida. Nosso método foi testado contra 4 ferramentas de propósito similar(DECOR,

JDeodorant, CheckStyle e PMD), executando todas elas em 3 projetos open-source (JU-

nit, Log4J e ArgoUML) com a Ąnalidade de identiĄcação de 4 design smells (Insufficient

Modularization, Long Method, Long Parameter List e DeĄcient Encapsulation). Logo

após, realizamos uma análise por amostragem com o objetivo de demonstrar o poder de

expressividade da utilização de ontologias ao identiĄcar todos os 14 design smells pro-

postos nesse trabalho. Os resultados obtidos mostraram que nossa ferramenta apresentou

acurácia de 100% em todos os testes, resultados estes que se igualaram a algumas ferra-

mentas em alguns casos ou foi superior a elas em outros.

Palavras-chave: Aprendizado. Refatoração. Programação orientada a objetos. Enge-

nharia de Software. Design smells.

Abstract

Object oriented programming is a fairly complex discipline that requires knowledge of

various concepts such as inheritance, encapsulation, and polymorphism. These concepts

are very important for learning more advanced concepts such as design patterns and code

refactoring. Some concepts when applied incorrectly can lead to design Ćaws, also known

as design smells. Design smells are software structures that may indicate code or design

problems that make the process of software evolution and maintenance complex. Learning

how to avoid these failures and how to refactor them is one of the most important skills

for becoming a good object-oriented developer. Thus, this work aims to develop a plug-

in for the Eclipse development environment to make the process of identifying smells in

OO code simpler and faster. Our method has been tested against 4 similar purpose tools

(DECOR, JDeodorant, CheckStyle and PMD), running them all in 3 open source projects

(JUnit, Log4J and ArgoUML) for the purpose of identifying 4 design smells (Insufficient

Modularization, Long Method, Long Parameter List and DeĄcient Encapsulation). Soon

after, we performed a sample analysis in order to demonstrate the expressive power of

using ontologies by identifying all 14 design smells proposed in this work. The results

obtained showed that our tool presented 100 % accuracy in all tests, results that were

equal to some tools or were superior to them in others.

Keywords: Learning. Refactoring. Object-oriented programming. Software Enginee-

ring. Design smells.

Lista de ilustrações

Figura 1 Ű Projeto Java representado em JDT . 37

Figura 2 Ű Ontology 101 . 40

Figura 3 Ű Data Properties . 42

Figura 4 Ű Object Properties . 43

Figura 5 Ű Grafo da ontologia . 44

Figura 6 Ű Exemplo de código usando JDT . 50

Figura 7 Ű Carregando uma ontologia utilizando a OWL API 51

Figura 8 Ű Criando indivíduos utilizando a OWL API 51

Figura 9 Ű Tornando indivíduos diferentes utilizando a OWL API 52

Figura 10 Ű Resultado da execução do OWLSmell em um projeto OO 52

Figura 11 Ű Projeto Java contendo todos os smells 65

Figura 12 Ű Todos os smells validados pelo OWLSmell 66

Lista de tabelas

Tabela 1 Ű Matriz de Confusão . 55

Tabela 2 Ű Quantidade de smells Insufficient Modularization encontrados por cada

ferramenta . 59

Tabela 3 Ű Quantidade de ocorrências existentes do smell Insufficient Modulariza-

tion por sistema . 59

Tabela 4 Ű Quantidade válida de smells Insufficient Modularization segundo (SURYA-

NARAYANA; SAMARTHYAM; SHARMA, 2014) 59

Tabela 5 Ű Precision and Recall do smell Insufficient Modularization 60

Tabela 6 Ű Quantidade de smells Long Method encontrados por cada ferramenta . 60

Tabela 7 Ű Quantidade de ocorrências existentes do smell Long Method por sistema 61

Tabela 8 Ű Quantidade válida de smells Long Method segundo (FOWLER, 1999) . 61

Tabela 9 Ű Precision and Recall do smell Long Method 61

Tabela 10 Ű Quantidade de smells Long Parameter List encontrados por cada fer-

ramenta . 62

Tabela 11 Ű Quantidade de ocorrências existentes do smell Long Parameter List

por sistema . 62

Tabela 12 Ű Quantidade válida de smells Long Parameter List segundo (FOWLER,

1999) . 63

Tabela 13 Ű Precision and Recall do smell Long Parameter List 63

Tabela 14 Ű Quantidade de smells Deficient Encapsulation encontrados por cada

ferramenta . 63

Tabela 15 Ű Quantidade de ocorrências existentes do smell Deficient Encapsulation

por sistema . 64

Tabela 16 Ű Quantidade válida de smells Deficient Encapsulation segundo (SURYA-

NARAYANA; SAMARTHYAM; SHARMA, 2014) 64

Tabela 17 Ű Precision and Recall do smell Deficient Encapsulation 64

Tabela 18 Ű IdentiĄcação dos smells propostos . 67

Tabela 19 Ű Comparação dos smells analisados nos trabalhos correlatos 73

Lista de siglas

AST Abstract Syntax Tree

DMP Declarative Meta Programming

GOF Gang of Four

JDT Java Development Tools

OO Orientação a Objetos

OWL Web Ontology Language

POO Programação Orientada a Objetos

SWRL Semantic Web Rule Language

UML UniĄed Modeling Language

W3C World Wide Web Consortium

Sumário

1 INTRODUÇÃO . 23

1.1 Problema e Motivação . 24

1.2 Objetivos e Contribuições . 24

1.3 Estrutura da Dissertação . 25

2 FUNDAMENTAÇÃO TEÓRICA 27

2.1 Design Smells . 27

2.2 Sistemas Especialistas . 32

2.3 Ontologias e Web Semântica . 34

2.4 O projeto Eclipse JDT . 37

3 METODOLOGIA . 39

3.1 Perguntas de pesquisa . 39

3.2 Criação da ontologia . 40

3.3 Inferência de conhecimento . 45

4 O PLUG-IN OWLSMELL . 49

5 VALIDAÇÃO DO MÉTODO PROPOSTO 53

5.1 Comparação de ferramentas . 53

5.2 Análise por amostragem . 54

5.3 Métricas Precision and Recall . 54

6 EXPERIMENTOS E ANÁLISE DOS RESULTADOS 57

6.1 Comparação de ferramentas . 57

6.1.1 Smell Insufficient Modularization . 58

6.1.2 Smell Long Method . 60

6.1.3 Smell Long Parameter List . 62

6.1.4 Smell DeĄcient Encapsulation . 63

6.2 Análise por amostragem . 64

6.3 Avaliação dos Resultados . 67

7 TRABALHOS CORRELATOS 69

8 CONCLUSÃO . 75

8.1 Principais Contribuições . 75

8.2 Produção BibliográĄca . 76

8.3 Trabalhos Futuros . 76

REFERÊNCIAS . 79

23

Capítulo 1

Introdução

A programação orientada a objetos surgiu com o objetivo de tornar o desenvolvimento

de softwares mais parecido com o mundo real, de forma a representar um conjunto de

dados em forma de objetos e permitir que um sistema funcione através da comunicação e

relacionamento entre esses objetos.

Para isso o paradigma orientado a objetos apresenta alguns conceitos básicos como

herança (capacidade de um objeto herdar características de outro objeto), encapsulamento

(capacidade de um objeto se proteger contra ações exteriores) e polimorĄsmo (capacidade

de um objeto possuir diversas formas).

A primeira vista, esses conceitos podem ser bastante simples. No entanto, são conceitos

que podem ser considerados complexos de se aplicar em determinados casos. Um exemplo

bastante comum é aplicar esses conceitos para refatorar um código já existente e que possui

baixa qualidade.

A utilização desses conceitos deve ser bem planejada, pois a má utilização dos mesmos

pode desencadear problemas no design de um software orientado a objetos. Tais proble-

mas, também conhecidos como design smells ou code smells, tornam o software incapaz

de evoluir e aumentam a complexidade e o custo de manutenção. Assim, é de grande

importância para a qualidade de um software que esses problemas sejam identiĄcados e

refatorados.

No entanto, os smells podem ser removidos do código aplicando-se boas práticas de

refatoração e fazendo bom uso dos conceitos básicos da Orientação a Objetos (OO). To-

davia, esse processo tende a ser complexo e custoso, uma vez que o ciclo de vida de um

software não acaba, e todos os dias surgem novos requisitos a serem implementados, tor-

nando quase impossível para o desenvolvedor conhecer todo o código que foi implementado

no projeto.

Apesar de serem problemas relacionados a utilização de más práticas de programação,

code smells e design smells possuem características bastante distintas. Atualmente, é pos-

sível encontrar diversos estudos a respeito dos code smells: (FOWLER, 1999), (SOBRI-

NHO; LUCIA; MAIA, 2018), (MOHA et al., 2010), (FONTANA; BRAIONE; ZANONI,

24 Capítulo 1. Introdução

2012) etc.

Desde o surgimento do termo em 1999, quando Martin Fowler apresentou o termo

à comunidade, os estudos sobre code smells têm sido bastante difundidos. Mas com o

passar dos anos, vários pesquisadores começaram a encontrar problemas de código mais

amplos, associados ao design de um projeto de software e que impactaria uma porção

maior de código fonte. Então em 2004, surgiu o termo design smell apresentado em

(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014).

Dessa forma, é importante destacar que o nível de complexidade ao se trabalhar com

design smells é maior do que code smells, pois enquanto o segundo trabalha em um nível

de características de cada classe, como quantidade de variáveis e/ou métodos, o primeiro

trabalha em um nível mais profundo, analisando uma estrutura de classes e como essa

estrutura impactará no design implementado.

1.1 Problema e Motivação

Melhorar a qualidade de um software é uma tarefa extremamente importante que

deve ser realizada em toda a fase de desenvolvimento. Mas na maioria das vezes, os

desenvolvedores de software não realizam essa tarefa por uma série de motivos, entre elas

a quantidade excessiva de requisitos e/ou a falta de tempo.

Essa melhoria ocorre quando desenvolvedores aplicam boas práticas de desenvolvi-

mento para resolução de problemas e criação de regras de negócio. Práticas simples como

clean code já tornam o código mais fácil de ser entendido e, por consequência, melhora a

qualidade de manutenção.

No entanto, a implementação de más práticas de desenvolvimento podem levar ao

surgimento de design smells e/ou code smells tornando o software difícil de manter e

evoluir.

O processo de identiĄcar um smell em um projeto é considerado custoso e complicado,

pois o desenvolvedor precisa conhecer toda a estrutura de código implementada, e essa

estrutura sofre alterações constantemente devido a implementação de novos requisitos.

Sabendo desses problemas, esse trabalho tem como principal motivação auxiliar o

processo de identiĄcação de design smells de maneira automática e inteligente para que

esse processo se torne mais simples e mais prático para o desenvolvedor.

1.2 Objetivos e Contribuições

Apresentado os problemas e motivações, o objetivo deste trabalho é fornecer uma

ferramenta que identiĄque design smells em projetos orientados a objetos e que também

apresenta sugestões de como refatorá-los.

1.3. Estrutura da Dissertação 25

Tal ferramenta foi desenvolvida como um plug-in do ambiente de desenvolvimento

Eclipse1 onde foram utilizados recursos como o Eclipse Java Development Tools (JDT)

para extração de informações do código fonte (como nome das classes, quantidade de

métodos, nível de herança, entre outros) e também foi utilizada uma ontologia para re-

presentar os principais conceitos da OO e inferir novos conhecimentos através de regras

lógicas no padrão estabelecido pela Web Semântica conhecidas como Semantic Web Rule

Language (SWRL).

Também comparamos o nível de acurácia da nossa ferramenta com as ferramentas mais

comuns encontradas na literatura: Decor2 (MOHA et al., 2010), JDeodorant3 (TSANTA-

LIS; CHATZIGEORGIOU, 2009), PMD4 (FONTANA; BRAIONE; ZANONI, 2012) e

Checkstyle5 (FONTANA; BRAIONE; ZANONI, 2012). Essa comparação foi realizada

através da identiĄcação de smells dessas ferramentas em projetos open source e logo após

foram analisados os níveis de Precision e Recall de cada teste.

É importante ressaltar que nossa ferramenta funciona como um sistema especialista,

onde contamos com uma base de conhecimento composta por uma ontologia, onde todo o

conhecimento a respeito dos projetos OO e das características necessárias para identiĄca-

ção dos design smells estarão armazenadas. Também contamos com o motor de inferência

representado aqui pela OWLApi, que é uma biblioteca que nos permite manipular os da-

dos de nossa ontologia e apresentar ao usuário. Dessa forma, garantimos que, de forma

inteligente, nossa ferramenta apresente os melhores resultados.

Assim, podemos dizer que nossa abordagem utiliza um modelo determinístico, onde

o resultado será determinado pelos fatos contidos na base de conhecimento, diferente das

outras ferramentas analisadas, que dependem de variáveis e métricas para realizarem suas

execuções.

1.3 Estrutura da Dissertação

O restante deste trabalho está estruturado da seguinte forma: no capítulo 2 serão apre-

sentados os principais conceitos teóricos utilizados no desenvolvimento deste trabalho; o

capítulo 3 apresentará a metodologia aplicada para desenvolver este trabalho; o capí-

tulo 4 apresentará como foi realizado o desenvolvimento do plug-in; no capítulo 5 serão

apresentados os recursos utilizados para validar a abordagem proposta; o capítulo 6 apre-

sentará como foram conduzidos os experimentos e os resultados encontrados; no capítulo

7 apresentaremos os trabalhos correlacionados à nossa pesquisa; e, por Ąm, no capítulo 8

apresentaremos as conclusões obtidas, principais contribuições e trabalhos futuros.

1 https://www.eclipse.org/
2 https://wiki.ptidej.net/
3 https://github.com/tsantalis/JDeodorant
4 https://pmd.github.io/
5 http://checkstyle.sourceforge.net/index.html

26 Capítulo 1. Introdução

27

Capítulo 2

Fundamentação Teórica

Nesse capítulo serão apresentados os conceitos utilizados para desenvolvimento deste

trabalho.

2.1 Design Smells

Design smells são determinadas estruturas que indicam violação dos principios fun-

damentais de design e impactam negativamente a qualidade do código (SURYANA-

RAYANA; SAMARTHYAM; SHARMA, 2014) tornando o software difícil de evoluir e

manter podendo desencadear a necessidade de refatoração do código (FONTANA; BRAI-

ONE; ZANONI, 2012).

O termo smell foi deĄnido a primeira vez por Martin Fowler (FOWLER, 1999) que

descreveu vinte e um code smells no livro "Refactoring: Improving the Design of Existing

Code". Desde então, muitas pesquisas têm sido realizadas no intuito de melhorar a quali-

dade de código fonte através da detecção e identiĄcação de smells (SOBRINHO; LUCIA;

MAIA, 2018).

Os smells citados por Fowler podem ser encontrados logo abaixo:

1. Duplicated code: Esse smell ocorre quando a mesma estrutura de código existe

em mais de um lugar. O exemplo mais comum de duplicated code é quando a mesma

expressão aparece em dois métodos de uma mesma classe. Assim, tudo o que se tem

a fazer é extrair essa expressão para um método e chamá-lo nos locais onde havia o

código duplicado.

2. Long method: Esse smell ocorre quando um método possui muitas linhas de

código. Na maioria dos casos, métodos muito grandes precisam ser comentados

para que possam ser entendidos, e se um método precisa de um comentário, então

o mesmo deve ser refatorado para métodos menores.

28 Capítulo 2. Fundamentação Teórica

3. Large class: Esse smell ocorre quando uma classe possui muitas responsabilidades,

e geralmente classes assim possuem muitas variáveis.

4. Long parameter list: Esse smell ocorre quando um método possui excessivos

parâmetros em sua assinatura.

5. Divergent change: Esse smell ocorre quando uma classe é comumente alterada em

diferentes maneiras por diferentes motivos. Por exemplo, se for necessário alterar

muitos métodos de uma classe toda vez que um novo banco de dados surgir no

sistema.

6. Shotgun surgery: Esse smell é basicamente o oposto do divergent change. Nesse

caso, toda vez que surge alguma alteração no sistema, o desenvolvedor precisa fazer

pequenas alterações em diversos lugares.

7. Feature envy: Esse smell ocorre quando uma determinada classe está mais inte-

ressada em métodos de outras classes do que os seus próprios métodos.

8. Data clumps: Esse smell ocorre quando um conjunto de dados aparecem separados

no código mas deveriam fazer parte de um objeto.

9. Primitive obsession: Esse smell ocorre quando uma classe possui muitos atri-

butos primitivos que poderiam ser transformados em uma classe.

10. Switch statements: Esse smell ocorre quando há várias ocorrências de switchs

no código que poderiam ser trocados por polimorĄsmo.

11. Parallel inheritance hierarchies: Esse smell é um caso especial do shotgun

surgery. Nesse caso, toda vez que é necessário criar uma subclasse de uma classe,

também é necessário criar uma subclasse de outra classe.

12. Lazy class: Esse smell ocorre quando uma classe não está fazendo o suĄciente

para permanecer no sistema. Geralmente é uma classe que foi adicionada pensando

em alguma mudança que foi planejada mas não foi desenvolvida.

13. Speculative generality: Esse smell ocorre quando uma classe é criada pensando

em um requisito que pode ser necessário no futuro, mas tal requisito acaba não

sendo implementado.

14. Temporary field: Esse smell ocorre quando um atributo de uma classe é utilizado

somente em certas circunstâncias.

15. Message chains: Esse smell ocorre quando um objeto pede uma referência de

outro objeto que por sua vez pede referência a outro objeto que também pede

referência a outro objeto e assim por diante.

2.1. Design Smells 29

16. Middle man: Esse smell ocorre quando uma classe é utilizada somente para

delegar tarefas para outras classes.

17. Inappropriate intimacy: Esse smell ocorre quando diversas classes dependem

muito umas das outras para realizar suas tarefas.

18. Alternative classes with different interfaces: Esse smell ocorre em classes

que possuem métodos com nomes e implementações iguais mas assinaturas diferen-

tes.

19. Incomplete library class: Esse smell ocorre quando o sistema depende de uma

biblioteca externa que precisa ser atualizada, pois não está fornecendo mais os re-

quisitos esperados.

20. Data class: Esse smell ocorre em classes que possuem somente atributos e mé-

todos acessores e nada mais, sendo bastante provável que esse tipo de classe seja

manipulada por várias outras classes no sistema.

21. Refused bequest: Esse smell ocorre quando subclasses herdam métodos de suas

superclasses mas negam a implementação desse método.

Além de Fowler, Suryanarayana (SURYANARAYANA; SAMARTHYAM; SHARMA,

2014) também descreve um total de vinte e cinco design smells divididos em quatro

categorias: smells de hierarquia, smells de modularização, smells de abstração e smells

de encapsulamento. Abaixo segue a lista dos vinte e cinco design smells apresentados em

(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014):

1. Missing Abstraction: Esse smell ocorre quando grupos de dados ou strings são

utilizados em vez de criar uma classe ou interface.

2. Imperative Abstraction: Esse smell ocorre quando um método é transformado

em uma classe. Esse smell se manifesta em classes que possuem somente um método,

e na maioria das vezes o nome do método e da classe são idênticos.

3. Incomplete Abstraction: Esse smell ocorre quando uma abstração não suporta

completamente métodos complementares ou inter-relacionados (simétricos). Por

exemplo, uma interface provê um método add() mas não provê um método delete().

4. Multifaceted Abstraction: Esse smell ocorre quando uma abstração tem mais

de uma responsibilidade atribuída a ela.

5. Unnecessary Abstraction: Esse smell ocorre quando uma abstração que não é

necessária (e poderia ser evitada) é introduzida no design.

30 Capítulo 2. Fundamentação Teórica

6. Unutilized Abstraction: Esse smell pode ocorrer de duas maneiras: (i) classes

concretas que não são mais utilizadas; (ii) classes abstratas e/ou interfaces que não

estão sendo implementadas por ninguém.

7. Duplicate Abstraction: Esse smell ocorre quando duas ou mais classes têm nomes

idênticos e/ou implementações idênticas.

8. Deficient Encapsulation: Esse smell ocorre quando a acessibilidade de um ou

mais membros da classe é mais permissível que o necessário. Por exemplo, uma

classe que possui atributos públicos.

9. Leaky Encapsulation: Esse smell ocorre quando uma classe expõe ou vaza deta-

lhes de implementação por meio de uma interface pública.

10. Missing Encapsulation: Esse smell ocorre quando variações de implementação

não são encapsuladas em uma abstração ou hierarquia.

11. Unexploited Encapsulation: Esse smell ocorre quando o código usa veriĄcações

de tipo explícitas (usando instruções encadeadas if-else ou switch que veriĄcam o

tipo do objeto) em vez de explorar a variação em tipos já encapsulados em uma

hierarquia.

12. Broken Modularization: Esse smell ocorre quando dados e/ou métodos que

idealmente deveriam ter sido localizados em uma única abstração são separados e

espalhados por várias abstrações.

13. Insufficient Modularization: Esse smell ocorre quando existe uma abstração

que não foi completamente decomposta, e uma decomposição adicional poderia re-

duzir seu tamanho, complexidade de implementação ou ambos.

14. Cyclically-dependent Modularization: Esse smell ocorre quando duas ou mais

abstrações dependem uma da outra direta ou indiretamente (criando um acopla-

mento rígido entre as abstrações).

15. Hub-like Modularization: Esse smell ocorre quando uma abstração tem depen-

dências (entrada e saída) com um grande número de outras abstrações.

16. Missing Hierarchy: Esse smell ocorre quando um segmento de código usa lógica

condicional (geralmente em conjunto com "tipos marcados") para gerenciar expli-

citamente a variação no comportamento em que uma hierarquia poderia ter sido

criada e usada para encapsular essas variações.

17. Unnecessary Hierarchy: Esse smell ocorre quando toda a hierarquia de herança

é desnecessária, indicando que a herança foi aplicada desnecessariamente para o

contexto de design especíĄco.

2.1. Design Smells 31

18. Unfactored Hierarchy: Esse smell ocorre quando há duplicação desnecessária

entre tipos em uma hierarquia.

19. Wide Hierarchy: Esse smell ocorre quando uma hierarquia de herança é muito

ampla, indicando que tipos intermediários podem estar ausentes.

20. Speculative Hierarchy: Esse smell ocorre quando um ou mais tipos em uma

hierarquia são fornecidos especulativamente (ou seja, com base em necessidades

imaginadas, em vez de requisitos reais)

21. Deep Hierarchy: Esse smell ocorre quando uma hierarquia de herança é excessi-

vamente profunda.

22. Rebellious Hierarchy: Esse smell ocorre quando um subtipo rejeita os métodos

fornecidos pelos seus supertipos.

23. Broken Hierarchy: Esse smell ocorre quando um supertipo e seu subtipo concei-

tualmente não compartilham uma relação "é-um", resultando em substituibilidade

quebrada.

24. Multipath Hierarchy: Esse smell ocorre quando um subtipo herda direta e in-

diretamente de um supertipo, levando a caminhos de herança desnecessários na

hierarquia.

25. Cyclic Hierarchy: Esse smell ocorre quando um supertipo em uma hierarquia

depende de qualquer um de seus subtipos.

Além de catalogar vinte e cinco design smells, (SURYANARAYANA; SAMARTHYAM;

SHARMA, 2014) também cita os principais motivos que levam ao surgimento de smells

em projetos orientados a objetos.

❏ Violação dos princípios de design

Os princípios de design guiam os desenvolvedores a criar soluções de software efetivas

e de alta qualidade. Quando esses princípios são violados, o resultado se manifesta

como um smell.

Considerando a classe Calendar do Java que foi criada para abstrair as funciona-

lidades de um calendário do mundo real, veriĄca-se que nela é violado o princí-

pio da abstração, pois ela também suporta funcionalidades relacionadas a tempo.

Portanto, é possível encontrar um smell na classe Calendar por possuir múltiplas

responsabilidades.

❏ Uso inapropriado de padrões

32 Capítulo 2. Fundamentação Teórica

Muitas vezes desenvolvedores se deparam com problemas que em um primeiro mo-

mento parece perfeito para ser resolvido com um design pattern, e sem entender tal

problema e como a utilização do pattern implicará o projeto, o desenvolvedor realiza

a refatoração acreditando que é a melhor solução.

O problema é que um design pattern mal aplicado cria uma estrutura que sofre de

sintomas como muitas classes ou classes altamente acopladas com poucas responsa-

bilidades.

Assim, cabe ao desenvolvedor entender a melhor utilização dos design patterns para

ter certeza se será a melhor solução para acabar com determinado smell.

❏ Limitações de linguagens de programação

Algumas linguagens de programação nos seus primórdios de existência não possuíam

muitos recursos, assim desenvolvedores teriam que encontrar soluções alternativas a

seus problemas. Por exemplo, as versões iniciais do Java que não suportava enums,

obrigando desenvolvedores a inserir classes ou interfaces para conter constantes. Isso

implicava na violação da abstração, surgindo assim um smell.

❏ Pensamento procedural em orientação a objetos

Geralmente quando programadores com conhecimento de alguma linguagem proce-

dural começam a desenvolver no paradigma orientado a objetos, a forma de pensar

não acompanha tal transição, pois não basta utilizar uma linguagem orientada a

objetos. Mais importante que isso é aplicar os conceitos da OO no código.

Isso faz com que na maioria das vezes, técnicas procedurais sejam aplicadas juntas

de técnicas orientadas a objetos, violando alguns princípios e criando smells.

❏ Não aderir a melhores práticas e processos

Ao longo dos anos, softwares das mais diversas utilidades são criados para atender a

um número cada vez maior de usuários. Essa demanda implicou a criação de proces-

sos e práticas para melhor gerenciar tempo e mão de obra para o desenvolvimento.

Porém, algumas empresas não conseguem seguir tais práticas e acabam atingindo os

programadores, que para atender a expectativa desejada no tempo estipulado pre-

cisam passar por cima dos padrões utilizados no projeto violando, assim, princípios

fundamentais para um código de qualidade.

2.2 Sistemas Especialistas

Um sistema especialista é deĄnido como um sistema computacional interativo e conĄá-

vel que utiliza fatos e heurística para resolver problemas complexos de tomada de decisão

(GURU99, 2019).

2.2. Sistemas Especialistas 33

A ideia básica por trás de um sistema especialista é a transferência de uma vasta

quantidade de conhecimento especialista de um humano para um computador. Esse

conhecimento é armazenado e então o computador pode fazer inferências e chegar a con-

clusões especíĄcas. Então, como um especialista humano, o sistema apresenta sugestões

e explica, caso necessário, a lógica realizada até chegar à conclusão(LIAO, 2005).

O conhecimento especialista possui uma natureza dinâmica, ou seja, o conhecimento e

a experiência estão continuamente sujeitos a mudanças. A percepção dessas propriedades

levou a visão de que a separação explícita de algoritmos para aplicação de conhecimento

altamente especializado do próprio conhecimento é altamente desejável, se não mandató-

rio, para o desenvolvimento de sistemas especialistas (LUCAS; GAAG, 1991).

Essa compreensão para desenvolvimento de sistemas especialistas na atualidade é for-

mulada pela equação 1, às vezes chamada de paradigma de design de sistemas especialistas

(LUCAS; GAAG, 1991):

𝑆𝑖𝑠𝑡𝑒𝑚𝑎𝐸𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑠𝑡𝑎 = 𝐶𝑜𝑛ℎ𝑒𝑐𝑖𝑚𝑒𝑛𝑡𝑜 + 𝐼𝑛𝑓𝑒𝑟ê𝑛𝑐𝑖𝑎 (1)

Consequentemente, um sistema especialista possui dois componentes essenciais, apre-

sentados a seguir:

❏ Uma base de conhecimento que captura o conhecimento especíĄco do domínio; e

❏ Um motor de inferência que consiste em algoritmos para manipulação de conheci-

mento representado pela base de conhecimento.

O processo de criação de sistemas especialistas pode ser resumido pelos items abaixo

(GURU99, 2019):

❏ Determinar características do problema;

❏ Engenheiro de conhecimento e especialista no domínio trabalham em coerência para

deĄnir o problema;

❏ O engenheiro de conhecimento traduz o conhecimento em uma linguagem compre-

ensível por computadores. Ele projeta um mecanismo de inferência, uma estrutura

de raciocínio, que possa usar o conhecimento quando necessário.

❏ O especialista em conhecimento também determina como integrar o uso de conhe-

cimento incerto no processo de raciocínio e que tipo de explicação seria útil.

Há ainda vários pré-requisitos para um formalismo de representação do conhecimento

antes que ele possa ser considerado adequado para codiĄcar o conhecimento do domínio.

Um formalismo adequado de representação do conhecimento deve (LUCAS; GAAG, 1991):

34 Capítulo 2. Fundamentação Teórica

❏ Possuir poder de expressividade suĄciente para codiĄcar o conhecimento do domínio

especíĄco;

❏ Possuir uma base semântica limpa, de modo que o signiĄcado do conhecimento

presente na base de conhecimento seja fácil de entender, especialmente pelo usuário;

❏ Permitir interpretação algorítmica eĄciente;

❏ Permitir explicações e justiĄcativas das soluções obtidas, mostrando por que certas

perguntas foram feitas ao usuário e como certas conclusões foram tiradas.

Parte dessas condições diz respeito à forma (sintaxe) de um formalismo de represen-

tação do conhecimento; outros dizem respeito ao seu signiĄcado (semântica) (LUCAS;

GAAG, 1991).

Um formalismo amplamente utilizado para construção de sistemas baseados em co-

nhecimento, ou sistemas especialistas, são as ontologias, devido à sua capacidade de re-

presentar um conhecimento rico e complexo sobre coisas, grupos de coisas e relações entre

elas.

2.3 Ontologias e Web Semântica

Uma ontologia é uma descrição formal explícita de conceitos em um domínio de dis-

curso (classes, às vezes chamadas de conceitos), propriedades de cada conceito descrevendo

várias características e atributos dos conceitos (slots, as vezes chamados de papeis ou pro-

priedades) e restrições nos slots (facets, às vezes chamados de restrições de papeis). Uma

ontologia juntamente com um conjunto de instâncias individuais de classes constituem

uma base de conhecimento. Na verdade, existe uma linha tênue onde a ontologia termina

e a base de conhecimento começa (NOY; MCGUINNESS, 2001).

Segundo (NOY; MCGUINNESS, 2001) os principais benefícios em se construir uma

ontologia são:

❏ Compartilhar o entendimento comum da estrutura de informações entre pessoas ou

agentes de software;

❏ Permitir a reutilização de conhecimento de domínio;

❏ Tornar as suposições de domínio explícitas;

❏ Separar o conhecimento do domínio do conhecimento operacional;

❏ Analisar o conhecimento do domínio.

2.3. Ontologias e Web Semântica 35

Uma ontologia é tipicamente composta de uma hierarquia de termos que descrevem

objetos, relacionamentos entre os objetos e suas caracteristicas. Em geral, ontologias são

compostas pelos seguintes conceitos (CHENG; LIAO, 2007)

❏ Classe: Uma classe representa um conceito ou um conjunto de conceitos com ca-

racteristicas próprias no domínio. Uma classe ainda pode ter sub-classes que repre-

sentam conceitos mais especiĄcos.

❏ Propriedade: Propriedades são utilizadas para dar signiĄcado as classes, uma vez

que uma classe por si só não quer dizer nada na ontologia. As propriedades podem

ser deĄnidas como propriedades descritivas e propriedades de relacionamento.

❏ Relacionamento: Relacionamentos descrevem como as classes interagem entre si

no domínio.

Uma ontologia apenas deĄne um vocabulário para compartilhar e padronizar o en-

tendimento de determinadas informações sobre o domínio no qual se deseja trabalhar.

Esse entendimento pode ser descrito em forma de tripla como "descrição-representação-

interpretação"(ISOTANI; BITTENCOURT, 2015).

Uma das formas de descrever e representar um conhecimento de um modo que possa

ser entendido e interpretado tanto por sistemas computacionais como pelos seres humanos

é utilizar mecanismos e linguagens de representação/modelagem (visual ou lógica/formal)

que explicitam as relações (restrições e hierarquias) entre conceitos(ISOTANI; BITTEN-

COURT, 2015).

Atualmente a linguagem mais utilizada para representação de ontologias é a Web

Ontology Language (OWL), desenvolvida e aprovada pelo World Wide Web Consortium

(W3C) para satisfazer ao formalismo exigido pela comunidade de Web Semântica e para

que programas possam compreender e responder a consultas de agentes.

OWL é uma linguagem baseada em lógica computacional de modo que o conhecimento

expresso em OWL possa ser explorado por programas de computador, por exemplo, para

veriĄcar a consistência desse conhecimento ou para tornar explícito o conhecimento im-

plícito. Os documentos OWL conhecidos como ontologias podem ser publicados na World

Wide Web e podem se referir a ou ser referidos por outras ontologias OWL (W3C, 2012).

(ISOTANI; BITTENCOURT, 2015) destacam que há uma ideia errada sobre o que é a

OWL e como aplicá-la. Tal fato ocorre pela complexidade inerente ao termo "ontologia"e

pela expressividade da linguagem OWL. Os autores também destacam três características

não inerentes a OWL:

1. Não é uma linguagem de programação: OWL é uma linguagem declarativa

que descreve um determinado universo do discurso de forma lógica. A partir do

momento que descreve conhecimento, pode-se fazer uso de ferramentas conhecidas

como reasoners para inferir novas informações sobre o universo de discurso.

36 Capítulo 2. Fundamentação Teórica

2. Não é uma linguagem de esquema para conformidade sintática: Não faz

parte do escopo da OWL prescrever como certo documento deve ser sintaticamente

estruturado.

3. Não é um banco de dados: A principal diferença entre banco de dados e OWL

é a semântica utilizada em cada um. Os bancos de dados são mundos fechados,

o que quer dizer que, se determinado fato não está presente, ele é considerado

falso. Enquanto isso ontologias são considerados mundos abertos, implicando que

se determinado fato não está presente ele é considerado desconhecido, porque é

possível que seja verdadeiro.

A especiĄcação da W3C deĄne três subconjuntos da linguagem OWL baseado na sua

capacidade de representação e propriedades formais: OWL Lite, OWL-DL e OWL Full.

OWL Lite é o subconjunto com menor expressividade. Possui construtos para repre-

sentação de taxonomias simples e algumas restrições sobre propriedades. O OWL-DL

estende ao máximo a expressividade da OWL Lite, mantendo as suas propriedades com-

putacionais de complexidade e decidibilidade. O conjunto mais completo, OWL Full,

permite maior nível de representatividade de OWL, permitindo construções de meta mo-

delagem. Porém, em OWL Full não há garantias computacionais para máquinas de infe-

rência (ABEL; FIORINI, 2013).

Como dito anteriormente, a linguagem OWL permite a utilização de ferramentas cha-

madas reasoners para inferir novos conhecimentos a partir do conhecimento modelado.

Para isso é necessário um conjunto de regras que descrevem logicamente um conhecimento

novo que se espera ser obtido. Os reasoners mapeiam a base de conhecimento através dos

conceitos, relações e fatos para que sejam inferidos e apresentados informações implíci-

tas. Os principais motores de inferência disponíveis na literatura são: Pellet6, Hermit7 e

Fact++8(NONATO et al., 2017).

A Semantic Web Rule Language (SWRL) é um exemplo as regras lógicas utilizadas

pelos motores de inferências. A SWRL foi criada pelo W3C para ser a linguagem padrão de

inferência para ontologias e web semântica. Ela é composta por um antecedente conhecido

como "corpo"e um consequente conhecido como "cabeça". Informalmente, isso quer dizer

que se o antecendente é verdadeiro, o consequente também é verdadeiro. Como pode ser

visto na equação 2, a regra SWRL veriĄca se a informação (Y é pai de X e Z é irmão de

Y) é verdadeira, então a informação (Z é tio de X) também é verdadeira.

𝑝𝑎𝑖(?𝑦, ?𝑥) ∧ 𝑖𝑟𝑚ã𝑜(?𝑧, ?𝑦) =⇒ 𝑡𝑖𝑜(?𝑧, ?𝑥) (2)

Desta forma, a SWRL provê um formalismo para representação das regras de produ-

ção, no qual o conhecimento real sobre a solução de problemas é expresso.
6 https://www.w3.org/2001/sw/wiki/Pellet
7 http://www.hermit-reasoner.com/
8 http://owl.man.ac.uk/factplusplus/

2.4. O projeto Eclipse JDT 37

2.4 O projeto Eclipse JDT

O projeto Eclipse JDT (Java Development Tools) provê APIs para acessar e manipular

código fonte Java através de modelos Java e Árvore de Sintaxe Abstrata (AST9). No

modelo Java, cada projeto Java é representado internamente por meio de um modelo que

é uma representação leve e tolerante a falhas do projeto Java. Ele não contém tantas

informações quanto a AST, mas é mais rápido para criar (VOGEL; SCHOLZ; PFAFF,

2018).

O modelo Java é representado por um estrutura em árvore que pode ser descrita como

a seguir:

❏ Projeto Java (IJavaProject): o projeto Java em si que contém todos os outros ar-

quivos e objetos;

❏ Pasta Src/bin ou bibliotecas externas (IPackageFragmentRoot): mantém os códigos

fonte ou arquivos binários, pode ser uma pasta ou uma biblioteca;

❏ Pacote (IPackageFragment): cada pacote está abaixo do IPackageFragmentRoot, os

subpacotes não são folhas do pacote, eles são listados diretamente sob IPackage-

FragmentRoot;

❏ Código fonte Java (ICompilationUnit): o arquivo de origem é sempre o nó do pacote;

❏ Tipos/Atributos/Métodos (IType/IField/IMethod): Tipos, atributos e métodos.

Na Ągura 1 é posssível visualizar como os componentes do JDT são representados em

um projeto Java.

Figura 1 Ű Projeto Java representado em JDT

Fonte: (VOGEL; SCHOLZ; PFAFF, 2018)

A Árvore de Sintaxe Abstrata é uma representação em árvore detalhada do código-

fonte Java. A AST deĄne uma Interface de Programação de Aplicativos (API10) para
9 Do inglês, Abstract Syntax Tree
10 Do inglês, Application Programming Interface

38 Capítulo 2. Fundamentação Teórica

modiĄcar, criar, ler e excluir o código-fonte. Cada elemento de origem Java é represen-

tado como uma subclasse da classe ASTNode. Cada nó especíĄco fornece informações

especíĄcas sobre o objeto que o representa (VOGEL; SCHOLZ; PFAFF, 2018).

39

Capítulo 3

Metodologia

Neste capítulo serão apresentados as perguntas de pesquisa e, logo após, a metodologia

utilizada para responder tais perguntas. Serão apresentados os métodos abordados na

construção da ferramenta, assim como as etapas de desenvolvimento e validação.

3.1 Perguntas de pesquisa

Como dito no capítulo 1, a proposta desse trabalho é analisar o uso de tecnologias da

web semântica no processo de identiĄcação e classiĄcação de design smells em códigos

orientados a objetos. Sendo mais especíĄco, o uso de ontologias e regras SWRL para

criação de uma base de conhecimento e inferência de conteúdo implícito. Assim, com

os resultados obtidos através desse trabalho, propõe-se responder as seguintes perguntas

(RQs#):

❏ RQ #1 É possível e viável detectar e classiĄcar design smells automaticamente

através de ontologias e tecnologias da web semântica?

Essa pergunta de pesquisa busca avaliar até que ponto é possível detectar e classiĄcar

design smells utilizando tecnologias da web semântica e o quão viável é esse processo.

❏ RQ #2 A identiĄcação e classiĄcação de design smells apoiados pelo uso de on-

tologias e tecnologias da web semântica apresentam resultados signiĄcativamente

positivos quando comparados com as técnicas de detecção mais comuns?

Neste caso será analisado o nível de acurácia entre as ferramentas propostas. Assim

conseguiremos medir o nivel de melhoria que nosso método apresentou sobre as

outras ferramentas.

40 Capítulo 3. Metodologia

3.2 Criação da ontologia

Diversas metodologias têm sido criadas para apoio ao processo de criação de ontologias.

Algumas das mais utilizadas são: Toronto Virtual Enterprise [TOVE], ENTERPRISE

[Uschold et al.], METHONTOLOGY [Fernandez et al.] e Ontology Development 101

[Noy & McGuinness] (HOSS, 2006).

A metodologia escolhida para realização desse trabalho foi a Ontology Development

101 (NOY; MCGUINNESS, 2001), pois ela fornece um guia prático de como começar a

criação de sua ontologia, incluindo uma série de etapas práticas e dicas de erros comuns

a serem evitados.

A Ągura 2 ilustra a sequência de etapas criadas por (NOY; MCGUINNESS, 2001) para

apoio na criação de ontologias. Através desta Ągura podemos observar que o processo é

contínuo, ou seja, cada etapa leva a próxima e todas as etapas sempre se repetirão no

decorrer do desenvolvimento da ontologia.

Figura 2 Ű Ontology 101

Fonte: Adaptado de (NOY; MCGUINNESS, 2001)

Seguindo o modelo acima, começamos o desenvolvimento da nossa ontologia determi-

nando o escopo do nosso trabalho. Como iremos trabalhar com identiĄcação e classiĄcação

de design smells no paradigma orientado a objetos, foi necessário pesquisar e estudar so-

3.2. Criação da ontologia 41

bre tais conceitos. Dessa forma, fomos capazes de obter conhecimento adequado para a

modelagem da nossa ontologia.

Após a aquisição de tal conhecimento, era importante considerarmos possíveis ontolo-

gias já existentes. Contudo, não fomos capazes de encontrar uma ontologia que modelasse

o conhecimento da forma que precisávamos, então decidimos criar nossa ontologia do zero.

Precisávamos, então, deĄnir quais os conceitos mais importantes do nosso domínio.

DeĄnimos que os conceitos mais gerais seriam: classe, atributo, método, parâmetro e

interface. E então, a partir desses conceitos surgiriam conceitos mais especíĄcos.

Dessa forma fomos capazes de criar nossa hierarquia de classes na ontologia. Con-

ceitos como classe e atributos seriam ramiĄcados para representação de conceitos mais

especíĄcos. Assim, deĄnimos as classes ClassOO (para representação das classes OO),

AbstractClassOO (para representação das classes OO abstratas), NormalAttribute (para

representação de atributos gerais), ConstantAttribute (para representação de atributos

constantes), Method (para representação de métodos), Paremeter (para representação de

parâmetros contidos na assinatura de métodos) e Interface (para representação de inter-

faces).

DeĄnidas as classes, precisaríamos deĄnir as propriedades responsáveis por gerar sig-

niĄcado as classes e as relações entre elas. A Ągura 3 apresenta as propriedades que

darão signiĄcado as classes deĄnidas em nossa ontologia. Como é possível notar, todas

elas começam com um preĄxo para deĄnição de qual conceito tal propriedade fará parte.

Os preĄxos foram deĄnidos como at (para classe NormalAttribute e ConstantAttribute),

cl (para classe ClassOO e AbstractClassOO), enum (para classe Enum), in (para classe

Interface), mt (para classe Method) e pm (para classe Parameter).

42 Capítulo 3. Metodologia

Figura 3 Ű Data Properties

Fonte: Dados do trabalho

Já a Ągura 4 apresenta as propriedades utilizadas para representação das relações entre

as classes na ontologia. A propriedade hasAttribute deĄne uma relação de uma classe que

contém um atributo. A propriedade hasMethod deĄne uma relação de uma classe que

contém um método. A propriedade hasParameter deĄne uma relação de um método

que contém um parâmetro. A propriedade hasSub deĄne uma relação de uma classe que

possui outra classe Ąlha. A propriedade hasSuper deĄne uma relação de uma classe que

possui outra classe pai. A propriedade implementss deĄne uma relação de uma classe que

implementa uma interface. E a propriedade isTypeOf deĄne uma relação de um atributo

que é do tipo de alguma classe.

3.2. Criação da ontologia 43

Figura 4 Ű Object Properties

Fonte: Dados do trabalho

Com nossas classes e propriedades criadas, o último passo foi a instanciação dos indi-

víduos na nossa ontologia através dos dados extraídos com o JDT. Uma vez que os indi-

víduos foram criados, bastava o reasoner realizar a inferência através das regras SWRL

modeladas.

Como estamos trabalhando com identiĄcação e classiĄcação de design smells em pro-

jetos orientados a objetos, é importante também modelarmos as características dos smells

que espera-se serem identiĄcados. Nossa abordagem é capaz de identiĄcar um total de 14

design smells, nos quais tiveram suas classes criadas na ontologia e suas características

modeladas através de regras SWRL. Utilizamos essa abordagem pois os smells não são

conceitos concretos em um projeto OO como uma classe por exemplo, mas sim um con-

junto de características de uma ou mais classes que levam ao seu surgimento no projeto.

A Ągura 5 apresenta o grafo completo da ontologia modelada. Nela é possível observar

como são realizados os relacionamentos das principais classes. Na próxima seção, serão

apresentadas as regras SWRL criadas para a realização de inferência do conhecimento no

qual se espera a ser obtido.

44 Capítulo 3. Metodologia

Figura 5 Ű Grafo da ontologia

Fonte: Dados do trabalho

3.3. Inferência de conhecimento 45

3.3 Inferência de conhecimento

Para criação da ontologia foi utilizada a linguagem OWL (Web Ontology Language)

para modelagem dos dados. Contudo, a OWL não consegue inferir conhecimento por si só

e para auxilar nessa tarefa, o W3C criou a Semantic Web Rule Language SWRL que é uma

linguagem baseada em regras de primeira ordem no formato "se-então"que permite aos

seus usuários realizarem inferências de novos conhecimentos através dos dados modelados

pela OWL.

Nesse trabalho foram criadas 14 regras para inferência dos design smells identiĄcados

nesse trabalho, sendo 2 citados por (FOWLER, 1999) e 12 por (SURYANARAYANA;

SAMARTHYAM; SHARMA, 2014).

❏ Regra 1: Smell Cyclically Dependent Modularization

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑎) ∧ 𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑏) ∧ 𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑎1) ∧ 𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑏1) ∧

ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑎, ?𝑏1) ∧ ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑏, ?𝑎1) ∧ 𝑖𝑠𝑇𝑦𝑝𝑒𝑂𝑓(?𝑎1, ?𝑎) ∧

𝑖𝑠𝑇𝑦𝑝𝑒𝑂𝑓(?𝑏1, ?𝑏) → 𝑆𝑚𝑒𝑙𝑙𝐶𝑦𝑐𝑙𝑖𝑐𝑎𝑙𝑙𝑦𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(?𝑎) ∧

𝑆𝑚𝑒𝑙𝑙𝐶𝑦𝑐𝑙𝑖𝑐𝑎𝑙𝑙𝑦𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(?𝑏)

Na regra 1 é veriĄcado se uma classe A possui um atributo com o tipo de uma classe

B e vice-versa através das propriedades hasAttribute(?a, ?b1) e hasAttribute(?b,

?a1). Caso essa aĄrmação seja verdadeira, ambas as classes A e B são consideradas

ocorrências do design smell Cyclically Dependent Modularization

❏ Regra 2: Smell Cyclic Hierarchy

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑎) ∧ 𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑏) ∧ ℎ𝑎𝑠𝑆𝑢𝑝𝑒𝑟(?𝑎, ?𝑏) ∧ 𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑎1) ∧

𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑏1) ∧ 𝑖𝑠𝑇𝑦𝑝𝑒𝑂𝑓(?𝑎1, ?𝑎) ∧ 𝑖𝑠𝑇𝑦𝑝𝑒𝑂𝑓(?𝑏1, ?𝑏) ∧

ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑏, ?𝑎1) → 𝑆𝑚𝑒𝑙𝑙𝐶𝑦𝑐𝑙𝑖𝑐𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(?𝑏)

Na regra 2 é veriĄcado se uma Classe B que é pai de uma classe A possui um

atributo com o tipo da própria classe Ąlha. Tal veriĄcação é realizada através

das propriedades hasSuper(?a, ?b) e hasAttribute(?b, ?a1). Caso essa aĄrmação

seja verdadeira, a classe B é considerada uma ocorrência do design smell Cyclic

Hierarchy.

❏ Regra 3: Smell Deep Hierarchy

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐)∧𝑐𝑙𝐷𝑒𝑝𝑡ℎ𝑂𝑓𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒(?𝑐, ?𝑎)∧𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”6”∧∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) →

𝑆𝑚𝑒𝑙𝑙𝐷𝑒𝑒𝑝𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(?𝑐)

Na regra 3 é veriĄcado através das propriedades clDepthOfInheritance(?c, ?a) e

𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”6” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) se uma classe possui hierarquia de herança com

46 Capítulo 3. Metodologia

nível maior ou igual a 6. Caso a aĄrmação seja verdadeira, essa classe é considerada

uma ocorrência do design smell Deep Hierarchy.

❏ Regra 4: Smell DeĄcient Encapsulation

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐)∧𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑎)∧ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(?𝑐, ?𝑎)∧𝑎𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒(?𝑎, ”𝑝𝑢𝑏𝑙𝑖𝑐”∧

∧𝑥𝑠𝑑 : 𝑠𝑡𝑟𝑖𝑛𝑔) → 𝑆𝑚𝑒𝑙𝑙𝐷𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛(?𝑐)

Na regra 4 é veriĄcado através da propriedade 𝑎𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑇𝑦𝑝𝑒(?𝑎, ”𝑝𝑢𝑏𝑙𝑖𝑐” ∧ ∧𝑥𝑠𝑑 :

𝑠𝑡𝑟𝑖𝑛𝑔) se uma classe possui algum atributo com o encapsulamento do tipo público.

Caso a aĄrmação seja verdadeira, essa classe é considerada uma ocorrência do design

smell Deficient Encapsulation .

❏ Regra 5: Smell Duplicate Abstraction

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑎)∧𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑏)∧𝑐𝑙𝑁𝑎𝑚𝑒(?𝑎, ?𝑎1)∧𝑐𝑙𝑁𝑎𝑚𝑒(?𝑏, ?𝑏1)∧𝑒𝑞𝑢𝑎𝑙(?𝑎1, ?𝑏1)∧

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑚(?𝑎, ?𝑏) → 𝑆𝑚𝑒𝑙𝑙𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(?𝑏) ∧

𝑆𝑚𝑒𝑙𝑙𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(?𝑎)

Na regra 5 é veriĄcado se diferentes classes (propriedade DifferentFrom (?a, ?b))

possuem nomes iguais (propriedade equal(?a1, ?b1)) em um mesmo projeto. Caso

a aĄrmação seja verdadeira, essas classes são consideradadas ocorrências do design

smell Duplicate Abstraction.

❏ Regra 6: Smell Imperative Abstraction

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝑒𝑞𝑢𝑎𝑙(?𝑎, ”1” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) ∧ 𝑐𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑀𝑒𝑡ℎ𝑜𝑑𝑠(?𝑐, ?𝑎) →

𝑆𝑚𝑒𝑙𝑙𝐼𝑚𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(?𝑐)

Na regra 6 é veriĄcado através da propriedade 𝑒𝑞𝑢𝑎𝑙(?𝑎, ”1” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) se uma

classe possui somente um método. Caso a aĄrmação seja verdadeira, essa classe é

considerada uma ocorrência do design smell Imperative Abstraction.

❏ Regra 7: Smell Insufficient Modularization

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝑐𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(?𝑐, ?𝑎) ∧ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”50” ∧ ∧𝑥𝑠𝑑 :

𝑖𝑛𝑡) → 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(?𝑐)

Na regra 7 é veriĄcado através das propriedades clNumberOfAttributes(?c, ?a) e

𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”50”∧∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) se uma classe possui 50 ou mais atributos. Caso

a aĄrmação seja verdadeira, essa classe é considerada uma ocorrência do design

smell Insufficient Modularization.

3.3. Inferência de conhecimento 47

❏ Regra 8: Smell Multipath Hierarchy

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑏) ∧ 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(?𝑖) ∧ 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑠(?𝑏, ?𝑖) ∧

𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑠(?𝑐, ?𝑖) ∧ ℎ𝑎𝑠𝑆𝑢𝑝𝑒𝑟(?𝑐, ?𝑏) → 𝑆𝑚𝑒𝑙𝑙𝑀𝑢𝑙𝑡𝑖𝑝𝑎𝑡ℎ𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(?𝑐)

Na regra 8 é veriĄcado através da propriedade se duas classes implementam a mesma

interface (propriedade implementss) e se uma é pai da outra (propriedade hasSu-

per(?c, ?b)). Caso a aĄrmação seja verdadeira, as classes são consideradas ocorrên-

cias do design smell Multipath Hierarchy.

❏ Regra 9: Smell Speculative Hierarchy

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝑐𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑜𝑛𝑠(?𝑐, ?𝑎) ∧ 𝑒𝑞𝑢𝑎𝑙(?𝑎, ”1” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) →

𝑆𝑚𝑒𝑙𝑙𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(?𝑐)

Na regra 9 é veriĄcado se uma classe possui somente um Ąlho através da propriedade

clNumberOfSons(?c, ?a). Caso a aĄrmação seja verdadeira, a classe é considerada

uma ocorrência do design smell Speculative Hierarchy.

❏ Regra 10: Smell Unfactored Hierarchy

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑎) ∧ 𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑏) ∧ 𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝑀𝑒𝑡ℎ𝑜𝑑(?𝑚) ∧ 𝑀𝑒𝑡ℎ𝑜𝑑(?𝑛) ∧

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(?𝑝) ∧ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(?𝑞) ∧ ℎ𝑎𝑠𝑆𝑢𝑝𝑒𝑟(?𝑎, ?𝑐) ∧ ℎ𝑎𝑠𝑆𝑢𝑝𝑒𝑟(?𝑏, ?𝑐) ∧

ℎ𝑎𝑠𝑀𝑒𝑡ℎ𝑜𝑑(?𝑎, ?𝑚)∧ℎ𝑎𝑠𝑀𝑒𝑡ℎ𝑜𝑑(?𝑏, ?𝑛)∧𝑚𝑡𝑁𝑎𝑚𝑒(?𝑚, ?𝑚1)∧𝑚𝑡𝑁𝑎𝑚𝑒(?𝑛, ?𝑛1)∧

𝑝𝑚𝑁𝑎𝑚𝑒(?𝑝, ?𝑝1) ∧ 𝑝𝑚𝑁𝑎𝑚𝑒(?𝑞, ?𝑞1) ∧ ℎ𝑎𝑠𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(?𝑚, ?𝑝) ∧

ℎ𝑎𝑠𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(?𝑛, ?𝑞) ∧ 𝑝𝑚𝑇𝑦𝑝𝑒(?𝑝, ?𝑝2) ∧ 𝑝𝑚𝑇𝑦𝑝𝑒(?𝑞, ?𝑞2) ∧ 𝑒𝑞𝑢𝑎𝑙(?𝑝1, ?𝑞1) ∧

𝑒𝑞𝑢𝑎𝑙(?𝑚1, ?𝑛1)∧𝑒𝑞𝑢𝑎𝑙(?𝑝2, ?𝑞2)∧𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑚(?𝑎, ?𝑏)∧𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑚(?𝑝, ?𝑞)∧

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑚(?𝑚, ?𝑛) → 𝑆𝑚𝑒𝑙𝑙𝑈𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑒𝑑𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(?𝑏) ∧

𝑆𝑚𝑒𝑙𝑙𝑈𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑒𝑑𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(?𝑎)

Na regra 10 é veriĄcado se duas classes que possuem o mesmo pai (proprieade has-

Super) possuem métodos com nomes e paramêtros iguais (propriedades hasMethod

e equal). Caso a aĄrmação seja verdadeira, as classes são consideradas ocorrências

do design smell Unfactored Hierarchy

❏ Regra 11: Smell Unutilized Abstraction

𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝑐𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑜𝑛𝑠(?𝑐, ?𝑎) ∧ 𝑒𝑞𝑢𝑎𝑙(?𝑎, ”0” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) →

𝑆𝑚𝑒𝑙𝑙𝑈𝑛𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(?𝑐)

Na regra 11 é veriĄcado se uma classe abstrata não possui nenhum Ąlho (propriedade

clNumberOfSons(?c, ?a)), ou seja, não está sendo implementada por ninguém. Caso

48 Capítulo 3. Metodologia

a aĄrmação seja verdadeira, essa classe é considerada uma ocorrência do design smell

Unutilized Abstraction.

❏ Regra 12: Smell Wide Hierarchy

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝑐𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑜𝑛𝑠(?𝑐, ?𝑎) ∧ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”9” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) →

𝑆𝑚𝑒𝑙𝑙𝑊𝑖𝑑𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(?𝑐)

Na regra 12 é veriĄcado através da propriedade clNumberOfSons(?c, ?a) e

𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”9” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) se uma classe possui 9 ou mais Ąlhos. Caso a

aĄrmação seja verdadeira, essa classe é considerada uma ocorrência do design smell

Wide Hierarchy.

❏ Regra 13: Smell Long Method

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐)∧𝑀𝑒𝑡ℎ𝑜𝑑(?𝑚)∧ℎ𝑎𝑠𝑀𝑒𝑡ℎ𝑜𝑑(?𝑐, ?𝑚)∧𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”150”∧∧𝑥𝑠𝑑 :

𝑖𝑛𝑡) ∧ 𝑚𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐿𝑖𝑛𝑒𝑠(?𝑚, ?𝑎) → 𝑆𝑚𝑒𝑙𝑙𝐿𝑜𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑(?𝑐)

Na regra 13 é veriĄcado através das propriedades mtNumberOfLines(?m, ?a) e

𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”150” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) se um método possui mais de 150 linhas de

código. Caso a aĄrmação seja verdadeira, essa classe é considerada uma ocorrência

do design smell Long Method.

❏ Regra 14: Smell Long Parameter List

𝐶𝑙𝑎𝑠𝑠𝑂𝑂(?𝑐) ∧ 𝑀𝑒𝑡ℎ𝑜𝑑(?𝑚) ∧ ℎ𝑎𝑠𝑀𝑒𝑡ℎ𝑜𝑑(?𝑐, ?𝑚) ∧ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”7” ∧ ∧𝑥𝑠𝑑 :

𝑖𝑛𝑡) ∧ 𝑚𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(?𝑚, ?𝑎) → 𝑆𝑚𝑒𝑙𝑙𝐿𝑜𝑛𝑔𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐿𝑖𝑠𝑡(?𝑐)

Na regra 14 é veriĄcado através das propriedades mtNumberParameters(?m, ?a) e

𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(?𝑎, ”7” ∧ ∧𝑥𝑠𝑑 : 𝑖𝑛𝑡) se um método possui mais de 7 parâmetros em

sua assinatura. Caso a aĄrmação seja verdadeira, a classe que contém tal método é

considerada uma ocorrência do design smell Long Parameter List.

49

Capítulo 4

O plug-in OWLSmell

A escolha por desenvolver um plug-in para o Eclipse11 é devido ao fato de que tal

ambiente é bastante utilizado por desenvolvedores no mundo todo. E também, procura-

mos desenvolver um artefato que seria de fácil utilização uma vez que o plug-in já estará

integrado na IDE.

O código fonte do plug-in OWLSmell pode ser encontrado no repositório do github

<https://github.com/viniciusjns/owlsmellplugin>.

Para alcançar este objetivo, nós usamos uma série de ferramentas providas pelo Eclipse

que permite extrair e manipular código fonte na linguagem de programação Java. Essas

ferramentas são conhecidas como Java Development Tools (JDT).

A Ągura 6 apresenta um exemplo de uso do Eclipse JDT para extrair informações de

um projeto Java. Na linha 60 é obtido o nome de todos os pacotes do projeto, uma vez

que a função println está dentro de uma estrutura de repetição. Na linha 85 é obtido o

nome das classes do projeto, e na linha 87 é informado quantas linhas de código contém

cada classe. No método printIMethodDetails encontrado na linha 91, encontram-se três

chamadas a função println: a primeira para apresentar o nome do método (linha 95),

a segunda para apresentar os tipos de parâmetros encontrados na assinatura do método

(linha 96) e o terceiro para informar o tipo de retorno do método (linha 97).

11 https://www.eclipse.org/

50 Capítulo 4. O plug-in OWLSmell

Figura 6 Ű Exemplo de código usando JDT

Fonte: Adaptado de (VOGEL; SCHOLZ; PFAFF, 2018)

Utilizando esses conceitos, fomos capazes de adquirir informações de um projeto Java

como classes, métodos, variáveis, herança, encapsulamento, entre outros. Após as infor-

mações serem coletadas, elas foram salvas em uma base de conhecimento.

Para representar a base de conhecimento, foi utilizada uma ontologia. Essa escolha é

justiĄcada por dois motivos(NOY; MCGUINNESS, 2001):

51

1. A ontologia permite representação de conceitos e propriedades a Ąm de ser facilmente

reutilizada e, se necessário, ser extendida em diferentes contextos e/ou aplicações;

2. Ontologias permitem o raciocínio de informações que estão sendo representadas;

Para instanciar os indivíduos na ontologia com os dados obtidos do Eclipse JDT, uti-

lizamos a OWL API12 versão 4.2.8 que nos fornece operações para criação e manipulação

de ontologias utilizando a linguagem OWL. A Ągura 7 apresenta um exemplo de código

Java utilizando a OWL API.

Figura 7 Ű Carregando uma ontologia utilizando a OWL API

Fonte: Dados do trabalho

Na Ągura 7 é apresentado um método para auxiliar no carregamento da ontologia.

Carregar a ontologia é essencial para realizar a manipulação da mesma, seja para criação

de indivíduos, associação de propriedades, tornar indivíduos diferentes e etc.

Figura 8 Ű Criando indivíduos utilizando a OWL API

Fonte: Dados do trabalho

Na Ągura 8 é apresentado um método para criação de indivíduos utilizando a OWL

API. O código é bem simples e intuitivo, o único detalhe a ser notado é o enum OWL-
12 http://owlapi.sourceforge.net/

52 Capítulo 4. O plug-in OWLSmell

ClassSmell passado como segundo paramêtro na assinatura do método. Esse enum é um

dado interno da nossa aplicação criado para representar as classes criadas na ontologia.

Figura 9 Ű Tornando indivíduos diferentes utilizando a OWL API

Fonte: Dados do trabalho

A Ągura 9 apresenta o método criado para tornar todos os indivíduos diferentes um

dos outros. Como citado anteriormente, a OWL faz parte de um paradigma de mundo

aberto, o que quer dizer que a criação de indivíduos com nomes diferentes não signiĄca que

ambos são distintos. Isso deve ser conĄgurado na ontologia a partir de uma propriedade

especíĄca para tal ação.

E, por Ąm, a Ągura 10 apresenta o resultado Ąnal do plug-in OwlSmell aplicado a um

projeto OO. Como demonstrado na Ągura, a ferramenta apresenta no console do próprio

Eclipse quais as classes apresentaram smells e como refatorar os smells apresentados.

Figura 10 Ű Resultado da execução do OWLSmell em um projeto OO

Fonte: Dados do trabalho

53

Capítulo 5

Validação do método proposto

Nesse capítulo serão abordadas as validações que determinaram as respostas para as

perguntas de pesquisa apresentadas no capítulo 3.

Primeiramente, comparamos nosso plug-in com outras ferramentas para medir a acu-

rácia de cada uma delas ao identiĄcar um mesmo conjunto de smells. Nessa validação,

conseguimos demonstrar apenas uma pequena parte do poder de expressividade da nossa

abordagem, pois as outras ferramentas não identiĄcam a maioria dos smells que a nossa

identiĄca.

Assim, realizamos um experimento demonstrativo, quando criamos um projeto Java

contendo instâncias de todos os design smells propostos nesse trabalho. Com isso, conse-

guimos demonstrar as vantagens da utilização de ontologias para identiĄcação de smells.

Por Ąm, com os dados obtidos nessas análises, utilizamos as métricas Precision and

Recall para determinar a acurácia de cada experimento.

5.1 Comparação de ferramentas

Na primeira validação, nosso método foi comparado com algumas ferramentas de iden-

tiĄcação e classiĄcação de smells já existentes. A avaliação será realizada através da exe-

cução de ferramentas bastante conhecidas e conceituadas pela comunidade de engenharia

de software em projetos open source.

As ferramentas escolhidas foram DECOR13, JDeodorant14, PMD15 e CheckStyle16. A

escolha das ferramentas foi baseada no estudo de (SOBRINHO; LUCIA; MAIA, 2018)

onde os autores apontam as ferramentas de identiĄcação e classiĄcação de smells mais

estudadas no período de 1990 até 2017.

13 http://www.ptidej.net/tools/designsmells
14 https://github.com/tsantalis/JDeodorant
15 https://pmd.github.io/
16 http://checkstyle.sourceforge.net/

54 Capítulo 5. Validação do método proposto

Os projetos escolhidos para serem validados por todas as ferramentas são: JUnit

v4.1217, Log4J v1.2.118 e ArgoUML v0.19.819. Esses projetos foram escolhidos por possuí-

rem propósitos distintos (um framework para testes unitários, um framework para debug

de código fonte e um sistema para modelagem de diagramas UML, respectivamente) além

de já terem sido estudados nos trabalhos (PAIVA et al., 2017) e (MOHA et al., 2010).

Os smells inclusos na validação do método foram escolhidos com base em dois critérios:

1) os smells mais estudados segundo o estudo de (SOBRINHO; LUCIA; MAIA, 2018); 2)

os smells que faziam parte dos métodos de detecção de duas ou mais ferramentas. Dentre

os smells citados no capítulo 2, quatro foram selecionados seguindo os critérios acima,

sendo dois abordados por (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014) e

dois abordados por (FOWLER, 1999).

❏ Insufficient Modularization: Esse smell ocorre em classes que possuem muitas res-

ponsabilidades e/ou muitos métodos e atributos.

❏ Long Method: Esse smell ocorre em classes que contém métodos com muitas linhas

de código.

❏ Long Parameter List: Esse smell ocorre em classes que contém métodos que possuem

muitos paramêtros em sua assinatura.

❏ Deficient Encapsulation: Esse smell ocorre em classes que os atributos da mesma

tem sua visibilidade mais exposta que o necessário.

5.2 Análise por amostragem

Como dito anteriormente, criamos um projeto Java para realizar essa validação. O

projeto pode ser encontrado no repositório do github <https://github.com/viniciusjns/

ProjetoValidacaoMestrado>.

Com esse projeto, fomos capazes de demonstrar todos os design smells identiĄcados

pelo OWLSmell e também demonstrar que a utilização da ontologia para identiĄcação

de smells apresentou um avanço no estado da arte devido sua facilidade de conĄguração,

utilização e capacidade de compartilhamento de conhecimento.

5.3 Métricas Precision and Recall

Para avaliar a acurácia dos dados analisados na seção anterior serão utilizadas métricas

conhecidas como Precision and Recall, que são comumente utilizadas para avaliar com

mais precisão os resultados, a Ąm de separar resultados positivos dos negativos.
17 https://junit.org/junit4/
18 https://logging.apache.org/log4j/1.2/source-repository.html
19 http://argouml.tigris.org

5.3. Métricas Precision and Recall 55

Precision determina a fração de registros que realmente se mostra ser positivo no grupo

que o classiĄcador declarou como positivo. Quanto maior o precision, menor será o nú-

mero de erros falsos positivos cometidos pelo classiĄcador (TAN; STEINBACH; KUMAR,

2005).

Recall mede a fração de exemplos positivos corretamente previstos pelo classiĄcador.

ClassiĄcadores com grande recall têm muito poucos exemplos positivos mal classiĄcados

como negativos, sendo o valor de recall equivalente a verdadeira taxa positiva (TAN;

STEINBACH; KUMAR, 2005).

Pode-se deĄnir precision and recall com as funções abaixo:

Precision, 𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall, 𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

A função acima tem suas variáveis estabelecidas a partir de uma matriz de confusão,

que é mais comumente conhecida como uma tabela em que se organiza os dados levando

em consideração a taxa de erro e acerto de cada classiĄcação. Ela é dividida em quatro

seções utilizadas para representar os valores verdadeiros positivos, verdadeiros negativos,

falsos positivos e falsos negativos. Na tabela 1 é apresentado como é dividida a matriz de

confusão e, logo abaixo, explicado cada valor.

Tabela 1 Ű Matriz de Confusão

Predicted Class
+ -

Actual Class
+ True Positive True Negative
- False Positive False Negative

Fonte: (TAN; STEINBACH; KUMAR, 2005)

❏ Verdadeiro Positivo (True Positive): corresponde ao número de exemplos positivos

corretamente classiĄcados pelo modelo de classiĄcação;

❏ Verdadeiro Negativo (True Negative): corresponde ao número de exemplos negativos

corretamente classiĄcados pelo modelo de classiĄcação;

❏ Falso Positivo (False Positive): corresponde ao número de exemplos negativos erro-

neamente classiĄcados como positivos pelo modelo de classiĄcação;

❏ Falso Negativo (False Negative): corresponde ao número de exemplos positivos er-

roneamente classiĄcados como negativos pelo modelo de classiĄcação.

56 Capítulo 5. Validação do método proposto

A contagem em uma matriz de confusão também pode ser expressada em termos

de porcentagem. A taxa de verdadeiros positivos é deĄnida como a fração de exemplos

positivos classiĄcados corretamente pelo modelo (TAN; STEINBACH; KUMAR, 2005).

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

A taxa de verdadeiros negativos pode ser deĄnida como a fração de exemplos negativos

classiĄcados corretamente pelo modelo.

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

A taxa de falsos positivos é deĄnida como exemplos negativos classiĄcados como po-

sitivos pelo modelo.

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

E, Ąnalmente, a taxa de falsos negativos é a fração de exemplos negativos classiĄcados

como negativos pelo modelo.

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

57

Capítulo 6

Experimentos e Análise dos Resultados

Neste capítulo serão apresentados os experimentos e resultados obtidos com as vali-

dações apresentadas no capítulo anterior.

6.1 Comparação de ferramentas

Como dito anteriormente, o primeiro experimento foi realizado com base em compa-

ração de ferramentas já existentes e bastante conceituadas na comunidade de engenharia

de software. Todas as ferramentas foram executadas em três sistemas open source com

a Ąnalidade de detectar quatro smells distintos. Após isso, foram aplicadas as métricas

precision and recall para mensurar a acurácia da detecção de cada ferramenta.

É importante ressaltar que nossa ferramenta utiliza um método de detecção distinto

das outras ferramentas. Nossa abordagem é baseada em um modelo determinístico,

quando extraímos somente os dados necessários para a identiĄcação dos smells e utili-

zamos regras de primeira ordem que estão explicitamente conĄguradas na ontologia para

identiĄcação dos smells.

As outras ferramentas por sua vez, utilizam modelos não determinísticos e não neces-

sitam de regras ou arquivos explicitamente conĄgurados, possuindo cada uma sua própria

técnica de detecção, o que resulta em números distintos de ocorrências de smells identiĄ-

cadas por cada uma. Assim, todas as ocorrências foram avaliadas segundo a literatura de

(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014) e (FOWLER, 1999) de forma

que fosse possível haver paramêtros de comparação iguais para todas as detecções.

É importante dizer também que os sistemas analisados são open source e os autores

deste trabalho não possuem conhecimento total do código fonte nem das regras de negócio

de cada um. Assim, para avaliar quais classes realmente continham o smell sendo estu-

dado, todas as ferramentas foram executadas nos sistemas e as ocorrências encontradas

contabilizadas. Logo após, as ocorrências foram manualmente validadas segundo os pa-

ramêtros de comparação para descobrir a quantidade real de smells por sistema. Pois, só

assim, teríamos um valor de referência para realizar os cálculos de Precision and Recall.

58 Capítulo 6. Experimentos e Análise dos Resultados

A ferramenta DECOR foi a mais complexa para uso e conĄguração. O código fonte

é disponibilizado pela desenvolvedora para Ąns acadêmicos, no entanto, a mesma não

proveu a documentação necessária para conĄguração e utilização. Por Ąm, depois de

muitas pesquisas e estudos em cima do código fornecido, conseguimos executar um arquivo

com extensão .java que analisava um projeto (através de uma variável que determinava o

caminho do projeto) e identiĄcava os smells previamente conĄgurados.

A ferramenta JDeodorant apesar de ser de fácil utilização, não fornece opções para

conĄguração. Em alguns experimentos, ela apresentou resultados abaixo do esperado,

fato que pode ser justiĄcado pela falta de conĄguração dos parâmetros utilizados.

As ferramentas PMD e Checkstyle foram as mais fáceis de conĄgurar e utilizar. Utili-

zamos as ferramentas em forma de plug-in e o mesmo nos forneceu opções para realização

da conĄguração da quantidade de métodos e atributos utilizados na validação dos smells

a seguir.

Assim, veriĄcamos que a ferramenta OWLSmell demonstrou o melhor grau de conĄgu-

ração e utilização. Como ela foi desenvolvida em forma de plug-in, a utilização é bastante

fácil, uma vez que o plug-in é integrado a IDE. E, utilizando ontologias, nossa abordagem

se torna altamente conĄgurável e extensível, ou seja, a criação de regras para identiĄcação

de novos smells é simples e não modiĄca o código da aplicação nem o núcleo da ontologia.

6.1.1 Smell Insufficient Modularization

O primeiro smell analisado foi o smell Insufficient Modularization apresentado por

(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014). Para identiĄcação desse smell

foram consideradas classes que continham uma quantidade maior ou igual a 50 métodos

e/ou atributos.

Na tabela 2 é apresentado a quantidade total de instâncias do smell Insufficient Mo-

dularization identiĄcado por cada ferramenta nos três sistemas avaliados. Como pode ser

visto, a ferramenta DECOR identiĄcou 0 ocorrências no JUnit, 1 ocorrência no Log4J e

4 no ArgoUML. O JDeodorant foi a ferramenta que mais apresentou ocorrências, sendo

24 no JUnit, 16 no Log4J e 72 no ArgoUML. Por outro lado, a ferramenta CheckStyle

não apresentou nenhuma ocorrência do smell em questão, enquanto o plug-in OWLSmell

apresentou um total de vinte e sete ocorrências, sendo duas para o projeto JUnit, três

para o Log4J e vinte e duas para o ArgoUML.

6.1. Comparação de ferramentas 59

Tabela 2 Ű Quantidade de smells Insufficient Modularization encontrados por cada ferra-
menta

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 4.12 0 24 3 0 2
Log4J 1.2.1 1 16 16 0 3

ArgoUML 0.9.18 4 72 72 0 22

Total 5 112 91 0 27

Após a execução das ferramentas nos sistemas, foi realizada uma análise manual em

cada classe classiĄcada como uma ocorrência de smell a Ąm de veriĄcar se a classe re-

almente apresentava um erro de design segundo os paramêtros usados. Essa análise foi

realizada para identiĄcar possíveis ocorrências falsas-positivas em alguma ferramenta.

A tabela 3 apresenta o resultado dessa análise, contendo a quantidade real de smells

do tipo Insufficient Modularization em cada sistema.

Tabela 3 Ű Quantidade de ocorrências existentes do smell Insufficient Modularization por
sistema

Sistema Qtde de ocorrências

JUnit 4.12 2
Log4J 1.2.1 3

Argo UML 0.19.8 22

Total 27

O próximo passo foi comparar os dados obtidos na tabela 2 com os dados da tabela

3 para descobrir o número de ocorrências que poderiam ser consideradas válidas. O

resultado é apresentado na tabela 4.

Tabela 4 Ű Quantidade válida de smells Insufficient Modularization segundo (SURYANA-
RAYANA; SAMARTHYAM; SHARMA, 2014)

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 4.12 0 0 0 0 2
Log4J 1.2.1 0 0 3 0 3

ArgoUML 0.19.8 0 6 20 0 22

Total 0 6 23 0 27

Sabendo-se os valores encontrados por cada ferramenta, os valores reais de cada sistema

e a quantidade total de smells Insufficient Modularization válidos, foi realizado o cálculo

de Precision and Recall para avaliar a acurácia de cada ferramenta.

60 Capítulo 6. Experimentos e Análise dos Resultados

Tabela 5 Ű Precision and Recall do smell Insufficient Modularization

Sistema
DECOR JDeodorant PMD CheckStyle OWLSmell

P R P R P R P R P R

JUnit 4.12 0% 0% 8% 0% 66% 0% 0% 0% 100% 100%
Log4J 1.2.1 100% 0% 18% 0% 18% 100% 0% 0% 100% 100%

ArgoUML 0.19.8 100% 0% 30% 27% 30% 90% 0% 0% 100% 100%

O DECOR é atualmente a ferramenta mais famosa e utilizada por pesquisadores

no mundo inteiro (SOBRINHO; LUCIA; MAIA, 2018). No entanto, foi a ferramenta

que apresentou o pior resultado para o smell Insufficient Modularization, seguido pelo

CheckStyle que apesar de ser uma ferramenta bastante conhecida, não faz parte do top 5

das mais estudadas (SOBRINHO; LUCIA; MAIA, 2018). O JDeodorant mostrou péssi-

mos resultados para os sistemas JUnit e Log4J, mas demonstrou uma pequena melhora

no ArgoUML. Por outro lado, o PMD apresentou resultados baixos de Precision no Log4J

e ArgoUML mas apresentou resultados muito bons de Recall nos mesmos sistemas com

100% e 90%, respectivamente. E, por último, o plug-in OWLSmell foi a ferramenta que

apresentou os melhores resultados na avaliação, com 100% de Precision and Recall para

todos os três sistemas.

6.1.2 Smell Long Method

O segundo smell analisado foi o Long Method (FOWLER, 1999). Para identiĄcação

desse smell foram consideradas classes que continham métodos com uma quantidade de

linhas de código maior ou igual a 150.

Como apresentado anteriormente na tabela 2 para o smell Insufficient Modularization,

a tabela 6 apresenta a quantidade de ocorrências do smell Long Method encontradas por

ferramenta em cada sistema analisado.

Tabela 6 Ű Quantidade de smells Long Method encontrados por cada ferramenta

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 46 0 0 0 0
Log4J 49 0 1 1 1

ArgoUML 315 0 10 10 10

Total 410 0 11 11 11

A partir dos dados encontrados na tabela 6, foi realizado uma análise manual para des-

cobrir as ocorrências reais em cada sistema. O resultado dessa análise pode ser encontrado

na tabela 7.

6.1. Comparação de ferramentas 61

Tabela 7 Ű Quantidade de ocorrências existentes do smell Long Method por sistema

Sistema Qtde ocorrências

JUnit 4.12 0
Log4J 1.2.1 1

Argo UML 0.19.8 10

Total 11

Como pode ser visto na tabela 6, o DECOR encontrou uma quantidade muito superior

a existente na tabela 7, enquanto as outras ferramentas encontraram a mesma quantidade.

No entanto, vale lembrar que mesmo encontrando a mesma quantidade apresentada na

tabela 7, não signiĄca que as classes identiĄcadas são válidas. As quantidade de classes

que realmente contém smell são apresentadas na tabela 8.

Tabela 8 Ű Quantidade válida de smells Long Method segundo (FOWLER, 1999)

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 0 0 0 0 0
Log4J 0 0 1 1 1

ArgoUML 0 0 10 10 10

Total 0 0 11 11 11

A tabela 9 mostra os resultados da aplicação das métricas Precision and Recall nos

dados apresentados na tabela tabela 6, 7 e 8.

Tabela 9 Ű Precision and Recall do smell Long Method

Sistema
DECOR JDeodorant PMD CheckStyle OWLSmell

P R P R P R P R P R

JUnit 4.12 0% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Log4J 1.2.1 2% 0% 0% 0% 100% 100% 100% 100% 100% 100%

ArgoUML 0.19.8 3% 0% 0% 0% 100% 100% 100% 100% 100% 100%

Os resultados apresentados pela tabela 9 mostram que para o smell Long Method, a

ferramenta DECOR e JDeodorant apresentaram os piores resultados. PMD, CheckStyle

e OWLSmell tiveram resultados idênticos tanto para Precision quanto para Recall. Por

outro lado, a ferramenta JDeodorant teve bons resultados somente para o sistema JUnit.

Esses resultados apresentam a eĄciência das ferramentas PMD, CheckStyle e OWLSmell

para detectar o smell Long Method.

62 Capítulo 6. Experimentos e Análise dos Resultados

6.1.3 Smell Long Parameter List

O próximo smell estudado nos experimentos foi o Long Parameter List. Para identiĄ-

cação desse smell foram consideradas classes que continham métodos com uma quantidade

de parâmetros maior ou igual a sete.

A tabela 10 mostra as ocorrências encontradas pelas ferramentas em cada sistema. A

coluna da ferramenta JDeodorant se encontra sem resultados pois a mesma não identiĄca

esse smell.

Tabela 10 Ű Quantidade de smells Long Parameter List encontrados por cada ferramenta

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 1 - 0 0 0
Log4J 7 - 0 5 5

ArgoUML 235 - 0 1 1

Total 243 - 0 6 6

A lista contendo a quantidade real de ocorrências em cada sistema é apresentada pela

tabela 11.

Tabela 11 Ű Quantidade de ocorrências existentes do smell Long Parameter List por sis-
tema

Sistema Qtde ocorrências

JUnit 4.12 0
Log4J 1.2.1 5

Argo UML 0.19.8 1

Total 6

Como pode ser visto na tabela 10, as ferramentas CheckStyle e OWLSmell tiveram

a mesma quantidade de ocorrências apresentadas pela tabela 11. Por outro lado, a fer-

ramenta PMD não identiĄcou nenhuma ocorrência desse smell. Enquanto isso, a ferra-

menta DECOR encontrou 235 ocorrências contra uma das outras ferramentas no sistema

ArgoUML.

Na tabela 12 são apresentados os resultados da validação de todas as ocorrências

encontradas pelas ferramentas. Apesar do número de ocorrências encontradas pelo DE-

COR no sistema ArgoUML, somente uma classe demonstrou ser válida contendo o smell

Long Parameter List. Todos os resultados encontrados pelas ferramentas CheckStyle e

OWLSmell são válidos.

6.1. Comparação de ferramentas 63

Tabela 12 Ű Quantidade válida de smells Long Parameter List segundo (FOWLER, 1999)

Sistema DECOR JDeodorant PMD CheckStyle OWLSmell

JUnit 0 - 0 0 0
Log4J 5 - 0 5 5

ArgoUML 1 - 0 1 1

Total 6 - 0 6 6

Com esses resultados os cálculos de Precision and Recall para esse smell são apresen-

tados na tabela 13.

Tabela 13 Ű Precision and Recall do smell Long Parameter List

Sistema
DECOR JDeodorant PMD CheckStyle OWLSmell

P R P R P R P R P R

JUnit 4.12 0% 100% - - 100% 100% 100% 100% 100% 100%
Log4J 1.2.1 71% 100% - - 0% 0% 100% 100% 100% 100%

ArgoUML 0.19.8 0% 100% - - 0% 0% 100% 100% 100% 100%

Como esperado, as ferramentas CheckStyle e OWLSmell tiveram os melhores resul-

tados. O PMD apresentou bons resultados para o sistema JUnit porque nesse sistema

não existe nenhuma ocorrência de smell Long Parameter List e a ferramenta identiĄcou

0 ocorrências. Já a ferramenta DECOR apresentou bons resultados de Recall em todos

os sistemas, mas os resultados de Precision não foram tão bons.

6.1.4 Smell DeĄcient Encapsulation

O último smell estudado nesse trabalho foi o Deficient Encapsulation apresentado

por (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014). Para identiĄcação desse

smell foram consideradas classes que continham pelo menos um atributo com tipo de

acesso público.

A tabela 14 apresenta o número de ocorrências encontradas por cada ferramenta. As

únicas ferramentas que identiĄcam esse smell são o CheckStyle e o OWLSmell.

Tabela 14 Ű Quantidade de smells Deficient Encapsulation encontrados por cada ferra-
menta

Sistema CheckStyle OWLSmell

JUnit 59 86
Log4J 101 116

ArgoUML 18 115

Total 178 317

64 Capítulo 6. Experimentos e Análise dos Resultados

A lista com a quantidade real de ocorrências para esse smell é apresentada na tabela

15.

Tabela 15 Ű Quantidade de ocorrências existentes do smell Deficient Encapsulation por
sistema

Sistema Qtde ocorrências

JUnit 4.12 86
Log4J 1.2.1 116

Argo UML 0.19.8 115

Total 317

A tabela 16 apresenta o número de ocorrências válidas em cada sistema. Como pode

ser visto, esse smell parece ser bem comum nos três sistemas analisados.

Tabela 16 Ű Quantidade válida de smells Deficient Encapsulation segundo (SURYANA-
RAYANA; SAMARTHYAM; SHARMA, 2014)

Sistema CheckStyle OWLSmell

JUnit 59 86
Log4J 101 116

ArgoUML 18 115

Total 178 317

A tabela 17 apresenta os resultados da aplicação das métricas Precision and Recall. A

ferramenta CheckStyle apresentou bons resultados para Precision mas não tão bons para

Recall. A ferramenta OWLSmell apresentou ótimos resultados para ambas as métricas.

Tabela 17 Ű Precision and Recall do smell Deficient Encapsulation

Sistema
CheckStyle OWLSmell

P R P R

JUnit 100% 68% 100% 100%
Log4J 100% 87% 100% 100%

ArgoUML 100% 15% 100% 100%

6.2 Análise por amostragem

No segundo experimento, criamos um projeto Java contendo ocorrências de todos os

design smells abordados nesse trabalho. Cada smell foi separado por pacote, facilitando

a visualização das ocorrências ao executar a ferramenta OWLSmell, como pode ser visto

na Ągura 11.

6.2. Análise por amostragem 65

Figura 11 Ű Projeto Java contendo todos os smells

Fonte: Dados do trabalho

Nesse projeto, foi criado apenas uma ocorrência de cada smell, com exceção de alguns

smells como o CyclicHierarchy que apresenta mais de uma ocorrência, pois é necessário

mais de uma classe para o smell surgir no código. Com essa validação, conseguimos provar

que a acurácia de nossa ferramenta chega aos 100%.

Como já dito anteriormente, a utilização de regras lógicas nos permite atingir altos

níveis de acurácia, uma vez que as regras trabalham apenas com hipóteses binárias, ou

seja, sim e não. Então, uma vez que os dados forem extraídos de forma correta pelo

plug-in e esses mesmos dados forem compatíveis com as regras modeladas, a acurácia será

sempre alta.

A Ągura 12 apresenta o console do Eclipse com o resultado da identiĄcação no projeto

mencionado anteriormente.

66 Capítulo 6. Experimentos e Análise dos Resultados

Figura 12 Ű Todos os smells validados pelo OWLSmell

Fonte: Dados do trabalho

6.3. Avaliação dos Resultados 67

A tabela 18 apresenta de forma mais clara a quantidade real e a quantidade encontrada

de cada smell pela ferramenta OWLSmell. Nela, conseguimos observar claramente que

todas as ocorrências existentes foram encontradas, e também podemos observar que como

proposto nesse trabalho, a ferramenta é capaz de identiĄcar 14 smells; mais que as outras

ferramentas analisadas anteriormente.

Tabela 18 Ű IdentiĄcação dos smells propostos

Smell Ocorrências reais Ocorrências encontradas

SmellImperativeAbstraction 7 7
SmellUnfactoredHierarchy 2 2
SmellSpeculativeHierarchy 11 11
SmellDeepHierarchy 2 2
SmellCyclicallyDependentModularization 2 2
SmellWideHierarchy 1 1
SmellCyclicHierarchy 1 1
SmellDuplicateAbstraction 2 2
SmellUnutilizedAbstraction 3 3
SmellMultipathHierarchy 1 1
SmellDeficientEncapsulation 1 1
SmellInsufficientModularization 1 1
SmellLongParameterList 1 1
SmellLongMethod 1 1

Com essa validação conseguimos provar o poder de identiĄcação de smells que a uti-

lização de ontologias proporciona. O domínio da OO pode ser considerado bastante

complexo, com muitas regras e muitas características. Contudo, a ontologia consegue

expressar os conceitos de forma clara e simples, e quando associada a regras lógicas, o

poder de expressividade aumenta ainda mais.

Dessa forma, conseguimos demonstrar que mesmo smells, com características comple-

xas, podem ser identiĄcados com a utilização de ontologias.

6.3 Avaliação dos Resultados

Nessa seção serão apresentados os resultados para as perguntas de pesquisa apresen-

tadas no capítulo anterior.

❏ RQ #1 É possível e viável detectar e classiĄcar design smells automati-

camente através de ontologias e tecnologias da web semântica?

Esse trabalho teve como objetivo a identiĄcação e classiĄcação automática de design

smells em códigos orientados a objetos através do uso de ontologias e tecnologias da

web semântica. Durante todo seu desenvolvimento, foi criada uma ontologia de forma a

68 Capítulo 6. Experimentos e Análise dos Resultados

modelar o conhecimento do domínio da OO e da engenharia de software, quando tivemos

que lidar com muitos desaĄos, mudar nossa forma de pensar e de desenvolver a ontologia.

Por Ąm, como visto nas seções anteriores, conseguimos criar uma ontologia capaz de

identiĄcar e classiĄcar automaticamente quatorze design smells citados por (FOWLER,

1999) e (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014).

Também conseguimos avaliar a viabilidade da identiĄcação de smells automática com

o uso de ontologias através do desenvolvimento de um plug-in para o ambiente Eclipse

e a validação do mesmo em comparação com outras ferramentas existentes que possuem

o propósito similar. Como visto na seção de experimentos, nosso plug-in obteve resulta-

dos tão bons quanto as melhores ferramentas criadas para tal, e em alguns casos, nossa

ferramenta ainda apresentou resultados superiores.

Logo, conseguimos validar a hipótese de que é totalmente possível e viável a mode-

lagem, identiĄcação e classiĄcação de design smells através do uso de ontologias e web

semântica.

❏ RQ #2 A identiĄcação e classiĄcação de design smells apoiados pelo

uso de ontologias e tecnologias da web semântica apresentam resulta-

dos signiĄcativamente positivos quando comparados com as técnicas de

detecção mais comuns?

Como visto anteriormente nos experimentos, a ferramenta OWLSmell, que tem todo

seu núcleo de identiĄcação e classiĄcação formado por uma ontologia e regras SWRL,

apresentou melhores resultados que as outras ferramentas que utilizam técnicas diferentes

para identiĄcação de smells.

Em alguns casos, a ferramenta OWLSmell demonstrou resultados similares a de ou-

tras ferramentas, como por exemplo na identiĄcação do smell Long Parameter List na

ferramenta CheckStyle, o que demonstra que o OWLSmell consegue acompanhar de perto

os resultados de outras ferramentas já existentes há muito tempo.

Isso é proporcionado principalmente pelo uso da ontologia e sua capacidade de realizar

inferências a partir das regras SWRL. Como a ontologia faz parte de um paradigma de

mundo aberto, qualquer domínio de conhecimento é aceito e pode ser modelado, basta

saber exatamente o que se quer representar no modelo e o que pretende-se inferir.

A ontologia da ferramenta OWLSmell foi muito bem planejada para abordar conceitos

da POO de modo que as regras SWRL fossem as mais eĄcazes possíveis no momento da

identiĄcação e classiĄcação dos smells. Os resultados podem ser vistos nas tabelas 5, 9,

13 e 17 apresentadas na seção anterior.

Sendo assim, é válido aĄrmar que o uso de ontologias e regras SWRL são altamente

eĄcazes na busca por erros em códigos orientados a objetos e bastante recomendado a sua

utilização em qualquer tipo de projeto que demande a inferência de conhecimento.

69

Capítulo 7

Trabalhos Correlatos

Neste capítulo serão apresentados os trabalhos encontrados na literatura que possuem

alguma relação com este trabalho e que, de alguma forma, foram essenciais para a criação

do mesmo.

No trabalho de (STOIANOV; ŞORA, 2010) foi proposto um método para detecção de

padrões de projeto e antipatterns utilizando uma abordagem lógica baseada em predicados

da linguagem Prolog.

Também foram avaliados os seguintes padrões de projeto deĄnidos pelo Gang of Four

(GOF) em (GAMMA et al., 1994): Observer, Singleton, Strategy, Adapter e Decorator.

E o conjunto de antipatterns avaliados são descritos em (FOWLER, 1999) e (BROWN et

al., 1998): Data class, Call super, Constant interface, The blob, Refused interface, Yoyo

problem e Poltergeist.

Para avaliar a precisão de identiĄcação do mecanismo desenvolvido, os autores com-

param sua abordagem com a ferramenta Pinot20, executando ambas as ferramentas em 6

projetos desenvolvidos na linguagem Java: JHotDraw6.0b1, Java AWT 1.3, Java Swing

1.4, Java.io 1.4.2, Java.net 1.4.2 e Apache Ant 1.6.2.

Como resultados a respeito dos padrões de projeto, os autores veriĄcaram que sua

abordagem apresentou resultados relativamente similares aos da outra ferramenta, com

exceção aos padrões Observer e Adapter. Com relação ao Adapter, apesar dos resultados

apresentarem maiores ocorrências do que a ferramenta Pinot, foi realizada uma veriĄ-

cação manual para validação das ocorrências. Com essa veriĄcação, concluiu-se que as

ocorrências encontradas eram válidas segundo a deĄnição encontrada no (GAMMA et al.,

1994).

Por outro lado, para o padrão Observer, os resultados apresentaram menores ocor-

rências, devido ao fato de que a abordagem desenvolvida pelos autores ser mais rigorosa

quanto as regras de detecção. Contudo, os autores consideraram sua abordagem mais

precisa que a ferramenta Pinot, segundo as deĄnições encontradas em (GAMMA et al.,

1994).

20 http://www.cs.ucdavis.edu/ shini/research/pinot/index.html

70 Capítulo 7. Trabalhos Correlatos

Por Ąm, os resultados encontrados na detecção de antipatterns identiĄcaram que não

havia a existência de falsos positivos entre as ocorrências. No entanto, estudos futu-

ros foram propostos para identiĄcação de falsos negativos (antipatterns que não foram

identiĄcados pela abordagem).

No trabalho de (TOURWE; MENS, 2003) é proposto um método para, automática-

mente, identiĄcar oportunidades de refatoração de uma aplicação e propor técnicas de

refatoração adequadas para cada oportunidade. Tal abordagem é realizada através do

uso de programação meta lógica.

Para avaliar a abordagem, os autores buscaram a identiĄcação de dois bad smells

(Obsolete parameter e Inappropriate interface) executando o método em uma ferramenta

desenvolvida por eles próprios, devido a necessidade de conhecimento do código fonte e

regras de negócio.

Apesar de propor técnicas para refatoração, não foi o objetivo desse trabalho realizar

refatoração automática, uma vez que pode haver diversas maneiras de refatorar um certo

trecho de código e nem sempre Ąca claro qual a melhor técnica. Diante disso, os autores

proporam listar uma série de técnicas de forma a permitir o desenvolvedor escolher a mais

adequada.

Com o resultado da execução, chegou-se a seguinte conclusão: a maioria das refatora-

ções propostas foram efetivamente aplicada para obter um design mais limpo e melhor.

Se uma refatoração especíĄca não foi aplicada, por qualquer motivo, uma análise mais

detalhada do bad smell identiĄcado revelou que havia realmente um problema que deveria

ser resolvido. Assim, foi suposto que esses problemas só agravam os aplicativos em larga

escala trabalhados por muito mais desenvolvedores.

Uma desvantagem potencial da abordagem é que muitas refatorações podem ser pro-

postas. Assim, o desenvolvedor pode receber uma grande lista de refatorações e pode

não ver mais resultados. Isso é inevitável, no entanto, uma vez que um bad smell em

particular pode ser sanado por uma inĄnidade de refatorações.

No trabalho de (FONTANA; BRAIONE; ZANONI, 2012) os autores fazem uma re-

visão sobre o estado atual de ferramentas que detectam smells automaticamente. São

analisados os resultados da execução de quatro ferramentas em seis versões diferentes do

GanttProject21, um sistema open source escrito na linguagem Java.

Para escolher as quatro ferramentas que seriam utilizadas no estudo, os autores pri-

meiro avaliaram as ferramentas mais citadas na literatura, sendo elas: CheckStyle, DE-

COR, inFusion, iPlasma, JDeodorant, PMD e Stench Blossom. Após isso, foi realizado

um estudo sobre quais smells abordados por (FOWLER, 1999) são detectados por cada

ferramenta. Após esses estudos, foram escolhidas as ferramentas JDeodorant, inFusion,

PMD e CheckStyle, devido ao fato dessas ferramentas estarem disponíveis para download

e até o momento do estudo elas eram ativamente mantidas.

21 https://www.ganttproject.biz/

71

Sobre os smells analisados, o experimento considerou um total de seis smells, sendo

eles compartilhados por pelo menos duas ferramentas: Duplicated Code, Feature Envy,

God Class, Large Class, Long Method, Long Parameter List.

Com esse estudo, os autores buscaram responder as seguintes perguntas: 1) Diferen-

tes ferramentas de detecção apresentam resultados similares quando aplicadas ao mesmo

sistema? 2) Quão relevante é a detecção automática de smells para a evolução de um

software? 3) A presença de smells está relacionada a alguma característica observável do

código-fonte ou do processo? E as respostas encontradas são listadas abaixo:

1. Os experimentos demonstraram que diferentes ferramentas para o mesmo smell pro-

duziram diferentes resultados mesmo quando elas possuíam técnicas de identiĄcação

similares. A única exceção foi a respeito das ferramentas que identiĄcam o smell

God Class.

2. Os experimentos mostraram um número bastante positivo na porcentagem de smells

refatorados de uma versão para a próxima. Isso sugere que as ferramentas são aptas

a detectar regiões de código sensíveis a refatoração. Esse resultado demonstra que a

detecção automática de smells é bastante relevante para a evolução de um software.

3. Os experimentos mostraram que a presença de smells está aparentemente relacio-

nada com características observáveis dos sistemas analisados. Não foi possível veriĄ-

car uma signiĄcante correlação estatística devido ao tamanho do conjunto de dados

analisado serem pequenos e porque características observáveis não são facilmente

mensuráveis.

No trabalho (ITO et al., 2014), os autores desenvolveram um método para detectar bad

smells em código utilizando Declarative Meta Programming (DMP) e árvore de sintaxe

abstrata (Abstract Syntax Tree (AST)), associados com o Prolog.

O método DMP é essencialmente o uso de uma linguagem de programação declarativa

para raciocionar e manipular programas em uma linguagem base subjacente. Esse método

permitiu aos autores descrever vários bad smells como uma notação uniĄcada que consiste

em um programa declarativo.

A árvore de sintaxe abstrata foi utilizada para melhorar o processo de detecção, uma

vez que uma AST representa o código fonte de maneira que cada nó da árvore contém

uma informação detalhada sobre o código, como por exemplo o nome de uma classe, ou

informações a respeito de variáveis e métodos.

Utilizando esses métodos juntamento com o Prolog, os autores foram capazes de ana-

lisar a estrutura do código fonte em detalhes, e criar regras de inferência utilizando lógica

de primeira ordem para detectar os smells.

72 Capítulo 7. Trabalhos Correlatos

Então, a partir do método proposto foi desenvolvida uma ferramenta em forma de plug-

in para o ambiente de desenvolvimento Eclipse. O Eclipse foi escolhido, pois, segundo os

autores, é um ambiente bastante conhecido e muito utilizado por desenvolvedores.

Dessa forma, os autores buscaram aplicar tal ferramenta na educação para que alunos

pudessem aprender conceitos da engenharia de software com mais facilidade. Eles chega-

ram a conclusão que a melhor forma de aprender sobre qualidade de software seria através

da habilidade prática. Assim, aprender o conceito de bad smells e como refatorá-los seria

de grande importância para os alunos.

Baseado nessa ideia, eles determinaram que o plug-in seria integrado também a uma

plataforma de controle de versão, como o Git22, por exemplo. Assim, os estudantes iriam

desenvolver seus códigos, commitar no repositório, e o plug-in analisaria os commits e en-

viaria a um servidor logs contendo informações a respeito de possíveis smells encontrados

no código.

Logo, os estudantes teriam um histórico das modiĄcações realizadas, quais modiĄca-

ções apresentaram problemas e quais foram as soluções que removeram os problemas do

código.

Com a análise dos trabalhos mencionados acima, foi possível realizar um comparativo

entre os smells analisados pelas principais ferramentas de detecção abordadas. A partir

da tabela 19 é possível ter um panorama geral sobre os smells estudados.

Na tabela 19 pode-se observar que a ferramenta desenvolvida nesse trabalho é capaz

de identiĄcar uma maior quantidade de smells quando comparadas as outras ferramentas.

Tal característica foi possível devido a utilização de um sistema especialista que utiliza

uma ontologia como motor de inferência e regras lógicas em sua base de conhecimento.

Ao utilizar uma ontologia e regras lógicas, nossa abordagem se torna capaz de ser

extensível e compartilhável, uma vez que a ontologia não Ąca associada ao código fonte

do sistema, possuindo ainda a capacidade de ser reaproveitada em outros contextos e

poder ser reutilizada para o desenvolvimento de diferentes tipos de sistemas, seja plug-

ins, sistemas web, sistemas mobile e etc.

A abordagem proposta é implementada em OWL e SWRL, linguagens estas que se

baseiam em um formalismo lógico (lógica de predicados de primeira ordem) para represen-

tação de conhecimento, caracterizadas pela decidibilidade (existe um algoritmo de prova

para um conjunto de sentenças), consistência (um algoritmo de inferência gera apenas

sentenças dedutíveis) e completude (é possível achar a prova de todo predicado dedutí-

vel). Dessa forma, como resultado obteve-se uma acurácia de 100% em todos os testes

realizados (como poder ser visto no capítulo 4).

Portanto, quando comparados os benefícios da nossa abordagem com as outras exis-

tentes, pode-se visualizar um avanço no estado da arte a respeito de técnicas de identiĄca-

ção de smells, ressaltando novamente os benefícios na utilização de sistemas especialistas

22 https://git-scm.com/

73

associados a tecnologias da web semântica para modelagem e compartilhamento de co-

nhecimento.

Tabela 19 Ű Comparação dos smells analisados nos trabalhos correlatos

Smell DECOR JDeodorant PMD CheckStyle OWLSmell

Cyclic Hierarchy •

Deep Hierarchy •

Multipath Hierarchy •

Speculative Hierarchy •

Unfactored Hierarchy •

Wide Hierarchy •

Cyclically Dependent Modular. •

Insufficient Modularization • • • • •

Duplicate Abstraction •

Imperative Abstraction •

Deficient Encapsulation • •

Unutilized Abstraction •

Long Method • • • • •

Long Parameter List • • • •

Refused Bequest •

Functional Decomposition •

Spaghetti Code •

Swiss Army Knife •

Feature Envy •

Type Checking •

Duplicate Code • •

Illegal Type •

74 Capítulo 7. Trabalhos Correlatos

75

Capítulo 8

Conclusão

Neste trabalho, foram avaliados os resultados da execução de quatro ferramentas iden-

tiĄcadores de smells em três projetos open source, sendo eles, JUnit, Log4J e ArgoUML.

As perguntas de pesquisa tiveram suas respostas baseadas nessa ánalise a partir da apli-

cação das métricas Precision and Recall. A seguir, serão apresentadas as principais con-

tribuições deste trabalho.

8.1 Principais Contribuições

Este trabalho apresentou uma ferramenta para apoiar o processo de melhroria de

qualidade de código fonte OO. A validação dessa ferramenta foi realizada através da

comparação com outras ferramentas já abordadas na literatura, e os resultados foram

extremamente positivos quando usado um sistema especialista para representar o domínio.

O principal objetivo desse trabalho foi veriĄcar a importância da utilização de onto-

logias e tecnologias da web semântica para modelagem de conhecimento do domínio da

engenharia de software. Para atingir esse objetivo foi necessário criar uma ontologia se-

guindo os conceitos de um diagrama de classe da UniĄed Modeling Language (UML) para

representação de projetos orientados a objetos e identiĄcação de design smells seguindo os

principios catalogados por (FOWLER, 1999) e (SURYANARAYANA; SAMARTHYAM;

SHARMA, 2014).

Esse trabalho provou que a abordagem utilizada possui vantagens quando comparadas

com as outras analisadas. Em primeiro lugar, apresentamos os benefícios em se utilizar um

sistema especilista para identiĄcação e classiĄcação de smells. Em segundo, esse trabalho

demonstrou que é possível modelar um domínio bastante complexo e realizar inferência a

partir desse conhecimento, provando o enorme poder de expressividade da web semântica

aliada a utilização de ontologias.

E a ferramenta desenvolvida ainda foi integrada a um ambiente de desenvolvimento

bastante utilizado para desenvolvimento de softwares OO. Isso garante que desenvolve-

76 Capítulo 8. Conclusão

dores possam validar seus códigos utilizando somente uma aplicação, tornando assim o

processo mais rápido.

Nossa ontologia também foi colocada em prova quando a ferramenta OWLSmell pre-

cisou ser validada com as ferramentas DECOR, JDeodorant, CheckStyle e PMD. Logo,

os resultados apresentados pela OWLSmell foram superiores as outras abordagens, o que

reforça o fato de que sistemas especialistas apoiados por web semântica são extremamente

eĄcazes.

Como visto nos experimentos, nossa abordagem apresentou melhores resultados para

todos os testes. Isso ocorreu pois nossa ferramenta utiliza um modelo deterministico em

sua execução. Uma vez que temos os dados corretamente recuperados de um projeto

de software orientado a objetos, e tais dados combinem com as regras que estão expli-

citamente conĄguradas na ontologia, nosso resultado será sempre ótimo, pois o núcleo

de inferência de nossa abordagem é composto por regras "se-então", logo, sempre que a

primeira parte da regra for verdadeira, consequentemente a segunda parte também será

verdadeira, implicando em um resultado acertivo em 100% dos testes.

Assim esse trabalho buscou contribuir para a disseminação de informação sobre o

domínio de engenharia de software, avaliar as principais abordagens existentes e melhorar

qualidade da identiĄcação de smells em ferramentas propondo a utilização de ontologias e

regras SWRL bem como utilizar o conhecimento gerado para lecionar conceitos complexos.

E, por Ąm, a ontologia utilizada nesse trabalho possui a capacidade de ser compar-

tilhada, uma vez que essa é uma das principais características em se utilizar ontologias.

Com isso, diversos pesquisadores podem evoluí-la e também contribuir com esse projeto.

8.2 Produção BibliográĄca

❏ Silva, V. J. S.; Dorça, F. A. (2019). An automatic and intelligent approach for

supporting teaching and learning of software engineering considering design smells in

object-oriented programming. In (ICALT 2019) 19th IEEE International Conference

on Advanced Learning Technologies - Qualis B1.

8.3 Trabalhos Futuros

Esse trabalho buscou introduzir a utilização de ontologias e conceitos da web semân-

tica no domínio da engenharia de software. Nele foi desenvolvida a primeira versão da

ferramenta OWLSmell, que utiliza uma ontologia para realizar a identiĄcação de smells

em projetos OO. Como projeto futuro, pretendemos evoluir o design visual da ferramenta,

para que a apresentação das informações Ąque mais amigável para os usuários.

Também pretendemos evoluir mais a ontologia, criar mais regras, aumentar a quanti-

dade de smells e também melhorar o código utilizado para recuperar os dados dos projetos

8.3. Trabalhos Futuros 77

e popular a ontologia.

E, por último, também pretendemos realizar testes com estudantes da disciplina de

programação orientada a objetos para melhorarmos nossa ferramenta de forma a adequá-la

para ambos os contextos, mercado e acadêmico.

78 Capítulo 8. Conclusão

79

Referências

ABEL, M.; FIORINI, S. Uma revisão da engenharia do conhecimento: Evolução,
paradigmas e aplicações. International Journal of Knowledge Engineering and
Management (IJKEM), v. 2, p. 1Ű35, 01 2013.

BROWN, W. et al. AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. [S.l.: s.n.], 1998.

CHENG, Y.-P.; LIAO, J.-R. An ontology-based taxonomy of bad code smells. ACTA
Press, Anaheim, CA, USA, p. 437Ű442, 2007.

FONTANA, F. A.; BRAIONE, P.; ZANONI, M. Automatic detection of bad smells in
code: An experimental assessment. Journal of Object Technology, v. 11, 01 2012.
Disponível em: <http://dx.doi.org/10.5381/jot.2012.11.2.a5>.

FOWLER, M. Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley, 1999. ISBN 0-201-48567-2.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented
Software. [S.l.: s.n.], 1994.

GURU99. Expert System in ArtiĄcial Intelligence: What is, Applications,
Example. 2019. <https://www.guru99.com/expert-systems-with-applications.html>.
Acessado em: 26/09/2019.

HOSS, A. M. Ontology-based methodology for error detection in software design. 07
2006.

ISOTANI, S.; BITTENCOURT, I. Dados Abertos Conectados: em Busca
da Web do Conhecimento. [s.n.], 2015. ISBN 978-85-7522-449-6. Disponível em:
<http://dx.doi.org/10.13140/RG.2.1.4355.6329>.

ITO, Y. et al. A method for detecting bad smells and its application to software
engineering education. p. 670Ű675, 2014. Disponível em: <http://dx.doi.org/10.1109/
IIAI-AAI.2014.139>.

LIAO, S.-H. Expert system methodologies and applications - a decade review from 1995
to 2004. Expert Systems with Applications, v. 28, p. 93Ű103, 01 2005. Disponível
em: <http://dx.doi.org/10.1016/j.eswa.2004.08.003>.

80 Referências

LUCAS, P. J.; GAAG, L. C. Principles of expert systems. In: . [S.l.: s.n.], 1991.

MOHA, N. et al. Decor: A method for the speciĄcation and detection of
code and design smells. IEEE Trans. Softw. Eng., IEEE Press, Piscataway,
NJ, USA, v. 36, n. 1, p. 20Ű36, jan. 2010. ISSN 0098-5589. Disponível em:
<http://dx.doi.org/10.1109/TSE.2009.50>.

NONATO, H. et al. Uma abordagem baseada em ontologias para modelagem e avaliação
do estudante em sistemas adaptativos e inteligentes para educação. 10 2017. Disponível
em: <http://dx.doi.org/10.5753/cbie.sbie.2017.1197>.

NOY, N. F.; MCGUINNESS, D. Ontology development 101: A guide to creating your
Ąrst ontology. Knowledge Systems Laboratory, v. 32, 01 2001.

PAIVA, T. et al. On the evaluation of code smells and detection tools. Journal of
Software Engineering Research and Development, v. 5, p. 7, 12 2017. Disponível
em: <http://dx.doi.org/10.1186/s40411-017-0041-1>.

SOBRINHO, E. Vicente de P.; LUCIA, A. D.; MAIA, M. A systematic literature review
on bad smells Ů 5 wŠs: which, when, what, who, where. IEEE Transactions on
Software Engineering, PP, p. 1Ű1, 11 2018. Disponível em: <http://dx.doi.org/10.
1109/TSE.2018.2880977>.

STOIANOV, A.; ŞORA, I. Detecting patterns and antipatterns in software
using prolog rules. In: . [s.n.], 2010. p. 253 Ű 258. Disponível em: <http:
//dx.doi.org/10.1109/ICCCYB.2010.5491288>.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Refactoring for
Software Design Smells: Managing Technical Debt. 1st. ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2014. ISBN 0128013974, 9780128013977.

TAN, P.-N.; STEINBACH, M.; KUMAR, V. Introduction to Data Mining, (First
Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.
ISBN 0321321367.

TOURWE, T.; MENS, T. Identifying refactoring opportunities using logic meta
programming. In: . [s.n.], 2003. p. 91Ű 100. ISBN 0-7695-1902-4. Disponível em:
<http://dx.doi.org/10.1109/CSMR.2003.1192416>.

TSANTALIS, N.; CHATZIGEORGIOU, A. IdentiĄcation of move method refactoring
opportunities. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA,
v. 35, n. 3, p. 347Ű367, maio 2009. ISSN 0098-5589. Disponível em: <http:
//dx.doi.org/10.1109/TSE.2009.1>.

VOGEL, L.; SCHOLZ, S.; PFAFF, F. Eclipse JDT - Abstract Syntax Tree (AST)
and the Java Model. 2018. <https://www.vogella.com/tutorials/EclipseJDT/article.
html>. Acessado em: 18/03/2019.

W3C. Eclipse JDT - Abstract Syntax Tree (AST) and the Java Model. 2012.
<https://www.w3.org/OWL/>. Acessado em: 18/09/2019.

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de siglas
	Sumário
	Introdução
	Problema e Motivação
	Objetivos e Contribuições
	Estrutura da Dissertação

	Fundamentação Teórica
	Design Smells
	Sistemas Especialistas
	Ontologias e Web Semântica
	O projeto Eclipse JDT

	Metodologia
	Perguntas de pesquisa
	Criação da ontologia
	Inferência de conhecimento

	O plug-in OWLSmell
	Validação do método proposto
	Comparação de ferramentas
	Análise por amostragem
	Métricas Precision and Recall

	Experimentos e Análise dos Resultados
	Comparação de ferramentas
	Smell Insufficient Modularization
	Smell Long Method
	Smell Long Parameter List
	Smell Deficient Encapsulation

	Análise por amostragem
	Avaliação dos Resultados

	Trabalhos Correlatos
	Conclusão
	Principais Contribuições
	Produção Bibliográfica
	Trabalhos Futuros

	Referências

