EXPRESSÃO DE FLORES PISTILADAS EM RESPOSTA AO MANEJO DE IRRIGAÇÃO DURANTE O CICLO DA CULTURA DA MELANCIA
EXPRESSÃO DE FLORES PISTILADAS EM RESPOSTA AO MANEJO DE IRRIGAÇÃO DURANTE O CICLO DA CULTURA DA MELÂNCIA

Trabalho de Conclusão apresentado ao curso de Agronomia da Universidade Federal de Uberlândia, Campus Monte Carmelo, como requisito necessário para a obtenção do grau de Engenheiro Agrônomo.

Orientador: Edson Simão

Monte Carmelo
2019
MARIANA ANTUNES LEÃO

Expressão de flores pistiladas em resposta ao manejo de irrigação durante o ciclo da cultura da melancia

Trabalho de Conclusão apresentado ao curso de Agronomia da Universidade Federal de Uberlândia, Campus Monte Carmelo, como requisito necessário para a obtenção do grau de Engenheiro Agrônomo.

Monte Carmelo, 4 de dezembro de 2019

Banca examinadora

Prof. Dr. Edson Simão
UFU-MG
(Orientador)

Profa. Dra. Renata Castoldi
UFU-MG
(Membro da Banca)

Profa. Dra. Vanessa Andaló Mendes de Carvalho
UFU-MG
(Membro da Banca)

Monte Carmelo
2019
AGRADECIMENTOS

À Deus por estar ao meu lado em toda minha jornada.
Aos meus pais, pelo amor, incentivo e apoio incondicional.
À Universidade Federal de Uberlândia, e todo o seu corpo docente, direção e administração que foram essenciais à execução deste trabalho. Em especial à prefeitura universitária do Campus Monte Carmelo; ao Engenheiro Agrônomo Siro Paulo Moreira; e ao funcionário Francisco.
Ao meu Orientador, Prof. Dr. Edson Simão, por sua disponibilidade, generosidade e apoio. Sempre ponderando com críticas construtivas e compartilhando experiências e conhecimento.
Ao Laboratório de Morfologia, Sistemática e Fisiologia Vegetal- LABOT, ao Laboratório de Pesquisa em Anatomia, Sistemática e Ecofisiologia Vegetal - LASEV e aos seus técnicos Alyne Dantas Mendes de Paula e Matheus Henrique Medeiros.
Às minhas colegas e amigas Luciene Barbosa, Thays Bruna Pereira, Michele Diener e Claudia Fabbris por terem me apoiado e ajudado durante o trabalho.
Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq por me conceder uma bolsa de pesquisa.
SUMÁRIO

1. INTRODUÇÃO ... 8

2. OBJETIVO ... 9

3. REVISÃO DE LITERATURA .. 10

 3.1. MELANCIA .. 10
 3.1.1. Morfologia .. 10
 3.1.2. Histórico e economia e ... 11
 3.1.3. Singularidade morfofisiológica .. 11

 3.2. HORMÔNIOS ... 12
 3.2.1. Auxina ... 12
 3.2.2. Etileno .. 12
 3.2.3. Giberelina .. 13

 3.3. ÁGUA ... 13

4 MATERIAL E MÉTODOS .. 14

5. RESULTADOS .. 18

6. DISCUSSÃO .. 23

7. CONCLUSÕES ... 25

8. REFERENCIAS ... 26
RESUMO

A melancia é uma planta monoica com proporções entre flores femininas e masculinas não similares. A expressão sexual é controlada por fatores genéticos, endógenos como fitocromo e hormônios e ambientais edáficos e climáticos. Nesta pesquisa o objetivo foi avaliar se o manejo da irrigação em diferentes fenofases de desenvolvimento da planta pode induzir estresse capaz de proporcionar maior formação de flores pistiladas e resultar em maior quantidade e qualidade dos frutos na cultura da melancia. Para esta avaliação as mudas de melancia, cultivar Explorer F1, foram plantadas e distribuídas em uma área de 720 m². Foram seis tratamentos, 20 plantas cada, com variação no fornecimento de água, por meio de tubos de gotejo, ao longo do ciclo: T a lâmina de água foi distribuída respeitando o coeficiente da cultura (Kc = 0,75 na fase vegetativa e Kc = 1 na fase de formação de produção); vp vegetativa (Kc= 0,6) e produção (Kc=0,85); v vegetativa (Kc= 0,6); p produção (Kc=0,85); Vp vegetativa (Kc=0,9) produção (Kc=0,85) e vP vegetativa (Kc=0,6) produção (Kc=1,15) do que a evapotranspiração da cultura. O plantio foi realizado em abril de 2019 com distância entre plantas de 1,5 m e entre linhas de 4 metros. As análises dos parâmetros: número de flores, flores masculinas e femininas e de crescimento vegetativo, tamanho da folha, entrenós e ramos e teor de clorofila foram realizadas quinzenalmente. Ao final do ciclo foram realizadas as avaliações de produtividade e qualidade de frutos com relação ao ºBrix, acidez, acidez titulável e firmeza da polpa. O número de flores femininas foi 5,7 vezes maior no início do período de estresse hídrico (60 dias após o plantio) em p. O maior crescimento vegetativo e o número de flores foram observados em T e p (para T 175,7 flores e 7,9 cm de entrenó e para p183,3 flores e 7,5 cm de entrenó). O fornecimento de água acima de 40% na irrigação entre as fases vegetativa e reprodutiva possibilitou resultados positivos a T, v e vp. Contudo, um aumento de lâmina superior a 100% provocou resultados inferiores. Os tratamentos com mais de 40% de acréscimo de água na fase de formação de produção possibilitaram a formação de frutos considerados comerciais, sendo que os sólidos solúveis aumentaram em conjunto com a porcentagem de acréscimo de água, de forma que o tratamento vP (10,5º Brix) apresentou o melhor valor de sólidos solúveis. Os tratamentos T, v e vp apresentaram a melhor resposta em relação a produtividade e qualidade de fruto. A redução da lâmina de água, de forma a respeitar o aumento da evapotranspiração na fase vegetativa, não trouxe danos a qualidade dos frutos. Esta forma de manejo pode ser explorada para economia e redução de custos com água de irrigação sem abrir mão da qualidade e produtividade na cultura da melancia.

Palavras-chave: Cucurbitaceae, fenologia, Citrullus lanatus.
1. INTRODUÇÃO

A melancia, *Citrullus lanatus* (Thunb.) Matsum & Nakai (Cucurbitaceae), é uma hortaliça fruto de origem africana, cultivada nas américas desde o século 16 (EMBRAPA, 2010; FERRARI et al., 2013). O cultivo ocorre tanto em sequeiro como irrigada (MOREIRA et al., 2015) e propaga-se por regiões tropicais e subtropicais (NOH et al., 2013), com produtividade variável. O dimorfismo e expressão sexual das plantas de melancia apresenta sensibilidade às variações edáficas e climáticas (NOH et al., 2013, DUAN et al., 2014; PEREIRA et al., 2017), em especial a variação na disponibilidade de água no solo (YETISIR et al., 2006).

A melancia naturalmente expressa três tipos de flores: feminina, masculina e hermafrodita. As flores pistiladas são menos frequentes e sua proporção com as masculinas pode depender de fatores genéticos, ambientais e hormonais (MENEZES, 1994), com destaque para giberelinas e etileno. As plantas podem ser monoicas (flores femininas e masculinas), ou andromonoicas (flores masculinas e hermafroditas), sendo que as primeiras são mais comuns (EMBRAPA, 2010).

As cultivares de melancia costumam ter um baixo índice de flores femininas, ou hermafroditas, sendo que a variação dessas pode ser de 4 à 15 flores masculinas a cada flor pistilada (MANZANO et al., 2014). Este padrão genético de apresentação de flores e dimorfismo sexual pode ser afetado em resposta às oscilações no balanço hormonal das plantas causados pelas mudanças de luminosidade, temperatura e umidade ao longo do ciclo da cultura (PEREIRA et al., 2017).

A presença de flores pistiladas é fundamental para formação de frutos e sementes. A melancia tem uma menor produção de flores femininas do que masculinas (MANZANO et al., 2014) ao longo do ciclo, o que pode ser um fator limitante à produtividade. Em outras culturas como o café, a irrigação já tem sido utilizada como forma de indução à floração e uniformidade da florada. Como foi observado em um experimento realizado em Santa Teresa, ES, que um estresse hídrico de 20 dias promoveu a abertura dos botões florais de forma mais uniforme, e possibilitou um percentual de grãos no estádio cereja maior (LOSS et al., 2015).

Os hormônios vegetais são substâncias sintetizadas nas células vegetais a partir do estímulo genético e ambiental (TAIZ et al., 2017). O estresse hídrico associado ou não à temperatura e luminosidade pode resultar em uma maior sensibilidade dos tecidos da planta ao ácido abscísico (ABA) e/ou em uma redistribuição ou síntese do hormônio nas
folhas e por consequência, pode afetar a síntese de outros hormônios importantes como etileno, auxinas e giberelinas que são os hormônios envolvidos na expressão de flores pistiladas e estaminadas em Cucurbitaceae (MENEZES, 1994).

É possível que a menor quantidade de água promova um acréscimo na produção de etileno, hormônio vegetal responsável pela expressão de flores pistiladas, em associação com as auxinas. Dado que a irrigação já é uma prática comum para produtores de hortaliças, usá-la como indutor de florescimento não é uma ideia distante. No entanto, é necessário usar critério para avaliar esse fator. Métodos como o de Hargreves auxiliam a estimar a evapotranspiração, quando se dispõem de dados meteorológicos médios de temperatura e umidade relativa do ar, o que ajuda a compreender qual será a necessidade da cultura.

A melancia é mais adaptada ao clima tropical, dessa forma é pouco tolerante ao frio. Seu cultivo no período chuvoso é prejudicado em razão da maior ocorrência de doenças, menor produtividade e pior qualidade de frutos, com destaque ao menor teor de sólidos solúveis totais (MAROUELLI et al., 2012). O que torna sua produção em épocas mais secas, com o auxílio de irrigação, uma prática que se aproxima dos bons resultados de produção.

Neste aspecto a irrigação é de extrema importância, em vista que, nas plantas, como nos outros seres vivos, a água constitui a maior porção do volume celular e é o recurso limitante mais importante, sem ela processos metabólicos essenciais não seriam possíveis (TAIZ; ZEIGER, 2013). O desafio é encontrar a quantidade certa a ser disponibilizada que proporcione bom desenvolvimento vegetativo, sanidade e produtividade de frutos. Nesta pesquisa o objetivo foi avaliar se o manejo da irrigação em diferentes fenofases de desenvolvimento da planta pode induzir estresse capaz de proporcionar maior formação de flores pistiladas e resultar em maior quantidade e qualidade dos frutos na cultura da melancia.

2. OBJETIVO

Avaliar se o manejo da irrigação em diferentes fenofases de desenvolvimento da planta pode induzir estresse capaz de proporcionar maior formação de flores pistiladas e resultar em maior quantidade e qualidade dos frutos na cultura da melancia.
3. REVISÃO DE LITERATURA

3.1. MELANCIA

3.1.1. Morfologia

Citrullus lanatus (Thunb.) Matsum & Nakai, Cucurbitaceae, é uma hortaliça fruto do tipo baga indeiscente. A polpa mais consumida no Brasil é a com coloração avermelhada, rica em licopeno. No entanto, ela pode ser amarelada com presença de carotenos e xantofilas. Assim como a polpa, sua casca pode variar de coloração, podendo ser verde-cana, verde-claro, verde-escuro, amarelo, e com ou sem listras. As cascas mais aceitas no mercado nacional são verde-escuro com listras verde-claro (EMBRAPA, 2010).

A melancieira é uma planta monocárpica, com ciclo em torno de 90 dias, o qual é muito influenciado por fatores climáticos. Apresenta hábito de crescimento rasteiro sarmentoso. Possui ramos que podem atingir até dez metros de comprimento. No entanto, os ramos principais das cultivares comerciais não costumam ultrapassar quatro metros de comprimento. As folhas são alternadas, com limbo foliar triangular, recortado em três a quatro pares de lóbulos. A cada nó se encontra uma folha e uma gavinha; e a partir do terceiro nó há presença de uma flor. É possível que cada nó gere um novo ramo (FERRARI et al., 2013).

O sistema radicular é pivotante e mais desenvolvido no sentido horizontal, concentrando-se até 30 cm abaixo da superfície do solo. Sob condições de umidade excessiva do solo ou morte de parte do sistema radicular, os nós também podem originar raízes adventícias (EMBRAPA, 2010).

A melancieira pode possuir plantas monoicas – flores femininas e masculinas –, ou andromonoicas – flores masculinas e hermafroditas –, sendo que as primeiras são mais comuns. As cultivares de melancia costumam ter um baixo índice de flores femininas ou hermafroditas, sendo que a variação dessas pode ser de 4 à 15 flores masculinas para cada flor pistilada (MANZANO et al., 2014). As flores da melancia possuem corola pentâmera amarela, com ovário ínfero. A flor masculina possui 5 estames, que são livres entre si, com anteras rimosas.
3.1.2. Histórico e economia e

A melancia é cultivada pelos egípcios há cerca de 4 mil anos; por essa razão é aceitável que sua origem seja africana. No século XVI foi introduzida no Continente Americano pelos escravos e colonizadores europeus, difundindo-se pelo mundo inteiro, sendo atualmente cultivada nas regiões tropicais e subtropicais do planeta. No Brasil, representa uma das mais importantes culturas produzidas, com destaque para as regiões Nordeste e Sul (EMBRAPA, 2010).

No ano de 2016 o Brasil foi o 4º maior produtor de melancia no mundo, logo em seguida da China, da Turquia e do Irã. A área cultivada no Brasil aumentou de 72.213,00 ha em 1994, para 90.447,00 ha em 2016. A produção aumentou de 447.963,00 toneladas em 1994 para 2.090.432,00 toneladas em 2016 (FAOSTAT, 2016).

No Estado de Minas Gerais, em 2018, o maior preço oferecido em CEASA foi R$ 1,80 – na grande Belo Horizonte e em Uberaba. O menor preço oferecido foi R$ 0,80 – na grande Belo Horizonte. No CEASA - MG da grande Belo Horizonte os maiores preços se concentraram em maio, nos outros meses os preços permaneceram mais estáveis. Já no CEASA - MG de Uberaba houve uma sensível variação de preços entre os meses; os preços mais altos também ocorreram em maio, no entanto, os meses de janeiro e dezembro também apresentaram preços elevados. Já nos meses de fevereiro, julho e agosto a melancia atingiu seu menor preço (CONAB, 2018).

3.1.3. Singularidade morfofisiológica

A família Cucubitaceae se destaca das outras famílias vegetais por sua ampla representação de sexo e por poderem ser alterados por meio genético e por fatores externos (MENEZES, 1994). O dimorfismo e expressão sexual nessa família podem ser influenciados por fatores ambientais como intensidade da luz, fotoperíodo e a temperatura (NOH et al., 2013; DUAN et al., 2014; PEREIRA et al., 2017).

As condições de inverno, as quais, os dias são curtos, há menor intensidade de luz e as temperaturas noturnas mais baixas, geram um aumento na produção de flores femininas, já no verão há um aumento de produção de flores masculinas. Em Cucurbita pepo L. baixas temperaturas inibem o desenvolvimento de flores masculinas e aumentam o número de flores femininas, enquanto altas temperaturas induzem uma
transformação parcial ou completa de flores femininas para flores masculinas (MANZANO, 2014). Os fitorhômonios são os principais agentes na diferenciação sexual em Curcubitaceae. As giberelinas promovem a produção de flores masculinas, do mesmo modo que as auxinas e os brassinosteroides promovem a produção das flores femininas ou hermafroditas (MANZANO, 2014; MENEZES, 1994).

3.2. HORMÔNIOS

3.2.1. Auxina

A auxina possui diversas funções nas células, como a elongação e divisão celular, a diferenciação do tecido vascular (SCHELTRUP; GROSSMANN, 1995).

Da mesma forma apresentam funções pouco conhecidas como iniciação das raízes, onde as auxinas estimulam a desdiferenciação de células do periciclo para formação de raízes nas estacas, desenvolvimento nos ramos e diferenciação em culturas de tecidos.

Esse hormônio promove dominância apical, ou seja, o suprimento de auxina na gema apical regula o crescimento das gemas laterais. A auxina retarda a senescência foliar, pode inibir ou promover abscisão de folhas e frutos associado aos efeitos do etileno, pode retardar o amadurecimento de frutos, promover a floração em bromélias e a feminilidade em flores dioicas, induzindo a produção de etileno (DAVIES, 2010).

Em algumas situações, como no crescimento de raízes, concentrações elevadas de auxina são inibidoras e; de forma sistemática, os altos níveis de auxina interferem na produção de etileno (DAVIES, 2010).

3.2.2. Etileno

A produção de etileno é, de forma comum, relacionada a plantas submetidas a estresses físicos ou biológicos como: ferimentos, alagamento, doenças, temperaturas inadequadas ou períodos de seca. Além disso, o efeito fisiológico do etileno pode ser verificado, de forma mais expressiva, em algumas fases do desenvolvimento das plantas como a germinação, o amadurecimento de frutos e a senescência (COLLI, 2004).
Dos efeitos que podem ser listados como resposta ao etileno temos a chamada resposta tripice, quando as plântulas, antes de emergir do solo, apresentam diminuição no alongamento, espessamento do caule e transição para o crescimento lateral. O etileno promove a manutenção do gancho apical em plântulas; a estimulação de numerosas respostas de defesa em resposta a ferimentos ou doenças; auxilia na quebra de dormência; no crescimento e diferenciação de raízes; na abscisão de folhas e frutos; na indução floral de algumas espécies; na indução de feminilidade em flores dioicas, e na abertura de flores, senescência e amadurecimento (DAVIES, 2010).

3.2.3. Giberelina

As giberelinas promovem alongamento e induzem a divisão celular, preferencialmente em células jovens; podendo estar limitada às células meristemáticas e jovens, porque suas microfibrilas estão orientadas transversalmente. Ademais, estão envolvidas na regulação do crescimento, floração e ciclo celular; mobilização de reservas de endosperma; mudança de fase, indução floral e determinação do sexo; e superação da dormência em sementes, embriões somáticos e gema além da tuberização (GUERRA, 2004).

Em pepinos, a giberelina como é considerada um fator masculinizante, concentrações elevadas ou a aplicação exógena faz com que ocorra maior número de flores masculinas. As concentrações de giberelinas são menores em plantas com apenas flores femininas do que em plantas com flores masculinas. Por exemplo, plantas femininas de pepino geneticamente puras, tratadas com giberelina apresentam maior produção de flores masculinas (MENEZES, 1994). Em Pinus sp. a aplicação de giberelina proporciona estróbilos mais longos e em maior número masculinos (VENEGAS-GONZALEZ, 2016).

3.3. ÁGUA

As hortaliças costumam consumir de 2,5 a 5 mm de água por dia. Em dias excessivamente quentes e secos chegaram a consumir cerca de 8 mm. O que corresponde a láminas de água mensais que variam de 75 a 150 mm (DAKER, 1988). De forma geral, as hortaliças folhas e flores reagem bem a uma distribuição constante e moderada de
água durante todo seu ciclo, o que não ocorre com a melancia e outras hortaliças, cujo produto final são sementes e frutos. Nessas hortaliças é mais adequado que as regas sejam diminuídas ou suspensas no período de amadurecimento do fruto. Umidade excessiva no período de amadurecimento pode impedir a formação e limitar a concentração de açúcares nos frutos, ou até provocar rachaduras (DAKER, 1988).

A cultura da melancia requer bastante critério no manejo da água, já que a escassez pode afetar a qualidade e produtividade. A demanda hídrica da melancia varia de acordo com a variedade usada e a condição edafoclimática da região, podendo consumir de 300 mm a 550 mm por ciclo de produção (EMBRAPA, 2010).

Como a cultura da melancia tem necessidade hídrica distinta durante seu ciclo, é interessante dividi-lo em quatro estádios: inicial, 15-20 dias; vegetativo, 15-30 dias; de formação da produção, 25-40 dias; e de maturação, 10-20 dias (MAROUELLI et al., 2012). O estádio inicial vai do plantio até o início da ramificação, o estádio vegetativo inclui o período entre o início da ramificação até o início da floração, o estádio de formação da produção engloba a floração, frutificação e crescimento de frutos, e o estádio de maturação compreende o período em que as plantas entram em senescência natural (MAROUELLI et al., 2012; EMBRAPA, 2010; AZEVEDO et al., 2005; MAROUELLI et al., 1996).

Estudos realizados no vale do Gurguéia, estado do Piauí, com a cultivar Crimson Sweet, cultivada no espaçamento de 2,0 m x 1,0 m e com irrigação por gotejamento, foi quantificada uma demanda diária de água por planta (transpiração + evaporação do solo) de 4 L durante o estádio inicial, 10 L durante o estádio vegetativo, 19 L durante o estádio de formação da produção e 14 L durante o estádio de maturação (MAROUELLI et al., 2012, EMBRAPA, 2010; AZEVEDO et al., 2005). Dessa forma, calcula-se que se usou cerca de 7% da água necessária no período inicial; 18% no vegetativo; 58% no de formação da produção; e 17% no de maturação.

4 MATERIAL E MÉTODOS

O experimento foi realizado no Jardim Experimental da Botânica localizado na Universidade Federal de Uberlândia, Campus Monte Carmelo. A área utilizada foi de 720 m². Com um delineamento experimental inteiramente casualizado. A área foi dividida em seis tratamentos colocados em ruas com 20 plantas, dentre essas foram
avaliadas 3 plantas. As sementes utilizadas foram a Explorer F1, que foram semeadas em abril de 2019.

O espaçamento utilizado foi de 1,5 m e entre plantas de 4 m entre linhas. O espaçamento utilizado foi maior que o usado comercialmente, com finalidade de facilitar a obtenção das medidas realizadas nos ramos.

Antes do plantio realizou-se a análise de solo na área, obtendo-se os seguintes parâmetros: pH (H2O) = 4,9; P meh. = 40,6 mg.dm-3; K+ = 115 mg.dm-3; Ca2+ = 2 cmolc.dm-3; Mg2+ = 0,3 cmolc.dm-3; Al3+ = 0 cmolc.dm-3; T= 5,95 cmolc.dm-3; e V= 45%. Cerca de 30 dias antes do plantio, realizou-se aração e gradagem do solo em conjunto com a calagem (77,5 kg de calcário dolomítico por canteiro). O fósforo foi aplicado em sulcos antes do plantio distribuindo 12,5 kg de superfosfato simples no canteiro de plantio. O nitrogênio foi parcelado em três adubações, a de plantio e duas de cobertura; sendo a primeira cobertura 25 dias após o plantio e a segunda 50 dias após o plantio. O potássio foi aplicado em duas adubações de cobertura juntamente com o nitrogênio. A adubação de plantio foi realizada com sulfato de amônia com 20 g por cova e 1 g de BrSolo – composto de micronutrientes. Nas coberturas foram aplicados 10 g por cova do formulado NPK 20-00-20 em cada aplicação. A calagem e a adubação foram realizadas de acordo com as instruções da Recomendação para uso de corretivos e fertilizantes em Minas Gerais – 5ª aproximação (1999). O solo da área se trata de um Latossolo Litólico Vermelho.

O tratamento fitossanitário realizado foi a aplicação de Fipronil nos formigueiros da área. O controle de plantas daninhas ocorreu através do mulching e da capina manual.

A irrigação do experimento foi realizada com tubos gotejadores (tubos de 16 mm autocompensante com vazão de 1,6 L h-1 a cada 30 cm) de acordo com os tratamentos. A irrigação em todos os tratamentos obedeceu ao Método de Hargreaves. Os tratamentos foram divididos da seguinte forma:

• T a lâmina de água foi distribuída respeitando o coeficiente da cultura (Kc) (Tabela 1) para cada fase fisiológica, sendo que foram utilizados os valores de Kc médio (Tabela 1). Esse tratamento foi considerado a testemunha;

• vp a percentagem de lâmina de água foi menor na fase vegetativa (Kc= 0,6) e de formação da produção (Kc=0,85) do que a evapotranspiração da cultura;

• v a percentagem de lâmina de água foi menor na fase vegetativa (Kc= 0,6) do que a evapotranspiração da cultura;
• \(p \) a percentagem de lámina de água foi menor na fase de formação da produção \((K_c=0,85)\) do que a evapotranspiração da cultura;

• \(V_p \) a percentagem de lámina de água foi maior na fase vegetativa \((K_c=0,9)\) e menor na fase de formação da produção \((K_c=0,85)\) do que a evapotranspiração da cultura; e

• \(vP \) a percentagem de lámina de água foi menor na fase vegetativa \((K_c=0,6)\) e maior na fase de formação da produção \((K_c=1,15)\) do que a evapotranspiração da cultura.

Tabela 1: Coeficientes da cultura \((K_c)\) da melancia

<table>
<thead>
<tr>
<th>Fases Fisiológicas</th>
<th>(K_c) Mínimo</th>
<th>(K_c) Máximo</th>
<th>(K_c) Médio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>0,4</td>
<td>0,5</td>
<td>0,45</td>
</tr>
<tr>
<td>Vegetativa</td>
<td>0,7</td>
<td>0,8</td>
<td>0,75</td>
</tr>
<tr>
<td>Formação de produção</td>
<td>0,95</td>
<td>1,05</td>
<td>1</td>
</tr>
<tr>
<td>Maturação</td>
<td>0,65</td>
<td>0,75</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Fonte: EMBRAPA. *Sistema de Produção de Melancia*. Embrapa Semiárido; Sistemas de Produção, 6; versão Eletrônica; ago., 2010.

As mudanças do regime hídrico ocorreram conforme a Figura 1. Os acréscimos no volume de água entre as fases vegetativas e de formação de produção estão notificados na Tabela 2, de forma que quanto menor a percentagem de acréscimos de água maior o estresse aplicado a planta, considerando que houve uma elevação na evapotranspiração.

Figura 1: Volume de água por dia durante as diferentes fases da cultura da melancia
Tabela 2: Porcentagem de acréscimo do volume de água entre as fases vegetativa e de formação de produção

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Fase vegetativa (L)</th>
<th>Fase de formação de produção (L)</th>
<th>Porcentagem de acréscimo de água</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vp</td>
<td>1,27</td>
<td>1,29</td>
<td>2,31</td>
</tr>
<tr>
<td>p</td>
<td>1,05</td>
<td>1,29</td>
<td>22,77</td>
</tr>
<tr>
<td>T</td>
<td>1,05</td>
<td>1,52</td>
<td>44,44</td>
</tr>
<tr>
<td>vp</td>
<td>0,84</td>
<td>1,29</td>
<td>53,46</td>
</tr>
<tr>
<td>v</td>
<td>0,84</td>
<td>1,52</td>
<td>80,55</td>
</tr>
<tr>
<td>vP</td>
<td>0,84</td>
<td>1,75</td>
<td>107,63</td>
</tr>
</tbody>
</table>

As análises relacionadas as fases vegetativas e de formação de produção (número de flores femininas e masculinas, número de flores total, comprimento de ramos, comprimento e espessura de entrenó, área e espessura de folhas) foram concentradas durante as mesmas. As análises relacionadas à qualidade do produto final (teor de sólidos solúveis, pH do fruto e tamanho de fruto) foram realizadas assim que os frutos atingiram sua maturidade, sendo verificada através do secamento das gavinhas presentes no mesmo nó do fruto.

O início das análises ocorreu 15 dias após o início da fase vegetativa, correspondendo a 30 dias após o plantio. As análises de comprimento foram realizadas com régua graduada em três repetições por planta, os entrenós escolhidos foram aqueles imediatamente anteriores à folha expandida mais jovem. A área da folha foi obtida através da relação de comprimento e largura da folha, gerando dessa forma, o que foi chamado de área aparente da folha, a qual pode ser representada por um triângulo isósceles; a folha escolhida foi a expandida mais jovem. As medidas de espessura foram realizadas com o paquímetro digital nos mesmos locais onde se coletava os comprimentos. O índice SPAD foi obtido através do SPAD-502 Plus Medidor de Clorofila®, sempre nas mesmas folhas em que se obteve a área.

Considerou-se fase reprodutiva quando ao menos 80% das plantas possuíam sua primeira flor em antese. Foram enumeradas e classificadas todas as flores da planta, em três repetições por tratamento, onde se considerou flores desde botões pré-antese até a pós-antese. As flores que possuíam pétalas secas, não foram contabilizadas. As flores femininas no pós-antese foram consideradas frutos em formação.

Para realizar as análises químicas de qualidade do fruto foi realizada uma pré-análise visual e de peso. Os frutos deveriam possuir mais de 7 Kg, não apresentarem
injúrias oriundas de pragas e possuírem o formato característico redondo-ovalado (não serem deformados) para serem avaliados quimicamente. Para realizar a medida do peso foi usada uma balança digital. Dentre os frutos de cada tratamento que se adequaram ao padrão comercial visual, sorteou-se três os quais realizou-se as análises de acidez titulável e o teor de sólidos solúveis.

A acidez titulável foi obtida através de titulação com solução de hidróxido de sódio 0,1 N e com o auxílio de um pHmetro. O volume de NaOH foi constatado quando a solução de água e suco da melancia atingiram o pH de 8,2; os dados foram convertidos de forma a obter os resultados em g ácido cítrico/100 mL de suco. O teor de sólidos solúveis foi obtido através do refratômetro analógico em °Brix, no refratômetro colocou-se 1 mL do suco da melancia da fração utilizada para as demais análises descritas.

Os dados foram avaliados inicialmente pelo teste ANOVA, aqueles que possuíam f superior ao f crítico a 5% de significância passaram pelo teste Tukey a 5% de significância. Os dados que possuíram f inferior ao f crítico passaram por análise descritiva e gráfica. Os testes foram realizados nos respectivos instrumentos, Excel e Past 326 b.

5. RESULTADOS

Não ocorreu diferença estatística entre os tratamentos em relação aos comprimentos de entrenó. Houve uma tendência de os novos entrenós serem mais longos que os anteriores até que a planta comece a ter um número maior de frutos (Figura 2). O padrão de resposta também pode ser verificado para os diâmetros dos entrenós e áreas foliares (Figura 3 e 4).

Aos 60 dias observou-se diferenças estatísticas para diâmetros dos entrenós, os tratamentos T e p (4,73mm e 5,14 mm) apresentaram desenvolvimento superior ao Vp (3,26 mm). No mesmo período os tratamentos T e p (77cm² e 73 cm²) apresentaram valores superiores a v, vp e vP (54,1 cm²; 54,6 cm²; 47,6 cm²) nas áreas foliares (Figuras 3 e 4). A área foliar foi mais afetada pelo tratamento que receberam menos água em sua fase vegetativa (vP) e esses reflexos foram apagados com o tempo de forma independente da quantidade de água recebida na fase de formação de produção. Aos 75
dias o tratamento vP (65,7 unidades SPAD) diferiu-se estatisticamente dos demais em relação ao teor de clorofila (Índice SPAD) (Figura 5 e Tabela 3).

O número de flores femininas apresentou variação estatística entre os tratamentos apenas aos 60 dias após o plantio (Tabela 3), essa data se dá 15 dias após a mudança de regime hídrico, onde o tratamento vp (2 flores) apresentou resultados inferiores ao tratamento p (5,7 flores). Contudo a relação de flores feminino/masculino voltou a ser semelhante aos demais tratamentos (Figura 7).

Não houve diferença em relação ao comprimento dos entrenós. O maior desenvolvimento dos ramos foi observado nas plantas da testemunha (T) (8,3 cm de entrenó e 42,6 flores por planta) a partir da mudança do regime hídrico. As plantas do tratamento v (8,7cm de entrenó e 67 flores por planta) alcançaram comparativamente as plantas da testemunha (10 cm de entrenó e 73 flores por planta) a partir dos 75 dias (Figura 6). Esses dois tratamentos também apresentaram frutos maduros antes dos demais tratamentos.

Os tratamentos vp, p, vP apresentaram ciclos maiores que os do tratamentos v e T. Os segundos foram colhidos uma semana antes dos demais. Os frutos do tratamento Vp não foram avaliados, considerando que nenhum deles conseguiu atingir o padrão comercial, por terem rachado antes mesmo de começarem o processo de amadurecimento.

A menor quantidade de água na fase vegetativa trouxe resultados graficamente positivos perante ao teor de sólidos solúveis. O resultado não diferiu estatisticamente dos demais (Figura 12). Os tratamentos Vp e p apresentaram resultados inferiores aos demais tratamentos, quando se trata de produção de frutos, Vp apresentou 4 frutos e p 8 frutos. Os demais tratamentos apresentaram 29 (v), 24 (T), 22 (vp) e 17 (vP) frutos (Figura 11).

Ao considerarmos os frutos acima de 7 Kg podemos observar que os tratamentos que não possuíram um aumento de água considerável entre a fase vegetativa e a fase de formação de produção, Vp e p, não apresentaram frutos médios a grandes (Figura 11). Nestes tratamentos, após sofrer estresse, foi observado um aumento de flores femininas, o tratamento p passou de uma flor feminina por planta para 5,7 flores femininas por planta e o tratamento Vp passou de uma flor feminina para 3,7 flores femininas (Tabela 3). O número de abortos nesses tratamentos foi superior gerando menos frutos (Figura 10).
Os tratamentos com mais de 40% de acréscimo de água na fase de formação de produção foram considerados comerciais (T, vp, v e vP), sendo que os sólidos solúveis aumentaram em conjunto com a porcentagem de acréscimo de água, de forma que o tratamento vP (10,5° Brix) apresentou os melhores valores de sólidos solúveis, e os tratamentos v e vp foram superiores a testemunha, ambos com 10,4° Brix, enquanto a testemunha obteve 10° Brix (Figura 12).

A acidez titulável dos tratamentos v, vp e T (0,17g ácido cítrico/100 ml de suco) foi inferior que nos tratamentos vP (0,21g ácido cítrico/100 ml de suco) e p (0,20g ácido cítrico/100 ml de suco) (Figura 12). O que gera melhor sabor, dado pela razão dos sólidos solúveis com a acidez triturável, sendo esse valor maior para T (59,6), v (59) e vp (59) do que para vP (47,7) e p (49).

Tabela 3: Teste de médias dos números de flores nos dias que houve diferença estatística

<table>
<thead>
<tr>
<th></th>
<th>Número total de flores</th>
<th>Flores femininas</th>
<th>Flores masculinas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 dias</td>
<td>75 dias</td>
<td>60 dias</td>
</tr>
<tr>
<td>vp</td>
<td>26,7 ab</td>
<td>55,0 ab</td>
<td>2,0 b</td>
</tr>
<tr>
<td>P</td>
<td>36,7 ab</td>
<td>54,0 ab</td>
<td>5,7 a</td>
</tr>
<tr>
<td>vP</td>
<td>23,0 b</td>
<td>36,0 b</td>
<td>4,0 ab</td>
</tr>
<tr>
<td>v</td>
<td>33,0 ab</td>
<td>73,0 a</td>
<td>3,7 ab</td>
</tr>
<tr>
<td>T</td>
<td>42,7 a</td>
<td>71,5 a</td>
<td>5,0 ab</td>
</tr>
<tr>
<td>Vp</td>
<td>26,3 ab</td>
<td>51,0 b</td>
<td>3,7 ab</td>
</tr>
</tbody>
</table>

Médias seguidas pela mesma letra na coluna não diferem entre si a 5% de significância.

Ao observar a Figura 13, pode-se notar as variações de temperatura e umidade durante as fases vegetativas e de formação de produção. A temperatura máxima foi de 27,6°C e a mínima foi de 18°C. A umidade relativa do ar máxima foi de 71,7% e a mínima foi de 36,5%.

Figura 2: Média dos comprimentos dos entrenós (cm) nos diferentes tratamentos durante as fases vegetativas e de formação de produção.

Figura 3: Média dos diâmetros dos entrenós (mm) nos diferentes tratamentos durante as fases
vegetativas e de formação de produção.
Figura 4: Média das áreas aparentes das folhas (cm²) nos diferentes tratamentos durante as fases vegetativas e de formação de produção.

Figura 5: Média do SPAD nos diferentes tratamentos durante as fases vegetativas e de formação de produção.

Figura 6: Média do número de flores nos diferentes tratamentos durante as fases vegetativas e de formação de produção.

Figura 7: Média do número de flores femininas nos diferentes tratamentos durante as fases vegetativas e de formação de produção.

Figura 8: Média do número de flores masculinas nos diferentes tratamentos durante as fases vegetativas e de formação de produção.

Figura 9: Relação entre o número de flores masculinas e o número de flores femininas nos diferentes tratamentos durante as fases vegetativas e de formação de produção.
Figura 10: Média de número de frutos por planta e porcentagem de flores pistiladas continuadas nos diferentes tratamentos

Figura 11: Número de frutos e produção obtidos nos diferentes tratamentos

Figura 12: Média dos valores de sólidos solúveis (Brix°) e dos valores de acidez titulável (g ácido cítrico/100 ml de suco) nos diferentes tratamentos

Figura 13: Temperatura e umidade durante as fases vegetativas e de formação de produção.

6. DISCUSSÃO

Segundo Taiz e Zeiger (2013), a primeira resposta ao estresse hídrico é a diminuição da área foliar, como verificado nesse experimento, contudo a redução da área foliar assim como a de outras estruturas vegetativas é natural com o avançar das fenofases. A maior necessidade de água na fase de formação de produção faz com que uma maior quantidade de ácido abacísco seja produzida nas raízes. Esta resposta resulta em diminuição da divisão e alongamento celular das partes aéreas (STACCIARINI-SHERAPHIN; FRESCHI, 2004).

A variação da lâmina de água ao longo das fenofases da melancia pode impactar tanto no desenvolvimento vegetativo quanto reprodutivo (VAZ, 2004).
influência maior foi observada para a fase reprodutiva com destaque positivo para produção de flores femininas e negativo para o pegamento das flores, o que demonstra que o estresse causado pela diminuição na disponibilidade de água pode alterar o balanço hormonal da melancia para níveis adequados para o dimorfismo e expressão sexual de um maior número de flores femininas. Por outro lado, a variação hormonal não é adequada para o pegamento do fruto e dificulta a fase de estabelecimento pós antese, com aborto acentuado (KERBAUY, 2004).

O aborto marcante pode ser devido a diminuição da giberelina, que tem importante participação no início do desenvolvimento dos frutos por potencializar as repostas de crescimento induzidas por maiores níveis de auxinas e citocininas ativas. Sastry e Muir (1963) aplicaram giberelina em flores de tomate e perceberam o início da frutificação antes mesmo da polinização. Dessa forma a redução de giberelina pode promover as flores femininas (MENEZES, 1994), mas ela é necessária no início da frutificação para permitir o desenvolvimento do pericarpo e da semente.

O elevado número de flores femininas promove diversos pontos de dreno, com a redução da giberelina, ocasionada pelo estresse, pois os ovários não possuem o carreamento de fotoassimilado suficiente para se desenvolver. As plantas que não passam pelo estresse possuem um ponto de dreno principal, assim, a giberelina atua em um ovário, que possui maiores chances de se desenvolver (KERBAUY, 2004) e de competir com ramos vegetativos pelos fotoassimilados.

No presente estudo observou-se que a lámina de água não afeta a distribuição dos fotoassimilados de forma a permitir maior competição entre órgãos vegetativos com aumento de tamanho do caule medido pela apresentação de novos entrenós. Já na fase reprodutiva é possível observar que a variação na disponibilidade de água altera o padrão de floração e consequentemente promove uma maior quantidade de drenos que competem com o crescimento vegetativo.

Ao receber mais água durante a fase de produção observa-se o desenvolvimento vegetativo competindo mais fortemente com o reprodutivo e isso pode intensificar o aborto e/ou reduzir o tamanho dos frutos. Em situações de disponibilidade de água maior na produção eleva-se o potencial de deterioração prematura dos frutos e da própria planta (ZAMSKI; SCHAFFER, 1996).

Ao traçar uma comparação com o estudo de Santos et al. (2013) observa-se que a redução elevada de água reduz significamente a produtividade no cultivo de
melancia, contudo para que essa redução ocorra a lámina deve ser muito inferior as usadas no presente trabalho, que variaram de 200 a 300 mm.

No trabalho de Oliveira et al. (2012) observa-se uma redução de produção quando a lámina de água foi inferior a evapotranspiração e o aumento de água foi negativo, quando também não houve adubação potássica suficiente. Neste estudo os resultados permitiram observar que a melancia tem maior eficiência de uso de água em condições hídricas restritivas.

O manejo da irrigação em melancia quando executado de forma equivocada pode levar a perdas significativas de produtividade e qualidade dos frutos como aqui observado. Nota-se que o desrespeito às diferenças evapotranspirativas nas fenofases é mais danoso que a redução hídrica e pode comprometer completamente a produtividade.

Para os tratamentos que respeitaram e foram além da taxa evapotranspirativa os frutos apresentaram melhor qualidade, provavelmente por sofrer menor estresse e com isso canalizar mais recursos para os frutos. Segundo Leão et al. (2006), teores de sólidos solúveis acima de 10° Brix, são de frutos considerados comerciais no Brasil.

Paula et al. (1991) demonstra que um bom equilíbrio entre açúcares e acidez podem ser representados pelos altos valores da relação sólidos solúveis com a acidez titulável. Mesmo com a redução das quantidades de água de irrigação, os teores de sólidos solúveis foram de padrão comercial. Resultados que foram superiores aos alcançados por Grangeiro et al. (2004) quando houve uma porcentagem de incremento de água na fase de formação de produção intermediária.

Estes resultados e os trabalhos disponíveis demonstram que não existe consenso com relação ao manejo da água para a cultura e expõe a necessidade de mais estudos para determinar a eficiência do uso da água pela cultura e as intervenções necessárias ao longo das fenofases de desenvolvimento que possibilite explorar o potencial de produção das cultivares em diferentes condições edáficas e climáticas.

7. CONCLUSÕES

A água não é um fator limitante na formação de flores pistiladas, contudo a variação de água entre a fase vegetativa e de formação de produção apresenta interferência no número de flores continuadas e no tamanho do fruto. Ademais se houver
redução da lâmina de água, de forma a respeitar o aumento da evapotranspiração na fase vegetativa, não haverá danos a qualidade dos frutos.

8. REFERENCIAS

EMBRAPA. *Sistema de Produção de Melancia*. Embrapa Semiárido; Sistemas de Produção, 6; versão Eletrônica; ago., 2010. Disponível em < https://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Melancia/SistemaProdu

LEÃO, D. S.; PEIXOTO, J. R.; VIEIRA; J. V. 2006 Teor de lícopeno e de sólidos solúveis em oito cultivares de melancias. Bioscience Journal

SANTOS GR; LEÃO EU; GONÇALVES CG; CARDON CH. Manejo da adubação potássica e da irrigação no progresso de doenças fúngicas e produtividade da melancia. Horticultura Brasileira v. 31, n. 1, jan. - mar. 2013: 36-44

