CARACTERIZAÇÃO DA AVIDEZ DOS ANTICORPOS HUMANOS IgG POR "WESTERN - BLOTTING" NOS DIFERENTES ESTÁGIOS DE INFECÇÃO POR Toxoplasma gondii.

Patrícia Teixeira Marcolino.

Uberlândia-MG.
Dezembro-1997.
CARACTERIZAÇÃO DA AVIDEZ DOS ANTICORPOS HUMANOS IgG POR “WESTERN-BLOTTING” NOS DIFERENTES ESTÁGIOS DE INFECÇÃO POR *Toxoplasma gondii*.

Patrícia Teixeira Marcolino.

Monografia apresentada à coordenação do curso de Ciências Biológicas, da Universidade Federal de Uberlândia, para a obtenção do grau de Bacharel em Ciências Biológicas.

Uberlândia-MG.
Dezembro-1997
CARACTERIZAÇÃO DA AVIDEZ DE ANTICORPOS HUMANOS IgG POR "WESTERN-BLOTTING" NOS DIFERENTES ESTÁGIOS DE INFECÇÃO POR *Toxoplasma gondii*.

Patrícia Teixeira Marcolino.

Aprovado Pela Banca Examinadora em 08/12/44.

Nota 100.

Prof. José Roberto Mineo.

Profª. Flávia A. Chaves Borges.

Profª Erika de Arruda Chaves.

Uberlândia, 8 de dezembro de 1994.
ETERNAS ONDAS.

Quanto tempo temos antes de voltarem
Aquelas ondas
Que vieram como gotas em silêncio
Tão furioso
Derrubando homens entre outros animais
Devastando a sede desses matagais
Devorando árvores, pensamentos
Seguindo a linha
Do que foi escrito pelo mesmo lábio
Tão furioso
E se teu amigo vento não lhe procurar
É porque multidões ele foi arrastar.

Zé Ramalho
Aos meus pais, José Carlos Marcolino e Vanir Teixeira Marcolino, pelo exemplo de vida que me deram e pelo apoio e incentivo na busca de minhas conquistas.
Ao meu namorado, Maurílio Meloni, pelos momentos felizes, carinho e companheirismo sempre presentes

Ao meu irmão, Marcus, pelo companheirismo e força na realização deste trabalho.
Agradecimentos Especiais

Ao professor Dr. José Roberto Mineo, pela orientação e incentivo na minha iniciação à pesquisa científica.

A amiga Deise Aparecida de Oliveira, pelo exemplo de profissionalismo e cooperação.
Agradecimentos.

Aos Drs. Mário E. Camargo e Paulo G. Leser, do Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo e do Laboratório Fleury, que gentilmente nos forneceram as amostras de soros de fase recente de infecção pelo *Toxoplasma gondii*.

Aos amigos, Elizabeth Oliveira e Guilherme Rosenberg, pela atenção e amizade constante.

Às amigas, Luísa, Luciana, Daniela, Ana Maria, Adriana, Cristina, Rita pelos momentos de alegria.

Aos grandes amigos Fabiana e Daniel pelo carinho e amizade durante estes anos.

Aos amigos, Anselmo e Jairo, pelos valiosos incentivos.

Aos amigos do Laboratório de Imunologia, Antônio Thomás, Juninho, Simone, Elaine, Silvia, Fátima, Cida, Ronize, Hercílio, Solange, Kelly por estarem sempre presentes em todos os momentos.

Aos professores Ernesto Taketomi, Neide Maria da Silva, Flávia Andrade, Erika de Arruda, pelas sugestões e apoio para o aprimoramento deste trabalho.

A todos que direta ou indiretamente me ajudaram na realização de mais uma etapa de minha vida.
Resumo

Toxoplasmose é uma infecção causada pelo protozoário *Toxoplasma gondii*. O gato é o hospedeiro definitivo e o homem, outros mamíferos e as aves são os hospedeiros incompletos ou intermediários. A definição do tempo exato da infecção pelo *Toxoplasma gondii* é de fundamental importância especialmente durante o período gestacional em mulheres. A presença de alguns marcadores sorológicos pode definir se a infecção pelo *Toxoplasma gondii* é recente ou crônica. Um destes marcadores é a avidez dos anticorpos IgG. No presente trabalho, com amostras de soros humanos de fase recente da infecção por *T. gondii* (grupo I) e amostras de soros humanos de fase crônica da infecção (grupo II), os índices de avidez dos anticorpos IgG específicos para *T. gondii*, foram analisados a partir do teste ELISA-Avidex com o agente dissociante uréia 6M, e demonstraram-se eficientes na determinação de marcadores sorológicos do estágio recente da infecção com anticorpos IgG de baixa avidez e do estágio crônico com anticorpos de alta avidez. Pelo teste Western-Blot-Avidex, foram evidenciados marcadores antigênicos exclusivos de fase recente da infecção por *T. gondii* (p10 e p57) com anticorpos IgG de alta avidez. Usando-se o teste Western-Blot-Avidex com diferentes concentrações do agente dissociante uréia (6M e 8M), caracterizamos a especificidade de anticorpos de baixa avidez na fase recente e de anticorpos de alta avidez fase crônica, definindo deste modo, marcadores antigênicos dos diferentes estágios da infecção por *T. gondii* (p16, p32, p40 e p97).

Palavras Chave- *Toxoplasma gondii*, Avidex, Western-Blotting.
Sumário

1. Introdução
 1.1. Toxoplasmose
 1.2. Histórico
 1.3. Habitat
 1.4. Morfologia e Ciclo
 1.5. Transmissão
 1.6. Epidemiologia
 1.7. Antígeno do Toxoplasma gondii
 1.8. Marcadores Sorológicos
 1.9. Avidez

2. Objetivo

3. Material e Métodos
 3.1. Amostras de Soro
 3.2. Obtenção das Suspensões Parasitárias
 3.3. Sensibilização das Microplacas de ELISA
 3.4. ELISA para a Detecção de Anticorpos IgG Anti-T. gondii
 3.5. ELISA Modificada para a Detecção da Avidez de Anticorpos Anti-T. gondii
 3.6. Preparo do Extrato Total de T. gondii
 3.7. Eletroforese em Gel de Poliacrilamida em SDS-PAGE
 3.8. Reação de Western-Blotting (WB)
 3.9. Análise Estatística

4. Resultados
 4.1. ELISA-Avidez
 4.2. Western-Blotting

5. Discussão

6. Conclusão

7. Referência
INTRODUÇÃO
TOXOPLASMOSE

REINO PROTISTA

SUBREINO PROTOZOA

FILO APICOMPLEXA

CLASSE SPOROZOA

SUBCLASSE COCCIDIA

ORDEM EUCCIDIA

SUBORDEM EIMIERINA

FAMÍLIA SARCOCYSTIDAE

GÉNERO TOXOPLASMA

ESPÉCIE *Toxoplasma gondii*

(Neves *et al.*, 1995).
HISTÓRICO

O nome Toxoplasma, de origem grega (toxon = arco), foi dado devido à morfologia apresentada por este parasita.

Toxoplasmose constitui-se numa zoonose onde a infecção é muito freqüente, acometendo várias espécies de animais dentre mamíferos e aves (Frenkel, 1995).

Várias pesquisas foram feitas sobre este protozoário, mas somente a partir de 1937, surgiram relatos concretos de casos da doença em crianças, devido à transmissão transplacentária e ao isolamento do Toxoplasma por meio de inoculações em animais de laboratório (Frenkel, 1995).

Com o desenvolvimento do diagnóstico, baseado no “dye-test” por Sabin, em 1960, tornou-se possível associar outras síndromes ao Toxoplasma como também facilitar a detecção da infecção em mulheres grávidas (Frenkel, 1995; Jackson & Hutchison, 1989). Consequentemente, serviu como suporte para o estabelecimento de
medidas preventivas.

A dinâmica da imunidade humoral foi demonstrada, onde os anticorpos das classes IgM e IgA foram caracterizados como a primeira linha de defesa e os anticorpos da classe IgG, como responsáveis pela resposta imune secundária (Moulin, 1993).

HABITAT

T. gondii é um protozoário que possui uma distribuição geográfica mundial, com elevada prevalência sorológica entre as diferentes populações (Okay, 1994). Caracteriza-se por ser um parasita intracelular obrigatório podendo ser encontrado em vários tecidos e células (exceto hemácias), sendo sua maior afinidade por células do sistema fagocítico mononuclear, leucócitos, células parenquimatosas (Rey, 1991) e líquidos orgânicos (salivas, leite, esperma, líquido peritoneal, líquor e humor aquoso) (Kawazoe, 1991).

Esta ampla especificidade para células e hospedeiros sugere que este parasita deva ter receptores altamente conservados, os quais viabilizam o sucesso do seu parasitismo intracelular (Borges, 1996).
MORFOLOGIA E CICLO

Toxoplasma gondii apresenta uma morfologia múltipla, dependendo do habitat e do estágio evolutivo (Kawazoe, 1991). As principais formas que este parasita apresenta durante o seu ciclo evolutivo são: a) **Taquizoítas**, denominadas de formas proliferativas, sendo que sua morfologia em forma de arco deu origem ao gênero. Apresentam alta motilidade e multiplicação rápida por endogenia; são encontradas no citoplasma de vários tipos celulares envoltas por vacúolos parasitóforos. b) **Bradizoítas**, as formas geralmente encontradas na fase crónica da infecção, apresentam multiplicação lenta dentro de cistos, também pelo processo de endogenia. c) **Oocistos**, são produzidos nas células intestinais de felídeos não imunes; em seu interior encontram-se dois esporocistos; cada um contendo quatro esporozoitos (Pfefferkorn, 1990; Kawazoe, 1991; Frenkel, 1995).

O ciclo de vida deste parasita é heteroxeno. A fase sexuada ocorre somente nas células epiteliais do intestino delgado de gatos e outros felídeos jovens (Pessoa, 1992). Deste modo em, um gato jovem e não imune, infectado oralmente por oocistos, cistos ou taquizoítas, ocorrerá um processo de multiplicação por esquizogonia, onde se dará a formação dos gametas. Posteriormente à fusão dos gametas, o zigoto se desenvolverá, originando assim os oocistos, que serão eliminados com as
fezes.

Uma vez ingeridos por hospedeiros susceptíveis, os oocistos passam por processos degradativos liberando esporozoitos. Estes, ao invadirem as células hospedeiras, transformam-se em taquizoítas. No citoplasma da célula hospedeira, o parasita fica envolto por um vacúulo especializado, no qual reside durante toda a fase intracelular. Divide-se rapidamente por endogênica, lisando a célula hospedeira e liberando novas formas infectantes que invadirão outras células (Sibley, 1995). Nesta etapa, o hospedeiro apresenta um quadro polissintomático, que corresponde à fase recente da infecção, cuja gravidade dependerá da quantidade de formas infectantes adquiridas, cepa do parasita e da resistência do hospedeiro (Kawazoe, 1991).

O desenvolvimento da imunidade, celular e humoral, faz com que os parasitas extracelulares se encistem no interior das células, podendo permanecer assim, durante toda a vida do hospedeiro.

Para entender o mecanismo de ataque e invasão do *T. gondii* às células hospedeiras, é essencial que se conheça, em termos moleculares, os antígenos de superfície celular do parasita (Grimwood *et al*, 1995). O antígeno SAG1 (P30), por exemplo, está diretamente envolvido nestes processos. Anticorpos policlonais e monoclonais específicos para SAG1 inibem infecções a fibroblastos humanos e enterócitos de camundongos
(Kasper e Mineo, 1994). Segundo estes autores, esse antígeno exclusivo

da forma taquizoita do Toxoplasma é potencialmente importantes com o

componente de uma vacina para esta parasitose.

TRANSMISSÃO

O índice de infecção em uma população humana depende de

vários fatores como o padrão de vida, a cultura, o contato com animais e

o tipo da moradia (casas, apartamentos) (Frenkel, 1995). Um estudo

realizado por Camargo e colaboradores (1994) em Ribeirão das Neves,

no estado de Minas Gerais, Brasil, demonstrou que a presença de

animais domésticos e a incidência da infecção era estatisticamente

significante entre a população.

O homem pode adquirir a infecção por quatro vias principais: a) ingestão de oocistos do solo ou através de vetores mecânicos (moscas,

baratas); b) ingestão de cistos em carnes cruas ou mal cozidas; c) infecção transplacentária; d) contato de taquizoitias presentes em

secreções (salivas, esperma, leite) (Kawazoe, 1991).

As infecções podem ainda ocorrer através de órgãos

transplantados e acidentes laboratoriais (Kawazoe, 1991).
EPIDEMIOLOGIA

A epidemiologia visa determinar as formas de ocorrência da infecção em condições normais e identificar os fatores que levam os seres humanos e demais seres vivos a alojar o parasita.

Os resultados de testes sorológicos confirmam que a toxoplasmose está presente em todo o mundo, com a maior parte das infecções ocorrendo de modo assintomático, sendo a doença uma exceção no homem (Frenkel, 1995). Neste, a infecção parece não estar correlacionada com sexo e grupo racial ou étnico. Contudo, quanto à idade, a proporção tende a aumentar progressivamente até atingir uma estabilidade por volta dos trinta ou quarenta anos (Amato-Neto, 1995).

Na população norte-americana, a taxa de sorologia positiva para anticorpos anti-\textit{T. gondii} varia de 15 a 68% (Rey, 1991). No Brasil, a prevalência de anticorpos varia de 54% no Centro-Oeste a 75% no Norte (Ricclardi \textit{et al}, 1978) apud Frenkel, 1995.

Em indivíduos portadores do vírus HIV, a incidência da reativação da infecção pelo Toxoplasma é de 5 a 33% (Kaper & Boothroyd, 1993). Dentre estes indivíduos, 20 a 40% desenvolverão encefalite toxoplásERICA (Lima, 1995).
ANTÍGENOS DO *Toxoplasma gondii*

Informações específicas sobre os vários antígenos do *T. gondii* foram obtidas, nos últimos anos, com o auxílio de técnicas laboratoriais que envolvem anticorpos monoclonais e clonagem de genes.

Os principais antígenos localizados na superfície do parasita (SAG) possuem pesos moleculares aparentes de 22 kDa (SAG 2), 23 kDa (SAG 4), 30 kDa (SAG 1), 35 kDa (SAG 5) e 42 kDa (SAG 3) (Kasper *et al.*, 1983; Burg *et al.*, 1988; Couvreur *et al.*, 1988; Cesbron-Delauw *et al.*, 1994). Proteínas dos micronemas foram identificadas como MIC 1 (60kDa), MIC 2 (120 kDa) e MIC 3 (90 kDa) (Wan *et al.*, 1997; Fourmaux *et al.*, 1996; Morriissette *et al.*, 1994). As proteínas das roptrias são: ROP 1 (60,5 kDa), ROP 2 (54 kDa), ROP 3 (59 kDa), ROP 4 (60 kDa), ROP 5 (59,5 kDa), ROP 6 (42 kDa), ROP 7 (57-60kDa) e ROP 8 (200kDa) (Sadak *et al.*, 1988; Leriche e Dubremetz, 1991; Ossorio *et al.*, 1992; Hérion *et al.*, 1993). Dos grânulos densos, seis proteínas já foram estudadas: GRA 1 (22 kDa), GRA 2 (28 kDa), GRA 3 (30 kDa), GRA 4 (40 kDa), GRA 5 (21 kDa) e GRA 6 (33 kDa) (Asai *et al.*, 1983; Cesbroun-Dezauw *et al.*, 1989; Charif *et al.*, 1990; Achbarou et al., 1991; Mevelec *et al.*, 1992; Lecordier *et al.*, 1993; Mercier *et al.*, 1993; Cesbroun-Delauw, 1994; Sibley *et al.*, 1994).
MARCADORES SOROLÓGICOS

A infecção pelo Toxoplasma, adquirida durante a infância ou na fase adulta de indivíduos imunocompetentes, é assintomática em 80 a 90% dos casos (Hedman, 1989). Quando a infecção ocorre durante a gestação, pode causar toxoplasmose congênita provocando coriorretinite e defeitos neurológicos nos neonatos, estes sintomas clínicos ocorrem somente na fase recente da infecção, bem como encefalite fatal nos imunodeficientes (Garcia, 1995; Lima, 1995).

Um fator de grande importância, especialmente durante o período de gestação, é a distinção entre a infecção primária e a reativação da infecção (Lappalainen et al, 1993; Garcia, 1995). Para isto, diferentes marcadores sorológicos vêm sendo descritos, caracterizando assim, perfis sorológicos de toxoplasmose recente (Camargo, 1995).

Durante a infecção, surgem anticorpos específicos, representados pelos isotipos IgM, IgA, IgE e, especialmente, pela IgG.

Nos casos de toxoplasmose recente, o marcador sorológico mais característico é a presença de anticorpos IgM anti- T. gondii (Camargo et al, 1991), porém, à medida que os testes ganham em sensibilidade, passam a detectar anticorpos IgM por períodos muito longos, até de anos (Camargo, 1995).

Um novo marcador sorológico tem sido reconhecido, capaz de

AVIDEZ

A força de uma única união na interação de um anticorpo com um antígeno monovalente é denominada afinidade do anticorpo. Em diagnóstico sorológico, contudo, a interação importante é usualmente aquela entre um anticorpo bivalente que se une a um antígeno multivalente e o termo usado para expressar esta força de ligação é avidez (Roit, 1997).

Na toxoplasmose, foram desenvolvidos ensaios para detecção da a avidez de anticorpos IgG anti-*T. gondii*, caracterizando a baixa avidez dos anticorpos produzidos em estágios primários da infecção, diferentemente daqueles com alta força de ligação que refletem, no caso,

Os testes usados para medir a avidez dos anticorpos específicos para antígenos do Toxoplasma mostram-se também eficientes para um melhor entendimento dos mecanismos patogênicos da toxoplasmose ocular (Vinhoal et al, 1994), assim como para a identificação de infecção recente durante o período de gestação (Lappalainem et al, 1993).

Nas infecções recentes por Toxoplasma, uma alta porcentagem dos anticorpos IgG específicos mostra uma baixa avidez, isto é, baixa afinidade pelos antígenos correspondentes. Com o decorrer do tempo e, conseqüentemente com a maturação da resposta imune, esses anticorpos vão apresentando uma avidez crescente, de modo que na infecção com longa duração ou crônica, encontra-se um predomínio marcante de anticorpos de alta afinidade (Camargo et al, 1991; Camargo, 1995). Podemos dizer, então, que o teste de avidez dos anticorpos IgG anti-\textit{T. gondii} representa um ótimo marcador da toxoplasmose recente.

Para medir e avaliar a avidez, uma técnica simples foi demonstrada por Hedman e colaboradores em 1989, onde a dissociação destes anticorpos dos antígenos específicos é resultante da ação de agentes desnaturantes de proteínas ou desestabilizadores de ligações de pontes de hidrogênio, tais como soluções de dietilamina, cloridrato de
guanina, uréia e outros (Camargo et al. 1991).

Em testes imunoenzimáticos (ELISA), com antígenos adsorvidos em microplacas próprias, Holliman e colaboradores (1994) determinaram a reatividade dos anticorpos IgG anti-*T. gondii* antes e após a lavagem dos complexos imunes formados. Para tal, usaram soluções de uréia 2M, 4M, 6M e 8M. Nas infecções recentes, a queda da reatividade das reações submetidas ao agente dissociante uréia 6M foi significante, enquanto nas infecções antigas houve, no máximo, discreta diminuição (Hedman et al., 1989; Camargo et al., 1991; Holliman et al., 1994).

A introdução de métodos como estes, que permitem estimar o grau de avidez, torna-se de grande importância no estudo da toxoplasmose, principalmente quando correlacionados com outros dados da infecção.
Objetivo
Padronizar o teste “Western-Blotting-Avidez”, avaliando as diferentes concentrações do agente dissociante uréia 6M e 8M.

Analisar comparativamente os marcadores antigênicos de fase recente e crônica da infecção por Toxoplasma gondii pelo teste “Western-Blot” com os resultados sorológicos da fase recente e crônica da infecção por Toxoplasma gondii pelo teste Elisa-Avidez.

Caracterizar os marcadores antigênicos que diferenciam a fase recente e crônica da infecção por T.gondii pelo teste “Western-Blotting-Avidez”.
Material e Métodos
AMOSTRAS DE SOROS

As amostras de soros humanos positivas e negativas para a infecção por Toxoplasma de fase crônica ou latente, foram obtidas junto ao Laboratório de Análises Clínicas do Hospital de Clínicas de Uberlândia (HCU) da Universidade Federal de Uberlândia, no período de janeiro a abril de 1997. Foram transportadas para o Laboratório de Imunologia, sendo armazenadas à -20°C até serem estudadas.

Para a infecção de fase recente, amostras de soro humano foram gentilmente cedidas pelo Dr. Mário E. Camargo e Dr. Paulo G. Leser do Laboratório Fleury, São Paulo, em julho de 1997 e estocadas -70°C no Laboratório de Imunologia.

No total, foram analisadas 60 amostras de soro humano. Estas foram divididas em três grupos, baseando-se nos resultados dos testes já realizados nos laboratórios que cederam as respectivas amostras.

Grupo I: Este grupo consistiu de 20 amostras de soro humano de fase recente de infecção por Toxoplasma, onde a presença de anticorpos da classe IgM foi evidente (comprovada).

Grupo II: Consistiu de 20 amostras de soros de fase crônica. A presença de altos títulos de anticorpos da classe IgG foi evidenciada.
Grupo III: Neste grupo estão as amostras de soro humano negativas para *T. gondii*, que foram importantes para as padronizações dos testes.

Tendo como informação o nome dos pacientes e o número de seus prontuários, as amostras de soro coletadas no HCU-UFU foram cuidadosamente selecionadas, descartando todas as amostras de soro positivas para HIV. Tal seleção não pode ser realizada com as amostras cedidas pelo Lab. Fleury (São Paulo).

OBTENÇÃO DAS SUSPENSÕES PARASITÁRIAS

Taquizoitas da cepa RH de *T. gondii*, foram obtidas por passagens intraperitoneais seriadas em camundongos Swiss, com um intervalo de 2 ou 3 dias. A idade dos camundongos utilizados oscilou entre 30 a 60 dias. Os animais foram inoculados com um volume de 0,4 ml de exsudato peritoneal de camundongos previamente infectados.

Os exsudatos foram colhidos após lavagens intracavitárias com 3 a 4 ml de solução salina estéril e examinados por microscopia óptica para seleção do melhor exsudato, quanto à quantidade ótima de taquizoitas e ausência de contaminantes (células, bactérias e/ou hemácias). A suspensão foi centrifugada a 1000g durante 10 minutos e submetida a
duas lavagens com solução salina tamponada com fosfatos 0,01M, pH 7,2 (PBS), sendo o sedimento ressuspensão em 10ml de PBS estéreo. A contagem dos parasitas foi feita em câmara hemocitométrica, sendo a concentração ajustada para 1×10^5 taquizoítas / 50μl em PBS adicionado de gelatina a 1%.

SENSIBILIZAÇÃO DAS MICROPLACAS DE ELISA

Microplacas de poliestireno próprias para Elisa (Interlab, São Paulo, BR) foram sensibilizadas com 1×10^5 taquizoítas / 50μl / poço em PBS em gel 1% e incubada por 18h a 37°C. Após este período, as placas sensibilizadas foram acondicionadas em sacos plásticos, identificadas e estocadas a -20°C até o momento do uso.

ELISA PARA A DETECÇÃO DE ANTICORPOS IgG ANTI-

* _gondii_.

As microplacas de poliestireno previamente sensibilizadas com _T. gondii_ foram lavadas com PBS adicionado de Tween-20 (Polyoxiethylene Sorbitan, Sigma Chemical Co., USA) a 0,05% (PBS-T) por 3 vezes com duração de 5 minutos cada.
As amostras de soros (HCU), foram diluídas a 1/16 e 1/64 em PBS-T e um volume de 50µl foi adicionado em cada poço. As amostras de soro padrões positivas e negativas foram diluídas somente a 1/64. As placas foram incubadas a 37°C durante 45 minutos em câmara úmida e após este período, foram novamente lavadas em PBS-T por 3 vezes com duração de 5 minutos cada. Em seguida, adicionou-se 50µl do conjugado anti-IgG humana, marcada com peroxidase (Sigma, Chemical Co., USA), diluído a 1/3000 em PBS-T e novamente, as placas foram incubadas a 37°C por 45 minutos. Após esta incubação e consecutivas lavagens nas mesmas condições citadas acima, acrescentou-se 50µl do substrato enzimático constituído por 5mg de OPD (Ortofenilenodiamino, Merck) em 12,5ml de Tampão citrato-fosfato 0,1% pH 5,0 e 5µl de água oxigenada a 30% (H₂O₂) (Caal, Brasil).

Após a adição da solução reveladora, procedeu-se à incubação por 15 minutos à temperatura ambiente em câmara escura. A revelação enzimática foi interrompida acrescentando-se 25µl / poço de solução de ácido sulfúrico 2N.

A leitura da absorbância foi realizada em leitor de microplacas (Titertek, Multiskan Plus, Flow, USA) a 492nm.
Para a titulação das amostras positivas, foi realizado o mesmo teste ELISA descrito acima, contudo as amostras de soro foram diluídas de 1/16 a 1/2048, na razão 2.

ELISA MODIFICADA PARA A DETECÇÃO DA AVIDEZ DE ANTICORPOS IgG ANTI-\textit{T} gondii. (ELISA-Aviedez)

O procedimento realizado neste teste é idêntico ao Elisa para a titulação das amostras de soro até a etapa de incubação das amostras a 37°C durante 45 minutos, as quais foram adicionadas em duplicata em poços separados e as amostras de soro foram diluídas de 1/16 a 1/4096, na razão 2. Após esta etapa, as placas sofreram lavagens diferenciadas: uma das placas foi lavada com solução de uréia 6M (Merck-Schuchardt) em PBS com 200μl por poço, durante 5 minutos; a outra placa foi lavada com PBS-T por 5 minutos. Posteriormente, ambas as placas foram lavadas por mais duas vezes com PBS-T com duração de 5 minutos cada lavagem.

Os passos seguintes, foram realizados de maneira similar ao teste ELISA citado anteriormente.

As leituras de absorbância reveladas nas placas tratadas e não tratadas com solução de uréia 6M foram usadas para o cálculo do índice
de avidez, segundo Holliman e colaboradores (1993), pela seguinte fórmula:

\[
IA = \frac{Abs (com uréia)}{Abs (sem uréia)} \times 100\%.
\]

PREPARO DO EXTRATO TOTAL DE T. gondii

Exsudatos peritoneais de camundongos previamente infectados com a cepa RH de *T. gondii* foram colhidos e examinados como anteriormente descrito. As suspensões parasitárias foram, em seguida centrifugadas durante 10 minutos a 1000g. O sedimento foi ressuspensão em 10ml de PBS estéril e novamente submetido a centrifugação e lavagens com PBS por mais duas vezes. O sedimento foi homogeneizado com 0,5ml de tampão de amostra (Tris 0,1M pH 6,8, SDS a 4%, glicerol a 20%, e azul de bromofenol). A amostra foi submetida a 100°C durante 3 minutos e o extrato total antigênico obtido (Antígeno-SDS) aliquotado e estocado a -20°C.
ELETROFORESE EM GEL DE POLIACRILAMIDA EM SDS-PAGE

Para a caracterização do perfil eletroforético de proteínas do *T. gondii*, foi empregada a técnica de eletroforese vertical em gel de poliacrilamida (SDS-PAGE) a 12%, segundo Laemmli (1970).

No gel de separação, utilizou-se: Tris-HCl (Hidroximetil-aminometano-Sigma) 0,375 M, pH 8,8; SDS (Dodecil sulfato de sódio-Sigma) 0,1%; EDTA (Ácido etileno-diamino-tetra-acético-Quimibrás Ind. Química AS) 2mM; Acrilamida 30% e Bisacrilamida 0,8% (Pharmacia-LKB), Temed (N,N,N,N-tetrametil-aminometano-Pharmacia-LKB) 0,125% e APS (Persulfato de amônio-Pharmacia-LKB) 0,125%.

O gel foi colocado no interior de placas de vidro montadas com espaçadores de teflon, próprias para a corrida e para evitar a polimerização do gel em presença de oxigênio, colocou-se uma camada de butanol a qual foi removida após a polimerização do gel.

Para a preparação do gel de empilhamento, utilizou-se: Tris-HCl pH 6,8 0,125%; SDS 0,1%; EDTA 2mM; Acrilamida 30%, Bisacrilamida 0,8%, Temed a 0,125% e APS a 0,125%.

Posteriormente à aplicação deste gel, colocou-se o pente único (molde de teflon) para a formação dos poços de aplicação da amostra.

A cuba de eletroforese onde as placas foram montadas continha
tampão eletrôdo de corrida (glicina 0,025M pH 8,3; Tris; SDS; metanol) pH 8,3.

O antígeno-SDS foi aplicado no poço central um volume de aproximadamente 100µl.

Padrões de pesos moleculares foram aplicados nos poços laterais (10µl) em todas as corridas e foram obtidos de “Kits” comerciais de marcadores de baixo e alto pesos moleculares (Sigma Marker-Sigma), como se segue: Miosina (205 kDa); β-Galactosidase (116kDa); Fosforilase b (97kDa); Frutose-6-fosfato quinase (84kDa); Soroalbumina bovina (66kDa); Desidrogenase glutâmica (55kDa); Ovobumina (45kDa); Gliceroldeído-3-fosfato desidrogenase (36kDa); Amidrose carbônica (29kDa); Tripsinogênio (24kDa); Inibidor de tripsina (20kDa); α-Lactalbumina (14kDa); Aprotinina (6kDa).

A corrida eletroforética foi realizada em corrente inicial de 20mA e após a penetração no gel de separação a corrente passou 30mA com voltagem de 250V, por aproximadamente 3 horas e 30 minutos.
REAÇÃO DE “WESTERN-BLOT” (WB)

Imediatamente após a separação dos componentes antigênicos, realizou-se a transferência das proteínas do gel para membranas de nitrocelulose de 0,45 nm (Sigma Chem.Co., St. Louis-MO, USA), segundo as técnicas descritas por Towbin e colaboradores (1979), utilizando-se o equipamento “Multiphor II Electrophoreses Unit” (Pharmacia-LKB, Suécia).

Um “sandwich” foi preparado usando-se doze folhas de papel de filtro (Munktell, Pharmacia-LKB, Suécia) com tamanho proporcional às medidas do gel e da membrana de nitrocelulose (10 × 15 cm).

As folhas de papel de filtro e as membranas de nitrocelulose foram umedecidas em tampão de transferência (Glicina, Trizma-base, SDS, Metanol). Foram colocadas primeiramente 6 folhas de papel de filtro, umas sobre as outras separadamente, na placa de grafite (anodo) da cuba de transferência, previamente umedecida com H₂O destilada. Posteriormente, colocou-se a membrana de nitrocelulose, o gel e as outras seis folhas de papel de filtro restantes.

A corrente aplicada foi de 0,8 mA por cm² da membrana utilizado e a voltagem foi de 250V. O tempo para a transferência foi de 2 horas.
Após a transferência, a membrana de nitrocelulose foi corada com solução de Ponceau a 0,5% em ácido acético a 1%, para verificar a eficiência da transferência.

As membranas de nitrocelulose foram, a seguir, cortadas em pequenas tiras de (3 mm), colocadas em canaletas de acrílico próprias para a reação de WB e lavadas em H₂O destilada. Para o bloqueio dos sítios ativos, utilizou-se solução PBS-T 0,05% com 5% de leite desnatado (Molico, Nestlé, BR) (PBS-T M). Em cada canaleta da placa foram adicionados 500 µl da solução bloqueadora, incubando-se por 2 horas à temperatura ambiente, sob agitação lenta e contínua.

As amostras de soro foram diluídas em solução de PBS-T M, sendo que as diluições utilizadas para cada amostra de soro foram aquelas que corresponderam ao menor índice de avidex obtido pelo ELISA-Avidez, ou ao segundo menor índice, caso o menor corresponda à primeira ou última diluição ("end-point").

Para cada amostra de soro, utilizou-se 3 tiras de membrana de nitrocelulose da mesma corrida, as quais foram cortadas sequencialmente. As diluições das amostras de soro foram feitas em triplicatas.

Um volume de 500 µl destas amostras foram adicionadas às tiras nas canaletas, paralelamente às amostras de soro negativo que serviram
como controles da reação. As tiras foram incubadas por uma noite a - 4°C, sob agitação lenta e contínua, em câmara úmida.

Posteriormente à incubação das amostras de soro, uma das três tiras foi lavada com PBS-T M por 3 vezes durante 5 minutos cada lavagem. A outra tira tratada com a mesma amostra de soro duplicata foi lavada com uréia 6M (Merck, Schuchardt) por 3 vezes durante 5 minutos. E a última tira, foi lavada do mesmo modo que a tira anterior, modificando-se porém a concentração da uréia para 8M. Por fim, as 3 tiras de cada amostra de soro foram submetidas a 3 ciclos de lavagens com PBS-T M com duração de 5 minutos cada. Em seguida, adicionou-se 500μl por canaleta de conjugado anti-IgG humano marcado com peroxidase (Sigma, Chemical Co., USA) diluído a 1/200 em PBS-T M. A reação foi incubada por 2 horas à temperatura ambiente sob agitação lenta e contínua. Após a incubação, as tiras sofreram 6 ciclos de lavagens com PBS durante 5 minutos cada.

Para revelar a reação foi utilizado uma solução contendo 2,5 mg de diaminobenzidina (DAB-Sigma) diluídos em 15 ml de PBS e 225 μl de H₂O₂ 30%. A reação foi interrompida após o aparecimento de bandas de coloração marrom, pela adição de água destilada, seguida de várias trocas.
ANÁLISE ESTATÍSTICA

O peso molecular das bandas foi estimado a partir da curva de regressão linear pelos valores do peso molecular dos marcadores x Rf (motilidade relativa), através da fórmula:

\[Rf = \frac{\text{Distância da origem à migração}}{\text{dist. da origem ao ponto de referência}}. \]

Os resultados obtidos nos diferentes tipos de tratamento foram analisados pelo programa “Statistic for Windows-Release 4.5 A” (Statesoft, Inc. 1993).

O teste utilizado foi o de análise comparativa entre duas proporções e os cálculos das significâncias entre as diferentes freqüências incluíram um erro máximo de 5% (p<0,05). A hipótese nula foi aceita quando p≥ 0,05 (5%).
RESULTADOS
ELISA-AVIDEZ

As Tabelas 1 e 2 apresentam os índices de avidez calculados em cada diluição, para todas as amostras de soro estudadas, respectivamente para fase recente e crônica da infecção por *T. gondii*.

As absorbâncias obtidas em cada amostra de soro que não sofreu tratamento com ureia e aquelas tratadas com ureia 6 M, foram visualmente diferenciadas na fase recente de infecção, como mostra a Figura 1, com algumas amostras de soro.

As diluições de cada amostra de soro consideradas apropriadas para a realização do teste de “Western blot” foram aquelas que apresentaram o menor índice de avidez obtido pelo ELISA-Avidez, com exceção dos menores índices que corresponderessem à primeira ou última diluição (“end-point”).

Na Tabela 1, com amostras de soro de fase recente de infecção, os menores índices escolhidos, evidenciados em negrito, apresentaram valores que variaram de 12,3 a 55,9% correspondendo a diluições de 1/64 a 1/2048. As diluições de 1/512 e 1/2048 apresentaram a maior ocorrência. Para as amostras de soros de fase crônica da infecção (Tabela 2), os índices de avidez escolhidos, em negrito, variaram entre 50 a 100% correspondendo as diluições de 1/16 a 1/1024, sendo a diluição de 1/64 a que apresentou a maior ocorrência.
Figura 1. Representação do teste ELISA-Avidez para a detecção da avidez dos anticorpos IgG anti-*T. gondii*. As 4 amostras de soros humano (coluna I-9) nas respectivas diluições 1/16 a 1/4096 (razão 2), apresentadas são de fase recente da infecção. As letras maiúsculas correspondem as amostras de soro que não foram tratadas com uréia 6M, e as letras minúsculas as tratadas com uréia 6M. * Amostra de soro padrões positiva (G10, G11, g10 e g11). ** Amostra de soro padrões negativa (H10, H11, h10 e h11).
Tabela 1. Índices de avidade de anticorpos IgG específicos em amostras de soros de fase recente da infecção por T. gondii.

Índice de Avidade (%)

<table>
<thead>
<tr>
<th>Soros</th>
<th>1/16</th>
<th>1/32</th>
<th>1/64</th>
<th>1/128</th>
<th>1/256</th>
<th>1/512</th>
<th>1/1024</th>
<th>1/2048</th>
<th>1/4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96,2</td>
<td>74,9</td>
<td>73,1</td>
<td>58,5</td>
<td>55,9</td>
<td>37,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48,2</td>
<td>47,1</td>
<td>27,5</td>
<td>17,9</td>
<td>15,4</td>
<td>15,7</td>
<td>14,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>53,7</td>
<td>33,3</td>
<td>26,1</td>
<td>18,0</td>
<td>17,1</td>
<td>12,3</td>
<td>16,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>66,8</td>
<td>50,9</td>
<td>40,8</td>
<td>27,7</td>
<td>25,9</td>
<td>21,6</td>
<td>16,1</td>
<td>13,2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>83,6</td>
<td>81,3</td>
<td>71,5</td>
<td>67,9</td>
<td>53,3</td>
<td>43,1</td>
<td>22,0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>68,4</td>
<td>44,1</td>
<td>36,0</td>
<td>27,3</td>
<td>27,7</td>
<td>21,3</td>
<td>16,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>85,6</td>
<td>55,5</td>
<td>47,4</td>
<td>40,3</td>
<td>32,3</td>
<td>29,6</td>
<td>23,3</td>
<td>18,1</td>
<td>16,8</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>90,5</td>
<td>81,7</td>
<td>73,2</td>
<td>58,6</td>
<td>51,0</td>
<td>47,5</td>
<td>34,9</td>
<td>29,9</td>
</tr>
<tr>
<td>9</td>
<td>56,1</td>
<td>39,1</td>
<td>22,4</td>
<td>23,9</td>
<td>24,9</td>
<td>17,6</td>
<td>19,6</td>
<td>18,0</td>
<td>19,8</td>
</tr>
<tr>
<td>10</td>
<td>61,3</td>
<td>48,4</td>
<td>37,7</td>
<td>48,5</td>
<td>36,6</td>
<td>29,5</td>
<td>28,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>95,1</td>
<td>30,1</td>
<td>19,8</td>
<td>19,4</td>
<td>17,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>92,8</td>
<td>76,0</td>
<td>91,9</td>
<td>72,8</td>
<td>54,7</td>
<td>51,9</td>
<td>65,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>61,1</td>
<td>48,9</td>
<td>51,0</td>
<td>38,2</td>
<td>33,0</td>
<td>22,8</td>
<td>32,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>80,8</td>
<td>72,9</td>
<td>61,6</td>
<td>57,3</td>
<td>47,6</td>
<td>40,3</td>
<td>32,7</td>
<td>22,1</td>
<td>27,4</td>
</tr>
<tr>
<td>15</td>
<td>59,3</td>
<td>39,5</td>
<td>29,3</td>
<td>25,8</td>
<td>21,5</td>
<td>21,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>86,0</td>
<td>66,9</td>
<td>63,8</td>
<td>49,7</td>
<td>40,4</td>
<td>32,7</td>
<td>31,9</td>
<td>28,2</td>
<td>25,1</td>
</tr>
<tr>
<td>17</td>
<td>66,5</td>
<td>66,1</td>
<td>55,1</td>
<td>44,3</td>
<td>39,8</td>
<td>33,8</td>
<td>33,8</td>
<td>22,3</td>
<td>27,1</td>
</tr>
<tr>
<td>18</td>
<td>55,9</td>
<td>47,2</td>
<td>34,4</td>
<td>35,7</td>
<td>27,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>65,1</td>
<td>69,9</td>
<td>71,3</td>
<td>70,7</td>
<td>59,4</td>
<td>48,8</td>
<td>41,9</td>
<td>33,9</td>
<td>37,9</td>
</tr>
<tr>
<td>20</td>
<td>74,3</td>
<td>50,9</td>
<td>43,9</td>
<td>38,5</td>
<td>31,9</td>
<td>33,6</td>
<td>27,3</td>
<td>24,7</td>
<td></td>
</tr>
</tbody>
</table>

* os índices de avidade foram calculados em todas as diluições até o “endpoint” de cada amostra de soro, pelo teste ELISA-Avidez.
** os valores em negrito representam os menores índices considerados para a definição da diluição ótima de cada soro para o teste de WB.
Tabela 2. Índices de avidez de anticorpos IgG específicos em amostras de soros de fase crônica da infecção por *T. gondii*.

<table>
<thead>
<tr>
<th>Soros</th>
<th>1/16</th>
<th>1/32</th>
<th>1/64</th>
<th>1/128</th>
<th>1/256</th>
<th>1/512</th>
<th>1/1024</th>
<th>1/2048</th>
<th>1/4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C</td>
<td>100</td>
<td>100</td>
<td>93,3</td>
<td>87,6</td>
<td>86,8</td>
<td>100</td>
<td>98,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>100</td>
<td>88,5</td>
<td>85,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23C</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9D</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10D</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20D</td>
<td>99,6</td>
<td>98,1</td>
<td>80,6</td>
<td>100</td>
<td>100</td>
<td>94,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23D</td>
<td>100</td>
<td>99,6</td>
<td>92,0</td>
<td>90,6</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28D</td>
<td>100</td>
<td>98,0</td>
<td>81,7</td>
<td>92,1</td>
<td>97,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9E</td>
<td>71,1</td>
<td>81,6</td>
<td>100</td>
<td>89,8</td>
<td>76,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11E</td>
<td>92,5</td>
<td>100</td>
<td>98,8</td>
<td>99,5</td>
<td>99,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8C</td>
<td>61,4</td>
<td>63,3</td>
<td>59,3</td>
<td>86,9</td>
<td>82,0</td>
<td>66,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11C</td>
<td>97,8</td>
<td>92,0</td>
<td>84,8</td>
<td>100</td>
<td>82,8</td>
<td>100</td>
<td>80,1</td>
<td>89,4</td>
<td>73,4</td>
</tr>
<tr>
<td>15C</td>
<td>64,3</td>
<td>62,6</td>
<td>50,0</td>
<td>59,3</td>
<td>87,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>85,3</td>
<td>70,2</td>
<td>62,0</td>
<td>62,2</td>
<td>68,5</td>
<td>81,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7D</td>
<td>79,0</td>
<td>90,1</td>
<td>73,3</td>
<td>68,3</td>
<td>78,5</td>
<td>87,0</td>
<td>82,5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>15D</td>
<td>70,2</td>
<td>77,9</td>
<td>82,4</td>
<td>70,1</td>
<td>91,6</td>
<td>76,4</td>
<td>86,8</td>
<td>75,5</td>
<td>100</td>
</tr>
<tr>
<td>21D</td>
<td>59,1</td>
<td>84,1</td>
<td>69,2</td>
<td>68,1</td>
<td>85,7</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24D</td>
<td>73,1</td>
<td>75,5</td>
<td>64,4</td>
<td>83,1</td>
<td>98,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2E</td>
<td>81,6</td>
<td>68,9</td>
<td>57,9</td>
<td>80,4</td>
<td>80,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15E</td>
<td>81,0</td>
<td>90,2</td>
<td>94,3</td>
<td>100</td>
<td>94,4</td>
<td>75,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* os índices de avidez foram calculados em todas as diluições até o “endpoint” de cada amostra de soro, pelo teste ELISA-Avidex.

** os valores em negrito representam os menores índices considerados para a definição da diluição ótima de cada soro para o teste de WB.
"Western Blotting"

Pelos resultados do teste de "Western blot", foram calculadas as frequências das bandas (peso molecular-kDa) reconhecidas pelos anticorpos IgG das amostras de soro humano nos três diferentes tipos de tratamento e estão demonstradas nas Tabelas 3 e 4.

Após os cálculos das frequências das bandas, foram realizadas análises comparativas entre duas proporções para os diferentes tipos de tratamento de cada grupo e para os mesmos tipos de tratamento entre os grupos I e II.

A significância entre as diferenças de duas proporções foi definida para erro máximo de 5% (p<0,05).

Foram observadas diferenças estatisticamente significantes (p<0,05) na frequência de bandas do antígeno-SDS de *T. gondii* reconhecidas pelos anticorpos IgG específicos das amostras de soros, em relação aos grupos I e II e aos diferentes tratamentos: sem uréia, com uréia 6M e com uréia 8M. Assim, para o tratamento sem uréia, foram destacadas as bandas de pesos moleculares aparentes (kDa): p10, p38, p57 e p60 (Figura 2); para o tratamento com uréia 6M, as bandas de peso molecular aparente (kDa): p19, p32, p38, p40, p54, p57 e p97 (Figura 3) e para o tratamento com uréia 8M, as bandas p32, p40 e p57 (Figura 4).
Tabela 3. FREQUÊNCIA (%) DAS BANDAS (PESO MOLECULAR -
kDa) DO ANTÍGENO-SDS DE *T. gondii* RECONHECIDAS PELAS
AMOSTRAS DE SORO HUMANO DE FASE RECENTE DE
INFECÇÃO, NOS TRÊS TIPOS DE TRATAMENTO.

<table>
<thead>
<tr>
<th>Bandas Ag-SDS</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molecular (kDa)</td>
<td>Sem uréia</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>95</td>
</tr>
<tr>
<td>19</td>
<td>60</td>
</tr>
<tr>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>90</td>
</tr>
<tr>
<td>38</td>
<td>80</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>43</td>
<td>70</td>
</tr>
<tr>
<td>54</td>
<td>40</td>
</tr>
<tr>
<td>57</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>66</td>
<td>85</td>
</tr>
<tr>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>83</td>
<td>20</td>
</tr>
<tr>
<td>97</td>
<td>70</td>
</tr>
</tbody>
</table>
Tabela 4. FREQÜÊNCIA (%) DAS BANDAS (PESO MOLECULAR - kDa) DO ANTÍGENO-SDS DE *T. gondii* RECONHECIDAS PELAS AMOSTRAS DE SORO HUMANO DE FASE CRÔNICA DE INFECÇÃO, NOS TRÊS TIPOS DE TRATAMENTO.

<table>
<thead>
<tr>
<th>Bandas Ag-SDS</th>
<th>Tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso molecular (kDa)</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>19</td>
<td>75</td>
</tr>
<tr>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>95</td>
</tr>
<tr>
<td>38</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>95</td>
</tr>
<tr>
<td>43</td>
<td>65</td>
</tr>
<tr>
<td>54</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>66</td>
<td>70</td>
</tr>
<tr>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>83</td>
<td>35</td>
</tr>
<tr>
<td>97</td>
<td>70</td>
</tr>
</tbody>
</table>
Fig. 2. Freqüências das bandas do antígeno-SDS de *T. gondii* que apresentaram diferenças estatisticamente (*p* <0,05), na comparação entre os grupos I e II, pelo tratamento sem uréia.

Figura 3. Freqüência das bandas do antígeno-SDS de *T. gondii* que apresentaram diferenças estatisticamente significativas (*p* <0,05), na comparação entre os grupos I e II, pelo tratamento com uréia 6M.
Figura 4. Frequência das bandas do antígeno-SDS de *T. gondii* que apresentaram diferenças estatisticamente significativas (p < 0,05), na comparação entre os grupos I e II, pelo tratamento com uréia 8M.
Comparando-se as frequências das bandas do antígeno-SDS de *T. gondii* reconhecidas pelos anticorpos IgG específicos das amostras de soro de fase recente da infecção (grupo I) entre os diferentes tratamentos (sem uréia, uréia 6M e uréia 8M), observou-se diferenças estatisticamente significativas (*p < 0,05*) na frequência das bandas de pesos moleculares aparentes (kDa) de: p16, p32, p38, p40, p43, p54, p60, p66 e p97 (Figura 5), para os tratamentos de 6M e 8M de uréia.

Comparando-se as frequências das bandas do antígeno-SDS de *T. gondii* reconhecidas pelos anticorpos IgG específicos das amostras de soro de fase crônica da infecção (grupo II) entre os diferentes tratamentos (sem uréia, uréia 6M e uréia 8M), observou-se que não houve diferenças estatisticamente significativas (*p < 0,05*) nas frequências das bandas para o tratamento com uréia 6M em relação ao tratamento com uréia 8M. Contudo, em relação ao tratamento com uréia 8M, oito bandas apresentaram diferenças estatisticamente significativas (*p < 0,05*). Estas bandas de peso molecular aparente (kDa) foram: p19, p38, p43, p54, p60, p66, p70 e p75 (Figura 6). Nas figuras 7, estão representadas os três tipos de tratamento em seis amostras de soro de fase recente de infecção. E na Figura 8, seis amostras de soro de fase crônica em seus três diferentes tipos de tratamento.
Figura 5. Freqüência das bandas do antígeno-SDS de *T. gondii* que apresentaram diferenças estatisticamente significativas (p <0,05) tanto no tratamento com ureia 6M e 8M, no grupo de fase recente, comparando-se com o tratamento sem ureia.

Figura 6. Freqüência das bandas do antígeno-SDS de *T. gondii* que apresentaram diferenças estatisticamente significativas (p <0,05) entre os tratamentos com ureia 6M e 8M, no grupo de fase crônica da infecção.
Figura 7. Marcadores antigênicos do *T. gondii*, em seis amostras de soro de fase recente da infecção que foram submetidas ao diferentes tratamentos. *S* = sem uréia. **6** = uréia 6M. ***8** = uréia 8M.
Discussão
A definição do tempo exato de infecção pelo *Toxoplasma gondii* é de fundamental importância, especialmente durante o período gestacional em mulheres (Lappalainen *et al.*, 1993). A distinção entre a toxoplasmose de fase recente e crônica de infecção não é fácil. O estudo da imunidade anti-toxoplásmica envolve a titulação de anticorpos IgG, que geralmente refletem imunidade ao parasita e de anticorpos IgM que, se presente, revelam infecção recente. Assim, indivíduos assintomáticos que possuem títulos fixos de anticorpos IgG anti-Toxoplasma em seu soro e que são positivos para anticorpos IgM, são difíceis para interpretar e concluir em qual estágio de infecção em que se encontram (Hedman *et al.*, 1989).

O aparecimento desses anticorpos para toxoplasmose assinalando a soroconversão de negatividade para positividade traduz a resposta imunológica humoral à infecção recém-adquirida.

Os testes para detecção de anticorpos IgM como marcadores de fase recente, são de ampla utilização (Camargo, 1995). Entretanto, dependendo da sensibilidade dos testes utilizados, os anticorpos IgM podem ser detectados por meses ou anos após a infecção (Hedman *et al.*, 1989; Camargo, 1995). A grande sensibilidade destes kits aumenta a possibilidade de obtenção de resultados falso-positivos. Isto sugere que a presença de anticorpos IgM não é sempre indicador de infecção recente e somente altos títulos deste anticorpo podem ser tomados como limiar
seguro entre as formas recentes e crônicas de infecção pelo *T. gondii* (Sibalic *et al*, 1993). São considerados bons marcadores de toxoplasmose recente, aqueles testes que se mantêm positivos durante a fase recente de infecção, negativando-se na fase de cronicidade.

Um outro marcador que vem ganhando valor é a classe de anticorpos IgA. Estes anticorpos foram mais rapidamente detectados em estágios primários de infecção e sua permanência foi mais limitada do que os anticorpos IgM (Foudrinier *et al* 1995). Deste modo, a detecção dos anticorpos IgA complementa a determinação dos anticorpos IgM para um diagnóstico positivo de uma infecção recente.

A avidade dos anticorpos IgG é capaz de distinguir entre as infecções recentes das infecções crônicas por *T. gondii* (Camargo *et al*, 1991; Camargo, 1995). A baixa avidade de anticorpos IgG específicos, analisados a partir dos testes imunoenzimáticos ELISA com o agente dissociante, a solução de uréia 6M, demonstraram ser eficientes na determinação da infecção primária (Hedman *et al*, 1989). O papel de testes usando a avidade de anticorpos IgG resulta em confirmações às
definições dos estágios de infecção que se encontravam algumas mulheres gestantes, em combinação a testes sensíveis para anticorpos IgM (Lappalainen et al, 1993).

Os altos índices de avidez de anticorpos IgG obtidos foram característico e correspondentes à fase crônica. Podemos afirmar deste modo que, houve uma progressiva maturação da afinidade destes anticorpos IgG específicos aos antígenos do T. gondi, no decorrer da infecção.

Uma comparação entre os menores índices de avidez de cada amostra de soro, nos grupos I e II, evidenciou uma grande variação na medida da avidez de anticorpos IgG nas diferentes fases de infecção pelo T. gondii. Assim, confirmou-se a validade dos testes usando a avidez de anticorpos IgG específicos para a definição dos estágios de infecção da toxoplasmose, servindo como bom marcador sorológico.
A escolha da solução de uréia 6M como agente dissociante dos complexos imunes, como proposto por Hedman et al (1989), mostrou-se satisfatória no teste imunoenzimático ELISA-Avidex, resultando em pequenas quedas da reatividade nas amostras de soros de fase crônica e quedas maiores dos índices de avidex, no grupo contendo amostras de soro de fase recente de infecção.

De acordo com Rahmah, N., & Anuar, K. (1992), pelo teste “Western blot” com antígenos excretados-secretados (ESA) de *T. gondii* reconhecidos por amostras de soro de camundongos infectados recente e cronicamente, caracterizou-se certas bandas que aparecem e desaparecem conforme o estágio de infecção.

Em nosso trabalho com sorologia humana, usando o teste “Western blotting”, evidenciamos bandas de massas moleculares aparentes de p10 e p38 que foram detectáveis somente na fase recente.

Comparando-se a avidex dos anticorpos IgG específicos entre os grupos I e II, vimos que as bandas visualizadas na fase recente de infecção, apresentaram variações na medida da avidex, sendo que p10 e p57 apareceram somente na fase recente e com seus anticorpos IgG já apresentando alta avidex. As bandas p38 e p60 apresentaram uma incidência maior na fase recente, caracterizando também este estágio de
infecção, contudo, difere das demais por apresentarem anticorpos IgG de baixa avidez.

No tratamento com uréia 6M como agente dissociante, a comparação entre os grupos I e II evidenciou as bandas p19, p32, p38, p40, p54 e p97, apresentado anticorpos IgG de alta avidez na fase crônica e de baixa avidez na fase recente de infecção. A banda p57 foi a única, neste tipo de tratamento, que apresentou anticorpos de baixa avidez na fase crônica, comparando-se os dois grupos.

No tratamento com uréia 8M, as bandas p32 e p40 continuaram sendo evidentes na fase crônica, comparando-se os grupos I e II. A banda p57 também continuou sendo incidente de fase recente da infecção.

Os anticorpos IgG foram totalmente dissociados dos antígenos do *T. gondii* correspondentes às bandas p38 e p54, quando foram tratados com uréia 6M e 8M. São portanto anticorpos IgG de baixa avidez na fase recente da infecção.

Após a denominação dos marcadores antigênicos para a fase recente e crônica de infecção, vistos posteriormente às comparações entre os grupos I e II, analisamos quais seriam os bons marcadores na análise das diferenças da avidez dos anticorpos dentro de cada grupo.
No grupo I, de fase recente de infecção, as bandas p16, p32, p38, p40, p43, p54, p60, p66 e p97 apresentaram anticorpos de baixa avidade quando comparado às bandas que não foram submetidas ao tratamento com o agente dissociante.

Dentro do mesmo grupo acima citado, as bandas não tratadas com ureia comparadas às tratadas com solução de ureia 8M, apresentaram anticorpos de baixa avidade, além das bandas anteriores submetidas ao tratamento com ureia 6M, as bandas p19, p23, p30, p70 e p75. Os anticorpos correspondentes à banda p23 tiveram uma total dissoção do complexo antígeno-anticorpo quando foram submetidos ao tratamento com ureia 8M.

Como não houve diferenças significativas na dissoção dos complexos imunes entre o tratamento com ureia 6M e 8M, na fase recente de infecção, a determinação da molaridade ótima a ser utilizada para a realização do teste "Western-blot", torna-se de difícil resolução, já que os dois tratamentos mostraram-se indistintamente eficientes.

No grupo II, de fase crônica de infecção, não houve variações na medida dos anticorpos IgG com o tratamento com ureia 6M. Podemos afirmar portanto, que todos os anticorpos IgG são de alta avidade quando comparamos estes tipos de tratamento.
No tratamento com uréia 8M, entretanto, tiveram quedas significativas na avidez de seus anticorpos IgG, em comparação aos não tratados com uréia, as bandas p19, p38, p43, p54, p60, p66, p70 e p75.

A presença de diferenças significativas na dissociação dos complexos imunes entre os tipos de tratamento com uréia 6M e 8M pode ser observada pela queda da avidez dos anticorpos IgG que corresponde às bandas p38, p43, p54, p60 e p70.

Isto sugere que o tratamento com uréia 8M, na fase crônica de infecção, induz um maior desligamento do complexo imune diminuindo a avidez dos anticorpos IgG.

Como não houve diferenças significativas na avidez dos anticorpos IgG entre os tratamentos com uréia 6M e 8M, na fase recente da infecção e também entre os não tratados e tratados com uréia 6M, na fase crônica de infecção, podemos definir como bons marcadores antigênicos de fase recente da infecção, as bandas que tiveram quedas na avidez de seus anticorpos IgG, quando tratadas com uréia 6M.

A complexidade do presente trabalho, utilizando tratamentos com soluções de uréia em diferentes molaridades, nos permitiu analisar mais profundamente a avidez dos anticorpos IgG em diferentes situações. Deste modo, consideramos como os melhores marcadores antigênicos do *T. gondii*, pelo teste de “Western blot”, as bandas que reconhecidas
pelos anticorpos IgG de baixa avidêz quando submetidas ao tratamento com uréia 6M, na fase recente da infecção e que não se dissociaram mesmo quando tratados com uréia 8M, na fase crônica de infecção, onde eles mantiveram alta avidêz. Estas bandas foram as seguintes: p16, p32, p40 e p97.
Conclusão
Pelos testes ELISA-Avidez e Western-Blot, confirmamos a determinação de marcadores sorológicos e antígenicos de fase recente de infecção por *Toxoplasma gondii*, com a presença de anticorpos IgG de baixa avidez, e de fase crônica com anticorpos IgG de alta avidez.

O teste Western-Blot mostrou-se capaz de evidenciar marcadores antígenicos exclusivos (p10 e p57) de fase recente de infecção por *T. gondii*.

O teste Western-Blotting-Avidez mostrou-se capaz de, com a utilização de tratamentos com o agente dissociante uréia 6M e 8M, caracterizar a especificidade de anticorpos de baixa avidez (fase recente) e anticorpos de alta avidez (fase crônica) definindo assim, os marcadores antígenicos dos diferentes estágios (p16, p32, p40 e p97).
REFERÊNCIAS
BIBLIOGRÁFICAS

BORGES, F. A. *Pesquisa do antígeno SAG1 (p30) de Toxoplasma gondii* simultaneamente à detecção de anticorpos e imune-complexos em amostras de líquido cefalorraquiano, reagentes e não reagentes para anticorpos anti-HIV. Uberlândia: Universidade Federal de Uberlândia, 1996. 173p (Tese; Mestrado).

COUVREW, G., SADAK, A., FORTIER, B. & DUBREMETZ, J. F.

HEDMAN, K., LAPPALAINEN, M., SEPPAIA, I. & MAKELA, O. Recent primary toxoplasma infection indicated by a low avidity of specific IgG. The Journal of Infectious Diseases, 159: 736-740, 1989.

MERCIER, C., LECORDIER, L., D ARCY, F., DESLEE, D., MURRAY, A., TOURVIELLE, B., MAES, P., CAPRON, A. & CESBRON-DELAUW, M. F. Molecular characterization of a dense granule antigen (GRA 2) associated with the network of the

OSSORIO, P. N., SCHWARTZMAN, J. D. & BOOTHROYD, J. D. A.
Toxoplasma gondii rhoptry protein associated with host cell penetration has unusual change asymmetry. Molecular and Biochemical Parasitology, 50: 1-16, 1992.

