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Resumo

Leão, L. S. Detecção e Controle de Trincas Transversais em Máquinas Rotativas. Tese

de Doutorado - Universidade Federal de Uberlândia, Novembro 2019.

Esta tese considera detecção e controle de uma trinca transversal em máquinas

rotativas. Os objetivos deste estudo envolvem a obtenção e o ajuste de um modelo

matemático que represente o comportamento dinâmico de uma máquina rotativa real,

a aplicação numérica e experimental de um método de detecção de falhas baseado no

sinal de vibração do rotor e de um método de controle ativo de trincas que reduza os

níveis dos super-harmônicos 2X e 3X excitados pela presença da trinca no espectro

de frequência do rotor. A novidade desta tese está no fato de se realizar detecção e

controle de trinca em um único projeto de pesquisa. Além disso, o controle ativo de

trincas ainda é um assunto novo nesta área. A modelagem matemática do rotor utiliza

o método dos Elementos Finitos (FE) e considera elementos de viga de Timoshenko,

com seção circular e raio constates. O comportamento dinâmico da trinca transversal

é modelado pelo modelo de Mayes, que considera abertura e fechamento da trinca de

maneira progressiva. Mecânica da fratura linear é aplicada, a fim de relacionar a pro-

fundidade da trinca com o aumento da flexibilidade do eixo. O observador de estado

modal (MSO) foi utilizado nesta tese quando do estudo do problema de detecção de

trincas. Já para o controle ativo da trinca, a técnica de controle PID foi aplicada. Os

resultados evidenciam a possibilidade de se diagnosticar uma trinca e diminuir seus

efeitos (através do controle ativo) sobre uma máquina rotativa em operação. Desta

forma, manutenções que exigem a parada da máquina podem ser realizadas com

menor frequência e, mesmo assim, a segurança da máquina rotativa é garantida.

Palavras-chave: Dinâmica de Máquinas Rotativas. Detecção de Trincas. Controle

Ativo de Vibrações. Monitoramento da Integridade Estrutural . Auto-Reparação.
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Abstract

Leão, L. S. Detection and Control of Transverse Cracks on Rotating Machines. PhD

Dissertation - Federal University of Uberlândia, November 2019.

In this dissertation, crack detection and crack control of rotating machinery are ad-

dressed. The objectives of this study involves building and validating a numerical model

capable of simulating the dynamic behavior of a real rotating machine. Numerical and

experimental results for crack detection based on the shaft vibration signals are ob-

tained. Besides, numerical and experimental results from an active control method,

capable of suppressing 2X and 3X super-harmonics are obtained, excited by the crack

presence. The innovation of this thesis lays on the fact of merging crack detection and

crack control techniques in one single study. It is worth mentioning that the subject of

crack control is quite new in the literature. The rotor is modeled by the finite element

(FE) method, considering Timoshenko beam elements with circular cross section and

constant radius. The Mayes model is addressed for simulating the breathing behavior

of a transverse crack in a progressive way. The linear fracture mechanics theory is ap-

plied to correlate the crack depth with the corresponding additional shaft flexibility. The

so-called modal state observer (MSO) technique was chosen to verify the existence of

a transverse crack on a rotating machine. Moreover, the PID active control technique

was addressed to perform crack control, suppressing crack signatures over the rotor

frequency spectrum. Both numerical and experimental results highlight the possibility

of detecting the existence of a crack and also how to decrease its effects (through ac-

tive control) of an operating rotating machine. In this way, inspections requiring full stop

of the machine can be performed less often while keeping the rotating machine safety.

Keywords: Rotordynamics. Crack Detection. Active Vibration Control. Structure

Health Monitoring (SHM). Self-Healing (SH).

viii



Publications

The research associated with the development of this PhD Dissertation resulted the

publications listed below:

Journal Papers

• Leão. L. S., Cavalini Jr, A. A., Morais, T. S., Melo, G. P. and Steffen Jr, V.

(2019). “Fault detection in rotating machinery by using the modal state observer

approach”. Journal of Sound and Vibration, 458:123-142 (2019) 39:2447–2458,

DOI 10.1016/j.jsv.2019.06.022

• Morais, T. S., Leão, L. S., Cavalini Jr, A. A. and Steffen Jr, V. (2019). "Rotating

machinery health evaluation by modal force identification". Inverse Problems in

Science and Engineering, DOI: 10.1080/17415977.2019.1644331

Conference Presentation and Proceedings

• Morais, T. S., Leão, L. S., Cavalini Jr, A. A. and Steffen Jr, V. (2017). "Rotating

machinery health monitoring through modal force identification", Proceedings of

the International Conference on Structural Engineering Dynamics ICEDyn, 3-5

July, 2017, Ericeria, Portugal.

• Leão. L. S., Cavalini Jr, A. A., Morais, T. S., Melo, G. P. and Steffen Jr, V. (2017).

“Fault detection in rotating machinery by using the modal state observer ap-

proach”, Proceedings of the ASME 2017 International Design Engineering Tech-

nical Conferences and Computers and Information in Engineering Conference -

IDETC/CIE, August 6-9, 2017, Cleveland, OH, USA. DETC2017-67044

• Leão. L. S., Sahinkaya, A., Cavalini Jr, A. A., Steffen Jr and Sawicki, J. T. (2018).

“The influence of the vibration suppression on the rotor crack detection perfor-

mance”, Proceedings of the International Federation for the Promotion of Mech-

anism and Machine Science IFToMM, 23-27 September, 2018, Rio de Janeiro,

Brasil.

• Leão. L. S., Pereira, I. A., Cavalini Jr, A. A. and Steffen Jr (2019). “Vibration

suppression on a rotating machine by the use of electromagnetic actuators and

ix



x

a pid controller”, Proceedings of the XXVI Congresso Nacional de Estudantes de

Engenharia Mecânica, CREEM, Ilhéus/Itabuna, Ba.

• Pereira, I. A., Leão. L. S., Cavalini Jr, A. A. and Steffen Jr (2019). “Comparação

de Amplificadores de Corrente para Sistemas de Controle Ativo de Vibração”,

Proceedings of the XXVI Congresso Nacional de Estudantes de Engenharia

Mecânica, CREEM, Ilhéus/Itabuna, Ba.

• Leão. L. S., Pereira, I. A., Cavalini Jr, A. A. and Steffen Jr (2019). “A model-

based crack identification approach”, Proceedings of the 25th ABCM Interna-

tional Congress of Mechanical Engineering, October 20-25, 2019, Uberlândia,

MG, Brasil, COBEM2019-0814 (ACCEPTED)

• Pereira, I. A., Del Claro, V. T. S., Leão. L. S., Oliveira, F. V., Cavalini Jr, A. A. and

Steffen Jr (2019). “A Didatic Test-Rig for Teaching Vibration Modes”, Proceedings

of the 25th ABCM International Congress of Mechanical Engineering, October

20-25, 2019, Uberlândia, MG, Brasil, COBEM2019-0814 (ACCEPTED)

• Pereira, I. A., Leão. L. S., Sicchieri, L. C., Carvalho, V. N., Cavalini Jr, A. A.

and Steffen Jr (2019). “Dynamic Characterizations of Electromagnetic Actuators

”, Proceedings of the 25th ABCM International Congress of Mechanical Engi-

neering, October 20-25, 2019, Uberlândia, MG, Brasil, COBEM2019-0814 (AC-

CEPTED)



Table of Contents

List of Figures xxii

List of Tables xxiv

List of Symbols xxv

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Crack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 State-of-the-Art for Crack Detection . . . . . . . . . . . . . . . . . . . . 3

1.4 Crack Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 State-of-the-Art for Crack Control . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Objectives and Contributions of this Ph.D. work . . . . . . . . . . . . . . 8

1.7 Organization of this Ph.D. dissertation . . . . . . . . . . . . . . . . . . . 9

2 Crack Detection in Rotating Machinery 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Rotor Test Rig for Crack Detection . . . . . . . . . . . . . . . . . . . . . 11

2.3 Rotor Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 System Reduction - Pseudo Modal Method . . . . . . . . . . . . . . . . 16

2.5 FE Model Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Frequency Domain Model Updating . . . . . . . . . . . . . . . . 18

2.5.2 Time Domain Updating . . . . . . . . . . . . . . . . . . . . . . . 25

3 Fault Detection in Rotating Machinery by Using the Modal State Observer

Approach 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



TABLE OF CONTENTS xii

3.2 State Space Representation of the System . . . . . . . . . . . . . . . . 28

3.3 Luenberger State Observer . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Modal State Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Crack Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Additional flexibility due to the crack . . . . . . . . . . . . . . . . 33

3.5.2 Mayes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Partial Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Crack Control in Rotating Machinery 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Rotor Test Rig for Crack Control . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Rotor Equation of Motion for Crack Control . . . . . . . . . . . . . . . . 70

4.4 FE Model Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Frequency Domain Updating . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Time Domain Updating . . . . . . . . . . . . . . . . . . . . . . . 78

5 Electromagnetic Actuators (EMAs) 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 EMA Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Brief background on Electromagnetism . . . . . . . . . . . . . . . . . . 82

5.4 Dynamic Characterization of the EMAs . . . . . . . . . . . . . . . . . . . 87

6 Crack Control in Rotating Machinery by the use of the PID technique 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Controllability and Observability . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Mathematical framework for controllability and observability . . . 94

6.2.2 Physical representation of controllability and observability . . . . 95

6.3 The Open-loop System . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 The Closed-loop System . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 The PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Design of the PD Control Laws . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 PID Control: Numerical and Experimental Results . . . . . . . . . . . . 103



TABLE OF CONTENTS xiii

6.7.1 Results of the PID without Filter . . . . . . . . . . . . . . . . . . . 103

6.7.2 Results of the PID with a Bandpass Filter at 2X and 3X super-

harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7.3 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . 124

7 Conclusions and Perspectives 126

References 130



List of Figures

1.1 Turbine hall of the power station: (a) before, and (b) after the accident.

Source: http://4044415.livejournal.com/51884.html . . . . . . . . . . . . 3

1.2 Viscoelastic Support; extracted from Ribeiro et al. (2015). . . . . . . . . 7

1.3 Auto-balancer device (ABD) scheme with its rigid and rotating frames

depicted; extracted from Jung and DeSmidt (2018). . . . . . . . . . . . . 8

2.1 Test rig used for performing crack detection: (a) rotating machine; (b) FE

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Transverse crack on the shaft. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Self aligning ball bearing. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Bearing rigid base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Proximity probes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Shaft driving system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Self aligning ball bearing. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Finite element representing the shaft. . . . . . . . . . . . . . . . . . . . 16

2.9 Hankel singular values of the FE model in the modal domain. . . . . . . 17

2.10 FRF#1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 FRF#2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 FRF#3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 FRF#4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.14 FRF#5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.15 FRF#6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.16 FRF#7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.17 FRF#8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.18 Campbell Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xiv



LIST OF FIGURES xv

2.19 First four natural modes: (a) first; (b) second; (c) third; (d) fourth. . . . . 25

2.20 Results of model updating for lateral vibrations in time domain: (—) Ex-

perimental; (—) Numerical: (a) S12x ; (b) S12z ; (c) orbit S12x Vs. S12z ; (d)

S29x ; (e) S29z ; (f) orbit S29x Vs. S29z ; . . . . . . . . . . . . . . . . . . . . . 26

3.1 Luenberger state observer. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 MSO representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 SHM technique based on MSO. . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Finite element with a transverse crack. (a) Applied efforts; (b) Cross

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Shaft cross-section with a crack (η is assumed to be perpendicular to

the crack edge). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Stiffness variations considering the rotating frames ξ and η, according to

the Mayes model (—) α
D
= 0.20 (—) α

D
= 0.35 (—) α

D
= 0.50. a) kξM ; b) kηM 38

3.7 Stiffness behaviour in fixed coordinates (— α/D = 0.20; — α/D = 0.35;

— α/D = 0.50; α stands for the crack depth and D is the shaft diameter). 39

3.8 Vibration responses of the healthy rotor (––) and the associated signals

estimated by using the MSO (....): (a) sensor S12X ; (b) sensor S12Z ; (c)

sensor S29X ; (d) sensor S29Z . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Vibration responses of the rotor with a breathing crack (––) and the as-

sociated signals estimated by using the MSO (....): (a) sensor S12X ; (b)

sensor S12Z ; (c) sensor S29X ; (d) sensor S29Z . . . . . . . . . . . . . . . . 41

3.10 Vibration responses of the rotor with an open crack (––) and the asso-

ciated signals estimated by using the MSO (....): (a) sensor S12X ; (b)

sensor S12Z ; (c) sensor S29X ; (d) sensor S29Z . . . . . . . . . . . . . . . . 42

3.11 Comparison of the vibration responses of the rotor for the healthy condi-

tion (–––), shaft with the breathing crack (....), and shaft with open crack

(– –): (a) sensor S12X ; (b) sensor S12Z ; (c) sensor S29X ; (d) sensor S29Z . 43

3.12 Modal displacements estimated by using the MSO for the healthy condi-

tion (–––), shaft with the breathing crack (....), and shaft with open crack

(– –): (a) mode #1; (b) mode #2; (c) mode #3; (d) mode #4. . . . . . . 44



LIST OF FIGURES xvi

3.13 Estimated density functions of the time domain vibration responses for

the healthy condition (–––), shaft with the breathing crack (....), and shaft

with open crack (– –): (a) sensor S12x; (b) sensor S12z; (c) sensorS29x; (d)

sensor S29z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.14 Estimated density functions of the modal displacements for the healthy

condition (–––), shaft with the breathing crack (....), and shaft with open

crack (– –): (a) mode #1; (b) mode #2; (c) mode #3; (d) mode #4. . . . 46

3.15 Crack conditions: (a) breathing crack; (b) open crack. . . . . . . . . . . 55

3.16 Experimental vibration responses of the rotor with a breathing crack (––)

and the associated signals estimated by using the MSO (....): (a) sensor

S12X ; (b) sensor S12Z ; (c) sensor S29X ; (d) sensor S29Z . . . . . . . . . . . 55

3.17 Experimental vibration responses of the rotor with a open crack (––) and

the associated signals estimated by using the MSO (....): (a) sensor

S12X ; (b) sensor S12Z ; (c) sensor S29X ; (d) sensor S29Z . . . . . . . . . . . 56

3.18 Experimental modal displacements estimated by using the MSO for the

shaft with an open crack (––) and the associated signals estimated by

using the MSO (....): (a) mode #1; (b) mode #2; (c) mode #3; (d) mode

#4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.19 Estimated density functions of the experimental time domain vibration

responses for the shaft with the breathing crack (––) and the shaft with

the open crack (....): (a) sensor S12X ; (b) sensor S12Z ; (c) sensor S29X ;

(d) sensor S29Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.20 Estimated density functions of the experimental modal displacements for

the shaft with the breathing crack (––) and the shaft with the open crack

(....): (a) mode #1; (b) mode #2; (c) mode #3; (d) mode #4. . . . . . . 59

4.1 Test rig used for crack control: (a) real test rig; (b) mesh for the FE model. 64

4.2 Transverse crack on the shaft. . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Disc and bushing used on the test rig. . . . . . . . . . . . . . . . . . . . 65

4.4 Electric motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Aluminum profile 90x180L. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Manual rotor speed controller. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Mechanical coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



LIST OF FIGURES xvii

4.8 Self aligning bearing: a) details of its components; b) main dimensions

(mm); c) base to connect the bearing to the aluminum frame; d) geome-

try of the base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 (a) Hybrid bearing; (b) main dimensions. . . . . . . . . . . . . . . . . . . 69

4.10 EMA used to compose the hybrid bearing. . . . . . . . . . . . . . . . . . 69

4.11 FRF#1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 FRF#2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.13 FRF#3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.14 FRF#4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.15 FRF#5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.16 FRF#6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.17 FRF#7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.18 FRF#8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.19 Campbell Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.20 Results of model updating for the lateral vibrations in the time domain:

(—) Experimental; (—) Numerical: (a) S16x ; (b) S16z ; (c) orbit S16x Vs.

S16z ; (d) S22x ; (e) S22z ; (f) orbit S22x Vs. S22z ; . . . . . . . . . . . . . . . . 79

5.1 EMA geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Comparison between electromagnetic and magnetic field actuation lines. 83

5.3 (a) Electric circuit; (b) Magnetic circuit. . . . . . . . . . . . . . . . . . . . 83

5.4 Magnetic reluctance, according to each EMA part. . . . . . . . . . . . . 84

5.5 (a) Hybrid bearing, showing the number of each EMA; (b) Synchronized

hybrid bearing actuation (Ampres), among its four EMAs, with no bias

current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Experiment layout for the EMA dynamic characterization. . . . . . . . . 87

5.7 Bode diagram: acquisition board and force transducer. . . . . . . . . . . 89

5.8 Bode diagram: acquisition board and force transducer. . . . . . . . . . . 90

5.9 Bode diagram: the EMA input and output. . . . . . . . . . . . . . . . . . 91

5.10 Bode diagram: current amplifier input and output. . . . . . . . . . . . . . 92

6.1 System classification; extracted from Koroishi (2013). . . . . . . . . . . 94



LIST OF FIGURES xviii

6.2 Normalized mode shapes along the X and Z direction: (a) (—) first; (—)

third; (b) (—) second; (—) fourth. Sensor positions are marked as * and

the electromagnetic actuator position is marked as o. . . . . . . . . . . . 96

6.3 Open-loop plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Closed-loop plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Hybrid bearing with its four EMAs. . . . . . . . . . . . . . . . . . . . . . 98

6.6 Logic for producing the control currents, based on the shaft lateral vibra-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Control currents (mA) and shaft lateral vibrations (µm). (—) Controlled

S16Z , (—) EMA#1, and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . 99

6.8 Root Locus: (a) Open-loop plant, and (b) Closed-loop plant. . . . . . . . 102

6.9 493 rev/min, PID without Filter. Numerical time domain shaft lateral

vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b)

S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.10 493 rev/min, PID without Filter. Numerical frequency domain shaft lat-

eral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.11 493 rev/min, PID without filter. Numerical simulation for control currents,

in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—)

EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and

(—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.12 493 rev/min, PID without Filter. Time domain shaft lateral vibrations, in

µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z ; (c) orbit

S16X x S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.13 493 rev/min, PID without Filter. Frequency domain shaft lateral vibra-

tions, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z . . 106

6.14 493 rev/min, PID without filter. Control currents, in mA and shaft lat-

eral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and (—)

EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3. . . . . 106

6.15 737 rev/min, PID without Filter. Numerical simulation of time domain

shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a)

S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES xix

6.16 737 rev/min, PID without Filter. Numerical simulatoin of the frequency

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.17 737 rev/min, PID without filter. Numerical simulation for the control cur-

rents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X ,

(—) EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1,

and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.18 737 rev/min, PID without Filter. Experimental results for the time domain

shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a)

S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . . . . . . 109

6.19 737 rev/min, PID without Filter. Experimental results in the frequency

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.20 737 rev/min, PID without filter. Experimental control currents, in mA and

shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and

(—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3. . . 110

6.21 900 rev/min, PID without Filter. Numerical time domain shaft lateral vi-

brations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b)S16Z ;

(c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.22 900 rev/min, PID without Filter. Numerical frequency domain shaft lat-

eral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.23 900 rev/min, PID without filter. Numerical control currents, in mA and

shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and

(—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3. . . 112

6.24 900 rev/min, PID without Filter. Experimental time domain shaft lateral

vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b)

S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.25 900 rev/min, PID without Filter. Experimental frequency domain shaft

lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



LIST OF FIGURES xx

6.26 900 rev/min, PID without filter. Experimental control currents, in mA and

shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and

(—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3. . . 113

6.27 493 rev/min, PID with a bandpass filter for 2X and 3X. Numerical time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . 114

6.28 493 rev/min, PID with a bandpass filter for 2X and 3X. Numerical fre-

quency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—)

Control ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.29 493 rev/min, PID with a bandpass filter for 2X and 3X. Numerical con-

trol currents, in mA and shaft lateral vibrations, in µm. (a) (—) Con-

trolled S16X , (—) EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—)

EMA#1, and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.30 493 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

time domain shaft lateral vibrations, in µm: (—) Control OFF, and (—)

Control ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . 116

6.31 493 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

frequency domain shaft lateral vibrations, in µm: (—) Control OFF, and

(—) Control ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . 116

6.32 493 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

control currents, in mA and shaft lateral vibrations, in µm. (a) (—) Con-

trolled S16X , (—) EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—)

EMA#1, and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.33 737 rev/min, PID with a bandpass filter for 2X and 3X. Numerical time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . 118

6.34 737 rev/min, PID with a bandpass filter for 2X and 3X. Numerical fre-

quency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—)

Control ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . 118



LIST OF FIGURES xxi

6.35 737 rev/min, PID with a bandpass filter for 2X and 3X. Numerical con-

trol currents, in mA and shaft lateral vibrations, in µm. (a) (—) Con-

trolled S16X , (—) EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—)

EMA#1, and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.36 737 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

time domain shaft lateral vibrations, in µm: (—) Control OFF, and (—)

Control ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . 119

6.37 737 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

frequency domain shaft lateral vibrations, in µm: (—) Control OFF, and

(—) Control ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . 120

6.38 737 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

control currents, in mA and shaft lateral vibrations, in µm. (a) (—) Con-

trolled S16X , (—) EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—)

EMA#1, and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.39 900 rev/min, PID with a bandpass filter for 2X and 3X. Numerical time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . . . . . 121

6.40 900 rev/min, PID with a bandpass filter for 2X and 3X. Numerical fre-

quency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—)

Control ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.41 900 rev/min, PID with a bandpass filter for 2X and 3X. Numerical con-

trol currents, in mA and shaft lateral vibrations, in µm. (a) (—) Con-

trolled S16X , (—) EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—)

EMA#1, and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.42 900 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

time domain shaft lateral vibrations, in µm: (—) Control OFF, and (—)

Control ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x S16Z . . . . . . . . . . . . . 123

6.43 900 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

frequency domain shaft lateral vibrations, in µm: (—) Control OFF, and

(—) Control ON. (a) S16X ; (b) S16Z . . . . . . . . . . . . . . . . . . . . . . 123



LIST OF FIGURES xxii

6.44 900 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

control currents, in mA and shaft lateral vibrations, in µm. (a) (—) Con-

trolled S16X , (—) EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—)

EMA#1, and (—) EMA#3. . . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of Tables

2.1 Direction and name of each FRF collected. . . . . . . . . . . . . . . . . 18

2.2 Design space of the optimization problem: k [N/m], ξ [dimensionless]

and ktcoup [Nm/rad] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Outputs of all the optimization processes: k [N/m], ξ [dimensionless]

and ktcoup [Nm/rad]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Damage indexes obtained by considering the shaft with breathing cracks. 47

3.2 Damage indexes obtained by considering the shaft with open cracks. . . 48

3.3 Damage indexes obtained by considering the shaft at different speeds

with breathing cracks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Damage indexes obtained by considering the shaft with open cracks. . . 50

3.5 Damage indexes obtained by considering the shaft with breathing cracks. 52

3.6 Damage indexes obtained by considering the shaft with open cracks. . . 54

3.7 Damage indexes obtained by considering the shaft with breathing and

open cracks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Direction and definition of each FRF collected. . . . . . . . . . . . . . . 72

4.2 Design space of the optimization problem. k [N/m], ξ [dimensionless]

and ktcoup [Nm/rad] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Outputs of all the optimization processes: k [N/m], ξ [dimensionless]

and ktcoup [Nm/rad]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Values of EMA geometrical parameters. . . . . . . . . . . . . . . . . . . 81

5.2 AWG24 copper wire features. . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Electric and magnetic circuit parameters. . . . . . . . . . . . . . . . . . 84

6.1 PID gains for 493 rev/min, PID without filter. . . . . . . . . . . . . . . . 103

xxiii



LIST OF TABLES xxiv

6.2 PID gains for 737 rev/min and PID without filter. . . . . . . . . . . . . . 107

6.3 PID gains for 900 rev/min and PID without filter. . . . . . . . . . . . . . 110

6.4 PID gains for 493 rev/min, and PID with a bandpass filter on 2X and 3X. 114

6.5 PID gains for 737 rev/min, and PID with a bandpass filter for 2X and 3X. 117

6.6 PID gains for 900 rev/min, and PID with a bandpass filter for 2X and 3X. 121

6.7 Results for the first PID control law. . . . . . . . . . . . . . . . . . . . . . 124

6.8 Results for the second PID control law. . . . . . . . . . . . . . . . . . . . 125



List of Symbols

Abbreviations

H∞ H∞ control synthesis

ABD Auto-Balancer Device

AMB Active Magnetic Bearing

CRDE Mutation Ration among the DE Individuals

DE Differential Evolution

DFFT Discrete Fast Fourier Transfer

dof Degrees of Freedom

EMA Electromagnetic Actuators

FDE Difference Amplification among the DE individuals

FE Finite Element

FFT Fast Fourier Transfer

FRF Frequency Response Function

GA Genetic Algorithms

GEP Generalized Equivalent Parameters

LMEst Laboratory of Structure Mechanics

LQR Linear Quadratic Regulator

LTI Linear Time-Invariant

xxv



LIST OF SYMBOLS xxvi

MSO Modal State Observer

PD Proportional Derivative controller

PID Proportional Integral Derivative controller

SAE Society of American Engineers

SH Self-Healing

SHM Structural Health Monitoring

TF Transfer Function

UFU Federal University of Uberlândia

Greek Symbols

α width of the electromagnetic actuator central branch

α/D Crack depth, relative to the shaft diameter

αx Crack depth

δ Shaft vibration, which continuously alters the air gap

∆Kq Crack force

η Horizontal axis of the rotating frame

ℑ Magneto-motive force

µ Poisson’s ratio

µo Constant air magnetic permeability

µr Relative magnetic permeability of each electromagnetic actuator

Ω Angular speed of the rotor (rev/min)

Ψ Total magnetic flux

ψ Magnetic flux

ℜ Reluctance of the magnetic circuit



LIST OF SYMBOLS xxvii

ρ Volumetric density

θ Angular position of the rotating frame, in function of the fixed frame

θi Node rotating around the X direction

ϕi Node rotating around the Z direction

ϑy Constant which considers the shear effect of the Timoshenko beam element

ξ Vertical axis of the rotating frame

ξi Modal damping ratio of the i-th mode

Latin Symbols

c̄c matrix containing the dimensionless additional flexibility terms
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Chapter 1

Introduction

1.1 Introduction

This Ph.D. dissertation is organized according to two main parts. In the first part, the

crack detection problem is addressed. In the second one, the crack control problem is

studied. Thus, the main objective is to perform both structural health monitoring (SHM)

and self-healing (SH) dedicated to the same engineering system, simultaneously. In

this way, the present contribution aims at detecting the crack and then to control its

severity, thus avoiding different types of structure failure.

1.2 Crack Detection

The development of online health monitoring techniques for crack detection in shafts

of rotating machines were motivated by a series of accidents, such as the catastrophic

failure, which occurred in a General Electric Co. turbine in the early 70s, Dimarogo-

nas et al. (2013). After 1972, as a continuation of Dimarogonas work, Pafelias (1974)

published a formal General Electric Co. report proposing a methodology for crack de-

tection based on the monitoring of the 2X super-harmonic and the half critical speed

sub-harmonic, Dimarogonas (1996). A considerable academic effort on crack detec-

tion techniques was observed along the 80s, resulting high economic impact in various

industries. Researches on structural health monitoring (SHM) techniques for early fault

detection has been growing since then.

According to Cavalini-Jr. et al. (2015), there have been several SHM techniques
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proposed in the literature for crack detection in rotating machines. Visual examina-

tion, radiographic tests, ultrasonic tests, and dye penetrant inspection are examples

of widely used non-destructive techniques for crack detection. However, these meth-

ods have proved to be costly since satisfactory results rely on detailed and periodic

inspections, according to Saavedra and Cuitiño (2001). As a full stop of the machinery

is required for inspection, production losses proportional to the time spent on these

inspections are verified, which is undesirable by the industry.

Therefore, SHM techniques based on vibration measurements, which may occur

continuously while the machine deliveries power, are much more interesting and in-

dustry applicable, according to Cavalini-Jr. et al. (2015), Doebling et al. (1998), Darpe

et al. (2004). Consequently, SHM techniques help to increase both the equipment’s

lifetime and operation safety throughout the aging of the system.

According to Carden and Fanning (2004), the SHM techniques based on vibration

signals are sensitive to mass, damping, and stiffness changes in the structure, which

may indicate the presence of faults. Cavalini-Jr. et al. (2016) mention that nowadays it

is already possible to identify incipient cracks (i.e., which has a depth smaller than 25%

of the shaft diameter) in rotors by applying sophisticated SHM methods.

The developement of vibration-based SHM techniques require both experimental

and numerical approaches. This means that a reliable rotor mathematical model needs

to be derived. These techniques are called model-based, and the quality of their results

depends directly on the accuracy of the mathematical model used for representing the

real rotating machine.

If these techniques are not applied, accidents may occur. One of the most impor-

tant and recent turbine accidents, caused by fatigue cracks, took place on Sayano-

Shushenskaya hydroelectric power station.
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(a) (b)

Figure 1.1: Turbine hall of the power station: (a) before, and (b) after the accident.

Source: http://4044415.livejournal.com/51884.html

Figure 1.1 presents the hall of turbines of the power station before, and after the

accident, which caused 75 people casualties.

The main results of this first part of the present dissertation was published in Leao

et al. (2019), which followed the methodology presented by Cavalini-Jr (2009) to derive

a fault detection technique based on the so-called modal state observer (MSO). There

are several model-based techniques dealing with crack detection, and quite often new

methods are proposed. A brief state-of-the-art is now presented for highlighting the

main contributions to this field.

1.3 State-of-the-Art for Crack Detection

According to Zhao (2013), the first model-based approach devoted to fault detection

in mechanical systems was proposed by Isermann (1995). Before that, only experi-

mental techniques were used Pafelias (1974). The model-based technique developed

by Isermann (1995) was applied to various mechanical systems, such as electric mo-

tors, actuators, pumps, and machine tools, presenting encouraging results.

On the rotating machinery field, Bachschmid et al. (2000) presented the possibility

of identifying the crack existence in a rotating machine by using a model-based tech-

nique allied to the 1X, 2X, and 3X harmonic components of the vibration responses. It

is important to perform SHM on rotating machinery to early detect fatigue cracks. This
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is the context of the first part of this Ph.D. dissertation.

Some other SHM methods are briefly cited. Market et al. (2001) proposed a model-

based approach in which the crack was identified over the rotor by relating the fault

parameters with fictitious equivalent forces. Sawicki et al. (2011) have experimentally

detected a crack by applying specified harmonic forces on the rotor by means of a

single magnetic bearing. The presence of the damage led to spectral responses with

additional peaks at frequencies that are combinations of the rotor speed, its critical

speed, and the frequency of the diagnostic force. Cavalini-Jr (2013) applied the com-

bination resonance method, combined with the multiple scales non-linear approach,

for deriving numerical results for different crack conditions. This author also performed

experimental tests on a test-rig found at the LMEst laboratory, at the Federal Univer-

sity of Uberlândia (UFU). Later, Cavalini-Jr. et al. (2016), also performed model-based

combination resonances SHM techniques together with a pseudo-random optimization

code, known as Differential Evolution (DE), in order to characterize the signatures of

the crack in the spectral responses of a flexible rotor.

The MSO technique was chosen in this study, among other methods, because it is

capable of combining the main advantages of both time and modal domain analyses,

as described in Cavalini-Jr et al. (2008). It is well known that time-domain vibration re-

sponses are more sensitive than modal characteristics (natural frequencies and mode

shapes) for performing fault detection in mechanical systems. However, interesting

information can be obtained by monitoring modal parameters. Besides, only convert-

ing the time domain vibration responses to the modal domain does not ensure that it

will become more sensitive to the fault presence. Thus, according to Cavalini-Jr et al.

(2008), the MSO serves as a filter designed specifically for crack detection in combina-

tion with the mathematical model of the system.

This is possible because the mathematical model of the healthy system is incorpo-

rated into the MSO, which is tuned to estimate the vibration responses of the system

for its healthy condition. Then, the estimated modal vibration responses are compared

with a baseline (i.e., modal vibration response of the healthy rotor) for crack detection

purposes. Amplitude increases on 2X or 3X super-harmonics are due to the existence

of a transverse crack.

Mohamad et al. Mohamad et al. (2018a), Mohamad, Samadani, and Nataraj Mo-
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hamad et al. (2018b), and Mohamad et al. Mohamad et al. (2019) demonstrate that

vibration signals acquired in high sampling frequencies are more sensitive for dam-

age existence in gears, rolling bearings, and cracked shafts. These works show that

much information useful for damage detection is found on time vibration responses.

Otherwise, only severe faults can be detected in mechanical systems if only natural

frequencies and mode shapes are monitored. However, interesting information can be

obtained by using modal parameters, such as stiffness and damping properties.

For the MSO technique applied in this dissertation, the condition monitoring is

based on the kernel density function estimate, which is able to deal with the proba-

bility density estimation of a given data sample. The mathematical model of the rotat-

ing machine is formulated according to the FE method by considering the Timoshenko

beam theory. The crack behavior is simulated according to the Mayes model and the

additional flexibility in the shaft, related to the crack depth, is determined through the

linear fracture mechanics theory. Numerical and experimental results obtained demon-

strated that the MSO technique represents a good alternative to detect faults in rotating

machines.

1.4 Crack Control

The second part of this Ph.D. study lays on the vibration control context. In this

way, active vibration control is applied for suppressing the effects of a transverse crack

along a rotating machine (decreasing 2X and 3X super-harmonics amplitudes).

Koroishi (2013) designed a test rig for performing vibration control studies for his

Ph.D. dissertation, at the same LMEst laboratory, at the Federal University of Uberlân-

dia (UFU). A similar test rig was also mounted for the present research work, serving

from the components designed by Koroishi (2013). Some hardware updating was per-

formed and it is explained in Chap.6. There are several references in the literature

about control applications as used in rotating machinery. In this way, a state-of-the-art

on this subject is furnished, for placing the present research effort.
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1.5 State-of-the-Art for Crack Control

Koroishi (2013) compared various active control methods to be applied on a rotating

machine with one fixed bearing and one hybrid bearing. The hybrid bearing was able to

both support and move the rotating shaft by the action of four electromagnetic actuators

(EMAs) in order to compensate for the shaft lateral vibrations. In this context, the

above mentioned author compared the following active control methods: LQR, H∞,

and Fuzzy logic. The controlled rotor was tested under several conditions, such as

run-up, run-down, steady state, and at rest. The results obtained, both numerically

and experimentally, demonstrate the success of active control techniques in reducing

lateral vibrations of the shaft.

The control action under the shaft lateral vibrations is quite important, since it in-

creases the rotor efficiency regarding power delivering, prevents premature bearing

failures, decreases the machine shutdown and maintenance frequencies, besides pre-

venting rotor failure, Koroishi (2013). For reaching this objective, there are three control

strategies to be considered, namely passive, semi-active, and active.

Still, according to Koroishi (2013), passive vibration control is usually obtained by

modifying dynamic characteristics of the machine, such as mass, stiffness, or damp-

ing. An example of a passive controller of a rotating machine is presented in Ribeiro

et al. (2015). In their work, they present a robust methodology based on generalized

equivalent parameters (GEP) for the optimal design of viscoelastic supports of rotat-

ing machinery. The control approach aims at for minimizing the unbalance frequency

response. For this purpose, a hybrid optimization technique, which combines genetic

algorithms (GA) and Nelder–Mead method, was performed. Figure 1.2 presents the

viscoelastic support developed by the authors.
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For both objectives, the results are obtained numerically and validated experimen-

tally on the test-rig found at the LMEst laboratory, at the Federal University of Uberlân-

dia (UFU), Brazil.

There are also some other objectives regarding this Ph.D. dissertation, among

which the main ones are listed in the following:

1. Update the LMEst numerical Finite Element (FE) codes related to rotating ma-

chinery;

2. Compare different crack detection techniques for choosing the best adapted one

to be used in the context of the present research work;

3. Mount and validate the test-rig to perform crack detection techniques at the LMEst

laboratory;

4. Compare different crack control techniques for choosing the best adapted one to

be used in the context of the present work;

5. Mount and validate the test-rig to perform crack control under laboratory condi-

tions.

1.7 Organization of this Ph.D. dissertation

Besides this first chapter, which introduces the context, objective, and contributions

of this Ph.D. work, six additional chapters complete this dissertation. A brief description

of each chapter is provided below.

Chapter 2 presents the test-rig to be used for crack detection studies. It starts by

describing the main components of the test-rig. The equation of motion of the system is

derived by using the FE model to simulate the dynamic behavior of the test rig. Finally,

it presents the model updating procedure used for validating the numerical model by

fitting this model to the experimental data from the test-rig.

Chapter 3 presents the application of the chosen model-based crack detection

method, i.e., the Modal State Observer. This method is applied to the numerical model

built in Chap. 2. Details about the MSO modeling, besides crack modeling details, are
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discussed in Chap. 3. Numerical and experimental results concerning crack detection

are presented in this chapter.

In Chap. 4, the test-rig to be used for the crack control studies is described. This

chapter follows the same steps of Chap. 2, describing the test-rig main components

and also introducing the equation of motion that is able to simulate the test-rig dynamic

behavior. Finally, the updating results for the validation of the numerical model are

furnished.

Chapter 5 is devoted to describing the control actuators to be used in this work,

i.e., the electromagnetic actuators - EMAs. A brief electromagnetism background is

revisited, introducing the main concepts to be applied to the present work. It is also

explained how to model the EMA behavior and how to introduce the EMA into the FE

model developed in Chap. 5.

In Chap. 6 , the crack control studies are presented. For this purpose, PID concepts

are described and some control background is reviewed, presenting the poles and ze-

ros meaning, and how the control characteristics influences the stability of the system.

In the sequence, numerical and experimental PID results devoted to crack control are

discussed.

Finally, the conclusions are drawn in Chap. 7, which also suggests some future

research directions.

Lastly, bibliographic references are provided.



Chapter 2

Crack Detection in Rotating Machinery

2.1 Introduction

In this chapter, the test rig used to test the various techniques devoted to crack

detection is presented together with its main components, which are described in detail.

In the sequence, the equation of motion of the rotor is solved by a numerical FE model.

Finally, the numerical updating procedure is described, both in the time and frequency

domain. The goal is to obtain a representative numerical model of the rotating system,

so that numerical and experimental results are satisfactorily comparable. Then, it is

possible to develop a reliable crack detection approach.

2.2 Rotor Test Rig for Crack Detection

In the present work, two dedicated test rigs were built. The first one is used for

crack detection tests, and the second is used for crack control (see Chap.4).

This chapter is devoted to present the test rig used for generating all the experimen-

tal data used for the crack detection part of this dissertation. This test rig is found at

the Laboratory of Mechanical Structures (LMEst) of the Federal University of Uberlân-

dia (UFU), as presented in Fig.2.1(a), while its corresponding FE mesh is presented in

2.1(b).
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2.5.1 Frequency Domain Model Updating

A heuristic optimization code based on Differential Evolution, Storn and Price (1995)

was used for determining the optimal parameters that fit the experimental frequency do-

main curves. This method was chosen due to its fast convergence, simplicity, and good

performance for solving inverse problems, besides its capacity to avoid local minima

Cavalini-Jr (2013).

The minimization problem was formed by 90 individuals that compose the initial

population (10 individuals for each parameter to be optimized). Other parameters used

were the following: FDE = 0.8, which concerns the difference amplification among the

individuals and CRDE = 0.5, related to the mutation ratio, as recommended by Viana

et al. (2007).

Excitation was applied to both disc 1 and disc 2 on the vertical and horizontal di-

rections by using a PCB R© hammer, model 086C01. The responses were measured at

the positions S12 and S29, also along the vertical and horizontal directions, by using the

proximity probes SKF R© model CMSS65. Finally, a total of eight FRFs were measured

on the experimental test rig for the rotor at rest. The corresponding data was used to

feed the optimization code. For collecting all the FRFs, a dynamic analyzer (Agilent R©,

model 35670A), in a range of 0 to 250Hz, and steps of 0.25Hz were considered. Table

2.1 summarizes the results from all the collected FRFs.

Table 2.1: Direction and name of each FRF collected.

Excitation Direction Response Direction FRF Name

D1 vertical S12 vertical FRF #1

D2 vertical S12 vertical FRF #2

D1 horizontal S12 horizontal FRF #3

D2 horizontal S12 horizontal FRF #4

D1 vertical S29 vertical FRF #5

D2 vertical S29 vertical FRF #6

D1 horizontal S29 horizontal FRF #7

D2 horizontal S29 horizontal FRF #8

Nine parameters were optimized, namely the stiffness on vertical and horizontal di-
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rections of the first and second bearing Kxxb1
, Kzzb1 , Kxxb2

, and Kzzb2; the modal damp-

ing factors of the first four natural modes ξ1, ξ2, ξ3 and ξ4 and the torsional stiffness due

to the coupling between the shaft and the electric motor Ktcoup . In this case, Ktcoup

was added around the orthogonal directions X and Z of the nodes #1 and #2. Table

2.2 presents all the nine parameters to be optimized as well as their upper and lower

bounds.

Table 2.2: Design space of the optimization problem: k [N/m], ξ [dimensionless] and

ktcoup [Nm/rad]

Variables
Design Space

Upper Bound Lower Bound

Bearing 1
kxxb1

9x109 5x107

kzzb1 9x108 1x106

Bearing 2
kxxb2

9x109 1x107

kzzb2 9x108 1x106

Modal Damping

ξ1 2x10−1 1x10−3

ξ2 2x10−1 1x10−3

ξ3 1x10−1 1x10−3

ξ4 1x10−1 1x10−3

Torsional Stiffness ktcoup 1x104 1x103

The optimization runs were performed ten times in order to guarantee that the

minimum reached was not a local one. Each time the optimization process was re-

initialized, a different population was generated, which mathematically means that the

problem was solved through different points along the design space. Then, the solution

presenting the smallest fitness function value was the one corresponding to the closest

position to the global minimum. Table 2.3 presents the results of the mentioned ten

optimization processes and the values of their corresponding fitness functions.
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Table 2.3: Outputs of all the optimization processes: k [N/m], ξ [dimensionless] and ktcoup [Nm/rad].

Process 1 2 3 4 5 6 7 8 9 10

Fitness 2.697 2.587 2.968 2.436 2.874 2.458 2.523 2.352 2.569 2.841

kxxb1
4.652x109 4.859x109 3.785x109 3.489x109 2.105x109 3.857x109 2.965x109 2.699x109 1.754x109 6.857x109

kzzb1 7.587x107 8.652x107 9.428x107 8.658x107 6.358x107 8.657x107 8.698x107 9.541x107 6.589x107 8.659x107

kxxb2
2.369x109 4.658x109 3.059x109 4.698x109 2.369x109 3.547x109 2.698x109 3.979x109 4.698x109 2.369x109

kzzb2 5.369x107 8.698x107 6.987x107 8.058x107 7.968x107 7.987x107 8.064x107 8.935x107 9.687x107 9.605x107

ξ1 0.269 0.223 0.099 0.112 0.258 0.098 0.122 0.130 0.096 0.127

ξ2 0.092 0.086 0.103 0.155 0.087 0.101 0.077 0.105 0.198 0.081

ξ3 0.055 0.068 0.052 00.064 0.051 0.063 0.047 0.060 0.069 0.049

ξ4 0.057 0.099 0.077 0.085 0.068 0.073 0.088 0.075 0.058 0.087

ktcoup 2589 3058 3368 3987 3589 3638 3554 3377 4098 3238
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The global minimum corresponds to the one presented in column 6 of Tab. 2.3. It

means this is the best possible solution determined by the optimizer. In the following,

one presents the results of the frequency domain model updating. The experimental

test rig FRFs and the ones derived from the FE model, considering the chosen opti-

mized parameters are compared.

Figure 2.10: FRF#1

Figure 2.11: FRF#2
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Figure 2.12: FRF#3

Figure 2.13: FRF#4

Figure 2.14: FRF#5
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Figure 2.15: FRF#6

Figure 2.16: FRF#7

Figure 2.17: FRF#8

One may note that the experimental and numerical curves are well fitted, which

validates the numerical model in the frequency domain, in the range from 0 - 250Hz.
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(a) (b) (c)

(d) (e) (f)

Figure 2.20: Results of model updating for lateral vibrations in time domain: (—) Ex-

perimental; (—) Numerical: (a) S12x ; (b) S12z ; (c) orbit S12x Vs. S12z ; (d) S29x ; (e) S29z ; (f)

orbit S29x Vs. S29z ;

For adjusting the time domain responses, two experimental procedures were nec-

essary. The first experimental test comparing Stress Vs. Strain was performed for a

sample of the same material and the same diameter of the shaft that is used in the

experimental test rig. This was done for obtaining the Young’s Modulus (E) of the

material, which was found to be 1.8806x1011Pa. In the second experimental test, the

dimensions of the shaft were measured and its volume was calculated. Then, the shaft

mass was measured. Finally, the density (ρ) of the material was calculated and found

to be 7.509x103kg/m3.

Having determined the above-mentioned parameters, together with the optimized

variables that were presented in the previous section, the numerical model exhibits a

good agreement with respect to the experimental test rig, both in time and frequency

domains.



Chapter 3

Fault Detection in Rotating Machinery

by Using the Modal State Observer

Approach

3.1 Introduction

In the last chapter, a FE model for crack detection was developed and updated

with respect to the dynamic responses obtained from the test rig in both time and fre-

quency domains. Now, it is time to test some model-based crack detection techniques

for checking if all that effort is effective. In this way, the present chapter introduces a

fault detection methodology based on the so-called modal state observer (MSO) for de-

tecting transverse cracks along a horizontal rotating shaft. The rotating machine used

for applying this technique is the one presented in the previous chapter, containing a

flexible horizontal shaft, two rigid discs, two self-aligning ball bearings, and four prox-

imity probes for measuring shaft lateral vibrations along two directions at two different

nodes.

This study is important due to the fact that the existence of transverse cracks in

rotating shafts may lead to failures, which imply economic losses and security issues.

For this reason, in the last decades, attention has been devoted to this subject pro-

moting the development of several vibration-based structural health monitoring (SHM)

techniques. The MSO technique was chosen because it combines the advantages

of both time and frequency domains for increasing crack detection performance. The
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Luenberger state observer is formulated in the modal domain to estimate the rotor vi-

bration responses described in modal coordinates. Consequently, the most affected

vibration modes due to the crack existence can be determined.

Numerical and experimental investigations are presented in this chapter, aiming at

highlighting the efficiency of the MSO technique. The monitoring is based on the kernel

density function estimate, which is able to deal with the probability density estimation

of a given data sample. This technique is similar to histograms, however leading to

better results.

Both open and breathing crack behaviors are considered. The breathing behavior

of the crack is simulated according to the Mayes model, and the additional flexibility

introduced in the shaft by the crack is determined by using the linear fracture mechanics

theory.

Numerical and experimental results obtained demonstrate that the methodology

conveyed represents a good alternative technique to detect faults in rotating machines.

3.2 State Space Representation of the System

The MSO technique is applied to both the test rig and the FE model presented in

Chap.2. The eqauation of motion of the cracked rotor will be presented in section 3.5,

by Eq.3.6. For applying the present crack detection method, the equation of motion is

rewritten in the state space form, as described by Eq.3.1.

ẋ = Ax+Bu

y = Cx
(3.1)

where A represents the dynamic matrix, B the input matrix,and C the output matrix. It

is worth mentioning that the matrix D was not represented, since it is a null matrix for

this system.

For the interested reader, more details about state space representation can be

found in Franklin et al. (2014).

3.3 Luenberger State Observer

Luenberger (1964) introduced the concept of state observers. A state observer is a
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by Skogestad and Postlethwaite (1996). In the present work, the MatLab R© command

canon was used to obtain the matrices A, B, and C in the modal block-diagonal state

space form (matrices Am, Bm, and Cm, respectively). The advantages of time and

modal domains are combined by inputting time-domain data measured by 1, 2, . . . or

N sensors available into the MSO. The measured vibration responses are used by the

MSO to determine temporal displacement and velocity vectors associated with the first,

second, third, . . . , nth vibration mode considered in the modal model of the system.

Figure 3.2 shows an example where 2 sensors (N = 2; sensors y1(t) and y2(t)) are

used to measure the vibration responses of a rotating machine. Four vibration modes

are considered in the rotor modal model (n = 4). Consequently, Am is a 8x8 matrix

and Cm is a 2x8 matrix; the number 8 stands for the four modal displacements and

four modal velocities estimated by the MSO (see the vector zm(t) in Fig.3.2). The ma-

trix Bm (8x2) is not used in this application since the vibration responses y1(t) and

y2(t) are enough to obtain a satisfactory estimation. Thus, MSO is able to estimate

the temporal displacement associated with the first vibration mode zm1(t),the temporal

velocity associated with the first vibration mode żm1(t), the temporal displacement as-

sociated with the second vibration mode zm2(t), the temporal velocity associated with

the second vibration mode żm2(t), and so on, until the fourth mode, by following this

sequence. The time length of the estimated temporal modal vector is the same of the

time domain vibration responses measured on the rotating machine. The estimated

vibration responses ŷ1(t) and ŷ2(t) are compared with y1(t) and y2(t), respectively, to

evaluate if the MSO is working properly.
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independent and identically distributed sampled data drawn from a distribution with an

unknown density function. The shape of this function can be estimated by its kernel

density estimator, Samadani et al. (2015) as defined by Eq.(3.3).

f =
1

nh

n
∑

i=1

Ke

(

x− xi
h

)

(3.3)

where f is the estimated density function, h ≥ 0 is a smoothing parameter calling

bandwidth and Ke is the kernel function which satisfies the following requirements:

∫ +∞

−∞
Ke(s)ds = 1

Ke(−s) = Ke(s) ∀s

(3.4)

Thus, the damage index E presented in Fig.3.3 is calculated according to Eq.(3.5).

E =
‖fmu − fmh‖

‖fmh‖
100% (3.5)

where fmh and fmu are the estimated density functions associated with zmh(t) and

zmu(t), respectively.

The MSO is based on the association of the Luenberger state observer with fea-

tures derived from the modal domain. Equation 3.2 is equally valid for MSO, being

necessary only the state space matrices to be described in the modal domain. In this

case, the MSO estimates the modal states related to the points where, for instance, the

vibration responses of the shaft in the time domain were measured, Cavalini-Jr et al.

(2008). Consequently, it is expected more sensitive modal vibration responses with

respect to fault existence stemming from the application of the MSO technique.

3.5 Crack Modeling

For the crack detection method to be presented in this chapter, a crack is generated

on the FE model of the test rig presented on Chap.2. This changes Eq.2.1 by the

addition of a term which represents the force derived from the crack existence. The

new equation, considering the crack presence is given by Eq.3.6:

Mq̈+ [D+ ΩDg] q̇+Kq = W + Fu +∆Kq (3.6)
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where ∆Kq stands for the crack force, which is considered to be concentrated only at

the cracked element. All the other terms where previously presented in Chap.2.

For modeling the breathing behavior of transversal cracks, two of the most widely

used methods are the so-called Gasch’s, Gasch (1976) and Mayes’, Mayes and Davis

(1976) models. The model used in this study for simulating crack behavior is the one

proposed by Mayes, since it gives a more realistic crack behavior. However, before

entering in the details of this model, it is necessary to consider some background

information.

Basically, there are two types of cracks. The open and the breathing ones. Open

cracks are kept open during a shaft revolution and are usually artificially produced.

Real cracks are fatigue generated and present a breathing behavior when static loads

are higher than dynamic loads (weight dominance condition). This can be observed

especially for heavy horizontal rotors with low unbalance values. Breathing crack be-

havior produces one opening and one closure of the crack for each revolution of the

shaft. When the crack is facing down, it tends to open due to static loads; on the other

hand, when it is facing up, it tends to close. This behavior represents a dangerous

condition for the rotating machine since it favors crack propagation.

Both Mayes and Gasch methods do not consider stress nor strain distributions.

These methods do not correlate stiffness losses as a function of the crack depth. This

way, additional theories are needed for calculating the extra flexibility imposed by the

crack. In this study, linear fracture mechanics theory is applied to fulfill this gap. Ac-

cording to Cavalini-Jr (2013), some cases are not covered by this theory, such as very

deep cracks (much greater than half of the diameter), multiple cracks into a single

cross-section, not flat cracked cross-section and friction in the cracked area. Never-

theless, in the present work, none of these conditions occur and, according to Morais

(2010), linear fracture mechanics theory furnishes results accurate enough to be used

in rotating machines.

3.5.1 Additional flexibility due to the crack

The presence of a crack along a shaft produces a local decrease of the stiffness

(or an increase of the flexibility). Figure 3.4 presents a finite element with a central

transverse crack, of depth α.
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The matrix coefficients are shown below:

[l]c̄11 =
ER
1−µ2 c11 =

2
π

∫ ᾱx

0

∫ b̄

−b̄
x̄F 2

1
z̄
h̄x
dx̄dz̄

c̄15 =
ER2

1−µ2 c15 =
8
π

∫ ᾱx

0

∫ b̄

−b̄
z̄
√

(1− x̄2)F1
z̄
h̄x
F2

z̄
h̄x
dx̄dz̄

c̄16 =
ER2

1−µ2 c16 =
4
π

∫ ᾱx

0

∫ b̄

−b̄
x̄z̄F 2

1
z̄
h̄x
dx̄dz̄

c̄22 =
ER
1−µ2 c22 =

2
π

∫ ᾱx

0

∫ b̄

−b̄
z̄F 2

III
z̄
h̄x
dx̄dz̄

c̄24 =
ER2

1−µ2 c24 =
4
π

∫ ᾱx

0

∫ b̄

−b̄

√

(1− x̄2)z̄F 2
III

z̄
h̄x
dx̄dz̄

c̄33 =
ER
1−µ2 c33 =

2
π

∫ ᾱx

0

∫ b̄

−b̄
z̄F 2

II
z̄
h̄x
dx̄dz̄

c̄34 =
ER2

1−µ2 c34 =
4
π

∫ ᾱx

0

∫ b̄

−b̄
x̄z̄F 2

II
z̄
h̄x
dx̄dz̄

c̄44 =
ER3

1−µ2 c44 =
8
π

∫ ᾱx

0

∫ b̄

−b̄
x̄2z̄F 2

II
z̄
h̄x

+ (1 + ν)(1− x̄2)z̄F 2
III

z̄
h̄x
dx̄dz̄

c̄55 =
ER3

1−µ2 c55 =
32
π

∫ ᾱx

0

∫ b̄

−b̄
z̄(1− x̄2)F 2

2
z̄
h̄x
dx̄dz̄

c̄56 =
ER3

1−µ2 c56 =
32
π

∫ ᾱx

0

∫ b̄

−b̄
x̄z̄

√

(1− x̄2)F1
z̄
h̄x
F2

z̄
h̄x
dx̄dz̄

c̄66 =
ER3

1−µ2 c66 =
16
π

∫ ᾱx

0

∫ b̄

−b̄
x̄2z̄F 2

1
z̄
h̄x
dx̄dz̄

(3.9)

where x̄ = x
R

, z̄ = z
R

, h̄x = hx

R
, b̄ = b

R
and ᾱx = αx

R
.

The integral limits in Eq. 3.9 are described in Papadopoulos (2004). The crack has

the limits −b and b in the X direction, while having limits 0 and αx in the Z direction,

according to Fig.3.4(b). Geometrically, b can be defined as:

b =
√

R2 − (R− α)2 (3.10)

Also, b can be written as it can be shown on its dimensionless form:

b̄ =
√

1− (1− ᾱ)2 (3.11)
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The height hx can be defined by the following relation:

hx = 2
√
R2 − x2 (3.12)

while its dimensionless form can be written as:

h̄x = 2
√
1− x̄2 (3.13)

The crack superior limit in the Z direction, for each x value, can be calculated

according to:

αx =
hx
2

− (R− α) =
√
R2 − x2 − (R− α) (3.14)

Finally, this term in its dimensionless form can be written as:

ᾱx =
h̄x
2R

− (1− α

R
) =

√
1− x2 − (1− ᾱ) (3.15)

More details are not furnished in this dissertation. For the interested reader, more

information can be found in Cavalini-Jr (2013); Papadopoulos (2004); Anderson (2005).

3.5.2 Mayes Model

The Mayes model, Mayes and Davis (1976), considers the crack transition from fully

open to fully closed in a progressive way, being described by a cosine function. Also,

this model is valid only when the weight dominance condition is satisfied. The use of a

cosine function in this model represents a simplification since it converts the nonlinear

equations of motion to linear equations with time-varying coefficients, Friswell et al.

(2010).

Two coordinate frames are necessary to derive the equations of motion of the

cracked shaft, namely OXZ and Oηξ, as presented in Fig.3.5. The former reference

frame is fixed in space and the second one rotates according to the shaft position

(θ = Ωt; where θ is the angular position of the shaft and t is the time).
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(a) (b)

Figure 3.6: Stiffness variations considering the rotating frames ξ and η, according to

the Mayes model (—) α
D
= 0.20 (—) α

D
= 0.35 (—) α

D
= 0.50. a) kξM ; b) kηM

In the matricial form, the stiffness of the cracked shaft in rotating coordinates (kRMayes)

is given by:

kRMayes =





kMξ + kDξC1 0

0 kMη + kDηC1



 (3.17)

where kMξ = (ko + kxi)/2, kMη = (ko + kη)/2, kDξ = (ko − kxi)/2, and kDη = (ko − kη)/2.

The stiffness of the cracked shaft in fixed coordinates (kFMayes) is determined by

using the following transformation:

kFMayes =





C1 S1

−S1 C1





T

kRMayes





C1 S1

−S1 C1



 =





kFMayes(11) kFMayes(12)

kFMayes(21) kFMayes(22)



 (3.18)

where Si = sin(iθ) and Ci = cos(iθ), with i = 1, 2, . . . , n. The terms of kFMayes are

presented in Eq.(3.19).

[l]kFMayes(11) =
1
2
(kMξ − kMη) +

1
4
(3kDξ − kDη)C1 +

1
4
(kξ − kη)C2 − 1

8
(kξ − kη)C3

kFMayes(12) =
1
4
(kDξ − kDη)S1 +

1
2
(kMξ − kMη)S2 +

1
4
(kDξ − kDη)S3

kFMayes(22) =
1
2
(kMξ + kMη) +

1
4
(kDξ − 3kDη)C1 − 1

4
(kξ − kη)C2 − 1

8
(kξ − kη)C3

(3.19)

Figure 3.7 presents the stiffness variations of a cracked shaft element, according to the

vertical and horizontal fixed frame directions.
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(a) (b) (c)

Figure 3.7: Stiffness behaviour in fixed coordinates (— α/D = 0.20; — α/D = 0.35; —

α/D = 0.50; α stands for the crack depth and D is the shaft diameter).

The stiffness matrix of a shaft presenting a transverse crack KC (a 8x8 matrix in

agreement with the element shown in Fig.3.2) is determined by including the terms

kFMayes(11) and kFMayes(22) of Eq.(3.19) into Eq.(3.20) and Eq.(3.21), according to Fir-

swell and Penny (2002).

KCXY =
12EIY

L3 (1 + ϑY )

















−1 0

L −1

1 0

0 1





















kFMayes(11)
L
2

L
2

(4+ϑY )
12

L2









−1 −L 1 0

0 −1 0 1



 (3.20)

KCY Z =
12EIY

L3 (1 + ϑY )

















−1 0

−L −1

1 0

0 1





















kFMayes(22) −L
2

−L
2

(4+ϑY )
12

L2









−1 −L 1 0

0 −1 0 1



 (3.21)

where IY is the inertia moment with respect to the Y axis and ϑY is a constant that

takes into account the shear effect of the Timoshenko beam FE. The stiffness matrix

KC is clearly a combination of the matrices shown in Eq.(3.20) and Eq.(3.21).

It is worth mentioning that kFMayes(12) (see Eq.(3.19)) is disregarded in Eq.(3.20)

and Eq.(3.21) since it is much smaller than the stiffness along the X and Z directions,

Cavalini-Jr. et al. (2016), Firswell and Penny (2002). Figure 3.7 shows stiffness terms

kFMayes(11), kFMayes(22), and kFMayes(12) considering cracks of different depths present

in a circular shaft cross-section. Note that the term kFMayes(12) is well below the direct

ones.
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3.6 Numerical Results

This section shows the numerical results obtained by using the proposed MSO ap-

proach. In this case, two different fault conditions are considered, namely the breathing

crack and the open crack. As mentioned, the breathing behavior is modeled by follow-

ing the so-called Mayes approach, Mayes and Davis (1976), in which the crack tran-

sition from fully open to fully closed is described by a cosine function. Differently, the

open crack behavior considers the crack as fully open during the shaft rotation. Both

crack behaviors can be observed in industrial rotating machines. For instance, breath-

ing cracks are found in horizontal shafts, while open cracks are commonly detected in

vertical shafts.

Figure 3.8 presents the time domain vibration responses of the healthy rotor FE

model obtained along the X and Z directions of the nodes #12 and #29. The rotating

machine is operating at 900 rev/min, and an unbalance of 6.375x10 − 4 kgm/0o is

applied to the disc D1.

(a) (b)

(c) (d)

Figure 3.8: Vibration responses of the healthy rotor (––) and the associated signals

estimated by using the MSO (....): (a) sensor S12X ; (b) sensor S12Z ; (c) sensor S29X ; (d)

sensor S29Z .

Figure 3.9 presents the associated time-domain vibration responses by considering
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the rotor with a breathing crack with 50% depth at the element #22 of the FE model (see

Fig.2.1(b)). The vibration responses obtained by considering an open crack with 50%

depth at the element #22 are depicted in Fig.3.10. The associated vibration responses

estimated by using the MSO are also presented in this figure for comparison purposes.

(a) (b)

(c) (d)

Figure 3.9: Vibration responses of the rotor with a breathing crack (––) and the asso-

ciated signals estimated by using the MSO (....): (a) sensor S12X ; (b) sensor S12Z ; (c)

sensor S29X ; (d) sensor S29Z .
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(a) (b)

(c) (d)

Figure 3.10: Vibration responses of the rotor with an open crack (––) and the associ-

ated signals estimated by using the MSO (....): (a) sensor S12X ; (b) sensor S12Z ; (c)

sensor S29X ; (d) sensor S29Z .

Note that the best estimation was obtained by using the vibration responses of the

healthy rotor. However, all the estimated vibration responses are considered in the

present work as being close enough to the reference signals.

Figure 3.11 compares the vibration responses for the healthy and faulty conditions

of the rotor, in which the vibration responses determined along the Z direction (sensors

S12Z and S29Z ; see Fig.3.11(b) and Fig.3.11(d), respectively) demonstrated to be more

sensitive to the fault presence. Additionally, it can be observed that the breathing and

open cracks affect the dynamic behavior of the rotating machine differently.

Equation 3.22 shows the obtained observer gains (Q and R) designed to approxi-

mate the estimated vibration responses to the rotor time domain vibration responses.

Q =

















4x104 0 0 0

0 4x104 0 0

0 0 4x104 0

0 0 0 4x104

















R =

















1x10−4 0 0 0

0 1x10−4 0 0

0 0 1x10−4 0

0 0 0 1x10−4

















(3.22)

in which Q and R are the observer gains associated with the Kalman filter method. It
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is worth mentioning that these gains were used to estimate the three shaft conditions

considered in the numerical analyses of the present work.

Figure 3.12 presents the modal displacements determined by using the MSO for

the healthy and faulty conditions of the rotor, which are associated with the results

presented in Figs.3.8, 3.9, and 3.10. Note that the responses associated with the third

vibration mode appear to be more affected by the fault existence. Additionally, the

modal displacements changed according to the fault condition considered (breathing

and open cracks).

(a) (b)

(c) (d)

Figure 3.11: Comparison of the vibration responses of the rotor for the healthy condition

(–––), shaft with the breathing crack (....), and shaft with open crack (– –): (a) sensor

S12X ; (b) sensor S12Z ; (c) sensor S29X ; (d) sensor S29Z .
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(a) (b)

(c) (d)

Figure 3.12: Modal displacements estimated by using the MSO for the healthy con-

dition (–––), shaft with the breathing crack (....), and shaft with open crack (– –): (a)

mode #1; (b) mode #2; (c) mode #3; (d) mode #4.

Similar behavior is observed in the estimated density functions of the time domain

vibration responses and modal displacements as presented in Figs.3.8 to 3.12. Figure

3.13 shows the estimated density functions of the time domain vibration responses

associated with the three rotor structural conditions as presented in Figs.3.8, 3.9, and

3.10 (see the solid blue lines). Figure 3.14 presents the estimated density functions of

the modal displacements shown in Fig. 3.12. The estimated modal displacements were

placed intentionally around zero as presented in Fig.3.12 to determine the associated

density functions of Fig.3.14.
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(a) (b)

(c) (d)

Figure 3.13: Estimated density functions of the time domain vibration responses for the

healthy condition (–––), shaft with the breathing crack (....), and shaft with open crack

(– –): (a) sensor S12x; (b) sensor S12z; (c) sensorS29x; (d) sensor S29z.

Concerning the breathing and open cracks, Tabs.3.1 and 3.2, respectively, present

the damage index E (see Eq.(3.5)) associated with the estimated density functions

shown in Figs.3.13 and 3.14. The damage index obtained by considering breathing and

open cracks with 10% and 30% depths in the element #22 of the rotor FE model are

also presented for comparison purposes. The obtained results demonstrate that the

modal displacements determined by using the MSO technique were more sensitive to

the crack existence than the time domain vibration responses (see the mean values in

Tabs.3.1 and 3.2). Note that the time domain vibration responses were more sensitive

than the modal displacements only for the 50% crack depth case (E = 7.63% for the

time domain and E = 5.86% for the modal domain).

Additionally, the biggest damage indexes were obtained from the modal displace-

ments of the vibration mode #3 (see Fig.2.19). This behavior is associated with the

changes observed in the estimated modal displacements of Fig.3.14(c). This result

could also be influenced by the crack severity and position (depth and location) and

the operating condition (unbalance distribution and rotation speed) of the rotating ma-
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chine. However, this is a first insight only. Further investigations are necessary to

correlate fault severity and operating conditions with the most affected vibration modes

of the rotor aiming at proving that the modal displacements are more sensitive to fault

existence than the time domain vibration responses.

(a) (b)

(c) (d)

Figure 3.14: Estimated density functions of the modal displacements for the healthy

condition (–––), shaft with the breathing crack (....), and shaft with open crack (– –): (a)

mode #1; (b) mode #2; (c) mode #3; (d) mode #4.
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Table 3.1: Damage indexes obtained by considering the shaft with breathing cracks.

Time domain vibration responses

Crack Sensor Sensor Sensor Sensor Mean

depth(%) S12X(%) S12Z(%) S29X(%) S29Z(%) value(%)

10 0.00 0.03 0.00 0.06 0.02

30 0.08 2.59 0.11 4.73 1.88

50 0.12 4.01 0.17 7.63 2.98

Modal displacements

Crack Mode Mode Mode Mode Mean

depth(%) #1(%) #2(%) #3(%) #4(%) value(%)

10 0.01 0.01 0.11 0.01 0.04

30 1.06 0.12 8.84 0.21 2.56

50 1.77 0.21 5.86 0.58 2.11

Further results are presented in the sequence, aiming at mapping the efficiency

of the MSO technique to perform crack detection for different rotor speeds and crack

positions. Concerning the breathing and open cracks, Tabs. 3.3 and 3.4, respectively,

present the damage index E (see Eq.3.5) associated with the estimated density func-

tions obtained for the rotor operating at 2000rev/min, 4000rev/min, and 6000rev/min.

In this case, breathing and open cracks with 10%, 20%, and 30% depths in the ele-

ment #22 of the rotor FE model are being considered. Note that the MSO technique

presented better results than time-domain sensors for crack detection at different rotor

speeds. Tables 3.5 and 3.6 present the results obtained for breathing and open cracks,

respectively, applied in the elements #15, #19, and #26 of the rotor FE model. In this

case, the rotating machine is operating at 4000rev/min.
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Table 3.2: Damage indexes obtained by considering the shaft with open cracks.

Time domain vibration responses

Crack Sensor Sensor Sensor Sensor Mean

depth(%) S12X(%) S12Z(%) S29X(%) S29Z(%) value(%)

10 0.00 0.06 0.01 0.14 0.05

30 0.17 4.66 0.34 16.88 5.51

50 0.23 7.63 0.48 29.32 9.41

Modal displacements

Crack Mode Mode Mode Mode Mean

depth(%) #1(%) #2(%) #3(%) #4(%) value(%)

10 0.01 0.01 0.29 0.01 0.08

30 1.03 0.27 61.08 0.35 15.68

50 1.76 0.45 180.85 1.07 46.03



Chapter 3. Fault Detection in Rotating Machinery by Using the Modal State Observer
Approach 49

Table 3.3: Damage indexes obtained by considering the shaft at different speeds with

breathing cracks.

Time domain vibration responses

Speed

(rev/min)

Crack

depth (%)

Sensor

S12X (%)

Sensor

S12Z (%)

Sensor

S29X (%)

Sensor

S29Z (%)

Mean

value (%)

2000

10 0.00 0.00 0.00 0.00 0.00

30 0.03 0.05 0.03 0.05 0.04

50 0.05 0.10 0.07 0.11 0.09

4000

10 0.01 0.00 0.00 0.00 0.00

30 0.29 0.21 0.14 0.10 0.18

50 0.51 0.40 0.19 0.14 0.31

6000

10 0.00 0.00 0.00 0.00 0.00

30 0.05 0.14 0.03 0.11 0.08

50 0.14 0.35 0.04 0.21 0.18

Modal displacements

Speed

(rev/min)

Crack

depth (%)

Mode

#1 (%)

Mode

#2 (%)

Mode

#3 (%)

Mode

#4 (%)

Mean

value (%)

2000

10 0.00 0.00 0.00 0.00 0.00

30 0.19 0.02 0.73 0.22 0.29

50 0.26 0.06 1.75 0.70 0.69

4000

10 0.00 0.00 0.38 0.00 0.10

30 0.05 0.03 9.82 0.22 2.53

50 0.14 0.06 10.58 0.53 2.83

6000

10 0.00 0.00 0.03 0.01 0.01

30 0.03 0.01 1.09 0.45 0.40

50 0.04 0.02 1.38 1.38 0.71
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Table 3.4: Damage indexes obtained by considering the shaft with open cracks.

Time domain vibration responses

Speed

(rev/min)

Crack

depth (%)

Sensor

S12XSS (%)

Sensor

S12Z (%)

Sensor

S29X (%)

Sensor

S29Z (%)

Mean

value (%)

2000

10 0.00 0.00 0.00 0.00 0.00

30 0.09 0.17 0.10 0.14 0.12

50 0.21 0.32 0.27 0.34 0.28

4000

10 0.02 0.01 0.02 0.01 0.02

30 1.18 0.85 0.66 0.35 0.76

50 2.11 1.47 0.83 0.50 1.23

6000

10 0.00 0.00 0.00 0.00 0.00

30 0.14 0.14 0.05 0.06 0.10

50 0.41 0.40 0.06 0.08 0.24

Modal displacements

Speed

(rev/min)

Crack

depth (%)

Mode

#1 (%)

Mode

#2 (%)

Mode

#3 (%)

Mode

#4 (%)

Mean

value (%)

2000

10 0.02 0.00 0.02 0.02 0.01

30 0.75 0.07 1.47 0.67 0.74

50 1.09 0.19 3.93 2.20 1.85

4000

10 0.00 0.00 1.30 0.01 0.33

30 0.18 0.10 10.90 0.82 3.00

50 0.43 0.28 11.43 1.79 3.48

6000

10 0.00 0.00 0.02 0.00 0.01

30 0.05 0.02 0.75 0.15 0.24

50 0.10 0.06 0.97 0.41 0.39

It can be observed that the efficiency of the MSO does not depend on the position

of the crack nor the rotor speed. It is worth mentioning that the third mode was once

more the most affected by the presence of the crack for all the scenarios. The results

presented in Tabs.3.3, 3.4, 3.5, and 3.6 shown similar results as given by Figs.3.8 to

3.14.
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3.7 Experimental Results

This section shows the experimental results obtained by using the proposed MSO

approach. In this case, two different fault conditions are considered, namely a breath-

ing crack and an open crack with 50% depth. The cracks are located between the discs

D1 and D2 of the rotating machine, corresponding to the element #22 of the FE model

(see Fig.2.1(b)). Unlike the numerical results, only the faulty conditions are analyzed

in this section. The results obtained from the breathing and open cracks are com-

pared, aiming at highlighting the ability of the MSO approach to detect variations on

the structural integrity of the rotating shaft. The open crack condition is characterized

by creating a small notch on the shaft by using a wire electrical discharge machine

(see Fig.3.15b). During the shaft rotation, the notch edges do not touch each other.

The breathing crack condition (see Fig.3.15a) was obtained by introducing a shim in

the crack area intending to simulate the breathing mechanism.
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Table 3.5: Damage indexes obtained by considering the shaft with breathing cracks.

Time domain vibration responses

Crack

location

Crack

depth (%)

Sensor

S12X (%)

Sensor

S12Z (%)

Sensor

S29X (%)

Sensor

S29Z (%)

Mean

value (%)

Element #15

10 0.00 0.00 0.00 0.00 0.00

30 0.10 0.06 0.12 0.06 0.09

50 0.13 0.08 0.15 0.11 0.12

Element #19

10 0.00 0.00 0.00 0.00 0.00

30 0.07 0.06 0.07 0.05 0.06

50 0.11 0.11 0.17 0.13 0.13

Element #26

10 0.01 0.01 0.01 0.00 0.01

30 0.48 0.37 0.28 0.17 0.32

50 0.75 0.62 0.35 0.23 0.48

Modal displacements

Crack

location

Crack

depth (%)

Mode

#1 (%)

Mode

#2 (%)

Mode

#3 (%)

Mode

#4 (%)

Mean

value (%)

Element #15

10 0.00 0.00 0.18 0.00 0.05

30 0.02 0.01 12.55 0.30 3.22

50 0.05 0.02 18.82 0.06 4.88

Element #19

10 0.00 0.00 0.12 0.00 0.30

30 0.07 0.02 7.46 0.05 1.90

50 0.17 0.06 12.01 0.12 3.09

Element #26

10 0.00 0.00 0.76 0.02 0.19

30 0.05 0.01 11.64 1.17 3.22

50 0.09 0.03 12.32 2.90 3.84

It is worth mentioning that the shaft of the rotor test rig was manufactured with the

notch presented in Fig.3.15b (Machinery Fault & Rotor Dynamics Simulator manufac-

tured by Spectra Quest Inc). Thus, the experimental FRFs used in the model updating

procedure were obtained with the shim placed in the shaft (see Fig.3.15a) to minimize

the influence of the crack existence on the measured vibration responses, aiming at
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simulating the healthy shaft condition.

Figure 3.16 presents the time domain vibration responses of the rotor with the

breathing crack. The signals were measured by using the sensors S12X , S12Z , S29X , and

S29Z with the rotating machine operating at 900rev/min. Figure 3.17 presents the as-

sociated time-domain vibration responses by considering the rotor with the open crack.

The associated vibration responses estimated by using the MSO are also presented

for comparison purposes. Note the experimental vibration responses of the rotor were

not well estimated by the MSO. There are some non-modeled dynamics, especially re-

lated to bow and misalignment present on the rotating machine. The results presented

in Fig.3.16 and 3.17 show the best possible fitting for experimental vibration responses

and MSO estimated signals. Additionally, a comparison among the experimental vi-

bration responses demonstrates that the breathing and open cracks lead to the similar

dynamic behavior of the rotating machine.
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Table 3.6: Damage indexes obtained by considering the shaft with open cracks.

Time domain vibration responses

Crack

location

Crack

depth (%)

Sensor

S12X (%)

Sensor

S12Z (%)

Sensor

S29X (%)

Sensor

S29Z (%)

Mean

value (%)

Element

#15

10 0.01 0.01 0.01 0.00 0.01

30 0.43 0.22 0.43 0.24 0.33

50 0.52 0.27 0.64 0.42 0.46

Element

#19

10 0.01 0.00 0.01 0.00 0.01

30 0.36 0.22 0.35 0.20 0.28

50 0.61 0.44 0.73 0.52 0.57

Element

#26

10 0.05 0.03 0.03 0.01 0.03

30 1.73 1.22 1.03 0.55 1.13

50 2.45 2.07 1.11 0.66 1.57

Modal displacements

Crack

location

Crack

depth (%)

Mode

#1 (%)

Mode

#2 (%)

Mode

#3 (%)

Mode

#4 (%)

Mean

value (%)

Element

#15

10 0.00 0.00 0.69 0.03 0.18

30 0.03 0.02 46.69 0.72 11.87

50 0.08 0.05 40.51 2.26 10.72

Element

#19

10 0.00 0.00 0.43 0.00 0.11

30 0.18 0.08 37.25 0.13 9.41

50 0.38 0.23 49.96 0.37 12.74

Element

#26

10 0.00 0.00 2.63 0.07 0.68

30 0.12 0.04 12.89 3.41 4.12

50 0.29 0.10 16.48 7.61 6.12
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(a) (b)

(c) (d)

Figure 3.17: Experimental vibration responses of the rotor with a open crack (––) and

the associated signals estimated by using the MSO (....): (a) sensor S12X ; (b) sensor

S12Z ; (c) sensor S29X ; (d) sensor S29Z .

Equation (3.23) shows the observer gains (Q and R) designed to approximate the

estimated vibration responses to the experimental data. These gains were used to

estimate the two shaft conditions considered in the experimental analyses.

Q =

















1x103 0 0 0

0 1x103 0 0

0 0 1x103 0

0 0 0 1x103

















R =

















5x10−5 0 0 0

0 5x10−5 0 0

0 0 5x10−5 0

0 0 0 5x10−5

















(3.23)

Figure 3.18 shows the modal displacements determined by using the MSO tech-

nique for the considered fault conditions of the rotor, which are associated with the

results presented in Fig. 3.17. Note that the responses associated with the first and

second vibration modes demonstrate to be more affected as the fault condition changes

(breathing to open crack condition).
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(a) (b)

(c) (d)

Figure 3.18: Experimental modal displacements estimated by using the MSO for the

shaft with an open crack (––) and the associated signals estimated by using the MSO

(....): (a) mode #1; (b) mode #2; (c) mode #3; (d) mode #4.

Similar behavior is observed in the estimated density functions of the time domain

vibration responses and modal displacements presented in Figs.3.16 to 3.18. Figure

3.19 shows the estimated density functions of the time domain vibration responses

associated with the two rotor structural conditions, as presented in Figs. 3.16 and 3.17

(see the solid blue lines). The estimated density functions of the modal displacements

shown in Fig.3.18 are depicted in Fig.3.20.

Table 3.7 presents the damage index E (see Eq. (3.5)) associated with the esti-

mated density functions presented in Figs.3.19 and 3.20. The obtained damage index

demonstrates that the modal displacements estimated by using the MSO approach

were more sensitive to fault variation than the time domain vibration responses (breath-

ing to open crack behaviour).
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(a) (b)

(c) (d)

Figure 3.19: Estimated density functions of the experimental time domain vibration

responses for the shaft with the breathing crack (––) and the shaft with the open crack

(....): (a) sensor S12X ; (b) sensor S12Z ; (c) sensor S29X ; (d) sensor S29Z .
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(a) (b)

(c) (d)

Figure 3.20: Estimated density functions of the experimental modal displacements for

the shaft with the breathing crack (––) and the shaft with the open crack (....): (a) mode

#1; (b) mode #2; (c) mode #3; (d) mode #4.

Table 3.7: Damage indexes obtained by considering the shaft with breathing and open

cracks.

Time domain vibration responses

Sensor S12X

(%)

Sensor S12Z

(%)

Sensor S29X

(%)

Sensor S29Z

(%)

Mean value

(%)

4.07 4.63 2.18 3.26 3.54

Modal displacements

Mode #1

(%)

Mode #2

(%)

Mode #3

(%)

Mode #4

(%)

Mean value

(%)

15.89 7.71 4.14 3.42 7.79

In Tab. 3.7, note that the maximum difference determined by using the modal dis-

placements was 15.89% (first vibration mode), while a difference of 4.63% was ob-

tained by using the sensor S12Z .
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As mentioned, the biggest damage index was obtained for the first modal displace-

ment. This result indicates that the first vibration mode was more affected by the fault

variation (breathing to open crack behavior) as compared with the other modes. In the

numerical results, however, even when the crack location is similar, the third mode was

the most affected. The healthy rotor and the rotor corresponding to various breathing

crack conditions were compared by performing numerical simulations. It was con-

cluded that different fault conditions would affect the rotor modes differently.

It is worth mentioning that the considered rotation speed (900rev/min) does not

have any relation with the critical speeds of the rotating machine. It is known that

multiples and submultiples of critical speeds make easier the crack detection process.

Consequently, the MSO technique can be applied without the necessity of running the

rotor out of its operational speed.

3.8 Partial Conclusions

In the present contribution, the MSO approach was evaluated both numerically and

experimentally for crack detection purposes as applied to a rotating machine. The ob-

tained results demonstrate that the estimated modal displacements are more sensitive

to the fault existence than the time domain vibration responses of the rotor (see the

mean values in Tabs. 3.1 to 3.7). The method is able to estimate modal displacements

and velocities associated with the time domain vibration responses measured directly

on the rotor. Thus, more sensitive modal information was obtained by using the MSO

technique. Sensitive modal displacements were obtained since the MSO is fed with the

model of the healthy rotating machine and its time-domain vibration responses. Con-

sequently, the MSO behaves as a filter of states highlighting the difference between

the shaft with and without a crack.

The healthy and faulty shaft conditions were considered in the numerical simula-

tions. Breathing and open cracks with 10%, 30%, and 50% depth at the elements

#15, #19, #22, and #26 of the FE model were analyzed separately. Various rotat-

ing speeds were considered, namely 900 rev/min, 2000 rev/min, 4000 rev/min, and

6000 rev/min. The time-domain vibration responses were more sensitive than the

modal displacements only for the case in which a breathing crack with 50% depth was
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considered. In this case, the vibration mode #3 was the most affected by the fault. This

result can be associated with the crack severity (depth and location) and the operating

condition (unbalance distribution and rotation speed) of the rotating machine.

The breathing crack and open crack conditions were considered in the experimental

analysis. The results demonstrate that the modal displacements estimated by using the

MSO approach were more sensitive to fault variation than the time domain vibration

responses (breathing to open crack behavior). Differently from the numerical results,

the first vibration mode was the most affected by the fault condition. However, in the

numerical results, the healthy and breathing crack conditions were compared (the crack

location was similar). Consequently, different faults affected the rotor modes differently.

The estimated vibration responses by using the MSO do not match perfectly the

experimental measurements. There are some non-modeled dynamics, especially re-

lated to bow and misalignment that are not taken into account in the model. Thus, a

difference is expected between the numerical and experimental results using the pro-

posed approach in terms of the most affected mode shapes by the crack existence.

Further investigations comparing numerical and experimental results are necessary to

correlate fault severity and operating conditions to the most affected vibration modes

of the rotating machine.

As mentioned, this chapter was dedicated to proving that the modal displacements

can be more sensitive to fault existence than the time domain vibration responses.

The MSO technique demonstrated to be a simple and efficient alternative tool for fault

detection in rotordynamics. The proposed methodology can be used to detect other

types of faults than cracks. However, the MSO alone is not able to recognize which type

of fault is found in the system since different malfunctions affecting rotating machines

can lead to similar dynamic responses (e.g., crack and misalignment).



Chapter 4

Crack Control in Rotating Machinery

4.1 Introduction

As previously stated, this Ph.D. dissertation is divided in two main parts. In the first

one, which is composed of Chap. 2 and Chap. 3, the problem of crack detection was

addressed.

The second part of this research work takes place from now on. After detecting the

existence of a transverse crack along a rotating shaft, it is necessary to control the size

of this crack, searching for decreasing its effects on the rotating machine, avoiding a

complete failure of the structure.

In this chapter, the term crack control is explained; then, the test rig devoted to crack

control is presented together with its main components; in the sequence, the equation

of motion of the rotor is developed by using the FE method. Finally, a numerical up-

dating procedure is applied, on both time and frequency domains, for guaranteeing the

numerical responses to be close to the dynamic responses from the experimental test

rig.

The term "crack control" is used in this dissertation aiming at controlling the ampli-

tudes of the 2X and 3X super-harmonics, which are crack signatures. It means that

when a crack is generated in a rotating shaft, its frequency spectrum presents an in-

crease in the 2X and 3X super-harmonics, according to Bachschmid et al. (2000). In

this way, by suppressing the levels of 2X and 3X super-harmonics, it is expected that

the crack effects on the structure are also decreased.
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4.2 Rotor Test Rig for Crack Control

In this chapter, the second test rig, which is devoted to crack control is presented.

This test rig is used for generating all the numerical and experimental data concerning

crack control in the present work.

This test rig is also located at the Laboratory of Mechanical Structures (LMEst), of

the Federal University of Uberlândia (UFU) and was designed by Cavalini-Jr (2013)

and Koroishi (2013) for their Ph.D. research works. For the present dissertation, some

hardware updates were applied to this test rig, which are commented later in this chap-

ter.

This chapter maintains the same structure of Chap.2. First the crack control test

rig is presented, and its main components are detailed. Then, the equation of motion

for this test rig is presented in order to build its corresponding FE numerical model.

Finally, an updating procedure takes place for converging the numerical results of the

FE model to the experimental results collected from the test rig.

Figure 4.1 presents the test rig for performing crack control. A new FE numerical

model, considering 31 elements is built for representing the dynamic behavior of this

new test rig.
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In order to apply the required electrical currents to each EMA, four current amplifiers

are used. They are manufactured by Maxon R©, model ADS50/10201583, being able to

furnish up to 10A. The four sets of EMAs and current amplifiers impose some phase

delays to the system. In this way, it is important to know these delays and to comensate

them in the FE code, so that the numerical control responses fit to the experimental

test rig, satisfactorily. A dynamic characterization of the full control system, the current

amplifiers and the EMAs are also presented in Chap.5.

More details about this test rig components can be found in Cavalini-Jr (2013) and

Koroishi (2013).

Next section presents the FE numerical model as well as its updating procedure,

based on the time and frequency domain signals, as collected from the experimental

crack control test rig.

4.3 Rotor Equation of Motion for Crack Control

The same equation of motion considered for the crack detection numerical model is

used for this new test rig. The only difference is that a new force FEMA has to be taken

into account. It represents the control forces, fixed in space, applied by the EMAs,

which are calculated according to the procedure presented in Chap.5.

All the other matrices that appear in Eq.4.1 were previously described in Chap.2.

Note that a gain k multiplies the electromagnetic force vector. This gain is responsible

for changing the position of poles and zeros of the system, as explained in Chap.6.

Mq̈+ [D+ ΩDg] q̇+Kq = W + Fu + kFEMA +∆Kq (4.1)

The full procedure for generating each system matrix is detailed in Lallane and

Ferraris (1997). The same finite element, with 2 nodes and 4 degrees of freedom per

node used again in the formulation of this new model.

Moreover, the same system reduction, namely the pseudo-modal approach, is used

again for modeling the crack control test rig. The Pseudo-Modal method reduces the

order of the numerical model from 124x124 to 12x12 since it considers only the influence

of the first 12 natural modes. The Hankel singular values distribution presented in

Chap. 2 is applied once more in the present chapter.
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4.4 FE Model Updating

The updating procedure described in Chap. 2 takes place again in the present

chapter in order to validate and update the numerical model. The same optimization

routine is applied, considering the particular features of the crack control test rig.

A new speed range is considered for adjusting the crack control numerical model.

In this way, the numerical model behaves dinamically in a similar manner of the exper-

imental test rig, in the considered speed range.

4.4.1 Frequency Domain Updating

The same heuristic code, based on Differential Evolution Storn and Price (1995) is

applied to determine the optimal parameters that solve an inverse problem regarding

the model updating of the numerical model with respect to the experimental responses.

The same optimization parameters are considered for this new updating procedure

(initial population counting with 90 individuals, difference amplification among the indi-

viduals of FDE = 0.8, mutation ratio of CRDE = 0.5, as recommended by Viana et al.

(2007)). Moreover, the experimental modal analysis is also similar to the one presented

in Chap.2.

Eight FRFs are measured from the experimental test rig at rest, and used to feed

the above mentioned heuristic code. The new frequency range was chosen to be from

0 to 100Hz, with constant steps of 0.25Hz. This range is chosen because crack control

tests are performed below the first critical speed (24.56Hz) and harmonics up to 3X

are evaluated.

Table 4.1 summarizes the directions of all the collected FRFs.
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Table 4.1: Direction and definition of each FRF collected.

Direction of Excitation Direction of Response FRF Name

D1 vertical S16 vertical FRF #1

D2 vertical S16 vertical FRF #2

D1 horizontal S16 horizontal FRF #3

D2 horizontal S16 horizontal FRF #4

D1 vertical S22 vertical FRF #5

D2 vertical S22 vertical FRF #6

D1 horizontal S22 horizontal FRF #7

D2 horizontal S22 horizontal FRF #8

As in Chap.2, 9 parameters were optimized, namely the stiffness along the vertical

and horizontal directions of the first and second bearing Kxxb1
, Kzzb1 , Kxxb2

and Kzzb2;

the modal damping factors of the first four natural modes ξ1, ξ2, ξ3 and ξ4 and the tor-

sional stiffness, as caused by the existence of the coupling between the shaft and the

electric motor Ktcoup .

Table 4.2 presents all the parameters to be optimized as well as their new expected

ranges.
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Table 4.2: Design space of the optimization problem. k [N/m], ξ [dimensionless] and

ktcoup [Nm/rad]

Variables
Design Space

Upper Bound Lower Bound

Bearing 1
kxxb1

5x105 5x106

kzzb1 5x105 1x107

Bearing 2
kxxb2

5x107 1x109

kzzb2 5x107 1x109

Modal Damping

ξ1 1x10−2 1x10−5

ξ2 1x10−2 1x10−5

ξ3 1x10−2 1x10−5

ξ4 1x10−2 1x10−5

Torsional Stiffness ktcoup 0 1x103

Again, the optimization is performed 10 times, and each time the optimization pro-

cess is restarted, a different population is generated. In this way, the solution present-

ing the smallest fitness function value is expected to reach the global minimum. Table

4.3 presents the result of the 10 optimization processes and their corresponding values

of fitness functions.
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Table 4.3: Outputs of all the optimization processes: k [N/m], ξ [dimensionless] and ktcoup [Nm/rad].

Process 1 2 3 4 5 6 7 8 9 10

Fitness 1.5971 1.6102 1.6001 1.6024 1.6002 1.6147 1.6186 1.5953 1.5959 1.6017

kxxb1
7.551x105 8.274x105 6.848x105 8.554x105 5.551x105 8.237x105 7.536x105 8.551x105 8.552x105 7.747x105

kzzb1 3.198x107 6.197x107 4.199x107 5.197x107 6.248x107 4.199x107 6.198x107 5.203x107 5.199x106 6.209x106

kxxb2
1.559x106 2.006x106 3.459x106 1.896x106 2.226x106 9.322x105 3.392x106 1.198x106 1.2966 3.271x106

kzzb2 7.697x108 7.411x108 4.429x108 8.521x108 5.915x108 6.594x108 5.451x108 7.023x108 7.157x108 5.715x108

ξ1 0.018 0.020 0.005 0.008 0.016 0.028 0.005 0.009 0.008 0.014

ξ2 0.058 0.028 0.157 0.059 0.025 0.164 0.068 0.099 0.102 0.247

ξ3 0.011 0.005 0.024 0.014 0.008 0.003 0.036 0.009 0.008 0.004

ξ4 0.024 0.017 0.055 0.012 0.022 0.087 0.055 0.030 0.027 0.014

ktcoup 738.1 658.9 532.0 895.2 589.4 638.9 501.6 554.4 557.5 438.4
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The global minimum is the one presented in column 8 of table 4.3. This is the best

solution encountered by the optimizer.

In the sequence, the frequency curve adjustment results are presented. These

results compare the experimental test rig FRFs and the ones obtained by the numerical

optimization code, which considers the optimized parameters.

Figure 4.11: FRF#1.

Figure 4.12: FRF#2.
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Figure 4.13: FRF#3.

Figure 4.14: FRF#4.

Figure 4.15: FRF#5.
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Figure 4.16: FRF#6.

Figure 4.17: FRF#7.

Figure 4.18: FRF#8.

The experimental and numerical curves are well fitted, which validates the numeri-
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Figure 4.20 presents the lateral vibrations caused by an unbalance of 5.11x10−4

Kgm, for the rotor operating at 1200 rev/min.

(a) (b) (c)

(d) (e) (f)

Figure 4.20: Results of model updating for the lateral vibrations in the time domain:

(—) Experimental; (—) Numerical: (a) S16x ; (b) S16z ; (c) orbit S16x Vs. S16z ; (d) S22x ; (e)

S22z ; (f) orbit S22x Vs. S22z ;

The time-domain comparison for the numerical FE model and the experimental test

rig presents good results.

Moreover, the accuracy of this FE model is crucial for the good quality of the crack

control techniques to be tested in the next chapter. Any test is performed first for the

numerical model and then on the test rig.



Chapter 5

Electromagnetic Actuators (EMAs)

5.1 Introduction

In the present chapter, a brief background on electromagnetism is exposed, con-

cerning the control action of the EMAs. Each EMA is able to apply only attraction

forces, which are modeled in this chapter. These electromagnetic force values depend

on the coil geometry, air gap between the coil parts, winding number, and rotor lateral

vibrations, which continuously alter air the gap values.

Current amplifiers are necessary to produce the good control currents to act on the

EMAs. However, these amplifiers generate important phase delays between control

command and control action. For this purpose, a dynamic characterization of the full

control system, which includes EMAs, current amplifiers, signal conditioners, and data

acquisition system is presented.

This dynamic characterization is performed by including the same behavior of the

phase delay in the numerical code. In this way, the same control responses for both

the numerical code and the test rig are expected.

5.2 EMA Details

Each EMA is composed basically by a ferromagnetic body, which can be divided in

two parts, according to Morais et al. (2013). The first one is the core, which is an (E)

shaped body and receives the induction coil. The second one is the so-called target,

which is an (I) shaped body, fixed to a roller bearing supporting the shaft, enabling the
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avoiding current losses (Foucault currents). According to Morais et al. (2013), the

quality of the ferromagnetic circuit alloy is considered as being high, and the nominal

air gap between the stator and the beam is small enough so that the magnetic loss is

considered negligible.

The wire used to compose the induction coil of each EMA is a standard cooper

wire AWG24, such as the one used by Koroishi (2013). This wire characteristics are

presented in Tab. 5.2.

Table 5.2: AWG24 copper wire features.

Diameter 0.511 mm

Area 0.205 mm2

Electrical resistance (at 20o C) 0.0842 Ohm/m

Admissible current 3.5 A

5.3 Brief background on Electromagnetism

According to Serqay and Jewett-Jr. (2008), a coil is a set of electric wire winding,

which is capable of producing a fairly uniform magnetic field around its volume, in the

presence of an electric current. The electric field uniformity increases as the wire length

increases. The ideal coil would present a perfectly uniform magnetic field on its interior

while presenting zero values on its outside. The actuation lines of an electromagnetic

field present a similar behavior, compared to the actuation lines of a magnetic bar, as

depicted in Fig.5.2.
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each part of the core needs to be calculated, as follows.

ℜ8−1 = ℜ2−3 =
b−a

2

µrµoaf

ℜ1−2 = ℜ5−6 =
c−a

µrµoaf

ℜ3−4 = ℜ7−8 =
e

µoaf

ℜ4−5 = ℜ6−7 =
d−a

2

µrµoaf

(5.2)

where a, b, c, d, e, f are geometric parameters, as presented in Fig.5.1; µo is the vacuum

magnetic permeability (constant, as shown in Tab. 5.1); µr is the relative magnetic

permeability of each EMA. It can be obtained by an optimization process, as done by

Koroishi (2013). Since the EMAs used in this Ph.D. dissertation are the same as those

used in the above cited reference, the same values of relative magnetic permeability

are considered. For the interested reader, details about the optimization problem are

described in the reference.

The magnetic flux present on each lateral branch can now be obtained as:

ψ

2
=

NI
∑8

i=1 ℜi

=
NIµoαf

2e+ 2b+2c+2d−4a
µr

(5.3)

The total magnetic flux, induced in the N windings is written as:

Ψ = Nψ = LI (5.4)

where L is the magnetic inductance.

Substituting Eq. 5.3 into Eq. 5.4, the EMA magnetic inductance is obtained:

L =
N2µoαf

e+ b+c+d−2α
µr

(5.5)

where α = 2a represents the width of the central branch.

Then, the electromagnetic attraction force, produced among two ferromagnetic ma-

terials is derived as follows:

Fema =
∂Wmag

∂xm
(5.6)

where Wmag is the magnetic energy, which is calculated as:
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The external source is used to feed the current amplifier, which receives a sinusoidal

voltage signal from the acquisition board; then, this signal is converted to a sinusoidal

current signal that passes through the EMA.

The attraction force produced by the EMA is measured by the force transducer.

The objective is to verify phase delays between the voltage command (applied by the

acquisition board) and the actuation force (measured by the force transducer). This

is important for two reasons: 1) for modeling the behavior of the full control system

so that the numerical code generates results similar to the experimental crack control

test rig (phase correction); 2) for guaranteeing similar force amplitudes along the used

frequency range (force amplitude correction).

Figure 5.8 presents the Bode Diagram of the full control system, for a sine wave

generated with 1.5 volt of amplitude and 3.0 volts of bias. Other values of amplitude

and bias were tested, but similar behavior was observed. Also, it is worth mentioning

that this same characterization was performed for each of the four EMAs used in the

test rig. However, since the results are quite similar, only the results corresponding to

one of the EMAs is presented.

For Fig.5.8, the voltage signal produced by the acquisition board is considered as

input; as output, the mechanical force signal read by the force transducer is consid-

ered. Both signals are converted to the frequency domain by using the so-called Dis-

crete Fast Fourier Transform (DFFT). Then, the Bode Diagram is built considering the

corresponding Frequency Response Function (FRF).

A block diagram scheme is presented in Fig. 5.7 to give a better understanding of

the Bode diagrams to be shown in Fig. 5.8, 5.9 and 5.10.











Chapter 6

Crack Control in Rotating Machinery

by the use of the PID technique

6.1 Introduction

In this chapter, some background on control theory, applied to this Ph.D. dissertation

is presented. Also, a discussion about controllability and observability is addressed.

Moreover, the open-loop and the closed-loop plants are presented.

The Proportional-Integrative-Derivative (PID) controller is also presented. Besides,

details are given regarding the determination of the control currents as based on the

lateral vibrations of the rotor.

After that, some details about the PID design are furnished, and two control laws

are proposed and compared, concerning crack control efficiency.

The first control law considers the control currents based on the shaft vibration

signal. The second control law is derived by applying a bandpass filter in the 2X and

3X super-harmonics frequency range. This is done for concentrating the control action

over the crack signatures.

Finally, the results of both control laws are compared in the last section of this

chapter, and some comments are made.
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The observability matrix of a given dynamic system is composed by:

Mo =

















C

CA

...

CA2n−1

















(6.1)

where n is the number of state variables of the system.

In this way, in order to the system to be called observable, Eq.(6.2) needs to hold.

rank(Mo) = 2n (6.2)

Regarding the numerical model of the rotating machine considered in this research

work, Eq.(6.2) holds, consequently this system is called observable.

Analogously, a LTI discrete system is called completely controllable if it is possible

to modify the initial state x(to) to any final state x(t), during any time period in a finite

time interval to ≤ t ≤ tf , according to Meirovitch (1990).

The controllability of a system is determined by the rank analysis of the controllabil-

ity matrix:

Mc =
[

B AB · · · A2n−1B

]

(6.3)

Analogously, in order to the system to be called controllable, Eq.(6.4) needs to hold.

rank(Mc) = 2n (6.4)

Again, for the rotating machine considered in the present dissertation, Eq.(6.4)

holds, consequently this system is also called controllable.

6.2.2 Physical representation of controllability and observability

Another way to check system controllability and observability is by plotting the mode

shapes of the rotating machine. Therefore, by the sensors and actuators position,

relative to the nodes of the system mode shapes, the controllability, and observability

of the system are verified.

For this purpose, Fig. 6.2 is presented.
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(a) (b)

Figure 6.2: Normalized mode shapes along the X and Z direction: (a) (—) first; (—)

third; (b) (—) second; (—) fourth. Sensor positions are marked as * and the electro-

magnetic actuator position is marked as o.

Physically, the dynamic system is called observable if there is an offset between the

nodes of the mode shapes and the position of the sensors. In this way, by Fig. 6.2, it is

noticed that this system is observable.

Moreover, the dynamic system is called controllable if there is an offset between

the nodes of the mode shapes and the position of the system actuators. So, by the

analysis of Fig. 6.2, it is observed that the system is also controllable.

6.3 The Open-loop System

The rotating machine used to obtain the results presented in this chapter was pre-

viously described in Chap.4. Figure 6.3 depicts the scheme of the open-loop system

for this rotating machine. It is worth mentioning that the open-loop system contains not

only the rotor but also its current amplifier, which imposes an important phase delay,

the EMAs, and the sensors. In this way, the transfer function of each component is

considered and combined with the others. The command series in Matlab R© was used

for this purpose.
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all numerical and experimental tests. This value was found to be small enough for not

increasing the EMAs temperature and high enough for keeping them energized during

operation.

6.6 Design of the PD Control Laws

Two different control laws are applied, aiming at obtaining the best PD control ac-

tion, namely:

1. PD without filter;

2. PD with a bandpass filter for 2X and 3X frequencies (crack signatures).

The first control law, based on the PID without filter produces currents with the same

harmonic information of the displacement sensors. On the other hand, the second

control law, based on the PID with a bandpass filter produces currents containing only

the 2X and 3X information from the displacement signal.

A bandpass filter, producing control currents with only 2X and 3X information was

designed to focus on the control action regarding the crack signatures. This proce-

dure decreases the breathing mechanism, which is responsible for accelerating crack

propagation.

Both control laws are compared for three different operation speeds:

1. Ω = Ωcrit/3 = 493 rev/min;

2. Ω = Ωcrit/2 = 737 rev/min;

3. Ω = Ωoper = 900 rev/min.

The first and second speeds were chosen for highlighting 3X and 2X super-harmonics,

respectively. The third speed was considered for making the control action more diffi-

cult since the super-harmonic levels for this speed are much lower as compared with

the two other rotation speeds considered, i.e., it is not related to the critical speeds..

Finally, it is important to describe how the PD proportional and derivative gains are

obtained. The PD used in this dissertation is not robust. It is applied only for the

three mentioned speeds (for the steady-state condition). For each speed, the gain and
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phase margins are observed for calculating the possible values of KP and KD, so that

the system does not become unstable.

For this purpose, a white noise signal was applied to each EMA separately, while

the machine was operating at each of the mentioned constant speeds (493 rev/min,

737 rev/min, and 900 rev/min). Moreover, the displacement signals at node #16

were measured (S16X , and S16Z ).

In this way, the open-loop transfer function representing the real rotating machine

to be controlled is defined. After that, a PID controller was numerically applied to

the corresponding open-loop transfer function, and different KP and KD gains were

tentatively applied for checking gain and phase margins of the system.

Figure 6.8(a) presents the Root Locus of the open-loop transfer function for the rotor

operating at 900 rev/min (remember it is an inverse gain plant). Then, a numerical

PID controller without filter is applied to this transfer function, generating a closed-loop

plant, which is depicted by Fig. 6.8(b).
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(a)

(b)

Figure 6.8: Root Locus: (a) Open-loop plant, and (b) Closed-loop plant.

The transition stable-unstable occurs around a gain of 300. In this way, one expects

to be able to increase the PID proportional gain KP to about 200, before the system

becomes unstable.

This procedure was applied for having an initial idea of the values to be assigned
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to the PID gains. Fig. 6.8 depicts only the case of 900 rev/min for a PID without filter.

The same Root Locus study was performed for the three rotating speeds, for both PID

control laws.

6.7 PID Control: Numerical and Experimental Results

The results of the PID active controller are presented in this section for both numer-

ical and experimental applications. The numerical results are derived from the model

presented in Chap. 4. Moreover, the experimental results stem from the test rig also

presented in Chap. 4. Both responses are compared and discussed.

All the results presented consider an unbalance value of 4.26 × 10−4 Kgm/−90o

applied to the disc D1.

6.7.1 Results of the PID without Filter

a) Speed: Ω = Ωcrit/3

In this case, the best PID gains are presented in Tab. 6.1.

Table 6.1: PID gains for 493 rev/min, PID without filter.

KP KI KD

Numerical PID -100 0 40

Experimental PID -180 0 0.8

Regarding the numerical FE model, the only fault considered was the transverse

crack. For this reason, at the speed Ω = Ωcrit/3, it is expected from numerical sim-

ulation that the numerical orbit presents three loops, as depicted by Fig. 6.9(c). The

numerical control action was able to decrease the shaft lateral vibrations, as expected.
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(a) (b) (c)

Figure 6.9: 493 rev/min, PID without Filter. Numerical time domain shaft lateral vibra-

tions, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x

S16Z .

Concerning the numerical frequency response function, Fig. 6.10 indicates that

the controller was able to decrease the rotor amplitudes of vibration, especially in the

vertical direction. Notice that the 3X frequency is the most damped one since the

PID presents no filter and generates control currents similar to the displacement signal

(which has a significant 3X amplitude at one-third of the rotor first critical speed).

(a) (b)

Figure 6.10: 493 rev/min, PID without Filter. Numerical frequency domain shaft lateral

vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z .

Figure 6.11 presents the numerical simulations for the control currents, based on

the shaft displacements. The control currents required are quite small, being around

200 mA along the horizontal direction and 500 mA along the vertical direction.
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(a) (b)

Figure 6.11: 493 rev/min, PID without filter. Numerical simulation for control currents,

in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and

(—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

Figure 6.12 presents the experimental time responses. The uncontrolled orbits (red

curve) present magnitudes, that are close to the numerical ones. However, the orbits

do not present three inner loops, as the numerical ones, since its 3X super-harmonics

present much less energy than in the numerical case. It is possible that the crack found

in the test rig was not produced in the most interesting angular position for favouring

the super-harmonics.

(a) (b) (c)

Figure 6.12: 493 rev/min, PID without Filter. Time domain shaft lateral vibrations, in

µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z ; (c) orbit S16X x S16Z .

Figure 6.13) presents the experimental frequency response function. Notice that,

although the 3X super-harmonics are less energetic than the numerical ones, they are

quite significant. Concerning the control efficiency, the frequency response function
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presented the same tendency as compared with the numerically simulated one, being

more efficient in the vertical direction.

(a) (b)

Figure 6.13: 493 rev/min, PID without Filter. Frequency domain shaft lateral vibrations,

in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z .

Figure 6.14 depicts the control currents measured directly from the test rig. They

are higher than the estimated numerical currents, but still not so different.

(a) (b)

Figure 6.14: 493 rev/min, PID without filter. Control currents, in mA and shaft lateral

vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and (—) EMA#4; (b) (—)

Controlled S16Z , (—) EMA#1, and (—) EMA#3.

b) Speed: Ω = Ωcrit/2

In this case, the PID gains are presented in Tab. 6.2.
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Table 6.2: PID gains for 737 rev/min and PID without filter.

KP KI KD

Numerical PID -200 0 80

Experimental PID -200 0 1

The cracked numerical model is expected to exhibit, around one half of the first

critical speed in its orbit two loops, as depicted by Fig. 6.15(c). It is also observed a

good efficiency of the controller on reducing the rotor orbit of vibration.

(a) (b) (c)

Figure 6.15: 737 rev/min, PID without Filter. Numerical simulation of time domain shaft

lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z ; (c)

orbit S16X x S16Z .

Concerning the numerical simulation of the frequency response, a good amplitude

reduction was observed for the 2X super-harmonics, especially in the horizontal direc-

tion.
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(a) (b)

Figure 6.16: 737 rev/min, PID without Filter. Numerical simulatoin of the frequency

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z .

Figure 6.17 presents the numerical simulation results for the control currents, which

are found to be around 300 mA and 600 mA at the horizontal and vertical directions,

respectively.

(a) (b)

Figure 6.17: 737 rev/min, PID without filter. Numerical simulation for the control cur-

rents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2,

and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

Figure 6.18 indicates the experimental time responses of the test rig. An uncon-

trolled orbit possessing two loops is observed for this speed. The control action is
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effective, decreasing the rotor orbit and also its harmonics characteristics, which are

better seen for the response in the frequency domain in Fig. 6.19.

(a) (b) (c)

Figure 6.18: 737 rev/min, PID without Filter. Experimental results for the time domain

shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z ;

(c) orbit S16X x S16Z .

As mentioned, Fig. 6.19 represents the experimental responses in the frequency

domain of the test rig. An important 2X amplitude reduction is observed. Notice that a

small increase of 1X is seen as a side-effect of the control action. However, it does not

represent a problem for the purpose of the present controller, which is simply to reduce

the crack effect on the rotating machine.

(a) (b)

Figure 6.19: 737 rev/min, PID without Filter. Experimental results in the frequency

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z .
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Figure 6.20 presents control currents around 600mA and 1A, along the horizontal

and vertical directions, respectively. These values are not sufficient to overheat none

of the EMAs.

(a) (b)

Figure 6.20: 737 rev/min, PID without filter. Experimental control currents, in mA and

shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and (—) EMA#4;

(b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

c) Speed: Ω = 900rev/min

For this case, the PID gains used are observed in Tab. 6.3.

Table 6.3: PID gains for 900 rev/min and PID without filter.

KP KI KD

Numerical PID -250 0 60

Experimental PID -200 0 1

For the present speed, the numerical model was able to reduce the lateral vibrations

of the shaft, as depicted by Fig. 6.21. As the numerical gains are increased, a stronger

control effect is observed.
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(a) (b) (c)

Figure 6.21: 900 rev/min, PID without Filter. Numerical time domain shaft lateral vi-

brations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b)S16Z ; (c) orbit S16X

x S16Z .

Figure 6.22 present the numerical frequency responses. An undesirable increase

of the 2X super-harmonic is observed in the horizontal direction by the action of the

controller. It does not represent a big problem since its amplitude is much smaller than

the 1X frequency, which suffered a small reduction in its amplitude.

(a) (b)

Figure 6.22: 900 rev/min, PID without Filter. Numerical frequency domain shaft lateral

vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z .

Figure 6.23 presents the numerical control currents, which are around 650 and 550

mA for the horizontal and vertical directions, respectively.
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(a) (b)

Figure 6.23: 900 rev/min, PID without filter. Numerical control currents, in mA and

shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and (—) EMA#4;

(b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

The experimental test rig time response is observed in Fig. 6.24. No important

time response variation is observed in this case. In the experimental scenario, if the

controller gains are increased, the rotor vibrations diverge.

(a) (b) (c)

Figure 6.24: 900 rev/min, PID without Filter. Experimental time domain shaft lateral

vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z ; (c) orbit

S16X x S16Z .

Figure 6.25 presents the frequency responses of the experimental test rig. No

significant variation is observed, as well.
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(a) (b)

Figure 6.25: 900 rev/min, PID without Filter. Experimental frequency domain shaft

lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ; (b) S16Z .

Figure 6.26 indicates the control currents used at this case. They are around 500

mA for both horizontal and vertical directions. If they are increased, the rotor response

diverges.

(a) (b)

Figure 6.26: 900 rev/min, PID without filter. Experimental control currents, in mA and

shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—) EMA#2, and (—) EMA#4;

(b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.
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6.7.2 Results of the PID with a Bandpass Filter at 2X and 3X super-

harmonics

a) Speed: Ω = Ωcrit/3 = 493rev/min

This section presents the results of the second control law used in the present work.

It is an interesting solution to concentrate the control action on the crack signatures

2X, and 3X, which are intended to be suppressed. The efficiency of this control law is

compared with the previous one, without the filter.

The best PID gains for the present case are presented in Tab. 6.4.

Table 6.4: PID gains for 493 rev/min, and PID with a bandpass filter on 2X and 3X.

KP KI KD

Numerical PID -100 0 8

Experimental PID -180 0 1

Figure 6.27 presents the time responses of the shaft lateral vibrations for the nu-

merical model. A small reduction of the amplitudes of the time domain response is

observed for both the horizontal and the vertical directions.

(a) (b) (c)

Figure 6.27: 493 rev/min, PID with a bandpass filter for 2X and 3X. Numerical time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z ; (c) orbit S16X x S16Z .

In the same way, Fig. 6.28 indicates a small 2X and 3X super-harmonic reduction

for the filtered PID controller of the numerical model.
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(a) (b)

Figure 6.28: 493 rev/min, PID with a bandpass filter for 2X and 3X. Numerical fre-

quency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON.

(a) S16X ; (b) S16Z .

Figure 6.29 indicates control currents approximately of 50 and 200 mA for the hor-

izontal and vertical directions, respectively. As these are small, they do not overheat

the actuators.

(a) (b)

Figure 6.29: 493 rev/min, PID with a bandpass filter for 2X and 3X. Numerical con-

trol currents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—)

EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

Figure 6.30 presents the time domain responses of the experimental test rig. The

time domain lateral vibrations of the controlled case did not change much, compared
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with the non-controlled one. However, Fig. 6.30(b) indicates a decrease in the system

harmonics, which is well observed in Fig. 6.31.

(a) (b) (c)

Figure 6.30: 493 rev/min, PID with a bandpass filter for 2X and 3X. Experimental time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z ; (c) orbit S16X x S16Z .

As stated, Fig. 6.31 indicates the frequency response functions of the experimental

test rig. An important 3X amplitude reduction was observed, especially in the vertical

direction.

(a) (b)

Figure 6.31: 493 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

frequency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z .

Figure 6.32 presents the control currents required for generating the experimental

results for this case. These currents are approximately 280 and 220mA for the horizon-

tal and vertical directions, respectively.
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(a) (b)

Figure 6.32: 493 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

control currents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—)

EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

b) Speed: Ω = Ωcrit/2 = 737rev/min

The corresponding PID gains are given in Tab. 6.5.

Table 6.5: PID gains for 737 rev/min, and PID with a bandpass filter for 2X and 3X.

KP KI KD

Numerical PID -200 0 40

Experimental PID -200 0 1.5

Around one half of the first critical speed, Fig. 6.33 presents the numerical time-

domain responses for the shaft. The control action was able to reduce the lateral

vibrations, especially in the horizontal direction.
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(a) (b) (c)

Figure 6.33: 737 rev/min, PID with a bandpass filter for 2X and 3X. Numerical time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z ; (c) orbit S16X x S16Z .

Figure 6.34 indicates the same tendency as above, attenuating the 2X amplitudes,

especially along the horizontal direction.

(a) (b)

Figure 6.34: 737 rev/min, PID with a bandpass filter for 2X and 3X. Numerical fre-

quency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON.

(a) S16X ; (b) S16Z .

The numerical control currents are approximately 200 and 450 mA for the horizontal

and vertical directions, respectively.
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(a) (b)

Figure 6.35: 737 rev/min, PID with a bandpass filter for 2X and 3X. Numerical con-

trol currents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—)

EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

Figure 6.36 presents the experimental time domain responses for the present case.

Notice that the control action attenuates the vibration amplitudes along the horizontal

direction and increases the amplitudes along the vertical direction.

(a) (b) (c)

Figure 6.36: 737 rev/min, PID with a bandpass filter for 2X and 3X. Experimental time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z ; (c) orbit S16X x S16Z .

The experimental frequency responses are depicted in Fig. 6.37. A 2X amplitude

reduction and a 1X amplitude increase are observed, especially in the vertical direc-

tion. As mentioned, the increase in the 1X frequency is not a problem for this control

purpose, which is dedicated to the attenuation of the breathing effect of a transverse

crack found in the rotating machine.
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(a) (b)

Figure 6.37: 737 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

frequency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z .

Figure 6.38 presents the experimental control current values, which are 1.7 A for

both horizontal and vertical directions. This is the highest current value so far, but it still

is not capable of overheating the actuators.

(a) (b)

Figure 6.38: 737 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

control currents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—)

EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

c) Speed: Ω = 900rev/min

The present speed of rotation is asynchronous (with respect to the critical speeds).
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Consequently, the harmonic levels are expected to be low, impairing the control action.

The corresponding PID gains are given in Tab. 6.6.

Table 6.6: PID gains for 900 rev/min, and PID with a bandpass filter for 2X and 3X.

KP KI KD

Numerical PID -1000 0 90

Experimental PID -400 0 0.4

Figure 6.39 presents the numerical time-domain responses of the FE model. No

variation on the time-domain responses was observed when the controller was applied.

If the PID gains are increased, no variation is observed.

(a) (b) (c)

Figure 6.39: 900 rev/min, PID with a bandpass filter for 2X and 3X. Numerical time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z ; (c) orbit S16X x S16Z .

The same tendency is observed for the numerical frequency response function of

the model.
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(a) (b)

Figure 6.40: 900 rev/min, PID with a bandpass filter for 2X and 3X. Numerical fre-

quency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON.

(a) S16X ; (b) S16Z .

Figure 6.41 presents the numerical control currents responses, which are estimated

to be approximately 50 and 130mA along the horizontal and vertical directions, respec-

tively.

(a) (b)

Figure 6.41: 900 rev/min, PID with a bandpass filter for 2X and 3X. Numerical con-

trol currents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—)

EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

On the other hand, Fig. 6.42 presents the experimental time-domain responses of

the test rig. A small increase of the vibration amplitudes is observed, especially in the
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horizontal direction.

(a) (b) (c)

Figure 6.42: 900 rev/min, PID with a bandpass filter for 2X and 3X. Experimental time

domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control ON. (a) S16X ;

(b) S16Z ; (c) orbit S16X x S16Z .

Figure 6.43, which represents the experimental frequency responses, indicates an

increase in 1X and an attenuation in 2X amplitudes. As mentioned, an increase in the

1X does not represent a problem for the controller to be applied to the present rotating

machine.

(a) (b)

Figure 6.43: 900 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

frequency domain shaft lateral vibrations, in µm: (—) Control OFF, and (—) Control

ON. (a) S16X ; (b) S16Z .

Figure 6.44 presents the experimental control currents, which are measured di-

rectly on the experimental test rig.They are approximately 450 and 270 mA, along the

horizontal and vertical directions, respectively.



Chapter 6. Crack Control in Rotating Machinery by the use of the PID technique 124

(a) (b)

Figure 6.44: 900 rev/min, PID with a bandpass filter for 2X and 3X. Experimental

control currents, in mA and shaft lateral vibrations, in µm. (a) (—) Controlled S16X , (—)

EMA#2, and (—) EMA#4; (b) (—) Controlled S16Z , (—) EMA#1, and (—) EMA#3.

6.7.3 Summary of the Results

In this section, all the control results obtained above are compared. On Tab. 6.7,

the results of the first PID control law (no filter) are presented. On Tab. 6.8, the results

of the second PID control law, which presents a bandpass filter, allowing only for 2X

and 3X super-harmonics are presented.

For one third of the first critical speed, the 3X super-harmonic was compared; on

the other hand, for the one half of the first critical speed and for the assynchronous

speed, the 2X super-harmonic was compared.

Table 6.7: Results for the first PID control law.

PID without filter

Rotor

Speed

Horizontal Harmonics Reduction (%) Vertical Harmonics Reduction (%)

Numerical Experimental Numerical Experimental

493 39.1 70.6 51.6 93.3

737 79.9 62.4 54.9 53.3

900 -270 4.3 -4.9 3.1
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Table 6.8: Results for the second PID control law.

PID with bandpass filter for 2X and 3X

Rotor

Speed

Horizontal Harmonics Reduction (%) Vertical Harmonics Reduction (%)

Numerical Experimental Numerical Experimental

493 9.1 46.7 10.8 95.5

737 47.0 43.4 19.6 50.7

900 0.2 26.5 0.1 18.4

By the analysis of both Tab. 6.7 and Tab. 6.8 one can notice that both PID con-

trollers work properly for 493 rev/min and 737 rev/min. Moreover, the first PID control

law presents better results for these speeds with high values of 2X and 3X super-

harmonics.

However, for 900 rev/min, which represents an asynchronous operational rotating

speed, the PID with the bandpass filter presented better results. At this speed, the use

of the first PID control law is not able to reduce the amplitudes of vibration of the rotor.

In general, the results obtained show that the presence of a filter tends to lead to

better efficiency for crack suppression for small levels of 2X and 3X. However, for

the cases in which the level of the super-harmonics are higher, the efficiency of the

controller is reduced.

In the most part of real rotating machinery applications, including the second control

law (with the bandpass filter) is preferable since it is not common to set a rotating

machine to operate around its 1/2 or 1/3 of its first critical speed.



Chapter 7

Conclusions and Perspectives

This Ph.D. dissertation addressed both crack detection and active crack control as

applied to rotating machinery. The existence of a transverse crack along a rotating

shaft was simulated by the Mayes model. The linear fracture mechanics theory was

applied for relating the crack depth with the corresponding additional shaft flexibility.

The crack detection method applied was the so-called modal state observer (MSO).

Moreover, the active crack control was performed by a continuous PD controller.

In the first step, a literature review regarding the main vibration-based crack detec-

tion methods was presented. The advantage of vibration-based methods, as compared

to traditional techniques was highlighted. A brief state-of-the-art, considering the main

contributions along the time, as well as some of the main techniques currently applied

in the context of the present research work.

Besides, a literature review of the main control techniques was briefly exposed. The

passive, semi-active, and active approaches were discussed. The PID technique was

finally chosen due to its popularity, efficiency, and simplicity.

The test rig used for crack detection tests was presented, with its main components.

In the sequence, a numerical FE model was build and updated with results from the

experimental test rig for both time and frequency domains.

In the sequence, a crack detection technique was applied, namely MSO over the

updated numerical model. The modal Luenberger observer was presented, and the

advantages of this technique were discussed. The Mayes model was applied for sim-

ulating the breathing behavior of a transverse crack, existing in a rotating machine. It

was explained how to incorporate the crack behavior to the updated numerical model.
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The linear fracture mechanics theory was applied for relating the crack depth with the

shaft additional flexibility. Both numerical and experimental results were furnished in

the form of the kernel density function estimate, which is able to deal with the probabil-

ity density estimation of a given data sample. The obtained results demonstrated that

the estimated modal displacements are more sensitive to the fault existence than the

time domain vibration responses of the rotor.

Numerical simulations compared the healthy and faulty shaft conditions. Several

crack depths and positions were analyzed for different rotating speeds. The MSO

presented better results than the time domain approach for all conditions of incipient

cracks, which is the main interest for crack detection. It also proved itself to be less

dependent on the crack position, which is another desired characteristic. In the ex-

perimental analysis, the breathing crack and open crack conditions were considered.

The results followed the same tendency, being the MSO approach more sensitive to

fault variation than the time domain vibration responses. The estimated vibration re-

sponses by using the MSO do not match perfectly the experimental measurements.

Since numerical and experimental conditions of fault detection were different, the most

affected vibration modes were found to be different, being mode #3 the most affected

in the numerical simulations and mode #1 was the most affected in the experimental

simulations. It is worth mentioning that the fault conditions were different and there are

some non-modeled dynamics, especially related to bow and misalignment that are not

taken into account in the model.

In a general way, the MSO technique demonstrated to be a simple and efficient

alternative tool for fault detection in rotordynamics. This technique derived good results

for both numerical and experimental tests, which presented a similar tendency, except

for the most affected vibration mode, as previously discussed.

Later in the present dissertation, the second test rig, which is devoted to crack

control, was presented together with its main components. Similar to the first test rig, a

numerical FE model was built, considering the controller that would be applied through

electromagnetic actuators (EMAs). Once more, this numerical model was updated

with respect to the experimental behavior of the machine, both on time and frequency

domains.

The control forces are applied by EMA devices. These actuators are mounted on
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a hybrid bearing, which was described accordingly. In the sequence, electromagnetic

background theory was revisited. It was presented how the EMA forces were modeled

and incorporated into the FE updated numerical model. Also, the nature of the currents

to be applied to each EMA was described.

Next, the crack control application regarding both the numerical model and test rig

was presented. At this stage, control theory was briefly exposed. Controllability and

observability of dynamic systems were discussed, and these concepts were applied to

the experimental test rig. Open-loop and closed-loop plants of the second test rig were

presented. System stability discussion was performed, and the gain margin and phase

margin of the crack control test rig were calculated. This is important for defining a

safe range of PD gains to be tested, for avoiding instability behavior during the rotor

machine operation.

Finally, the PD controller was discussed, concerning its design for the purpose of

crack control. Moreover, both the numerical and experimental results were shown for

different rotating speeds and different control laws. For each case considered, the

gains used for tuning the PD controller were presented. One reminds that the purpose

of the PD controller in the present research work is not to be necessarily robust, nor op-

timal, but to be able to suppress crack signatures from the rotating machine frequency

spectrum. In this way, the controller was presented for various tuning characteristics for

different rotor conditions. Moreover, the PD controller does not deal with transient phe-

nomena, being applied only for steady-state conditions. In this sense, the results were

derived from two control laws, meaning one control law applying control currents simi-

lar to the displacement signals as collected by S16X and S16Z , and another control law

that used a bandpass filter in the 2X and 3X frequency range, aiming at concentrating

the control action on the crack signatures which are to be suppressed.

The results demonstrated to be satisfactory, being the first control law capable of

suppressing crack signatures on 1/2 and 1/3 of the first critical speed and not capable

of suppressing them on asynchronous operation speeds.

On the other hand, the second control law, through the use of the bandpass filter,

was able to deal with asynchronous rotating speeds, reducing significantly crack sig-

natures and reducing the effect of a transverse crack on the dynamic behavior of the

rotating machine. This second control law could also suppress crack signatures on 1/2



Chapter 7. Conclusions and Perspectives 129

and 1/3 of the first critical speed, but with a smaller efficiency as compared with the first

control law. In general, the results showed that the presence of a filter tends to lead to

better efficiency for small levels of 2X and 3X and worse efficiency for high levels of

these super-harmonics. Moreover, an interesting point is that the maximum admissible

gain values did not present the best results, for crack control purposes, in the vicinity

of 1/2 and 1/3 of the first critical speed.

This PhD dissertation presents three main contributions: i) proving numerically and

experimentally that the use of a Modal State Observer (MSO) increases the efficiency

of detecting the existence of a transverse crack along a rotating machine; ii) proving

numerically and experimentally that it is possible to reduce the effects of a transverse

crack on the frequency response function of a rotating machine, by the use of a hybrid

bearing, composed by four electromagnetic actuators (EMAs); iii) start the international

collaboration between the laboratories LMEst, at the Federal University of Uberlândia

(UFU) and RoMaDyC, at the Cleveland State University (CSU).

As minor contributions, it may be cited: iv) formulation of the numerical codes, us-

ing the finite elements method (FEM) for deriving the numerical results for both crack

detection and crack control tests; v) building two experimental test rigs, the first be-

ing designed for performing procedures of crack detection and the second designed

for performing procedures of crack control; vi) the application of an heuristic code for

fitting the experimental results with the numerical code; vii) dynamic characterization

of the EMAs for understanding their beahvior along the frequency; viii) building and

applying Transfer Functions (TFs) to the numerical code which were able to simulate

the behavior of the EMAs along the frequency.

Concluding, one may suggest the following perspective issues:

1. Change the hybrid bearing position and /or use two fixed bearings and an elec-

tromagnetic actuator at the midspan of the rotor;

2. Implement an optimal controller for the conditions tested in this dissertation, for

checking if the efficiency of the control results increases as compared with the

results presented in the present research work;

3. Test other asynchronous operation speeds, for checking if the filtered PD con-

troller keeps on deriving good results for crack suppression;
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4. Implement a robust controller, aiming at suppressing crack signatures along all

the speed range of the rotating machine;

5. Further investigations comparing numerical and experimental results for the MSO

approach should be performed, trying to correlate fault severity and operating

conditions to the most affected vibration modes of the rotating machine.
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