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RESUMO 

 

CARNEIRO, P. C. Proposta de metodologia para realce de contraste em imagens de 
mamas densas utilizando decomposição multiescala com transformada discreta wavelet. 
Tese de Doutorado – Faculdade de Engenharia Elétrica, Engenharia Biomédica, Universidade 
Federal de Uberlândia, 2019. 
 

O câncer de mama é o segundo tipo de câncer mais frequente em mulheres, sendo considerado 

um problema global. A densidade mamária está diretamente relacionada ao risco de se 

desenvolver essa doença, principalmente pela dificuldade de detecção de lesões em mamas 

densas. A mamografia é o principal exame para rastreamento do câncer de mama, possibilitando 

o diagnóstico precoce e influenciando na possibilidade de cura da doença. Nos últimos anos, 

uma nova técnica de aquisição de imagens surgiu com o intuito de aumentar a detecção precoce 

dessa doença: a tomossíntese digital mamária. Porém, essa tecnologia ainda é pouco difundida 

e de difícil acesso, tornando o processamento digital de imagens um forte aliado na tentativa de 

melhorar a qualidade das imagens. Assim, o objetivo deste trabalho, além de propor uma nova 

metodologia para o realce de contraste em imagens mamográficas densas, é a criação e 

implementação de uma nova métrica global para o cálculo de contraste. Essa nova metodologia 

consistiu na aplicação da técnica de equalização de histograma adaptativa com limitação de 

contraste (CLAHE), que foi validada quantitativamente e qualitativamente, na subimagem 

gerada da decomposição dos coeficientes de aproximação da transformada discreta de wavelet. 

Nos testes em imagens mamográficas reais de mamas densas, medidas de contraste, tais como: 

variância, entropia e a medida de realce (EME) foram calculadas, mostrando um aumento 

desses valores para os processamentos com a metodologia proposta em relação com as imagens 

originais. Para o Índice Carneiro de Contraste (ICC) criado, os melhores resultados foram para 

aplicação da CLAHE de tamanho de janela 15x15 nos coeficientes de aproximação, com um 

ganho médio de 47% no contraste em relação às imagens originais. Dessa forma, foi possível 

propor uma técnica otimizada e de simples aplicação, sobretudo para mamas densas, que 

permite o realce de contraste em estruturas mamárias, podendo contribuir para o diagnóstico 

precoce do câncer de mama. 

 

Palavras-Chave: Câncer de mama. Mamografia. Realce de contraste. Tomossíntese. Wavelet.
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ABSTRACT 

 

CARNEIRO, P. C. Contrast enhancement in dense breasts images by using multiscale 
decomposition with discrete wavelet transform: proposal of methodology. PhD. Thesis – 
Faculty of Electrical Engineering, Biomedical Engineering, Federal University of Uberlândia, 
2019. 

 

Breast cancer is the second most frequent type of cancer in women, thus, it is considered a 

global issue. Breast density is directly related to the probability of developing breast cancer, 

mainly due to the difficulty detecting lesions in dense breasts. Mammography is the main exam 

to screen breast cancer allowing early detection and improving the chances of curing the 

disease. In the past years, a novel imaging technique has emerged aiming at improving early 

detection of breast cancer: the digital breast tomosynthesis technique. However, this technology 

is relatively unknown and not of easy access. Digital image processing, on the other hand, is a 

strong asset for the attempt of improving image quality. Therefore, the aim of this thesis, besides 

being a proposal of new methodology for contrast enhancement in dense mammographic 

images, is creating and implementing a new global metric to calculate contrast. This new 

methodology consisted of applying the Contrast-limited adaptive histogram equalization 

(CLAHE) technique to the sub-image generated from decomposing the approximation 

coefficients of the discrete wavelet transform. The technique was quantitatively and 

qualitatively validated. When testing real mammographic images of dense breasts, measures of 

contrast such as: variance, entropy, and measure of enhancement (EME), were calculated and 

reflected an increase when processed with the proposed methodology, compared with their 

corresponding values in original images. For the Carneiro Contrast Index (CCI, in Portuguese, 

Índice Carneiro de Contraste) created, applying CLAHE with a 15x15 window for the 

approximation coefficients has shown the best results, a 47% improvement in contrast, 

compared with original images. Hence, it was possible to propose a technique which is both 

optimized and simple to apply, especially for dense breasts, allowing contrast enhancement in 

breast structures and contributing to the early detection of breast cancer. 

 

Keywords: Breast cancer. Mammography. Contrast Enhancement. Tomosynthesis. Wavelet. 
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Capítulo 1 INTRODUÇÃO GERAL 

O câncer de mama é considerado um problema global, ocorrendo em larga escala tanto 

em países desenvolvidos quanto em países em desenvolvimento. Este tipo de câncer é o 

segundo mais frequente no mundo e o segundo mais comum entre mulheres, correspondendo 

em 1 a cada 4 novos casos de câncer diagnosticados na população mundial feminina (BRAY et 

al., 2018). Para o ano de 2019, estima-se que nos Estados Unidos, mais de 270 mil novos casos 

de câncer de mama sejam diagnosticados (SIEGEL, MILLER, JEMAL, 2019). 

No Brasil, é a doença com maior grau de mortalidade em mulheres, na maioria das vezes 

devido ao estágio avançado da doença, decorrente do diagnóstico tardio. São estimados quase 

60 mil novos casos de câncer de mama para cada ano do biênio 2018-2019, com um risco 

estimado de 56,33 casos a cada 100 mil mulheres brasileiras. No entanto, mediante a realização 

de diagnósticos e tratamentos oportunos, o prognóstico da doença pode ser bom (INCA, 2018). 

Segundo as “Diretrizes para a Detecção Precoce do Câncer de Mama”, publicada em 

2015, o exame mamográfico é o método indicado para o rastreamento na rotina da atenção 

integral à saúde da mulher. Este exame foi o único que apresentou eficácia comprovada na 

diminuição da mortalidade por câncer de mama (INCA, 2015).  

Sendo assim, a mamografia se torna imprescindível e de extrema importância, visto que 

é o principal exame para rastreamento do câncer de mama, possibilitando o diagnóstico precoce, 

influenciando diretamente na taxa de mortalidade e principalmente, na possibilidade de cura da 

doença (AZEVEDO, GERÓTICA, SANCHES, 2016). 

Diversos estudos já mostraram a relação entre o tipo de densidade mamária e o risco de 

desenvolvimento do câncer de mama (BOYD et al., 2007; VACHON et al., 2007; 

KERLIKOWSKE et al., 2010; VARGHESE et al., 2012). Pacientes com predominância de 

tecido fibroglandular nas mamas (mamas densas) apresentam maior risco ao desenvolvimento 

da doença, devido à similaridade da atenuação de raios X entre as lesões mamárias e os tecidos 

fibroglandulares. Assim, esse risco está associado, eventualmente, à maior dificuldade 

diagnóstica, visto que alguns tumores podem ser obscurecidos em mamas deste tipo. 
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De maneira a melhorar a qualidade das imagens mamográficas digitais, torna-se 

essencial a utilização do processamento digital de imagens a fim de realçar o contraste das 

imagens mamográficas, facilitando a visualização e a identificação de lesões mamárias. O 

objetivo das técnicas de realce de contraste é melhorar a qualidade da imagem, permitindo uma 

melhor discriminação dos objetos presentes na imagem (GONZALEZ, WOODS, 2007).  

Nos últimos anos, visando cada vez mais a detecção precoce do câncer de mama, surgiu 

uma nova e promissora técnica de aquisição de imagens digitais: a tomossíntese (BAKER, LO, 

2011). Nessa nova técnica, são obtidas várias imagens em cortes finos da mama, isto é, uma 

varredura da mama é realizada, captando imagens em vários ângulos (projeções), reconstruindo 

a imagem tridimensionalmente (NIKLASON et al., 1997; SKAANE et al., 2013; GARCIA-

LEON, LLANOS-MENDEZ, ISABEL-GOMEZ, 2015).  

Com esse sistema os tumores são identificados mais facilmente, principalmente em 

mamas densas, devido ao maior detalhamento desse tipo de imagem (CIATTO et al., 2013; 

SECHOPOULOS, 2013; CHEN et al., 2007). Alguns estudos comprovaram o benefício da 

tomossíntese no aumento da detecção de câncer de mama e na diminuição do número de recalls 

(BERNARDI et al., 2012; GUR et al., 2009; POPLACK et al., 2007; SVAHN et al., 2010; 

TEERTSTRA et al., 2010; WALLIS et al., 2012). 

Como o Sistema Único de Saúde (SUS) brasileiro utiliza em seus programas de 

rastreamento a mamografia digital bidimensional (2D), a ideia é propor técnicas e metodologias 

para realce de contraste que permitam auxiliar na melhor visualização, interpretação e detecção 

de lesões, quando aplicadas em imagens mamográficas 2D. Dessa forma, o SUS poderia se 

beneficiar dessas metodologias que possibilitariam que as imagens 2D se equivalham à 

qualidade de contraste das imagens 3D. 

Com incentivos na educação aliados à criatividade, responsabilidade e disciplina, a 

pesquisa e a ciência se tornam de grande valia no que se refere à promoção da saúde em 

mulheres em todo o mundo. Com o crescente aumento de tecnologias, a busca pelo 

desenvolvimento de novas ferramentas de fácil acesso e aplicação são fatores que motivam na 

tentativa de melhorar a qualidade dos sistemas públicos de saúde e contribuir para o aumento 

do bem-estar da população. 
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1.1  Objetivo 

 

O objetivo do trabalho é propor uma técnica otimizada e de simples aplicação, sobretudo 

para mamas densas, que permita realce de contraste em estruturas mamárias. A partir da 

metodologia proposta, pretende-se promover o aumento de contraste em imagens 

mamográficas, com o intuito de melhorar a visualização de estruturas mamárias, possibilitando 

maior sensibilidade à detecção e diagnóstico precoce do câncer de mama, como ocorre nas 

imagens adquiridas em equipamentos mais sofisticados com a tecnologia 3D (tomossíntese). 

 

1.2  Objetivos Específicos 

 

Os objetivos específicos deste trabalho são: 

 Avaliar técnicas de realce de contraste em imagens mamográficas 2D; 

 Avaliar medidas de contraste entre as imagens, tais como: relação contraste-ruído 

(CNR) em phantoms, relação sinal-ruído de pico (PSNR), variância, entropia, medida de 

contraste (EME – Measure of Enhancement), média do índice de similaridade estrutural 

(MSSIM – Structural Similarity); 

 Propor a criação e implementação de um índice de contraste global baseado em desvios 

padrões locais calculados a partir de uma janela de tamanho pré-definido na imagem. 

 

1.3  Justificativa e motivação 

 

No Brasil, o câncer de mama é a doença com maior grau de mortalidade em mulheres, 

na maioria das vezes devido ao estágio avançado da doença. Mesmo com o programa brasileiro 

(SUS) de rastreamento de câncer de mama, o índice de mortalidade vem aumentando ao longo 

dos anos, sobretudo em virtude do retardo no diagnóstico precoce (RENCK et al., 2014). 

Recentemente, com a técnica avançada de aquisição de imagens mamográficas digitais 

que permite uma avaliação tridimensional da mama, a detecção precoce é facilitada devido à 

maior visibilidade de estruturas utilizando a tomossíntese. Entretanto, o sistema público de 
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saúde brasileiro, que ainda utiliza a mamografia 2D, não será contemplado em larga escala com 

essa tecnologia em um futuro próximo. 

A densidade mamária é fator que influencia diretamente na qualidade da imagem 

radiológica, e, portanto, na exatidão do diagnóstico. Quanto maior a predominância de tecidos 

fibroglandulares na mama, maior a densidade mamária, sendo a mama classificada como densa. 

Segundo Jackson et al., (JACKSON et al., 1993) as lesões mamárias têm sua detecção 

dificultada pois apresentam propriedade de atenuação de raios X próxima ao de tecido 

fibroglandular, aqueles que predominam nas mamas densas. Além da similaridade dos níveis 

de cinza entre lesão mamária e tecido fibroglandular, mamas densas produzem mais radiação 

espalhada, diminuindo ainda mais o contraste da imagem mamográfica.  

Outro grande desafio se dá pelo fato do rastreamento mamográfico se iniciar na faixa 

etária na qual as pacientes, comumente, apresentam mamas densas. Segundo o Colégio 

Brasileiro de Radiologia e Diagnóstico por Imagem (CBR), a Sociedade Brasileira de 

Mastologia (SBM) e a Federação Brasileira das Associações de Ginecologia e Obstetrícia 

(FEBRASGO) é recomendado que o exame de mamografia seja feito anualmente para as 

mulheres a partir dos 40 anos de idade, destacando a importância da criação de ferramentas para 

auxiliar na detecção precoce do câncer de mama em mamas densas. 

Com a precariedade econômica da maioria dos estabelecimentos assistenciais de saúde 

(EAS) do Sistema Único de Saúde, a criação e disponibilização de ferramentas que auxiliem na 

qualidade e no realce de estruturas das imagens médicas, assume um papel importante, visto 

que permitirá em um diagnóstico mais preciso e precoce, aumentando a chance de cura e 

sobrevida dos pacientes.  

Dessa forma, este trabalho se insere no contexto com o objetivo de propor um novo 

método para realce de contraste em mamas densas, visando contribuir com aumento da detecção 

precoce e visualização de estruturas. E para auxiliar na quantificação dos resultados, será 

implementada uma nova métrica para avaliação de contraste em imagens. 

 

1.4  Organização desta tese 

 

Além desta Introdução, contendo os objetivos, justificativa e motivação deste trabalho, 

a tese foi organizada da seguinte forma: 
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 Capítulo 2 – Evolução do exame mamográfico: conceitos gerais de mamografia, 

mostrando a evolução do exame desde a mamografia analógica, até o exame mais 

recente da tomossíntese digital mamária. São apresentados também alguns tópicos 

relacionados à qualidade da imagem mamográfica; 

 Capítulo 3 – Estado da Arte: neste capítulo são abordados diversos estudos recentes que 

mostram a comparação clínica entre mamografia 2D e a tomossíntese; 

 Capítulo 4 – Técnicas de realce de contraste: são apresentadas diversas ténicas de realce 

de contraste em imagens encontradas na literatura, dividindo entre técnicas direitas e 

indiretas; 

 Capítulo 5 – Métricas de qualidade de imagem:  capítulo destinado ao detalhamento de 

medidas quantitativas de qualidade de imagens; 

 Capítulo 6 – Índice Carneiro de Contraste: neste capítulo é explicada a metodologia 

implementada nesta tese para uma nova métrica de contraste em imagens. O índice 

criado calcula o contraste global médio da imagem, a partir de regiões da imagem, 

baseado no cálculo de desvio padrão; 

 Capítulo 7 – Parte I Validação da técnica CLAHE: capítulo que apresenta a 

metodologia, bem como os resultados e discussões da aplicação da técnica CLAHE em 

imagens mamográficas; 

 Capítulo 8 – Parte II Nova metodologia para realce de contraste em mamografias: neste 

capítulo é detalhada a nova metodologia que foi criada para realçar o contraste em 

imagens mamográficas densas. Os testes iniciais foram feitos em phantom, para depois 

serem aplicados em imagens mamográficas reais de três diferentes bancos de imagens 

(diferentes equipamentos). Além do índice de contraste criado, outras métricas 

utilizadas na literatura foram implementadas para corroborar nos resultados 

quantitativos; 

 Capítulo 9 – Conclusões gerais: as conclusões gerais do trabalho, bem como sugestões 

para trabalhos futuros são apresentados neste capítulo; 

 Referências: referências utilizadas no trabalho; 

 Apêndice A: Imagens INbreast (Padrão 3) – um exemplo de imagem original e das 

imagens resultantes para cada processamento;  

 Apêndice B: Imagens INbreast (Padrão 4) – um exemplo de imagem original e das 

imagens resultantes para cada processamento;  
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 Apêndice C: Imagens Hologic 2D – um exemplo de imagem original e das imagens 

resultantes para cada processamento;  

 Apêndice D: Imagens GE – um exemplo de imagem original e das imagens resultantes 

para cada processamento.
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Capítulo 2 EVOLUÇÃO DO EXAME MAMOGRÁFICO 

Este capítulo é reservado para explicar conceitos gerais acerca da mamografia, bem 

como a evolução desse tipo de exame, desde os equipamentos analógicos até os equipamentos 

digitais. Será apresentado também uma revisão bibliográfica acerca das características da 

recente tecnologia da tomossíntese, e um tópico sobre qualidade da imagem mamográfica. 

 

2.1 Conceitos gerais de mamografia 

 

Atualmente, o método mais eficaz, tanto no rastreamento, quanto para detecção precoce 

do câncer de mama é a mamografia. Neste exame, uma imagem radiográfica da mama é obtida, 

sendo um método eficaz, na maioria dos casos, na detecção de lesões não palpáveis 

(RANGAYYAN, 2004).  

Em um primeiro momento, a geração das imagens mamográficas era feita por meio de 

equipamento de raios X convencional. Com crescentes estudos e com a evolução da tecnologia 

surgiu o equipamento dedicado para o exame de mamografia: o mamógrafo. Esse equipamento 

nada mais é que um equipamento de raios X diferenciado capaz de obter imagens a partir dos 

diferentes coeficientes de atenuação linear dos diversos tipos de tecidos e materiais. 

(WHITMAN, HAYGOOD, 2012). A Figura 1 exemplifica o esquema de um mamógrafo. 
 

Figura 1 – Esquema de um mamógrafo. 

 

Fonte: Modificado de (WOLBARST, 1993). 



 Capítulo 2 Evolução do exame mamográfico 

32 
 

 

Na Figura 1 observa-se a presença de um tubo de raios X responsável pela geração dessa 

radiação eletromagnética. Este elemento é composto por dois eletrodos submetidos ao vácuo, 

no qual se aplica uma diferença de tensão entre eles gerando um campo elétrico. O eletrodo 

negativo (cátodo) é formado por um filamento de alto ponto de fusão, contendo um elemento 

resistivo que libera elétrons pela passagem de uma corrente elétrica. Esses elétrons são 

acelerados de forma a se colidirem com o eletrodo positivo (anodo). O alvo, localizado na 

extremidade desse anodo, revestido geralmente por molibdênio, ródio, ou tungstênio, no qual 

possui uma pequena área denominada ponto focal, onde efetivamente é produzida a radiação 

(WOLBARST, 1993). 

A imagem mamográfica é obtida através da detecção dos raios X que atravessam o 

tecido mamário que fica comprimido durante o exame. Já o outro elemento (Figura 1), o filtro, 

é responsável por impedir e retirar fótons de baixa energia do feixe de raios X, que não 

contribuiriam para a formação da imagem, evitando assim que a paciente receba 

desnecessariamente uma maior dose de radiação. Por outro lado, fótons de energia maior que 

20 keV também são filtrados (HAUS, YAFFE, 2000). 

A compressão da mama se torna importante, visto que, com uma menor espessura do 

objeto em estudo, ocorre uma diminuição da radiação espalhada, e por consequência um menor 

borramento da imagem. Outro fator importante sobre a compressão é com relação à 

imobilização da mama, reduzindo possíveis artefatos de movimento e possibilitando que a 

região de interesse fique mais próxima do detector da imagem e diminuindo a sobreposição dos 

tecidos mamários (POULOS et al., 2003). 

Uma grade pode estar contida em alguns equipamentos, localizada entre o suporte da 

mama e o sistema de registro, com o intuito de reduzir o ruído devido à diminuição da radiação 

espalhada. Além disso, em alguns sistemas mamográficos, observa-se a existência do controle 

automático de exposição, o AEC (Automatic Exposure Control), que automaticamente controla 

a quantidade de radiação necessária para a formação de uma imagem adequada (HAUS, 

YAFFE, 2000). 

Durante o exame de mamografia, duas técnicas de posicionamento são comumente 

utilizadas a fim de explorar melhor a mama. Na incidência médio lateral oblíqua (MLO), o 

receptor da imagem do equipamento é posicionado paralelamente ao plano, expondo ao 

máximo o tecido mamário e axilar. A outra incidência, crânio-caudal (CC), é uma vista 

complementar à MLO, pois tem o objetivo de incluir todo o tecido póstero-medial que não é 
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visualizado apenas sob vista MLO (MITCHELL, BASSETT, 1988). A Figura 2 exemplifica as 

duas incidências explicadas.  

 

Figura 2 – Incidência de exposição para exames mamográficos. (a) Incidência MLO. (b) Incidência CC. 

 

Fonte: Modificado de (ROSE, 2005). 

  

Alguns estudos mostram que de 10% a 15% de cânceres não são detectáveis a partir do 

exame de mamografia. Essa perda se dá principalmente em casos de mamas densas, aquelas 

com predominância de tecido fibroglandular, encontradas geralmente em mulheres mais jovens. 

Esse tipo de mama ainda é um problema para o diagnóstico precoce do câncer de mama, visto 

que as lesões mamárias têm propriedade de atenuação de raios X similares àquelas de tecidos 

fibrosos e glandulares (KOPANS, 2000; DORGAN et al., 2012). 

As doses de radiação na mamografia ainda são consideradas altas, apesar do feixe de 

raios X ser menos energético neste tipo de exame. Comumente são utilizados um baixo valor 

de tensão e alto valor de corrente (aumentando-se a corrente, aumenta-se a intensidade do 

feixe). Já quando uma maior tensão é aplicada no tubo, é gerada uma maior energia aos raios X 

e, consequentemente, um aumento no poder de penetração (HAUS, YAFFE, 2000). 

Nos próximos tópicos serão apresentadas as características referentes à mamografia 

analógica e digital, diferindo-se principalmente pelo sistema de registro da imagem. A primeira 

utiliza um filme para a visualização da imagem após a exposição da mama aos raios X, enquanto 

que na mamografia digital é usado um detector que transforma os raios X em sinal elétrico, 

sendo transmitido a um computador. 
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2.2 Mamografia analógica 

 

No Brasil, alguns programas de rastreamento do câncer de mama utilizam o sistema de 

mamografia analógica (tela-filme). Para a visualização da imagem nesse equipamento é usado 

um filme após a exposição da mama. Os fótons atravessam o tecido mamário e chegam ao 

chassi do filme pela sua base, atingindo a tela. Nesse momento, a energia desses fótons é 

convertida em luz visível, sendo refletidos de volta para impressionar o filme, produzindo assim 

a imagem mamográfica (YOUNG, WALLIS, RAMSDALE, 1994). 

Neste sistema, o filme mamográfico é utilizado não só como detector dos raios X, mas 

também como meio de registro e exibição da imagem. Os filmes usados nessa tecnologia 

possuem alta resolução espacial (entre 12 e 15 pares de linha por milímetro). Entretanto essa 

resolução fica limitada na distinção de estruturas com muita similaridade de contraste, ou seja, 

fica difícil diferenciar elementos com coeficientes de atenuação de raios X similares 

(ROBSON, KOTRE, FAULKNER, 1995). 

No exame por mamografia tela-filme, o tempo médio de revelação do filme é de cerca 

3 minutos. Caso a imagem não fique satisfatória para análise e interpretação do médico 

radiologista, é necessário que a paciente repita todo o procedimento (recall), se tornando um 

exame demorado, devido a tal tempo de revelação do filme. A Figura 3 apresenta uma imagem 

obtida de uma mamografia convencional na incidência crânio-caudal. 

 
Figura 3 – Exemplo de uma imagem de mamografia de tela-filme na vista crânio-caudal. 

 

Fonte: (SANTOS, 2002). 
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2.3 Mamografia digital 

 

O sistema de mamografia digital ganhou popularidade desde seu surgimento, 

principalmente por algumas vantagens encontradas em comparação com o sistema tela-filme. 

Com essa tecnologia, a revelação do filme não ocorre mais, sendo possível copiar, recuperar e 

manipular as imagens adquiridas, além das leituras, interpretações e avaliações serem assistidas 

por um computador. No entanto, o custo da mamografia digital é alto, além de dificultar a 

comparação das imagens deste equipamento com imagens obtidas pelo sistema analógico tela-

filme (PISANO, YAFFE, 2005). 

Nos mamógrafos digitais são utilizados detectores que transformam os raios X em sinal 

elétrico, e esse sinal é convertido em uma imagem digital por meio de um conversor A/D 

(analógico/digital), deixando de se utilizar então os filmes. Dentre os sistemas digitais, existem 

duas modalidades: o sistema CR (Computed Radiography) e o sistema FFDM (Full Field 

Digital Mammography).  

Nos sistemas CR é usado uma placa fluorescente, denominada Image Plate (IP), 

responsável por armazenar os raios X residuais. Após a exposição, o IP é introduzido em uma 

leitora que faz a liberação da energia armazenada, convertendo o sinal analógico em digital a 

partir de um conversor A/D, sendo então interpretado por um computador em linguagem binária 

(ROWLANDS, 2002).  

Vale ressaltar que, em alguns países em desenvolvimento, como o Brasil, o sistema CR 

ainda é uma realidade nos serviços públicos de saúde. Por isso, a importância de se melhorar a 

qualidade das imagens deste tipo de exame, uma vez que novas tecnologias ainda estão distantes 

desses centros. 

Já no sistema digital de campo total (FFDM) a conversão dos raios X em sinal digital é 

feita imediatamente, sendo transmitida diretamente a um computador. Um dos diferenciais dos 

sistemas FFDM são os tipos de detectores que eles podem possuir: indireto ou direto. 

No detector indireto o processo se baseia em duas etapas. Primeiramente um cintilador 

captura e transforma a energia em forma de raios X em fótons de luz, e depois, cabe a uma 

matriz com diodos de filme fino transformar tais fótons de luz em sinal eletrônico. A qualidade 

da imagem fica um pouco comprometida em sistemas com esse tipo de detector devido ao 

espalhamento do feixe luminoso (SMITH, 2003). 
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Já no detector direto, o espalhamento do feixe luminoso é eliminado, fazendo com que 

o fotocondutor absorva os raios X e converta-os diretamente em sinal digital mediante um 

conversor A/D. A tecnologia de selênio amorfo (a-Se) utilizado neste tipo de sistema oferece 

alta eficiência quântica e alta resolução, além de satisfazer condições necessárias para que ele 

seja utilizado em sistemas de imagem por raios X, tais como: alta resistência, baixo ruído, boa 

fotossensibilidade e acessível quanto ao processo de produção (MIKLA, MIKLA, 2011). 

Uma das preocupações da crescente utilização desses sistemas digitais é com relação à 

resolução espacial limitada. Entretanto, os sistemas digitais de mamografia possuem uma 

melhor resolução de contraste em comparação com os sistemas analógicos de tela-filme 

(DERSHAW, 2005). A Figura 4 apresenta um exemplo de imagem de um equipamento FFDM. 

 

Figura 4 - Exemplo de uma imagem de mamografia digital na vista crânio-caudal. 

 

                                      Fonte: (ZANCA et al., 2009). 

 

2.4 Tomossíntese digital mamária (TDM) 

 

Nos últimos anos, visando cada vez mais a detecção precoce do câncer de mama, surgiu 

uma nova e promissora técnica de aquisição de imagens digitais: a tomossíntese digital de 

mama. Nessa nova modalidade de exame complementar, a ideia principal é eliminar ou reduzir 

a sobreposição dos tecidos mamários, identificando os tumores mais facilmente. (BAKER, LO, 

2011; ROSE et al., 2013). 
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Esta redução da sobreposição de tecidos é apresentada na Figura 5. A partir da Figura 5 

nota-se que na tomossíntese digital (3D) a lesão (objeto mais escuro) é identificada em uma 

determinada fatia da imagem, ao contrário da imagem 2D, na qual o tecido mamário pode ser 

confundido e até impossibilitado de ser visualizado na imagem de mamografia digital 2D. 

 
Figura 5 – Na imagem 2D, a lesão pode ser obscurecida por tecido normal, enquanto que na imagem 3D, a lesão 

é melhor diferenciada, dada a redução da sobreposição de tecidos das imagens desta tecnologia. 

 
Fonte: Adaptado de (MALES, MILETA, GRGIC, 2011). 

 

Sabe-se que esta sobreposição dos tecidos mamários é razão fundamental para a não 

visualização de algumas lesões, dificultando a detecção do câncer de mama. Alguns estudos 

(MARTIN et al., 1979; BIRD, WALLACE, YANKASKAS, 1992; RAFFERTY, 2007) 

comprovaram a perda de alguns casos de câncer de mama no rastreamento de pacientes por 

mamografia, motivando o desenvolvimento da tomossíntese mamária. O recurso da 

tomossíntese vem aliado ao mamógrafo digital, no qual além das imagens habituais da 

mamografia 2D, são obtidas também imagens de tomossíntese 3D. 

 

2.4.1 Geometria de aquisição 

A tomossíntese digital de mama apresenta geometria de aquisição muito similar à da 

mamografia bidimensional (2D), até porque o mesmo equipamento promove os dois tipos de 

imagem. A maioria dos sistemas digitais de tomossíntese são constituídos dos mesmos 

componentes básicos dos sistemas de mamografia digital: um detector de campo total direto ou 
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indireto, um suporte para a mama, a placa de compressão e o tubo de raios X (SECHOPOULOS, 

2013). 

Entretanto a grande diferença da tomossíntese para a mamografia digital 2D é com 

relação ao posicionamento do tubo de raios X, que é rotacionado em um único plano ao redor 

da mama comprimida, gerando assim uma série de imagens, uma para cada posição (angulação) 

do tubo de raios X (SMITH, 2008). 

Nesta técnica, comumente denominada por mamografia tridimensional (3D), é gerada 

uma projeção para cada angulação do tubo de raios X, obtendo várias “fatias”, isto é, imagens 

em cortes finos da mama (DOBBINS III, GODFREY, 2003; NEWMAN, 2000). Essas fatias 

individuais são então reconstruídas por meio de algum algoritmo, geralmente o de retroprojeção 

filtrada (MALES, MILETA, GRGIC, 2011). A Figura 6 exemplifica a geometria de aquisição 

de um equipamento de tomossíntese. 

 

Figura 6 - Exemplo da geometria de aquisição de uma tomossíntese digital mamária. 

 

Fonte: Modificado de (KONTOS et al., 2009). 

 
Uma consideração que deve ser feita no design de um equipamento de tomossíntese é 

com relação ao movimento do tubo de raios X durante a aquisição. O tubo pode movimentar de 

maneira contínua ou no modo step-and-shoot. 

No modo contínuo, o tubo de raios X não para durante a aquisição, proporcionando 

então um rápido escaneamento. A largura de pulso de raios X deve ser curta o suficiente de 

maneira a evitar a distorção da imagem, obtendo então imagens mais nítidas (PARK et al., 

2007). 
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Já no outro modo, step-and-shoot, o tubo para totalmente a cada exposição, evitando o 

problema de borramento do ponto focal promovido pelo modo contínuo. Entretanto, neste modo 

o escaneamento geralmente é mais demorado, ocasionando artefatos tanto pelo movimento do 

paciente, quanto pela vibração mecânica do tubo (SHAHEEN, MARSHALL, BOSMANS, 

2011). 

O intervalo angular e o número de exposições adquiridas durante o escaneamento são 

variáveis adicionais que necessitam ser otimizadas. No geral, quanto maior o número de 

exposições, menor serão os artefatos produzidos após a reconstrução da imagem, e maior a dose 

recebida pelo paciente.  

 

2.4.2 Ângulo de aquisição (intervalo angular) 

A determinação do intervalo angular de escaneamento, ou seja, qual será o ângulo de 

início e fim da varredura do tubo de raios, é de suma importância no equipamento de 

tomossíntese. Este intervalo angular deve ao mesmo tempo permitir um baixo tempo de 

escaneamento, bem como preservar a habilidade de identificar microcalcificações e nódulos 

com doses aceitáveis de radiação. 

É certo que intervalos de varredura muito pequenos permitem tempos de escaneamento 

bem curtos, no entanto, a sobreposição de tecidos neste caso se mantém, visto que as projeções 

produzidas são próximas a da mamografia obtidas na angulação 0º (formando um ângulo de 90º 

com o receptor da imagem) (REN et al., 2005). 

Por outro lado, a medida que se aumenta o ângulo de escaneamento, a sobreposição dos 

tecidos reduz, porém, a visualização de estruturas muito pequenas como microcalcificações é 

dificultada (SMITH, 2008). Outro problema de um intervalo angular muito alto é que parte da 

mama pode não ser atingida pelo feixe de raios X, conforme ilustrado na Figura 7. 
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Figura 7 – O campo de visão depende do ângulo de escaneamento da tomossíntese. (A) Ângulo 0º; (B) Com o 

tubo de raios X posicionado no ângulo de +25º, parte da mama não atinge o detector. 

 
(A)                                     (B) 
Fonte: Modificado de (SMITH, 2008). 

 

2.4.3 Detectores 

Além dos requisitos para a mamografia digital, é importante que os detectores dos 

equipamentos que possuam a tecnologia de tomossíntese tenham algumas características 

adicionais. Primeiramente, é importante que o tempo de leitura seja rápido de maneira a não 

prolongar o tempo de aquisição de todas as projeções. Outra questão essencial é a redução 

mínima da Eficiência de Detecção Quântica (DQE) em exames com baixa dose, dado que na 

tomossíntese é necessário dividir a dose total ao longo das diversas projeções. O detector deve 

promover o mínimo “efeito fantasma” e lag (atraso) possível, fator que comprovadamente gera 

artefatos na imagem (MAINPRIZE, WANG, YAFFE, 2009). 

Quanto ao movimento, existem basicamente dois tipos de detectores na tomossíntese: 

detectores estacionários e detectores móveis. No primeiro tipo, estacionário, o sistema de 

detectores não se movimenta durante o exame. Já nos detectores móveis, o conjunto se 

movimenta em sincronia com o tubo de raios X de forma a manter a sombra da mama no 

detector durante toda a aquisição (SMITH, 2005). A Figura 8 apresenta os dois tipos de 

detectores. 
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Figura 8 – Tipos de detectores na tomossíntese: (A) detector estacionário e (B) detector móvel. 

 
(A)                                                                (B)  

Fonte: Modificado de (SMITH, 2005). 

 

2.4.4 Reconstrução da imagem 

Ao contrário da tomografia convencional em que a fonte/detector de raios X rotacionam 

totalmente em volta do objeto de estudo, a tomossíntese digital mamária atua sob um ângulo 

limitado de rotação do tubo, conforme discutido anteriormente. Assim, como a informação do 

objeto não é completa, o processamento digital da imagem pode solucionar parcialmente esse 

problema, produzindo imagens similares às de tomografia convencional. Entretanto, como a 

informação adquirida é incompleta, algoritmos de reconstrução para a tomossíntese são 

diferentes dos de tomografia (MALES, MILETA, GRGIC, 2011). 

Os detalhes específicos dos algoritmos de reconstrução utilizados pelos fabricantes não 

são fornecidos para acesso público, porém alguns algoritmos já foram estudados para 

tomossíntese digital mamária, sendo eles: 

 Shift-and-add (NIKLASON et al., 1997; NIKLASON, KOPANS, HAMBERG, 1998); 

 Iterative Matrix Inversion Tomosynthesis (MITS) (GODFREY, RADER, DOBBINS 

III, 2003; CHEN et al., 2006); 

 Tuned-aperture Computed Tomography (TACT) (WEBBER et al., 1997; 

SURYANARAYANAN et al., 2001); 

 Retroprojeção filtrada (FBP) (LAURITSCH, HÄRER, 1998; CLAUS, EBERHARD, 

2004; SIDKY et al., 2008); 
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Atualmente os sistemas de tomossíntese mamária utilizam-se normalmente de 

algoritmos iterativos (MITS) ou de retroprojeção filtrada (FBP) na reconstrução das 

imagens. 

O processo de reconstrução de imagens por meio do algoritmo MITS envolve dois 

estágios. O primeiro passo é aplicar uma reconstrução convencional de tomossíntese nas 

projeções das imagens. Depois, realizar uma operação de matriz inversa a fim de remover 

o borramento de estruturas fora do plano (WARP, GODFREY, DOBBINS III, 2000). 

Já o método de retroprojeção filtrada reconstrói objetos filtrando as projeções e 

retroprojetando-as no espaço da imagem (VAN DE SOMPEL, BRADY, BOONE, 2011). 

Cada projeção é filtrada e sua retroprojeção feita a partir de uma geometria de feixe cônico, 

no qual uma janela de von Hann é aplicada para eliminar altas frequências (REISER et al., 

2009). 

A Figura 9 mostra um exemplo de reconstrução em que as projeções são somadas, 

gerando uma imagem sintetizada (fatia). Neste caso, reforçou a lesão espiculada e reduziu 

o contraste dos objetos elipsoidais (objetos sem suspeita). 

 

Figura 9 – Princípio da tomossíntese, sintetizando as projeções e formando uma única imagem 3D reconstruída. 

 

Fonte: Modificado de (SMITH, 2008). 

 

No trabalho de Sghaier e colaboradores (SGHAIER et al., 2019) foi proposta uma nova 

abordagem de realce de contraste de microcalcificações para ser integrada no algoritmo de 

reconstrução da tomossíntese digital mamária. Na prática, a técnica proposta pelos autores é 

aplicada após a seleção de uma região de interesse que contém um local de possível presença 
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de microcalcificações. Apesar de testarem em uma base de dados pequena a partir de um 

phantom do Colégio Americano de Radiologia (ACR) e de imagens clínicas, os resultados 

visuais indicaram um aumento da visibilidade de microcalcificações após a implementação do 

método proposto no algoritmo de reconstrução. 

Uma imagem digital é definida como uma função bidimensional f(x,y), em que x e y 

correspondem às coordenadas espaciais, e a amplitude de f é o nível de cinza da imagem naquela 

determinada coordenada. Quando os valores de x, y e f são números finitos (discretos), a 

imagem é chamada de digital (GONZALEZ, 2009). Dessa forma, uma imagem digital é 

caracterizada por um número finito de elementos (pixels) que possuem uma localização e um 

valor específico. 

 

2.5 Qualidade da imagem mamográfica 

 

A imagem mamográfica já possui algumas problemáticas intrínsecas ao próprio 

processo de aquisição. Como ela é adquirida com feixes de raios X, quanto mais fótons 

incidentes, maior será a interação da radiação com a matéria, e consequentemente, maior a 

probabilidade de espalhamento Compton e assim de ruído quântico. O ruído quântico é a 

flutuação no número de fótons absorvidos, fator que compromete a qualidade de imagem, 

reduzindo a visibilidade, principalmente, de estruturas de baixo contraste. 

A fim de entender melhor sobre a imagem mamográfica e a dificuldade sobre sua 

interpretação, é importante explicar alguns conceitos relacionados à qualidade da imagem. 

Alguns fatores influenciam na qualidade e no contraste da imagem, sendo eles a: a anatomia da 

mama, a calibração do equipamento, a técnica de aquisição, a dose, e a correta compressão e 

posicionamento adequado da mama. 

 

2.5.1 Anatomia da Mama 

As mamas femininas são estruturas glandulares exócrinas localizadas na parede anterior 

do tórax sendo apoiada sobre o músculo peitoral maior. A mama é basicamente constituída por 

tecidos moles, formada pelo tecido glandular epitelial (parênquima), tecido subcutâneo e o 

tecido mamário (elementos epiteliais e o estroma) (BERNARDES, 2011).   
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Um dos grandes desafios do exame mamográfico é a presença de tecidos que apresentam 

graus de absorção de raios X muito próximos. Mulheres jovens apresentam predominância de 

tecido fibroglandular nas mamas, isto é, com menos presença de tecido adiposo. A Figura 10 

apresenta a diferença visual entre uma mama adiposa (gordurosa - Figura 10a) de uma mama 

densa (fibroglandular - Figura 10b). 

 

Figura 10 – Diferença entre uma mama densa (B) para uma mama predominantemente adiposa (A). Nota-se que 

a predominância de tecido fibroglandular na mama densa (B) aparece em tons mais claros na imagem e com 

textura característica, podendo obscurecer lesões. 

 

 

(A)                              (B) 

Fonte: (MOREIRA et al., 2012). 

 

Com relação a atenuação de raios X, o comportamento do tecido fibroglandular é muito 

similar ao de massas tumorais, diferentemente do que ocorre com o tecido adiposo (JOHNS, 

YAFFE, 1987). O tecido fibroglandular é radiograficamente denso, o que diminui o contraste 

da imagem. Como o rastreamento mamográfico (detecção precoce) inicia-se na faixa etária em 

que as mulheres predominantemente possuem mamas fibroglandulares, torna-se importante 

uma boa qualidade das imagens de mamas densas, evitando o ocultamento de estruturas 

patológicas. 
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2.5.2 Compressão da mama 

Durante a realização do exame mamográfico, uma etapa importante é a compressão da 

mama. Com o uso de um compartimento de compressão, a mama é comprimida por uma placa 

de material radiotransparente de forma a se obter a menor espessura possível. 

A correta compressão da mama possibilita algumas vantagens para a qualidade da 

imagem mamográfica. Uma das funções dessa compressão é imobilizar a mama com o intuito 

de reduzir artefatos de movimento e a radiação espalhada, melhorando a resolução de contraste 

da imagem resultante. Além disso, uma menor e uniforme espessura de mama resulta em 

exposição de raios X homogênea, reduzindo a dose de radiação sobre a paciente (BUSHONG, 

2013). 

 

2.5.3 Calibração do equipamento 

Um dos fatores que influencia diretamente na qualidade da imagem mamográfica é a 

calibração do equipamento. O mamógrafo deve estar devidamente calibrado, de forma que ao 

selecionar algum parâmetro técnico (corrente, tensão, tempo ou produto corrente-tempo) no 

painel de controle, se tenha certeza que o valor selecionado é o que está sendo executado. 

 

Tensão de pico (kVp) 

Uma das calibrações necessárias é a da tensão de pico (dada em quilo-volt de pico - 

kVp). Esse parâmetro está relacionado ao controle elétrico primário que influencia no contraste 

da imagem (CARROL, 1998). À medida que se aumenta o kVp, maior é a escala de cinza 

devido ao aumento da penetração de raios X no tecido. Devido a essa maior energia, maior será 

também a radiação espalhada, reduzindo o contraste radiográfico (BUSHONG, 2013) 

 

Produto corrente-tempo de exposição (mAs) 

Outra calibração importante é acerca do tempo de exposição, visto que ela compromete 

a dose de radiação em que a paciente estará sujeito. É importante que o tempo de exposição 

seja o mais curto possível de forma a minimizar a dose, evitando o borramento da imagem que 

pode ocorrer pelo movimento da paciente caso a aquisição seja muito longa. É necessário 

também que esse tempo esteja calibrado, para evitar repetição do exame, e uma perda de 

contraste da imagem. A corrente (dada em miliampère - mA) e o tempo de exposição, dado em 
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segundos, são combinados, formando o produto corrente-tempo de exposição (mAs – 

miliampère por segundo). 

 

2.5.4 Controle automático de exposição (AEC) 

O conjunto de ajustes selecionados no painel de controle do mamógrafo é definido como 

técnica radiográfica de aquisição. Entretanto, um modo bastante utilizado durante a aquisição 

das imagens é o controle automático de exposição (AEC – Automatic Exposure Control). Neste 

modo, o algoritmo do AEC busca otimizar a técnica de raios X (kVp, tempo de exposição, 

combinação alvo/filtro) com a espessura e densidade mamária em análise.  

Em alguns sistemas, é possível que todos os parâmetros sejam selecionados sem a 

intervenção do responsável pelo exame, mas o técnico responsável pelo exame pode selecionar 

apenas a tensão de pico (kVp) baseada na estimativa da densidade mamária da paciente 

(ELBAKRI, LAKSHMINARAYANAN, TESIC, 2005). Basicamente, o circuito elétrico 

responsável pelo controle automático, monitora a exposição de raios X transmitidos, e quando 

um determinado limiar é excedido, ele termina a exposição (BUSHBERG, BOONE, 2011). 

 

2.5.5 Dosimetria 

Nos programas de garantia de qualidade em mamografia é incluída a avaliação da dose 

como um dos fatores importantes na otimização de técnicas, recomendando no Brasil, testes 

usando simuladores de mama. O objetivo é produzir uma imagem com boa qualidade e a menor 

dose ao paciente (PORTARIA 453, 1998).  

Para isso, são importantes as medidas de dose na entrada na pele (DEP) e dose glandular 

média (DGM). A primeira, DEP, é dada como a dose absorvida na entrada da pele do paciente 

no local onde existe irradiação, incluindo a radiação retroespalhada pelo paciente (VALENTIN, 

2000). Já a DGM, é a energia depositada na região glandular (mais radiossensível) em uma 

mama uniformemente comprimida (GRAY, 1994).  
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2.6 Conclusões 

 

A partir deste capítulo foi possível perceber os efeitos do crescente aumento da 

tecnologia nos equipamentos de mamografia, e inclusive o surgimento de uma nova modalidade 

de exame: a tomossíntese digital mamária. A evolução dos equipamentos foi benéfica em vários 

sentidos, tanto em melhoria da qualidade de visualização de estruturas, quanto na velocidade 

de transmissão dessa imagem, modificando a rotina de médicos, técnicos e pacientes nos 

estabelecimentos de saúde. Atualmente, o mais importante é promover o amplo acesso às 

tecnologias e  manter o controle de qualidade dos equipamentos em dia, de maneira a detectar 

precocemente o câncer de mama, aumentando as chances de cura e sobrevida da paciente.
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Capítulo 3 ESTADO DA ARTE 

Ao longo dos últimos anos, o fato do surgimento da tomossíntese ser bem recente, 

diversos estudos vêm mostrando suas vantagens e desvantagens na prática clínica. Para isso, 

diversos pesquisadores estudaram a comparação, em termos de ganhos de diagnóstico e para 

fins comerciais, entre a mamografia digital 2D e a Tomossíntese Digital Mamária (TDM). 

Entretanto, por ser uma tecnologia recente, não muito difundida, a tomossíntese não vem para 

substituir a mamografia, e sim, para servir como um exame complementar. A tomossíntese não 

é um equipamento novo, mas sim um recurso adicional (upgrade) do mamógrafo, sendo a 

imagem 3D (tomossíntese) adquirida a partir do mesmo equipamento das imagens 

mamográficas 2D. 

Neste capítulo serão descritos trabalhos encontrados na literatura que comparam as 

modalidades de exame da mamografia convencional e tomossíntese, bem como alguns métodos 

computacionais que vêm sendo empregados em imagens médicas na tentativa de aumentar o 

realce de contraste, e consequentemente a visualização de estruturas. 

 

3.1 Comparação clínica entre mamografia e tomossíntese 

 

A seguir serão apresentados estudos da literatura que mostram alguns dos benefícios da 

utilização da tomossíntese, desde a diminuição da taxa de recall, o aumento na detecção de 

câncer mamário, a melhora da especificação de estruturas e a dose nesse tipo de modalidade 

3D de exame.  

 

3.1.1 Taxa de recall 

Como a sobreposição de tecidos é minimizada com a tomossíntese, há uma diminuição 

da taxa de pacientes que necessitariam um novo exame ou de incidências mamográficas 

adicionais. Nos estudos de Gur (GUR et al, 2009) e Poplack com colaboradores (POPLACK et 

al., 2007), foi mostrado que a taxa de recall pode ser reduzida com a utilização da tomossíntese 
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mamária. O mesmo acontece com as biópsias, em que ocorre uma diminuição dos casos, visto 

que há uma melhor discriminação de lesões reais. 

Friedewald e pesquisadores (FRIEDEWALD et al., 2014) em um grande estudo (mais 

de 400 mil exames analisados) também apontaram uma diminuição na taxa de recall quando a 

tomossíntese é adicionada ao exame de mamografia. Dos trezes locais de rastreamento que 

foram avaliados na pesquisa, onze deles mostraram uma queda substancial no número de 

pacientes que tiveram que refazer o exame. 

Em um estudo realizado por Sharpe et al que incluía 5587 pacientes submetidos à 

tomossíntese, foi averiguado que a inclusão deste exame obteve uma redução estatisticamente 

significativa (18,8%) na taxa de recall. Além disso, os autores mostraram que essa redução 

ocorreu também independentemente da idade e do tipo de densidade mamária da paciente 

(SHARPE JR et al., 2015). 

 

3.1.2 Detecção de câncer 

Um grande estudo de rastreamento, desenvolvido em Oslo, na Noruega, avaliou o 

desempenho da tomossíntese. No estudo inicial, em 2013, Skaane e colegas (SKAANE et al., 

2013) avaliaram, durante um ano, 12631 exames de rastreamento em que as pacientes foram 

submetidas tanto a mamografia 2D (FFDM) quanto a 3D (tomossíntese). Os resultados 

apontaram um aumento de 27% na detecção de cânceres, com uma redução de 15% na taxa de 

falso-positivo quando se comparou os exames empregando a técnica utilizada na prática de 

combo (2D + 3D) com apenas a mamografia 2D.  

Esse mesmo grupo de pesquisa, apoiados financeiramente pela fabricante Hologic, 

desenvolveram uma continuação do estudo prévio, mas agora ampliando o número de exames 

de rastreamento mamográfico para 34740. Os resultados indicaram que a implementação da 

tomossíntese promoveu significativamente um aumento na sensibilidade e especificidade no 

rastreamento do câncer de mama (SKAANE et al., 2019). Vale ressaltar que essa pesquisa foi 

financiada por uma das maiores fabricantes de tomossíntese do mundo. 

Em outro grande estudo desenvolvido na Itália, 7292 mulheres com faixa etária de 58 

anos idade foram submetidas ao rastreamento do câncer de mama a partir da mamografia digital 

FFDM e tomossíntese. Dessa forma, as avaliações dos exames eram feitas em duas fases 

sequenciais: apenas com a imagem 2D e imagem 2D integrada com 3D. O uso integrado da 

tomossíntese aumentou a detecção de câncer em 51% e reduziu a taxa de falso-positivos em 
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3.1.3 Avaliação e especificação do tumor 

O estudo de Rafferty e colaboradores (RAFFERTY et al., 2013) objetivava comparar a 

acurácia de radiologistas na avaliação de exames com o uso da mamografia isolada e da 

mamografia em conjunto com a tomossíntese. Neste trabalho, foi possível concluir que uma 

melhora na detecção de distorções arquiteturais e na caracterização da morfologia do câncer em 

exames obtidos no modo combo (com a tomossíntese). 

De forma a investigar se o tamanho do tumor pode ser melhor avaliado com a 

tomossíntese, com a mamografia e com a ultrassonografia, Förnvik e pesquisadores mostraram 

que a tomossíntese foi superior na avaliação do estágio e do tamanho do tumor de mama, em 

comparação com os outros dois exames (FÖRNVIK et al., 2010). Estudos adicionais, feitos por 

Meacock et al., mostraram que a TDM é superior à imagem 2D na estimativa da extensão das 

malignidades, visto que as margens das lesões são mais visíveis na imagem de tomossíntese 

(MEACOCK et al., 2010). 

Chan e colegas (CHAN et al., 2017) compararam a avaliação de lesões mamárias entre 

a mamografia digital e a tomossíntese, ambas analisadas independentemente e sob duas 

incidências. Apesar de em alguns poucos casos, contradizendo Meacock e colaboradores 

(MEACOCK et al., 2010) as margens das lesões ficaram um pouco obscurecidas com a TDM, 

mostraram que analisando a imagem de tomossíntese isoladamente (sem a mamografia), as 

avaliações de lesões foram significativamente aprimoradas com o uso da tecnologia 3D frente 

à mamografia. 

 

3.1.4 Mamas densas 

A densidade mamária corresponde à uma classificação que envolve a análise da 

proporção dos diferentes tecidos que compõem a mama. Quanto maior a predominância de 

tecido fibroglandular em sua composição, maior é a densidade da mama. Tal característica 

influencia diretamente na qualidade da imagem radiológica, e assim, na avaliação do exame 

pelo radiologista. 

Alguns estudos comprovaram que quanto maior a densidade mamária, maior o risco do 

desenvolvimento do câncer de mama (SAFTLAS et al., 1991; KATO et al., 1995; BYNG et 

al., 1998; VARGHESE et al., 2012). Isso ocorre devido ao tecido fibroglandular apresentar 

pouca absorção de raios X, produzindo uma imagem de contraste ainda menor. Isso significa 



 Capítulo 3 Estado da arte 

52 
 

 

que o tecido fibroglandular aparece em tons mais claros (brancos) na imagem, dificultando a 

visualização de alguns achados que apresentem níveis de cinza similares (BAKIC et al., 2009).  
O atual padrão de classificação de densidade mamária proposto pelo Breast Imaging 

Reporting and Data System (BI-RADS®) desencoraja o uso de porcentagem de tecido para a 

classificação entre os quatro padrões de densidade mamária citados a seguir (SICKLES et al., 

2013): 

 a: a mama é inteiramente composta por tecido adiposo. A mamografia é altamente 

sensível para este tipo de mama; 

 b: há áreas dispersas de tecido fibroglandular; 

 c: a mama é heterogeneamente densa, podendo obscurecer pequenas massas; 

 d: a mama é quase inteiramente composta por tecido fibroglandular. A sensibilidade 

da mamografia é reduzida para este tipo de mama. 

Alguns pesquisadores vêm estudando o comportamento da tomossíntese na avaliação 

de mamas densas. No estudo de Haas e colaboradores (HAAS et al., 2013) foi observada a 

performance da tomossíntese no rastreamento de 13 mil mulheres. Foi notado que com a adição 

da imagem 3D, as taxas de recall foram reduzidas para todos os padrões de densidade mamária, 

com redução significativa nas mamas de padrão ‘c’ e ‘d’. A Figura 12 mostra a porcentagem 

de redução da taxa de recall para cada tipo de densidade mamária. 

 

Figura 12 – Redução da taxa de recall após a adição da imagem 3D para cada uma das classes de densidade 

mamária. (a) Mama adiposa; (b) Mama com áreas dispersas de tecido fibroglandular; (c) Mama 

heterogeneamente densa; (d) Mama extremamente densa. 

 

Fonte: Modificado de (HAAS et al., 2013). 
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Rafferty, Niklason e Smith mostraram que a utilização do modo combo foi 

significativamente melhor do que a utilização somente da mamografia 2D, analisando a curva 

ROC. O ganho na área abaixo da curva ROC foi de duas a três vezes maior para mamas densas, 

além de uma alta redução da taxa de recall para mamas deste padrão de densidade mamária 

(RAFFERTY, NIKLASON, SMITH, 2009). 

 Philpotts e colegas avaliaram a visualização do câncer de mama em função da densidade 

mamária com o uso da tomossíntese. Eles comprovaram que a imagem 3D foi particularmente 

benéfica na visualização de nódulos em mamas densas. Do total de tumores, 70% foram apenas 

ou melhores visualizados com a tomossíntese (PHILPOTTS et al., 2013). 

Em um estudo de coorte prospectivo (CONANT et al., 2019) com dados de três centros 

de pesquisa objetivou determinar se a utilização da tomossíntese no rastreamento do câncer de 

mama promovia um prognóstico aprimorado, além de comparar as taxas de detecção por idade 

e por tipo de densidade mamária das pacientes. Obtiveram-se 50971 exames de tomossíntese e 

129369 de mamografia digital que foram interpretados por 47 radiologistas.  

Os resultados mostraram o aumento da detecção de câncer de mama utilizando a 

tomossíntese. Tanto em pacientes jovens com mamas gordurosas (não-densas) quanto em 

pacientes jovens com mamas densas, a taxa de detecção de câncer foi maior com a tomossíntese 

se comparada com a mamografia digital (1,7 e 2,27 a cada 1000 mulheres, respectivamente). 

Além de mostrar uma melhora de detecção em mamas densas, a pesquisa indicou também que 

a tomossíntese mamária foi superior na visualização de lesões de menor tamanho. 

Nakashima e colaboradores (NAKASHIMA et al., 2017) compararam a visibilidade de 

nódulos circunscritos (delimitados, definidos) em imagens mamográficas 2D e de tomossíntese, 

avaliando se a tomossíntese é vantajosa na determinação da benignidade ou não do nódulo. 

Setenta e um (19 malignos e 52 benignos) nódulos delimitados e bem circunscritos provenientes 

de imagens mamográficas foram incluídos. A visibilidade dos nódulos, e o efeito da densidade 

mamária na visibilidade de lesões foram avaliados comparando ambas as modalidades de 

exame (tomossíntese 3D e mamografia 2D). Os resultados apontaram que os nódulos 

circunscritos são melhor visualizados na tomossíntese do que na mamografia 2D, 

particularmente em mamas densas. Entretanto, esses nódulos circunscritos utilizando as 

imagens de tomossíntese não asseguram que eles sejam benignos. 
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3.1.5 Dose na tomossíntese 

Segundo a literatura descrita até aqui, a tomossíntese de fato apresenta alguns benefícios 

importantes na questão do câncer de mama, desde o aumento na taxa de detecção até a redução 

da taxa de recall. Entretanto, a tomossíntese apresenta uma grande limitação: a dose de radiação 

(ROCHA, MERA, 2019). 

No trabalho de Svahn e colaboradores em 2015, (SVAHN et al., 2015) foram 

examinados se os níveis de dose de radiação se diferiam entre a tomossíntese digital mamária 

(TDM) e a duas incidências da mamografia digital de campo total (FFDM). As relações de dose 

foram adquiridas dos protocolos das imagens, tanto da tomossíntese em separado (uma ou duas 

incidências), como da tomossíntese sendo um exame complementar à mamografia 2D.  

Os resultados indicaram que o uso da tomossíntese de forma independente operou em 

doses de radiação um pouco mais altas em comparação ao sistema FFDM. Conforme esperado, 

no modo combo (tomossíntese + mamografia 2D), as doses de radiação foram ainda mais 

elevadas, de 2,0 a 2,2 vezes maior do que quando usou apenas a mamografia 2D (SVAHN et 

al., 2015).  

Em outro trabalho (SKAANE et al., 2013) comparando a mamografia digital utilizada 

independente com o modo combo, foi mostrado que quanto à dose glandular média, a adição 

da tomossíntese aumentou mais que o dobro (3,53 mGy - miligray) quando se comparada à 

dose glandular média utilizando apenas a mamografia 2D (1,58 mGy). No entanto, apesar desse 

aumento de dose, esses resultados ainda estão abaixo do limite aprovado pelo FDA (Food and 

Drug Administration) dos Estados Unidos, o que consiste em um risco aceitável.   

Angiocchi e pesquisadores (ANGIOCCHI et al., 2018) objetivaram avaliar a dose 

glandular média da tomossíntese digital mamária a fim de estudar o aumento da dose 

cumulativa quando o paciente é sujeito ao exame em modo combo. Os resultados indicaram um 

aumento de 34,7% da dose cumulativa quando a tomossíntese foi adicionada ao exame de 

rastreamento.  

Um outro estudo (ALAKHRAS et al., 2016) comprovou a relação entre a dose de 

radiação com a espessura da mama em exames de mamografia e tomossíntese. Foram utilizados 

phantoms com 6 diferentes espessuras, adquirindo 240 imagens tanto de mamografia quanto de 

tomossíntese com diferentes técnicas de aquisição. Os resultados apontaram que a dose de 

radiação da tomossíntese digital mamária foi maior do que para a mamografia, e que quanto 

maior a espessura, maior também é a dose. Entretanto, essa diferença de dose entre mamografia 
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e tomossíntese foi menor à medida que se aumentou a espessura do phantom. Por exemplo, para 

a técnica utilizando 100% do produto corrente-tempo (modo AEC), para a menor e a maior 

espessura de phantom, a diferença de dose entre a TDM e a mamografia foi de 108% e 4%, 

respectivamente.  

 

3.2 Conclusões 

 

Com o desenvolvimento e aplicação da tomossíntese digital mamária, a detecção precoce 

do câncer de mama ganhou mais um forte aliado. Neste capítulo, foram mostrados diversos 

estudos que comprovam algumas das vantagens deste novo exame em comparação com a 

mamografia 2D. Vale atentar que em vários desses estudos ocorreu um incentivo financeiro da 

fabricante de equipamentos de tomossíntese, o que pode ter ocasionado algum tipo de viés de 

interesse comercial (conflito de interesse). Apesar dos inúmeros pontos positivos, as principais 

limitações da tomossíntese são: os aumentos de dose de radiação, visto que o tempo do exame 

é aumentado, além do alto custo de implantação e de treinamento do corpo médico para lidar 

com esse novo método. Dessa forma, torna-se importante a criação de ferramentas que auxiliem 

no diagnóstico, uma vez que a tomossíntese ainda está distante de ser amplamente implantada 

e difundida. 
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Capítulo 4 TÉCNICAS DE REALCE DE CONTRASTE 

Alguns sinais sutis de câncer de mama, tais como pequenos nódulos e 

microcalcificações, podem ser difíceis de serem detectados pelos radiologistas devido ao exame 

de mamografia ser de baixo contraste (MORROW et al., 1992). O contraste entre tecido 

fibroglandular e maligno pode estar presente na imagem mamográfica, entretanto abaixo do 

limiar de percepção visual humano, aumentando a subjetividade do diagnóstico. 

Dessa forma, técnicas de processamento digital em imagens são necessárias a fim de 

aumentar o contraste das imagens, destacando determinados objetos do fundo da imagem, 

possibilitando a percepção visual (critérios subjetivos do olho humano).  

As técnicas de realce de contraste podem ser classificadas em diretas e indiretas. Nas 

diretas, é estabelecido um critério de medida de contraste aplicado diretamente na imagem, ao 

contrário das técnicas indiretas, em que o contraste da imagem não é manipulado diretamente, 

mas sim o histograma é modificado, para depois alterar o contraste da imagem (AKILA, 

JAYASHREE, VASUKI, 2015).  

Algumas técnicas de realce de contraste em imagens mamográficas 2D que já foram 

propostas na literatura são apresentadas a seguir. 

 

4.1 Técnicas de realce de contraste diretas 

 

4.1.1 Transformada Wavelet e representação de imagens multiescala 

Transformadas wavelets foram largamente empregadas em diferentes aplicações nas 

últimas décadas, principalmente nas áreas de processamento de sinais e de imagens, 

possibilitando a representação de imagens multiescala (WICKERHAUSER, 1992; ANTONINI 

et al., 1992; CHANG, CVETKOVIC, VETTERLI, 1995). Segundo Daubechies 

(DAUBECHIES, 1992), as transformadas wavelets podem ser classificadas como contínuas 

(TWC – Transformada Contínua de Wavelet) e discretas (TWD – Transformada Discreta de 

Wavelet). As vantagens da transformada wavelet se concentram no fato desse tipo de 
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transformada poder ser usada para decompor o sinal em diferentes escalas, tanto no domínio da 

frequência, quanto no domínio do tempo. Ela é capaz de escolher a escala apropriada no 

domínio da transformada wavelet, ignorando ou reduzindo a contribuição de outras escalas. 

De forma análoga à Transformada de Fourier (TF), a transformada wavelet decompõe o 

sinal em questão em conjuntos apropriados de bases de funções. O nome indica que são 

pequenas ondas, ou ondeletas, em português, sugerindo que as wavelets são localizadas no 

tempo. Isso é uma diferença frente à TF, visto que essas bases são formadas de senos e cossenos 

infinitos. Ao contrário da TF, as wavelets decaem à zero quando t    (YOUNG, 2012). 

A wavelet-mãe ((t)) é a função básica oscilatória de suporte para a construção de uma 

wavelet, sendo responsável por gerar as bases a partir de dilação (a) e deslocamentos (b), (at 

 b). Nas wavelets discretas a = 2j (escala) e b = k (translação), no qual j e k são inteiros. Essa 

estrutura fornece uma representação hierárquica do sinal que está sendo analisado, oferecendo 

uma resolução em tempo e frequência, por isso o nome de análise de multiresolução (SABLÓN, 

MENDEZ, IANO, 2010). A Equação (1) define a Transformada Discreta de Wavelet (CHUI, 

2016): 

 

  TWD(m, n) = 1√𝑎0𝑚 ∫ 𝑓(𝑥)𝜓 ∗ (𝑎0−𝑚𝑥 − 𝑘)𝑑𝑥∞
−∞  (1) 

 

em que, m e n são números inteiros e representam a escala e o deslocamento, respectivamente. 

O parâmetro a é discretizado exponencialmente a = (𝑎0𝑚), e b é discretizado proporcionalmente 

à a,b = b0.n0.a0m. Os parâmetros a0 e b0 são constantes que indicam os passos discretos de 

escalonamento e deslocamento (translação), respectivamente. Já k, é uma variável inteira que 

se refere a uma dada amostra do sinal de entrada f(x). 

Mallat (MALLAT, 1989) desenvolveu uma análise multiresolução que permite obter 

aproximações e detalhes do sinal por meio de um algoritmo piramidal (diádica). Essa 

representação fornece uma base para analisar e interpretar informações contidas em uma 

imagem. Para uma sequência crescente de resoluções (𝑟𝑗)𝑗 ∈ Z, a diferença de informação entre 

a sua aproximação (𝑟𝑗) e a sua aproximação com resolução mais baixa (𝑟𝑗−1) é definida como 

os detalhes com resolução 𝑟𝑗 (MALLAT, 1999). A partir disso, é possível decompor o sinal f(x) 

em dois termos, conforme a Equação (2): 
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  𝑓2𝑗+1(𝑥) = 𝑓2𝑗(𝑥) + 𝐷2𝑗𝑓(𝑥) (2) 

  

O primeiro termo (𝑓2𝑗(𝑥)) corresponde ao coeficiente de aproximação, aquele que 

indica as componentes de baixas frequências do sinal. Já as componentes de alta frequência são 

representados pelo segundo termo 𝐷2𝑗𝑓(𝑥), indicando o coeficiente de detalhe, que é subdivido 

para as direções vertical, horizontal e diagonal, decompondo assim a imagem em quatro níveis 

(aproximação, horizontal, vertical, diagonal). 

As transformadas wavelets vêm sendo implementadas na filtragem de ruídos e para 

realce de contraste por muito tempo (LAINE et al., 1994, HEINLEIN, DREXL, SCHNEIDER, 

2003; SCHARCANSKI, JUNG, 2006; YU, HUANG, 2006; KIDSUMRAN, CHIRACHARIT, 

2015; LASHARI et al., 2016). Na filtragem de ruídos, é muito usada uma operação de 

thresholding aplicada aos coeficientes da wavelet após a decomposição. Essa técnica de 

limiarização dos coeficientes visa reduzir o ruído presente em um sinal. As duas propostas mais 

conhecidas e utilizadas para o truncamento do threshold (λ) são denominadas soft ou hard 

(DONOHO, JOHNSTONE, 1995). A Equação (3) apresenta o cálculo para o truncamento do 

tipo soft para os coeficientes de detalhe 𝐷𝑗,𝑘 . 

 

  𝑡ℎ𝑟𝜆𝑆𝑜𝑓𝑡(𝐷𝑗,𝑘) = {0,                                        𝑠𝑒 |𝐷𝑗,𝑘| ≤  𝜆𝑠𝑔𝑛(𝐷𝑗,𝑘)(|𝐷𝑗,𝑘| − 𝜆), 𝑠𝑒|𝐷𝑗,𝑘|  >  𝜆  (3) 

 

em que 𝑠𝑔𝑛 significa a função sinal, retornando o sinal do número real. Já a Equação (4) mostra 

o cálculo quando o truncamento é feito no tipo hard. 

 

  𝑡ℎ𝑟𝜆𝐻𝑎𝑟𝑑(𝐷𝑗,𝑘) = { 0,         𝑠𝑒 |𝐷𝑗,𝑘| ≤  𝜆𝐷𝑗,𝑘,       𝑠𝑒|𝐷𝑗,𝑘|  >  𝜆 (4) 

 

Após o cálculo e implementação do threshold (𝜆), a transformada wavelet inversa é 

aplicada nos coeficientes de detalhe que sofreram alteração (truncamento) desse limiar 

juntamente com o coeficiente de aproximação. Existem outros métodos de truncamento de 
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coeficientes (além do soft e hard), conforme discutido e apresentado no trabalho de revisão de 

De Jesus Kozakevicius e Bayer (DE JESUS KOZAKEVICIUS, BAYER, 2014). 

Em termos de realce de contraste, a vantagem da utilização de métodos a partir de 

wavelets em mamogramas se dá por esse tipo de imagem conter características de escala variada 

e atributos sutis. Um exemplo disso são as calcificações, que na sua maioria, possuem escalas 

pequenas, enquanto que objetos maiores, com bordas mais suaves, como os nódulos, contém 

escalas mais grosseiras (SAKELLAROPOULOS, COSTARIDOU, PANAYIOTAKIS, 2003). 

Além da complexidade inferior da wavelet comparada com a Transformada Rápida de Fourier, 

não é fácil extrair informações referentes a um sinal de alta frequência a partir do espectro de 

Fourier, como é o caso das microcalcificações, daí o crescente uso das wavelets em trabalhos 

relacionados a imagens. 

No trabalho de Tang, Liu e Sun de 2009, foi desenvolvida uma nova tecnologia de realce 

de contraste no domínio wavelet para mamografias. O algoritmo proposto modifica a medida 

multiescalar que corresponde ao sistema de visão humana, aumentando a qualidade visual das 

imagens realçadas (TANG, LIU, SUN, 2009). A técnica de realce utilizada foi proposta no 

trabalho de Pu e Ni (PU, NI, 2000), na qual é definida um contraste local nas direções vertical, 

horizontal e diagonal. É possível que o usuário ajuste o realce manipulando um único 

parâmetro, que é o número de pixels (m) na região (w) que o contraste será avaliado.  

Nesse mesmo trabalho (TANG, LIU, SUN, 2009), de forma a medir o desempenho do 

algoritmo proposto, o experimento foi dividido em duas partes. A primeira etapa consistiu na 

medida da efetividade do realce do método proposto, enquanto que a segunda parte do 

experimento foi um teste subjetivo qualitativo com pessoas com experiência na avaliação de 

nódulos e calcificações. 

Foi definida uma medida de desempenho baseada no operador Laplaciano em uma 

região da imagem. A região de contraste de uma região de interesse da imagem avalia o 

contraste local do pixel, o valor de intensidade do pixel, e o número de pixels da região que está 

sendo avaliada. Essa medida local de contraste é caracterizada pela maior robustez à ruídos em 

comparação com outras medidas de contraste padrões. Os resultados comprovaram que o 

método por eles proposto obteve maior contraste em relação a outros métodos também testados, 

como: equalização de histograma e máscara de nitidez (unsharp masking). 
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A Figura 13 mostra os 4 níveis de decomposição usando a transformada discreta de 

wavelet. É possível notar os coeficientes gerados após a decomposição, conforme explicado 

anteriormente.  

 

Figura 13 – (A) Imagem mamográfica original; (B) 4 níveis de decomposição usando transformada wavelet. 

Cada nível de decomposição gera quatro subimagens. 

  
                                                   (A)                                        (B) 

Fonte: (TANG, LIU, SUN, 2009). 

 

4.1.2 Máscara de nitidez (Unsharp mask) 

A máscara de nitidez, unsharp mask (UM), é um método comum em processamento de 

imagens que consiste na subtração de uma versão borrada (unsharp) da imagem pela imagem 

original (GONZALEZ, WOODS, 2007).  Na técnica de UM, geralmente um filtro linear ou 

não-linear é usado para amplificar as componentes de alta frequência do sinal. A máscara de 

nitidez é expressa conforme Equação (5), em que 𝑓(̅𝑥, 𝑦) denota a imagem borrada: 

 

  𝑔𝑚á𝑠𝑐𝑎𝑟𝑎 = 𝑓(𝑥, 𝑦) −  𝑓(̅𝑥, 𝑦) (5) 

 

Por fim, uma porção ponderada da máscara é adicionada novamente à imagem original, 

mostrada na Equação (6): 
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  𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑘 ∗ 𝑔𝑚á𝑠𝑐𝑎𝑟𝑎(𝑥, 𝑦) (6) 

 

no qual é incluído um peso 𝑘(𝑘 ≥ 0). Quando k > 1 ocorre uma filtragem de “alto-reforço”, 

enquanto que k < 1, atenua a contribuição da unsharp mask. Desta forma, é importante atribuir 

um valor desejável a k, visto que em alguns casos, podem surgir valores negativos na imagem, 

gerando uma auréola escura ao redor das bordas, produzindo resultados indesejáveis 

(GONZALEZ, WOODS, 2010). 

 Dentro da máscara de nitidez, é possível controlar três parâmetros que definem a 

intensidade do realce (TANEJA et al., 2009), sendo eles: 

a) Amount: especifica o grau em um número escalar (ou porcentagem) que controla a 

magnitude dos extremos, isto é, o quão escuro e o quão claro as bordas ficarão. 

Quanto maior o valor, maior o aumento do contraste dos pixels em questão; 

b) Threshold (limiar): controla a mudança mínima de contraste necessária para um 

pixel ser considerado de borda. Valores altos de limiar eliminam áreas de baixo 

contraste, como no caso de bordas mais sutis; 

c) Radius (raio): influencia no tamanho das bordas que serão realçadas. Um valor 

menor de raio realça os detalhes em escala menor. Funciona como o desvio padrão 

do filtro passa-baixa Gaussiano. Esse parâmetro está interligado com o amount, 

aumentar um, permite menos a influência do outro. 

O método convencional de UM é simples e funciona razoavelmente bem em diversas 

aplicações, porém ele possui algumas limitações. A primeira delss, devido à aplicação do filtro 

passa-alta, os detalhes e ruídos são realçados ao mesmo tempo, fazendo que até ruídos mais 

sutis sejam realçados. O segundo problema é que o realce é maior em áreas de maior contraste, 

o que pode permitir que artefatos apareçam na imagem de saída (WU et al., 2010). 

 Wu e colaboladores (WU et al., 2010) analisaram e aplicaram um algoritmo modificado 

de unsharp mask a partir de um filtro passa-alta aprimorado em lesões de imagens de 

mamografia digitais. Os resultados se mostraram superiores quando comparados à máscara de 

nitidez linear e ao método de segmentação por região. Foi possível, a partir do algoritmo 

proposto, delimitar melhor as bordas das lesões, e ao mesmo tempo inibir o realce de ruídos em 

áreas de fundo.    
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 Outro trabalho que usou o método de UM em imagens mamográficas foi o de Bhateja, 

Misra e Urooj publicado em 2016 (BHATEJA, MISRA, UROOJ, 2016). Foi utilizado um filtro 

polinomial não-linear (Non-Linear Polynomial Filter - NPF), composto por componentes de 

filtros lineares e quadráticos. Operacionalmente, o modelo de NPF é uma fusão de filtros passa-

baixa e passa-alta, fornecendo suavização do ruído e melhoria de realce, respectivamente. 

O resultado da aplicação pode ser visualizado na Figura 14. Os autores concluíram que 

o algoritmo foi eficaz no realce nas regiões de interesse analisadas, visto que as regiões 

periféricas ficaram bem visíveis e as bordas foram preservadas. 

 

Figura 14 – (I) ROI original; (II) ROI realçada a partir do algoritmo de unsharp mask proposto. 

 

Fonte: Modificado de (BHATEJA, MISRA, UROOJ, 2016). 

 

4.1.3 Fuzzy logic (Lógica difusa ou nebulosa) 

A lógica fuzzy (ou difusa) pode ser aplicada na área de processamento de imagens, desde 

que a própria imagem e seus componentes, tais como: histograma, pixels, etc., sejam 

transformados para o plano fuzificado (pertinência) (SMITS et al., 1995). O intuito da lógica 

fuzzy é fornecer um modelo matemático a termos subjetivos e vagos, como é o caso de “em 

torno de”, “aproximadamente” (DE BARROS, BASSANEZI, 2010).    

A Equação (7) retrata, de forma alternativa, a imagem (I) de tamanho M x N pixels 

sendo representada pelo conjunto fuzzy (PAL, DUTTA-MAJUMDER, 1986): 

 

I 

 

II 
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 𝐼 = ∑ ∑ 𝜇𝐴(𝑔𝑖𝑗)𝑔𝑖𝑗
𝑁

𝑗=1
𝑀

𝑖=1  (7) 

 

no qual, 𝑔𝑖𝑗 representa o nível de cinza que possui um valor de pertinência em relação a alguma 

propriedade pré-definida da imagem I, como brilho, entropia, etc. A definição dos valores de 

pertinência depende da aplicação. 

O objetivo do trabalho de Cheng e Xu (CHENG, XU, 2000) era realçar o contraste de 

imagens não-médicas no domínio fuzzy de maneira efetiva e adaptativa. O primeiro passo foi 

mapear a imagem no domínio espacial para o domínio fuzzy, para depois propor um método de 

realce de contraste adaptativo com variação de potência e técnicas de interpolação. A 

abordagem do trabalho emprega o princípio da entropia fuzzy. 

Na metodologia do trabalho são descritos quatro algoritmos usados para o realce de 

contraste. O primeiro deles está relacionado com os máximos e mínimos da imagem, no qual 

os níveis de cinza menores que o primeiro pico do histograma (após as regras que foram criadas) 

seriam representados como fundo, enquanto que os níveis de cinza acima desse pico, seriam 

relacionados ao ruído. A ideia desse algoritmo era reduzir o ruído de forma a manter o máximo 

possível da informação da imagem. Os demais algoritmos são relacionados ao realce de 

contraste propriamente dito, em que algumas configurações (regras) são definidas conforme a 

lógica fuzzy. 

Pelos experimentos, os autores concluíram que o método proposto supera o método de 

realce de contraste adaptativo (ACE) proposto por (DASH, CHATTERJI, 1991), visto que o 

realce de contraste foi mais efetivo e com melhor adaptabilidade. Além disso, o algoritmo 

proposto reduziu os efeitos de sob e sub-realce devido à melhor capacidade adaptativa do 

algoritmo.  

Em um trabalho posterior (CHENG, XU, 2002), dos mesmos autores, a ideia foi aplicar 

o realce de contraste em imagens mamográficas, em particular, de microcalcificações e nódulos 

com a menor amplificação de ruído possível. Antes da aplicação do algoritmo as imagens de 8 

bits foram normalizadas entre 0 e um valor máximo de pixel igual a 200 [0 200], de forma a 

uniformizar o intervalo de intensidade de pixel de todas as imagens. 

Após a normalização, as imagens são fuzificadas de maneira que todos os elementos são 

transformados em números reais entre 0 e 1, a partir da função de pertinência (membership 
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function) do conjunto fuzzy. Assim, o método proposto no trabalho anterior (CHENG, XU, 

2000) foi adaptado, e seguiu os seguintes passos: 

1) Calcula-se o valor médio da borda, a partir de uma janela centralizada em 

determinado pixel (m,n), no qual o valor da borda da imagem no domínio fuzzy é 

obtido por meio de operadores, como Laplaciano e Sobel; 

2) Avalia-se o contraste relacionado com o valor de pertinência; 

3) Transforma-se o contraste a partir de uma constante de amplificação; 

4) Obtém-se o valor de pertinência modificado a partir de uma transformação de 

contraste; 

5) Realiza-se a defuzificação, no qual os valores de pertinência dos elementos são 

transformados a níveis de cinza; 
 

A Figura 15 ilustra o resultado da técnica proposta para duas regiões de interesse 

distintas. Visualmente, percebe-se um aumento de contraste nas imagens A2 e B2, ou seja, 

aquelas após o processamento com o processamento usando lógica difusa. 

 

Figura 15 – As imagens A1 e B1 representam as imagens originais, enquanto que as imagens A2 e B2 são as 

imagens após o processamento com o método adaptativo proposto a partir da lógica fuzzy. (A1) – Cluster de 

microcalficações da imagem original; (A2) - Cluster de microcalcificações após o realce de contraste; (B1) - 

Nódulo da imagem original; (B2) – Nódulo após o realce de contraste. 

             
       (A1)                                                 (A2) 

 

             
        (B1)                                                 (B2) 

 

Fonte: Modificado de (CHENG, XU, 2002). 
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Raju e Nair (RAJU, NAIR, 2014) propuseram um método rápido e eficiente baseado em 

lógica fuzzy para imagens coloridas. O método é baseado em dois importantes parâmetros: M e 

K, no qual o primeiro indica o valor de intensidade médio da imagem (a partir do histograma) 

e o segundo é um parâmetro de intensificação de contraste. No primeiro momento, as imagens 

em RGB (Red, blue and green – vermelho, azul e verde) são convertidas para imagens em HSV 

(Hue, saturation and value  - matiz, saturação e valor/brilho). 

Com a imagem em HSV, é calculado o histograma apenas da componente ‘V ‘(brilho) 

e o parâmetro de controle K é inicializado em 128, podendo assim ser calculado o parâmetro 

M. Os pixels da imagem são divididos em duas classes, [0, M-1] e [M, 255], com os valores de 

pertinência calculado para os elementos de cada classe. Os valores são então realçados para 

cada classe seguindo a transformação proposta no trabalho, modificando os pixels da 

componente V. A componente V modificada é então combinada com as demais componentes 

de matiz e saturação, e são convertidas novamente para o modelo RGB inicial, produzindo uma 

imagem realçada. 

 

4.1.4 Vizinhança adaptativa - Adaptive neighborhood (ANCE) 

O método adaptativo de realce de contraste por vizinhança (ANCE – Adaptive 

Neighborhood Contrast Enhancement), desenvolvido por Morrow e colegas (MORROW et al., 

1992), é uma técnica que tem o objetivo principal de aumentar o contraste de regiões 

específicas, sem alterar significativamente o restante da imagem. Primeiramente, uma região 

homogênea ao redor do pixel processado é identificada por crescimento de região. O contraste 

visual da região é então computado pela comparação da média da intensidade da região com a 

média de intensidade das regiões adjacentes. 

O contraste da região é seletivamente aumentado pela modificação das intensidades de 

pixel, seguindo uma função (MORROW et al., 1992), caso as seguintes condições sejam 

atingidas: 

 Baixo contraste da região; 

 O fundo é definido como uma camada de três pixels de espessura, sendo que os 

pixels dessa região devem ter desvio padrão normalizado menor que 0,1 em 

relação à média. 
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A primeira condição é imposta de modo a não realçar ruído de baixo nível ou regiões já 

com alto contraste. Já a segunda é usada para evitar o realce de regiões que são cercadas por 

uma vizinhança variável. Essa abordagem é aplicada sequencialmente para cada pixel na 

imagem a fim de realçar o contraste dos objetos e atributos na imagem. 

O algoritmo de crescimentode região começa com o pixel a ser processado, que é 

denominado de semente. Os oito pixels vizinhos da semente são analisados de forma a verificar 

se os níveis de cinza deles estão dentro de uma faixa de valores pré-estabelecida especificada. 

Os pixels que atendem o critério de inclusão na região são marcados e incluídos no algoritmo 

para serem realçados. A Equação (8) define o contraste de região em termos de níveis de cinza 

do elemento principal 𝑓 e do fundo 𝑏.  

 𝑓′ = 𝑏 1 + 𝐶′1 − 𝐶′ (8) 

em que 𝑓′ é o novo valor do pixel e 𝐶′ é o fator de contraste para realce. 

 

4.1.5 Realce baseado no sistema visual humano (Human Visual System 

based image decomposition - HVS) 

Um novo algoritmo para realce de imagens mamográficas utiliza a decomposição de 

imagens baseada no sistema visual humano (HVS) com filtragem não-linear (ZHOU, 

PANETTA, AGAIAN, 2010). A decomposição da imagem baseada em HVS separa a imagem 

pela intensidade do fundo e pela taxa de mudança de intensidade, o que caracteriza mudança de 

informação. 

Tal algoritmo divide a imagem em quatro subimagens baseado em quatro regiões com 

diferentes intensidades de fundo: região de saturação de áreas muito iluminadas, região de 

Weber para áreas iluminadas propriamente, região de DeVries-Rose para áreas com baixa 

iluminação, e região para todos os pixels abaixo da curva baseada no sistema visual humano 

que contém os pixels menos informativos (WHARTON, AGAIAN, PANETTA, 2006). A 

intensidade de pixels do fundo da HVS é feita a partir do cálculo da média local ponderada das 

intensidades das regiões.  

A imagem de saída E (m, n) após o realce de contraste é definida pela Equação (9), que 

é uma combinação das quatro subimagens previamente decompostas: 
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 𝐸(𝑚, 𝑛) =  𝐶1𝐹1(𝑚, 𝑛) +  𝐶2𝐹2(𝑚, 𝑛) + 𝐶3𝐹3(𝑚, 𝑛) +  𝐶4𝐹4(𝑚, 𝑛)  (9) 

 

dado que 𝐶1, 𝐶2, 𝐶3 e 𝐶4 são os coeficientes ponderados e 𝐹1, 𝐹2, 𝐹3 e 𝐹4 são cada uma das 

subimagens realçadas, obtidas por meio da seguinte filtragem, mostrada na Equação 10: 

 

 𝐹(𝑚, 𝑛) =  𝑤0𝑆0 +  𝑤1𝑆1 +  𝑤2𝑆2  (10) 

em que:  

 𝑆0 = 𝑅2∝0(𝑚, 𝑛) 

 𝑆1 = 𝑅2∝1(𝑚 − 1, 𝑛) + 𝑅2∝1(𝑚 + 1, 𝑛) + 𝑅2∝1(𝑚, 𝑛 − 1) + 𝑅2∝1(𝑚, 𝑛 + 1) 

 𝑆2 = 𝑅2∝2(𝑚 − 1, 𝑛 − 1) + 𝑅2∝2(𝑚 + 1, 𝑛 − 1) + 𝑅2∝2(𝑚 + 1, 𝑛 − 1) ++ 𝑅2∝2(𝑚 + 1, 𝑛 + 1) 

 𝑤0, 𝑤1, 𝑤2  coeficientes ponderados; 

 ∝0, ∝1, ∝2  coeficientes exponenciais. 

 

A Figura 16 mostra o melhor resultado visual a partir da otimização dos parâmetros feita 

pelos autores. Neste trabalho, foram utilizadas imagens provenientes do banco digital mini-

MIAS, contendo imagens digitalizadas com 8 bits de resolução de contraste. 

 

Figura 16 – (A) Imagem mamográfica original; (B) Imagem mamográfica após o algoritmo de realce de 

contraste (filtragem não-linear). 

   
(A)                                        (B) 

Fonte: (ZHOU, PANETTA, AGAIAN, 2010). 
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4.2 Técnicas de realce de contraste indiretas 

 

4.2.1 Equalização de histograma 

Uma técnica básica de realce de contraste indireta é a equalização de histograma 

(histogram equalization - HE). Essa técnica mapeia a entrada de níveis de cinza para um nível 

de cinza proporcional à sua densidade cumulativa, de forma que a probabilidade de cada nível 

de cinza da imagem resultante (pós-HE) seja uniformemente distribuída. Idealmente, a imagem 

de saída deveria conter a mesma quantidade de pixels para cada valor discreto de nível de cinza. 

A equalização de histograma resulta em um excessivo realce de contraste, podendo acarretar 

em ruídos na imagem (PISANO et al., 2000). 

Na equalização global, todos os tons de cinza da imagem são levados em consideração 

no processamento. Já nas equalizações em regiões, é definida uma janela para varrer a imagem 

de forma pontualmente ou por blocos. Na equalização regional pontual, apenas o ponto central 

da imagem é equalizado, enquanto que na equalização por blocos, todos os pontos da janela são 

equalizados. 

Supondo que uma imagem esteja no intervalo [0, L-1], em que L = 2nº de bits, tem-se que 

r  são os valores de intensidades da imagem a ser processada, com r = 0, indicando pixels pretos 

e r = L-1, o pixel mais branco. A equalização de histograma busca normalizar a distribuição da 

probabilidade de ocorrência de valores de intensidade na imagem. A Equação (11) define o 

processo de mapeamento de intensidade, conforme Gonzalez e Woods, sendo s os níveis de 

intensidade de saída do elemento original r  (GONZALEZ, WOODS, 2010): 

 

 𝑠𝑘 = 𝑇(𝑟𝑘) = (𝐿 − 1) ∑ 𝑝𝑟𝑘
𝑗=0 (𝑟𝑗) = (𝐿 − 1)𝑀 𝑁 ∑ 𝑛𝑗𝑘

𝑗=0  (11) 

 

sendo que 𝑇(𝑟𝑘) é a transformação de mapeamento (equalização de histograma), k varia de 0 

até L-1 (valores de intensidade de pixel), M x N é o tamanho da imagem e 𝑝𝑟  é a função 

densidade de probabilidade (PDF) de r. 
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4.2.2 CLAHE – Contrast Limited Adaptive Histogram Equalization 

Uma das variações da equalização de histograma (HE) é a equalização de histograma 

adaptativa com limitação de contraste (CLAHE) desenvolvido por Pizer e colaboladores 

(PIZER et al., 1987). Esta técnica ajusta o histograma em um histograma pré-definido, e depois 

redistribui os valores excedentes em outras intensidades, ou seja, aqueles que não se encaixaram 

na distribuição, antes de computar a função de distribuição cumulativa (LU et al., 2010). 

Alguns parâmetros podem ser selecionados durante a implementação da técnica 

CLAHE. Um deles é o tamanho da janela que dividirá a imagem sendo responsável por definir 

o tamanho das regiões que sofrerão a ação da CLAHE. O número ideal é melhor determinado 

empiricamente, e depende do tipo da imagem de entrada. O limite de corte é outro parâmetro 

ajustável, influenciando na quantidade de pixels que serão redistribuídos.  

 Além disso, a técnica CLAHE sofre influência da distribuição aplicada, sendo as 

funções uniforme, exponencial e Rayleigh as mais utilizadas. Essa distribuição é usada como 

base na criação tanto da transformação de contraste quanto do formato do histograma das 

regiões processadas, sendo dependente do tipo de imagem de entrada. Em imagens 

subaquáticas, por exemplo, a distribuição Rayleigh aparenta ter melhores resultados, inclusive 

sendo usado no recente trabalho de Ma e colaboradores (MA et al., 2018). Em um outro trabalho 

(REZENDE JUNIOR, CARNEIRO, PATROCINIO, 2018), foi mostrado que para imagens 

mamográficas a distribuição utilizada não modifica os resultados de maneira significativa. 

A técnica CLAHE é efetiva em realce de contraste, entretanto é necessário verificar a 

quantidade de ruídos que foi inserida na imagem. Dessa forma, é importante aplicar tal técnica 

após a etapa de remoção do ruído, evitando assim, realçar também o sinal indesejado (ZHAO, 

GEORGANAS, PETRIU, 2010). A Figura 17 mostra o esquema de funcionamento da 

equalização de histograma quando existe o limite de corte, em que o histograma original de 

uma determinada imagem é modificado após clip-limit.  
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Figura 17 – (A) Histograma original; (B) Limiar de corte do histograma definido neste caso por lógica fuzzy; (C) 

Após limitar a região de corte (clip-limit), os pixels acima do limite são redistribuídos, formando um novo 

histograma. 

 

Fonte: Modificado de (JENIFER, PARASURAMAN, KADIRVELU, 2016). 

 

A Equação (12) apresenta o cálculo efetuado para o processamento da CLAHE: 

(CIVCIK et al., 2015) 

 

 𝑔 = [𝑔𝑚𝑎𝑥 −  𝑔𝑚𝑖𝑛]𝑝(𝑓) + 𝑔𝑚𝑖𝑛 (12) 

 

dado que g é o novo valor de pixel processado após a CLAHE,  𝑔𝑚𝑖𝑛 e  𝑔𝑚𝑎𝑥 indicam o mínimo 

e o máximo valor do pixel, respectivamente, e 𝑝(𝑓) é a função de probabilidade de distribuição 

acumulada. 

 Em resumo, a técnica CLAHE opera em pequenas regiões da imagem (parâmetro 

ajustável), calculando a função de transformação de contraste para cada região individualmente, 

a partir do limite de corte configurado. Cada região sofre realce de contraste, sendo o 

histograma de saída dessas regiões correspondente, aproximadamente, à função de distribuição 

selecionada. Por fim, é feita uma interpolação bilinear para eliminar alguma borda que pode ter 

sido induzida artificialmente (ZUIDERVELD, 1994). 

Em uma pesquisa, uma modificação do algoritmo CLAHE foi proposta, denominada 

Fuzzy Clipped Contrast-Limited Adaptive Histogram Equalization (FC-CLAHE). A diferença 

deste algoritmo para a CLAHE originalmente proposta é com relação ao limite de corte (clip-

limit). Neste trabalho, o clip-limit do histograma não é definido por um valor real escalar, mas 

sim por uma lógica fuzzy. Esse algoritmo foi capaz de aumentar o contraste local de 

mamogramas digitais, bem como preservou o brilho da imagem. O contraste foi suficientemente 
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realçado de forma a tornar o diagnóstico mais preciso (JENIFER, PARASURAMAN, 

KADIRVELU, 2016). A Figura 18 apresenta os resultados do trabalho. 

 

Figura 18 – (A) Imagem original; (B) Imagem processada com CLAHE e clip-limit em 0,01; (C) Imagem 

processada com a técnica proposta pelos autores, utilizando lógica fuzzy para determinação do limite de corte. 

      
 (A)                                         (B)                                          (C) 

 

Fonte: Modificado de (JENIFER, PARASURAMAN, KADIRVELU, 2016). 

 

Em outro trabalho (AL-NAJDAWI, BILTAWI, TEDMORI, 2015) foi proposto a 

segmentação, realce de contraste e classificação de imagens mamográficas digitais. Para o 

realce de contraste, os melhores resultados foram obtidos a partir do uso da técnica CLAHE. 

Os radiologistas que avaliaram as imagens, após os processamentos com as diferentes técnicas, 

afirmaram que o realce de contraste aplicado neste trabalho resultou em melhor qualidade visual 

das imagens. A Figura 19 apresenta os resultados das imagens originais (superiores) 

comparadas com as imagens processadas (inferiores). 
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Figura 19 – Imagens originais e as respectivas imagens processadas com a técnica CLAHE e filtro de mediana. 

Imagens originais 

 
 

Imagens com a técnica CLAHE e filtro de mediana

 
Fonte: Modificado de (AL-NAJDAWI, BILTAWI, TEDMORI, 2015). 

 

Não só em imagens mamográficas, mas também em outros tipos de imagens médicas, a 

CLAHE tem se mostrado bastante eficiente. No recente trabalho de Sahu e pesquisadores 

(SAHU et al., 2019) foi proposta uma combinação de redução de ruído e realce de contraste em 

imagens de retina (fundo do olho). Para a redução de ruído foram testados os seguintes filtros: 

Wiener, Média, Mediana (e Mediana ponderada) e Gaussiano, todos eles utilizados em conjunto 

com a CLAHE e obtendo bons resultados a partir de métricas quantitativas.  

 

4.2.3 RMSHE – Recursive Mean-Separate Histogram Equalization 

Como a equalização de histograma (HE) não permite que o brilho da imagem se 

mantenha, alguns métodos propõem a equalização de histograma com a preservação do brilho 

da imagem. A técnica de bi-equalização de histograma com preservação de brilho (Brightness 

preserving Bi-Histogram Equalization - BBHE) separa o histograma de entrada em duas partes, 
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baseado na média de brilho, e então equaliza esses dois “sub-histogramas” independentemente 

(WANG, YE, 2005).  

A técnica recursiva de equalização de histograma por separação de média (Recursive 

Mean-Separate Histogram Equalization - RMSHE) nada mais é do que a implementação da 

técnica BBHE de maneira recursiva. Da mesma forma, a RMSHE fornece um realce de 

contraste preservando o brilho da imagem. Ela funciona de maneira a separar a média da 

imagem antes de efetuar a equalização do histograma (LEE et al., 2013). 

No algoritmo de RMSHE, proposto por Chen e Ramli em 2003 (CHEN, RAMLI, 2003), 

a imagem é separada em duas subimagens baseadas na média de pixels da imagem original. 

Depois da separação, o histograma das duas subimagens são equalizados e a separação por 

média é feita de forma recursiva, em quantos níveis de recursão desejar. Quanto maior a 

separação por média, mais o brilho da imagem original é preservado no realce de contraste. 

Entretanto, se o nível de recursão tender ao máximo possível, o resultado da imagem da saída 

é praticamente igual à imagem de entrada. 

A Figura 20 ilustra o funcionamento do algoritmo recursivo RMSHE quando o número 

de recursões é igual a dois. À esquerda (Figura 20 - A), percebe-se que o histograma original 

da imagem é inicialmente dividido em duas regiões: uma acima da média de intensidade dos 

pixels, e outra abaixo. Após essa primeira recursão, são calculadas as médias referentes às duas 

“subimagens”, segunda recursão. Já à direita (Figura 20 - B), percebe-se a equalização de 

histograma feita pelo algoritmo RMSHE em cada recursão, modificando o histograma da 

imagem resultante. 
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utilizando desta equalização de histograma adaptativa e obtendo resultados satisfatórios, 

inclusive a partir da avaliação por médicos radiologistas. 

No próximo capítulo serão descritas algumas métricas quantitativas utilizadas para a 

avaliação das técnicas de realce de contraste apresentadas até aqui. 
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Capítulo 5 MÉTRICAS DE QUALIDADE DE IMAGEM 

 Uma das maneiras de avaliar a eficácia de determinada técnica de realce de contraste 

em imagens é a partir da inspeção visual, embora tal medida qualitativa seja bastante subjetiva. 

Dessa forma, neste capítulo serão apresentadas algumas medidas quantitativas de desempenho 

de contraste, que podem ser calculados nas imagens após o processamento digital a fim de 

comparação com a imagem original, e entre os diversos processamentos aplicados. 

 

5.1 Razão contraste-ruído (CNR) 

 
A relação contraste-ruído (CNR) é uma medida de contraste que independe do tamanho 

do objeto que está em análise. É uma medida do nível do sinal na presença de um ruído, sendo 

a diferença entre a média da escala de cinza da região de interesse do sinal (𝑋̅𝑆) e a região de 

interesse do fundo (𝑋̅𝐹). O CNR é dado pela Equação (13) (PERRY et al., 2006) abaixo, 

                                     

 
CNR = (X̅S − X̅F)√σS2 + σF22  

(13) 

 

no qual σS e 𝜎𝐹 representam os desvios-padrões do sinal e do fundo das regiões de interesse, 

respectivamente. 

 O CNR é uma boa métrica para descrever a amplitude do sinal em relação ao ruído da 

imagem. Como o cálculo é computado a partir da diferença entre médias da região do sinal e 

do fundo, essa medida é principalmente aplicada quando se usam objetos que geram um nível 

de sinal homogêneo (BUSHBERG, BOONE, 2011). O CNR é comumente calculado com um 

objeto de alumínio posicionado em placas de polimetilmetacrilato (PMMA). Quanto maior o 

resultado do CNR, maior é a relação de contraste em relação ao ruído, isto é, uma filtragem de 

ruído leva o CNR a ter um valor aumentado. 
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5.2 Relação sinal-ruído de pico (PSNR) 

 

A relação sinal-ruído de pico, conhecida como Peak Signal-to-Noise Ratio (PSNR) é 

uma medida que define a relação entre a máxima energia (potência) de um sinal e a potência 

do ruído (DABOV et al., 2007). Um alto valor de PSNR significa uma alta relação entre as 

potências das imagens comparadas (VERGUTZ, 2013). Matematicamente, o PSNR pode ser 

calculado conforme a Equação (14), dado em decibéis (dB): 

 

  PSNR = 10log10 ((𝐿 − 1)2𝑀𝑆𝐸 ) (14) 

 

A variável L é igual ao nível de cinza da imagem (2nº de bits), e MSE (Mean Squarred 

Error) indica o erro quadrático médio, conforme calculado pela Equação (15).  

 

  MSE = 1𝑀𝑁 ∑ ∑[(𝑥´(𝑖, 𝑗) − 𝑥(𝑖, 𝑗))2]𝑁
𝑗=1

𝑀
𝑖=1  (15) 

 

em que 𝑥´(𝑖, 𝑗) e 𝑥(𝑖, 𝑗) representam os pixels da imagem após o processamento e os pixels da 

imagem original, respectivamente, e M x N o tamanho da matriz da imagem. 

 Analogamente à interpretação do CNR, quanto maior o valor obtido no cálculo do 

PSNR, maior foi a relação entra a máxima energia de um sinal ao ruído. Portanto, ao interpretar 

o resultado, deve-se atentar se um aumento ou diminuição do valor se deu pela redução do 

ruído, ou pelo aumento de contraste. 

 

5.3 Índice de similaridade estrutural (SSIM) 

 

A medida de similaridade estrutural (Structural Similarity - SSIM) foi desenvolvida por 

Wang e colegas (WANG et al., 2004) com o objetivo de comparar padrões locais de intensidade 

de pixel que são normalizados para luminância, contraste e estrutura (covariância). O diagrama 

geral do índice SSIM é apresentado na Figura 23. 
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Figura 23 – Diagrama de blocos explicando o algoritmo do SSIM. 

 
Fonte: Modificado de (WANG et al., 2004) 

  

Tal medida de similaridade entre um par de imagens é calculada em várias janelas da 

imagem, podendo variar a função e o tamanho dessa janela. O cálculo do índice de similaridade 

estrutural entre duas janelas de coordenadas x e y (mesmo tamanho) é mostrado na Equação 

(16): 

 

  𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦+𝐶2)(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1)(𝜎𝑥2 + 𝜎𝑦2 + 𝐶2) (16) 

 

 na qual: 

 𝜇𝑥 𝑒 𝜇𝑦: média das coordenadas x e y; 

 σx e σy: variância de x e y; 

 σxy: covariância de x e y; 

 𝐶1 𝑒 𝐶2:  constantes que estabilizam a divisão quando [(𝜇𝑥)² + (𝜇𝑦)²]  são 

próximos de zero; 

 

O cálculo das constantes 𝐶1 𝑒 𝐶2 , descrito nas Equações (17) e (18), é feito pelo 

quadrado da multiplicação da faixa dinâmica de pixels (L) por um vetor constante (K). A 

variável L é igual a (2Nº de bits – 1), isto é, se a imagem for de 8 bits, tem-se L igual a 255. 
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  𝐶1 = (𝐾1. 𝐿)2  (17) 

  𝐶2 = (𝐾2. 𝐿)2  (18) 

 

Na prática, o importante é ter uma medida de qualidade global da imagem. Portanto, é 

utilizado a média (MSSIM) da matriz resultante com os valores de SSIM calculados nas janelas 

do par de imagem comparado. A Equação (19) apresenta como é feito o cálculo do MSSIM, no 

qual a variável M representa o número de janelas locais da imagem, e, 𝑥𝑗  𝑒 𝑦𝑗 , indicam o 

conteúdo das imagens na posição j da janela. 

 

 𝑀𝑆𝑆𝐼𝑀(𝑋, 𝑌) = 1𝑀 ∑ 𝑆𝑆𝐼𝑀(𝑥𝑗𝑦𝑗)𝑀
𝑗=1   (19) 

 

O resultado do MSSIM varia entre 0 e 1, sendo que um valor maior de MSSIM indica 

uma maior similaridade entre as imagens comparadas. Isto significa que quando o valor 1 é 

atingido, o par de imagens analisado é idêntico (BROOKS, ZHAO, PAPPAS, 2008). No 

trabalho de Zhou et al. (ZHOU et al., 2016), em 2016, o MSSIM foi utilizado visto que ele 

representa também o grau de distorção da imagem processada (realçada).  

Quanto maior o SSIM, menor foi o nível de distorção da imagem. Isso significa que, ao 

se utilizar técnicas de realce de contraste de imagem, o valor de MSSIM não pode ser 

extremamente baixo, pois indicaria uma grande modificação com relação à imagem original. 

Por outro lado, o valor calculado de MSSIM também não pode ser extremamente alto (muito 

próximo de 1), pois indicaria que o processamento aplicado na imagem não promoveu diferença 

de luminância e contraste em relação à imagem original. Um valor de MSSIM igual ou muito 

próximo a 1 é esperado, por exemplo, em aplicações que desejam reconstruir imagens a partir 

de imagens de referência. Dessa forma, um valor de similaridade muito próximo a um, indicaria 

que a técnica de reconstrução promoveu imagens resultantes semelhantes às imagens originais. 

 

5.4 Variância e entropia 

 

Outra métrica utilizada como método para avaliação de contraste é a medida da 

variância (σ 2). Ela indica o quão distante, de maneira geral, os valores de um conjunto estão do 
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valor esperado deste mesmo conjunto (MONTGOMERY, RUNGER, 2007). Quanto maior a 

variância, mais os valores estão distantes da média. Em imagens, a variância (e o desvio padrão 

- σ) pode ser interpretada como uma medida de contraste, já que se verifica o quanto cada pixel 

está variando da média, sendo que uma maior variância, significa uma maior variação dos 

valores de intensidade de pixel, e, portanto, um maior contraste. A Equação (20) representa o 

cálculo da variância, 

 𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎 (σ2) = 1𝑁 − 1 ∑|𝑋𝑖 − 𝜇|2𝑁
𝑖=1   (20) 

 

em que, N é o número de observações, 𝑋𝑖 são os elementos, e 𝜇 é a média dos valores de 𝑋. 

Já a entropia (H), também denominada de incerteza, de uma imagem é uma medida 

estatística de aleatoriedade que pode ser usada para avaliar a “regularidade” da imagem, sendo 

um quantificador da randomicidade muito utilizada em análise de textura (GONZALEZ, 

WOODS, EDDINS, 2003). A entropia representa a informação geral da imagem, sendo que 

uma maior entropia indica que a imagem possui maior informação (PAL, DUTTA-

MAJUMDER, 1986; ZHOU et al., 2016). Quanto maior a entropia de uma imagem, maior é o 

seu contraste e a sua “desorganização”, visto que uma imagem contendo apenas um único tom 

de cinza, por exemplo, apresenta entropia igual a zero. A Equação (21) apresenta o cálculo da 

entropia (ZHOU et al., 2016), 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎 (𝐻) = − ∑ ∑ 𝑝(𝑖, 𝑗) log 𝑝(𝑖, 𝑗)𝑁
𝑗=1

𝑀
𝑖=1   (21) 

   

no qual M x N é o tamanho da imagem, e 𝑝(𝑖, 𝑗) é a probabilidade de ocorrência. 

 

5.5 Medida de realce (Measure of enhancement - EME) 

 

Na tentativa de medir quantitativamente o contraste, Agaian, Panetta e Grigoryan 

(AGAIAN, PANETTA, GRIGORYAN, 2000) desenvolveram uma medida de realce 

denominada Measure of enhancement (EME), ou também measure of improvement (medida de 

melhoria). Segundo os autores, a melhora de uma imagem após o processamento é geralmente 
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difícil de ser medida, inclusive pelo fato da percepção visual ser difícil de ser qualificada. O 

EME é definido conforme a Equação (22), 

 

 𝐸𝑀𝐸 =  𝑚𝑎𝑥 Φ ∈{Φ} 𝑥 ( 1𝑘1𝑘2 ∑ ∑ 20 log 𝐼𝑚𝑎𝑥;𝑘,𝑙𝑤𝐼𝑚𝑖𝑛;𝑘,𝑙𝑤𝑘1
𝑘=1

𝑘2
𝑙=1 ) (22) 

 

no qual, 𝐼𝑚𝑎𝑥;𝑘,𝑙𝑤  e 𝐼𝑚𝑖𝑛;𝑘,𝑙𝑤  são os máximos e os mínimos da imagem X(n,m), respectivamente 

dentro do bloco wk,l. A imagem deve ser dividida em k1k2, nos blocos wk,l(i,j) de tamanho l1 x 

l2, e {Φ} deve ser uma determinada classe de transformações ortogonais. 

 Essa medida é relacionada com a lei de Weber para o sistema visual humano, que tenta 

quantificar a resposta do ser humano a um estímulo físico. Quanto maior o valor do EME para 

uma determinada região de interesse analisada, maior é o contraste entre os pixels dessa região, 

visto que maior foi a diferença entre o valor máximo e mínimo da região analisada. Tal métrica 

visa validar o contraste de maneira objetiva, dado que ela leva em consideração a alta 

dependência entre os pixels processados e os pixels da sua vizinhança. 

 Uma das desvantagens da utilização da técnica EME para quantificação de realce de 

contraste em imagens mamográficas é o fato da obrigatoriedade da seleção de uma região de 

interesse. Isso implica em uma medida mais local, o que pode não significar em um resultado 

condizente para a imagem toda, visto que a medida é dependente da região de interesse 

selecionada. Consequentemente, caso a região de interesse seja muito grande, objetivando 

retratar um resultado mais próximo com a imagem toda, o custo computacional é aumentado. 

 

5.6 Relação sinal-ruído (SNR) 

 

Outra métrica bastante utilizada em imagens mamográficas é a relação sinal-ruído 

(SNR). A medida é similar ao CNR, porém ao contrário do CNR, o tamanho e o formato do 

objeto em estudo é incluído no cálculo. Além disso, o SNR não necessita que se use um objeto 

de teste que gere um sinal homogêneo, entretanto o fundo precisa ser homogêneo. O cálculo do 

SNR segue a Equação (23): 
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 SNR =  ∑ (xi − x̅F)σFi  (23) 

 

Segundo a Equação (23), no numerador tem-se que Xi é o valor do “sinal” no pixel i, e 𝑋̅𝐹, o valor da média do fundo. No denominador, 𝜎𝐹 é igual ao desvio padrão do fundo. Dessa 

forma, a relação sinal-ruído representa o sinal integrado sobre uma ROI, no qual engloba o 

objeto de interesse, dividido pelo ruído. É importante que o cálculo de 𝑋̅𝐹 seja o mais preciso, 

sendo calculado sobre a maior região possível (BUSHBERG, BOONE, 2011). Altos valores de 

SNR, indicam maior quantidade do sinal em relação ao ruído. 

 

5.7 Second-derivative-like measure of enhancement (SDME) 

 
Outra forma de avaliar quantitativamente a performance de uma técnica de realce de 

contraste é por meio da segunda-derivada de medida de realce (Second-derivative-like measure 

of enhancement - SDME) (LU et al., 2010). A SDME é definida pela Equação (24), 

 

      (24) 
 

na qual a imagem é dividida em dois blocos k1*k2. Imax;k,l, Imin;k,l são os máximos e os mínimos 

valores dos pixels em cada bloco separadamente, e Icenter;k,l é a intensidade do pixel de centro 

de cada bloco (janela). Cada bloco deve conter um número ímpar de pixels, como por exemplo 

3x3, 5x5, 7x7.., 15x15.A SDME é uma métrica semelhante ao EME, em que um maior valor 

sugere um maior contraste àquela região analisada, sendo tal métrica bastante sensível ao nível 

de degradação (artefatos) da imagem (SHAH, DALAL, 2016). 

 

5.8 Espectro de potência do ruído normalizado (NNPS) 

 

 Atualmente, uma das medidas mais indicadas pelos fabricantes sobre a imagem gerada 

nos equipamentos mamográficos é o espectro de potência do ruído normalizado. Normalized 
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Noise Power Spectrum ou espectro de potência do ruído normalizado (NNPS) é definido como 

sendo a potência do ruído no domínio da frequência (NPS) dividida pelo valor da média dos 

pixels do sinal ao quadrado (L²) (DOBBINS et al., 2006). Essa relação pressupõe que os valores 

de pixels foram linearizados em relação à exposição e é dada em mm². A Equação (25) 

apresenta o cálculo do NNPS: 

 

 𝑁𝑁𝑃𝑆(𝑈,𝑉) = 𝑁𝑃𝑆(𝑢, 𝑣)𝐿²  (25)   
O NPS é essencialmente uma subdivisão da variância, porém dependente da frequência, 

e de fato, a integral do NPS sobre todas as frequências é exatamente igual à variância da imagem 

(BUSHBERG, BOONE, 2011). Pelo NNPS é possível avaliar a performance do detector na 

imagem em nível de ruído (DOBBINS III, 2000). Melhorar o valor de NNPS é importante para 

o desenvolvimento de bons detectores (KIM, KIM, 2016), e, por isso, diversas pesquisas que 

envolvem redução de ruído vêm sendo encontradas na literatura (HUANG, DECRESCENZO, 

ROWLANDS, 1999; ISMAILOVA, KARIM, CUNNINGHAM, 2015; WEISFIELD, 

BENNETT, 2001).  

O cálculo do NNPS se torna importante, principalmente na análise do ruído, visto que 

duas imagens podem ter variâncias (contraste) similares, ou até idênticas, entretanto o ruído 

intrínseco nelas pode ser muito diferente, o que não seria detectado apenas pelo cálculo da 

variância. Na Figura 24 é possível notar, visualmente, a diferença entre os ruídos, apesar das 

regiões delimitadas possuírem a mesma variância. 

 

Figura 24 – A variância (𝜎)  calculada nas regiões dentro do retângulo amarelo é idêntica em ambas as figuras. 

Entretanto, há diferenças de textura nos ruídos, que podem ser caracterizadas com o cálculo do NNPS. 

 

Fonte: (BUSHBERG, BOONE, 2011) 
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5.9 Conclusões 

 

Conclui-se deste capítulo que existem várias métricas quantitativas usadas na literatura 

a fim de mensurar a qualidade de uma imagem, levando em consideração ruído, contraste, 

estrutura das imagens analisadas, entre outros. Como cada estudo utiliza um banco de imagens 

diferente, fica difícil comparar os valores numéricos absolutos das métricas em si. No entanto, 

é possível verificar o comportamento de técnicas distintas de processamento ao se comparar os 

valores calculados. Após o estudo e teste de algumas das métricas quantitativas apresentadas 

neste capítulo, sentiu-se a necessidade da criação e implementação de uma nova medida de 

contraste mais global, a ser analisada na imagem toda, ampliando a gama de medidas já 

existentes na literatura. Essa nova medida (índice) foi criada, sendo descrita e detalhada no 

próximo capítulo (Capítulo 6). 
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Capítulo 6 ÍNDICE CARNEIRO DE CONTRASTE (ICC) 

Tendo em vista a necessidade de uma métrica global que fizesse uma medida 

quantitativa de contraste a partir de regiões da imagem, foi implementado um índice de 

contraste local médio baseado no cálculo de desvios padrões locais denominado Índice Carneiro 

de Contraste (ICC), do inglês Carneiro Contrast Index (CCI). Este índice calcula o desvio 

padrão de regiões dentro de um kernel 3x3 que varre todos os pixels da imagem, gerando uma 

nova matriz (mapa) com o desvio padrão entre o pixel central analisado e seus oito vizinhos. 

Dessa forma, após a janela varrer toda a imagem, calculando os desvios padrões locais em 

regiões de tamanho 3x3 da imagem, tem-se uma matriz resultante com valores de desvios 

padrões de mesmo tamanho que a imagem original.  

Essa matriz de desvios padrões resultantes já fornece um resultado qualitativo, visto que 

ele fornece o resultado visual da imagem a partir dos desvios padrões. Regiões mais claras, 

tendem a mostrar regiões com maior contraste (maior desvio padrão), enquanto que regiões 

escuras mostram regiões com menor desvio padrão e, portanto, menor contraste. A Figura 25 

exemplifica as matrizes de desvios padrões resultantes para duas imagens: uma original (sem 

processamento) e uma processada com a técnica CLAHE aplicada na mesma imagem original. 

Baseou-se a métrica proposta no cálculo de desvios padrões pelo fato dessa medida estar 

diretamente relacionada à variância, e consequentemente ao contraste de uma imagem. O desvio 

padrão apresenta o grau de dispersão de um conjunto de dados, e neste caso, dos tons de cinza 

de uma imagem, podendo representar por meio do cálculo do desvio padrão de uma região, o 

quanto esses pixels são ou não uniformes. Quanto maior o desvio padrão, maior a variância de 

níveis de cinza da região, indicando uma maior distância entre os valores de pixel, e, portanto, 

um maior contraste. 
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à normalização, os valores numéricos do índice são baixos. Quanto maior o índice de contraste, 

maior é o contraste global da imagem analisada, baseado em contrastes locais (por região). A 

Equação (26) mostra o cálculo do índice de contraste criado nesta tese, levando em 

consideração que só entram para o cálculo final valores com desvio padrão maior que zero 

(regiões que de fato sofreram alteração de contraste), 

 

 𝐼𝐶𝐶(𝑥, 𝑦)  = 1𝑛𝑢𝑚𝑒𝑙 [ ∑ ∑ (𝑓(𝑥 + 𝑚, 𝑦 + 𝑛) − 𝜇𝑘)21
𝑛=−1

1
𝑚=−1 ]1 2⁄ 𝑥1000  (26) 

 

                       = dpi 

                                                    Se 𝑑𝑝𝑖 > 0;  𝐼𝐶𝐶(𝑥, 𝑦) = 1𝑛𝑢𝑚𝑒𝑙  𝑑𝑝𝑖 
         Se 𝑑𝑝𝑖 = 0; 𝐼𝐶𝐶(𝑥, 𝑦) = 0 

em que:   

 𝑓(𝑥, 𝑦) = a imagem de tamanho m x n pixels; 

 𝑛𝑢𝑚𝑒𝑙 = número de elementos com resultado de desvio padrão maior que zero (para 

o cálculo da média aritmética da matriz de desvios padrões); 

 𝜇𝑘 = média aritmética dos pixels da janela em análise (usada para o cálculo de desvio 

padrão local); 

 

Para o cálculo dos desvios padrões dos pixels que estavam na borda da imagem, é 

preciso acrescentar pixels para que seja possível ter uma janela 3x3. Assim, foi usado um 

padding simétrico, em que os valores são espelhados, completando o kernel com os nove 

elementos da janela. A Figura 26 apresenta um esquema resumido de como o índice é calculado 

em uma imagem. Foi considerado apenas uma região da imagem (matriz) para efeito de 

ilustração, ressaltando que o índice é calculado na imagem como um todo.  
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Para uma melhor organização do trabalho, foi proposto dividir os dois grandes testes do 

trabalho em dois capítulos (“formato de artigo”), cada um contendo os respectivos materiais, 

métodos, resultados e discussões. O capítulo 7 (Parte I) é destinado à validação da técnica 

CLAHE como algoritmo de realce de contraste em imagens mamográficas reais. Já o capítulo 

8 (Parte II) é reservado para a descrição da nova metodologia para realce de contraste que foi 

proposta, bem como os resultados e discussões obtidos nos testes em imagens de phantom e 

imagens mamográficas reais de três equipamentos distintos. 
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Capítulo 7 PARTE I – VALIDAÇÃO DA TÉCNICA CLAHE 

“Este capítulo é baseado no artigo completo que foi publicado no periódico IEEE Latin 

America Transaction sob autoria do próprio autor desta tese em parceria com Debs, C. L.; 

Andrade, A. O.; Patrocinio, A. C.  – DOI: 10.1109/TLA.2019.8891954” 

 

Dadas as dificuldades no processo de aquisição (acesso) e produção de um banco de 

imagens mamográficas digitais, diversos estudos, inclusive recentes, ainda se utilizam de 

imagens mamográficas digitalizadas de filme de 8 bits de resolução de contraste (KUMAR, 

CHANDRA, 2014; JAIN, SINGH, BHATEJA, 2013; KIDSUMRAN, CHIRACHARIT, 2015; 

WU et al., 2010; BHATEJA, MISRA, UROOJ, 2016; ZHOU, PANETTA, AGAIAN, 2010; 

AKILA, JAYASHREE, VASUKI, 2015; JENIFER, PARASURAMAN, KADIRVELU, 2016). 

Vale destacar que, esse é um grande desafio da área de processamento digital de imagens, e 

mesmo com todas as dificuldades encontradas, foram utilizadas neste trabalho apenas imagens 

adquiridas de equipamentos digitais (DR – Digital Radiography), com resolução de contraste 

de 12 bits para as mamografias 2D, e 10 bits para as imagens de tomossíntese. 

De maneira geral, tanto a Parte I quanto a Parte II do trabalho foram desenvolvidas em 

um computador contendo o sistema operacional Windows 7 (64-bit), com processador Intel 

Core i5-3470 (3.20 GHz), 12 GB de memória RAM, e placa de vídeo GeForce GTX 750 Ti. 

Para o processamento das imagens, foi utilizado o software MATLAB®, sob licença acadêmica 

de número 341439. Em alguns momentos, a visualização, manipulação e alguns cálculos mais 

triviais nas imagens (média e desvio padrão de pixels dentro de uma região) foram feitas no 

software livre ImageJ®. 

 

7.1 Materiais e métodos 

 

O objetivo da primeira parte (Parte I) foi implementar e avaliar o algoritmo 

computacional de equalização de histograma adaptativo (Contrast-limited Adaptive Histogram 

Equalization - CLAHE) e a variação de alguns de seus parâmetros em imagens mamográficas 

de mamas densas. Para isso, foram calculados a relação sinal-ruído de pico (PSNR), a variância 
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e a média do índice de similaridade estrutural (MSSIM). O grande diferencial desta etapa foi a 

avaliação visual de um médico radiologista especialista em imagens mamográficas, a fim de 

validar a técnica e definir o melhor parâmetro (tamanho da janela), comparando o realce de 

contraste entre as imagens originais e as processadas com o algoritmo proposto. É comum 

encontrar trabalhos na literatura que contam com a ajuda de médicos radiologistas na avaliação 

das imagens (DAMASES et al., 2016, SPRAGUE et al., 2016) 

 

7.1.1 Descrição do banco de imagens  

Nesta Parte I, foram utilizadas imagens mamográficas provenientes do banco digital 

INbreast em formato DICOM (Digital Imaging and Communications in Medicine) (MOREIRA 

et al., 2012). Esse banco é proveniente do Centro Hospitalar de São João em Porto, Portugal, 

na qual todas as imagens foram obtidas do mesmo equipamento, um mamógrafo digital FFDM 

MammoNovation da fabricante Siemens, com 12 bits de resolução de contraste. O tamanho das 

imagens depende da compressão (tamanho) da mama, contendo imagens de 3328 x 4084 ou 

2560 x 3328 pixels, nas incidências médio lateral oblíqua (MLO) e crânio-caudal (CC). 

Todas as imagens do banco já vêm anonimizadas, com qualquer informação pessoal 

e/ou médica removida, respeitando o princípio da confidencialidade. Outro fator positivo desse 

banco, é o fato dele vir com um relatório contendo os laudos de cada imagem feito em dupla-

leitura cega por radiologistas experientes. Dessa forma, dependendo da aplicação, é possível 

separar as imagens por: presença ou não de lesão, tipo de lesão, classificação BI-RADS, 

densidade mamária, entre outros.  

Para esta primeira parte, foram selecionadas 98 imagens mamográficas laudadas como 

mamas densas. Das 98 imagens, 77 delas são pertencentes ao padrão ‘c’ de densidade mamária, 

e o restante, 21 imagens, pertencentes ao padrão ‘d’ de densidade mamária, o tipo mais denso. 

Ambos os tipos dificultam o diagnóstico, reduzindo a sensibilidade da mamografia. Foram 

selecionadas apenas imagens contendo microcalcificações como lesão principal, excluindo 

imagens que continham nódulos. A ideia seria que o médico radiologista avaliasse o efeito da 

técnica CLAHE na imagem como um todo, visto que a presença de achados certamente poderia 

chamar a atenção apenas para o realce produzido nas lesões. A Tabela 1 resume a quantidade 

de imagens usada na Parte I. 
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Em suma, os parâmetros utilizados na CLAHE para as 98 imagens foram: 

 Limite de corte (clip-limit): 0,01; 

 Função de distribuição: uniforme; 

 Tamanhos de divisão em sub-regiões (janelas) variando entre: 3x3, 5x5, 7x7, 

9x9, 12x12 e 15x15. 

 

 Avaliação quantitativa das imagens 

 

Para a avaliação quantitativa das imagens, foram calculados os valores de variância, 

PSNR e MSSIM, conforme mostrado nas Equações (20), (14) e (19), respectivamente. A 

variância foi calculada individualmente para cada imagem (original e processada), e ao final, 

para melhor interpretação, os valores de variância foram normalizados entre 0 e 1. Essa 

normalização foi feita dividindo o valor de cada variância pelo máximo valor de variância 

encontrado dentre todas as imagens. Isso significa, que quanto mais próximo de 1, maior foi a 

variância, e consequentemente maior é o contraste. 

Para o cálculo do PSNR, como as imagens possuem 12 bits de resolução de contraste, o 

valor de L usado na Equação (14) foi de 4096, e o erro quadrático médio (MSE) foi calculado 

entre a imagem original (sem processamento) e a imagem processada com a técnica CLAHE 

nas diferentes janelas. O mesmo aconteceu para o MSSIM, que compara a similaridade entre a 

imagem original e a processada. Para este cálculo foi definido uma constante 𝐾1 = 0,01 para o 

cálculo de C1 e uma constante 𝐾2 = 0,03 para o cálculo de C2, conforme Equações (17) e (18), 

valores default para as constantes. 

Após os cálculos de variância, PSNR e MSSIM, foi feita uma média aritmética (± desvio 

padrão) das imagens, a fim de comparar o resultado entre os processamentos com diferentes 

números de regiões testadas. Vale lembrar que, para PSNR e MSSIM, como é analisado o par 

de imagens (original e processada), não existe valor numérico individual para as imagens 

originais, fato que só ocorre para a variância, no qual cada imagem possui seu valor individual. 

 

Avaliação visual das imagens 

 

De forma a complementar o trabalho e os resultados quantitativos, foi feita também uma 

avaliação visual (qualitativa) da imagem com a ajuda de um médico radiologista que possui 16 
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anos de experiência em leitura e avaliação de imagens mamográficas. Enfatizando que, além 

da imagem original, foram feitos mais seis processamentos (3x3, 5x5, 7x7, 9x9, 12x12 e 15x15) 

em cada imagem, totalizando sete imagens. De maneira a não atrapalhar a rotina clínica do 

médico, nem de ultrapassar o limite diário de avaliações de mamografia, optou-se por reduzir 

o tamanho amostral das imagens a serem avaliadas qualitativamente. 

O tamanho amostral das imagens a serem avaliadas visualmente foi selecionado a partir 

do cálculo amostral com z-score igual a 1,96 (95% de grau de confiança) e margem de erro 

igual a 5%. Assim, foi calculado que 80% do total de imagens processadas deveriam ser 

analisadas visualmente. Isso indicou que 79 imagens deveriam ser analisadas visualmente pelo 

médico radiologista, selecionando aleatoriamente 62 imagens pertencentes ao padrão ‘c’ de 

densidade mamária, e 17, do padrão ‘d’ de densidade mamária. 

Com as 79 imagens selecionadas aleatoriamente, as visitas ao médico radiologista 

ocorreram em um período de três meses, sendo divididas em quatro visitas não-consecutivas 

durante as doze semanas. Dessa forma, a cada três semanas era feito um encontro com o médico 

radiologista, em que em média, eram avaliadas 20 novas e diferentes imagens por visita. 

O processo de avaliação visual foi feito da seguinte maneira: primeiramente as sete 

imagens (inclusive a original, sem processamento) eram dispostas em um monitor de maneira 

aleatória. O médico radiologista não tinha acesso (leitura cega) de qual era o parâmetro 

(tamanho de janela) usado nas imagens, até porque a ordem de aparição das imagens no monitor 

também era aleatória em cada avaliação, evitando qualquer tipo de viés. 

Foi dado total controle de manuseio e manipulação das imagens ao médico, podendo 

alterar o brilho das imagens, e alterar o zoom, de acordo com a necessidade. A estratégia 

utilizada pelo médico foi de eliminar as imagens uma por uma, retirando aquelas que haviam 

perdas de contraste ou de estruturas anatômicas. Por fim, o médico escolhia a imagem em que 

considerava ser visualmente melhor, e o parâmetro dessa imagem era salvo sem o conhecimento 

do médico, a fim de contabilizar ao final qual foi o tamanho de janela mais escolhido. 

A partir da segunda visita, após três semanas, foram disponibilizadas ao médico, 

anonimamente, cinco imagens que já haviam sido avaliadas na primeira visita, e assim 

subsequentemente nas demais visitas, totalizando 15 imagens de releitura, cinco em cada uma 

das visitas (a partir da 2ª). Isso foi importante para avaliar a variância intra-observador, e 

verificar se havia conformidade entre as avaliações, durante as diferentes visitas, e minimizar a 

limitação em termos acesso a apenas um médico radiologista para fazer a avaliação visual. 
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7.2 Resultados e discussões 

 

Neste tópico serão apresentados os resultados e discussões obtidos por meio de métricas 

de qualidade de imagem, bem como os resultados da análise visual feita pelo médico 

radiologista. A Figura 29 apresenta o diagrama de blocos resumindo os materiais e a 

metodologia usada na Parte I (capítulo 6). Imagens digitais, do banco INbreast, provenientes de 

DR, foram processadas a partir do algoritmo CLAHE com diferentes tamanhos de sub-regiões, 

avaliando resultados quantitativos e visuais das imagens originais (sem processamento) e 

resultantes, após os processamentos.  

 

Figura 29 – Diagrama de blocos resumindo a metodologia aplicada na Parte I – Validação da técnica CLAHE. 

 

Fonte: Elaborada pelo autor. 

 

 Resultados quantitativos e discussões 

 

Quanto aos resultados quantitativos, as Tabelas 2 e 3 mostram as médias (𝜇̅) e desvios 

padrões (𝜎) obtidos para as 77 imagens do padrão ‘c’ e 21 imagens do padrão ‘d’. É possível 

comparar as diferenças do resultados para cada tipo de processamento aplicado. Como o cálculo 

do PSNR e MSSIM é dependente do par de imagens comparado, não há resultado para as 
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imagens originais, visto que cada processamento foi comparado tendo a respectiva imagem 

original como referência. 

 

Tabela 2 – Padrão ‘c’: Média (𝜇̅) e desvios padrões (𝜎) obtidos nos cálculos de variância normalizada, PSNR e 

MSSIM para os diferentes processamentos do algoritmo CLAHE. 

Padrão ‘c’ 

Processamentos 

Variância 

normalizada 

(𝝁̅ ±  𝝈) 

PSNR  

(𝝁̅ ±  𝝈) 

 

MSSIM  

(𝝁̅ ±  𝝈) 

Imagens originais 0,12 ± 0,05 ---------- ---------- 

3x3 0,47 ± 0,13 44,97 ± 1,7 0,8789 ± 0,0325 

5x5 0,43 ± 0,15 44,74 ± 1,87 0,8751 ± 0,0353 

7x7 0,37 ± 0,12 44,38 ± 1,92 0,8693 ±0,0391 

9x9 0,32 ± 0,09 44,03 ± 1,89 0,8668 ± 0,0416 

12x12 0,25 ± 0,08 43,65 ± 1,8 0,8604 ± 0,0404 

15x15 0,24 ± 0,08 43,38 ± 1,75 0,8498 ± 0,0518 

  

Tabela 3 – Padrão ‘d’: Média (𝜇̅) e desvios padrões (𝜎) obtidos nos cálculos de variância normalizada, PSNR e 

MSSIM para os diferentes processamentos do algoritmo CLAHE. 

Padrão ‘d’ 

Processamentos 

Variância 

normalizada 

(𝝁̅ ±  𝝈) 

PSNR 

(𝝁̅ ±  𝝈) 

 

MSSIM 

(𝝁̅ ±  𝝈) 

Imagens originais 0,11 ± 0,06 ---------- ---------- 

3x3 0,54 ± 0,19 46,73 ± 2,23 0,9012 ± 0,0319 

5x5 0,44 ± 0,18 46,45 ± 2,16 0,8984 ± 0,0338 

7x7 0,36 ± 0,14 45,98 ± 1,99 0,8921 ± 0,0365 

9x9 0,30 ± 0,11 45,54 ± 1,68 0,8887 ± 0,0398 

12x12 0,24 ± 0,09 45,06 ± 1,55 0,8845 ± 0,0411 

15x15 0,23 ± 0,07 44,72 ± 1,51 0,8784 ± 0,5007 

  

Pode-se destacar a proximidade entre os valores médios de PSNR e MSSIM obtidos nas 

imagens dos dois padrões de densidade mamária. Por exemplo, comparando as imagens 
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processadas com o tamanho das sub-regiões igual a 3x3 e a 15x15, que são os dois extremos 

testados, nota-se que a diferença percentual entre os valores de PSNR e MSSIM são menores 

que 5%. Entretanto, no cálculo de variância normalizada, verifica-se uma maior diferença entre 

os valores obtidos para os diferentes processamentos. De maneira geral, à medida que se 

aumenta o tamanho das sub-regiões, diminui os valores quantitativas das variáveis. 

 Os maiores valores de variância normalizada foram calculados para as imagens que 

utilizaram o tamanho de sub-regiões igual a 3x3, sendo 0,47 para o grupo de imagens do padrão 

‘c’, e 0,54, para o grupo de imagens do padrão ‘d’. Como a variância está diretamente 

relacionado ao contraste, isso indica que esse parâmetro (tamanho 3x3) promoveu um maior 

contraste, isto é, uma maior variação entre as intensidades de nível de cinza da imagem. Já os 

menores valores de variância normalizada foram obtidos para as imagens originais, 

comprovando que a técnica CLAHE promove aumento de contraste, independente do 

parâmetro selecionado. Essa análise é complementada com a avaliação visual, de forma a 

definir se esse aumento de variância, e consequentemente de contraste, foi benéfico ou não, que 

será discutido no próximo tópico (“Resultados qualitativos – Análise visual). 

 Analisando as médias dos valores de PSNR, constata-se a diminuição dos valores quanto 

maior é o tamanho da janela aplicada pela CLAHE. Conforme discutido em outro trabalho 

(CARNEIRO et al., 2018), altos valores de sub-regiões (maiores que 100x100) implicam em 

perdas de estrutura, reduzindo o pico de sinal em relação ao ruído, já que algumas estruturas da 

mama, como o músculo peitoral, não são delimitadas mais. Apesar dessa perda drástica de 

estruturas não acontecer com os parâmetros testados (janelas menores), era esperado que o 

tamanho 15x15 obtivesse resultados menores de PSNR, visto que essa relação do aumento do 

número de sub-regiões e diminuição do PSNR já ter sido mostrada em (CARNEIRO et al., 

2018). 

 Quanto ao MSSIM, sabe-se que quanto mais próximo de 1, mais similar é o par de 

imagens analisado. Os maiores valores de MSSIM foram obtidos quando o par de imagem 

analisado foi da imagem processada de tamanho de janela igual a 3x3 e da imagem original, 

obtendo valores de média iguais a 0,8789 e 0,9012, para os padrões ‘c’ e ‘d’, respectivamente. 

Fazendo uma comparação entre os resultados obtidos para as diferentes classes de 

densidade mamária, também é notada a similaridade entre os resultados obtidos para as três 

métricas, isto é, a média da variância normalizada para as imagens originais do padrão ‘c’ e do 

padrão ‘d’ são valores similares, e assim sucessivamente para os demais processamentos e 
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Os resultados mostrados nas Figuras 30 e 31 ratificam que a técnica de realce de 

contraste (CLAHE) implementada obteve melhor resultado visual para todas as 79 imagens 

visualizadas pelo médico, independente se a imagem é pertencente ao padrão ‘c’ ou ‘d’. É 

possível afirmar isso, visto que em todos os casos, o médico também avaliava a imagem 

original, porém nenhuma vez essa imagem foi escolhida como tendo melhor qualidade visual. 

Apenas imagens com tamanho de sub-região igual a 9x9, 12x12 e 15x15 foram 

selecionadas, indicando que obtiveram melhor resposta, segundo o radiologista, em 

comparação com as imagens originais e utilizando tamanho de sub-região igual a 3x3, 5x5 e 

7x7. Para as 62 imagens do padrão ‘c’, a janela de tamanho 15x15 foi escolhida em 48 delas 

(78%), enquanto que as janelas de tamanhos 9x9 e 12x12 foram selecionadas em duas (3%), e 

doze (19%) imagens, respectivamente. Já para as 17 imagens do padrão ‘d’ de densidade 

mamária, o avaliador optou pelas imagens processadas com tamanho de janela igual a 15x15 

em 13 imagens (76%), e as demais quatro imagens (24%) foram melhor visualizadas com janela 

de tamanho 12x12. 

Com relação à variância intra-observador, isto é, aqueles casos que eram reavaliados 

pelo radiologista a partir da segunda visita (leitura cega), o resultado foi de 93,3% de 

concordância. Ou seja, das 15 imagens que foram relidas pelo médico, apenas em uma releitura 

o médico não concordou com a primeira seleção. É interessante destacar que, essa discordância 

aconteceu quando, no primeiro momento, foi selecionada a janela 12x12 como tendo melhor 

resposta visual, e durante a releitura, o médico optou pela janela de tamanho 15x15. As demais 

14 imagens disponibilizadas para releitura obtiveram a mesma seleção (mesmo tamanho de 

janela) feita na primeira avaliação.  

Outro ponto que foi destacado pelo radiologista foi a alta semelhança visual entre 

algumas imagens, e essas imagens eram justamente imagens de tamanhos de janelas próximos, 

como é o caso das janelas de tamanho 12x12 com a 15x15. Isso explica o fato da única 

discordância intra-observador ter ocorrido entre esses dois processamentos. 

Segundo o médico radiologista, as imagens com melhor resposta foram aquelas que 

visualmente forneceram um melhor contraste entre tecido fibroglandular e estruturas 

adjacentes, quando se comparado com as imagens originais, que possuem apenas com o pré-

processamento do equipamento. Das 79 imagens avaliadas pelo médico radiologista, o tamanho 

de sub-regiões igual a 15x15 foi escolhido em 61 imagens, correspondendo a 77% do total das 

imagens.  
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Comparando os resultados alcançados pela análise visual e os resultados quantitativos, 

é possível fazer algumas observações. Com relação ao MSSIM, as imagens de janela 15x15 

obtiveram os menores valores de similaridade. Porém, essa menor similaridade era esperada, 

sugerindo que a técnica de realce de contraste promoveu alteração de luminância e estrutura, e 

que essa modificação, contou com ganho visual na avaliação clínica. Outro ponto é com relação 

à variância, que apesar dos maiores valores serem obtidos nas imagens de janela 3x3, isso não 

necessariamente é um indício de melhora visual, apesar do aumento de contraste. Ou seja, as 

imagens processadas com tamanho de sub-região igual a 15x15 não foram as que obtiveram 

maior variância, entretanto, os valores médios de variância foram maiores do que para as 

imagens originais, indicando, da mesma forma que nas imagens de janela 3x3, um aumento de 

contraste, só que neste caso, com aumento de qualidade visual. 

As Figuras 32, 33, 34 e 35 apresentam as imagens resultantes de cada processamento, 

bem como a respectiva imagem original. Percebe-se que nas imagens de janelas menores (3x3, 

por exemplo), algumas regiões da imagem sofrem um aumento excessivo de realce de contraste 

(maior variância), saturando algumas áreas, o que foi primordial para serem uma das primeiras 

opções a serem rejeitadas pelo radiologista no momento da avaliação visual. Seguiu-se como 

padrão-ouro os laudos das imagens fornecidos em conjunto com banco de imagens, e que 

apesar, de terem sido selecionadas apenas imagens que não continham nódulos, durante a 

avaliação visual do médico radiologista, foram encontrados alguns achados nas imagens, 

inclusive contando com a ajuda da técnica de realce de contraste implementada. 
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7.3 Conclusões 

 

O processamento digital de imagens é uma forte ferramenta na tentativa de melhorar a 

qualidade visual de imagens médicas, sem que haja perda de informações. A partir deste 

capítulo foi possível avaliar quantitativamente e qualitativamente uma das técnicas mais 

utilizadas para realce de contraste: a CLAHE. 

O objetivo desta Parte I era que o médico radiologista escolhesse a imagem que ele 

considerasse ser melhor para avaliação e visualização, considerando alguns fatores em termos 

de contraste, tais como: a diferenciação entre tecido fibroglandular e adiposo, conservação do 

mamilo e interface entre a musculatura peitoral e o parênquima adjacente. Apenas uma imagem 

era selecionada como a “melhor”, ao final da cada avaliação. Com os resultados obtidos e 

mostrados neste capítulo, foi possível validar a técnica CLAHE, permitindo a escolha do melhor 

parâmetro (tamanho 15x15) para futuras aplicações e testes usando esse algoritmo. Além disso, 

de forma a minimizar a limitação da avaliação por apenas um médico, foi feita uma análise da 

variância intra-observador que indicou uma alta concordância nas releituras por parte do 

radiologista. 
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Capítulo 8 PARTE II – NOVA METODOLOGIA PARA 
REALCE DE CONTRASTE EM MAMOGRAFIAS 

O objetivo da Parte II foi o desenvolvimento de uma metodologia inovadora para realce 

de contraste em imagens mamográficas, considerando os resultados obtidos na Parte I, e 

também as técnicas estudadas na literatura. Inicialmente os testes foram feitos em imagens de 

phantom de mama, e posteriormente foram aplicados em imagens reais de mamas densas. A 

descrição do phantom e dos bancos de imagens utilizados, além da metodologia proposta, será 

descrita nos próximos tópicos. A comparação dos processamentos aplicados foi feita a partir do 

cálculo de algumas métricas de qualidade de imagem, incluindo o índice Carneiro de Contraste 

(ICC) que foi criado a partir deste trabalho. 

 

8.1 Materiais e métodos 

 

8.1.1 Descrição do phantom e dos bancos de imagens 

Phantom 

O phantom utilizado para a aquisição das imagens foi um simulador da empresa CIRS 

(Computerized Imaging Reference Systems), modelo 011A. Esse phantom foi desenvolvido na 

Faculdade de Medicina de Virginia (FATOUROS, SKUBIC, GOODMAN, 1985) para testar a 

qualidade e o desempenho de qualquer sistema mamográfico. A grande vantagem deste 

phantom é o fato de simular nódulos, microcalcificações e fibras, visto que o material da resina 

que compõem o simulador reproduz a atenuação de fótons de raios X de uma variedade de 

tecidos mamários. A Figura 36 mostra o phantom CIRS modelo 011A utilizado na aquisição 

das imagens e seu respectivo gabarito. 
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Figura 36 – (A) Phantom CIRS, modelo 011A; (B) Diagrama esquemático do respectivo phantom. É possível 

notar a presença dos objetos que são simulados, tais como: sete nódulos em diferentes tamanhos, doze grupos de 

microcalcificações, e cinco simulações de fibras e a cunha de passo, com cinco simulações de atenuação (100% - 

mais claro, 70%, 50% e 30% tecido glandular e 100% adiposo – mais escuro). 

 

(A)                                                                        (B) 

Fonte: (FATOUROS, SBUKIC, GOODMAN, 1985) 

 

Aquisição das imagens de phantom e as imagens mamográficas reais 

A aquisição das imagens, tanto de phantom, quanto de imagens mamográficas reais foi 

realizada no modo AEC a partir de dois equipamentos DR (Digital Radiography) distintos, 

ambos com resolução de 12 bits de contraste, sendo um deles da fabricante General Electric 

(GE) e outro da fabricante Hologic. O equipamento da GE é do modelo Senographe DS (sem 

tomossíntese), enquanto que o da Hologic é pertencente ao modelo Selenia® Dimensions®, 

com o recurso de tomossíntese embutido. A Figura 37 apresenta o mamógrafo da fabricante 

Hologic utilizado na aquisição das imagens. 

 

Figura 37 – Mamógrafo com o recurso de tomossíntese utilizado na aquisição das imagens. 

 

Fonte: Elaborada pelo autor. 
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Como o equipamento da Hologic permite a realização do exame de tomossíntese, foi 

feita uma aquisição no modo combo para o phantom, gerando assim uma imagem de phantom 

2D e a correspondente 3D (tomossíntese), denominada C-View, enquanto que para o 

mamógrafo da GE foi adquirida apenas uma imagem mamográfica (2D) de phantom, já que o 

equipamento não contava com o recurso de tomossíntese. Em suma, o banco de imagens de 

phantom foi formado contendo três imagens: 

 GE: 1 imagem de phantom;  

 Hologic 2D: 1 imagem de phantom; 

 Hologic 3D (tomossíntese – C-View): 1 imagem de phantom; 

o Total: 3 imagens de phantom. 

Além das imagens de phantom, foram obtidas também imagens reais de mamas densas 

nesses equipamentos (GE e Hologic). Nesses dois equipamentos as imagens estavam agrupadas 

em padrão ‘c’ e ‘d’ de densidade mamária, correspondente ao grupo de mamas densas. O banco 

de imagens da GE constituiu em 38 imagens de mamas densas, enquanto que para o 

equipamento da Hologic, foram adquiridas 49 imagens em modo combo, ou seja, 49 pares de 

imagens (2D + tomossíntese). Vale ressaltar que os testes de processamento digital não foram 

aplicados nas imagens de tomossíntese. Estas imagens 3D foram adquiridas apenas para servir 

como referência na comparação dos valores calculados com as métricas quantitativas. 

Além desses dois equipamentos, o banco digital INbreast (descrito em 6.1.1), composto 

por imagens adquiridas da fabricante Siemens, também foi utilizado nos testes da nova 

metodologia de realce de contraste. No entanto, para a Parte II, foram utilizadas todas as 

imagens pertencentes ao padrão ‘c’ e ‘d’ de densidade mamária, não fazendo restrição quanto 

à presença ou não de nódulos, como ocorreu na Parte I. Ao todo, foram utilizadas 127 imagens 

do banco INbreast, e ao contrário das demais imagens, divididas em padrão ‘c’ e ‘d’, contendo, 

99 e 28 imagens, respectivamente. Resumindo, o banco de imagens contendo imagens reais de 

mamas densas foi formado contendo: 

 INbreast: 99 imagens do padrão ‘c’ e 28 imagens do padrão ‘d’; 

 GE: 38 imagens mamográficas densas (padrão ‘c’ e ‘d’); 

 Hologic 2D: 49 imagens mamográficas densas (padrão ‘c’ e ‘d’); 

 Hologic 3D: 49 imagens mamográficas densas (padrão ‘c’ e ‘d’); 

o Total de imagens: 263 imagens; 
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o Total de imagens 2D para processamento (sem a tomossíntese): 214 

imagens. 

 

Para facilitar o entendimento foi feito um diagrama de blocos, conforme apresentado na 

Figura 38, que resume os bancos de imagens utilizados nesta Parte II do trabalho. 

 

Figura 38 – Diagrama de blocos dos bancos de imagens utilizados neste trabalho. Foram adquiridas imagens 

provenientes de três fabricantes diferentes (Siemens, GE e Hologic), totalizando 214 imagens 2D originais a 

serem processadas, 49 imagens de tomossíntese, e três imagens de phantom (exceção ao INbreast). 

 

Fonte: Elaborada pelo autor. 

 

 

Após a formação do banco de imagens (phantom e mamografias reais), foi proposta uma 

nova metodologia para realce de contraste de imagens mamográficas 2D que será descrita a 

seguir. Saunders et al. (SAUNDERS JR et al., 2007) evidenciaram que quanto maior a presença 

de ruídos, maior a dificuldade de perceber objetos em uma imagem mamográfica, tais como 

microcalcificações, dificultando também a diferenciação entre nódulos malignos e benignos. 
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Assim, são apresentados na literatura diversos trabalhos que mostram a importância da 

combinação de técnicas de filtragem de ruídos e realce de contraste em imagens (CHENG, XU, 

2000; YOON, RO, 2002; SAUNDERS JR et al., 2007; MAKANDAR, HALALLI, 2015; 

BHATEJA, MISRA, UROOJ, 2016; VIKHE, THOOL, 2016; SENTHILKUMAR et al., 2017; 

SAHU et al., 2019). 

 

8.1.2 Metodologia 

O primeiro passo da metodologia proposta consistiu em uma filtragem digital com o uso 

da transformada discreta de wavelet aplicada nas imagens com um nível de decomposição. 

Optou-se pela transformada wavelet, visto que no grupo de pesquisa de processamento de 

imagens médicas da Universidade Federal de Uberlândia foram realizados trabalhos que 

indicaram bons resultados para denoising com esse tipo de transformada, em comparação com 

outros métodos (DA COSTA JÚNIOR, 2019). 

Após a transformada wavelet, para cada nível de decomposição, as imagens são 

decompostas em quatro coeficientes, sendo eles: aproximação, diagonal, vertical e horizontal. 

Esses coeficientes, nada mais são do que subimagens com menor resolução espacial (25% do 

tamanho original), sendo os produtos internos da função da imagem com a função wavelet. A 

Figura 39 ilustra o processo de decomposição das imagens. 

 

Figura 39 – Diagrama da decomposição wavelet em um nível. 

 

Fonte: Modificado de (TORRES, DE OLIVEIRA MOTA, 2009). 
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Em um primeiro momento, por meio de convolução das linhas da imagem e 

subamostragem das colunas, são obtidas duas subimagens com resolução reduzida por fator 

igual a 2. O componente passa-baixa, de aproximação (A), o passa-alta, de detalhes (D) são 

filtrados e subamostrados ao longo das colunas, gerando quatro subimagens de saída com um 

quarto de tamanho. Caso mais de um nível fosse aplicado, mais quatro novas subimagens seriam 

obtidas. (GONZALEZ, WOODS, 2010). 

O diferencial da nova metodologia se dá após a decomposição em quatro subimagens. 

Foi proposto aplicar a técnica de realce de contraste CLAHE apenas nos coeficientes de 

aproximação da imagem, visto que estes apresentam apenas componentes de baixa frequência 

da imagem, contendo maior similaridade com a imagem original. Ao utilizar o realce de 

contraste em outros coeficientes, como por exemplo, apenas na componente diagonal, alguns 

elementos (alta frequência) que não eram relevantes para serem realçados, são realçados na 

imagem resultante, diminuindo a qualidade da imagem e saturando algumas regiões. 

Portanto, optou-se pelo realce de contraste (CLAHE) apenas na subimagem gerada dos 

coeficientes de aproximação após a filtragem, usando a transformada wavelet. Em seguida, é 

feita a transformada inversa da wavelet gerando uma imagem resultante de mesmo tamanho da 

imagem original, porém filtrada e segundo esta metodologia proposta, realçada. A transformada 

inversa da wavelet é então aplicada com os coeficientes de aproximação modificados após a 

CLAHE (a’) juntamente com os coeficientes originais da primeira decomposição: diagonal (d), 

vertical (v) e horizontal (h). 

O processo de reconstrução da imagem a partir dos coeficientes se dá em cada uma das 

quatro subimagens geradas (dado uma escala j), sendo elas superamostradas e submetidas a 

uma convolução com dois filtros unidimensionais: um operando nas linhas e outro nas colunas. 

A aproximação de escala j +1 é produzida pela soma dos resultados (conforme descrito no 

capítulo 4), sendo o processo repetido até a imagem original ser reconstruída (GONZALEZ, 

WOODS, 2010). 

Foi necessária a seleção de alguns parâmetros durante o processo da implementação 

desta nova metodologia. Para a filtragem de ruídos por meio de transformada wavelet, é 

importante executar uma operação de thresholding a ser aplicada nos coeficientes. Essa 

limiarização se torna um parâmetro crucial, visto que é o responsável pela redução do ruído na 

imagem. Neste trabalho, optou-se por um threshold (𝑇 ) automático bastante utilizado em 
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aplicações de denoising (filtragem) proposto por Kovesi (KOVESI, 1999). A Equação (27) 

mostra a equação referente ao cálculo do threshold usado no trabalho: 

 

 𝑇 = 𝜎𝑖𝑚2 √𝜋2 + (𝑘 ∗ √4 − 𝜋2 ∗ (𝜎𝑖𝑚2 )2) (27) 

 

em que: 

 𝜎𝑖𝑚2  = a variância da imagem original;  

 𝑘 = constante que pode variar entre 2 e 3, sendo utilizada 𝑘 igual a 3, após ter os 

melhores resultados empiricamente.  

Esse threshold é baseado na distribuição Rayleigh. Após a definição desse limiar 

(threshold) é feito um processo de suavização nos coeficientes, nos quais os valores de 

intensidade abaixo do threshold calculado são transformados em valor igual a zero. 

Outro parâmetro a ser escolhido na transformada wavelet é a função base (wavelet mãe). 

Segundo o trabalho de da Costa Junior (DA COSTA JUNIOR, 2019), após testes de filtragem 

utilizando wavelet com diversas funções base, ficou constatado, que apesar de resultados 

semelhantes entre diferentes wavelets mãe testadas, a família Coiflets foi a que obteve melhores 

resultados, além do menor tempo de processamento. Assim, neste trabalho foi utilizado 

Coiflets5 como função base em todos os processamentos com transformada wavelet com apenas 

um nível de decomposição, visto que aumentando o nível de decomposição, aumentava o custo 

computacional, obtendo praticamente os mesmos resultados. 

Com relação à técnica CLAHE, aplicada nos coeficientes de aproximação, foram 

utilizados os mesmos parâmetros (limite de corte igual a 0,01 e distribuição uniforme) testados 

na Parte 1, porém com apenas duas sub-regiões aplicadas: 3x3 e 15x15. Optou-se por testar 

com esses dois tamanhos apenas, visto que a sub-região de tamanho 15x15 foi a que obteve 

melhor resposta visual pelo médico radiologista (descrito a Parte I). Já a janela 3x3 foi testada 

pelo fato de ser o menor tamanho, podendo então comparar os resultados quantitativos entre os 

dois extremos (3x3 e 15x15). 

A Figura 40 apresenta um diagrama da metodologia proposta, em que uma imagem 

original é filtrada em um nível de decomposição, sendo aplicado apenas na subimagem dos 

coeficientes de aproximação a técnica de realce de contraste CLAHE. Nota-se que o processo 
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de transformada inversa é aplicado com os coeficientes de aproximação modificado (𝑎′) , 

juntamente com os coeficientes da decomposição original (d, h e v) gerando a imagem 

resultante (CLAHEa). 

Figura 40 – Esquema da metodologia proposta: em um primeiro momento ocorre a filtragem digital usando 

transformada discreta de wavelet; é aplicado a técnica de realce de contraste CLAHE apenas no coeficiente de 

aproximação (a); a transformada inversa é aplicada a partir da nova subimagem gerada (𝑎′),  com as subimagens 

da decomposição original, em cada uma das direções diagonal (𝑑), horizontal (ℎ), e vertical (𝑣),. 

 

 

Fonte: Elaborada pelo autor. 

 

Um exemplo da metodologia proposta com uma imagem real utilizada no trabalho é 

mostrado na Figura 41. Nota-se o diferencial desta metodologia, em que apenas a subimagem 

oriunda dos coeficientes de aproximação é realçada, para depois aplicar a transformada inversa, 

juntamente com os coeficientes da primeira e única decomposição. 
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Figura 41 – Esquema da nova metodologia proposta utilizando como exemplo uma das imagens testadas no 

trabalho.  

 

Fonte: Elaborada pelo autor. 

 

Além da metodologia proposta, foram implementadas diferentes combinações de 

processamento, inclusive outras técnicas de realce de contraste combinadas com filtros digitais, 

de forma a comparar os resultados com a metodologia proposta. Então, foram utilizados dois 

filtros bastante recorrentes e usuais na filtragem de ruídos em mamografia: filtro de Wiener e 

filtro de média (MAYO, RODENAS, VERDU, 2004; MAKANDAR, HALALLI, 2015; 

HAMED et al., 2018; MARROCCO et al., 2018; NAVEED et al., 2012). 

O filtro de Wiener corresponde a uma operação de deconvolução, capaz de separar os 

sinais de acordo com as frequências espectrais. Para isso, por meio do valor obtido entre o sinal 

e o ruído em determinada região, determina-se um ganho para cada frequência.  Mesmo que tal 
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técnica reduza os dados, a perda de informação é praticamente mínima, sendo amplamente 

usado na tentativa de redução de ruído quântico (ROMUALDO, VIEIRA, SCHIABEL, 2009).  

Tal filtro é conhecido como filtro do mínimo erro quadrático médio. Ele consiste em um 

passa-baixa adaptativo que objetiva suavizar o ruído, denominado de “cancelador” de ruído. Os 

coeficientes desse filtro são calculados de forma a minimizar o quadrado da distância média 

entre o resultado do filtro e o sinal desejado (VASEGHI, 2008). Considerando imagens e ruído 

como variáveis aleatórias, esse filtro visa encontrar uma estimativa 𝑓 da imagem original 𝑓, 

minimizando o erro quadrático médio entre eles. O erro (𝑒) é dado conforme a Equação (28) 

(GONZALEZ et al., 2010): 

 

 𝑒2 = 𝐸{(𝑓 − 𝑓)2} (28) 

 

em que 𝐸{(𝑓 − 𝑓)̂2} é o valor esperado do argumento. O mínimo da função de erro da Equação 

Wiener pode ser definido no domínio da frequência pela Equação (29), 

 

 𝐹̂(𝑢, 𝑣)           =  ⌈ 𝐻∗(𝑢, 𝑣)𝑆𝑓(𝑢, 𝑣)𝑆𝑓(𝑢, 𝑣)|𝐻(𝑢, 𝑣)|2 +  𝑆𝑛(𝑢, 𝑣)⌉ 𝐺(𝑢, 𝑣) 
(29) 

                            =  ⌈ 𝐻∗(𝑢, 𝑣)|𝐻(𝑢, 𝑣)|2 +  𝑆𝑛(𝑢, 𝑣)/𝑆𝑓(𝑢, 𝑣)⌉ 𝐺(𝑢, 𝑣) 
 

=  ⌈ 1𝐻(𝑢, 𝑣) |𝐻(𝑢, 𝑣)|2|𝐻(𝑢, 𝑣)|2 +  𝑆𝑛(𝑢, 𝑣)/𝑆𝑓(𝑢, 𝑣)⌉ 𝐺(𝑢, 𝑣) 

dado que:  

 H(u, v) é a função de degradação; 

 H*(u, v) é o complexo conjugado de H(u, v); 

 |𝐻(𝑢, 𝑣)|2 = H*(u, v) H(u, v); 

 G(u, v) é a função da imagem degradada; 

 𝑆𝑛(𝑢, 𝑣) = |𝑁(𝑢, 𝑣)|2 corresponde ao espectro do ru; 

 𝑆𝑓(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 corresponde ao espectro da imagem degradada. 

 𝑆𝑓(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 corresponde ao espectro de potência da imagem não degradada; 
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O outro filtro digital testado foi o filtro de média aritmética, que assim como o filtro de 

Wiener, também consiste em um filtro passa-baixa que visa a suavização da imagem ao atenuar 

componentes de altas frequências. O filtro de média calcula o valor médio dos pixels dentro de 

uma kernel pré-definido, substituindo o valor do pixel central. A imagem restaurada 𝑓 em um 

dado ponto (𝑥, 𝑦), com uma janela de tamanho 𝑚 𝑥 𝑛 e filtro de média aplicado à imagem é 

dado conforme a Equação (30) (GONZALEZ, WOODS, 2010): 

 

 𝑓(𝑥, 𝑦) = 1𝑚𝑛 ∑ 𝑔(𝑠, 𝑡)(𝑠,𝑡)∈𝑆𝑥𝑦  (30) 

 

em que, 𝑆𝑥𝑦 é o conjunto de coordenadas em uma janela de subimagem retangular de tamanho 𝑚 𝑥 𝑛 e 𝑔(𝑠, 𝑡) é o pixel de saída resultante da filtragem por média. O filtro de média pode ser 

calculado como sendo um filtro com coeficientes 
1𝑚𝑛, e apesar de promover a redução do ruído, 

essa suavização promove borramento na imagem, podendo ocasionar em perdas de detalhes 

finos. 

 Para ambos os filtros digitais implementados (Wiener e Média) foi utilizado o kernel de 

tamanho 3x3, visto que tamanhos maiores provocam maior borramento da imagem, diminuindo 

a qualidade da imagem. Além dos filtros digitais, foram implementadas as técnicas de realce de 

contraste CLAHE com tamanhos de janela 3x3 e 15x15 e a técnica recursiva de equalização de 

histograma por separação de média (RMSHE). 

A técnica RMSHE foi implementada com número de recursões (R) mínimo (igual a 1) 

e máximo possível (dependente da imagem). Utilizou-se esses dois valores de recursão, para 

avaliar a influência de números de recursões extremos na imagem resultante. Sabe-se que 

quanto maior o número de recursões, mais semelhante é a imagem processada da imagem 

original (CHEN, RAMLI, 2003), portanto o menor número de recursões sugere uma maior 

alteração dos valores de intensidade de pixel, indicando um maior realce de contraste. O número 

de recursões igual a 1 significa que é calculada a média de pixel da imagem, sendo o histograma 

da imagem dividido em duas sub-regiões, com cada uma delas sendo equalizada. Já para o 

número de recursões máxima (geralmente sete recursões), esse processo vai se repetindo até o 

histograma da imagem não poder ser mais subdividido. 

As técnicas de realce de contraste foram combinadas com os filtros de Wiener, média e 

wavelet, bem como testadas separadamente para efeito de comparação. Além da metodologia 
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proposta (filtragem digital por wavelet mais realce de contraste nos coeficientes de 

aproximação), seguem as técnicas que foram aplicadas nas imagens de phantom e nos bancos 

de imagens reais: 

 Filtragem digital: 

o Filtro de Wiener 3x3; 

o Filtro de Média 3x3; 

o Wavelet; 

 Realce de contraste: 

o CLAHE 3x3 e 15x15 (mesmos parâmetros, clip-limit e função de distribuição 

que foram usados no capítulo 7); 

o RMSHE com R = 1 (mínimo) e R = máximo, denominadas RMSHERMÍN. e 

RMSHERMÁX., respectivamente; 

A Tabela 4 apresenta os 24 processamentos que foram aplicados nas imagens originais, 

divididos em 20 processamentos que utilizaram de filtragem prévia com realce de contraste, e 

quatro processamentos sem filtragem prévia, apenas com a técnica aplicada na imagem 

(CLAHE ou RMSHE). Houve a combinação do filtro de Wiener e do filtro de média com a 

metodologia proposta, indicando uma dupla filtragem, inicialmente por meio dos filtros 

espaciais e depois com a filtragem wavelet seguida do realce de contraste. 
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Tabela 4 – Resumo dos 24 processamentos aplicados nas imagens, sendo 20 deles com filtragem digital prévia, e 

quatro apenas com técnicas de realce (sem filtragem inicial). A metodologia proposta também foi combinada 

com os filtros espaciais (Wiener e média). 

Processamentos com filtragem prévia 

1) Wiener + CLAHE 3x3 
2) Média + CLAHE 3x3 
3) Metodologia proposta* 3x3 
4) Wavelet + CLAHE 3x3 
5) Wiener + CLAHE 15x15 
6) Média + CLAHE 15x15 
7) Metodologia proposta* 15x15 
8) Wavelet + CLAHE 15x15 
9) Wiener + Metodologia proposta* 3x3 

10) Wiener + Wavelet + CLAHE 3x3 

11) Média + Metodologia proposta* 3x3 

12) Média + Wavelet + CLAHE 3x3 

13) Wiener + Metodologia proposta* 15x15 

14) Wiener + Wavelet + CLAHE 15x15 

15) Média + Metodologia proposta* 15x15 

16) Média + Wavelet + CLAHE 15x15 
17) Wiener + RMSHERMÍN. 
18) Wiener + RMSHERMÁX. 
19) Média + RMSHERMÍN. 
20) Média + RMSHERMÁX. 

Processamentos sem filtragem prévia 

21) CLAHE 3x3 
22) CLAHE 15x15 
23) RMSHERMÍN. 
24) RMSHERMÁX. 

Fonte: Elaborada pelo autor. 
*Metodologia proposta significa uma etapa de filtragem inicial por transformada discreta de wavelet, aplicação da 

técnica CLAHE apenas na subimagem gerada pelos coeficientes de aproximação, e por fim, aplicação da 

transformada inversa de wavelet a partir da subimagem modificada com os coeficientes de detalhe (horizontal, 

vertical e diagonal) da filtragem inicial. 

  

Quando o termo “CLAHE” está presente na nomenclatura dos processamentos com 

filtragem prévia, como por exemplo o processamento número 1 e 5 (Wiener + CLAHE 3x3 ou 

CLAHE 15x15), isso indica que inicialmente foi feita uma filtragem de Wiener na imagem, e 

depois, com a imagem resultante após a filtragem, foi aplicada a técnica CLAHE na imagem 

como um todo. Analogamente, o mesmo processo ocorreu quando em vez do filtro de Wiener, 
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foi usado o filtro de média ou wavelet antes do processamento com a CLAHE na imagem toda 

(processamentos 2, 4, 6 e 8). O mesmo aconteceu para o realce de contraste recursivo, RMSHE, 

que foi aplicado separadamente na imagem, sem filtragem inicial (processamentos 23 e 24), e 

com filtragem prévia (processamentos 17, 18, 19 e 20). Os processamentos 21 e 22 

correspondem à CLAHE na imagem original, sem filtragem prévia, conforme demonstrado na 

Parte I (capítulo 7) desta tese. 

Nos processamentos 10, 12, 14 e 16 ocorre a dupla filtragem visto que inicialmente a 

imagem é filtrada com Wiener ou Média, e depois com transformada wavelet, sendo a CLAHE 

aplicada na imagem resultante toda. Essa é a diferença desses processamentos para os 

processamentos 9, 11, 13 e 15, em que ocorre filtragem espacial prévia (Wiener ou Média) e 

depois outra filtragem com transformada wavelet, porém a CLAHE é aplicada apenas na 

subimagem referente aos coeficientes de aproximação (metodologia proposta). Foi testado 

também apenas a metodologia proposta, sem aplicação de filtros espaciais (processamentos 3 e 

7) aplicados previamente. A Figura 42 apresenta um diagrama de blocos resumindo os 24 

processamentos aplicados, sendo que em quatro deles as imagens originais não sofrem filtragem 

digital. 
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Figura 42 – Diagrama de blocos resumindo os 24 processamentos aplicados nas imagens mamográficas 2D 

originais de phantom e dos equipamentos Siemens (banco INbreast), Hologic e GE. 

 

Fonte: Elaborada pelo autor. 

 

Avaliação quantitativa 

Além do índice Carneiro de Contraste (ICC) proposto descrito no capítulo 6, para a 

avaliação quantitativa das imagens de phantom e de mamografias reais, foram calculadas as 

seguintes métricas: 

 CNR – apenas para as imagens de phantom; 

 PSNR; 

 MSSIM; 

 Variância; 

 Entropia; 

 EME; 
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A escolha destas métricas se deu pelo fato de serem bastante usuais na literatura na área 

de processamento digital de imagens mamográficas (AGAIAN, SILVER, PANETTA, 2007; 

AKILA, JAYASHREE, VASUKI, 2015; CIVCIK et al., 2015; ZHOU et al., 2016; SINGH, 

KAUR, 2017; YANEZ-VARGAS et al., 2017; DHAMODHARAN, SHANMUGAVADIVU, 

2018; SAHU et al., 2019). O cálculo do CNR foi feito apenas nas imagens de phantom, já que 

nessas imagens é possível selecionar duas regiões de interesse: uma de sinal e outra de fundo. 

A região dentro do círculo de referência do phantom foi definida como sendo região de fundo, 

enquanto que a região dentro da cunha de passo mais clara (simulando 100% de tecido 

glandular) foi considerada como região de sinal. A Figura 43 mostra a região de interesse 

utilizada para o cálculo de CNR, conforme Equação (13), nas imagens de phantom originais e 

de phantom processadas. 

 

Figura 43 – Regiões utilizadas como áreas de fundo e de sinal para o cálculo do CNR em imagens de phantom 

baseado nas médias e desvios-padrões de pixel das regiões. 

 

Fonte: Elaborada pelo autor. 

 

A métrica de PSNR refere-se sempre a uma métrica entre a imagem original e a imagem 

processada, sendo o erro quadrático médio calculado entre o par de imagens analisados, levando 

em consideração a resolução de contraste das imagens, sendo calculada conforme Equação (14).  
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Outra métrica quantitativa calculada foi o MSSIM, utilizando os mesmos parâmetros e 

constantes utilizados na Parte I deste trabalho. O MSSIM, assim como o PSNR, é calculado 

entre o par de imagens analisado, não possuindo valor para a imagem original, visto que ela é 

utilizada como referência para cada um dos processamentos. A variância e a entropia foram 

calculadas para as imagens originais e processadas, conforme as Equações 20 e 21 na seção 5.4, 

sendo que, para a variância foram considerados no cálculo apenas pixels maiores que zero 

(eliminando o fundo). 

Outra métrica de contraste implementada foi a medida de realce EME (conforme 

Equação 22) baseada em máximos e mínimos de uma região de interesse (ROI) delimitada. A 

delimitação automática de uma ROI de tamanho 500x500 pixels para o cálculo do EME foi 

feita a partir da seguinte metodologia: 

1) O pixel central da imagem é calculado a partir da divisão do tamanho (m x n) da 

imagem – número de linhas e colunas dividido por dois; 

2) Verifica-se a lateralidade da mama com o intuito de selecionar uma região que 

obrigatoriamente esteja dentro da área útil da mama. Isso significa que uma mama 

de lateralidade esquerda contém informação da mama à esquerda do pixel, enquanto 

que uma mama com lateralidade direita, apresenta área útil da mama à direita do 

pixel central; 

3) O pixel central é deslocado em 750 colunas para a esquerda ou para a direita, 

dependendo da lateralidade da mama; 

4) Este novo ponto é considerado como ponto central para a delimitação de uma ROI 

quadrada de tamanho 500x500 pixels a ser usada no cálculo do EME. 

 

A Figura 44 exemplifica uma ROI extraída a partir da metodologia descrita. Percebe-se 

que, no exemplo, a lateralidade da mama é esquerda, portanto, a janela móvel deve ser 

deslocada para a esquerda, garantindo que a ROI esteja em uma área que contenha informação 

da imagem. Neste caso, caso a janela movesse para a direita, a ROI selecionado abrangeria 

apenas pixels preto de fundo. O deslocamento em 750 colunas garantiu que todas as regiões de 

interesse delimitadas continham área útil da mama. 
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Figura 44 – Exemplo da delimitação da região de interesse (ROI) com tamanho 500x500 pixels recortada a partir 

do ponto central da imagem. A ROI é deslocada para a esquerda ou para a direita dependendo da lateralidade da 

mama, garantindo sempre que a ROI é extraída da área útil da mama. 

 

Fonte: Modificado de (CARNEIRO, ANDRADE, PATROCINIO, 2019) 

 

Por fim, o índice Carneiro de Contraste (ICC) também foi calculado para todas as 

imagens, afim de comparar com as demais técnicas de avaliação de contraste. Antes do cálculo 

do ICC, as imagens passaram por uma etapa de normalização, conforme descrito no capítulo 6. 

As métricas quantitativas foram calculadas também para as imagens originais 3D de 

tomossíntese (sem processamento), afim de comparar os resultados obtidos entre as imagens de 

tomossíntese com as imagens de mamografia 2D. Ao fim do cálculo das métricas quantitativas 

das imagens reais de mamas, foi feita uma média aritmética ( 𝜇̅  ± σ) entre as imagens 

pertencentes ao mesmo banco e ao mesmo processamento, formando tabelas dos valores médios 

para cada métrica, de cada processamento e banco de imagem. Para as imagens de phantom, 

não foi necessário calcular os valores médios pelo fato de possuir apenas uma imagem de cada 

equipamento. Os resultados obtidos para as imagens 3D, de tomossíntese, serão apresentados 

nas legendas das figuras, visto que como não foram aplicados processamentos digitais nessas 

imagens, elas só possuem resultados das métricas para as imagens originais. A Figura 45 

apresenta o diagrama de blocos da metodologia da Parte II do trabalho. 
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Figura 45 – Diagrama de blocos da metodologia enfatizando as métricas quantitativas calculadas nas imagens de 

phantom (CIRS) e imagens reais. 

 

Fonte: Elaborada pelo autor. 

 

8.2 Resultados e discussões 

 

Assumindo que ao todo foram processadas duas imagens de phantom (GE e Hologic 

2D) e 214 imagens mamográficas reais (127 imagens do INbreast, 38 imagens da GE e 49 

imagens da Hologic 2D), foram geradas 5184 imagens resultantes a partir dos 24 

processamentos aplicados. Nos Apêndices A, B, C e D desta tese, após as Referências, são 

mostrados um exemplo de imagem de cada banco de imagem contendo 25 imagens (original + 

24 processamentos) a fim de avaliar a diferença visual entre elas. Ao longo desta seção serão 

apresentados também algumas imagens resultantes para exemplificar e auxiliar nas discussões. 
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Phanthom 

As Figuras 46 e 47 apresentam as imagens de phantom e um exemplo de imagem real 

pertencente à cada um dos bancos de imagem utilizados, respectivamente. É possível notar 

visualmente a diferença entre imagens, visto que cada fabricante possui uma etapa de pós-

processamento própria. A diferença entre as imagens geradas por equipamentos distintos é 

interessante para os testes de processamento digital pois avalia o efeito da técnica para imagens 

com diferentes características. 

 

Figura 46 – Exemplos das imagens originais de phantom usadas no trabalho. 

   
                     GE                                               HOLOGIC 2D                                      HOLOGIC 3D 

Fonte: Elaborada pelo autor. 

 
Figura 47 – Exemplos de uma imagem de mama real densa (sem processamento) dos diferentes bancos de imagens 

utilizados no trabalho. As duas imagens da Hologic desta figura são da mesma mama, obtidas do modo combo, 

uma de mamografia (2D) e a outra de tomossíntese (3D). 

 

Fonte: Elaborada pelo autor. 



 Capítulo 8 Parte II – Nova metodologia para realce de contraste em mamografias 

                                                                                                                                     126 
 

 

Nota-se que visualmente as imagens da Hologic (phantom e real) apresentam um brilho 

menor e um contraste maior, em relação às imagens da Siemens (banco INbreast) e GE 

(phantom e mama real), que possuem um média de tons de cinza mais claros. Com relação ao 

par de imagens de phantom da Hologic no modo combo, destaca-se processamento na região 

próxima à borda da mama, em que há um aumento dos níveis de cinza da imagem de 

tomossíntese. Já no exemplo da Figura 47 verifica-se principalmente a diferença dos níveis de 

cinza na região do músculo peitoral, em que apresentou tons mais claros na imagem de 

tomossíntese em comparação com a imagem 2D.  

A fim de avaliar a relação contraste-ruído, foram calculados os valores de CNR para as 

imagens sem processamento e após os 24 processamentos aplicados no phantom de mama 

CIRS. Conforme metodologia apresentada na seção anterior, o círculo de referência e a região 

mais clara da cunha de passo foram considerados como sendo região de fundo e de sinal, 

respectivamente. A Tabela 5 apresenta as médias dos resultados de CNR obtidos para cada 

processamento em cada equipamento. 
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Tabela 5 –  Phantoms: resultados dos valores de CNR obtidos para as imagens adquiridas com o phantom CIRS. A imagem original Hologic 3D obteve CNR igual a 6,51. 

 CNR 
Processamentos Phantom GE Phantom Hologic 2D 

- Imagens originais 6,18 3,86 
Processamentos com filtragem prévia   

1) Wiener + CLAHE 3x3 11,49 4,83 
2) Média + CLAHE 3x3 11,93 6,20 
3) Metodologia proposta* 3x3 8,23 5,58 
4) Wavelet + CLAHE 3x3 7,33 4,33 
5) Wiener + CLAHE 15x15 11,77 5,59 
6) Média + CLAHE 15x15 12,03 7,42 
7) Metodologia proposta* 15x15 7,15 4,90 
8) Wavelet + CLAHE 15x15 8,51 5,22 
9) Wiener + Metodologia proposta* 3x3 11,63 6,48 
10) Wiener + Wavelet + CLAHE 3x3 12,30 5,25 
11) Média + Metodologia proposta* 3x3 12,32 7,30 
12) Média + Wavelet + CLAHE 3x3 12,55 6,08 
13) Wiener + Metodologia proposta* 15x15 9,87 5,73 
14) Wiener + Wavelet + CLAHE 15x15 12,23 6,31 
15) Média + Metodologia proposta* 15x15 10,78 6,60 
16) Média + Wavelet + CLAHE 15x15 12,82 7,37 
17) Wiener + RMSHERMÍN. 3,89 4,66 
18) Wiener + RMSHERMÁX. 10,50 5,14 
19) Média + RMSHERMÍN. 3,96 5,70 
20) Média + RMSHERMÁX. 12,45 7,94 

Processamentos sem filtragem prévia   
21) CLAHE 3x3 5,66 3,64 
22) CLAHE 15x15 6,42 4,26 
23) RMSHERMÍN. 2,52 3,91 
24) RMSHERMÁX. 6,00 3,84 
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A partir dos resultados da Tabela 5, o maior valor de CNR obtido para as imagens 

originais, sem processamento, foi para a imagem de tomossíntese (Hologic 3D), com um valor 

de CNR igual a 6,51. Isto indica, que para este exame, houve quase o dobro de aumento do 

CNR, quando se comparado com a imagem mamográfica 2D, que obteve CNR igual a 3,86. 

Este fato já era esperado, visto que uma das vantagens da tomossíntese é a redução da 

sobreposição de tecidos, promovendo uma melhor visualização das estruturas, e um aumento 

de contraste para as imagens de phantom. Já a imagem do CIRS obtida no equipamento da GE 

obteve um CNR igual a 6,18, 1,6 vezes maior que o da imagem mamográfica 2D da Hologic, 

sugerindo uma maior relação contraste-ruído das imagens adquiridas do equipamento GE em 

comparação com o da Hologic. 

Analisando os processamentos aplicados, verificou-se que os maiores valores de CNR 

obtidos foram para o processamento 16 (Média + Wavelet + CLAHE 15x15) nas imagens da 

GE, e para o processamento 20 (Média + RMSHERMÁX) nas imagens da Hologic, com valores 

de 12,82 e 7,94, respectivamente. Os maiores valores tiveram a presença do filtro de média no 

processamento, indicando nesses casos uma maior filtragem de ruído, o que consequentemente 

resulta em um maior valor da relação contraste-ruído, visto que o ruído é amplamente reduzido. 

No entanto, esse filtro causa um maior borramento na imagem, o que não infere que o contraste 

tenha sido aumentado. 

Um ponto de destaque é que, em todos os processamentos que envolveram a 

metodologia proposta, os valores de CNR foram aumentados em relação à imagem original, 

para ambos os equipamentos. Nos processamentos 11 e 15, do banco da Hologic, em que foram 

utilizados filtro de Média com metodologia proposta 3x3 e 15x15, os valores de CNR foram, 

inclusive, maiores do que os valores obtidos para a imagem de tomossíntese 3D. Isso indica 

que, para esses processamentos a relação contraste-ruído foi maior do que a calculada a partir 

do equipamento com a tecnologia mais avançada. Interessante destacar o aumento do CNR da 

CLAHE 15x15 com relação à CLAHE 3x3, justificando a escolha visual do médico radiologista 

nessas imagens em que foi usada um tamanho de sub-regiões maior. 

De maneira a auxiliar na discussão dos resultados, foram recortadas tanto as regiões que 

contém simulação de nódulos como de microcalcificações do phantom com cada um dos 24 

processamentos, e das imagens originais 2D e 3D para o banco de imagens Hologic. As Figuras 

48 e 49 apresentam as imagens resultantes aplicadas na imagem original 2D, e a imagem 

original 3D para fins de referência (“padrão-ouro”), em recortes contendo nódulos e 

microcalcificações, respectivamente. 
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Para as imagens de phantom do equipamento GE, as Figuras 50 e 51 apresentam, 

respectivamente, regiões de interesse recortadas contendo simulações de nódulos e 

microcalcificações. Os únicos valores de CNR calculados que obtiveram resultados menores 

que a imagem original foram os processamentos que continham a técnica RMSHERMÍN com 

filtragem prévia ou sem filtragem prévia e o processamento 21, CLAHE 3x3 sem filtragem 

prévia. Interessante destacar que, a técnica de contraste CLAHE 3x3 não promoveu aumento 

na relação contraste-ruído, ao contrário do que ocorreu para a CLAHE 15x15, conforme ocorreu 

também nas imagens da Hologic.  Esse resultado está em conformidade com o que foi mostrado 

na Parte I desta tese, em que o médico radiologista optou pelas imagens com CLAHE 15x15 

em vez de CLAHE 3x3, que se mostraram não ser eficientes no aumento do CNR. 

No recorte da imagem original, a região de interesse contendo os nódulos possui baixo 

contraste com as regiões adjacentes, uma vez que, visualmente, é difícil perceber a presença 

dos seis nódulos simulados. No entanto, essa visualização é melhorada a partir de todos os 

processamentos com a metodologia proposta, sem que houvesse muita alteração no brilho da 

imagem, e sem muita mudança nos valores de intensidade do fundo do recorte. Para as 

microcalcificações, as imagens resultantes dos processamentos com as metodologias propostas 

(numerações com asterisco), visualmente, apresentaram pouca melhora, porém 

quantitativamente, em todos os casos, houve aumento de CNR em relação à imagem original. 

O banco da GE não possui a respectiva imagem 3D (tomossíntese). 
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Após os resultados obtidos no cálculo do CNR para as imagens de phantom, foi feita a 

análise das métricas quantitativas para o banco de dados pertencentes às imagens reais de 

mamas. Os processamentos foram avaliados segundo cada métrica de qualidade de imagem 

calculada, sendo o maior objetivo verificar o aumento de contraste com preservação de 

estruturas, mantendo a qualidade da imagem. Portanto, na análise foi considerado como bom 

resultado técnicas que aumentaram o contraste segundo as métricas, sem distorcer a imagem 

original em excesso, o que poderia causar perda de estruturas. 

Inicialmente serão apresentados os resultados relativos ao PSNR e MSSIM que 

consideram a relação entre imagem original e processada, seguido por medidas de contraste 

mais globais como variância e entropia. Após isso, serão discutidos os resultados obtidos por 

métricas de contraste de imagem mais locais, como o EME, e o índice Carneiro de Contraste 

proposto neste trabalho.  

 

PSNR e índice de similaridade MSSIM 

A Tabela 6 apresenta os valores médios de PSNR calculados, indicando que quanto 

maior o valor, maior a relação sinal-ruído de pico entre a imagem processada, e a imagem 

original, considerada como de referência. Logo após, na Tabela 7 são apresentados os resultados 

segundo a média do índice de similaridade (MSSIM), que varia entre 0 e 1. Quanto maior o 

valor de MSSIM, maior é a similaridade entre a imagem original (referência) e a processada, 

variando entre 0 e 1, no qual 1 representa imagens idênticas.   



 Capítulo 8 Parte II – Nova metodologia para realce de contraste em mamografias 

135 
 

 

Tabela 6 –  Valores de média e desvio padrão (𝜇̅ ± σ) obtidos para o cálculo do PSNR entre as imagens processadas e a original para cada um dos bancos de imagens testados. 

 PSNR (𝛍̅± σ) 
Processamentos INbreast P3 INbreast P4 GE Hologic 2D 

Processamentos com filtragem prévia     
1) Wiener + CLAHE 3x3 42,84 ± 1,88 43,39 ± 1,72 35,82 ± 2,65 46,76 ± 2,40 
2) Média + CLAHE 3x3 42,72 ± 1,90 43,22 ± 1,65 35,78 ± 2,63 47,09 ± 2,53 
3) Metodologia proposta* 3x3 51,02 ± 2,24 52,57 ± 2,55 49,04 ± 2,03 43,02 ± 2,13 
4) Wavelet + CLAHE 3x3 42,89 ± 1,89 43,42 ± 1,72 35,86 ± 2,67 46,59 ± 2,40 
5) Wiener + CLAHE 15x15 41,46 ± 1,80 42,02 ± 1,38 35,45 ± 2,86 46,24 ± 1,90 
6) Média + CLAHE 15x15 41,36 ± 1,71 41,91 ± 1,37 35,39 ± 2,84 46,55 ± 2,29 
7) Metodologia proposta* 15x15 52,79 ± 1,82 53,32 ± 1,74 49,5 ± 1,69 43,01 ± 1,75 
8) Wavelet + CLAHE 15x15 41,53 ± 1,81 42,06 ± 1,38 35,50 ± 2,89 46,08 ± 1,90 
9) Wiener + Metodologia proposta* 3x3 51,07 ± 2,23 52,60 ± 2,55 49,09 ± 2,05 43,07 ± 2,13 
10) Wiener + Wavelet + CLAHE 3x3 42,84 ± 1,89 43,38 ± 1,73 35,80 ± 2,64 46,69 ± 2,40 
11) Média + Metodologia proposta* 3x3 51,28 ± 2,26 52,78 ± 2,55 49,02 ± 1,97 43,49 ± 2,10 
12) Média + Wavelet + CLAHE 3x3 42,73 ± 1,09 43,22 ± 1,65 35,78 ± 2,63 47,08 ± 2,53 
13) Wiener + Metodologia proposta* 15x15 52,90 ± 1,81 53,40 ± 1,75 49,58 ± 1,71 43,11 ± 1,74 
14) Wiener + Wavelet + CLAHE 15x15 41,45 ± 1,81 42,00 ± 1,39 35,42 ± 2,84 46,24 ± 1,91 
15) Média + Metodologia proposta* 15x15 53,05 ± 1,88 53,55 ± 1,81 49,52 ± 1,7 43,17 ± 1,75 
16) Média + Wavelet + CLAHE 15x15 41,38 ± 1,81 41,91 ± 1,37 35,42 ± 2,84 46,57 ± 2,30 
17) Wiener + RMSHERMÍN. 41,32 ± 1,55 41,81 ± 1,36 40,36 ± 1,92 45,34 ± 2,06 
18) Wiener + RMSHERMÁX. 68,22 ± 3,26 66,43 ± 2,19 70,23 ± 5,51 70,25 ± 3,59 
19) Média + RMSHERMÍN. 41,30 ± 1,55 41,79 ± 1,35 40,33 ± 1,91 45,16 ± 2,04 
20) Média + RMSHERMÁX. 66,60 ± 2,25 65,33 ± 1,79 65,77 ± 1,18 62,44 ± 2,12 
Processamentos sem filtragem prévia     

21) CLAHE 3x3 42,93 ± 1,87 43,46 ± 1,71 35,93 ± 2,69 46,60 ± 2,38 
22) CLAHE 15x15 41,60 ± 1,8 42,12 ± 1,36 35,60 ± 2,91 45,99 ± 1,87 
23) RMSHERMÍN. 41,34 ± 1,54 41,85 ± 1,36 40,32 ± 1,83 45,36 ± 2,05 
24) RMSHERMÁX. 69,28 ± 4,92 66,65 ± 2,16 73,71 ± 8,48 86,26 ± 6,38 
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Tabela 7 –  Valores de média e desvio padrão (𝜇̅ ± σ) obtidos para o cálculo do MSSIM entre as imagens processadas e a original para cada um dos bancos de imagens 

testados. 

 MSSIM (𝛍̅± σ) 
Processamentos INbreast P3 INbreast P4 GE Hologic 2D 

Processamentos com filtragem prévia     
1) Wiener + CLAHE 3x3 0,8728 ± 0,0406 0,8874 ± 0,0377 0,7460 ± 0,0770 0,9456 ± 0,0232 
2) Média + CLAHE 3x3 0,8657 ± 0,0415 0,8801 ± 0,0386 0,7381 ± 0,0814 0,9156 ± 0,0309 
3) Metodologia proposta* 3x3 0,9510 ± 0,0227 0,9629 ± 0,0165 0,9059 ± 0,1099 0,8067 ± 0,1170 
4) Wavelet + CLAHE 3x3 0,8714 ± 0,0398 0,8867 ± 0,0375 0,7477 ± 0,0700 0,9303 ± 0,0281 
5) Wiener + CLAHE 15x15 0,8379 ± 0,0549 0,8599 ± 0,0467 0,7247 ± 0,0942 0,9280 ± 0,0259 
6) Média + CLAHE 15x15 0,8326 ± 0,0559 0,8543 ± 0,0476 0,7181 ± 0,0996 0,9043 ± 0,0347 
7) Metodologia proposta* 15x15 0,9456 ± 0,0182 0,9557 ± 0,0168 0,8999 ± 0,1095 0,8634 ± 0,0489 
8) Wavelet + CLAHE 15x15 0,8384 ± 0,0539 0,8608 ± 0,0462 0,7213 ± 0,1063 0,9101 ± 0,0329 
9) Wiener + Metodologia proposta* 3x3 0,9486 ± 0,0417 0,9676 ± 0,0137 0,9225 ± 0,0926 0,8932 ± 0,0452 
10) Wiener + Wavelet + CLAHE 3x3 0,8707 ± 0,0409 0,8851 ± 0,0385 0,7443 ± 0,0733 0,9310 ± 0,0278 
11) Média + Metodologia proposta* 3x3 0,9618 ± 0,0136 0,9687 ± 0,0135 0,9177 ± 0,1084 0,8963 ± 0,0379 
12) Média + Wavelet + CLAHE 3x3 0,8657 ± 0,0416 0,8799 ± 0,0387 0,7393 ± 0,0774 0,9158 ± 0,0308 
13) Wiener + Metodologia proposta* 15x15 0,9560 ± 0,0152 0,9634 ± 0,0131 0,9189 ± 0,0828 0,8694 ± 0,0462 
14) Wiener + Wavelet + CLAHE 15x15 0,8365 ± 0,0553 0,8584 ± 0,0474 0,7207 ± 0,0967 0,9163 ± 0,0311 
15) Média + Metodologia proposta* 15x15 0,9593 ± 0,0135 0,9659 ± 0,0127 0,9177 ± 0,0863 0,8754 ± 0,0424 
16) Média + Wavelet + CLAHE 15x15 0,8326 ± 0,0559 0,8543 ± 0,0477 0,7183 ± 0,0984 0,9048 ± 0,0346 
17) Wiener + RMSHERMÍN. 0,8531 ± 0,0447 0,8805 ± 0,0372 0,7490 ± 0,1515 0,9390 ± 0,0268 
18) Wiener + RMSHERMÁX. 0,9939 ± 0,0029 0,9947 ± 0,0025 0,9720 ± 0,0773 0,9843 ± 0,0118 
19) Média + RMSHERMÍN. 0,8579 ± 0,0454 0,8867 ± 0,0378 0,7477 ± 0,1520 0,9136 ± 0,0332 
20) Média + RMSHERMÁX. 0,9875 ± 0,0051 0,9888 ± 0,0041 0,9633 ± 0,0775 0,9437 ± 0,0238 
Processamentos sem filtragem prévia     

21) CLAHE 3x3 0,8740 ± 0,0383 0,8898 ± 0,0361 0,7500 ± 0,0751 0,9441 ± 0,0232 
22) CLAHE 15x15 0,8411 ± 0,0521 0,8637 ± 0,0445 0,7324 ± 0,0876 0,9170 ± 0,0285 
23) RMSHERMÍN. 0,8217 ± 0,0554 0,8578 ± 0,0471 0,7091 ± 0,1676 0,9401 ± 0,0273 
24) RMSHERMÁX. 0,9983 ± 0,0010 0,9973 ± 0,0013 0,9855 ± 0,0697 0,9999 ± 0,0001 



 Capítulo 8 Parte II – Nova metodologia para realce de contraste em mamografias 

                                                                                                                                     137 
 

 

A primeira análise é com relação aos processamentos resultantes da técnica recursiva 

RMSHE. No caso do PSNR e do MSSIM, para as imagens reais, os processamentos que 

continham a técnica RMSHERMÁX. (números 18, 20 e 24) foram os que obtiveram maiores 

valores para essas métricas em todos os bancos de imagens testados. Isso é explicado pois o 

alto número de recursões promove uma maior similaridade entre a imagem original e a imagem 

processada, conforme discutido no capítulo 4 e citado por (CHEN, RAMLI, 2003), não 

promovendo um realce de contraste.  

No banco de imagens da Hologic 2D, o valor médio obtido para o processamento 24 foi 

de 0,9999, indicando que as imagens comparadas praticamente são idênticas. Como o PSNR é 

inversamente proporcional ao MSE entre o par de imagens analisado e a imagem resultante 

dessa técnica é muito similar à imagem original, o MSE apresenta um baixo valor, elevando o 

resultado para o PSNR. 

A mesma técnica recursiva, porém, utilizando o número de recursões mínimo igual a 1 

(RMSHERMÍN.), proporciona o efeito contrário ao utilizado na técnica com recursões máximo, 

visto que o realce de contraste promovido é bem maior, ocasionando em uma imagem bem 

diferente da imagem original. Isso ficou evidenciado nos valores de PSNR para as imagens P3 

e P4 da INbreast, nos quais os processamentos 19 e 23, utilizando filtro de Média + 

RMSHERMÍN., e apenas RMSHERMÍN., obteve os menores valores de PSNR calculados, iguais a 

41,3 e 41,34, respectivamente. Quanto ao MSSIM, os valores médios foram menores para esses 

processamentos, pelo fato de modificarem bastante a imagem processada, reduzindo a 

similaridade com as imagens originais. 

Para o banco da GE, o menor PSNR obtido foi para o processamento de número 6 

(Média + CLAHE 15x15), comprovando que apesar do filtro de média provocar suavização de 

ruído, ele borra muito a imagem, sendo a imagem resultante agravada em termos de qualidade 

com a ténica CLAHE que promove realce de contraste a partir de uma imagem que já contém 

perda de sinal. Para o banco da Hologic, o menor PSNR, igual a 43,01, foi obtido a partir da 

metodologia proposta 15x15, processamento número 7, que também obteve baixos valores de 

MSSIM. No cálculo do MSSIM, as imagens 2D da Hologic também se comportaram de maneira 

diferente das imagens da Siemens e GE. Os menores valores de MSSIM para imagens desse 

equipamento foram calculadas nas imagens processadas com a metodologia proposta 3x3 e 

15x15, com valores médios de 0,8067 e 0,8634, respectivamente.  
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Isso sugere que para o banco da Hologic, a metodologia proposta alterou bastante a 

imagem resultante, em relação a imagem original, aumentando o MSE entre elas, e 

consequentemente diminuindo o valor de PSNR, e, portanto, o valor de MSSIM. No entanto, 

para esse banco de imagens nota-se que a variação entre os valores de PSNR obtidos é menor 

entre os processamentos do que para os demais bancos, no qual a maioria dos processamentos, 

com exceção dos que possuem RMSHERMÁX., atingem valor de PSNR próximo ou maior que 

50. 

Em contrapartida, os processamentos aplicados a partir da metodologia proposta, nos 

bancos INbreast e GE, se comportaram de maneira diferente em relação ao banco da Hologic. 

Nos bancos INbreast e GE, as metodologias propostas obtiveram valores de PSNR maiores do 

que os calculados nos processamentos utilizando a técnica CLAHE em conjunto ou não com 

um filtro, indicando maior relação sinal-ruído de pico. Além disso, ao se utilizar a metodologia 

proposta com outra filtragem inicial (dupla filtragem), como por exemplo o processamento 13 

(Wiener + Metodologia proposta 15x15), os resultados de PSNR foram sempre maiores do que 

no processamento sem o filtro espacial (7 – Metodologia proposta 15x15), devido 

principalmente à uma filtragem dos ruídos com o filtro adicional. 

Para as imagens desses bancos (INbreast e GE), a metodologia proposta obteve 

resultados de MSSIM entre 0,8999 e 0,9629, indicando uma certa diferença com a imagem 

original, provocada principalmente pela alteração de contraste. O ideal, conforme ocorrido, é 

que os valores não deem extremamente próximos de 1, o que significaria imagens muito 

similares, e dessa forma sem realce de contraste. 

Os resultados com CLAHE 3x3 obtiveram valores médios de MSSIM maiores que com 

a CLAHE 15x15, conforme ocorrido no trabalho desenvolvido na Parte I. Isso indica que o uso 

da janela de tamanho 15x15 provoca uma maior alteração em níveis de estrutura e luminância, 

podendo melhorar a visualização de estruturas, visto que se diferencia mais da imagem original, 

em detrimento do processamento utilizando tamanho 3x3.  

 A Figura 52 apresenta os mesmos exemplos mostrados na Figura 47, para os três bancos 

de imagens contendo os processamentos com as metodologias propostas (processamentos 3, 7, 

9, 11,13 e 15) e com o processamento 24 (RMSHERMÁX.), aquele com maiores valores de PSNR 

e MSSIM, além das respectivas imagens originais para comparação. 
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essa imagem de exemplo obteve valores de MSSIM iguais a 0,9021 e 0,8895, para a análise da 

imagem original com os processamentos 3 e 9, respectivamente. É possível notar a presença de 

pixels pretos nesses mapas de similaridade, indicando diferenças em termos de estrutura, 

luminância e contraste entre os processamentos aplicados e imagem original.  

 

Variância e Entropia 

Após a análise dos valores calculados para o PSNR, serão discutidos os resultados 

obtidos para a variância normalizada e a entropia. Ambas as medidas estão diretamente 

relacionadas com o contraste, em que quanto maior o resultado calculado, maior é o indicador 

de contraste da imagem. No caso da variância, corresponde às distâncias entre os valores de 

pixel com o valor de pixel médio da imagem, e para a entropia, significa uma relação com a 

quantidade de informação da imagem. As Tabelas 8 e 9 apresentam os resultados da média e 

desvio padrão calculados para as imagens originais e para cada um dos processamentos.
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Tabela 8 –  Valores de média e desvio padrão (𝜇̅ ± σ) obtidos para o cálculo da variância normalizada das imagens originais e processadas para cada um dos bancos de 

imagens testados. As imagens originais Hologic 3D obtiveram média de variância normalizada igual a 0,013 ± 0,003. 

 Variância normalizada (𝛍̅± σ) 
Processamentos INbreast P3 INbreast P4 GE Hologic 2D 

- Imagens originais 0,019 ± 0,007 0,021 ± 0,008 0,053 ± 0,07 0,163 ± 0,039 
Processamentos com filtragem prévia     

1) Wiener + CLAHE 3x3 0,037 ± 0,024 0,025 ± 0,013 0,044 ± 0,027 0,238 ± 0,082 
2) Média + CLAHE 3x3 0,035 ± 0,024 0,023 ± 0,011 0,043 ± 0,028 0,229 ± 0,083 
3) Metodologia proposta* 3x3 0,163 ± 0,053 0,120 ± 0,033 0,392 ± 0,256 0,407 ± 0,118 
4) Wavelet + CLAHE 3x3 0,037 ± 0,024 0,025 ± 0,013 0,045 ± 0,027 0,241 ± 0,084 
5) Wiener + CLAHE 15x15 0,020 ± 0,014 0,012 ± 0,005 0,038 ± 0,019 0,219 ± 0,056 
6) Média + CLAHE 15x15 0,019 ± 0,014 0,011 ± 0,005 0,037 ± 0,019 0,209 ± 0,060 
7) Metodologia proposta* 15x15 0,146 ± 0,042 0,109 ± 0,028 0,406 ± 0,277 0,330 ± 0,092 
8) Wavelet + CLAHE 15x15 0,020 ± 0,015 0,012 ± 0,005 0,039 ± 0,019 0,222 ± 0,058 
9) Wiener + Metodologia proposta* 3x3 0,262 ± 0,053 0,219 ± 0,033 0,491 ± 0,256 0,403 ± 0,118 
10) Wiener + Wavelet + CLAHE 3x3 0,036 ± 0,024 0,024 ± 0,013 0,044 ± 0,027 0,238 ± 0,083 
11) Média + Metodologia proposta* 3x3 0,258 ± 0,052 0,215 ± 0,032 0,490 ± 0,258 0,345 ± 0,101 
12) Média + Wavelet + CLAHE 3x3 0,035 ± 0,024 0,023 ± 0,011 0,043 ± 0,027 0,230 ± 0,084 
13) Wiener + Metodologia proposta* 15x15 0,285 ± 0,042 0,289 ± 0,028 0,605 ± 0,277 0,426 ± 0,091 
14) Wiener + Wavelet + CLAHE 15x15 0,020 ± 0,014 0,012 ± 0,005 0,038 ± 0,019 0,218 ± 0,056 
15) Média + Metodologia proposta* 15x15 0,276 ± 0,042 0,209 ± 0,027 0,604 ± 0,278 0,412 ± 0,088 
16) Média + Wavelet + CLAHE 15x15 0,019 ± 0,014 0,011 ± 0,005 0,037 ± 0,019 0,209 ± 0,060 
17) Wiener + RMSHERMÍN. 0,499 ± 0,014 0,510 ± 0,005 0,464 ± 0,049 0,496 ± 0,013 
18) Wiener + RMSHERMÁX. 0,022 ± 0,007 0,024 ± 0,008 0,0570 ± 0,07 0,163 ± 0,039 
19) Média + RMSHERMÍN. 0,499 ± 0,014 0,510 ± 0,005 0,464 ± 0,049 0,497 ± 0,013 
20) Média + RMSHERMÁX. 0,022 ± 0,007 0,025 ± 0,008 0,057 ± 0,07 0,160 ± 0,039 
Processamentos sem filtragem prévia     

21) CLAHE 3x3 0,038 ± 0,024 0,025 ± 0,013 0,046 ± 0,026 0,241 ± 0,083 
22) CLAHE 15x15 0,021 ± 0,015 0,013 ± 0,006 0,040 ± 0,019 0,226 ± 0,059 
23) RMSHERMÍN. 0,499 ± 0,015 0,509 ± 0,005 0,467 ± 0,048 0,496 ± 0,013 
24) RMSHERMÁX. 0,021 ± 0,007 0,023 ± 0,008 0,054 ± 0,07 0,164 ± 0,039 
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Tabela 9 –  Valores de média e desvio padrão (𝜇̅ ± σ) obtidos para o cálculo da entropia das imagens originais e processadas para cada um dos bancos de imagens testados. As 

imagens originais Hologic 3D obtiveram média de entropia igual a 1,163 ± 0,283. 
 

 

 Entropia (𝛍̅± σ) 
Processamentos INbreast P3 INbreast P4 GE Hologic 2D 

- Imagens originais 1,484 ± 0,304 1,338 ± 0,326 1,639 ± 0,22 1,889 ± 0,443 
Processamentos com filtragem prévia     

1) Wiener + CLAHE 3x3 1,507 ± 0,37 1,258 ± 0,333 1,822 ± 0,37 2,021 ± 0,488 
2) Média + CLAHE 3x3 1,494 ± 0,368 1,241 ± 0,326 1,812 ± 0,366 2,011 ± 0,491 
3) Metodologia proposta* 3x3 1,817 ± 0,411 1,566 ± 0,407 2,175 ± 0,386 2,049 ± 0,487 
4) Wavelet + CLAHE 3x3 1,512 ± 0,371 1,261 ± 0,333 1,834 ± 0,366 2,025 ± 0,490 
5) Wiener + CLAHE 15x15 1,359 ± 0,317 1,151 ± 0,274 1,817 ± 0,357 2,019 ± 0,459 
6) Média + CLAHE 15x15 1,343 ± 0,315 1,135 ± 0,267 1,807 ± 0,354 2,007 ± 0,462 
7) Metodologia proposta* 15x15 1,699 ± 0,361 1,497 ± 0,366 2,134 ± 0,381 2,060 ± 0,475 
8) Wavelet + CLAHE 15x15 1,369 ± 0,319 1,158 ± 0,276 1,827 ± 0,358 2,024 ± 0,462 
9) Wiener + Metodologia proposta* 3x3 1,814 ± 0,410 1,564 ± 0,406 2,164 ± 0,382 2,050 ± 0,487 
10) Wiener + Wavelet + CLAHE 3x3 1,508 ± 0,370 1,257 ± 0,330 1,817 ± 0,372 2,022 ± 0,489 
11) Média + Metodologia proposta* 3x3 1,808 ± 0,408 1,558 ± 0,403 2,166 ± 0,381 2,103 ± 0,495 
12) Média + Wavelet + CLAHE 3x3 1,494 ± 0,368 1,242 ± 0,326 1,814 ± 0,365 2,012 ± 0,491 
13) Wiener + Metodologia proposta* 15x15 1,694 ± 0,359 1,494 ± 0,365 2,123 ± 0,378 2,059 ± 0,475 
14) Wiener + Wavelet + CLAHE 15x15 1,358 ± 0,318 1,149 ± 0,273 1,814 ± 0,359 2,019 ± 0,460 
15) Média + Metodologia proposta* 15x15 1,693 ± 0,359 1,492 ± 0,364 2,122 ± 0,376 2,096 ± 0,485 
16) Média + Wavelet + CLAHE 15x15 1,344 ± 0,315 1,135 ± 0,267 1,809 ± 0,351 2,007 ± 0,463 
17) Wiener + RMSHERMÍN. 2,068 ± 0,471 1,811 ± 0,458 2,648 ± 0,560 1,889 ± 0,443 
18) Wiener + RMSHERMÁX. 1,484 ± 0,304 1,342 ± 0,327 1,629 ± 0,219 1,887 ± 0,442 
19) Média + RMSHERMÍN. 2,069 ± 0,471 1,812 ± 0,458 2,648 ± 0,560 1,885 ± 0,442 
20) Média + RMSHERMÁX. 1,487 ± 0,304 1,344 ± 0,327 1,632 ± 0,22 1,887 ± 0,443 
Processamentos sem filtragem prévia     

21) CLAHE 3x3 1,516 ± 0,372 1,265 ± 0,336 1,844 ± 0,372 2,025 ± 0,49 
22) CLAHE 15x15 1,378 ± 0,321 1,165 ± 0,280 1,840 ± 0,359 2,027 ± 0,463 
23) RMSHERMÍN. 2,064 ± 0,471 1,807 ± 0,458 2,645 ± 0,561 1,976 ± 0,466 
24) RMSHERMÁX. 1,487 ± 0,305 1,343 ± 0,327 1,643 ± 0,220 1,890 ± 0,443 
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Os resultados apontaram uma relação direta entre os valores de variância e entropia para 

as imagens. Analisando apenas as imagens originais, as maiores médias de variância 

normalizada e entropia são para as imagens pertencentes à Hologic 2D, indicando um maior 

contraste nas imagens deste equipamento. Inclusive, essas imagens apontaram uma maior 

variância e entropia comparadas às imagens de tomossíntese.  

 Vale relembrar que, o cálculo da variância foi normalizado, ou seja, a maior variância 

dentre todas as imagens e todos os processamentos foi obtida para o processamento 19 (Média 

+ RMSHERMÍN.) no banco INbreast, Padrão 4. Isso significa que todas as demais variâncias 

individuais de cada imagem foram divididas por esse máximo valor, resultando em valores 

entre 0 e 1. Entretanto, este alto valor de uma imagem foi muito maior (outlier) que para as 

demais imagens do mesmo processamento, o que não resultou em uma variância normalizada 

média próxima de 1, com os maiores valores obtidos tanto para o processamento 17 (Média + 

RMSHERMÍN.) quanto para o processamento 19, igual a 0,51.  

Para a entropia, os maiores valores também foram encontrados para os processamentos 

que utilizaram da técnica de recursão, quando o número de recursões usado foi igual ao mínimo, 

em todos os bancos de imagens, com exceção ao banco da Hologic. Esses altos valores de 

variância e entropia são causados pelo alto aumento de contraste promovido por essa técnica, 

que acaba saturando algumas regiões da imagem, diminuindo a qualidade da imagem, 

salientando a importância da análise visual juntamente com a quantitativa, pois não 

necessariamente um alto contraste apenas, indica boa imagem visual. Mais uma vez foi 

comprovada a alta similaridade entre as imagens originais e imagens resultantes do 

processamento com RMSHERMÁX., dada a proximidade dos valores médios de variância e 

entropia medidos.  

Para o banco da Hologic, a maior entropia, igual a 2,103 foi calculada para o 

processamento 11, utilizando filtro de Média juntamente com a metodologia proposta 3x3. 

Analisando os processamentos que contém a metodologia que foi proposta nesta tese (números 

3, 7, 11, 13 e 15), em todos os casos, para todos os conjuntos de imagens testados, a técnica de 

realce de contraste implementada proporcionou aumento da variância e entropia em relação às 

imagens originais. Eliminando os processamentos com a técnica de recursão, os 

processamentos que contém a metodologia aplicada foram os que obtiveram maior valor médio 

de variância normalizada e entropia.  Isso sugere que, consequentemente houve realce de 

contraste, inclusive com valores bem mais altos quando comparado aos processamentos em que 

foi aplicado a técnica na CLAHE na imagem como um todo. Por exemplo, para o banco da GE, 
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a metodologia proposta 15x15 obteve média de variância normalizada igual 0,406 e entropia 

igual a 2,134, valores maiores que para a média de variância e entropia obtida para as imagens 

com CLAHE 15x15, iguais a 0,04 e 1,84, respectivamente. 

Com relação à influência dos filtros digitais, o filtro de Wiener e a filtragem por wavelet, 

se mostraram superiores no aumento da variância e entropia, em relação à filtragem por média. 

Outro ponto a ser destacado, foi a dupla filtragem nos processamentos que envolveram a 

CLAHE, visto que os valores foram similares às técnicas usando apenas um filtro. Isso pode 

ser visualizado, por exemplo, nos processamentos 1 (Wiener + CLAHE 3x3) e 10 (Wiener + 

Wavelet + CLAHE 3x3), dos quais obtiveram valores similares de variância normalizada e 

entropia.  

Para exemplificar, a Figura 55 mostra mais quatro exemplos de diferentes imagens 

originais e resultantes dos bancos INbreast (Padrão 3 e Padrão 4), GE e Hologic. Foram 

selecionados os processamentos com as metodologias propostas (processamentos 3, 7, 9, 11,13 

e 15) e com o processamento 23 (RMSHERMÍN.), visto que esse processamento com técnica 

recursiva utilizando número mínimo de recursões obteve altos valores para entropia e variância. 

Pela Figura 55 é possível analisar as diferenças visuais entre as metodologias propostas 

com CLAHE 3x3 (processamento 3, 9 e 11) e as metodologias propostas que utilizaram 

CLAHE 15x15 (processamento 7, 13 e 15). Para as imagens exemplificadas, utilizando a janela 

3x3 para a CLAHE aplicada na subimagem da decomposição da wavelet, o número de regiões 

que sofrem aumento de contraste é maior, apresentando assim regiões mais claras, enquanto 

que com a janela 15x15, o realce de contraste é mais sutil. Para o banco da Siemens (INbreast), 

o processamento 3, obteve maior variância do que o processamento 7, enquanto que para a 

imagem da GE o inverso ocorreu, tendo o processamento com a janela 15x15 tendo maior 

variância. Em ambos os bancos, o valor de entropia foi maior para o processamento 3x3 em 

comparação quando foram usados tamanhos de janela igual a 15x15. 

Com relação à média dos valores de variância normalizada (0,013) e entropia (1,163) 

das imagens 3D da Hologic, em ambas as métricas, os valores calculados foram menores que 

para as imagens dos demais bancos, inclusive comparando com os respectivos pares de imagens 

originais da Hologic 2D. Isso indica que não necessariamente a imagem 3D possui maior 

contraste, mas sim uma maior visualização dos elementos. 
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A Figura 55 também apresenta um exemplo utilizando o processamento com a técnica 

recursiva usando número mínimo de recursões (RMSHERMÍN.). Esse processamento obteve 

valores de entropia e variância maiores que para as demais técnicas, com exceção para o banco 

da Hologic, no qual a maior entropia foi calculada para o filtro de média com a metodologia 

proposta 3x3. De fato, esse maior contraste no processamento RMSHERMÍN. é visualizado, já 

que é causado pela equalização de histograma promovida pela técnica, que tenta redistribuir os 

valores de maneira uniforme ao longo da imagem, aumentado a diferença entre os tons mais 

claros e escuros da imagem. Vale ressaltar mais uma vez que, um realce de contraste muito alto 

em imagens que já possuem um pré-processamento, acaba por saturar algumas regiões, não 

sendo interessante para aplicação em imagens de alta resolução de contraste, como é o caso das 

imagens mamográficas. 

Apesar do processamento RMSHERMÍN. ter apresentado altos valores para variância e 

entropia, esse aumento de contraste ocasionou em perdas de estruturas. Foi selecionada uma 

região de interesse contendo microcalcifações segundo o laudo contido na imagem original do 

banco INbreast a fim de apresentar a diferença do efeito do processamento com o RMSHERMÍN., 

com a metodologia proposta 15x15, que preserva essas estruturas ao contrário da técnica 

recursiva. 

É interessante observar a variância e a entropia em regiões de interesse da imagem. Para 

isso foi recortada uma região de interesse contendo microcalficações segundo o laudo médico 

que é fornecido em conjunto com as imagens. A Figura 56 apresenta a imagem original, e os 

processamentos selecionados foram: o processamento 7 (Metodologia proposta 15x15), o 

processamento 23 (RMSHERMÍN.) e o processamento 24 (RMSHERMÁX.). 
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Tabela 10 –  Valores de média e desvio padrão (𝜇̅ ± σ) obtidos para o cálculo da medida de contraste EME das imagens originais e processadas para cada um dos bancos de 

imagens testados. As imagens originais Hologic 3D obtiveram média de EME igual a 4,77 ± 0,74. 

  EME (𝛍̅± σ) 
Processamentos INbreast P3 INbreast P4 GE Hologic 2D 

- Imagens originais 1,24 ± 0,31 1,17 ± 0,16 0,95 ± 0,41 5,87 ± 0,85 
Processamentos com filtragem prévia     

1) Wiener + CLAHE 3x3 3,48 ± 0,90 3,17 ± 0,91 5,03 ± 2,08 6,20 ± 1,78 
2) Média + CLAHE 3x3 2,80 ± 0,82 2,44 ± 0,79 4,36 ± 1,74 5,06 ± 1,62 
3) Metodologia proposta* 3x3 2,86 ± 0,57 2,89 ± 0,65 2,73 ± 1,2 6,81 ± 1,85 
4) Wavelet + CLAHE 3x3 3,82 ± 1,08 3,35 ± 1,00 6,00 ± 2,41 6,60 ± 2,10 
5) Wiener + CLAHE 15x15 6,23 ± 1,20 6,07 ± 1,15 5,94 ± 2,23 10,04 ± 1,6 
6) Média + CLAHE 15x15 5,01 ± 0,93 4,65 ± 0,90 5,17 ± 1,85 8,07 ± 1,37 
7) Metodologia proposta* 15x15 3,52 ± 0,58 3,56 ± 0,66 2,84 ± 1,26 8,65 ± 1,20 
8) Wavelet + CLAHE 15x15 6,76 ± 1,31 6,34 ± 1,19 7,03 ± 2,50 10,63 ± 1,84 
9) Wiener + Metodologia proposta* 3x3 2,48 ± 0,50 2,54 ± 0,56 2,28 ± 1,01 6,31 ± 1,71 
10) Wiener + Wavelet + CLAHE 3x3 3,18 ± 0,85 2,85 ± 0,84 4,69 ± 1,91 5,73 ± 1,67 
11) Média + Metodologia proposta* 3x3 2,18 ± 0,47 2,18 ± 0,54 2,13 ± 0,94 5,37 ± 1,84 
12) Média + Wavelet + CLAHE 3x3 2,77 ± 0,82 2,4 ± 0,79 4,30 ± 1,71 5,01 ± 1,60 
13) Wiener + Metodologia proposta* 15x15 3,07 ± 0,56 3,13 ± 0,59 1,43 ± 1,38 8,32 ± 1,03 
14) Wiener + Wavelet + CLAHE 15x15 5,67 ± 1,03 5,46 ± 1,00 5,55 ± 2,04 9,24 ± 1,38 
15) Média + Metodologia proposta* 15x15 2,72 ± 0,51 2,7 ± 0,55 2,23 ± 0,99 7,76 ± 1,24 
16) Média + Wavelet + CLAHE 15x15 4,95 ± 0,93 4,57 ± 0,90 5,10 ± 1,82 8,00 ± 1,36 
17) Wiener + RMSHERMÍN. 4,18 ± 1,36 4,28 ± 1,94 7,00 ± 3,54 7,38 ± 1,60 
18) Wiener + RMSHERMÁX. 1,19 ± 0,32 1,13 ± 0,27 0,68 ± 0,31 4,94 ± 0,64 
19) Média + RMSHERMÍN. 3,41 ± 1,18 3,33 ± 1,59 6,07 ± 3,03 5,91 ± 1,37 
20) Média + RMSHERMÁX. 0,85 ± 0,28 0,81 ± 0,13 0,59 ± 0,26 3,90 ± 0,70 
Processamentos sem filtragem prévia     

21) CLAHE 3x3 4,50 ± 1,27 3,97 ± 1,18 7,23 ± 2,94 7,57 ± 2,43 
22) CLAHE 15x15 7,89 ± 1,59 7,43 ± 1,44 8,38 ± 3,02 12,16 ± 2,20 
23) RMSHERMÍN. 5,46 ± 1,77 5,38 ± 2,42 10,07 ± 5,08 8,76 ± 2,00 
24) RMSHERMÁX. 1,36 ± 0,33 1,35 ± 0,29 0,97 ± 0,42 5,86 ± 0,85 
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Assim como para os valores calculados de PSNR, variância e entropia, os maiores 

resultados de EME também foram calculados nas imagens originais 2D do equipamento da 

Hologic. No entanto, na métrica EME, as imagens de tomossíntese 3D apresentaram o segundo 

maior valor, o que não aconteceu nas demais métricas. Isso sugere que a tecnologia mais recente 

não necessariamente tem um ganho de contraste em relação às imagens 2D, mas sim possuem 

ganho em relação à visualização e delimitação de estruturas, que são melhores identificadas por 

conseguirem ser isoladas de tecidos que poderiam estar sobrepostos a elas. Contudo, as imagens 

3D de tomossíntese apresentaram média de valores de EME bem superiores às imagens dos 

outros equipamentos. 

Um resultado a ser analisado é com relação à influência do tamanho da janela de sub-

regiões da CLAHE nas imagens. A medida que se aumenta o tamanho da janela de 3x3 para 

15x15 ocorre um aumento do EME, sugerindo um aumento de contraste. Isso se torna 

interessante, visto que esse resultado condiz com a análise visual realizada pelo radiologista, 

conforme detalhado na Parte I deste trabalho. Conforme mostrado no capítulo 8, em que a janela 

de tamanho 15x15 obteve melhores resultados visuais em comparação com as imagens 

processadas com janela 3x3, fato que também foi indicado pela métrica EME. 

Com exceção das imagens do banco da Hologic 2D, em todos os outros casos, a presença 

do filtro de Wiener, média ou wavelet promoveu redução dos valores de EME quando 

comparado com o processamento similar sem a filtragem. Outra análise que pode ser feita é 

com relação às imagens do INbreast, divididas em padrões 3 e 4 de densidade mamária. Na 

grande maioria dos processamentos, as imagens do padrão 3 apresentaram valores de EME mais 

altos do que imagens do padrão 4. Esse fato já era esperado, uma vez que as imagens do padrão 

4 são mais densas que a do padrão 3, pela maior presença de tecido fibroglandular, e, portanto, 

apresentam menor contraste, reduzindo a sensibilidade da mamografia. 

Para as imagens 3D, o valor médio de 4,77 para EME, indicou um maior contraste nas 

regiões delimitadas em relação às imagens originais obtidas dos outros equipamentos. Porém, 

assim como para a variância e entropia, as imagens 3D obtiveram valores menores comparados 

com as respectivas imagens 2D do banco da Hologic. 

Vale destacar que, a região de interesse delimitada (conforme Figura 58) influencia na 

métrica, visto que se trata de uma medida local. Portanto, caso a região selecionada seja muito 

uniforme, o valor de EME é mais baixo. Diante disso, foram calculados os valores do índice 
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Carneiro de Contraste (ICC), de maneira a minimizar o problema da dependência da região de 

interesse, pois considera a variação de contraste em todos os pixels da imagem. 

 

Índice Carneiro de Contraste (ICC) 

A Tabela 11 apresenta os resultados de média e desvio padrão obtidos a partir do ICC 

que foi desenvolvido neste trabalho. Nessa medida é feita uma análise local de desvios padrões 

por regiões, para depois calcular uma medida global a partir dessa análise inicial. 

Em um primeiro momento verifica-se a concordância entre os valores calculados para o 

ICC e o os valores do EME para as imagens originais, em que as imagens da Hologic 2D 

obtiveram o maior contraste, seguido pelas imagens 3D, em ambas as métricas, com valores 

iguais a 23,13 e 20,80, respectivamente. Entretanto, ao contrário do que foi observado na 

métrica EME, o ICC indicou um maior valor para as imagens originais da GE em relação às do 

banco INbreast, concordando com as medidas globais da variância e entropia que também 

indicaram maior contraste para as imagens GE em relação às da Siemens (INbreast). 

Conforme já discutido, a técnica RMSHERMÍN. promove uma alteração de contraste 

exacerbada na imagem, por conseguinte, esperava-se um alto valor de ICC calculado para as 

imagens desse processamento. Este fato ocorreu para as imagens da Siemens e da GE, mas não 

para as da Hologic 2D, analogamente ao que ocorreu nos cálculos da entropia. Para as imagens 

da Hologic, o processamento 22, CLAHE 15x15 obteve ICC igual a 43,65, pouco superior ao 

processamento número 23, da RMSHERMÍN, com valor igual a 42,01. 

Avaliando os processamentos de números 3 e 7, correspondentes à metodologia 

proposta, e os processamentos de números 9, 11, 13 e 15, correspondentes a uma filtragem 

prévia antes da combinação com a metodologia proposta, afirma-se que para todos esses 

processamentos houve aumento de contraste em relação à imagem original, independente do 

banco de imagem. Retirando o processamento com RMSHERMÍN., visto a alta degradação que 

esse tipo de processo causa, os maiores valores de ICC para as imagens da Siemens e da GE 

foram obtidos para o processamento 7 (Metodologia proposta 15x15), obtendo inclusive valores 

maiores que para as técnicas CLAHE (processamentos 21 e 22) aplicadas separadamente nas 

imagens. Para as imagens Hologic 2D, esse mesmo processamento 7, com a metodologia 

proposta 15x15, obteve ICC igual a 30,92, sendo maior que o valor 30,42 obtido para o 

processamento CLAHE 3x3. 
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Tabela 11 –  Valores de média e desvio padrão (𝜇̅ ± σ) obtidos para o cálculo do índice Carneiro de contraste (ICC), implementado neste trabalho, das imagens originais e 

processadas para cada um dos bancos de imagens testados. As imagens originais Hologic 3D obtiveram média de ICC igual a 20,80 ± 2,77. 

 ÍNDICE CARNEIRO DE CONTRASTE  
- ICC (𝝁̅± σ) 

Processamentos INbreast P3 INbreast P4 GE Hologic 2D 
- Imagens originais 7,31 ± 1,06 7,18 ± 0,99 7,5 ± 2,45 23,13 ± 4,42 
Processamentos com filtragem prévia     

1) Wiener + CLAHE 3x3 6,59 ± 1,76 5,83 ± 1,23 6,38 ± 2,65 20,27 ± 5,47 
2) Média + CLAHE 3x3 5,28 ± 1,28 4,60 ± 0,64 5,65 ± 2,26 15,16 ± 4,37 
3) Metodologia proposta* 3x3 10,50 ± 2,03 8,48 ± 2,37 11,46 ± 5,16 24,55 ± 5,87 
4) Wavelet + CLAHE 3x3 7,76 ± 2,05 6,41 ± 1,38 8,68 ± 3,66 23,39 ± 6,58 
5) Wiener + CLAHE 15x15 7,33 ± 2,24 6,44 ± 1,38 6,73 ± 2,59 29,28 ± 8,13 
6) Média + CLAHE 15x15 5,73 ± 1,63 4,95 ± 0,65 6,03 ± 2,22 20,47 ± 5,26 
7) Metodologia proposta* 15x15 12,14 ± 3,35 11,28 ± 2,91 12,25 ± 5,72 30,92 ± 10,63 
8) Wavelet + CLAHE 15x15 8,77 ± 2,55 7,26 ± 1,52 9,38 ± 3,64 30,08 ± 6,97 
9) Wiener + Metodologia proposta* 3x3 8,10 ± 1,77 6,96 ± 1,91 8,77 ± 3,81 26,35 ± 8,88 
10) Wiener + Wavelet + CLAHE 3x3 5,99 ± 1,49 5,14 ± 1,03 6,00 ± 2,46 24,57 ± 10,99 
11) Média + Metodologia proposta* 3x3 7,60 ± 1,56 5,87 ± 1,86 9,24 ± 3,25 17,33 ± 4,11 
12) Média + Wavelet + CLAHE 3x3 5,20 ± 1,26 4,52 ± 0,63 5,45 ± 2,19 15,12 ± 4,14 
13) Wiener + Metodologia proposta* 15x15 9,92 ± 2,59 9,17 ± 2,58 9,82 ± 3,98 26,61 ± 8,78 
14) Wiener + Wavelet + CLAHE 15x15 6,65 ± 1,90 5,67 ± 1,14 6,47 ± 2,40 26,20 ± 6,29 
15) Média + Metodologia proposta* 15x15 9,14 ± 2,16 7,84 ± 2,41 10,10 ± 3,55 23,56 ± 4,55 
16) Média + Wavelet + CLAHE 15x15 5,63 ± 1,60 4,85 ± 0,64 5,94 ± 2,15 20,40 ± 4,87 
17) Wiener + RMSHERMÍN. 24,78 ± 7,22 27,22 ± 10,52 32,41 ± 16,36 24,97 ± 10,64 
18) Wiener + RMSHERMÁX. 5,05 ± 0,91 5,49 ± 0,82 4,40 ± 1,34 16,02 ± 3,29 
19) Média + RMSHERMÍN. 19,11 ± 4,07 19,35 ± 6,31 28,64 ± 13,61 21,38 ± 4,84 
20) Média + RMSHERMÁX. 3,98 ± 0,45 4,05 ± 0,35 4,08 ± 1,03 11,89 ± 1,85 
Processamentos sem filtragem prévia     

21) CLAHE 3x3 10,03 ± 2,87 8,33 ± 1,96 11,59 ± 4,96 30,42 ± 8,98 
22) CLAHE 15x15 11,43 ± 3,49 9,47 ± 2,13 12,16 ± 4,94 43,65 ± 9,87 
23) RMSHERMÍN. 39,71 ± 10,31 41,13 ± 14,65 61,33 ± 30,92 42,01 ± 12,38 
24) RMSHERMÁX. 7,74 ± 1,08 7,99 ± 1,01 7,71 ± 2,53 23,19 ± 4,42 
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utilizado, podendo variar dependendo da configuração, além de ser dependente também do 

tamanho da imagem. As imagens da GE, por possuírem resolução espacial menor, tiveram 

menor tempo médio de processamento. Nota-se que o índice de contraste implementado 

apresentou pouco aumento no tempo total de processamento. 

 

Tabela 12 – Tempo médio de processamento obtido para processar uma imagem de cada um dos bancos de 

imagens testados com a metodologia de realce de contraste proposta. O cálculo do índice de contraste criado 

aumenta pouco tempo no processamento final. 

Tempo de processamento em segundos (s) INbreast P3 e P4 
(Siemens) 

GE Hologic 
2D 

Apenas metodologia proposta 9,83 s 4,63 s 15,45 s 

Metodologia proposta + índice de contraste 10,28 s 4,92 s 15,71 s 

 

Vale relembrar que, nos Apêndices desta tese são mostrados exemplos de imagens 

originais para cada banco testado, com os respectivos 24 processamentos aplicados. Essas 

imagens contidas no Apêndice se tornam importante para eventuais consultas, entendendo o 

efeito visual e a influência das filtragens de ruídos e realce de contraste provocados por cada 

diferente processamento na imagem original. 

 

8.3 Conclusões 

 

Conclui-se deste capítulo, que a Parte I, descrita no capítulo 7, foi de suma importância 

para validar e definir o melhor parâmetro para o algoritmo CLAHE. A partir disso foi possível 

criar uma metodologia inovadora, matematicamente simples e rápida, que em um primeiro 

momento faz uma filtragem digital na imagem por meio de transformada discreta wavelet, e 

depois, se utiliza da técnica CLAHE a partir da decomposição dos coeficientes de aproximação 

para promover realce de contraste em imagens mamográficas densas. 

Além da metodologia proposta, no capítulo 8 foram apresentadas outras técnicas de 

processamento, bem como a combinação desses métodos com filtros digitais que foram 

implementados não só em três diferentes bancos de imagens, como também aplicados em 

imagens de phantom. Outro diferencial mostrado na metodologia desta Parte II do trabalho foi 

a comparação das imagens 2D com imagens 3D de tomossíntese (phantom e imagens reais), 

uma tecnologia bem recente no país e de difícil acesso. 
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A utilização das imagens de phantom nos testes iniciais se tornou importante, visto que 

permitiu uma avaliação inicial a respeito do efeito dos processamentos em uma imagem 

uniforme, com a presença de objetos simulados. A partir daí, os testes foram realizados em 

imagens reais de mamografia, analisando medidas quantitativas para avaliar o contraste das 

imagens, incluindo o novo índice de contraste local médio desenvolvido. Segue abaixo um 

resumo dos resultados e das conclusões obtidas para os seguintes processamentos:  

 RMSHERMÁX.  Em todas as métricas, os valores calculados para o processamento 

RMSHERMÁX. foram similares aos resultados obtidos para as imagens originais, 

comprovando que o número máximo de recursões aproxima a imagem resultante da 

imagem original. Isso indica que essa técnica não promoveu realce de contraste para as 

imagens mamográficas testadas no trabalho; 

 RMSHERMÍN.  Essa técnica, com apenas 1 recursão na divisão do histograma a partir 

do cálculo da média de pixels, indicou um realce de contraste excessivo na imagem, não 

sendo benéfico em termos de qualidade de imagens. Dessa forma, essa técnica não se 

mostrou eficiente para o realce de contraste de mamografias. A técnica pode ser bastante 

útil em imagens com baixo contraste (AKILA, JAYASHREE, VASUKI, 2015), porém 

em imagens digitais com resolução de contraste 12 bits ela não se mostrou efetiva; 

 CLAHE  A partir dos resultados obtidos na Parte I deste trabalho, a CLAHE se 

mostrou uma técnica interessante no realce de contraste. No entanto, ao ser aplicada na 

imagem como um todo, ela pode alterar bruscamente os valores de pixel da imagem, 

além de realçar ruído; 

 Metodologia proposta  Os processamentos que foram aplicados a partir da 

metodologia proposta indicaram um aumento de contraste em relação às imagens 

originais conforme mostrado pelos cálculos das diversas métricas. Foi possível 

comprovar quantitativamente que, a metodologia proposta promove realce de contraste 

em imagens mamográficas densas, adquiridas em três diferentes equipamentos, fato que 

também ocorreu nas imagens de phantom, no qual ocorreu aumento do CNR. Outra 

vantagem da metodologia desenvolvida neste trabalho é o fato da preservação do 

mamilo e do brilho da imagem, em comparação com a técnica CLAHE aplicada 

separadamente. O uso da CLAHE apenas nos coeficientes de aproximação, resultantes 

da decomposição da imagem pela transformada discreta de wavelet, ameniza a mudança 

drástica dos valores de pixel, permitindo um realce de contraste mais sutil, com menor 

amplificação de ruído, dada a filtragem wavelet e resultando em imagens com o brilho 
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mais próximo da imagem original. Ao se trabalhar com decomposição multiescala, o 

acesso somente em partes de interesse da imagem é simplificado, sendo assim, ao se 

aplicar a CLAHE apenas nos coeficientes de aproximação, as chances de ruídos serem 

realçados são reduzidas.
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Capítulo 9 CONCLUSÕES GERAIS 

A tese de doutorado em questão tem como alvo pacientes com mamas densas, visto que 

esses possuem um risco elevado de se desenvolver câncer de mama (BOYD et al., 2007; 

VACHON et al., 2007; VARGHESE et al., 2012) devido, principalmente, ao fato da mama ser 

composta de tecido fibroglandular dificultando a detecção de nódulos e microcalcificações ou 

outras lesões mamárias que podem estar associadas com a doença. Além disso, fatores 

fisiológicos das estruturas mamárias, qualidade da imagem mamográfica e subjetividade quanto 

da interpretação são fatores decisivos para o diagnóstico precoce do câncer de mama. 

Apesar do aumento da dose de radiação na paciente, a recente implementação da 

tomossíntese digital mamária que permite finos “cortes” da mama diminuindo a sobreposição 

de tecidos, surge como um exame complementar que possibilita o aumento da detecção do 

câncer de mama. No entanto, essa tecnologia ainda é cara e está longe de ser aplicada e 

difundida no Sistema Único de Saúde brasileiro. 

Assim, o processamento digital surge como uma alternativa e um grande aliado na 

tentativa de melhorar e facilitar a avaliação de imagens médicas. A partir dos resultados 

mostrados na Parte I deste trabalho, foi possível identificar e diferenciar o comportamento da 

aplicação de diferentes tamanhos de sub-regiões na técnica de realce CLAHE. A partir de 

métricas quantitativas e com a avaliação visual de um médico radiologista experiente na leitura 

de mamografias, determinou-se a melhora na qualidade da imagem usando essa técnica de 

realce de contraste, sobretudo com tamanho de janela igual a 15x15 pixels. 

Diante desses resultados prévios, foi proposta uma nova metodologia para realce de 

contraste a partir das subimagens geradas da decomposição da transformada discreta de 

wavelet. A ideia foi aplicar o algoritmo CLAHE apenas na subimagem resultante dos 

coeficientes de aproximação com um nível de decomposição. Por fim, era aplicada a 

transformada inversa da wavelet com essa subimagem modificada juntamente com as demais 

subimagens resultantes da filtragem (denoising). 

Além da metodologia proposta, as técnicas de realce de contraste CLAHE e RMSHE 

foram aplicadas e a combinação delas com os filtros espaciais de Wiener e de média foram 

comparadas. A quantificação dos resultados foi feita a partir de métricas de qualidade de 
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imagem bastante difundidas na literatura como PSNR, MSSIM, variância, entropia e EME. A 

fim de auxiliar os resultados quantitativos, a partir desta tese, foi possível criar e implementar 

um novo índice de contraste global baseado em desvios-padrões locais da imagem, contribuindo 

nas medidas de qualidade de imagem, e reduzindo a limitação da métrica EME, calculada a 

partir de uma região de interesse da imagem. 

Nos testes em imagens reais de mamas densas com três equipamentos de diferentes 

fabricantes, os resultados também mostraram um aumento nos valores das métricas de contraste 

com os processamentos da metodologia proposta em comparação com as imagens originais. O 

aumento dos valores de variância, entropia, EME e ICC sugerem que os processamentos 

propostos neste doutorado foram capazes de promover o realce de contraste em imagens 

mamográficas densas. Os resultados do ICC demonstraram que a metodologia proposta 15x15 

obteve um aumento médio de 47% no contraste global das imagens processadas com relação às 

imagens originais. 

É importante destacar que o aumento dos valores médios das métricas de contraste 

ocorreu em todos os três bancos de imagens testados. Esse resultado é satisfatório, visto que 

cada fabricante possui uma etapa própria de pós-processamento da imagem, demonstrando a 

aplicabilidade da nova metodologia de realce proposta nas imagens adquiridas a partir desses 

diferentes mamógrafos.  

Com a criação e implementação dessa nova metodologia, envolvendo decomposição 

wavelet e CLAHE, foi possível obter imagens com melhor realce comparadas às imagens 

originais, podendo fazer parte de um sistema de auxílio ao diagnóstico. Desta forma, espera-se 

que as imagens 2D, após o processamento proposto, permitam uma melhor possibilidade de 

visualização de lesões em mamas densas, promovendo assim, uma maior detecção precoce do 

câncer de mama. 

As próximas etapas do trabalho consistem na ampliação do banco de imagens, 

principalmente em equipamentos com o recurso de tomossíntese a fim de adquirir imagens em 

modo combo. Ademais, sugere-se o teste de novas técnicas de realce de contraste aplicadas na 

subimagem da decomposição wavelet com a finalidade de se comparar com os resultados 

quantitativos calculados neste trabalho, bem como testes com diferentes níveis de 

decomposição e diferentes famílias de wavelets-mãe. Seria interessante também que um médico 

radiologista fizesse a avaliação visual das imagens resultantes da nova metodologia de maneira 

a corroborar com os resultados quantitativos.
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Banco de imagens INbreast (Padrão 3) - Imagem original e as imagens resultantes após os 

processamentos 
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 Wiener + CLAHE 3x3            Média + CLAHE 3x3         Metodologia proposta 3x3 

 
                         (1)                                          (2)                                         (3) 

 
 

 
Wavelet + CLAHE 3x3         Wiener + CLAHE 15x15         Média + CLAHE 15x15 
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Metodologia proposta 15x15    Wavelet + CLAHE 15x15     Wiener + Metodologia 3x3 
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Wiener + Wave + CLAHE 3x3    Média + Metodologia 3x3    Média + Wave + CLAHE 3x3 

 
(10)                                             (11)                                        (12) 
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Wiener + Metodologia 15x15   Wiener + Wave + CLAHE 15X15  Média + Metodologia 15x15 
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Média + Wave + CLAHE 15x15        Wiener + RMSHERMÍN                Wiener + RMSHERMÁX 

 
(16)                                     (17)                         (18) 
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Média + RMSHERMÍN                       Média + RMSHERMÁX                       CLAHE 3X3 

 

(19)                                     (20)                                         (21) 
 
 
 
 

CLAHE 15X15                        RMSHERMÍN                                        RMSHERMÁX 

 
 

 (22)                                 (23)                 (24)
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 APÊNDICE B – Imagens INbreast (Padrão 4) 

Banco de imagens INbreast (Padrão 4) - Imagem original e as imagens resultantes após os 
processamentos 

INbreast Padrão 4 – Original 
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       Metodologia proposta 15x15 Wavelet + CLAHE 15x15   Wiener + Metodologia 3x3 

 
                           (7)                         (8)                         (9) 
 

     Wiener + Wave + CLAHE 3x3  Média + Metodologia 3x3   Média + Wave + CLAHE 3x3 
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Wiener + Metodologia 15x15   Wiener + Wave + CLAHE 15X15   Média + Metodologia 15x15 
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       Média + Wave + CLAHE 15x15      Wiener + RMSHERMÍN               Wiener + RMSHERMÁX 
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    Média + RMSHERMÍN                   Média + RMSHERMÁX                       CLAHE 3X3 
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CLAHE 15X15                        RMSHERMÍN                                        RMSHERMÁX 
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APÊNDICE C – Imagens Hologic 2D 

Banco de imagens Hologic 2D - Imagem original e as imagens resultantes após os 
processamentos 
 

Hologic 2D – Original 
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Wiener + CLAHE 3x3          Média + CLAHE 3x3         Metodologia proposta 3x3 

 
(1)                                          (2)                                          (3) 

 
 

Wavelet + CLAHE 3x3       Wiener + CLAHE 15x15         Média + CLAHE 15x15

 
(4)                                           (5)                                         (6) 
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Metodologia proposta 15x15   Wavelet + CLAHE 15x15     Wiener + Metodologia 3x3 
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Wiener + Wave + CLAHE 3x3    Média + Metodologia 3x3   Média + Wave + CLAHE 3x3
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Wiener + Metodologia 15x15   Wiener + Wave + CLAHE 15X15   Média + Metodologia 15x15 
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Média + Wave + CLAHE 15x15     Wiener + RMSHERMÍN                     Wiener + RMSHERMÁX 
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Média + RMSHERMÍN                        Média + RMSHERMÁX                       CLAHE 3X3
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CLAHE 15X15                        RMSHERMÍN                                        RMSHERMÁX 
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APÊNDICE D – Imagens GE 

Banco de imagens GE – Imagem original e as imagens resultantes após os processamentos  

 
GE – Original 
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       Wiener + CLAHE 3x3         Média + CLAHE 3x3         Metodologia proposta 3x3 
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    Wavelet + CLAHE 3x3       Wiener + CLAHE 15x15         Média + CLAHE 15x15 
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Metodologia proposta 15x15    Wavelet + CLAHE 15x15     Wiener + Metodologia 3x3 
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 Média + Wave + CLAHE 15x15     Wiener + RMSHERMÍN                     Wiener + RMSHERMÁX 
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     Média + RMSHERMÍN                       Média + RMSHERMÁX                       CLAHE 3X3                     

 
(19)                               (20)                                         (21)                                    

 
 
          CLAHE 15X15                        RMSHERMÍN                                        RMSHERMÁX 
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