UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Tatiane Fernanda de Souza Silva

Modelagem molecular: predição de estruturas de peptídeos pelo método *ab initio*

Uberlândia, Brasil

2019

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Tatiane Fernanda de Souza Silva

Modelagem molecular: predição de estruturas de peptídeos pelo método *ab initio*

Trabalho de conclusão de curso apresentado à Faculdade de Computação da Universidade Federal de Uberlândia, Minas Gerais, como requisito exigido parcial à obtenção do grau de Bacharel em Ciência da Computação.

Orientador: Prof. Dr. Anderson Rodrigues dos Santos

Universidade Federal de Uberlândia – UFU Faculdade de Computação Bacharelado em Ciência da Computação

> Uberlândia, Brasil 2019

Modelagem molecular: predição de estruturas de peptídeos pelo método *ab initio*

Trabalho de conclusão de curso apresentado à Faculdade de Computação da Universidade Federal de Uberlândia, Minas Gerais, como requisito exigido parcial à obtenção do grau de Bacharel em Ciência da Computação.

Trabalho aprovado. Uberlândia, Brasil, 10 de julho de 2019:

Prof. Dr. Anderson Rodrigues dos Santos Orientador

Prof. Dr. Eduardo de Faria Franca Instituto de Química - UFU

Prof. Dr. Dino Rogério Coinete Franklin FACOM - UFU

> Uberlândia, Brasil 2019

Dedico este trabalho aos meu pais, Marquilandes e Enilza, que me apoiaram em todos os momentos da minha vida. E ao meu namorado, Rodrigo, que me apresentou o mundo da computação. Amo vocês.

Agradecimentos

Quero agradecer Deus e a todos aqueles que me apoiaram de forma direta e indiretamente a concluir este trabalho, dentre os quais são:

Meu orientador, que me instruiu e me apoiou em todos os momentos de dúvida, acompanhando sempre o meu progresso.

Meus professores do curso de Ciência da Computação que, através dos seus ensinamentos, permitiram que eu pudesse concluir este trabalho.

Minha família, meu namorado e amigos que tiveram paciência comigo nos momentos difíceis, me apoiando e me dando força.

"Na vida, não existe nada a temer, mas a entender." (Marie Curie)

Resumo

Os programas que são considerados o estado da arte conseguem fazer predições de estruturas tridimensionais de até 56 aminoácidos utilizando conceitos de campos de força como: atração eletrostática, van der Waals, restrições de ângulos de torção de carbonos cadeias alfa e beta de aminoácidos e comprimento da ligação. Estudamos uma forma alternativa para fazer a predição da estrutura tridimensional aproximada de peptídeos e desenvolvemos um programa protótipo que faz essa predição com uma sequência aminoácidos utilizando Algoritmo Genético(AG). Comparamos os resultados obtidos através do programa com estruturas conhecidas, extraídas da base de dados PubChem, comparando a energia eletrônica total e monitorando o tempo de execução de acordo com que aumentamos o tamanho da molécula. Obtivemos resultados bem próximos em termos de energia, mas o tempo de execução aumenta significativamente da entrada de dois para três aminoácidos. Isso já era esperado, pois o problema da Modelagem Molecular pertence à classe NP-Completo e o tempo para resolver o mesmo aumenta exponencialmente à medida que aumentamos o tamanho da molécula.

Palavras-chave: Modelagem Molecular. Peptídeos. Método *ab initio*. Algoritmos Genéticos. Química Computacional.

Abstract

Programs that are considered the state of art can predict three-dimensional structures of up to 56 amino acids using force field concepts such as electrostatic attraction, van der Waals, torsion angle constraints of carbon alpha and beta chains of amino acids and bond length. We studied an alternative way to predict the approximate three-dimensional structure of peptides and developed a prototype program that makes this prediction with an amino acid sequence using a Genetic Algorithm (GA). We compared the results obtained through the program with known structures, extracted from the PubChem database, comparing the total electronic energy and monitoring the execution time as we increase the size of the molecule. We get very close results in terms of energy, but the runtime increases significantly from the input of two to three amino acids. This is already expected because the problem of Molecular Modeling belongs to the NP-Complete class and the time to solve it increases exponentially as we increase the size of the molecule.

Key-words: Molecular Modeling. Peptides. *Ab initio* method. Genetic Algorithms. Computational Chemistry.

Lista de ilustrações

Figura 1 $$ –	Conformações que podem ser geradas de um mesmo peptídeo variando	
	os ângulos diedro ϕ e $\psi.$ Fonte: Adaptada de (NELSON; COX, 2014) $$.	14
Figura 2 $$ –	Variações de energia das rotações que surgem em torno da ligação C2 $-$	
	e C3 do butano. Fonte: Adaptada de (SOLOMONS; FRYHLE, 2000) $% = (1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2$	18
Figura 3 $-$	Ilustração 3D da molécula do butano com os respectivos carbonos nu-	
	merados	19
Figura 4 $$ –	Isomeria do but-2-eno. Fonte Adaptada de (ISOMERIA, 2018)	19
Figura 5 $$ –	Estrutura geral de um aminoácido. Fonte: Adaptada de (AMINOÁCI-	
	DOS, 2017)	20
Figura 6 $$ –	Formação de uma ligação peptídica por condensação. Fonte: Adaptada	
	de (NELSON; COX, 2014)	21
Figura 7 $$ –	Níveis de estrutura. Fonte: Adaptada de (NELSON; COX, 2014) $. \ .$	21
Figura 8 $\ -$	Exemplo de dois aminoácidos formando um dipeptíde o $\ .\ .\ .\ .\ .$	26
Figura 9 $\ -$	Exemplo 1 de três aminoácidos formando um tripeptídeo	26
Figura 10 –	Exemplo 2 de três aminoácidos formando um tripeptídeo	27
Figura 11 –	Exemplo de rotações das ligações peptídicas utilizadas no Algoritmo	
	Genético(AG).	27
Figura 12 $-$	Fluxograma do Algoritmo $\operatorname{Gen\acute{e}tico}(\operatorname{AG})$ implementado no programa	29
Figura 13 –	Representação do cromossomo e do gene. O cromossomo é representado	
	por um conjunto de genes. Cada gene representa um aminoácido com	
	as coodenadas dos respectivos átomos.	30
Figura 14 –	Representação do crossover. O crossover é o processo pelo qual dois	
	cromossomos geram um terceiro indivíduo. Os dois cromossomos "pais"	
	possuem a mesma fórmula química, diferenciando-se somente pela geo-	
	metria. Nesse caso, o "filho" é gerado a partir da combinação aleatória	
	dos genes dos "pais".	31
Figura 15 –	Representação do processo de mutação. Esse processo altera as coorde-	
	nadas dos átomos de cada gene, de forma que é feita uma rotação em	
	torno das ligações peptídicas.	32
Figura 16 –	Projeção 3D da molécula Ala-Gly	34
Figura 17 –	Projeção 3D da molécula Ala-Gly-Ser.	36
Figura 18 –	Projeção 3D da molécula Ala-Gly-Ser-Glu.	39
Figura 19 –	Gráfico que mostra o tempo de execução para cada entrada do programa.	43

Lista de tabelas

Tabela 1 –	Funções de polarização para vários átomos ($\mathbf{cc-pVDZ}$). Fonte: adap-	
	tado de (GAUSSIAN, 2017). \ldots \ldots \ldots \ldots \ldots \ldots	17
Tabela 2 –	Simbologia dos aminoácidos. Fonte: extraído de (AMINOÁCIDOS, 2017)	20
Tabela 3 –	Resultande do programa.	35
Tabela 4 –	Base PubChem	35
Tabela 5 –	Matriz das coordenadas da molécula Ala-Gly	35
Tabela 6 –	Ligações da molécula Ala-Gly	36
Tabela 7 –	Resultande do programa.	37
Tabela 8 –	Base PubChem	37
Tabela 9 –	Matriz normalizada das coordenadas da molécula Ala-Gly-Ser $\ .\ .\ .$	37
Tabela 10 –	Ligações da molécula Ala-Gly-Ser	38
Tabela 11 –	Resultande do programa.	41
Tabela 12 –	Base PubChem	41
Tabela 13 –	Matriz normalizada das coordenadas da molécula Ala-Gly-Ser-Glu	41
Tabela 14 –	Ligações da molécula Ala-Gly-Ser-Glu	42

Lista de abreviaturas e siglas

3D	Tridimensional
А	Alanina
AEs	Algoritmos Evolutivos
AGs	Algoritmos Genéticos
AHP	Analytical Hierarchy Process
С	Carbono
CASP	Critical Assessment of Structural Prediction
CNTP	Condições Normais de Temperatura e Pressão
СООН	Ácido Carboxílico
G	Glicina
$_{ m HF}$	Hartree-Fock
HMM	Hidden Markov Model
IA	Inteligência Artificial
IUPAC	International Union of Pure and Applied Chemistry
MM	Modelagem Molecular
Ν	Nitrogênio
SA	Structural Alphabet
SCF	Self-Consistent Field
UML	Unified Modeling Language

Lista de símbolos

- Å Ångström
- C_{α} Carbono alfa
- ϕ, ψ Ângulos diedro ou de torção

Sumário

1	INTRODUÇÃO	14
1.1	Objetivos	14
1.1.1	Objetivo Geral	14
1.1.2	Objetivo Específico	15
1.2	Justificativa	15
2	FUNDAMENTAÇÃO TEÓRICA	16
2.1	Modelagem Molecular	16
2.1.1	Método de Hartree-Fock	16
2.1.2	Método <i>ab initio</i>	17
2.1.3	Análise Conformacional	17
2.2	Isomerismo	19
2.3	Aminoácidos	19
2.4	Peptídeos	20
2.4.1	Classificação estrutural	21
2.5	Algoritmos Evolutivos	22
2.6	Trabalhos Relacionados	23
3	DESENVOLVIMENTO	24
3.1	Sistema Operacional e Hardware	24
3.2	Bibliotecas de Terceiros	24
3.2.1	Psi4NumPy	24
3.2.2	SciPy	24
3.3	Estratégia para a modelagem	25
3.4	Implementação	27
3.5	Resultados	33
4	CONCLUSÃO	44
	REFERÊNCIAS	45
	ANEXOS	47
	ANEXO A – INSTALAÇÃO DAS BIBLIOTECAS NESCESSÁRIAS	10
A 1		48 40
A.1	PSI4INUMPY	48

A.2	SciPy				
	ANEXO B – UTILIZAÇÃO DA BIBLIOTECA PSI4	49			
	ANEXO C – SAÍDAS DO PROGRAMA IMPLEMENTADO NESSE				
	TRABALHO	50			
C.1	Ala-Gly	50			
C.2	Ala-Gly-Ser	60			
C.3	Ala-Gly-Ser-Glu	72			

1 Introdução

A pesquisa em busca de métodos computacionais mais eficientes para problemas complexos é de grande importância, como o problema da predição da estrutura tridimensional(3D) de peptídeos. A busca pela solução ótima, no caso da predição das estruturas 3D dos peptídeos, é algo que pode ser difícil de encontrar, pois esses problemas são considerados NP-completo(BERGER; LEIGHTON, 1998), onde os métodos de otimização tradicionais não costumam ter um bom resultado.

Os progressos na área de bioinformática que estuda a predição da estrutura 3D das proteínas são monitorados com um teste bianual chamado de competição CASP (Critical Assessment of Structural Prediction, ou Avaliação Crítica de Predição Estrutural)(NELSON; COX, 2014). Um dos métodos utilizados para essa predição é o método *ab initio*. Eles são soluções aproximadas baseadas na equação de Schrödinger em que não utilizam dados experimentais(JENSEN, 2007). Uma combinação de métodos podem gerar resultados ainda mais eficientes, com isso, podemos associar o método *ab initio* com o uso de algoritmos genéticos(AGs), uma solução interessante, pois são baseados no princípio da Evolução de Darwin.

Os algoritmos genéticos podem ser utilizados na etapa de busca das conformações de menor energia dos peptídeos. Depois de gerado uma estrutura aproximada pelo método *ab initio*, variações nos ângulos diedro ou de torção (ϕ, ψ) geram várias conformações de uma mesma molécula.

Figura 1 – Conformações que podem ser geradas de um mesmo peptídeo variando os ângulos diedro $\phi \in \psi$. Fonte: Adaptada de (NELSON; COX, 2014)

1.1 Objetivos

1.1.1 Objetivo Geral

Desenvolver um programa que faça a predição da estrutura tridimensional aproximada de peptídeos e estudar métodos alternativos para resolver o problema da predição.

1.1.2 Objetivo Específico

Os objetivos específicos desse trabalho são:

- Estudo da Modelagem Molecular.
- Estudo do método *ab initio* para a predição de peptídeos.
- Utilização de Algoritmos Genéticos para obter a estrutura 3D de peptídeos com conformações de menor energia.
- Comparar resultados com estruturas já conhecidas na literatura.

1.2 Justificativa

Analisar as estruturas 3D de moléculas é muito importante para mapear suas propriedades físicas e químicas, pois mesmo em moléculas com a mesma composição, elas podem apresentar propriedades diferentes dependendo da geometria espacial que possuem.

Atualmente, existem muitos trabalhos que investigam as estruturas das moléculas, utilizando diferentes metodologias, para ser aplicada na predição das estruturas 3D de peptídeos e proteínas.

Na Otimização Combinatória e Teoria da Complexidade, o problema de predição de cadeia de aminoácidos é classificado como um problema NP-Completo, devido às limitações de predições experimentais das estruturas 3D dos peptídeos e a grande necessidade de conhecer essas estruturas(CRESCENZI et al., 1998). Isso significa que o tempo para o cálculo depende do tamanho da cadeia de aminoácidos, e ele cresce de forma exponencial impedindo a predição de estruturas complexas.

Assim, a principal justificativa deste trabalho é estudar alternativas para a prediçãos das estruturas dos peptídeos e implementar um protótipo de programa com uma dessas alternativas para que seja possível analisar seus resultados.

2 Fundamentação Teórica

Neste capítulo é apresentado os conceitos básicos necessários para compreensão deste trabalho.

2.1 Modelagem Molecular

A Modelagem Molecular, segundo a IUPAC (International Union of Pure and Applied Chemistry), consiste na investigação das estruturas e das propriedades moleculares pelo uso de química computacional, visando fornecer uma representação tridimensional, sob dadas circunstâncias(CARVALHO et al., 2003)(MODELAGEM..., 2016).

2.1.1 Método de Hartree-Fock

O método Hartree–Fock(HF) foi criado pelo matemático Douglas Hartree e o físico Vladimir Fock, tendo como objetivo produzir Orbitais Moleculares otimizados(SMITH et al., 2018). Ele é utilizado como base para calcular a energia do estado fundamental de átomos e moléculas.

Infelizmente, o método HF possui várias dificuldades em sua aplicação. Por exemplo, é necessário um conjunto completo de funções de onda de partículas únicas para calcular o potencial não-local de um único elétron. E também é necessário seguir um procedimento bastante complexo para incluir as correções de correlação que estão além da estrutura de HF (AMUSIA; MSEZANE; SHAGINYAN, 2003). Com isso, o cálculo da energia de sistemas que possuem muitos elétrons, como moléculas com vários átomos, se tornam muito complexos.

A função de Hartree–Fock é dada por,

$$E_{HF} = \left\langle \psi_0 | \widehat{H} | \psi_0 \right\rangle = \sum_i \left\langle i | \widehat{h} | i \right\rangle + \frac{1}{2} \sum_{ij} [ii|jj] - [ij|ji]$$
(2.1)

onde \widehat{H} é o Hamiltoniano molecular(SMITH et al., 2018).

A teoria do Campo Autoconsistente(*self-consistent field*, SCF) forma a base da química quântica *ab initio*(SMITH et al., 2018), conduzindo as equações de HF, também conhecido como HF-SCF. Assim, procuramos por uma solução convergente que calcule iterativamente o potencial elétrico produzido pela distribuição de cargas dada a densidade de probabilidade obtida dos orbitais espaciais.

A maioria dos métodos HF-SCF requer que um conjunto de base seja especificado, nesse trabalho utilizamos o conjunto de funções base duplo zeta **cc-pvdz**, que possui o dobro de funções mínimas para descrever cada orbital. Esse conjunto base inclui funções de polarização por definição.

Átomos	Orbitais
Н	2s,1p
He	2s,1p
Li-Be	3s,2p,1d
B-Ne	3s,2p,1d
Na-Ar	4s, 3p, 1d
Ca	5s, 4p, 2d
Sc-Zn	6s, 5p, 3d, 1f
Ga-Kr	5s,4p,2d

Tabela 1 – Funções de polarização para vários átomos(cc-pVDZ). Fonte: adaptado de (GAUSSIAN..., 2017).

2.1.2 Método ab initio

Os métodos *ab initio*, são descritos como métodos da química computacional baseados na química quântica(LEVINE, 1991)(MÉTODOS..., 2017). Eles são derivados diretamente de princípios teóricos, como a equação de Schrödinger, sem inclusão de dados experimentais.

Esse método, de fato, pode ser visto como um método aproximado da mecânica quântica. As aproximações feitas geralmente são aproximações matemáticas, como usar uma forma funcional mais simples para uma função ou obter uma solução aproximada para uma equação diferencial(RAMACHANDRAN; DEEPA; NAMBOORI, 2008).

Uma modelagem *ab initio* bem-sucedida depende de três fatores(RIGDEN, 2017):

- Uma função de energia precisa, equação 2.1, com a qual a estrutura nativa de uma molécula corresponde ao estado mais termodinamicamente estável, em comparação com todas as possíveis estruturas;
- Um método de busca eficiente que pode identificar rapidamente os estados de baixa energia através da busca conformacional;
- Seleção de modelos nativos de um conjunto de estruturas;

2.1.3 Análise Conformacional

Uma mesma molécula pode assumir mais de uma estrutura 3D, mas nem todas são estáveis em condições normais de temperatura e pressão(CNTP). Essas formas estruturais, resultados das rotações dos grupos funcionais em torno de ligações simples, são chamadas **conformações** da molécula(SOLOMONS; FRYHLE, 2000). Cada conformação possui uma energia potencial associada.

A **análise conformacional** é o estudo da variação de energia que a molécula sofre com os grupos funcionais girando sobre uma ligação simples(SOLOMONS; FRYHLE, 2000).

Para exemplificar isso, podemos observar a análise conformacional do butano na figura 2:

Figura 2 – Variações de energia das rotações que surgem em torno da ligação C2 e C3 do butano. Fonte: Adaptada de (SOLOMONS; FRYHLE, 2000)

Ao fazer rotações em torno da ligação C2 e C3 do butano, a torção entre os átomos é alterada. Com isso, as forças intermoleculares mudam precisando de uma maior ou menor energia para manter a molécula naquela conformação.

A figura 3 representa o butano em sua forma 3D, onde as esferas de cor cinza são os átomos de carbono e as de cor branca são os átomos de hidrogênio. Os carbonos foram numerados de acordo com as regas da IUPAC.

Assim, podemos observar na figura 2, que a conformação do tipo **anti** é a mais estável, pois é a que necessita de menor energia para manter a geometria no espaço 3D. Isso porque os grupos metila (CH_3) estão em posições opostas, então não existe tensão torsional nessa conformação.

Figura 3 – Ilustração 3D da molécula do butano com os respectivos carbonos numerados

2.2 Isomerismo

O isomerismo ou isomeria é um fenômeno no qual dois ou mais compostos químicos diferentes denominados isômeros apresentam a mesma fórmula molecular(mesmo conjunto de átomos) e diferentes fórmulas estruturais(diferente arranjo entre os átomos)(GARCIA CLEVERSON FERNANDO; FERREIRA LUCAS, 2015).

Na isomeria cis-trans os isômeros possuem a mesma fórmula molecular e também a mesma fórmula estrutural plana, o que diferencia é apenas as fórmulas estruturais geométrica. Os isômeros também apresentam propriedades físicas e químicas diferentes por apresentar estruturas espaciais diferentes.

Figura 4 – Isomeria do but-2-eno. Fonte Adaptada de (ISOMERIA..., 2018).

2.3 Aminoácidos

Aminoácidos são moléculas que contém em sua estrutura um grupo amina (NH_2) e um grupo carboxila(COOH), ambos ligados ao carbono α (C_{α}), que é o carbono adjacente ao grupo funcional. O C_{α} também é ligado a um hidrogênio(H) e a uma cadeia lateral R(radical).

Eles se diferem uns dos outros em suas cadeias laterais, que variam em estrutura, tamanho e carga elétrica, e que influenciam a solubilidade dos aminoácidos em água (NELSON; COX, 2014).

Figura 5 – Estrutura geral de um aminoácido. Fonte: Adaptada de (AMINOÁCIDOS, 2017)

Nome	Símbolo	Abreviação
Glicina ou Glicocola	Gly, Gli	G
Alanina	Ala	А
Leucina	Leu	L
Valina	Val	V
Isoleucina	Ile	Ι
Prolina	Pro	Р
Fenilalanina	Phe ou Fen	F
Serina	Ser	S
Treonina	Thr, Tre	Т
Cisteina	Cys, Cis	С
Tirosina	Tyr, Tir	Υ
Asparagina	Asn	Ν
Glutamina	Gln	Q
Aspartato ou Ácido aspártico	Asp	D
Glutamato ou Ácido glutâmico	Glu	Ε
Arginina	Arg	R
Lisina	Lys, Lis	Κ
Histidina	His	Н
Triptofano	Trp, Tri	W
Metionina	Met	М

Tabela 2 – Simbologia dos aminoácidos. Fonte: extraído de (AMINOÁCIDOS, 2017)

A ligação de vários aminoácidos gera uma macromolécula chamada de proteína. Elas são construídas a partir do mesmo conjunto onipresente de 20 aminoácidos(Tabela 2). Cada um desses aminoácidos possui uma cadeia lateral com propriedades químicas características, esse grupo de 20 moléculas precursoras pode ser considerado o alfabeto no qual a linguagem da estrutura proteica é lida.(NELSON; COX, 2014)

2.4 Peptídeos

Os peptídeos são compostos formados por dois ou mais aminoácidos. Para produzir um **dipeptídeo**, duas moléculas de aminoácidos podem ser ligadas de modo covalente por meio de uma ligação amida substituída, denominada ligação peptídica. Essa ligação é formada pela remoção de elementos de água (desidratação) do grupo α -carboxila de um aminoácido e do grupo α -amino do outro (NELSON; COX, 2014).

Figura 6 – Formação de uma ligação peptídica por condensação. Fonte: Adaptada de (NELSON; COX, 2014)

A estrutura de um peptídeo formada por ligações de alguns aminoácidos é chamada de **oligopeptídeo**, já a formada pela ligação de muitos aminoácidos é chamada de **polipeptídeo**.

2.4.1 Classificação estrutural

Dependendo da quantidade de aminoácidos e as interações entres eles, podemos classificar os peptídeos em quatro estruturas, Figura 7.

Figura 7 – Níveis de estrutura. Fonte: Adaptada de (NELSON; COX, 2014)

• Estrutura Primária: cadeia linear que possui somente ligações peptídicas.

- Estrutura Secundária: α-hélices, fitas β e voltas são formadas por meio de um padrão regular de pontes de hidrogênio entre os grupos N—H e C=O dos aminoácidos que estão próximos uns dos outros na sequência linear do peptídeo (BERG; TY-MOCZKO; STRYER, 2014).
- Estrutura Terciária: formas obtidas a partir das estruturas secundárias.
- Estrutura Quaternária: formas obtidas a partir das estruturas terciárias.

2.5 Algoritmos Evolutivos

Os Algoritmos Evolucionários(AEs) usam modelos computacionais baseados na evolução natural, segundo a teoria de Darwin, como o objetivo de resolver problemas.

Eles funcionam mantendo uma população de estruturas que evoluem de forma semelhante à evolução das espécies. A estas estruturas são aplicados os chamados operadores genéticos, como recombinação e mutação, entre outros. Cada indivíduo da população recebe uma avaliação que é uma quantificação da sua qualidade como solução do problema em abordado, e baseado nesta avaliação são aplicados operadores de forma a simular a sobrevivência do mais apto.(LINDEN, 2008)

Além da grande variedade de modelos computacionais propostos, todos eles têm em comum o conceito de simulação da evolução das espécies através de seleção, mutação e reprodução, processos estes que dependem do desempenho dos indivíduos desta espécie dentro do "ambiente".(LINDEN, 2008)

Como exemplo desses algoritmos temos os Algoritmos Genéticos(AGs), que são consideradas técnicas heurísticas de otimização global(LINDEN, 2008). Eles funcionam realizando uma busca não determinística abstraindo o conceito da Evolução.

O conceito é criar uma "população" inicial de estruturas, cada uma caracterizada por um conjunto de "genes". As estruturas "pai" podem gerar "filhos" com uma mistura dos genes pai, permitindo que "mutações" ocorram no processo. As melhores espécies de uma população são selecionadas com base no princípio de Darwin, a sobrevivência do mais apto, e continuam para a próxima "geração", enquanto as estruturas menos ajustadas são descartadas.(JENSEN, 2007)

2.6 Trabalhos Relacionados

Existem muitos trabalhos que investigam as estruturas das moléculas, utilizando diferentes metodologias, para ser aplicada na predição das estruturas 3D de peptídeos e proteínas.

Por exemplo, o trabalho que criou a ferramenta PEP-FOLD1 (MAUPETIT; DER-REUMAUX; TUFFERY, 2009) utilizou o método *de novo* com auxílio de um Hidden Markov Model(HMM) para predição de uma estrutura inicial e uma modificação do algoritmo guloso para obter as estruturas 3D aproximadas que serão refinadas por uma simulação Monte Carlo de 300 mil passos.

Em PEP-FOLD2 (THÉVENET et al., 2012), o sistema foi melhorado para tratar peptídeos cíclicos, lineares e com ligações dissulfeto.

Já em Sun (SUN, 1995), a busca pela melhor conformação de peptídeos e proteínas foi feita usando um método baseado em algoritmos genéticos(AGs).

3 Desenvolvimento

Este capítulo descreve o processo de estratégia, implementação e experimentos realizados com base na aplicação que foi desenvolvida utilizando a linguagem de programação Python na versão 3.6. Também especifica a máquina em que foi executado o programa e as bibliotecas de terceiros.

3.1 Sistema Operacional e Hardware

O Sistema Operacional (SO) utilizado foi o macOS High Sierra 10.13.6. O computador usado para execução da aplicação é um MacBook Air (13-inch, 2017) com processador 1,8 GHz Intel Core i5, 8 GB 1600 MHz DDR3 de memória RAM e 128 GB de espaço em disco SSD.

3.2 Bibliotecas de Terceiros

3.2.1 Psi4NumPy

É um módulo em python baseado na biblioteca Psi
4 que possui implementação em C/C++.

O Psi4NumPy fornece uma estrutura de química quântica interativa para implementações de referência, prototipagem rápida, desenvolvimento e educação. Para fazer isso, as quantidades relevantes para a química quântica são calculadas com o pacote de estrutura eletrônica Psi4 e, posteriormente, manipuladas usando o pacote Numérico Python(NumPy). Essa combinação fornece uma interface que é simples de usar e relativamente rápida de executar.(SMITH et al., 2018)

A instalação e utilização da biblioteca estão nos anexos A e B respectivamente.

3.2.2 SciPy

O ecossistema SciPy inclui ferramentas gerais e especializadas para gerenciamento e computação de dados, experimentação produtiva e computação de alto desempenho.(JONES et al., 2001–)

3.3 Estratégia para a modelagem

Foram utilizados arquivos contendo a estrutura 3D de 20 aminoácidos conhecidos, extraídos da base de dados PubChem.(KIM et al., 2018)

Validamos a sequência de entrada entrada com o alfabeto de aminoácidos conhecidos e em seguida é feita a condensação dos mesmos, dando origem ao peptídeo resultante e eliminando a molécula de água (desidratação).

Por padrão, determinamos que a ligação peptídica entre os aminoácidos possui 1.32 Å, pois é a distância de ligação peptídica típica entre um Carbono(C) e um Nitrogênio(N).(SKERN, 2018)

A sequência de entrada é uma referência de como os aminoácidos serão condensados, pois a cadeia peptídica é formada por sequências de aminoácidos e a ordem deve ser respeitada. Por exemplo, se é digitado uma sequência "AG", isso significa que é uma Alanina seguida por uma Glicina, invertendo isso é formado um peptídeo diferente.

Como existe uma posição no espaço 3D pré-definida para cada aminoácido, precisamos fazer o ajuste da posição dos aminoácidos subsequentes antes que a condensação ocorra. Para isso, utilizamos a **translação** da matriz de posições com base no vetor resultande entre dois átomos.

O vetor resultante entre os pontos $a \in b$ é dado por

$$a = (x_a, y_a, z_a)$$

$$b = (x_b, y_b, z_b)$$

$$v = (x_a - x_b, y_a - y_b, z_a - z_b)$$
(3.1)

Seja um ponto P(x,y,z) sobre o qual será efetuada uma operação de translação e seja P' as coordenadas do ponto após a translação. Podemos definir a função T como

$$T(P) = T(x_p, y_p, z_p) = (x_p + d_x, y_p + d_y, z_p + d_z)$$
(3.2)

$$P' = P + T, \text{onde } T = \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix}$$
(3.3)

Na Figura 8, temos um exemplo de como fazemos o ajuste das posições para a condensação de dois aminoácidos. Com as posições 3D dos dois aminoácidos, calculamos o vetor resultante entre os átomos que vão ficar ligados pela ligação peptídica (figura 8a). E em seguida, realizamos a translação da matriz de posições do segundo aminoácido e a condensação entre eles (figura 8b), formando assim um dipeptídeo.

Figura 8 – Exemplo de dois aminoácidos formando um dipeptídeo

Outro exemplo é a condensação de três aminoácidos (figuras 9 e 10). Com as posições 3D pré-definidas temos os três aminoácidos em qualquer posição do espaço (Figura 9a). Fazemos a condensação entre o primeiro e o segundo aminoácido seguindo o mesmo exemplo anterior, não considerando os aminoácidos seguintes para a translação (Figura 9b).

Figura 9 – Exemplo 1 de três aminoácidos formando um tripeptídeo

Em seguida, calculamos o vetor resultante entre os átomos que vão ficar ligados na segunda ligação peptídica (figura 10a). E finalmente, realizamos a translação da matriz de posições do terceiro aminoácido e a condensação com o dipeptídeo gerado anteriormente (figura 10b), formando assim um tripeptídeo.

Se a quantidade de aminoácidos for maior, continuamos o processo sucessivamente até que o peptídeo desejado seja formado.

Após a formação do peptídeo em sua conformação inicial, aplicamos o Algoritmo Genético(AG) com o objetivo de obtermos a conformação de menor energia.

Na mutação do Algoritmo Genético(AG), fazemos a rotação de parte da molécula em torno da ligação peptídica, ou seja, realizamos a torção. Se a molécula possui mais

(a) Calcula o vetor unitário(v) para a segunda (b) Três aminoácidos unidos após a segunda translação.

Figura 10 – Exemplo 2 de três aminoácidos formando um tripeptídeo

que uma ligação peptídica, rotacionamos toda a parte de um lado da ligação, que no caso do exemplo da Figura 11 são as partes roxa e laranja. E em seguida, passamos para a próxima ligação peptídica e rotacionamos a parte seguinte da ligação, que é a parte laranja. Fazemos isso até que não haja mais ligações peptídicas. Como resultado disso, temos uma conformação diferente para o mesmo peptídeo resultando em uma energia diferente para ser avaliada.

Algoritmo Genético Rotação

Ligação peptídica

Figura 11 – Exemplo de rotações das ligações peptídicas utilizadas no Algoritmo Genético(AG).

Rotação

3.4 Implementação

O programa recebe uma entrada de uma sequência de aminoácidos utilizando as letras de abreviação. Abaixo segue um exemplo de entrada do programa, nesse caso, a entrada **AG** significa uma Alanina(A) seguida de uma Glicina(G).

```
Listagem 3.1 - Exemplo de entrada
1 Enter an amino acid sequence: AG
```

27

A entrada é analisada verificando se cada caractere existe entre os 20 aminoácidos utilizados como base do programa. Se não tiver nenhum erro, buscamos as coordenadas de cada aminoácido e suas ligações fazendo a leitura dos arquivos com os dados dos aminoácidos extraídos da base de dados PubChem.

Após cada aminoácido ser instanciado, fazemos o processo de condensação seguindo a ideia explicada na estratégia para a modelagem. Fazemos a translação utilizando a seguinte implementação.

Listagem 3.2 – code.py

```
1 def resulting_vector(a, b):
2
      ab = [a[0] - b[0], a[1] - b[1], a[2] - b[2]]
      return ab
3
4
5 def resulting_vector_with_distance(a, b, distance):
      v = resulting_vector(a, b)
6
      v[0] = (a[0] - v[0]) + distance
7
      v[1] = (a[1] - v[1]) + distance
8
      v[2] = (a[2] - v[2]) + distance
9
      return v
10
11
12 def translation(m, xyz):
      for v in m:
13
           v[0] = v[0] + xyz[0]
14
15
           v[1] = v[1] + xyz[1]
           v[2] = v[2] + xyz[2]
16
      return m
17
```

Na condensação eliminamos água, e precisamos remover uma hidroxila(OH) de um aminoácido e um hidrogênio do outro, fazendo o ajuste das posições a casa ligação peptídica formada.

```
Listagem 3.3 – code.py
```

```
1 @staticmethod
2 def generate_peptide_molecule(amino_acid_sequence):
      peptide = []
3
4
      for a in amino_acid_sequence:
5
          amino_acid = AminoAcid.generate_amino_acid_molecule(a)
6
          if len(peptide) > 0:
7
               last_amino_acid: AminoAcid = peptide[-1]
8
               carbon = last_amino_acid.eliminate_hydroxyl_radical()
9
               amino_acid.eliminate_hydrogen(carbon)
10
               amino_acid = Molecule.__update_position(last_amino_acid.
11
                  atoms[-1], amino_acid)
          peptide.append(amino_acid)
12
```

```
13
      return peptide
14
15
16 @staticmethod
17 def __update_position(atom_a: Atom, amino_acid: AminoAcid):
18
      matrix = []
      for atom in amino_acid.atoms:
19
           matrix.append(atom.position)
20
21
      v = resulting_vector_with_distance(atom_a.position, matrix[0],
22
          PEPTIDE_BOND_LENGTH)
23
      result = translation(matrix, v)
24
25
      # update positions
26
      for i in range(len(amino_acid.atoms)):
27
           amino_acid.atoms[i].position = result[i]
28
29
      return amino_acid
30
```

Com o peptídeo formado, podemos criar a população inicial e executar o Algoritmo Genético(AG) seguindo o fluxo da Figura 12.

Figura 12 – Fluxograma do Algoritmo Genético(AG) implementado no programa.

Cada cromossomo é um conjunto de aminoácidos e os genes são as informações de coordenadas de cada átomo dentro do aminoácido (Figura 13).

Figura 13 – Representação do cromossomo e do gene. O cromossomo é representado por um conjunto de genes. Cada gene representa um aminoácido com as coodenadas dos respectivos átomos.

O *fitness* é calculado baseado na energia eletrônica total do indivíduo, e buscamos sempre o de menor energia. Essa energia é calculada utilizando a biblioteca Psi4, com a configuração de cálculo base para otimização "scf/cc-pvdz", que é o conjunto de funções base utilizada no método HF-SCF. Também é possível limitar a memória do computador que será utilizada nesse cálculo, que nesse caso foi de 500MB. Isso quer dizer que, se o cálculo da energia não convergir até os dados armazenados na memória chegarem ao limite máximo de 500MB, então a execução do cálculo encerra. Exemplo de utilização da biblioteca no anexo B.

A **seleção** é baseada em *Rank*, que é feita ordenando os indivíduos pelo fitness, e se a população estiver maior do que o tamanho estipulado, são eliminados os indivíduos com maior energia.

O *crossover* é uniforme. Fazemos a seleção de dois indivíduos da população para gerar um filho onde os genes são a combinação das coordenadas de cada átomo dos peptídeos dos pais feitas de forma aleatória.

```
Listagem 3.4 – crossover.py
1 def __crossover(self):
      offsprings = []
2
      for i in range(0, POPULATION_SIZE-1, 2):
3
          offspring = self.__uniform_crossover(self.population[i], self
4
              .population[i+1])
           offsprings.append(offspring)
5
      self.population += offsprings
6
7
8 @staticmethod
9 def __uniform_crossover(parent_a: Individual, parent_b: Individual):
      genes = []
10
```


Figura 14 – Representação do crossover. O crossover é o processo pelo qual dois cromossomos geram um terceiro indivíduo. Os dois cromossomos "pais" possuem a mesma fórmula química, diferenciando-se somente pela geometria. Nesse caso, o "filho" é gerado a partir da combinação aleatória dos genes dos "pais".

```
11 for i in range(len(parent_a.chromosome)):
12 choice = random.randrange(2)
13 if choice == 0:
14 genes.append(parent_a.chromosome[i])
15 else:
16 genes.append(parent_b.chromosome[i])
17 return Individual(genes)
```

A **mutação** é feita variando a torção em torno da ligação peptídica, para isso alteramos as coordenadas dos átomos conforme a representação e a implementação abaixo.

```
Listagem 3.5 – mutation.py
1 def mutate(self):
      if len(self.chromosome) == 1:
2
           return
3
4
      for i in range(1, len(self.chromosome)):
5
           first_part: [AminoAcid] = self.chromosome[:i]
6
           second_part: [AminoAcid] = self.chromosome[i:]
7
8
           part_to_rotate = []
9
           if len(second_part) == 1:
10
               items = reduce(lambda x, y: x + y, second_part)
11
               for atom in items.atoms:
12
                   part_to_rotate.append(atom.position)
13
14
           else:
               atoms = []
15
               for x in second_part:
16
                   atoms.append(x.atoms)
17
18
               items = reduce(lambda x, y: x + y, atoms)
19
20
```


Figura 15 – Representação do processo de mutação. Esse processo altera as coordenadas dos átomos de cada gene, de forma que é feita uma rotação em torno das ligações peptídicas.

```
21
               for atom in items:
                   part_to_rotate.append(atom.position)
22
23
24
           # calculates resulting vector
          v = calculates_xyz_to_rotate(first_part[-1].atoms[-1].
25
              position, part_to_rotate[0])
26
          # move positions
27
          new_part = rotation_euler(part_to_rotate, v)
28
29
          # update values by reference
30
          for j in range(len(second_part)):
31
               for k in range(len(second_part[j].atoms)):
32
                   second_part[j].atoms[k].position = new_part[0]
33
                   del new_part[0]
34
35
      # calculate fitness
36
      self.fitness = self.__calculates_fitness()
37
      print( Fitness:
                         + str(self.fitness))
38
```

Após o AG rodar um número determinado de gerações, é selecionado o indivíduo com a menor energia para retornar como resultado final. Esse indivíduo contém a matriz de posições 3D utilizada para gerar a imagem da molécula a partir do arquivo de extensão ".mol". Nesse trabalho, o AG criou uma população inicial com cinco indivíduos e executou por 5 gerações mantentdo o tamanho original da população e eliminando os indivíduos com pior *fitness*.

Como não encontrei nenhuma forma genérica para gerar o arquivo com as informações necessárias para gerar a imagem, utilizei o arquivo da base de dados PubChem e alterei manualmente a matriz de posições de cada átomo e as respectivas ligações entre eles. Após o arquivo ser atualizado, eu utilizei o site "http://www.cheminfo.org" para gerar as imagens a partir do arquivo ".mol".

3.5 Resultados

Realizamos o cálculo do da energia da molécula Ala-Gly a partir da estrutura 3D conhecida pela base de dados PubChem(Figura 16a), com auxílio da biblioteca Psi4 para comparar com o resultado obtido através do programa. A energia eletrônica total da estrutura conhecida possui o valor de **-528.71 kcal/mol** e a biblioteca Psi4 executou em **14.66 segundos**.

Ao executar o programa desenvolvido nesse trabalho e inserir a entrada "AG", que é a forma abreviada de Ala-Gly, criou-se uma população inicial com cinco indivíduos que passaram pelo processo de mutação e *crossover* por cinco gerações. O melhor *fitness* para essa execução com um tempo de 16.67 minutos foi o de -528.32 kcal/mol, que é um valor bem próximo do obtido na execução anterior, e foram necessárias 13 interações de HF-SCF para o cálculo da energia convergir. Podemos ver a conformação resultante na Figura 16b.

A biblioteca Psi4 gera um arquivo com vários dados, e também com a matriz 3D que sofre uma pequena alteração durante os cálculos de energia, essa alteração não modifica significativamente os ângulos entre os átomos, e ao plotar a molécula temos a Figura 16c.

Há algumas diferenças geométricas entre as moléculas das Figuras 16a e 16b, como a posição do grupos funcional Ácido Carboxílico(COOH), que pode mudar dependendo da torção que fazemos em torno de uma ligação simples.

As coordenadas que utilizamos para gerar as imagens das moléculas foram normalizadas seguindo a normalização de vetores, com o objetivo de obtermos o vetor unitário, que é o vetor cujo comprimento é 1 (equação 3.4).

$$u = \frac{v}{\|v\|}, \text{ onde } \|v\| = \sqrt{x^2 + y^2 + z^2}$$
 (3.4)

(a) Base de dados PubChem.

(b) Resultante do programa.

(c) Resultante da biblioteca Psi4.

Figura 16 – Projeção 3D da molécula Ala-Gly.

$$\rho = \frac{cov(X,Y)}{\sqrt{var(X) \times var(Y))}}$$
(3.5)

Comparamos os coeficientes de correlação de Pearson (equação 3.5) para cada eixo do resultado do programa com a de referência e obtivemos os seguintes coeficientes:

- eixo x = -0.86
- eixo y = 0.75
- eixo z = -0.01

Para o dipeptídeo Ala-Gly, existe uma forte correlação para os eixos x e y. Já o eixo z não possui correlação.

Realizamos também o teste do programa com o peptídeo Ala-Gly-Ser, composto por três aminoácidos que são Alanina, Glicina e Serina respectivamente. O resultado da execução do Psi4 para calcular a energia eletrônica total da molécula conhecida, extraída da PubChem(Figura 17a), foi de **-849.43 kcal/mol** e o tempo de **47.63 segundos**.

Átomo	x	У	Z	Átomo	x	у	Z
O_1	0.7247	0.6477	-0.2347	O_1	0.4493	0.6046	0.6576
N_2	-0.7710	0.6289	0.0995	N_2	0.9843	0.1728	0.0335
C_3	-0.8656	-0.1387	0.4810	C_3	0.9779	-0.0890	-0.1891
C_4	-0.7193	-0.6468	-0.2534	C_4	0.8087	-0.5876	0.0230
C_5	0.9919	0.1199	0.0408	C_5	0.8907	0.4517	0.0505
H_6	-0.4543	-0.2214	0.8628	H_6	0.8252	-0.0630	-0.5612
H_7	-0.3649	-0.9229	-0.1224	H_7	0.5347	-0.8353	-0.1274
H_8	-0.8738	-0.4774	-0.0917	H_8	0.8320	-0.5507	-0.0661
H_9	-0.5574	-0.4459	-0.7002	H_9	0.7295	-0.5656	0.3844
H_{10}	-0.9041	0.3939	0.1654	H_{10}	0.9981	0.0395	-0.0470
H_{11}	-0.6588	0.6496	-0.3792	H_{11}	0.9358	0.1466	0.3203
O_{12}	0.7206	-0.6339	-0.2807	O_{12}	-0.7986	-0.5838	0.1457
O_{13}	0.3509	-0.6546	-0.6695	O_{13}	-0.9964	0.0317	0.0774
N_{14}	0.6357	0.4335	-0.6385	N_{14}	-0.1528	0.3164	-0.9362
C_{15}	0.8578	0.0211	-0.5135	C_{15}	-0.8087	0.4563	-0.3711
C_{16}	0.7347	-0.4590	-0.4993	C_{16}	-0.9982	-0.0585	0.0076
H_{17}	0.9714	0.0785	-0.2240	H_{17}	-0.6908	0.3884	-0.6098
H_{18}	0.7866	-0.0343	-0.6164	H_{18}	-0.6280	0.7775	-0.0322
H_{19}	0.3746	0.3447	-0.8606	H_{19}	0.0159	-0.1314	-0.9911
H_{20}	0.5402	-0.8168	-0.2024	H_{20}	-0.7582	-0.6045	0.2440

Tabela 3 – Resultande do programa.

Tabela 4 – Base PubChem.

Tabela 5 – Matriz das coordenadas da molécula Ala-Gly

Ao executar o programa desenvolvido nesse trabalho e inserir a entrada "AGS", que é a forma abreviada de Ala-Gly-Ser, criou-se uma população inicial com cinco indivíduos que passaram pelo processo de mutação e *crossover* por cinco gerações. O melhor *fitness* para essa execução foi o de -848.79 kcal/mol, que também é um valor bem próximo do obtido na execução anterior, com um tempo de 55.80 minutos. Podemos ver a conformação resultante na Figura 17b. E foram necessárias 23 interações de HF-SCF para o cálculo da energia convergir.

A Figura 17a, que utilizamos como base, possui uma cadeia mais linear do que a Figura 17b que foi resultante e alguns comprimentos de ligação sofreram deformação por causa da mutação durante a execução do algoritmo genético.

As coordenadas que utilizamos para gerar as imagens das moléculas também foram normalizadas seguindo a normalização de vetores (equação 3.4). E assim obtemos os dados da tabela 9.

Comparamos os coeficientes de correlação de Pearson (equação 3.5) para cada eixo do resultado do programa com a de referência e obtivemos os seguintes coeficientes:
Átomo	Átomo	Ligação
O_1	C_5	dupla
N_2	C_3	simples
N_2	H_{10}	simples
N_2	H_{11}	simples
C_3	C_4	simples
C_3	C_5	simples
C_3	H_6	simples
C_4	H_7	simples
C_4	H_8	simples
C_4	H_9	simples
O_{12}	C_{16}	simples
O_{12}	H_{20}	simples
O_{13}	C_{16}	dupla
N_{14}	C_{15}	simples
N_{14}	C_5	peptídica
N_{14}	H_{19}	simples
C_{15}	H_{17}	simples
C_{15}	H_{18}	simples
C_{16}	C_{15}	simples

Tabela 6 – Ligações da molécula Ala-Gly

(a) Base de dados PubChem.

Átomo	x	у	Z	Átomo	x	у	
 	0.7247	0.6477	-0.2347	O_1	0.8587	-0.4275	0.28
N_2	-0.7710	0.6289	0.0995	N_2	0.9826	-0.1563	0.09
C_3	-0.8656	-0.1387	0.4810	C_3	0.9991	0.0332	-0.02
C_4	-0.7193	-0.6468	-0.2534	C_4	0.9343	-0.0074	-0.35
C_5	0.9919	0.1199	0.0408	C_5	0.9870	-0.0342	0.15
H_6	-0.4543	-0.2214	0.8628	H_6	0.9690	0.2447	0.03
H_7	-0.3649	-0.9229	-0.1224	H_7	0.8507	0.1643	-0.49
H_8	-0.8738	-0.4774	-0.0917	H_8	0.9324	0.0215	-0.36
H_{9}	-0.5574	-0.4459	-0.7002	H_{9}	0.8736	-0.2318	-0.42
H_{10}	-0.9041	0.3939	0.1654	H_{10}^{0}	0.9936	-0.1094	0.02
H_{11}^{10}	-0.6588	0.6496	-0.3792	H_{11}^{10}	0.9393	-0.3396	0.04
$O_{12}^{}$	0.5694	-0.8191	-0.0689	O_{12}^{-1}	0.0015	0.6966	-0.71
N_{13}	0.2064	-0.2240	-0.9524	N_{13}	0.8680	0.4467	0.21
C_{14}	0.6327	-0.2693	-0.7259	C_{14}	0.4363	0.6644	0.60
C_{15}	0.7984	-0.5075	-0.3237	C_{15}	-0.2497	0.9597	-0.12
H_{16}	0.7300	0.0285	-0.6828	H_{16}	0.3156	0.1842	0.93
H_{17}	0.5922	-0.3975	-0.7008	H_{17}	0.2135	0.8043	0.55
H_{18}	0.0132	-0.5066	-0.8620	H_{18}	0.7876	0.6132	0.05
O_{19}	0.1805	0.7676	0.6149	O_{19}	-0.7305	-0.6825	-0.01
O_{20}	0.0708	0.4020	0.9128	O_{20}	-0.9840	0.1486	-0.09
O_{21}	-0.1466	0.5860	0.7969	O_{21}	-0.9379	-0.0126	0.34
N_{22}	0.6373	0.6527	0.4094	N_{22}	-0.9512	0.2222	0.21
C_{23}	0.4120	0.6531	0.6352	C_{23}	-0.9769	0.0233	-0.21
C_{24}	0.2944	0.8186	0.4930	C_{24}	-0.8155	-0.4429	-0.37
C_{25}	0.1187	0.5566	0.8222	C_{25}	-0.9955	0.0629	0.06
H_{26}	0.5058	0.5099	0.6958	H_{26}	-0.8487	0.2685	-0.45
H_{27}	0.4212	0.8191	0.3892	H_{27}	-0.5672	-0.5373	-0.62
H_{28}	0.1524	0.9149	0.3737	H_{28}	-0.8166	-0.3823	-0.43
H_{29}	0.7675	0.4094	0.4932	H_{29}	-0.7573	0.0397	0.65
H_{30}	0.2746	0.6881	0.6715	H_{30}	-0.8212	-0.5633	0.09
H_{31}	-0.1002	0.3041	0.9473	H_{31}	-0.9894	0.1443	0.00

Tabela 7 – Resultande do programa.

Tabela 8 – Base PubChem.

Tabela 9 – Matriz normalizada das coordenadas da molécula Ala-Gly-Ser

- eixo y = -0.03
- eixo z = -0.04

Para o tripeptídeo Ala-Gly-Ser, não existe correlação para nenhum dos eixos.

Por último, realizamos também o teste do programa com o peptídeo Ala-Gly-Ser-Glu, composto por três aminoácidos que são Alanina, Glicina, Serina e Ácido Glutâmico respectivamente. O resultado da execução do Psi4 para calcular a energia eletrônica total da molécula conhecida, extraída da PubChem(Figura 18a), foi de **-1321.96 kcal/mol** e

Átomo	Átomo	Ligação
O_1	C_5	dupla
N_2	C_3	simples
N_2	H_{10}	simples
N_2	H_{11}	simples
C_3	C_4	simples
C_3	C_5	simples
C_3	H_6	simples
C_4	H_7	simples
C_4	H_8	simples
C_4	H_9	simples
O_{12}	C_{15}	dupla
N_{13}	C_{14}	simples
N_{13}	C_5	peptídica
N_{13}	H_{18}	simples
C_{14}	C_{15}	simples
C_{14}	C_{16}	simples
C_{14}	H_{17}	simples
O_{19}	C_{24}	simples
O_{19}	H_{30}	simples
O_{20}	C_{25}	simples
O_{20}	H_{31}	simples
O_{21}	C_{25}	dupla
O_{21}	C_{23}	simples
N_{22}	C_{15}	peptídica
N_{22}	H_{29}	simples
C_{23}	C_{24}	simples
C_{23}	C_{25}	simples
C_{23}	H_{26}	simples
C_{24}	H_{27}	simples
C_{24}	H_{28}	simples

Tabela 10 – Ligações da molécula Ala-Gly-Ser

o tempo de 2.05 minutos.

Executamos o programa com a entrada "AGSE", que é a forma abreviada de Ala-Gly-Ser-Glu, criou-se uma população inicial com cinco indivíduos que passaram pelo processo de mutação e *crossover* por cinco gerações. O melhor *fitness* para essa execução foi o de -1320.09 kcal/mol, que também é um valor bem próximo do obtido na execução anterior, com um tempo de 7.11 horas. Foram necessárias 20 interações de HF-SCF para o cálculo da energia convergir.

Podemos observar uma forte deformação da molécula no resultado do programa, Figura 18b. Isso devido ao processo de *crossover* que é uma das etapas do Algoritmo Genético utilizada para gerar novos indivíduos. Apesar disso, a energia eletrônica total é

(a) Base de dados PubChem.

(b) Resultante do programa.

(c) Resultante da biblioteca Psi4.

Figura 18 – Projeção 3D da molécula Ala-Gly-Ser-Glu.

bem próxima comparada com a energia da molécula de referência.

As coordenadas que utilizamos para gerar as imagens das moléculas também foram normalizadas seguindo a normalização de vetores (equação 3.4). E assim obtemos os dados da tabela 13.

Comparamos os coeficientes de correlação de Pearson para cada eixo do resultado do programa com a de referência e obtivemos os seguintes coeficientes:

• eixo
$$x = 0.57$$

- eixo y = -0.58
- eixo z = -0.59

Para o tetrapeptídeo Ala-Gly-Ser-Glu, existe uma forte correlação moderada para os eixos x, y e z.

Todos os logs de saída da execução do programa estão no anexo C.

Átomo	x	У	\mathbf{Z}	Átomo	x	У	\mathbf{Z}
O_1	0.7247	0.6477	-0.2347	$\overline{O_1}$	-0.9776	-0.1810	-0.1068
N_2	-0.7710	0.6289	0.0995	N_2	-0.9996	-0.0182	-0.0199
C_3	-0.8656	-0.1387	0.4810	C_3	-0.9935	0.1054	0.0417
C_4	-0.7193	-0.6468	-0.2534	C_4	-0.9603	0.1017	0.2594
C_5	0.9919	0.1199	0.0408	C_5	-0.9974	0.0379	-0.0605
H_6	-0.4543	-0.2214	0.8628	H_6	-0.9702	0.2418	-0.0084
H_7	-0.3649	-0.9229	-0.1224	H_7	-0.9466	-0.0437	0.3193
H_8	-0.8738	-0.4774	-0.0917	H_8	-0.9498	0.1334	0.2828
H_9	-0.5574	-0.4459	-0.7002	H_9	-0.9179	0.2117	0.3355
H_{10}	-0.9041	0.3939	0.1654	H_{10}	-0.9993	0.0198	0.0290
H_{11}	-0.6588	0.6496	-0.3792	H_{11}	-0.9894	-0.0075	-0.1444
O_{12}	0.5689	-0.8194	-0.0685	O_{12}	-0.8164	0.4578	0.3518
N_{13}	0.4463	-0.2104	0.8697	N_{13}	-0.9579	0.2584	-0.1250
C_{14}	0.2760	-0.6384	0.7184	C_{14}	-0.9032	0.2784	-0.3263
C_{15}	0.3026	-0.9044	0.3006	C_{15}	-0.9459	0.3213	-0.0431
H_{16}	-0.0338	-0.6250	0.7798	H_{16}	-0.8713	0.0437	-0.4887
H_{17}	0.3947	-0.6482	0.6510	H_{17}	-0.7580	0.4817	-0.4395
H_{18}	0.7294	-0.1377	0.6699	H_{18}	-0.9088	0.4120	-0.0643
O_{19}	-0.9565	0.0286	-0.2900	O_{19}	-0.2349	-0.9678	0.0900
O_{20}	-0.8251	-0.0137	-0.5647	O_{20}	0.4613	-0.2540	-0.8500
N_{21}	-0.6352	0.7510	-0.1798	N_{21}	-0.9192	-0.0562	-0.3896
C_{22}	-0.8030	0.5111	-0.3063	C_{22}	-0.2389	-0.8186	0.5221
C_{23}	-0.6655	0.5452	-0.5096	C_{23}	-0.1987	-0.8186	0.5388
C_{24}	-0.9036	0.1748	-0.3910	C_{24}	0.7719	-0.4464	-0.4524
H_{25}	-0.8600	0.4919	-0.1349	H_{25}	0.0843	0.3793	0.9214
H_{26}	-0.5936	0.6743	-0.4390	H_{26}	0.1596	-0.7324	0.6618
H_{27}	-0.5340	0.5162	-0.6695	H_{27}	-0.4856	-0.5785	0.6552
H_{28}	-0.7072	0.7005	0.0947	H_{28}	-0.6488	-0.2338	-0.7240
H_{29}	-0.9370	-0.1698	-0.3052	H_{29}	0.0400	-0.9963	-0.0/1/
O_{30}	0.5942	-0.0072	-0.0580	O_{30}	0.9170	-0.3929	-0.0589
O_{31}	0.0343	-0.0138	-0.3811	O_{31}	0.8070	0.4098	0.2089
O_{32}	0.9291 0.7176	0.1912	-0.3103	O_{32}	0.8195	-0.3014	0.2777
U_{33}	0.7170	-0.0905	0.0110	U_{33}	0.0101	0.4504 0.2454	-0.1395
C	0.0000	0.0020	-0.2290 0.0387	C	0.9378	-0.3434	0.0340 0.1770
C_{35}	0.9907	0.0050	-0.0387	C_{35}	0.9807	0.0803 0.2650	-0.1779
C_{36}	0.9949 0.0134	0.2800	0.3867	C_{36}	0.9525 0.0655	-0.2009 0.2384	0.1400
C_{37}	0.9194 0.9726	-0.1200 0 1495	-0.3007	C_{37}	0.9099	-0.4151	0.10568
C_{38}	0.5720 0.7711	-0.5266	-0.3578	C_{38}	0.9019	0.4191 0.4195	0.0379
U_{39} H_{40}	0.9610	0.9200 0.2482	0.1210	U_{39} H_{40}	0.9003	0.4150 0.2445	-0.3522
H_{40}	0.9862	-0.0959	0.1210 0.1343	H_{41}	0.9679	0.0311	-0.2491
H_{42}	0.9353	0.3369	0.1076	H_{49}	0.8470	-0.3671	-0.3844
H42 H49	0.7978	0.0655	-0.5992	H_{42}	0.9062	0.3338	0.2592
H43 H44	0.8923	-0.1889	-0.4098	H_{43}	0.9730	0.0992	0.2082
H_{45}	0.7500	0.6433	-0.1533	H_{45}	0.8515	-0.3124	0.4210
H_{46}	0.9922	-0.0502	-0.1140	H_{AG}	0.8936	-0.4480	0.0257
H_{47}	0.3592	-0.7825	-0.5084	H_{47}	0.8294	0.5342	0.1631

Tabela 11 – Resultande do programa.

Tabela 12 – Base PubChem.

41

Tabela 13 – Matriz normalizada das coordenadas da molécula Ala-Gly-Ser-Glu

Átomo	Átomo	Ligação
O_1	C_5	dupla
N_2	C_3	simples
N_2	H_{10}	simples
N_2	H_{11}	simples
C_3	C_4	simples
C_3	C_5	simples
C_3	H_6	simples
C_4	H_7	$\operatorname{simples}$
C_4	H_8	$\operatorname{simples}$
C_4	H_9	$\operatorname{simples}$
O_{12}	C_{15}	dupla
N_{13}	C_{14}	$\operatorname{simples}$
N_{13}	C_5	peptídica
N_{13}	H_{18}	$\operatorname{simples}$
C_{14}	C_{15}	$\operatorname{simples}$
C_{14}	C_{16}	$\operatorname{simples}$
C_{14}	H_{17}	$\operatorname{simples}$
O_{19}	C_{23}	$\operatorname{simples}$
O_{19}	H_{29}	$\operatorname{simples}$
O_{20}	C_{24}	dupla
N_{21}	C_{22}	$\operatorname{simples}$
N_{21}	C_{29}	peptídica
N_{21}	H_{28}	$\operatorname{simples}$
C_{22}	C_{23}	$\operatorname{simples}$
C_{22}	C_{24}	$\operatorname{simples}$
C_{22}	H_{25}	$\operatorname{simples}$
C_{23}	H_{26}	$\operatorname{simples}$
C_{23}	H_{27}	$\operatorname{simples}$
O_{30}	C_{38}	$\operatorname{simples}$
O_{30}	H_{46}	$\operatorname{simples}$
O_{31}	C_{39}	$\operatorname{simples}$
O_{31}	H_{47}	$\operatorname{simples}$
O_{32}	C_{38}	dupla
O_{33}	C_{39}	dupla
N_{34}	C_{36}	$\operatorname{simples}$
N_{34}	C_{24}	peptídica
N_{34}	H_{45}	$\operatorname{simples}$
C_{35}	C_{36}	$\operatorname{simples}$
C_{35}	C_{37}	$\operatorname{simples}$
C_{35}	H_{40}	$\operatorname{simples}$
C_{35}	H_{41}	$\operatorname{simples}$
C_{36}	C_{38}	simples
C_{36}	H_{42}	simples
C_{37}	C_{39}	simples
C_{37}	H_{43}	simples
C_{37}	H_{44}	simples

Tabela 14 – Ligações da molécula Ala-Gly-Ser-Glu

Nos quatro experimentos com o programa, podemos observar que a conformação da molécula resultante não é exatamente igual à molécula de referência conhecida. Mesmo assim a energia eletrônica total está bem próxima, pois a biblioteca Psi4 recebe como parâmetro de entrada as coordenadas de cada átomo, e a energia de uma interação pode compensar a outra fazendo com que a energia total do sistema tenha resultados parecidos mesmo com conformações diferentes.

O tempo de execução do programa aumentou significativamente da entrada "AG" para a entrada "AGS", e ainda mais para a entrada "AGSE". Isso já era esperado, pois o problema pertence a NP-Completo e possui tempo exponencial, Figura 19.

Figura 19 – Gráfico que mostra o tempo de execução para cada entrada do programa.

4 Conclusão

Ainda há muito a ser explorado nesta área de predição de estruturas tridimensionais(3D) de peptídeos e proteínas, principalmente pela complexidade dos cálculos envolvidos. Com o avanço dos Algoritmos Evolutivos(AEs) e suas diversas vertentes, podemos descobrir maneiras diferentes de tratar esse problema.

Apesar das deformações nas ligações peptídicas, o prótotipo do programa conseguiu executar até o final. Utilizando os aminoácidos existentes, que são a base de qualquer peptídeo ou proteína no programa, temos uma molécula pré-definida que facilita muito para que não seja necessário fazer grandes modificações na matriz 3D. Podemos observar isso nos resultados obtidos com dois e três aminoácidos, pois o cálculo da energia eletrônica total ficou bem próximo ao de uma estrutura conhecida.

Para a continuação deste trabalho, é necessário ajustar o algoritmo de *crossover* para evitar a deformação da molécula e manter as distâncias de ligação.

Seria interessante, utilizar uma base de dados com as estruturas 3D maior para utilizar a maior cadeia conhecida do peptídeo, pois acredito que não seria necessário tantas interações e grandes modificações nos ângulos, pois já estariam bem próximos à sua forma estável e o resultado iria a convergir mais rápido. E também testar outros conjuntos de funções base no método HF-SCF para analisar o desempenho do tempo de processamento e nos resultados dos cálculos da energia.

Então, esse trabalho proporcionou uma visão do quão complexo é o problema da Modelagem Molecular e que existem muitos fatores que influenciam no resultado. E por fazer parte da classe dos problemas NP-Completo, torna o avanço nessa área bem mais lento porque o tempo computacional é um fator limitante e não possuímos computadores quânticos para resolvermos esse problema em tempo polinomial.

Referências

AMINOÁCIDOS. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2017. Disponível em: https://pt.wikipedia.org/wiki/Amino%C3%A1cido#cite_note-ucalgary.27.0-1. Citado 3 vezes nas páginas 8, 9 e 20.

AMUSIA, M.; MSEZANE, A. Z.; SHAGINYAN, V. The hartree fock method within density functional theory. 05 2003. Citado na página 16.

BERG, J. M.; TYMOCZKO, J. L.; STRYER, L. *Bioquímica*. 7. ed. Rio de Janeiro: Guanabara Koogan, 2014. ISBN 978-8-5277-2387-9. Citado na página 22.

BERGER, B.; LEIGHTON, T. Protein folding in the hydrophobic-hydrophilic (hp) model is np-complete. *Journal of Computational Biology*, v. 5, p. 27–40, 1998. Citado na página 14.

CARVALHO, I. et al. Introdução a modelagem molecular de fármacos no curso experimental de química farmacêutica. *Química Nova*, scielo, v. 26, p. 428 – 438, 05 2003. ISSN 0100-4042. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422003000300023&nrm=iso. Citado na página 16.

CRESCENZI, P. et al. On the complexity of protein folding. *Journal of Computational Biology*, v. 5, n. 3, p. 423–465, 1998. Disponível em: https://doi.org/10.1089/cmb.1998. 5.423>. Citado na página 15.

GARCIA CLEVERSON FERNANDO; FERREIRA LUCAS, E. M. B. I. *Química orgânica: Estrutura e propriedades.* 6. ed. Porto Alegre: Bookman Editora, 2015. 78 p. ISBN 8582602448, 9788582602447. Citado na página 19.

GAUSSIAN Basis Sets. In: EXPANDING the limits of computational chemistry. Gaussian, 2017. Disponível em: https://gaussian.com/basissets>. Citado 2 vezes nas páginas 9 e 17.

ISOMERIA geométrica. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2018. Disponível em: https://pt.wikipedia.org/wiki/Isomeria_geom%C3%A9trica. Citado 2 vezes nas páginas 8 e 19.

JENSEN, F. Introduction to computational chemistry. 2. ed. West Sussex PO19 8SQ, England: WILEY, 2007. ISBN 13 978-0-470-01186-7. Citado 2 vezes nas páginas 14 e 22.

JONES, E. et al. *SciPy: Open source scientific tools for Python*. 2001–. Acessado em: 2019. Disponível em: http://www.scipy.org/. Citado na página 24.

KIM, S. et al. PubChem 2019 update: improved access to chemical data. *Nucleic Acids Research*, v. 47, n. D1, p. D1102–D1109, 10 2018. ISSN 0305-1048. Disponível em: https://doi.org/10.1093/nar/gky1033>. Citado na página 25.

LEVINE, I. N. *Quantum Chemistry*. Englewood Cliffs, New Jersey: Prentice Hall: Springer, Dordrecht, 1991. ISBN 0-205-12770-3. Citado na página 17.

LINDEN, R. Algoritmos Geneticos: Teoria e Implementação. 2. ed. Rio de Janeiro: BRASFORT, 2008. ISBN 978-85-7452-373-6. Citado na página 22.

MAUPETIT, J.; DERREUMAUX, P.; TUFFERY, P. Pep-fold: an online resource for de novo peptide structure prediction. *Nucleic Acids Research*, v. 37, p. W498–W503, 2009. Disponível em: http://dx.doi.org/10.1093/nar/gks323>. Citado na página 23.

MÉTODOS ab initio. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2017. Disponível em: https://pt.wikipedia.org/wiki/M%C3%A9todos_ab_initio. Citado na página 17.

MODELAGEM molecular. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2016. Disponível em: https://pt.wikipedia.org/wiki/Modelagem_molecular>. Citado na página 16.

NELSON, D. L.; COX, M. M. *Princípios de Bioquímica de Lehninger*. 6. ed. Porto Alegre: artmed, 2014. ISBN 978-85-8271-073-9. Citado 5 vezes nas páginas 8, 14, 19, 20 e 21.

RAMACHANDRAN, K. I.; DEEPA, G.; NAMBOORI, K. Computational Chemistry and Molecular Modeling: Principles and Applications. Coimbatore, India: Springer-Verlag Berlin Heidelberg, 2008. ISBN 978-3-540-77302-3. Citado na página 17.

RIGDEN, D. J. From Protein Structure to Function with Bioinformatics. 1. ed. United Kingdom: Springer, Dordrecht, 2017. ISBN 978-1-4020-9057-8. Citado na página 17.

SKERN, T. *Exploring Protein Structure: Principles and Practice.* 1. ed. [S.l.]: Springer International Publishing, 2018. ISBN 978-3-319-76858-8. Citado na página 25.

SMITH, D. G. A. et al. Psi4numpy: An interactive quantum chemistry programming environment for reference implementations and rapid development. *Journal of Chemical Theory and Computation*, v. 14, n. 7, p. 3504–3511, 2018. PMID: 29771539. Disponível em: https://doi.org/10.1021/acs.jctc.8b00286>. Citado 2 vezes nas páginas 16 e 24.

SOLOMONS, T. W. G.; FRYHLE, C. B. *Química Orgânica*. 7. ed. Rio de Janeiro: LTC, 2000. v. 1. ISBN 8521612826. Citado 2 vezes nas páginas 8 e 18.

SUN, S. A genetic algorithm that seeks native states of peptides and proteins. *Biophysical journal*, Elsevier, v. 69, n. 2, p. 340–355, 1995. Citado na página 23.

THÉVENET, P. et al. Pep-fold: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. *Nucleic Acids Research*, v. 40, n. W1, p. W288–W293, 2012. Disponível em: http://dx.doi.org/10.1093/nar/gks419>. Citado na página 23.

Anexos

ANEXO A – Instalação das bibliotecas nescessárias para a utilização do programa

A.1 Psi4NumPy

Para instalar, basta seguir os seguintes passos:

A.2 SciPy

Para instalar, basta digitar o seguinte comando no terminal:

Listagem A.2 - Terminal

1 \$ python -m pip install numpy scipy matplotlib

ANEXO B – Utilização da biblioteca Psi4

```
Listagem B.1 – code.py
1 import psi4
\mathbf{2}
3 \text{ total_energy} = 0
4 geometry = """
5 C
     0.000000 -0.667578 -2.124659
6 C
      0.000000 0.667578 -2.124659
7 H
    0.923621 -1.232253 -2.126185
8 H
    -0.923621 -1.232253
                            -2.126185
9 H
    -0.923621 1.232253 -2.126185
     0.923621 1.232253 -2.126185
10 H
11 """
12 try:
      psi4.core.set_output_file("output.dat", False)
13
      psi4.set_memory("500 MB")
14
15
      psi4.geometry(geometry)
16
17
      psi4.energy("scf/cc-pvdz")
18
      total_energy = psi4.core.get_variable("SCF TOTAL ENERGY")
19
20 except RuntimeError:
      # Iterations did not converge.
21
22
      pass
```

ANEXO C – Saídas do programa implementado nesse trabalho

C.1 Ala-Gly

```
Listagem C.1 – Log
1 Enter an amino acid sequence: AG
2
3 Generates Population
4
5 Fitness: -527.7803265267446
6 Fitness: -527.6776932763687
7 Fitness: -527.0522166171982
8 Fitness: -528.2659376789261
9 Fitness: -528.2807625975083
10
11 GENERATION O
12 Fitness: -527.8325001357168
13 Fitness: -528.2046184793761
14 Fitness: -528.0332323598259
15 Fitness: -528.2720018154023
16 Fitness: -528.2651706839677
17 Fitness: -528.1628077206278
18 Fitness: -527.7780622610587
19
20 GENERATION 1
21 Fitness: -528.3422254907148
22 Fitness: -528.0304790449172
23 Fitness: -528.0620327079089
24 Fitness: -528.3400780939115
25 Fitness: -528.2396622020563
26 Fitness: -527.9126030997212
27 Fitness: -528.2111578094529
28
29 GENERATION 2
30 Fitness: -528.0686838504043
31 Fitness: -528.1264525525735
32 Fitness: -528.2706526403547
33 Fitness: -528.253510738619
34 Fitness: 0
35 Fitness: -527.3271472997753
36 Fitness: -528.2103042030304
```

```
37
38 GENERATION 3
39 Fitness: -528.0649666612246
40 Fitness: -528.2709404573242
41 Fitness: -528.268292892008
42 Fitness: -528.1680579018376
43 Fitness: -527.6182987927125
44 Fitness: -528.321031909251
45 Fitness: -527.9977306496576
46
47 GENERATION 4
48 Fitness: -528.2085618711468
49 Fitness: -528.323779795162
50 Fitness: -528.2327206560506
51 Fitness: -527.7966275124737
52 Fitness: -528.2936018701213
53 Fitness: -528.0277999845953
54 Fitness: -528.1257268005738
55
56
57 The best fitness: -528.323779795162
58
59 The best geometry:
60
61 O 1.2492 1.1165 -0.4047
62 N -1.4105 1.1507 0.1821
63 C -0.7085 -0.1136 0.3937
64 C -1.3345 -1.2000 -0.4702
65 C 0.7470 0.0903 0.0308
66 H -0.7666 -0.3737 1.4558
67 H -0.8580 -2.1695 -0.2878
68 H -2.4023 -1.3127 -0.2521
69 H -1.2248 -0.9797 -1.5384
70 H -2.3916 1.0420 0.4376
71 H -1.4071 1.3875 -0.8099
72 0 2.5516 - 2.2446 - 0.9942
73 0 0.5915 -1.1035 -1.1285
74 N 1.7707 1.2076 -1.7786
75 C 2.6493 0.0652 -1.5860
76 C 1.8114 -1.1318 -1.2310
77 H 3.3505 0.2709 -0.7726
78 H 3.2005 -0.1396 -2.5078
79 H 1.0947 1.0073 -2.5146
80 H 1.9913 -3.0108 -0.7463
81 THE END
82
83 Process finished with exit code 0
```

```
Listagem C.2 – output.dat
    Memory set to 476.837 MiB by Python driver.
1
2
3 *** tstart() called on Tatianes-MacBook-Air.local
4 *** at Thu Jun 20 14:03:04 2019
5
    => Loading Basis Set <=
6
7
     Name: CC-PVDZ
8
9
     Role: ORBITAL
10
     Keyword: BASIS
     atoms 1, 12-13
                                     line 190 file /Users/
11
                     entry O
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
12
     atoms 2, 14
                      entry N
                                      line
                                            160 file /Users/
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
     atoms 3-5, 15-16 entry C
                                            130 file /Users/
13
                                      line
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
     atoms 6-11, 17-20 entry H
                                      line
                                             20 file /Users/
14
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
15
     There are an even number of electrons - assuming singlet.
16
     Specify the multiplicity in the molecule input block.
17
18
19
                 20
                                  SCF
21
             by Justin Turney, Rob Parrish, and Andy Simmonett
22
                             RHF Reference
23
                        1 Threads,
                                    476 MiB Core
24
          _____
25
26
    ==> Geometry <==
27
28
     Molecular point group: c1
29
     Full point group: C1
30
31
32
     Geometry (in Angstrom), charge = 0, multiplicity = 1:
33
                           Х
                                            Y
                                                               Ζ
        Center
34
                        Mass
                   -----
      _____
35
         -----
            Π
                      0.469665327601
                                        1.352425119829
36
               0.312281858816
                              15.994914619560
                     -2.190034672399
            Ν
                                       1.386625119829
37
               0.899081858816 14.003074004780
                     -1.488034672399
            С
                                       0.122325119829
38
```

		1.110681858816 12.00000000000	
39	C	-2.114034672399 -0.964074880171	
		0.246781858816 12.00000000000	
40	С	-0.032534672399 0.326225119829	
		0.747781858816 12.00000000000	
41	Н	-1.546134672399 -0.137774880171	
		2.172781858816 1.007825032070	
42	Н	-1.637534672399 -1.933574880171	
		0.429181858816 1.007825032070	
43	Н	-3.181834672399 -1.076774880171	
		0.464881858816 1.007825032070	
44	Н	-2.004334672399 -0.743774880171	
		-0.821418141184 1.007825032070	
45	Н	-3.171134672399 1.277925119829	
		1.154581858816 1.007825032070	
46	Н	-2.186634672399 1.623425119829	
		-0.092918141184 1.007825032070	
47	0	1.772065327601 -2.008674880171	
		-0.277218141184 15.994914619560	
48	0	-0.188034672399 -0.867574880171	
		-0.411518141184 15.994914619560	
49	N	0.991165327601 1.443525119829	
		-1.061618141184 14.003074004780	
50	С	1.869765327601 0.301125119829	
		-0.869018141184 12.00000000000	
51	С	1.031865327601 -0.895874880171	
		-0.514018141184 12.00000000000	
52	Н	2.570965327601 0.506825119829	
		-0.055618141184 1.007825032070	
53	Н	2.420965327601 0.096325119829	
	_	-1.790818141184 1.007825032070	
54	Н	0.315165327601 1.243225119829	
		-1.797618141184 1.007825032070	
55	Н	1.211/6532/601 -2.//48/48801/1	
50		-0.029318141184 1.007825032070	
56	Dunnin n in	- 1	
57	Running in	ci symmetry.	
58 50	Dototionol	accentanta, A = 0.07487 P = 0.04055 C =	
99		Constants: A = 0.07487 B = 0.04055 C =	
60	D. UZ972	[0m 1]	
00		18 [MH-7]	
61	Nuclear rev	r_{10} [m2] r_{11} = 606 712782605637358	
62	MUCIEAL IE	Parsion 000.11210200001000	
63	Charge	= 0	
64	Multiplicit	tv = 1	
65	Electrons	= 78	
<u> </u>			

```
66
    Nalpha
               = 39
    Nbeta
               = 39
67
68
    ==> Algorithm <==
69
70
71
    SCF Algorithm Type is DF.
    DIIS enabled.
72
    MOM disabled.
73
    Fractional occupation disabled.
74
    Guess Type is SAD.
75
    Energy threshold = 1.00e-06
76
    Density threshold = 1.00e-06
77
    Integral threshold = 0.00e+00
78
79
    ==> Primary Basis <==
80
81
    Basis Set: CC-PVDZ
82
     Blend: CC-PVDZ
83
     Number of shells: 90
84
     Number of basis function: 190
85
     Number of Cartesian functions: 200
86
     Spherical Harmonics?: true
87
     Max angular momentum: 2
88
89
     => Loading Basis Set <=
90
91
92
     Name: (CC-PVDZ AUX)
     Role: JKFIT
93
     Keyword: DF_BASIS_SCF
94
      atoms 1, 12-13
                     entry O
                                    line 220 file /Users/
95
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
                                           170 file /Users/
      atoms 2, 14
                     entry N
                                    line
96
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 3-5, 15-16 entry C
                                    line
                                          120 file /Users/
97
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 6-11, 17-20 entry H
                                    line
                                            50 file /Users/
98
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
99
    ==> Pre-Iterations <==
100
101
102
     _____
                          Nalpha Nbeta Ndocc Nsocc
103
     Irrep Nso
                  Nmo
     -----
104
105
             190
                    190
                             0
                                    0
                                            0
                                                    0
      Α
     -----
106
             190
107
     Total
                     190
                            39
                                   39
                                          39
                                                   0
     _____
108
```

```
109
     ==> Integral Setup <==
110
111
112
     ==> DFJK: Density-Fitted J/K Matrices <==
113
114
       J tasked:
                                     Yes
       K tasked:
                                     Yes
115
       wK tasked:
116
                                     No
       OpenMP threads:
                                       1
117
       Integrals threads:
                                       1
118
       Memory (MB):
                                     357
119
       Algorithm:
120
                                   Core
121
       Integral Cache:
                                   NONE
       Schwarz Cutoff:
122
                                  1E-12
       Fitting Condition:
                                  1E-12
123
124
      => Auxiliary Basis Set <=
125
126
     Basis Set: (CC-PVDZ AUX)
127
128
       Blend: CC-PVDZ-JKFIT
       Number of shells: 330
129
       Number of basis function: 930
130
       Number of Cartesian functions: 1060
131
       Spherical Harmonics?: true
132
133
       Max angular momentum: 3
134
135
     Minimum eigenvalue in the overlap matrix is 1.8767339376E-03.
136
     Using Symmetric Orthogonalization.
137
138
     SCF Guess: Superposition of Atomic Densities via on-the-fly atomic
        UHF.
139
     ==> Iterations <==
140
141
                                Total Energy
                                                      Delta E
142
                                                                   RMS | [F, P
                                    ]|
143
      @DF-RHF iter
                      0:
                           -533.54061727183250
                                                   -5.33541e+02
                                                                   3.25189e
144
         -02
      @DF-RHF iter
                           -528.00911812942081
                                                   5.53150e+00
                                                                   3.57812e
                      1:
145
         -03
      @DF-RHF iter
                      2:
                           -528.25567839698795
                                                   -2.46560e-01
                                                                   1.86138e
146
         -03 DIIS
      @DF-RHF iter
                           -528.30986368160279
                                                   -5.41853e-02
147
                      3:
                                                                   5.23246e
         -04 DIIS
      @DF-RHF iter
                      4: -528.32003224868868
                                                   -1.01686e-02
                                                                   2.09826e
148
         -04 DIIS
```

149	@DF-RHF i	ter 5:	-528	.322178	354696523	-2.14630e	-03	9.73489e
150	OS DI	ter 6:	-528	.323114	151905150	-9.35972e	-04	6.05739e
151	-05 DI @DF-RHF i	IS ter 7:	-528	.323536	641182920	-4.21893e	-04	3.31284e
152	-05 DI @DF-RHF i	IS ter 8:	-528	.323725	577622971	-1.89364e	-04	1.61351e
153	-05 DI @DF-RHF i	IS ter 9:	-528	.323773	323680885	-4.74606e	-05	6.50710e
154	-06 DI @DF-RHF i	IS ter 10:	-528	. 323778	386243069	-5.62562e	-06	2.90056e
155	-06 DI @DF-RHF i	IS ter 11:	-528	.323779	964076602	-7.78335e	-07	1.23740e
156	-06 DI @DF-RHF i	IS ter 12:	-528	.323779	979516195	-1.54396e	-07	4.26318e
157	-07 DI	IS						
158	==> Post-I	terations	<==					
$159 \\ 160$	Orbital	Energies ((a.u.))				
$161 \\ 162$				-				
163 164	Doubly O	ccupied:						
165	1 A	-20.65175	57	2 A	-20.59689	8 3A	-20.	583467
166	4 A	-15.65311	.6	5 A	-15.51671	2 6A	-11.	446196
167	7 A	-11.30663	31	8 A	-11.24870	6 9A	-11.	229938
168	10A	-11.19400	0	11A	-1.52934	3 12A	-1.	469285
169	13A	-1.41811	.5	14A	-1.20617	9 15A	-1.	158292
170	16A	-1.01769	9	17A	-0.98895	1 18A	-0.	876682
171	19A	-0.85007	0	20A	-0.79189	6 21A	-0.	778994
172	22A	-0.75348	6	23A	-0.72846	9 24A	-0.	666070
173	25A	-0.65198	3	26A	-0.63144	0 27 A	-0.	606800
174	28A	-0.59502	9	29A	-0.58649	0 30A	-0.	568347
175	31A	-0.55657	7	32A	-0.53470	9 33A	-0.	515581
176	34A	-0.49483	9	35A	-0.47939	0 36A	-0.	452007
177	37A	-0.44820	4	38A	-0.36531	8 39A	-0.	229218
178								
179	Virtual:							
180								
181	40A	0.12522	3	41A	0.14284	0 42A	0.	161885
182	43A	0.19761	9	44A	0.20631	2 45A	0.	221827
183	46A	0.25064	5	47A	0.26007	5 48A	0.	263785
184	49A	0.28756	5	50A	0.29868	6 51A	0.	319904
185	52A	0.33752	26	53A	0.35780	2 54A	0.	408050
186	55A	0.43168	5	56A	0.43897	5 57A	0.	452801
187	58A	0.51203	57	59A	0.53831	3 60A	0.	585788

188	61A	0.638310	62A	0.653164	63A	0.666632
189	64A	0.689624	65A	0.700580	66A	0.715276
190	67A	0.723628	68A	0.735767	69A	0.757730
191	70A	0.775341	71A	0.809209	72A	0.820838
192	73A	0.842135	74A	0.843690	75A	0.857445
193	76A	0.865420	77A	0.874326	78A	0.901197
194	79A	0.914333	80 A	0.915335	81A	0.930348
195	82A	0.941026	83A	0.946505	84A	0.976694
196	85A	0.998162	86A	1.011478	87A	1.045281
197	88A	1.046918	89A	1.064866	90 A	1.083998
198	91A	1.111849	92A	1.145594	93A	1.165090
199	94A	1.186099	95A	1.195909	96A	1.206784
200	97A	1.242409	98A	1.280994	99A	1.311702
201	100A	1.337177	101A	1.352528	102A	1.370438
202	103A	1.386534	104A	1.432435	105A	1.484624
203	106A	1.497420	107A	1.519316	108A	1.536736
204	109A	1.559236	110A	1.593629	111A	1.606132
205	112A	1.620473	113A	1.632828	114A	1.635787
206	115A	1.678752	116A	1.701215	117A	1.750897
207	118A	1.770998	119A	1.790315	120A	1.823278
208	121A	1.857499	122A	1.881/9/	123A	1.884430
209	124A	1.894787	125A	1.902542	126A	1.922912
210	127A	1.940313	128A	1.951659	129A	1.965389
211	130A	1.973800	131A 124 A	1.993035	132A 125A	2.007791
212	1364	2.020074	134A 137A	2.034003	1384	2.001889
213	1394	2.003203	140A	2.091109	141A	2.144000
214	142A	2.226995	143A	2.247218	144A	2.256733
216	145A	2.296705	146A	2.310719	147A	2.339128
217	148A	2.361784	149A	2.370685	150A	2.410102
218	151A	2.416419	152A	2.421380	153A	2.441824
219	154A	2.489561	155A	2.542825	156A	2.571045
220	157A	2.577635	158A	2.589245	159A	2.615163
221	160A	2.658924	161A	2.700617	162A	2.708384
222	163A	2.779545	164A	2.787644	165A	2.819008
223	166A	2.843379	167A	2.870168	168A	2.887230
224	169A	2.918238	170A	2.982293	171A	3.004436
225	172A	3.056454	173A	3.111051	174A	3.178622
226	175A	3.208370	176A	3.230784	177A	3.233736
227	178A	3.310014	179A	3.365354	180A	3.426525
228	181A	3.458411	182A	3.479476	183A	3.484834
229	184A	3.554891	185A	3.631752	186A	3.817471
230	187A	3.866359	188A	3.897391	189A	3.948736
231	190A	4.088810				
232						
233	Final	Occupation by	Irrep:			
234		А				

```
235
       DOCC [
                  39 ]
236
     Energy converged.
237
238
     @DF-RHF Final Energy: -528.32377979516195
239
240
      => Energetics <=
241
242
       Nuclear Repulsion Energy =
                                                 606.7127826056373578
243
       One-Electron Energy =
                                              -1927.3193335674816353
244
       Two-Electron Energy =
                                                792.2827711666823234
245
       DFT Exchange-Correlation Energy =
                                                   0.0000000000000000
246
247
       Empirical Dispersion Energy =
                                                   0.0000000000000000
                                                   0.00000000000000000
248
       PCM Polarization Energy =
                                                   EFP Energy =
249
                                                -528.3237797951619541
       Total Energy =
250
251
252
253
254 Properties will be evaluated at
                                      0.000000,
                                                     0.000000,
                                                                  0.00000
      Bohr
255
256\ {\tt Properties} computed using the SCF density matrix
257
     Nuclear Dipole Moment: (a.u.)
258
259
        X :
               -6.7446
                             Y:
                                    -1.8146
                                                  z:
                                                        -0.3447
260
261
     Electronic Dipole Moment: (a.u.)
                7.1380
                             Y:
262
        Χ:
                                     0.3986
                                                  Z:
                                                        -1.2883
263
264
     Dipole Moment: (a.u.)
        X :
                0.3934
                             Y:
                                    -1.4160
                                                  Z:
                                                        -1.6330
265
                                                                     Total:
                2.1969
266
     Dipole Moment: (Debye)
267
        X :
                                                  Z :
                0.9999
                             Υ:
                                    -3.5990
                                                        -4.1507
                                                                     Total:
268
                5.5840
269
270
271 *** tstop() called on Tatianes-MacBook-Air.local at Thu Jun 20
      14:03:20 2019
272 Module time:
     user time
                          20.10 seconds =
                                                  0.33 minutes
273
                  =
                           0.55 seconds =
                                                  0.01 minutes
274
     system time =
     total time
                             16 \text{ seconds} =
                                                  0.27 minutes
275
276 Total time:
     user time
                         798.70 seconds =
277
                                                 13.31 minutes
                  =
```

278	system time	=	22.28	seconds	=	0.37	minutes
279	total time	=	624	seconds	=	10.40	minutes

```
Listagem C.3 – timer.dat
1 Host: Tatianes-MacBook-Air.local
2
3 Timers On : Thu Jun 20 13:52:50 2019
4 Timers Off: Thu Jun 20 14:09:30 2019
5
6 Wall Time:
               1000.00 seconds
7
8 JK: (A|mn) :
                   351.28u
                                 0.75s
                                           212.10w
                                                      200 calls
9 JK: (A|Q)^{-1/2}:
                     120.57u
                                   2.68s
                                              60.17w
                                                        200 calls
10 JK: (Q|mn)
                   143.38u
                                 0.73s
                                                      200 calls
            :
                                            23.67w
                                 0.17s
11 HF: Form H :
                                                      40 calls
                     0.05u
                                         0.173638w
                                 0.02s
                                         0.631288w
                                                      40 calls
12 HF: Form S/X:
                     1.08u
13 HF: Guess
                     8.57u
                                 0.12s
                                         5.266284w
                                                      40 calls
            :
14 SAD Guess
                     8.45u
                                 0.12s
                                         5.159809w
                                                       40 calls
            :
15 JK: D
                     0.20u
                                 0.03s
                                         0.125210w
                                                     1520 calls
              :
16 JK: USO2AO :
                     0.00u
                                 0.00s
                                         0.034458w 1520 calls
17 JK: JK
                                           637.17w 1520 calls
                   797.10u
                                26.95s
              :
18 JK: J
                                            10.34w
                                                    1520 calls
             :
                    33.15u
                                 0.23s
19 JK: J1
                                                    2400 calls
             :
                   16.82u
                                 0.12s
                                       5.232191w
20 JK: J2
                                         4.982653w
                                                     2400 calls
                   16.15u
                                 0.10s
             :
21 JK: K
                   754.18u
                               16.55s
                                           615.17w 1520 calls
             :
22 JK: K1
                   640.93u
                               16.20s
                                           580.47w
                                                     2320 calls
             :
23 JK: K2
                   113.20u
                                 0.35s
                                            34.67w
                                                     2320 calls
             :
24 JK: A02USO :
                     0.00u
                                 0.00s
                                         0.003373w
                                                     1520 calls
25 DIISManager::add_entry:
                               0.07u
                                           0.20s
                                                   0.278112w 1480
     calls
26 DIISManager::extrapolate:
                                 0.68u
                                            1.00s
                                                     0.977797w
                                                                 1440
     calls
27 DIISManager::extrapolate: bMatrix setup: 0.18u
                                                            0.55s
     0.488405w
                 1440 calls
28 DIISManager::extrapolate: bMatrix pseudoinverse:
                                                        0.13u
             0.035510w 1440 calls
     0.00s
29 DIISManager::extrapolate: form new data:
                                                0.37u
                                                            0.45s
     0.438143w
                 1440 calls
30 HF: Form G :
                   797.38u
                                27.03s
                                           637.37w
                                                      640 calls
31 HF: Form F :
                     0.00u
                                 0.00s
                                         0.045055w
                                                      640 calls
32 HF: DIIS
                     3.82u
                                 1.38s
                                         2.394890w
                                                      640 calls
             :
33 HF: Form C :
                                 0.17s
                                                      640 calls
                   16.47u
                                         9.445859w
34 HF: Form D :
                     0.17u
                                 0.02s
                                         0.114420w
                                                      640 calls
35
```

C.2 Ala-Gly-Ser

Listagem C.4 – Log

```
1 Enter an amino acid sequence: AGS
\mathbf{2}
3 Generates Population
4
5 Fitness: -846.3830882731716
6 Fitness: -846.0706046134601
7 Fitness: -839.2166319125993
8 Fitness: -848.2767413591066
9 Fitness: -848.4628586178002
10
11 GENERATION O
12 Fitness: -848.0544173576209
13 Fitness: -848.5715760591886
14 Fitness: -847.4228379747836
15 Fitness: -848.0889970162556
16 Fitness: -848.5030199849069
17 Fitness: -848.7907306374677
18 Fitness: -847.9813451674539
19
20 GENERATION 1
21 Fitness: -848.4294580634481
22 Fitness: -848.5417432377287
23 Fitness: -847.3553365558872
24 Fitness: -847.8756690835153
25 Fitness: -848.7304757529168
26 Fitness: -848.5875372267864
27 Fitness: -848.7896508548256
28
29 GENERATION 2
30 Fitness: -848.7642078021361
31 Fitness: -848.3379051435824
32 Fitness: -847.8172532959155
33 Fitness: -848.7516754683762
34 Fitness: -848.0128849165753
35 Fitness: -847.9618665998814
36 Fitness: -848.6445946509956
37
38 GENERATION 3
39 Fitness: -848.7352089781205
40 Fitness: -847.9835169523552
41 Fitness: -848.0481310278327
42 Fitness: -848.4686272912074
43 Fitness: -848.3916479171955
44 Fitness: -848.6940267231785
```

```
45 Fitness: -848.7755377064457
46
47 GENERATION 4
48 Fitness: -848.5738255118922
49 Fitness: -847.9527506000068
50 Fitness: -848.480961256966
51 Fitness: -847.3987093248422
52 Fitness: -848.4477822678394
53 Fitness: -848.7141484055456
54 Fitness: -848.7900243556691
55
56
57 The best fitness: -848.7900243556691
58
59 The best geometry:
60
61 0 1.2492 1.1165 -0.4047
62 N -1.4105 1.1507 0.1821
63 C -0.7085 -0.1136 0.3937
64 C -1.3345 -1.2000 -0.4702
65 C 0.7470 0.0903 0.0308
66 H -0.7666 -0.3737 1.4558
67 H -0.8580 -2.1695 -0.2878
68 H -2.4023 -1.3127 -0.2521
69 H -1.2248 -0.9797 -1.5384
70 H -2.3916 1.0420 0.4376
71 H -1.4071 1.3875 -0.8099
72 0 0.9598 -1.3807 -0.1162
73 N 0.5750 -0.6240 -2.6527
74 C 1.9543 -0.8319 -2.2422
75 C 1.9685 -1.2512 -0.7982
76 H 2.5179 0.0983 -2.3551
77 H 2.4093 -1.6175 -2.8514
78 H 0.0386 -1.4802 -2.5186
79 0 1.1245 4.7820 3.8308
80 0 0.3416 1.9398 4.4038
81 0 -0.4194 1.6761 2.2792
82 N 2.1655 2.2177 1.3911
83 C 1.7394 2.7571 2.6815
84 C 1.5343 4.2652 2.5691
85 C 0.4410 2.0678 3.0546
86 H 2.4975 2.5178 3.4357
87 H 2.4558 4.7760 2.2697
88 H 0.7519 4.5137 1.8437
89 H 2.2579 1.2046 1.4510
90 H 1.8283 4.5818 4.4712
91 H -0.4940 1.4991 4.6685
```

```
92 THE END
93
94 Process finished with exit code O
```

Listagem C.5 – output.dat

```
1
   Memory set to 476.837 MiB by Python driver.
2
3 *** tstart() called on Tatianes-MacBook-Air.local
4 *** at Thu Jun 20 15:10:40 2019
5
    => Loading Basis Set <=
6
7
     Name: CC-PVDZ
8
     Role: ORBITAL
9
10
     Keyword: BASIS
     atoms 1, 12, 19-21
                           entry O
                                           line
                                                 190 file /Users/
11
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
     atoms 2, 13, 22
                            entry N
                                                  160 file /Users/
12
                                           line
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
     atoms 3-5, 14-15, 23-25 entry C
                                           line
                                                  130 file /Users/
13
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
     atoms 6-11, 16-18, 26-31 entry H
                                           line
                                                   20 file /Users/
14
        tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
15
     There are an even number of electrons - assuming singlet.
16
     Specify the multiplicity in the molecule input block.
17
18
19
              _____
20
                                 SCF
21
            by Justin Turney, Rob Parrish, and Andy Simmonett
22
23
                             RHF Reference
                                    476 MiB Core
24
                       1 Threads,
            _____
25
26
27
   ==> Geometry <==
28
     Molecular point group: c1
29
     Full point group: C1
30
31
     Geometry (in Angstrom), charge = 0, multiplicity = 1:
32
33
        Center
                          Х
                                           Y
                                                              Ζ
34
                       Mass
     _____
                  -----
35
        _____
```

36	0	0.596906740839 0.036596034586
		-1.334948760147 15.994914619560
37	N	-2.062793259161 0.070796034586
		-0.748148760147 14.003074004780
38	С	-1.360793259161 -1.193503965414
		-0.536548760147 12.00000000000
39	С	-1.986793259161 -2.279903965414
		-1.400448760147 12.00000000000
40	С	0.094706740839 -0.989603965414
		-0.899448760147 12.00000000000
41	Н	-1.418893259161 -1.453603965414
		0.525551239853 1.007825032070
42	Н	-1.510293259161 -3.249403965414
		-1.218048760147 1.007825032070
43	Н	-3.054593259161 -2.392603965414
		-1.182348760147 1.007825032070
44	Н	-1.877093259161 -2.059603965414
		-2.468648760147 1.007825032070
45	Н	-3.043893259161 -0.037903965414
		-0.492648760147 1.007825032070
46	Н	-2.059393259161 0.307596034586
		-1.740148760147 1.007825032070
47	0	0.307506740839 -2.460603965414
		-1.046448760147 15.994914619560
48	N	-0.077293259161 -1.703903965414
		-3.582948760147 14.003074004780
49	С	1.302006740839 -1.911803965414
		-3.172448760147 12.00000000000
50	С	1.316206740839 -2.331103965414
		-1.728448760147 12.00000000000
51	Н	1.865606740839 -0.981603965414
		-3.285348760147 1.007825032070
52	Н	1.757006740839 -2.697403965414
		-3.781648760147 1.007825032070
53	Н	-0.613693259161 -2.560103965414
		-3.448848760147 1.007825032070
54	0	0.472206740839 3.702096034586
	-	2.900551239853 15.994914619560
55	0	-0.310693259161 0.859896034586
	U	3.473551239853 15.994914619560
56	Ο	-1.071693259161 0.596196034586
	-	1.348951239853 15.994914619560
57	N	1.513206740839 1.137796034586
		0.460851239853 14.003074004780
58	С	1.087106740839 1.677196034586
	-	1.751251239853 12.0000000000
59	C	0.882006740839 3 185296034586
~ ~	-	

		1.6388512	39853	12.00000	0000000		
60	C	-0	.21129325	59161	0.9878	96034586	
		2.1243512	39853	12.00000	0000000		
61	Н	1	.84520674	0839	1.4378	96034586	
		2.5054512	39853	1.00782	5032070		
62	Н	1	.80350674	0839	3.6960	96034586	
		1.3394512	39853	1.00782	5032070		
63	Н	0	.09960674	0839	3.4337	96034586	
		0.9134512	39853	1.00782	5032070		
64	Н	1	.60560674	0839	0.1246	96034586	
		0.5207512	39853	1.00782	5032070		
65	Н	1	.17600674	0839	3.5018	96034586	
		3.5409512	39853	1.00782	5032070		
66	Н	- 1	.14629325	59161	0.4191	96034586	
		3.7382512	39853	1.00782	5032070		
67							
68	Running in	c1 svmmetr	v.				
69	0	j i	5				
70	Rotational	constants:	A =	0.03440	В =	0.00936	C =
	0.00847	[cm^-1]					
71	Rotational	constants:	A = 10)31.22492	В =	280.66287	C =
	253.8149	0 [MHz]					
72	Nuclear rep	ulsion = 1	208.14597	97415523	10		
73	1						
74	Charge	= 0					
75	Multiplicit	y = 1					
76	Electrons	= 124					
77	Nalpha	= 62					
78	Nbeta	= 62					
79							
80	==> Algorit	hm <==					
81							
82	SCF Algorit	hm Type is	DF.				
83	DIIS enable	d.					
84	MOM disable	d.					
85	Fractional	occupation	disabled	l.			
86	Guess Type	is SAD.					
87	Energy thre	shold =	1.00e-06				
88	Density thr	eshold =	1.00e-06				
89	Integral th	reshold =	0.00e+00				
90							
91	==> Primary	Basis <==					
92	·						
93	Basis Set:	CC-PVDZ					
94	Blend: CC	-PVDZ					
95	Number of	shells: 1	41				
96	Number <mark>of</mark>	basis <mark>fun</mark>	ction: 29	99			

```
97
      Number of Cartesian functions: 315
      Spherical Harmonics?: true
98
      Max angular momentum: 2
99
100
     => Loading Basis Set <=
101
102
      Name: (CC-PVDZ AUX)
103
      Role: JKFIT
104
      Keyword: DF_BASIS_SCF
105
      atoms 1, 12, 19-21
                           entry O
                                           line
                                                  220 file /Users/
106
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 2, 13, 22
                                                  170 file /Users/
                            entry N
                                            line
107
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 3-5, 14-15, 23-25 entry C
108
                                            line
                                                  120 file /Users/
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 6-11, 16-18, 26-31 entry H
                                            line
                                                  50 file /Users/
109
         tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
110
    ==> Pre-Iterations <==
111
112
      113
114
      Irrep Nso
                          Nalpha Nbeta Ndocc Nsocc
                  Nmo
     _____
115
              299
                     299
                             0
                                     0
                                             0
                                                     0
116
      Α
     _____
117
                                    62
                                           62
                                                    0
118
      Total
              299
                      299
                             62
     _____
119
120
121
    ==> Integral Setup <==
122
123
    ==> DFJK: Density-Fitted J/K Matrices <==
124
      J tasked:
125
                              Yes
      K tasked:
                              Yes
126
      wK tasked:
127
                               No
      OpenMP threads:
                                1
128
      Integrals threads:
129
                                1
      Memory (MB):
                              357
130
      Algorithm:
                             Disk
131
      Integral Cache:
                             NONE
132
      Schwarz Cutoff:
                            1E-12
133
      Fitting Condition:
                            1E-12
134
135
     => Auxiliary Basis Set <=
136
137
    Basis Set: (CC-PVDZ AUX)
138
      Blend: CC-PVDZ-JKFIT
139
```

140Number of shells: 519 Number of basis function: 1465 141Number of Cartesian functions: 1671 142Spherical Harmonics?: true 143Max angular momentum: 3 144145Minimum eigenvalue in the overlap matrix is 2.1022888044E-03. 146147Using Symmetric Orthogonalization. 148SCF Guess: Superposition of Atomic Densities via on-the-fly atomic 149UHF. 150==> Iterations <== 151152Total Energy Delta E RMS |[F,P 153]| 1540: -854.34626729106083 @DF-RHF iter -8.54346e+02 2.37108e 155-02 @DF-RHF iter 1: -847.81759515928195 6.52867e+00 3.99879e 156-03 -843.59030907205442 4.22729e+00 @DF-RHF iter 2: 8.25865e 157-03 DIIS @DF-RHF iter 3: -848.40657278539231 -4.81626e+00 2.56848e 158-03 DIIS @DF-RHF iter 4: -848.64797758006068 -2.41405e-01 1.12694e 159-03 DIIS @DF-RHF iter 160 5: -848.73486452160080 -8.68869e-02 5.08480e -04 DIIS 161 @DF-RHF iter 6: -848.75909310825364 -2.42286e-02 2.70194e -04 DIIS @DF-RHF iter 7: -848.76217913627158 -3.08603e-03 1625.24500e -04 DIIS @DF-RHF iter 8: -848.76443789872565 -2.25876e-03 5.07575e 163-04 DIIS @DF-RHF iter -848.76811526739971 9: -3.67737e-03 4.96730e 164-04 DIIS **@DF-RHF** iter 10: -848.77647410861721 -8.35884e-03 3.98385e 165-04 DIIS @DF-RHF iter -848.78342535775880 -6.95125e-03 11: 2.77003e 166-04 DIIS **@DF-RHF** iter 12: -848.78806691013654 -4.64155e-03 9.16556e 167 -05 DIIS @DF-RHF iter 13: -848.78849650439292 -4.29594e-04 1.37360e 168-04 DIIS QDF-RHF iter 14: -848.78935236215875 -8.55858e-04 8.37474e 169-05 DIIS

170	@DF-RHF -05 [iter DIIS	15:	-848	.78979	6944190	002	-4.44582e	-04	4.723	388e
171	@DF-RHF -05 [iter DIIS	16:	-848	.78992	9424064	421	-1.32480e	-04	3.828	342e
172	@DF-RHF -05 [iter DIIS	17:	-848	.78997	8409338	505	-4.89853e	-05	1.524	494e
173	@DF-RHF -06 [iter DIIS	18:	-848	.79000	9700810	051	-3.12915e	-05	6.439	972e
174	@DF-RHF -06 [iter DIIS	19:	-848	.79001	935877:	181	-9.65796e	-06	3.049	995e
175	@DF-RHF -06 [iter DIIS	20:	-848	.79002	2594323	343	-3.23555e	-06	2.476	646e
176	@DF-RHF -06 [iter DIIS	21:	-848	.79002	4049036	679	-1.45471e	-06	1.080	091e
177	@DF-RHF -07 [iter DIIS	22:	-848	.79002	4355669	906	-3.06632e	-07	9.848	833e
178											
179	==> Post-	Iterat	cions	<==							
180		_									
181	Orbital	Energ	gies (a.u.)							
182					-						
184 185	Doubly	Occupi	ied:								
186	1 A	-20	.68413	9	2 A	-20.	639556	ЗA	-20	.60530	07
187	4 A	-20	.54718	3	5 A	-20.	540613	6 A	-15	.58744	19
188	7 A	-15	.55878	8	8 A	-15.	526817	9 A C	-11	.44017	79
189	10A	-11	.38153	8	11A	-11.3	373779	12A	-11	.29093	13
190	13A	-11	.28313	9	14A	-11.3	275363	15A	-11	.26824	18
191	16A	-11	.22951	4	17A	-1.	574789	18A	-1	.4475	74
192	19A	-1	.44475	6	20A	-1.3	349715	21A	-1	.34689	96
193	22A	-1	.19047	4	23A	-1.	177056	24A	-1	.1510	72
194	25A	-1	.04570	3	26A	-0.	968613	27 A	-0	.95334	40
195	28A	-0	.93526	8	29A	-0.8	889489	30 A	-0	.8321	50
196	31A	-0	.81173	0	32A	-0.	781564	33A	-0	.7495	57
197	34A	-0	.72862	1	35A	-0.	707404	36A	-0	.6958	73
198	37A	-0	.67790	5	38A	-0.	675583	39A	-0	.6484	74
199	40A	-0	.64111	7	41A	-0.	631028	42A	-0	.62560	07
200	43A	-0	.61447	2	44A	-0.	595916	45A	-0	.58223	16
201	46A	-0	.57724	1	47A	-0.	572187	48A	-0	.56013	37
202	49A	-0	.55459	8	50A	-0.	544044	51A	-0	.53518	50
203	52A	-0	.51250	2	53A	-0.4	484323	54A	-0	.47964	49
204	55A	-0	.47068	9	56A	-0.4	453104	57A	-0	.44940	02
205	58A	-0	.43403	5	59A	-0.4	405656	60 A	-0	.37014	41
206	61A	-0	.33648	3	62A	-0.2	209253				
207											

```
208 Virtual:
```

209						
210	63A	-0.082202	64A	0.072540	65A	0.105681
211	66A	0.167519	67A	0.174196	68A	0.186118
212	69A	0.200736	70A	0.204992	71A	0.219088
213	72A	0.223029	73A	0.240894	74A	0.242691
214	75A	0.250084	76A	0.260325	77A	0.274518
215	78A	0.279083	79A	0.286715	80A	0.290233
216	81A	0.311709	82A	0.329955	83A	0.351125
217	84A	0.381502	85A	0.396052	86A	0.401436
218	87A	0.410026	88A	0.424726	89A	0.435208
219	90A	0.462200	91A	0.487854	92A	0.510578
220	93A	0.520472	94A	0.552775	95A	0.558900
221	96A	0.616144	97A	0.641492	98A	0.655189
222	99A	0.664515	100A	0.679985	101A	0.692455
223	102A	0.698708	103A	0.702466	104A	0.712918
224	105A	0.721785	106A	0.730316	107A	0.739386
225	108A	0.745090	109A	0.759686	110A	0.774328
226	111A	0.781573	112A	0.788652	113A	0.793846
227	114A	0.817979	115A	0.826386	116A	0.836650
228	117A	0.838885	118A	0.846134	119A	0.850653
229	120A	0.854664	121A	0.866609	122A	0.874732
230	123A	0.878303	124A	0.881970	125A	0.887510
231	126A	0.898621	127A	0.905827	128A	0.910325
232	129A	0.926642	130A	0.928268	131A	0.932999
233	132A	0.957671	133A	0.978702	134A	1.002990
234	135A	1.008486	136A	1.026895	137A	1.031603
235	138A	1.054965	139A	1.064960	140A	1.087506
236	141A	1.097111	142A	1.116645	143A	1.121442
237	144A	1.149761	145A	1.157507	146A	1.166537
238	147A	1.183722	148A	1.189032	149A	1.207263
239	150A	1.219608	151A	1.230519	152A	1.250287
240	153A	1.259329	154A	1.272248	155A	1.293650
241	156A	1.296944	157A	1.302585	158A	1.322957
242	159A	1.334791	160A	1.347069	161A	1.361597
243	162A	1.378009	163A	1.395626	164A	1.415763
244	165A	1.420590	166A	1.431139	167A	1.443124
245	168A	1.464600	169A	1.480514	170A	1.492259
246	171A	1.500298	172A	1.525757	173A	1.530902
247	174A	1.551513	175A	1.578809	176A	1.601395
248	177A	1.610499	178A	1.628768	179A	1.631840
249	180A	1.641430	181A	1.666885	182A	1.669657
250	183A	1.697601	184A	1.714693	185A	1.729426
251	186A	1.772070	187A	1.782516	188A	1.783992
252	189A	1.798902	190A	1.801374	191A	1.815014
253	192A	1.831701	193A	1.846430	194A	1.853306
254	195A	1.875423	196A	1.882666	197A	1.896862
255	198A	1.902560	199A	1.925818	200A	1.929869

	0011	4 000005		4 0 4 0 7 4 0		4 0 4 0 0 7 7		
256	201A	1.933295	202A	1.946746	203A	1.948277		
257	204A	1.960755	205A	1.969864	206A	1.983493		
258	207A	1.989966	208A	2.003290	209A	2.009621		
259	210A	2.013477	211A 014A	2.020991	212A	2.037531		
260	213A	2.049824	214A	2.058620	215A	2.067519		
261	216A	2.080405	217A	2.096766	218A	2.113677		
262	219A	2.131242	220A	2.138188	221A	2.151339		
263	222A	2.157301	223A	2.182918	224A	2.184933		
264	225A	2.197307	226A	2.220168	227A	2.243645		
265	228A	2.271548	229A	2.291100	230A	2.303046		
266	231A	2.326541	232A	2.335286	233A	2.353899		
267	234A	2.363791	235A	2.379725	236A	2.390717		
268	237A	2.409673	238A	2.431220	239A	2.441598		
269	240A	2.464785	241A	2.475696	242A	2.498455		
270	243A	2.512894	244A	2.534368	245A	2.562776		
271	246A	2.569459	247A	2.591480	248A	2.606432		
272	249A	2.616240	250A	2.634025	251A	2.658403		
273	252A	2.675441	253A	2.703498	254A	2.712331		
274	255A	2.742209	256A	2.777695	257A	2.784589		
275	258A	2.793539	259A	2.812332	260A	2.818947		
276	261A	2.842105	262A	2.851785	263A	2.861123		
277	264A	2.876513	265A	2.899744	266A	2.930248		
278	267A	2.960915	268A	2.962696	269A	2.975990		
279	270A	2.986928	271A	3.013126	272A	3.054497		
280	273A	3.077354	274A	3.095321	275A	3.108892		
281	276A	3.211778	277A	3.226412	278A	3.284701		
282	279A	3.322929	280A	3.329245	281A	3.333523		
283	282A	3.354226	283A	3.408144	284A	3.430993		
284	285A	3.443377	286A	3.458920	287A	3.466055		
285	288A	3.473636	289A	3.552718	290A	3.569361		
286	291A	3.577116	292A	3.655876	293A	3.657170		
287	294A	3.859448	295A	3.876518	296A	3.945231		
288	297A	3.951347	298A	4.096823	299A	4.108175		
289								
290	Final Oc	cupation by 1	[rrep:					
291		A						
292	DOCC [62]						
293								
294	Energy con	verged.						
295								
296	@DF-RHF Fi	nal Energy:	-848.79	002435566906				
297								
298	=> Energe	tics <=						
299								
300	Nuclear Repulsion Energy = 1208.1459797415523099							
301	One-Elec	tron Energy =	=	-3564.	-3564.5620784896968871			
302	Two-Elec	tron Energy =	=	1507.	1507.6260743924756298			

```
303
       DFT Exchange-Correlation Energy =
                                                Empirical Dispersion Energy =
                                                304
       PCM Polarization Energy =
                                                0.0000000000000000
305
       EFP Energy =
                                                0.00000000000000000
306
       Total Energy =
                                             -848.7900243556689475
307
308
309
310
311 Properties will be evaluated at 0.000000, 0.000000,
                                                              0.00000
      Bohr
312
313 Properties computed using the SCF density matrix
314
     Nuclear Dipole Moment: (a.u.)
315
              -4.2839
                          Y: -2.3395
                                              Z:
       Χ:
                                                     -4.2134
316
317
     Electronic Dipole Moment: (a.u.)
318
        X :
               4.1341
                           Y:
                                  0.3065
                                              Z:
                                                      4.5563
319
320
321
     Dipole Moment: (a.u.)
        X :
              -0.1498
                         Y:
                                 -2.0329
                                              Z :
                                                      0.3429
322
                                                                 Total:
               2.0671
323
     Dipole Moment: (Debye)
324
        X :
              -0.3808
                          Y:
                                 -5.1672
                                              Z:
                                                      0.8715
                                                                 Total:
325
               5.2540
326
327
328 *** tstop() called on Tatianes-MacBook-Air.local at Thu Jun 20
      15:11:55 2019
329 Module time:
   user time
                       114.54 seconds =
                                              1.91 minutes
330
               =
                         7.64 seconds =
                                              0.13 minutes
331
     system time =
     total time =
                           75 seconds =
                                              1.25 minutes
332
333 Total time:
     user time
                     4012.23 seconds =
                                             66.87 minutes
334
                 =
                       258.48 seconds =
                                              4.31 minutes
335
     system time =
     total time
                         3342 seconds =
                                              55.70 minutes
336
               =
```

```
Listagem C.6 – timer.dat
```

```
1 Host: Tatianes-MacBook-Air.local
2
3 Timers On : Thu Jun 20 14:16:07 2019
4 Timers Off: Thu Jun 20 15:11:55 2019
5
6 Wall Time: 3348.00 seconds
7
```

8	JK:	(A Q)^	-1:	517.85u	34.8	3s	249.00w	40	calls	
9	JK:	(A mn)	:	473.10u	1.2	:0s	279.68w	240	calls	
10	JK:	(Q mn)	:	762.72u	2.9	7 s	556.53w	240	calls	
11	JK:	(Q mn)	Write	e: 0.	.57u	10.65s	9.330	220w	80 c	alls
12	HF:	Form H	:	0.22u	0.3	5s 0).682354w	40	calls	
13	HF:	Form S	/X:	4.22u	0.2	3s 2	2.444666w	40	calls	
14	HF:	Guess	:	9.10u	0.1	.3s 5	5.442978w	40	calls	
15	SAD	Guess	:	8.95u	0.1	2s 5	5.320051w	40	calls	
16	JK:	(A Q)^	-1/2:	2.35	5u ().02s	1.43419	2w 16	30 cal	ls
17	JK:	D	:	0.68u	0.0	5s 0).308862w	1624	calls	
18	JK:	USO2AO	:	0.18u	0.0	0s 0).088586w	1624	calls	
19	JK:	JK	:	4675.28u	353.3	0 s	1939.63w	1624	calls	
20	JK:	J	:	128.52u	0.6	5s	40.30w	2408	calls	
21	JK:	J1	:	65.25u	0.3	7s	20.36w	3288	calls	
22	JK:	J2	:	62.37u	0.2	!7 s	19.29w	3288	calls	
23	JK:	K	:	4427.67u	65.9	3s	1653.10w	2408	calls	
24	JK:	K1	:	2769.98u	61.1	.3s	1214.68w	3208	calls	
25	JK:	K2	:	1657.53u	4.8	0 s	438.30w	3208	calls	
26	JK:	A02USO	:	0.02u	0.0	0s 0).003713w	1624	calls	
27	DIIS	SManage	r::ado	d_entry:	0.351	L	0.78s	0.67434	16 w	1584
	(calls								
28	DIIS	SManage	r::ext	trapolate:	1.8	0u	3.00s	2.897	7846w	1544
	(calls								
29	DIIS	SManage	r::ext	trapolate:	bMatrix s	setup:	0.	68u	1.7	8s
	:	1.55946	6 w	1544 calls						
30	DIIS	SManage	r::ext	trapolate:	bMatrix p	seudoi	nverse:	0	.03u	
	(0.00s	0.043	3117w 154	44 calls					
31	DIIS	SManage	r::ext	trapolate:	form new	data:	1.	07u	1.2	22s
	:	1.27624	5 w	1544 calls						
32	HF:	Form G	:	4676.73u	353.5	5s	1940.31w	744	calls	
33	JK:	(Q mn)	Read	: 5.2	22u 14	4.92s	90.	96w 15	528 ca	lls
34	HF:	Form F	:	0.18u	0.0	0s 0).140554w	744	calls	
35	HF:	DIIS	:	16.95u	4.1	.8s 7	.824059w	744	calls	
36	HF:	Form C	:	74.40u	2.5	8s	41.08w	744	calls	
37	HF:	Form D	:	0.62u	0.0	7s 0).276748w	744	calls	
38										
39	****	******	*****	********	* * * * * * * * * *	*****	******	******	***	
C.3 Ala-Gly-Ser-Glu

Listagem C.7 – Log

```
1 Enter an amino acid sequence: AGSE
2
3 Generates Population
4
5 Fitness: -1314.5322358300832
6 Fitness: -1318.2445169216492
7 Fitness: -1319.4036808054686
8 Fitness: -1320.2491615184488
9 Fitness: -1311.9971133079182
10
11 GENERATION O
12 Fitness: -1314.4774096124097
13 Fitness: -1319.1729666265478
14 Fitness: -1318.256819441998
15 Fitness: -1319.35256456108
16 Fitness: 0
17 Fitness: -1320.5842688474065
18 Fitness: -1319.0596645647854
19
20 GENERATION 1
21 Fitness: -1314.0133361925934
22 Fitness: -1300.6473461830562
23 Fitness: -1293.3423883634364
24 Fitness: -1314.6747056647775
25 Fitness: -1316.7277528688442
26 Fitness: -1312.7067370592856
27 Fitness: -1315.1593021783635
28
29 GENERATION 2
30 Fitness: -1319.8111715352545
31 Fitness: -1320.1979365139189
32 Fitness: -1320.092123197193
33 Fitness: -1320.4350487075149
34 Fitness: -1319.8067951307096
35 Fitness: -1319.97929252328
36 Fitness: -1315.5373725715153
37
38 GENERATION 3
39 Fitness: -1319.4737511483606
40 Fitness: -1318.8879570034928
41 Fitness: -1314.9886462399982
42 Fitness: -1316.4801925602019
43 Fitness: -1315.8942698662195
44 Fitness: -1299.8282371017074
```

```
45 Fitness: -1319.508184138544
46
47 GENERATION 4
48 Fitness: -1318.5523473344301
49 Fitness: 0
50 Fitness: -1319.7261592897798
51 Fitness: -1320.0956240984865
52 Fitness: -1319.6743915695727
53 Fitness: -1296.0534312912594
54 Fitness: -1318.1876367722057
55
56
57 The best fitness: -1320.0956240984865
58
59 The best geometry:
60
61 0 1.2492 1.1165 -0.4047
62 N -1.4105 1.1507 0.1821
63 C -0.7085 -0.1136 0.3937
64 C -1.3345 -1.2000 -0.4702
65 C 0.7470 0.0903 0.0308
66 H -0.7666 -0.3737 1.4558
67 H -0.8580 -2.1695 -0.2878
68 H -2.4023 -1.3127 -0.2521
69 H -1.2248 -0.9797 -1.5384
70 H -2.3916 1.0420 0.4376
71 H -1.4071 1.3875 -0.8099
72 0 0.9591 -1.3813 -0.1156
73 N 1.2432 -0.5861 2.4224
74 C 0.8527 -1.9719 2.2189
75 C 0.7461 -2.2297 0.7413
76 H -0.1168 -2.1558 2.6898
77 H 1.6060 -2.6375 2.6488
78 H 2.1313 -0.4024 1.9574
79 0 -4.6148 0.1384 -1.3991
80 0 -2.3600 -0.0394 -1.6152
81 N -2.1583 2.5518 -0.6110
82 C -3.3898 2.1575 -1.2930
83 C -3.4678 2.8407 -2.6554
84 C -3.3569 0.6496 -1.4527
85 H -4.2469 2.4291 -0.6665
86 H -3.4612 3.9318 -2.5600
87 H -2.6345 2.5469 -3.3031
88 H -2.0808 2.0609 0.2788
89 H -4.6177 -0.8370 -1.5042
90 0 6.6398 -0.0485 -0.3901
91 0 2.0139 -2.3135 -2.1904
```

```
92 0 6.4116 1.3200 -2.1831
93 0 1.9072 -1.8507 0.0315
94 N 4.2140 2.5375 -1.1600
95 C 3.7360 0.3147 -0.1453
96 C 4.7670 1.4310 -0.3818
97 C 3.2753 -0.4540 -1.3867
98 C 6.0062 0.9238 -1.0979
99 C 2.3395 -1.5977 -1.0856
100 H 2.8572 0.7381 0.3598
101 H 4.1618 -0.4050 0.5671
102 H 5.0896 1.8336 0.5858
103 H 2.7585 0.2268 -2.0720
104 H 4.1437 -0.8774 -1.9034
105 H 3.3859 2.9040 -0.6923
106 H 7.4387 -0.3769 -0.8551
107 H 1.4005 -3.0502 -1.9820
108 THE END
109
110 Process finished with exit code 0
```

 $Listagem\ C.8-output.dat$

```
Memory set to 476.837 MiB by Python driver.
1
2
3 *** tstart() called on Tatianes-MacBook-Air.local
4 *** at Thu Jun 20 21:35:06 2019
\mathbf{5}
     => Loading Basis Set <=
6
7
      Name: CC-PVDZ
8
9
      Role: ORBITAL
10
      Keyword: BASIS
      atoms 1, 12, 19-20, 30-33
                                        entry O
                                                                  190 file
11
                                                          line
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 2, 13, 21, 34
                                        entry N
                                                          line
                                                                  160 file
12
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 3-5, 14-15, 22-24, 35-39 entry C
                                                          line
13
                                                                  130 file
          /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
      atoms 6-11, 16-18, 25-29, 40-47 entry H
                                                          line
                                                                   20 file
14
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz.gbs
15
      There are an even number of electrons - assuming singlet.
16
      Specify the multiplicity in the molecule input block.
17
18
19
20
                                       SCF
21
               by Justin Turney, Rob Parrish, and Andy Simmonett
22
```

RHF Reference 23241 Threads, 476 MiB Core _____ 2526==> Geometry <== 272829 Molecular point group: c1 Full point group: C1 30 31Geometry (in Angstrom), charge = 0, multiplicity = 1: 32 33 Х Y Ζ 34Center Mass _____ 35 0.274287675591 0.995303931038 Π 36 0.167074482057 15.994914619560 -2.385412324409 1.029503931038 Ν 37 0.753874482057 14.003074004780 -0.234796068962 С -1.683412324409 38 0.965474482057 12.00000000000 С -2.309412324409 -1.321196068962 390.101574482057 12.0000000000 -0.227912324409 -0.030896068962 С 40 0.602574482057 12.00000000000 -1.741512324409 -0.494896068962 41Η 2.027574482057 1.007825032070 Н -1.832912324409 -2.290696068962 42 0.283974482057 1.007825032070 -3.377212324409 -1.433896068962 Η 43 0.319674482057 1.007825032070 -2.199712324409 -1.100896068962Η 44-0.966625517943 1.007825032070 -3.366512324409 0.920803931038 45Η 1.009374482057 1.007825032070 -2.382012324409 1.266303931038 46Н -0.238125517943 1.007825032070 -0.015812324409 -1.502496068962 0 47 0.456174482057 15.994914619560 0.268287675591 -0.707296068962 48Ν 2.994174482057 14.003074004780 -0.122212324409 -2.093096068962С 492.790674482057 12.00000000000 -0.228812324409 С -2.350896068962 501.313074482057 12.00000000000 -1.091712324409 -2.276996068962Η 513.261574482057 1.007825032070

52	Η	0.631087675591 -2.758696068962
		3.220574482057 1.007825032070
53	Н	1.156387675591 -0.523596068962
		2.529174482057 1.007825032070
54	0	-5.589712324409 0.017203931038
		-0.827325517943 15.994914619560
55	0	-3.334912324409 -0.160596068962
		-1.043425517943 15.994914619560
56	N	-3.133212324409 2.430603931038
		-0.039225517943 14.003074004780
57	С	-4.364712324409 2.036303931038
		-0.721225517943 12.00000000000
58	С	-4.442712324409 2.719503931038
		-2.083625517943 12.00000000000
59	С	-4.331812324409 0.528403931038
		-0.880925517943 12.00000000000
60	Н	-5.221812324409 2.307903931038
		-0.094725517943 1.007825032070
61	Н	-4.436112324409 3.810603931038
		-1.988225517943 1.007825032070
62	Η	-3.609412324409 2.425703931038
		-2.731325517943 1.007825032070
63	Η	-3.055712324409 1.939703931038
		0.850574482057 1.007825032070
64	Η	-5.592612324409 -0.958196068962
		-0.932425517943 1.007825032070
65	0	5.664887675591 -0.169696068962
		0.181674482057 15.994914619560
66	0	1.038987675591 -2.434696068962
		-1.618625517943 15.994914619560
67	0	5.436687675591 1.198803931038
	_	-1.611325517943 15.994914619560
68	0	0.932287675591 -1.971896068962
		0.603274482057 15.994914619560
69	Ν	3.239087675591 2.416303931038
	a	-0.588225517943 14.003074004780
70	С	2.761087675591 0.193503931038
-1	a	0.4264/4482057 12.000000000000
71	C	3.792087675591 1.309803931038
70	C	0.189974482057 12.000000000000
12	C	
73	C	5 031287675501 0 202603021020
10	C	
74	C	1 36/587675501 -1 718806069060
1.7	U	
75	ц	1 882287675501 0 616003021029
10	11	1.002201010001 0.010903931038

```
0.931574482057
                                     1.007825032070
              Η
                         3.186887675591
                                            -0.526196068962
76
                 1.138874482057
                                     1.007825032070
77
              Н
                         4.114687675591
                                            1.712403931038
                                     1.007825032070
                 1.157574482057
78
              Н
                          1.783587675591 0.105603931038
                 -1.500225517943
                                     1.007825032070
                                            -0.998596068962
                          3.168787675591
              Н
79
                 -1.331625517943 1.007825032070
              Н
                          2.410987675591
                                            2.782803931038
80
                 -0.120525517943
                                      1.007825032070
                         6.463787675591 -0.498096068962
              Н
81
                                    1.007825032070
                 -0.283325517943
                          0.425587675591
                                            -3.171396068962
              Η
82
                 -1.410225517943 1.007825032070
83
     Running in c1 symmetry.
84
85
                                  0.01236 B =
     Rotational constants: A =
                                                        0.00406 C =
86
        0.00357 [cm<sup>-1</sup>]
     Rotational constants: A = 370.60871 B =
                                                     121.59453 C =
87
        107.03434 [MHz]
     Nuclear repulsion = 2542.091749210775561
88
89
                  = 0
     Charge
90
     Multiplicity = 1
91
     Electrons
                = 192
92
93
     Nalpha
                  = 96
94
     Nbeta
                  = 96
95
96
     ==> Algorithm <==
97
     SCF Algorithm Type is DF.
98
     DIIS enabled.
99
     MOM disabled.
100
     Fractional occupation disabled.
101
     Guess Type is SAD.
102
     Energy threshold
                      = 1.00e - 06
103
     Density threshold = 1.00e-06
104
     Integral threshold = 0.00e+00
105
106
     ==> Primary Basis <==
107
108
     Basis Set: CC-PVDZ
109
       Blend: CC-PVDZ
110
       Number of shells: 216
111
       Number of basis function: 460
112
```

```
113
      Number of Cartesian functions: 485
      Spherical Harmonics?: true
114
      Max angular momentum: 2
115
116
     => Loading Basis Set <=
117
118
      Name: (CC-PVDZ AUX)
119
      Role: JKFIT
120
      Keyword: DF_BASIS_SCF
121
      atoms 1, 12, 19-20, 30-33
                                  entry O
                                                  line
                                                        220 file
122
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 2, 13, 21, 34
                                   entry N
                                                  line
                                                         170 file
123
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 3-5, 14-15, 22-24, 35-39 entry C
                                                  line
                                                        120 file
124
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
      atoms 6-11, 16-18, 25-29, 40-47 entry H
                                                  line
                                                         50 file
125
         /Users/tatianefx/psi4conda/share/psi4/basis/cc-pvdz-jkfit.gbs
126
    ==> Pre-Iterations <==
127
128
      129
      Irrep Nso
                           Nalpha Nbeta Ndocc Nsocc
130
                   Nmo
     _____
131
              460
                     460
                             0
                                      0
                                             0
                                                     0
132
       Δ
     _____
133
                                                     0
134
      Total
              460
                      460
                             96
                                    96
                                             96
     _____
135
136
137
    ==> Integral Setup <==
138
139
    ==> DFJK: Density-Fitted J/K Matrices <==
140
      J tasked:
141
                              Yes
      K tasked:
                              Yes
142
      wK tasked:
143
                               No
      OpenMP threads:
                                1
144
      Integrals threads:
                                1
145
      Memory (MB):
                              357
146
      Algorithm:
                             Disk
147
      Integral Cache:
                             NONE
148
      Schwarz Cutoff:
                            1E-12
149
      Fitting Condition:
                            1E-12
150
151
152
     => Auxiliary Basis Set <=
153
    Basis Set: (CC-PVDZ AUX)
154
      Blend: CC-PVDZ-JKFIT
155
```

156	Number <mark>of</mark> sh	ells: 7	98						
157	Number <mark>of</mark> ba	sis <mark>fun</mark>	ction : 2256						
158	Number of Ca	rtesian	functions: 2575						
159	Spherical Harmonics?: true								
160	Max angular	momentu	m: 3						
161									
162	Minimum eigenv	alue in	the overlap matri:	x is 1.4362535599	E-03.				
163	Using Symmetri	c Ortho	gonalization.						
164									
165	SCF Guess: Sup	erposit	ion <mark>of</mark> Atomic Dens:	ities via on-the-	fly atomic				
	UHF.								
166									
167	==> Iterations	<==							
168									
169			Total Energy]	Delta E	RMS [F,P				
170									
171	@DF-RHF iter -02	0: -1	333.78170959988620	-1.33378e+03	2.21445e				
172	@DF-RHF iter -03	1: -1	317.64488842040009	1.61368e+01	4.07826e				
173	@DF-RHF iter	2: -1	283.70457811250799	3.39403e+01	1.47012e				
174	QDF-RHF iter	3: -1	319.36085841447675	-3.56563e+01	1.83155e				
	-03 DIIS								
175	@DF-RHF iter	4: -1	318.87319523789824	4.87663e-01	2.54663e				
	-03 DIIS								
176	@DF-RHF iter	5: -1	319.03443789973062	-1.61243e-01	2.25214e				
	-03 DIIS								
177	@DF-RHF iter	6: -1	319.97453766082481	-9.40100e-01	9.02436e				
	-04 DIIS								
178	@DF-RHF iter	7: -1	320.06818939339996	-9.36517e-02	2.81218e				
	-04 DIIS								
179	@DF-RHF iter	8: -1	320.08215912150490	-1.39697e-02	2.89657e				
	-04 DIIS								
180	@DF-RHF iter	9: -1	320.09001636903008	-7.85725e-03	1.30093e				
	-04 DIIS								
181	@DF-RHF iter	10: -1	320.09307865010965	-3.06228e-03	1.01471e				
	-04 DIIS								
182	@DF-RHF iter	11: -1	320.09422252943614	-1.14388e-03	7.21758e				
	-05 DIIS								
183	@DF-RHF iter	12: -1	320.09497217895023	-7.49650e-04	4.96405e				
	-05 DIIS								
184	@DF-RHF iter	13: -1	320.09539896204615	-4.26783e-04	2.74450e				
	-05 DIIS								
185	@DF-RHF iter	14: -1	320.09558812059640	-1.89159e-04	6.90670e				
	-06 DIIS								

186	@DF-RHF i -06 DI	ter 15: IS	-1320	.09560	780714946	-1.96866e	-05	4.26508e
187	@DF-RHF i -06 DI	ter 16: IS	-1320	.09561	445509758	-6.64795e	-06	3.22618e
188	@DF-RHF i	ter 17:	-1320	.09562	044510130	-5.99000e	-06	1.96979e
189	@DF-RHF i	ter 18:	-1320	.09562	333424628	-2.88914e	-06	1.01554e
190	-06 DI @DF-RHF i -07 DI	IS ter 19: IS	-1320	.09562	409848650	-7.64240e	-07	7.24414e
191								
192	==> Post-T	terations	<==					
193								
194	Orbital	Energies	(a.u.))				
195				_				
196								
197	Doubly O	ccupied:						
108	boubly b	coupica.						
199	1 A	-20.8892	87	24	-20.870954	3 A	-20	729351
200	4 A	-20 6522	85	54	-20 644339	64	-20	599621
200	7 4	-20.5853	48	84	-20.526181	94	-15	630442
202	104	-15.6202	56	11A	-15,493024	12A	-15	492759
202	134	-11 5170	85	144	-11 487661	154	-11	429579
200	164	-11.3871	98	17A	-11.365826	184	-11	. 336185
201	194	-11 3076	63	204	-11 305384	21 A	-11	288597
206	22 A	-11.2580	27	23A	-11.248222	24 A	-11	. 243974
207	25 A	-11.2090	86	26 A	-2.176731	27 A	-1	.568318
208	28A	-1.5086	38	29A	-1.497666	30 A	-1	.475138
209	31A	-1.4365	37	32A	-1.424760	33 A	-1	.388891
210	34A	-1.3284	21	35 A	-1.322686	36 A	-1	.209720
211	37A	-1.1810	40	38A	-1.143404	39 A	-1	.138045
212	40 A	-1.0986	20	41A	-1.087622	42A	-1	.050945
213	43A	-1.0122	96	44A	-0.968279	45A	-0	.936841
214	46A	-0.9156	59	47A	-0.906737	48A	-0	.896635
215	49A	-0.8673	21	50A	-0.859251	51A	-0	.831340
216	52A	-0.8097	12	53A	-0.799415	54A	-0	.770046
217	55A	-0.7648	87	56A	-0.755307	57A	-0	.739295
218	58A	-0.7232	63	59A	-0.708363	60A	-0	.694887
219	61A	-0.6886	63	62A	-0.677096	63A	-0	.676773
220	64A	-0.6733	25	65A	-0.660123	66A	-0	.654964
221	67A	-0.6522	88	68A	-0.640090	69A	-0	.629845
222	70A	-0.6225	21	71A	-0.616895	72A	-0	.607051
223	73A	-0.5967	07	74A	-0.587945	75A	-0	.579269
224	76A	-0.5614	43	77A	-0.551029	78A	-0	.543757
225	79A	-0.5401	59	80 A	-0.531239	81A	-0	.530186
226	82A	-0.5241	90	83A	-0.509265	84A	-0	.495298
227	85A	-0.4895	15	86 A	-0.467818	87 A	-0	460803

228	88A	-0.449830	89A	-0.436888	90 A	-0.421249
229	91A	-0.416544	92A	-0.365458	93A	-0.362105
230	94A	-0.297810	95A	-0.249788	96A	-0.204465
231						
232	Virtual:					
233						
234	97A	-0.060623	98A	0.006946	99A	0.066458
235	100A	0.100386	101A	0.109059	102A	0.126229
236	103A	0.140293	104A	0.155220	105A	0.164055
237	106A	0.174026	107A	0.184099	108A	0.192612
238	109A	0.206768	110A	0.208847	111A	0.221153
239	112A	0.224525	113A	0.237340	114A	0.240494
240	115A	0.250954	116A	0.258559	117A	0.267281
241	118A	0.275659	119A	0.284971	120A	0.291119
242	121A	0.294076	122A	0.298767	123A	0.304191
243	124A	0.317713	125A	0.325187	126A	0.332545
244	127A	0.346225	128A	0.356964	129A	0.359953
245	130A	0.365923	131A	0.379737	132A	0.380832
246	133A	0.390430	134A	0.404497	135A	0.422093
247	136A	0.432066	137A	0.437893	138A	0.438771
248	139A	0.462421	140A	0.474779	141A	0.486117
249	142A	0.496151	143A	0.501932	144A	0.517409
250	145A	0.532302	146A	0.535213	147A	0.548000
251	148A	0.558728	149A	0.581462	150A	0.596065
252	151A	0.600879	152A	0.615656	153A	0.635388
253	154A	0.648511	155A	0.655719	156A	0.665240
254	157A	0.668751	158A	0.673467	159A	0.689058
255	160A	0.694877		0.701849	102A	0.703700
256	163A	0.714918	104A	0.718374	160A	0.728008
257	160A	0.750582	107A	0.737101	108A	0.747178
200	1724	0.799363	170A	0.700304		0.707397
209	175A	0.701845	1764	0.794157	174A	0.802886
200	1784	0 808655	1794	0.816705	1804	0 821344
262	1814	0.826160	1824	0.831130	1834	0.843524
262	1844	0.849630	185A	0.851844	186A	0.863658
264	1874	0.868425	1884	0.871826	1894	0.877441
265	190A	0.881042	191A	0.884215	192A	0.889373
266	193A	0.894999	194A	0.900662	195A	0.902261
267	196A	0.907447	197A	0.911946	198A	0.921018
268	199A	0.924423	200A	0.938628	201A	0.944233
269	202A	0.950257	203A	0.952373	204A	0.969993
270	205A	0.971429	206A	0.990242	207A	0.998148
271	208A	1.003551	209A	1.028403	210A	1.039541
272	211A	1.042464	212A	1.058939	213A	1.069746
273	214A	1.084066	215A	1.088608	216A	1.102513
274	217A	1.105467	218A	1.110336	219A	1.115227

275	220A	1.124940	221A	1.133738	222A	1.150891
276	223A	1.155683	224A	1.161340	225A	1.170932
277	226A	1.175139	227A	1.181833	228A	1.194923
278	229A	1.204578	230A	1.212711	231A	1.214982
279	232A	1.229799	233A	1.233000	234A	1.241900
280	235A	1.257279	236A	1.259465	237A	1.267560
281	238A	1.274358	239A	1.281362	240A	1.289094
282	241A	1.294924	242A	1.307271	243A	1.323576
283	244A	1.337041	245A	1.343166	246A	1.350767
284	247A	1.365089	248A	1.373311	249A	1.379651
285	250A	1.400896	251A	1.407133	252A	1.411038
286	253A	1.425350	254A	1.430060	255A	1.438098
287	256A	1.442697	257A	1.447987	258A	1.455727
288	259A	1.479356	260A	1.484923	261A	1.493926
289	262A	1.511834	263A	1.523191	264A	1.527734
290	265A	1.536180	266A	1.557280	267A	1.566947
291	268A	1.575676	269A	1.590447	270A	1.593478
292	271A	1.599591	272A	1.605298	273A	1.611056
293	274A	1.624511	275A	1.636304	276A	1.639180
294	277A	1.645939	278A	1.654205	279A	1.673934
295	280A	1.685834	281A	1.692294	282A	1.701953
296	283A	1.721198	284A	1.726767	285A	1.742017
297	286A	1.751987	287A	1.757617	288A	1.767740
298	289A	1.776955	290A	1.794203	291A	1.802432
299	292A	1.810798	293A	1.819943	294A	1.826199
300	295A	1.830412	296A	1.835301	297A	1.842822
301	298A	1.845406	299A	1.858138	300A	1.860002
302	301A	1.883289	302A	1.884629	303A	1.889511
303	304A	1.896250	305A	1.907156	306A	1.920479
304	307 A	1.923102	308A	1.928161	309A	1.935809
300	310A 212A	1.939939	311A 314A	1.951521	312A 21EA	1.959070
300 207	3164	1 977490	317A	1 0022/2	318A	1.903304
308	3194	2 001914	3204	2 011870	321 1	2.001037
308	322A	2.001914	3234	2.011070	3244	2.010002
310	325 A	2.047510	326A	2.054500	327A	2.059547
311	328A	2.061344	329A	2.080053	330 A	2.081053
312	331A	2.091100	332A	2.094245	333A	2.103579
313	334A	2.113127	335A	2.120863	336A	2.135612
314	337A	2.139959	338A	2.149846	339A	2.151265
315	340A	2.169817	341A	2.186649	342A	2.200196
316	343A	2.209283	344A	2.216745	345A	2.231006
317	346A	2.236017	347A	2.253008	348A	2.259138
318	349A	2.266845	350A	2.276379	351A	2.279761
319	352A	2.300608	353A	2.305677	354A	2.312536
320	355A	2.330275	356A	2.341157	357A	2.350038
321	358A	2.354914	359A	2.370839	360A	2.384780

335	400A	2.842960	401A	2.854461	402A	2.867389
335	400A	2.842960	401A	2.854461	402A	2.867389
336	403A	2.878199	404A	2.887639	405A	2.900460
337	406A	2.928076	407A	2.939950	408A	2.951114
338	409A	2.960562	410A	2.980920	411A	3.001066
339	412A	3.008576	413A	3.010936	414A	3.037227
340	415A	3.043174	416A	3.059947	417A	3.082868
341	418A	3.094042	419A	3.123341	420A	3.125590
342	421A	3.131399	422A	3.148782	423A	3.192612
343	424A	3.226474	425A	3.229874	426A	3.235066
344	427A	3.247602	428A	3.287497	429A	3.297844
345	430A	3.312552	431A	3.341624	432A	3.354757
346	433A	3.371891	434A	3.397810	435A	3.420641
347	436A	3.432834	437A	3.449448	438A	3.465697
348	439A	3.474243	440A	3.523583	441A	3.533080
349	442A	3.557602	443A	3.5/31/6	444A	3.582800
350	445A 1101	3.598443	440A	3.008253	447A	3.000238
351	440A 451A	3 8/3372	449A 452A	3 850326	450A 453A	3.024942
352	451A 454A	3 947828	452A 455A	3 985284	456A	4 030516
354	457A	4.069648	458A	4,103402	459A	4.118220
355	460 A	4.395972	10011	1.100102	10011	1.110220
356	10011	1.000072				
357	Final O	ccupation by	Irrep:			
358	i indi O	A	11109.			
359	DOCC [96]				
360						
361	Energy com	nverged.				
362	0,7	0				
363	@DF-RHF F:	inal Energy:	-1320.09	562409848650		
364		07				
365	=> Energe	etics <=				
366	0					
367	Nuclear	Repulsion Er	ergy =	2542.	091749	2107755606
368	One-Ele	ctron Energy	=	-6860.	200216	8259050450

```
369
       Two-Electron Energy =
                                               2998.0128435166429881
       DFT Exchange-Correlation Energy =
                                                  0.0000000000000000
370
       Empirical Dispersion Energy =
                                                  0.0000000000000000
371
372
       PCM Polarization Energy =
                                                  0.00000000000000000
       EFP Energy =
                                                  0.0000000000000000
373
374
       Total Energy =
                                              -1320.0956240984864962
375
376
377
378 Properties will be evaluated at 0.000000, 0.000000,
                                                                 0.000000
      Bohr
379
380 Properties computed using the SCF density matrix
381
     Nuclear Dipole Moment: (a.u.)
382
        X :
             -11.8631
                            Y:
                                    0.7687
                                                 Ζ:
                                                         4.7854
383
384
     Electronic Dipole Moment: (a.u.)
385
                9.7602
        Χ:
                            Υ:
                                   -5.9257
                                                 Ζ:
                                                        -3.8827
386
387
     Dipole Moment: (a.u.)
388
        X :
               -2.1028
                            Y:
                                                         0.9027
                                   -5.1570
                                                 Z :
                                                                    Total:
389
                5.6420
390
     Dipole Moment: (Debye)
391
        X :
              -5.3448
                            Y:
                                  -13.1079
                                                 Z :
                                                         2.2944
                                                                    Total:
392
               14.3405
393
394
395 *** tstop() called on Tatianes-MacBook-Air.local at Thu Jun 20
      21:39:13 2019
396 Module time:
                       386.87 seconds =
                                                 6.45 minutes
397
     user time =
     system time =
                         14.56 seconds =
                                                 0.24 minutes
398
                            247 \text{ seconds} =
                                                 4.12 minutes
399
     total time =
400 Total time:
                      18523.43 seconds =
     user time
                                               308.72 minutes
401
                  =
                        754.50 seconds =
                                               12.57 minutes
402
     system time =
                         22580 seconds =
                                               376.33 minutes
     total time =
403
```

Listagem C.9 – timer.dat

```
1 Host: Tatianes-MacBook-Air.local
2
3 Timers On : Thu Jun 20 15:22:45 2019
4 Timers Off: Thu Jun 20 22:29:18 2019
5
6 Wall Time: 25593.00 seconds
```

7									
8	JK:	(A Q)^-	-1:	1912.50u	149.65s	1202.59w	40	calls	
9	JK:	(A mn)	:	1497.62u	5.15s	1312.92w	363	calls	
10	JK:	(Q mn)	:	3772.47u	15.62s	669.36w	363	calls	
11	JK:	(Q mn)	Write	e: 4	.42u 97	.98s 1853	.83w	203 ca	lls
12	HF:	Form H	:	0.42u	0.68s	1.342858w	40	calls	
13	HF:	Form S/	/X:	14.03u	0.58s	7.730587w	40	calls	
14	HF:	Guess	:	11.12u	0.67s	6.374783w	40	calls	
15	SAD	Guess	:	10.82u	0.33s	5.943290w	40	calls	
16	JK:	(A Q)^-	-1/2:	2.43	3u 0.0	2s 1.46549	6w 1	60 call	S
17	JK:	D	:	3.22u	0.40s	1.249754w	1965	calls	
18	JK:	US02A0	:	0.48u	0.08s	0.355863w	1965	calls	
19	JK:	JK	:	25159.38u	1007.32s	19849.36w	1965	calls	
20	JK:	J	:	591.27u	3.42s	214.49w	8527	calls	
21	JK:	J1	:	277.15u	1.62s	112.15w	9407	calls	
22	JK:	J2	:	302.73u	1.57s	95.13w	9407	calls	
23	JK:	K	:	24382.20u	116.67s	18091.65w	8527	calls	
24	JK:	K1	:	11878.50u	76.12s	14260.19w	9327	calls	
25	JK:	K2	:	12501.73u	40.45s	3830.28w	9327	calls	
26	JK:	A02USO	:	0.03u	0.02s	0.004958w	1965	calls	
27	DIIS	SManager	::add	l_entry:	1.55u	2.62s	2.5886	20w 1	925
		calls							
28	DIIS	SManager	::ext	crapolate:	8.10u	25.53s	2	1.42w	1885
29	DTTS	SManager	···evt	ranolate.	hMatrix set	מוו 3	1711	16 13	S
20	0110	12	.49w	1885 cal	ls	up. 0.	114	10.10	2
30	DIIS	SManager	::ext	crapolate:	bMatrix pse	udoinverse:	0	.13u	
	(0.00s	0.069	9099w 18	85 calls				
31	DIIS	SManager	::ext	crapolate:	form new da	ta: 4.	73u	9.38	S
	;	8.834411	1w :	1885 calls					
32	HF:	Form G	:	25164.93u	1008.03s	19852.19w	1085	calls	
33	JK:	(Q mn)	Read:	25.3	32u 695.	23s 1129.	63w 7	647 cal	ls
34	HF:	Form F	:	0.93u	0.00s	0.608197w	1085	calls	
35	HF:	DIIS	:	92.93u	29.68s	45.67w	1085	calls	
36	HF:	Form C	:	374.27u	11.88s	193.03w	1085	calls	
37	HF:	Form D	:	2.80u	0.07s	1.077366w	1085	calls	
38									
39	***	* * * * * * * *	*****	*********	*********	*********	******	* * *	