UNIVERSIDADE FEDERAL DE UBERLÂNDIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO DOS RECURSOS NATURAIS

EVOLUÇÃO DO DIMORFISMO ESTAMINAL E SUA CORRELAÇÃO COM ATRIBUTOS FLORAIS E REPRODUTIVOS EM UMA FAMÍLIA COM FLORES DE PÓLEN

LÍLIAN RODRIGUES FERREIRA DE MELO

Lílian Rodrigues Ferreira de Melo

EVOLUÇÃO DO DIMORFISMO ESTAMINAL E SUA CORRELAÇÃO COM ATRIBUTOS FLORAIS E REPRODUTIVOS EM UMA FAMÍLIA COM FLORES DE PÓLEN

Dissertação apresentada à Universidade Federal de Uberlândia, como parte das exigências para obtenção do título de Mestre em Ecologia e Conservação de Recursos Naturais.

Orientador

Prof. Dr. Vinicius Lourenço Garcia de Brito

Coorientadora

Profa. Dra. Ana Paula de Souza Caetano

UBERLÂNDIA FEVEREIRO – 2019

Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da UFU, MG, Brasil.

M528e 2019

Melo, Lílian Rodrigues Ferreira de, 1990

Evolução do dimorfismo estaminal e sua correlação com atributos florais e reprodutivos em uma família com flores de pólen [recurso eletrônico] / Lílian Rodrigues Ferreira de Melo. - 2019.

Orientador: Vinicius Lourenço Garcia de Brito.

Coorientadora: Ana Paula de Souza Caetano.

Dissertação (mestrado) - Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais.

Modo de acesso: Internet.

Disponível em: http://dx.doi.org/10.14393/ufu.di.2019.1265

Inclui bibliografia. Inclui ilustrações.

1. Ecologia. 2. Angiosperma. 3. Polinizadores. 4. Pólen. I. Brito, Vinicius Lourenço Garcia de, 1985, (Orient.). II. Caetano, Ana Paula de Souza, 1985, (Coorient.). III. Universidade Federal de Uberlândia. Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais. IV. Título.

CDU: 574

Lílian Rodrigues Ferreira de Melo

EVOLUÇÃO DO DIMORFISMO ESTAMINAL E SUA CORRELAÇÃO COM ATRIBUTOS FLORAIS E REPRODUTIVOS EM UMA FAMÍLIA COM FLORES DE PÓLEN

Dissertação apresentada à Universidade Federal de Uberlândia, como parte das exigências para obtenção do título de Mestre em Ecologia e Conservação de Recursos Naturais.

Dra. Thais Nogales da Costa Vasconcelos

Prof. Dr. Anselmo Nogueira

Prof. Dr. Vinícius Lourenço Garcia de Brito

(Orientador)

APROVADA em 28 de fevereiro de 2019.

UBERLÂNDIA FEVEREIRO – 2019

AGRADECIMENTOS

Gostaria de agradecer primeiramente à minha família, meus pais e meu irmão, que sempre acreditaram em mim e nos meus sonhos. Fizeram tudo o que estava ao alcance deles para que eu pudesse seguir em frente com os estudos, me deram suporte e amor incondicional. Sou extremamente grata a vocês por isso.

Agradeço imensamente aos meus mestres, professores Vinícius Brito e Ana Paula Caetano. A orientação de vocês sem sombra de dúvidas foi o que tornou o caminho mais prazeroso. Como foram boas nossas reuniões, grupos de estudos, conversas e viagens de campo. Aprendi muito com vocês, e cada um ao seu modo, me mostrou como é possível fazer pesquisa nesse país, tendo os pés na realidade e a vontade de vencer lá nas nuvens. A delicadeza, o respeito, a humildade e a competência com a qual vocês me orientaram e que carregam consigo é de muita inspiração para mim. Hoje, muito mais que professores, tenho a certeza de que ganhei amigos e exemplos para a vida.

Agradeço também ao meu companheiro Thomas, que esteve comigo em cada pequena vitória, mas também em todos dias difíceis, não me deixando desistir e me fazendo acreditar que sou capaz. A sua presença foi fundamental nesse processo e só tenho a agradecer pela paciência, motivação, cuidado e amor. Obrigada por tudo!

Aos meus amigos, Larissa, Meire, Pietro e a todo pessoal do Núcleo de Estudos de Reprodução de Plantas (NERP) o meu muito obrigada. Cada um de vocês contribuiu de alguma forma para esse processo. Agradeço também a Thayane, que além dividir apartamento comigo nesses últimos anos, esteve comigo na mesma turma de mestrado. Valeu demais!

Agradeço a Marcelo Reginato, por toda sua colaboração e disponibilidade sempre que precisei. Sua participação foi fundamental para o resultado dessa dissertação.

Agradeço a todas as pessoas que passaram na minha vida durante esses dois anos, por acreditar que estamos sempre aprendendo, seja com palavras de afeto e acolhimento ou com duras críticas, que nos fazem refletir sobre nós mesmos e nossas escolhas.

Aos pesquisadores Thaís, Anselmo e Marcelinho que aceitaram participar da banca de avaliação.

Ao Programa de Pós-Graduação em Ecologia e Conservação dos Recursos Naturais agradeço pela oportunidade de realizar meu projeto de mestrado, assim como agradeço a Universidade Federal de Uberlândia, pela infraestrutura e oportunidades, desde a minha graduação.

E por fim, agradeço à CAPES pela bolsa de mestrado que possibilitou a realização dessa dissertação.

Sumário RESUMOvi
ABSTRACTvii
LISTA DE FIGURASviii
INTRODUÇÃO9
MATERIAL E MÉTODOS
Espécies de estudo
Atributos florais
Reconstrução de caracteres ancestrais
Sinal filogenético
Evolução correlacionada
Taxas evolutivas
RESULTADOS 20
Evolução do dimorfismo de estames e sinal filogenético21
Evolução Correlacionada
Taxas Evolutivas
DISCUSSÃO
REFERÊNCIAS29
FIGURAS 42
ANEXO 1

RESUMO

Melo, Lílian R. F. 2019. Evolução do dimorfismo estaminal e sua correlação com atributos florais e reprodutivos em uma família com flores de pólen. Dissertação de Mestrado em Ecologia e Conservação de Recursos Naturais. UFU. Uberlândia – MG. 82p.

Acredita-se que a polinização por animais seja uma das causas da alta diversidade de angiospermas, uma vez que a pressão seletiva exercida pelos polinizadores favorece modificações tanto nas estruturas florais quanto nas estratégias reprodutivas. Especificamente para flores de pólen que apresentam dimorfismo estaminal, a "Hipótese da divisão de trabalho" propõe que exista funções distintas para os diferentes estames dentro da mesma flor. O dimorfismo de estames é observado em pelo menos 20 famílias de angiospermas e está relacionado a presença de anteras poricidas, enantiostilia e a ausência de nectários florais. No entanto, há uma falta de conhecimento sobre a evolução e as pressões seletivas que levaram ao dimorfismo de estames dentro desses clados em que esse atributo é bastante frequente. Acredita-se que as abelhas surgiram simultaneamente a diversificação das plantas com flores, e pressões seletivas exercidas por esses insetos poderiam ser a causa principal de uma rápida especiação nesse grupo, através do isolamento reprodutivo floral ou do aumento da especialização em atributos envolvidos na polinização biótica. Investigamos o processo de diferenciação dos estames ao longo do tempo evolutivo de Melastomataceae, e sua relação com outros atributos florais e com o sistema reprodutivo das plantas usando análises filogenéticas comparativas. Acreditamos que o dimorfismo estaminal surgiu mais de uma vez dentro da família e que existe uma evolução correlacionada entre esse dimorfismo e o sistema reprodutivo dependente de polinizador, além de aumentar nas taxas de diversificação neste clado. Sequências de marcadores para o grupo de estudo foram coletadas no banco de dados público GenBank e a partir desses valores inferimos as relações filogenéticas. Marcadores moleculares mais frequentes foram escolhidos, incluindo dois espacadores ribossomais, dois genes cloroplastidiais e quatro espaçadores cloroplastidiais. Uma revisão da literatura foi feita para coletar descrições de espécies que apresentavam o comprimento dos estames, estilete e pétalas. Posteriormente, calculamos um índice de dimorfismo de estame (IDE) para quantificar essa diferenciação. Inferimos a reconstrução de caracteres ancestrais e análise de correlação evolutiva para responder se a evolução do dimorfismo estaminal está relacionada ao sistema reprodutivo e ao tamanho da flor. Por fim, avaliamos se a presença ou ausência desse dimorfismo tem algum efeito nas taxas evolutivas dentro da família. Estimamos o sinal filogenético (K de Blomberg) para todos os atributos. Apesar da flor ancestral de Melastomataceae possivelmente ter estames isomórficos, o dimorfismo de estames surgiu pelo menos 12 vezes ao longo da sua história evolutiva. Todos os atributos florais apresentaram baixo sinal filogenético sendo, portanto, muito lábeis. A evolução do dimorfismo estaminal está correlacionada com a evolução de um sistema reprodutivo dependente de polinizadores e está positivamente correlacionado com o aumento da pétala ao longo da história evolutiva. A pressão de seleção exercidas pelas abelhas em plantas que dependem desses polinizadores para a reprodução favoreceram o dimorfismo dos estames e essa pressão parece ser ainda maior em flores grandes. As taxas de diversificação, extinção e especiação são mais altas nas espécies com dimorfismo de estames, indicando que polinizadores especializados podem ser agentes diretos do processo de diversificação das plantas com flores a partir do aumento da especialização da morfologia floral.

Palavras-chave: heteranteria, sinal filogenético, reconstrução de caracteres, pressão seletiva, polinizador, taxas evolutivas, diversificação, Melastomataceae.

ABSTRACT

Melo, Lílian R. F. 2019. Evolution of stamen dimorphism and its correlation with floral and reproductive traits in a family with pollen flowers. MSc. thesis. UFU. Uberlândia-MG. 82p.

Animal pollination is believed to be one of the causes of the high diversity of angiosperms since the selective pressure exerted by pollinators leads to modifications in floral structure and reproductive strategies. The "Division of labor hypothesis" proposes that there are different roles in dimorphic stamens within the same flower. The smaller stamen produces pollen to feed pollinators (e.g. bees) and the larger stamens produces pollen essentially to plant reproduction. Stamen dimorphism is observed in at least 20 families of angiosperms and is related to poricidal anthers and enantiostily in pollen-rewarding flowers. However, there is a lack of knowledge about the evolution as well as the selective pressures that led to stamen dimorphism inside clades in which stamen dimorphism is frequent. We investigate stamen differentiation process over the evolutionary time of Melastomataceae. We test the correlation of stamen dimorphism with other floral traits as well as with plant reproductive system on an evolutionary framework. The phylogenetic data was gathered in GenBank. The more frequent molecular markers were chosen, including two ribosomal spacers, two plastome genes and four plastome spacers. Best nucleotide substitution model fit was evaluated in PartitionFinder 2. A Bayesian analysis was conducted to infer the family phylogeny and divergence times. A literature review was made in order to gather morphological data. We search species descriptions that presented stamens, styles and petals lengths. Afterwards, a stamen dimorphism index (SDI) was created based in stamen length information. Phylogenetic signal (Blomberg's K) was estimated for all variables. We also performed ancestral trait reconstruction as well as evolutionary correlation analysis in order to answer if stamen dimorphism evolution is related to reproductive system and flower size. Despite Melastomataceae ancestral flower probably had stamens with equal sizes, stamen dimorphism appeared at least 12 times along its evolutionary history. All the traits presented low phylogenetic signal indicating that flower traits are very labile. Plants that depend on pollinators to reproduce present higher stamen dimorphism than autonomous plants. Our results indicate that stamen dimorphism has evolved several times in flowers of Melastomataceae. Stamens dimorphism is positively correlated with the increase of the petal throughout the evolutionary history. The selection pressure exerted by the bees on plants that depend on these pollinators for reproduction favored the stamens dimorphism and this pressure seems to be even larger in large flowers. The rates of diversification, extinction and speciation are higher in species with stamens dimorphism, indicating that specialized pollinators may be direct agents of the process of flowering plant diversification by means of an increased specialization in floral morphology.

Key words: heterantry, phylogenetic signal, traits reconstruction, selective pressure, pollinator, diversification rates, Melastomataceae.

LISTA DE FIGURAS

- **Figura 1** Reconstrução filogenética do índice de dimorfismo de estames (IDE) na família Melastomataceae.
- **Figura 2** Correlação evolutiva entre o IDE e o sistema reprodutivo na família Melastomataceae
- **Figura 3** Correlação evolutiva entre o IDE e o *log* do comprimento médio das pétalas na família Melastomataceae
- **Figura 4** Taxa de diversificação das espécies com presença ou ausência de dimorfismo de estames na família Melastomataceae
- **Tabela 1 -** Valores das correlações evolutivas entre o log do comprimento dos atributos florais e o sistema reprodutivo na família Melastomataceae
- **Tabela 2** Comparação entre os modelos evolutivos BiSSE e CID2

LISTA DE FIGURAS E TABELAS DO MATERIAL SUPLEMENTAR

- **Figura S1** Reconstrução filogenética do log do comprimento das pétalas a partir de 235 espécies de Melastomataceae.
- **Figura S2** Reconstrução filogenética do log do comprimento dos estames alimentação a partir de 235 espécies de Melastomataceae.
- **Figura S3** Reconstrução filogenética do log do comprimento dos estames de polinização a partir de 235 espécies de Melastomataceae.
- **Figura S4** Reconstrução filogenética do log do comprimento dos estiletes a partir de 295 espécies de Melastomataceae.
- **Figura S5 -** Taxa de especiação das espécies com dimorfismo de estames (azul) e sem dimorfismo de estames (vermelho).
- **Figura S6** Taxa de extinção das espécies com dimorfismo de estames (azul) e sem dimorfismo de estames (vermelho).
- Figura S7 Taxa de transição entre presença e ausência de dimorfismo de estames
- **Tabela S1** Lista de espécies estudadas e código de acessos do Genbank para todos os marcadores utilizados
- **Tabela S2 -** Seleção do melhor modelo evolutivo pelo PartitionFinder2
- **Tabela S3** Dados morfológicos coletados para cada espécie analisada no trabalho
- **Tabela S4** Valores do sinal filogenético (K de Blomberg) para cada atributo analisado.

INTRODUÇÃO

As angiospermas surgiram no Cretáceo Inferior há aproximadamente 130 milhões de anos. A história evolutiva desse grupo é marcada por uma rápida expansão no globo, acompanhada por intensa diversificação (Scott et al., 1960; Burger, 1990; Taylor et al., 2009). A essa rápida diversificação Darwin (1879) deu o nome de "Abominável mistério", fato que o intrigava, uma vez que ele defendia que o processo de diversificação era lento e gradual, ao contrário do que estava registrado nos fósseis dessas plantas (Friedman, 2009). Concomitantemente, o paleobotânico francês Louis Charles Joseph Gaston propôs que o conjunto de interações mútuas entre angiospermas e os insetos teve um papel central na rápida diversificação das plantas com flores (Friedman, 2009; Stockey & Crane, 2009). Porém, até os dias atuais, as causas desse fenômeno permanecem em debate e entender a origem e diversificação das angiospermas e, consequentemente, das estruturas florais associadas a reprodução, tem sido um dos temas mais frequentes nos estudos em biologia evolutiva (Cardinal & Danforth, 2013; Vasconcelos et al., 2018). Além da interação com polinizadores, hoje se considera que a evolução das angiospermas está diretamente relacionada aos herbívoros e a processos de hibridação e duplicação de genoma inteiro (Soltis et al., 2009a; Soltis et al. 2009b).

Notoriamente alguns clados são muito mais ricos em espécies que outros. Existem várias hipóteses que procuram explicar esse fenômeno e uma delas é a presença de inovações chaves que influenciam as taxas de especiação e extinção (Dodd et al., 1999). Além disso, mesmo que um atributo apresente muitas origens, pode ser que apenas um clado tenha uma maior taxa de diversificação associada a esse atributo focal, o que é forte o suficiente para aumentar as taxas de diversificação (Beaulieu & Donoghue, 2013). Entre plantas, por exemplo, a imensa diferença na riqueza de espécies entre as angiospermas (>300.000 spp.) e as gimnospermas (±758 spp.) tem sido atribuída à inovação chave representada pelo surgimento da flor (Stebbins, 1981; Dodd

et al., 1999). As flores são as estruturas responsáveis pela reprodução das angiospermas e estima-se que 87% das espécies deste grupo dependem de animais para realizar a transferência dos grãos de pólen das anteras até o estigma, em um processo denominado polinização (Williams, 1994; Klein et al., 2006; Ollerton et al., 2011).

As abelhas são reconhecidas como os polinizadores mais importantes por depender completamente de recursos florais durante a fase larval e a fase adulta, e se diversificaram simultaneamente às plantas com flores (Ollerton, 2017). A idade estimada para o grupo mais basal das abelhas é coincidente com a primeira aparição de grãos de pólen tricolpados e a origem das eudicotiledôneas, há aproximadamante 125 milhões de anos e tal fato é considerado uma evidência de correlação evolutiva entre os dois grupos (Cardinal & Danforth, 2013). Entre as pressões seletivas exercidas pelas abelhas que poderiam ter dirigido a rápida especiação das angiospermas está o isolamento reprodutivo dado a constância floral desses insetos e o consequente aumento da especialização em atributos florais diretamente envolvidos na polinização (Dodd et al., 1999; Kay et al., 2006; Willmer, 2011; Van der Niet & Johnson, 2012; Cardinal & Danforth, 2013; Rafferty & Ives, 2013; Vasconcelos, 2013; Koski & Ashman, 2016).

Mais de 20.000 espécies de plantas apresentam apenas o pólen como recompensa aos seus polinizadores, sendo conhecidas como flores de pólen (Vogel, 1978). Essas flores são polinizadas quase que exclusivamente por abelhas capazes de vibrar os músculos das asas para a retirada dos grãos de pólen das flores que apresentam anteras poricidas em um processo conhecido como "buzz-pollination" (Buchmann, 1983; De Luca & Vallejo-Marín, 2013; Vallejo-Marín, 2019). Ter o pólen como única recompensa floral representa um dilema evolutivo, uma vez que o pólen coletado pelas abelhas é usado na alimentação de suas larvas e, ao mesmo tempo, contém os gametas masculinos da planta que são fundamentais para a reprodução sexuada (Thorp, 1979; Harder & Thomson, 1989; Westerkamp, 2004a; Vallejo-

Marín et al., 2009; Lunau et al., 2014). Essas duas pressões seletivas (alimentação e reprodução) favorece mecanismos que levam a diminuição da perda excessiva do pólen para as abelhas, como a heteranteria ou dimorfismo de estames, estratégia comumente encontrada em flores de pólen (Westerkamp, 2004b; Luo et al., 2008). Assim, segundo a "Hipótese da divisão de trabalho", primeiramente levantada pelos irmãos Müller, e posteriormente corroborada por outros autores (Forbes, 1882; Todd, 1882; Luo et al., 2008; Vallejo-Marín et al., 2009), as diferenças morfológicas entre os estames refletem diferentes funções: o conjunto de estames maiores seria responsável pela produção de pólen destinado à polinização e o conjunto de estames menores destinariam os grãos de pólen à alimentação das abelhas (Luo et al., 2008; Vallejo-Marín et al., 2010; Vallejo-Marín et al., 2014).

A complexa interação entre plantas com flores e seus polinizadores resultou em casos notáveis de evolução convergente, coevolução e mudanças nas taxas de diversificação floral (ver em: Pellmyr & Thompson, 1992; Cook et al., 2004; Sargent, 2004; Anderson & Johnson, 2007; Vallejo-Marín et al., 2010; Van der Niet & Johnson, 2012; Thompson et al., 2013). O dimorfismo estaminal, por exemplo, surgiu em pelo menos 20 famílias não relacionadas, indicando múltiplas origens independentes e forças seletivas semelhantes atuando em diferentes momentos da história evolutiva das plantas (Vallejo-Marín et al., 2010). Além disso, o dimorfismo de estames, anteras poricidas, enantiostilia e ausência de nectários florais são características que evoluíram de maneira correlacionada e ocorrem em pelo menos 11 famílias, incluindo Fabaceae e Melastomataceae. Apesar da correlação evolutiva desses atributos ser conhecida e ter se dado possivelmente em reposta ao dilema de pólen, pouco se sabe sobre a evolução, bem como sobre as pressões seletivas que levaram ao surgimento e manutenção desse dimorfismo, especificamente dentro dessas grandes famílias (Endress, 1994; Vallejo-Marín et al., 2010).

Nesse sentido, a família Melastomataceae, que surgiu há aproximadamente 93 milhões de anos, época em que ocorreu a radiação adaptativa da polinização biótica, é um excelente modelo de estudo (Crane, 2004; Sytsma et al., 2004; Brito et al., 2017; Caetano et al., 2018a; Cardinal et al., 2018). A família, pertencente à ordem Myrtales, compreende aproximadamente 170 gêneros e cerca de 5400 espécies que ocupam grande parte da região tropical do globo e apresenta, em sua maioria, anteras falciformes com deiscência poricida e polinização por vibração. Por outro lado, muitas outras espécies apresentam sistema reprodutivo independente de polinizadores, podendo até serem apomíticas, como é o caso de muitas espécies da tribo Miconieae (Buchmann, 1983; Renner, 1993; Clausing & Renner, 2001; Goldenberg et al., 2015; Brito et al., 2017; Caetano et al., 2018b). Nessa família, o surgimento do dimorfismo estaminal deve estar correlacionado a aspectos mais gerais da reprodução das plantas, como seu sistema reprodutivo. Uma vez que a pressão de seleção imposta pelas abelhas deve ser maior em plantas que tem sua reprodução dependente de polinizadores, e o dimorfismo de estames efetivamente resolve o "dilema de pólen" (Clausing & Renner, 2001; Luo et al., 2008), a evolução do dimorfismo de estames deve estar relacionada à dependência destes vetores. Por outro lado, em plantas que se reproduzem autonomamente, a pressão de seleção deve ser menor ou mesmo nula. Assim, espera-se que plantas dependentes de polinizadores sejam mais especializadas e tenham maior dimorfismo estaminal que as plantas que independem de polinizadores. Ainda, uma vez que a pressão de seleção imposta pelos polinizadores leva a mudanças na morfologia floral, as taxas de especialização e diversificação devem ser maiores em plantas que dependem de polinizadores e apresentam determinadas especializações florais como o dimorfismo estaminal. Além disso, apesar do fato de que a maioria das espécies de Melastomataceae compartilha uma única síndrome de polinização geral (buzz-pollination) e algumas estruturas florais serem conservadas (e.g. corola), existe uma grande variedade de morfologias florais observada em toda a família. O androceu é particularmente instável e apresenta uma grande diversidade de formas, tamanhos, cores, graus de alongamento, presença ou ausência de conectivo e apêndices, morfologia e tamanho dos poros (Renner, 1989; Reginato & Michelangeli, 2016). Por isso, é possível que exista também uma correlação evolutiva entre as estruturas florais, principalmente nas flores que dependem dos polinizadores.

Nesse trabalho, pretendemos compreender o processo de diferenciação dos estames ao longo do tempo evolutivo de Melastomataceae, assim como as taxas evolutivas decorrentes desse processo, e sua relação com o sistema reprodutivo das plantas e com outros atributos florais. Acreditamos que o dimorfismo estaminal surgiu mais de uma vez dentro da família e que existe uma evolução correlacionada entre esse dimorfismo e o sistema reprodutivo dependente de polinizador, além de um efeito nas taxas evolutivas. Especificamente, procuramos responder: 1) como evoluiu a diferença no tamanho dos estames das flores de Melastomataceae; 2) se o dimorfismo de estames é um atributo conservado ou uma homoplasia dentro do clado de Melastomataceae; 3) se existe sinal filogenético nos estames dos dois ciclos, nas pétalas e no estilete das flores de Melastomataceae; 4) se ocorreu evolução correlacionada entre o dimorfismo de estames e o tipo de sistema reprodutivo bem como o tamanho dos estiletes e das pétalas; 5) se a presença ou ausência do dimorfismo de estames tem efeito nas taxas evolutivas dentro de Melastomataceae.

MATERIAL E MÉTODOS

Família de estudo

Melastomataceae é uma das maiores famílias de Angiospermas com espécies herbáceas, arbóreas, arbustivas, lianas e epífitas (Renner, 1993; Clausing & Renner, 2001). Embora distribuída de forma pantropical, a família tem uma concentração marcante de espécies no neotrópico (Renner, 1993; Clausing & Renner, 2001; Almeda, 2009; Oliveira da Silva et al.,

2014). Essa mesma abrangência pode ser vista em uma das mais diversas tribos desta família, Melastomateae, que também é pantropical e tem cerca 870 espécies (Michelangeli et al., 2013), sendo a maioria (ca. de 570 espécies) encontrada na América do Sul (Renner, 1993; Michelangeli et al., 2013). Esse sucesso na diversificação e colonização de diferentes ambientes tem sido proposto como consequência da prevalência da polinização por vibração de abelhas ou *buzz-pollination*, que levaria a extrema especialização e a um equilíbrio num "pico adaptativo" em Melastomataceae (Macior, 1971). Porém, o termo "planalto adaptativo" é provavelmente mais apropriado, uma vez que trabalhos recentes mostram que pode ocorrer troca de polinizadores e alterações complexas na oferta de recursos e na morfologia floral (Brito et al., 2016; Reginato & Michelangeli, 2016; Dellinger et al., 2018). Além disso, muitas espécies nessa família apresentam sistema de reprodução por sementes independente de polinizadores, sendo conhecidos diversos casos de apomixia (Caetano et al., 2018b).

Espécies de estudo

A coleta de marcadores moleculares foi feita no GenBank, em fevereiro de 2018 (https://www.ncbi.nlm.nih.gov/genbank/). Estavam disponíveis informações para 1842 espécies de Melastomataceae com pelo menos um marcador molecular. Dessas, foram selecionadas 336 espécies, para as quais também havia descrições taxonômicas detalhadas da morfologia floral na literatura. Essas espécies abrangem todas as 14 tribos atualmente reconhecidas em Melastomataceae e 56 dos 170 gêneros aceitos (32,9% da diversidade de gêneros) incluindo toda a distribuição da família. Para composição do grupo externo foram selecionadas 9 espécies que pertencem ao clado CAP (Crypteroniaceae, Alzateaceae, Penaeaceae), grupo irmão à Melastomataceae: *Alzatea verticillata* (Alzateaceae), *Brachysinphon acutus* (Penaeaceae), *Cryteronia griffithii, Cryteronia paniculata*

(Crypteroniaceae), Olinia ermaginata, Olinia ventosa, Rhynchocalyx lawsonioides, Penaea mucronata e Saltera sarcocolla (Penaeaceae).

Inferência filogenética

O conjunto de dados moleculares foi filtrado para incluir os marcadores mais comuns entre as espécies selecionadas e inclui sete marcadores plastidiais e dois nucleares. Os dados plastidiais são compostos por três espaçadores inter gênicos (*accD-psaI*, *atpF-atpH*, *psbK-psbI* e trnS-trnG), dois genes codificadores de proteínas (*ndhF* e rbcL) e um intron (*rpl16*), e os dados nucleares são baseados em dois espaçadores ribossomais (nrETS e nrITS). Os acessos do Genbank para todas as sequências incluídas nesta análise estão disponíveis na Tabela S1.

Os loci individuais foram alinhados com o MAFFT 7.3 (Katoh & Standley, 2013) usando a estratégia G-INS-i. O melhor esquema de particionamento de DNA e modelos foram estimados com o PartitionFinder2 (Lanfear et al., 2012) sob o critério BIC. O melhor esquema resultou em cinco partições (1. *accD-psaI*, *psbK-psbI* e *trnS-trnG*; 2. *atpF-atpH*, *ndhF* e *rpl16*; 3. *rbcL*; 4. nrETS; 5. nrITS), no qual o modelo GTR + G foi recuperado como o melhor ajuste para todas as partições (Tabela S2).

A inferência de árvores e a estimativa do tempo de divergência foram realizadas sob uma estrutura bayesiana implementada em BEAST 2.5.0 (Bouckaert et al., 2012). A inferência filogenética foi realizada a partir de 345 táxons, incluindo as nove espécies do clado CAP tratadas como grupo externo. O relógio molecular foi ajustado para *log* normal não correlacionado e a árvore foi ajustada para o modelo Yule. Restrições de calibração de fósseis e secundárias foram colocadas em três nós, incluindo: 1. MRCA (most recent common ancestor) de Melastomataceae (anterior = *log* normal, média 1, s.d. 1, desvio 56), baseada no fóssil da folha do Paleoceno *Melastomites montanensis* (Brown, 1962); 2. Núcleo de *Rhexia* +

Arthrostemma (anterior = log normal, média 1, s.d. 1, offset 20), baseada em fósseis de sementes do Mioceno (Collison & Pingen, 1992); 3. Núcleo do clado CAP (antes normal, média 52,7, s.d. 6), com base na idade estimada recuperada em uma análise mais ampla de Myrtales (Berger et al., 2016). Realizamos duas execuções independentes de 50 milhões de gerações cada, amostrando a cada 1.000 gerações e as distribuições posteriores estáveis das séries independentes foram combinadas com o LogCombiner v.1.8.0. A convergência foi avaliada usando Tracer v.1.6 (Rambaut et al., 2014), e as corridas foram consideradas satisfatórias com valores de ESS maiores que 200. A árvore máxima de credibilidade de clado foi gerada com TreeAnnotator v.1.8.0. Essa árvore filogenética foi utilizada como base para os cálculos de sinal filogenético e reconstrução dos caracteres ancestrais.

Atributos florais

A coleta dos dados morfológicos dos atributos florais das espécies escolhidas foi realizada por consulta na literatura específica por meio do Portal Periódicos Capes (www.periodicos.capes.gov.br), além de teses e dissertações homologadas que continham descrições e revisões taxonômicas. Foram coletados dados sobre os seguintes atributos: comprimento médio dos estames antepétalos e antessépalos, da pétala e do estilete, uma vez que essas estruturas florais possuem papel fundamental nas estratégias de atração, polinização e reprodução (Tabela S3). Neste trabalho tratamos heteranteria como dimorfismo estaminal, caracterizado pela diferença de tamanho entre os estames, não levando em consideração outros dimorfismos como os que ocorrem somente na cor, odor e/ou na forma dos mesmos (Solís-Monteiro & Vallejo-Marín, 2017; Velloso et al., 2018;). A coleta de dados dos atributos florais excluiu espécies cujas descrições taxonômicas não apresentavam nenhum dado sobre os atributos de interesse para esse estudo.

Para descrever a diferença no tamanho dos estames calculamos um Índice de Dimorfismo de Estames (IDE),

$$IDE = S - s/S + s$$

Onde, S é o comprimento dos estames antessépalos, geralmente maiores e envolvidos na polinização, e s é o comprimento dos estames antepétalos, geralmente menores e com função de alimentação. Esse índice varia de -1 a 1, sendo 0 a ausência de dimorfismo e -1 e 1 são o máximo de dimorfismo encontrado nas análises. Os valores negativos acontecem quando os estames antepétalos são maiores que os estames antessépalos, com a possível manutenção das funções de alimentação e polinização em ciclos de estames diferentes do que comumente acontece na família. No gênero Rhynchanthera, o dimorfismo estaminal ocorre entre estames de um mesmo ciclo e por isso consideramos nesses casos o tamanho dos estames, e não a sua posição (antessépalos e antepétalos), como critério de classificação em um tipo estaminal ou outro. Como a diferença do comprimento dos estames está dividida pela soma, o valor de dimorfismo de estames corrige quaisquer idiossincrasias das descrições morfológicas de diferentes taxonomistas.

Reconstrução de caracteres ancestrais

A verificação da presença de atributos conservados ou homoplasias foi feita a partir da análise da reconstrução de caráteres ancestrais, que possibilita a inferência de quantas vezes um determinado atributo apareceu ao longo do tempo evolutivo da família Melastomataceae. A reconstrução do dimorfismo de estames foi feita em 345 espécies, incluindo as nove espécies do grupo externo CAP, considerando ausência ou a presença desse atributo, ou seja, espécies que apresentam valores de 0 ou diferentes de 0 respectivamente. Para os demais atributos, fizemos a reconstrução considerando o *log* dos valores de comprimento para as 336 espécies de

Melastomataceae, excluindo o grupo externo. Para o atributo estilete foram utilizadas 295 espécies, já que 42 espécies não apresentavam a informação de comprimento do estilete nas descrições taxonômicas. Para a reconstrução da história evolutiva de todos os atributos utilizamos a função *ace* do pacote estatístico *ape* (Paradis et al., 2018) e a função *fastAnc* do pacote *phytools* (Revell, 2012) no ambiente R 3.5.1 (R Core Team, 2018). Essa função estima o estado ancestral e a incerteza associada para caracteres contínuos e discretos.

Sinal filogenético

Espécies filogeneticamente próximas tendem a compartilhar características florais semelhantes, utilizando estratégias de polinização e reprodução também similares. Essa tendência evolutiva é chamada inércia filogenética e é medida pelo sinal filogenético (Blomberg & Garland, 2002). Essa medida é importante para detectar a conservação de nicho filogenético de uma linhagem, ou seja, a tendência da linhagem filogenética de manter suas funções ecológicas ao longo do tempo (Wiens, 2004). Para isso, calculamos o valor de K de Blomberg (Blomberg et al., 2003), utilizando a função *phylosig* disponível no pacote estatístico *phytools* (Revell, 2012) do ambiente R. A análise foi feita a partir da tabela de dados dos atributos, considerando 336 espécies para o cálculo do sinal filogenético do *log* do comprimento das pétalas e dos estames e também a partir do valor do IDE. Para cálculo do sinal filogenético do *log* do comprimento do estilete foram utilizadas 295 espécies.

O cálculo gera um valor de K, que é uma razão de erros quadrados médios, sendo o numerador o erro assumindo independência entre as espécies e denominador o erro corrigido pela covariância filogenética. Valores altos indicam que a correção filogenética diminui o erro, enquanto que valores baixos indicam que a correção aumenta o erro. Como esses valores variam entre diferentes filogenias, a razão é dividida pela razão esperada diante da filogenia e sob

movimento browniano. Sendo assim, valores iguais a 1 significam estrutura filogenética esperada por movimento browniano, K maiores que 1 representam atributos mais estruturados que o esperado por movimento browniano e 0 significa ausência de estrutura filogenética (Blomberg et al., 2003).

Evolução correlacionada

Para verificar se a existência do dimorfismo de estames está correlacionada com o comprimento das pétalas e do estile, e ainda, testar se existe uma relação entre o IDE e o sistema de polinização dependente ou independente de polinizadores para reprodução, utilizamos testes de correlação entre os atributos citados. Para isso, utilizamos o método quadrados mínimos filogenéticos generalizados que visa verificar se existe uma relação entre duas (ou mais) variáveis, através da função gls do ambiente R, função que faz parte do pacote estatístico nlme (Pinheiro et al., 2018) e também o pacote estatístico geiger (Harmon et al., 2008). Para os testes de correlação consideramos n = 235 espécies que apresentam valores de IDE diferentes de 0 e para os testes nos quais o valor do estilete foi considerado, a lista foi reduzida para n = 210. Para essa análise, as espécies faltantes foram retiradas da árvore utilizada anteriormente. Por fim, para os testes de correlação entre o sistema de polinização (dependente ou independente) e o IDE foram consideradas n = 81 espécies, para as quais encontramos descrições sobre o sistema de polinização. Esses dados, assim como as referências dessas descrições estão disponíveis na Tabela S3.

Taxas evolutivas

Para verificar o efeito da presença e ausência do dimorfismo estaminal nas taxas evolutivas de diversificação, extinção e especiação nas flores das espécies de Melastomataceae consideradas nesse estudo, utilizamos o modelo BiSSE ("Binary State Speciation and Extinction") (Maddison et al., 2007). Esse modelo tem por finalidade verificar o efeito que a presença ou ausência que determinado atributo pode ter nas taxas evolutivas, considerando inclusive as possíveis transições entre os estados. Utilizamos também o pacote hisse (Hidden State Speciation and Extinction) (Beaulieu & O'Meara, 2016) que além do caractere em foco, também analisa o possível efeito de caracteres "ocultos" (i.e., não analisados) como responsáveis por mudanças nas taxas de diversificação ao longo da filogenia. O hisse consegue distinguir taxas de diversificação líquidas mais altas aninhadas em clados que exibem um estado de caractere específico, podendo fornecer testes mais significativos de diversificação independente de caractere (CID) por meio de seu uso como um tipo diferente de modelo nulo e, portanto, possibilita uma compreensão muito mais refinada de como os estados característicos observados podem influenciar o processo de diversificação. Diversos modelos com foram comparados, incluindo o BiSSE completo (com todos os parâmetros livres), variações do BiSSE com constraints nos três parâmetros, BISSE (equal speciation), BiSSE (equal extinction) e o modelo nulo foi o CID2, a partir do hisse. A comparação dos modelos foi realizada com máxima verossimilhança, utilizando o critério de AIC com o pacote hisse. Adicionalmente, as taxas de especiação, extinção, transição entre os estados e diversificação (especiação - extinção) foram estimadas em um arcabouço bayesiano sob o modelo BiSSE completo com o pacote diversitree (FitzJohn et al., 2012). Todas essas análises foram realizadas no ambiente R 3.5.1 (R Core Team, 2018).

RESULTADOS

Evolução do dimorfismo de estames e sinal filogenético

A subfamília Olisbeoideae, as tribos Bertolonieae, Blakeeae, Cyphostyleae, Henrietteeae, Miconieae e Merianieae, e os gêneros *Catanthera* e *Medinilla* (Sonerileae), *Rhexia* (Rhexieae) apresentaram os menores valores de IDE tendo, portanto, a menor diferença entre os tamanhos dos dois ciclos de estames (Tabela S3). Em grande parte das espécies os estames do ciclo antessépalo são maiores que os estames do ciclo antepétalo, sendo o valor do IDE positivo, exceto em *Meriania brevipedunculata*, *M. parvifolia*, *M. squamulosa e Siphanthrera subtilis*, onde os estames do ciclo antepétalo são maiores e o IDE é negativo (Tabela S3).

Na tribo Cambessedesieae é possível perceber, ainda que de maneira sútil, uma maior diferenciação entre os ciclos de estames que as outras tribos próximas a ela na filogenia, como Bertolonieae e Cyphostyleae. Já espécies dos gêneros *Bredia* e *Fordiophyton* (Sonerileae), *Arthrostemma* (Rhexieae), *Chaetostoma*, *Lavosiera* e *Rhynchanthera* (Microlicieae), *Acisanthera* e *Siphanthera* (Marcetieae), *Centradenia* e *Tibouchina* (Melastomateae) e *Conostegia* e *Miconia* (Miconieae), foram os que apresentaram os maiores valores de IDE. O maior índice de dimorfismo estaminal foi verificado para *Siphanthera cordifolia*, (IDE = 0,454), seguido de *Acisanthera limnobios* (IDE = 0,428), *Siphanthera fasciculata* (IDE = 0,428) e duas espécies do gênero *Fordiophyton* (IDE = 0,428 e 0,419) (Tabela S3).

A relação filogenética entre as espécies da família está de acordo com filogenias moleculares recentes realizadas para diferentes grupos pertencentes à família (Clausing & Renner, 2001; Ionta & Judd, 2007; Goldenberg et al., 2008; Meirelles, 2015; Zeng et al., 2016; Veranso-Libalah et al., 2017). Embora não exista um bom suporte para se saber se existia ou não dimorfismo de estames no ancestral comum da família, essa condição surgiu pelo menos 12 vezes ao longo da história evolutiva de Melastomataceae (Figura 1). Além disso, existem

alguns casos de reversões, onde anteras isomórficas surgem a partir de estames dimórficos. O sinal filogenético (K) foi baixo (< 0,15) para todos os atributos considerados, indicando que os atributos florais foram muito lábeis durante o tempo evolutivo analisado (Tabela S4). As reconstruções filogenéticas para as pétalas, os dois ciclos de estames e o estilete estão disponíveis no Material Suplementar – Figuras S1, S2, S3 e S4).

Evolução Correlacionada

Maiores valores de IDE evoluíram em conjunto com plantas que dependem dos polinizadores para se reproduzirem (t = -2,9748; p < 0,01) (Figura 2). Também houve correlação evolutiva entre o IDE e o comprimento das pétalas (r = 0,6578; p < 0,01) (Figura 3), mas não entre IDE e o comprimento do estilete (r = 0,0715; p > 0,05). Por outro lado, a evolução do IDE esteve correlacionada positivamente ao comprimento dos estames antessépalos (r = 0,2897; p < 0,05) e negativamente ao comprimento dos estames antepétalos (r = -0,6079; p < 0,01). A evolução do comprimento das pétalas também esteve correlacionada negativamente com a evolução do comprimento dos estames antepétalos (r = - 0,1152; p < 0,01), mas não houve correlação evolutiva entre o tamanho das pétalas e o tamanho dos estames antessépalos (r = -0,0576; p > 0,05). O estilete também apresenta correlação com o comprimento das pétalas (r = 0,6812; p < 0,01), mas não com o comprimento dos estames dos dois ciclos (estames antepétalos: -0,0970, p > 0,05; estames antessépalos: -0,0895, p > 0,05). Entre os dois ciclos de estames antessépalos e antepétalos também existe uma correlação positiva (r = 0,8831; p < 0,01). Os valores das correlações entre os atributos estão disponíveis na Tabela 1.

Taxas Evolutivas

A comparação dos modelos utilizados mostra que as taxas de especiação são diferentes entre espécies com presença ou ausência de IDE, porém, o modelo nulo CID2, que compara a diversificação (especiação menos extinção) não foi rejeitado (Tabela 2). O modelo mais adequado foi o CID2 nulo, ou seja, existe variação nas taxas de diversificação entre as linhagens, mas não necessariamente devido ao caractere foco da analise (dimorfismo de estames), e sim, por uma (ou mais) características que não foram analisadas (ocultas).

As taxas de diversificação, são mais altas nas linhagens com dimorfismo, que nas linhagens sem dimorfismo de estames, que também apresentam mais perdas desse atributo do que ganhos (Figura 4). Essa maior diversificação esteve associada tanto a maiores taxas de extinção quanto a maiores taxas de especiação nas linhagens que são dependentes de polinizadores para a reprodução (Figuras S5 e S6).

DISCUSSÃO

O dimorfismo de estames surgiu em diferentes momentos e clados ao longo da história evolutiva de Melastomataceae, não sendo, portanto, um caráter conservado. Esse atributo floral, bem como os outros atributos aqui estudados, é altamente lábil ou plástico durante a evolução e apresenta baixo sinal filogenético. De forma geral, o dimorfismo de estames surgiu predominantemente em plantas com flores maiores que dependem de polinizadores em razão da diminuição dos estames antepétalos e aumento dos estames antessépalos. Apesar de detectarmos um aumento tanto das taxas de diversificação em clados com dimorfismo de estames, o modelo nulo não foi rejeitado. Assim, é possível que especialização floral morfológica e ecológica pode ter levado a irradiação adaptativa mediada pelos polinizadores dentro de uma das maiores famílias de plantas com flores, como se acredita ter acontecido com o resto das angiospermas (Fenster et al., 2004; Friedman, 2009; Stockey et al., 2009, Cardinal

& Danforth, 2013). No entanto, os resultados sugerem que a assimetria na diversificação destas linhagens de Melastomataceae não pode ser explicada apenas pela simples presença e ausência de dimorfismo. Logo, uma série de outras características fenotípicas, ecológicas e biogeográficas, juntamente com o dimorfismo, precisarão ser analisadas em conjunto para explicar tal padrão.

Não existem evidências suficientes para saber se o dimorfismo estaminal estava presente no ancestral de Melastomataceae. Levando em consideração que nenhuma das espécies do grupo irmão de Melastomataceae (clado CAP) apresenta diferença de tamanho entre os estames (Vasconcelos, 2013), sugerimos que o caráter plesiomórfico nesta família é a ocorrência de estames isomórficos, e que o dimorfismo de estames tenha surgido através de eventos evolutivos independentes e não herdados diretamente do caráter plesiomórfico do ancestral comum da família. O dimorfismo estaminal parece ter surgido pelo menos 12 vezes ao longo do tempo evolutivo dentro da família. Ainda, reversões da condição de estames dimórficos para estames isomórficos são possíveis. Estes resultados indicam uma certa plasticidade evolutiva do caráter, que pode resultar de pressões seletivas distintas mediadas por diferentes estratégias reprodutivas em espécies da família.

O dimorfismo de estames e a deiscência poricida da antera surgiram em momentos evolutivos diferentes em Melastomataceae. O dimorfismo de estames ocorre em Olisbeoideae, subfamília basal da família, onde as anteras não têm uma deiscência poricida verdadeira (Clausing & Renner, 2001). Entretanto, apesar da deiscência rimosa das anteras em membros desse clado, a liberação dos grãos de pólen também se dá através da vibração do corpo das abelhas (Buchmann & Buchmann, 1981; Oliveira et al., 2016). Isso reforça a ideia de que dimorfismo estaminal e a liberação de pólen através da vibração evoluíram de maneira correlacionada, como aconteceu para a maioria dos clados que apresentam flores de pólen (Vallejo-Marín et al., 2010).

Dadas as correlações evolutivas com sinais contrários entre o dimorfismo de estames e o comprimento dos estames do ciclo antessépalo e antepétalo, podemos entender que a evolução do dimorfismo estaminal se dá a partir do crescimento dos primeiros e da diminuição dos últimos. Assim, atualmente, a maioria das espécies com dimorfismo estaminal apresentam os estames antessépalos maiores que os antepétalos. Dessa forma, é possível que tenha ocorrido *evolução de novo* do dimorfismo de estames diversas vezes e que esta condição esteja muitas vezes associada a rotas de desenvolvimento floral similares (Schranz & Osborn, 2004). De fato, a ontogenia das flores em diferentes grupos de Melastomataceae segue alguns processos semelhantes, e os estames antessépalos se desenvolvem anteriormente aos estames antepétalos, o que pode deixar mais recursos disponíveis para os primeiros (Basso-Alves, 2016).

Apesar disso, o dimorfismo estaminal também pode ocorrer pela diferença de tamanho entre estames de um mesmo ciclo, como nas espécies do gênero *Rhynchanthera*, que apresentam um dos dois ciclos de estames reduzido a estaminódios (Kriebel, 2016). Ainda, no clado Merianieae - *Meriania brevipedunculata, M. parvifolia e M. squamulosa*, e no clado Marcetieae - *Siphanthrera subtilis*, o dimorfismo de estames aparece de maneira invertida, sendo os estames antepétalos maiores que os estames de antessépalos (Michelangeli, 2015; Almeida & Robinson, 2011). Esses dados nos mostram que a pressão de seleção que favorece o dimorfismo estaminal é tão forte que a solução morfológica pode também se expressar de diferentes formas e por diferentes vias ontogenéticas. Além disso, todas essas variações mencionadas aconteceram em tempos e espaços diferentes desde o surgimento da família, independentemente do local de origem do ancestral. Isso demonstra que a pressão de seleção nessas estruturas esteve presente desde o início da diversificação e em diferentes hábitats de ocorrência dessas flores, o que corrobora o papel fundamental da presença das abelhas vibradoras nesse processo, que tem distribuição espacial ampla no globo terreste (Cardinal et al., 2018).

A alta maleabilidade de atributos florais ao longo do tempo evolutivo, principalmente estames, também já foi encontrada para outros clados de angiospermas (Stebbins, 1950; Knight et al., 2005; Johnson, 2006; Taylor, 2009). Essas mudanças evolutivas na estrutura das flores podem estar relacionadas a especialização dos atributos envolvidos no processo de polinização diante da pressão seletiva exercidas pelos polinizadores (Cardinal & Danforth, 2013; Dellinger et al., 2018). De fato, o baixo sinal filogenético e a reconstrução da história evolutiva das estruturas florais estudadas corroboram a ideia de que durante a evolução das flores houve uma grande variabilidade de fenótipos dentro das linhagens e alta homoplasia (Gittleman et al., 1996; Silvertown et al., 2006; mas veja Vasconcelos et al., 2018). Ao mesmo tempo, também existem fortes pressões de seleção sobre as abelhas que favoreceram um comportamento complexo de coleta de pólen, já que competição interespecífica pelo pólen é frequente e tem grandes efeitos sobre sua aptidão (Cane & Tepedino, 2016). A sonicação (capacidade vibratória da abelha), surgiu há aproximadamente a 125 milhões de anos e permite a coleta eficiente de pólen a partir de diversas morfologias florais, garantindo o acesso restrito ao pólen nas flores de anteras poricidas (Cardinal et al., 2018). Essas anteras poricidas dificultam ou mesmo não permitem a coleta de pólen por outros insetos polinívoros, principalmente abelhas que não são capazes de fazer vibração (Buchmann, 1983; Russell et al., 2017). Assim, como o tempo de diversificação da família é mais recente que a idade estimada para o surgimento das abelhas, que por sua vez é concomitante com a primeira aparição de grãos pólen tricolpado (Cardinal & Danforth, 2013), parte da diversificação das flores de Melastomataceae pode ser atribuída à exploração de um nicho comportamental de abelhas que já existia anteriormente ao seu surgimento.

Durante a história evolutiva das Melastomataceae, flores com maior diferença entre os estames surgiram em plantas que são dependentes dos polinizadores para reprodução. Além disso, dimorfismos de estames mais expressivos evoluíram conjuntamente com flores maiores.

Assim, a pressão de seleção exercida pelas abelhas que coletam pólen e polinizam ao mesmo tempo favoreceu o dimorfismo de estames em flores grandes (Delph, 1996; Kettle et al., 2011). Embora a evolução do dimorfismo de estames se deu a partir da redução do comprimento dos estames menores (de alimentação) e crescimento dos maiores (de polinização), apenas o comprimento dos estames de alimentação está evolutivamente correlacionado ao comprimento das pétalas. Acreditamos que exista uma limitação de espaço e recursos durante o desenvolvimento das pétalas e dos estames antepétalos, levando a um conflito entre o investimento em atração (tamanho das pétalas) e recompensa aos polinizadores (tamanho dos estames antepétalos). De fato, em grande parte das espécies de Melastomataceae, especificamente nas que apresentam estames dimórficos, a planta parece investir menos no tamanho dos estames antepétalos e mais no tamanho das pétalas, o que reduziria a produção de pólen que será utilizado como recurso pelas abelhas, já que este é um recurso energeticamente caro (Luo et al., 2008). Além disso, os estames antepétalos e as pétalas compartilham a mesma região do feixe vascular que circunda o hipanto nas flores de Melastomataceae (Basso-Alves, 2016). Em flores de pólen, o investimento no tamanho dos estames antepétalos poderia ser destinado a outras estruturas, como os apêndices e conectivos, para os quais já se conhece a importância no processo de atração de polinizadores, seja pela cor ou pela produção de odores específicos (Solís-Monteiro & Vallejo-Marín, 2017; Veloso et al., 2018).

Em flores de pólen grandes, a competição entre abelhas e flores pela carga de pólen deve ser maior, pois nestas flores a razão pólen:óvulo é supostamente menor do que em flores pequenas (Luo et al., 2008; Vallejo-Marín et al., 2009; Vallejo-Marín et al., 2014). Juntamente com a evolução dessas flores maiores e com maior dimorfismo de estames ocorreu o crescimento dos estiletes. O comprimento desse atributo é estratégico, pois permite o contato em *safe sites* no corpo da abelha, onde os grãos de pólen não podem ser coletados, e garante o processo de polinização (Westerkamp, 1996; Lunau et al., 2014). A falta de correlação direta

entre o comprimento dos estiletes e o comprimento dos estames antessépalos deve ocorrer devido a liberação em jato da carga polínica que faz com que um acoplamento perfeito entre esses não seja necessário (Vallejo-Marín et al., 2010). Por outro lado, em flores pequenas, uma pequena porção do pólen remanescente deve ser suficiente para garantir o sucesso feminino quando não há o dimorfismo de estames. Além disso, a redução na proporção relativa de pólen alocado para as anteras e a diferenciação morfológica reduzida entre os tipos de estames levaria à maior proximidade entre as anteras e o estigma e ao aumento da taxa de autofecundação (Luo et al., 2008; Vallejo-Marín et al., 2014). De fato, a falta de dimorfismo de estames é mais comum em clados em que a ocorrência de sistemas de polinização autônomos, principalmente apomixia, são recorrentemente reportados, como a tribo Miconieae (Caetano et al. 2018b). Mais ainda, a menor pressão de seleção para o dimorfismo estaminal pode estar relacionada ao desaparecimento dos fenótipos florais complexos e mais especializados nessas flores menores (Vallejo-Marín et al., 2014).

Somente o dimorfismo de estames não é suficiente para explicar as diferenças nas taxas de diversificação das linhagens em Melastomataceae, uma vez que algumas linhagens com pouco ou mesmo sem dimorfismo de estames, como a tribo Miconieae, apresentam altas taxas de diversificação (Berger et al., 2016). Porém esse pode ser o caso para certas linhagens, principalmente as de flores relativamente grandes com maior dimorfismo de estames. Esse resultado reforça a ideia de que polinizadores especializados podem ser agentes diretos do processo de diversificação das plantas com flores a partir do aumento da especialização da morfologia floral (Fenster et al., 2004; Johnson et al., 1998). Entre as abelhas que possuem o comportamento de sonicação para a coleta de pólen, existem uma enorme variedade de formas e tamanhos de corpo e isso pode ter dirigido a evolução do dimorfismo de estames e consequente especiação das Melastomataceae de acordo com a guilda local dos polinizadores mais efetivos nessas linhagens (Cardinal et al., 2018; Johnson & Steiner, 1997; Stebbins, 1970).

Nossos resultados fornecem um passo importante no estudo da evolução das adaptações morfológicas dos atributos florais e funcionais em relação a polinizadores especializados dentro uma família com alta diversidade floral. A evolução do dimorfismo de estames está correlacionada com a dependência de polinizadores para a reprodução principalmente em flores relativamente grandes. Assim, os polinizadores provavelmente execeram sobre as flores uma pressão de seleção que potencialmente influenciou as taxas de diversificação em certas linhagens de uma das maioiores famílias de angiospermas hoje existentes.

REFERÊNCIAS

- **Almeda F. 2009.** Melastomataceae. In: Davidse, G., Sousa-Sánchez, M., Knapp, S. & Chiang, F. (eds.), Flora Mesoamericana 4(1): 164–338.
- Almeida F & Robinson OR. 2011. Systematics and phylogeny of Siphanthera (Melastomataceae). Systematic Botany Monographs 93: 1-101.
- **Anderson B & Johnson SD. 2007.** The geographical mosaic of coevolution in a plant-pollinator mutualism. Evolution. 62:220–225
- **Basso-Alves JP. 2016.** Morfologia comparada da flor de Melastomataceae Juss. (219 p.). Tese de doutorado Universidade Estadual de Campinas, Instituto de Biologia, Campinas, SP.
- **Beaulieu JM & Donoghue MJ. 2013**. Fruit evolution and diversification in campanulid angiosperms. Evolution 67:3132–3144.
- **Beaulieu JM & O'Meara BC. 2016.** Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Systematic Biology. 65:583-601.

- **Berger BA, Kriebel R, Spalink D, Sytsma KJ. 2016**. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95: 116–136.
- **Blomberg SP & Garland TJr. 2002**. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology. 15:899–910
- **Blomberg SP, Garland T & Ives AR. 2003**. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57:717-745.
- RD, Suchard MA & Atkinson QD. 2012. Mapping the Origins and Expansion of the Indo-European Language Family. Science, 337(6097), 957-960.
- **Brito VLG, Fendrich TG, Smidt EC, Varassin IG, Goldenberg R. 2016**. Shifts from specialised to generalised pollination systems in Miconieae (Melastomataceae) and their relation with anther morphology and seed number. Plant Biology 18: 585–593.
- Brito VLG, Maia FR, Silveira FAO, Fracasso CM, Lemos-filho JP, Fernandes GW, Staggemeier VG. 2017. Reproductive phenology of Melastomataceae species with contrasting reproductive systems: contemporary and historical drivers. Plant Biology, 19 (5), 806-817. DOI: 10.1111/plb.12591
- **Brown RW. 1962**. Paleocene flora of the Rocky Mountains and Great Plains. U.S. Geological Survey. 375: 1–119.
- **Buchmann SL & Buchmann MD. 1981.** Anthecology of Mouriri myrtilloides (Melastomataceae: Memecyleae), an oil flower in Panama. Biotropica, 13: 7–24.

- **Buchmann SL. 1983**. Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology, 1st edn. Van Nostrand Reinhold, New York, pp 73–113.
- **Burger D. 1990**. Early Cretaceous angiosperms from Queensland, Australia. Review of palaeobotany, Palynol. 65: 153-163
- Caetano APS, Basso-Alves J, Cortez P, Brito VLG, Michelangeli F, Reginato M, Goldenberg R, Carmello GS & Teixeira S. 2018a. Evolution of the outer ovule integument and its systematic significance in Melastomataceae. Botanical Journal of the Linnean Society. 186. DOI: 10.1093/botlinnean/box093.
- Caetano APS, Cortez PA, Teixeira SP, Oliveira PE, Carmello-Guerreiro Plant SM. 2018b.

 Unusual diversity of apomictic mechanisms in a species of Miconia,

 Melastomataceae Systematics and Evolution. 304: 343. DOI: 10.1007/s00606-017
 1480-1
- Cane JH & Tepedino VJ. 2017. Gauging the Effect of Honey Bee Pollen Collection on Native Bee Communities. Conservation letters, 10: 205-210. DOI:10.1111/conl.12263
- Cardinal S, Buchmann SL & Russell AL, 2018. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila). Evolution, 72: 590-600. doi:10.1111/evo.13446
- Cardinal S, Danforth BN. 2013. Bees diversified in the age of eudicots. Proceedings of the Royal Society B, 280: 20122686. Doi: 10.1098/rspb.2012.2686
- Clausing G & Renner SS. 2001. Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. American Journal of Botany 88(3): 486–498.

- Collinson ME & Pingen M. 1992. Seeds of the Melastomataceae from the Miocene of Central Europe. In: Kovar-Eder J, ed. Paleovegetational development in Europe and regions relevant to its palaeofloristic evolution. Vienna: Museum of Natural History, 129-139.
- Cook BI, Mann ME, D'Odorico P & Smith TM, 2004. Simulação estatística do NAO nas temperaturas da superfície de inverno na Europa: aplicações à modelagem fenológica.

 Journal of Geophysical Research. 109, D16106, DOI: 10.1029 / 2003JD004305.
- Crane PR, Herendeen PS & Friis EM. 2004. Fossils and Plant Phylogeny. American Journal of Botany 91: 1683–99.
- **Darwin, C. R. 1879**. Preliminary notice. In Krause, E., Erasmus Darwin. Translated from the German by W. S. Dallas, with a preliminary notice by Charles Darwin. London: John Murray.
- **De Luca PA & Vallejo-Marín M. 2013**. What is the 'buzz' about? The ecology and evolutionary significance of buzz-pollination. Curr. Opin. Plant Biology.16, 429–435 doi:10.1016/j.pbi.2013.05.002
- Dellinger AS, Chartier M, Fernandez-Fernandez D, Penneys DS, Alvear M, Almeda F,

 Michelangeli FA, Staedler Y, Armbruster WS & Sch€onenberger J. 2018. Beyond

 buzz-pollination departures from an adaptive plateau lead to new pollination

 syndromes. New Phytologist. DOI: 10.1111/nph.15468
- **Delph LF. 1996**. Flower size dimorphism in plants with unisexual flowers. DG Lloyd, SCH Barrett, eds. Floral biology: studies on floral evolution in animal-pollinated plants, 217–237 in Chapman& Hall, New York.
- **Dodd ME, Silvertown J & Chase MW. 1999**. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families, Evolution 53, no 3 732-744.

- **Endress PK. 1994**. Diversity and evolutionary biology of tropical flowers. Cambridge: Cambridge University Press.
- Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination Syndromes and Floral Specialization. Annual Review of Ecology, Evolution, and Systematics. 35:1, 375-403. Doi: 10.1146/annurev.ecolsys.34.011802.132347
- **FitzJohn RG. 2012**. *Diversitree*: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution 3:1084-1092.
- **Forbers HO, 1882**. Two Kinds of Stamens with Different Functions in the Same Flower. Nature, 26(669), 386–386. DOI: 10.1038/026386b0
- **Friedman WE**. 2009. "The Meanung of Darwin's 'Abominable Mystery'," American Journal of Botany 96, no 1: 5-21.
- Gittleman JL, Anderson CG, Kot M & Luh HK. 1996. Phylogenetic lability and rates of evolution: a comparison of behavioral, morphological and life history traits. Pp. 166–205 in E. P. Martins, ed. Phylogenies and the comparative method in animal behavior. Oxford University Press, Oxford, U.K.
- Goldenberg R, Almeda F, Sosa K, Ribeiro RC, Michelangeli FA. 2015. Rupestrea: a new Brazilian genus of Melastomataceae, with anomalous seeds and dry indehiscent fruits. Systematic Botany 40: 561–571
- Goldenberg R, Penneys DS, Almeda F, Judd WS, Michelangeli FA. 2008. Phylogeny of Miconia (Melastomataceae): patterns of stamen diversification in a megadiverse Neotropical genus. International Journal of Plant Sciences 169:963–979.
- **Harder LD, Thomson JD, 1989.** Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. American Naturalist. 133, 323–344

- Harmon LJ, Weir JT, Brock CD, Glor RE & Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.
- Ionta GM & Judd WS. 2007. Phylogenetic relationships in Periplocoidea (Apocynaceae) and insights into the origin of pollinia. Annals of the Missouri Botanical Garden 94: 360–375.
- **Johnson SD & Steiner KE. 1997.** Long tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 37: 1210–1226.
- **Johnson SD, Linder HP & Steiner KE. 1998**. Phylogeny and Radiation of Pollination Systems in Disa (Orchidaceae). American journal of botany. 85. 402. 10.2307/2446333.
- **Johnson SD. 2006**. Pollinator-Driven Speciation in Plants. In: Harder, L. D., Barrett, S. C. H, eds. The ecology and evolution of flowers. Oxford: Oxford University Press, 295–310
- Katoh K & Standley DM. 2013. MAFFT: refinamento iterativo e métodos adicionais. Methods Mol Biol. Disponível em: < https://mafft.cbrc.jp/alignment/software/>
- Kay KM, Voelckel C, Yang DY, Hufford KM, Kaska DD & Hodges SA. 2006. Floral Characters and Species Diversification. Ecology and Evolution of Flowers: 311-25.
- Kettle CJ, Maycock CR, Ghazoul J, Hollingsworth PM, Khoo E, Sukri SHR, Burslem DRFP. 2011. Ecological Implications of a Flower Size/Number Trade- Off in Tropical Forest Trees Plosone 6 (2) e16111
- Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, & Tscharntke T. 2006. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274:303–313. DOI:10.1098/rspb.2006.3721

- Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman TL. 2005. Pollen Limitation of Plant Reproduction: Pattern and Process. Annual Review of Ecology, Evolution and Systematics 36: 467–497.
- **Koski MH & Ashman TL. 2016.** Macro evolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors. New Phytologist, 211(2), 708–718. DOI: 10.1111/nph.13921
- **Kriebel R, 2016.** A Monograph of Conostegia (Melastomataceae, Miconieae). PhytoKeys 67: 1–326. DOI: 10.3897/phytokeys.67.6703
- Lanfear R, Calcott B, Simon YWHO, Guindon, S. 2012. PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses, *Molecular Biology and Evolution*, Volume 29, Issue 6, p 1695–1701.
 DOI: 1093/molbev/mss020
- Lunau K, Piorek V, Krohn O & Pacini E, 2014. Just spines-mechanical defense of malvaceous pollen against collection. Apidologie (2015) 46:144–149. DOI: 10.1007/s13592-014-0310-5
- **Luo ZL, Zhang DX, Renner SS. 2008.** Why two kinds of stamens in buzz-pollinated flowers? Experimental support for Darwin's division-of-labour hypothesis. Functional Ecology 22: 794–800.
- **Macior LW, 1971.** Co-evolution of plants and animals systematic insights from plant-insect interactions. Taxon 20:17-28.
- **Maddison WP, Midford PE, Otto SP. 2007.** Estimating a binary character's effect on speciation and extinction. Systematic Biology. 56:701–710

- **Magallon S, 2010**. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Systematic Biology. 59:384–389
- Meirelles J. 2015. Filogenia de Miconia SEÇÃO Miconia SUBSEÇÃO Seriatiflorae E revisão taxonômica do clado albicans (MELASTOMATACEAE, MICONIEAE). Tese de Doutorado. Instituto de Biologia. Universidade Estadual de Campinas.
- Michelangeli FA, Guimaraes PJF, Penneys DS, Almeda F, Kriebel R. 2013. Phylogenetic relationships and distribution of New World Melastomeae (Melastomataceae).

 Botanical Journal of the Linnean Society 171: 38–60.
- Michelangeli FA, Reyes WC & Sosa K. 2015. A synopsys of Meriania (Melastomataceae) for the Greater Antilles with emphasis on the status of the Cuban species. Brittonia 67: 118-137. DOI: 10.1007/s12228-015-9366-4
- Oliveira ALF, 2014. A tribo Melastomateae (Melastomataceae) no estado de Goiás, Brasil.

 Dissertação de mestrado. 133p. Instituto de Biologia. Universidade Federal de Uberlândia.
- Oliveira FS, Ribeiro MHM, Nunez CV & Albuquerque PMC. 2016. Flowering phenology of Mouriri guianensis (Melastomataceae) and its interaction with the crepuscular bee Megalopta amoena (Halictidae) in the restinga of Lençóis Maranhenses National Park, Brazil. Acta Amazonica. VOL. 46(3) 2016: 281 290. DOI: 10.1590/1809-4392201504853
- Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants do animals pollinate?

 Oikos 120:321-326. DOI: 10.1111/j.1600-0706.2010.18644.x

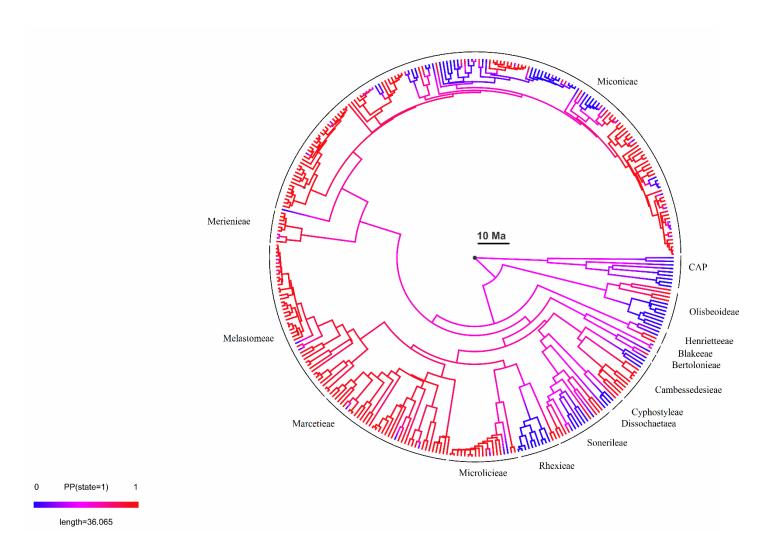
- Ollerton J. 2017. Pollinator diversity: distribution, ecological function, and conservation.

 Annual Review of Ecology, Evolution and Systematics 48: 353–376. DOI: 10.1146/annurev-ecolsys-110316-022919
- **Paradis E & Schliep K. 2018.** *ape* 5.0: um ambiente para filogenética moderna e análises evolutivas em R. Bioinformática.
- **Pellmyr O & Thompson JN, 1992.** Multiple occurrences of mutualismo in the yucca moth lineage. Proceedings of the National Academy of Sciences of USA 89:2927-2929.
- Pinheiro J, Bates D, Debroy S, Sarkar D & R CORE TEAM, 2018. nlme: Modelos de Efeitos Mistos Lineares e Não-Lineares. Versão do pacote R 3.1-137. Disponível em: https://CRAN.R-project.org/package=nlme
- R CORE TEAM 2018. R: A Language and Environment for Statistical Computing. R

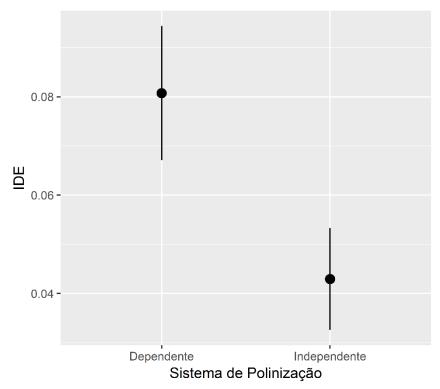
 Foundation for Statistical Computing, Vienna. Disponível em:https://www.R-project.org
- **Rabosky DL & Goldberg EE. 2015.** Model inadequacy and mistaken inferences of trait-dependent speciation. Systematic Biology. 64:340–355.
- **Rafferty NE & Ives AR. 2013.** Phylogenetic trait-based analyses of ecological networks. Ecology, 94, 2321–2333.
- **Rambaut A. 2014**. *Figtree*, a graphical viewer of phylogenetic trees. 1.4.2 ed. Edinburgh: The author, Institute of Evolutionary Biology, University of Edinburgh.
- **Reginato M & Michelangeli FA. 2016**. Diversity and constraints in the floral morphological evolution of Leandra s.str. (Melastomataceae). Annals of Botany 118: 445–458.
- **Renner SS. 1989**. A survey of reproductive biology in Neotropical Melastomataceae and Memecylaceae. Annals of the Missouri Botanical Garden. 76:496–518.

- **Renner SS. 1993**. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nordic Journal of Botany 13:519-540 High ratio of illegitimate visitation by small bees severely weakens the potential function of heteranthery.
- **Revell LJ. 2012**. phytools: Um pacote R para biologia comparativa filogenética. Métodos Ecol. Evol. 3 217-223. DOI: 10.1111/j.2041-210X.2011.00169.x
- **Russell AL, Buchmann SL & Papaj DR. 2017**. How a generalist bee achieves high efficiency of pollen collection on diverse floral resources. Behavioral Ecology. 28:991–1003.
- **Sargent RD, 2004**. Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society of London, B, Biological Sciences 271: 603 608.
- **Schranz E & Osborn TE**. 2004. De novo variation in life-history traits and responses to growth conditions of resynthesized polyploid *Brassica napus* (BRASSICACEAE). American Journal of Botany 91(2): 174–183.
- Scott RA, Barghoorn ES & Leopold E. 1960. How old are the angiosperms? American Journal of Science 258: 284–299.
- Silvertown JK, McConway D, Gowing M, Dodd MF, Fay JA & Dolphin K. 2006. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society of London B 273:39–44.
- **Solís-Montero, L. & Vallejo-Marín, M. 2017**. Does the morphological fit between flowers and pollinators affect pollen deposition? An experimental test in a buzz-pollinated species with anther dimorphism. Ecol Evol; 7:2706–2715. DOI: 10.1002/ece3.2897
- Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson A, Zheng C, Sankoff D, Wall PK, Soltis PS, 2009a. Polyploidy and angiosperm diversification. American Journal of Botany. 96:336–348.

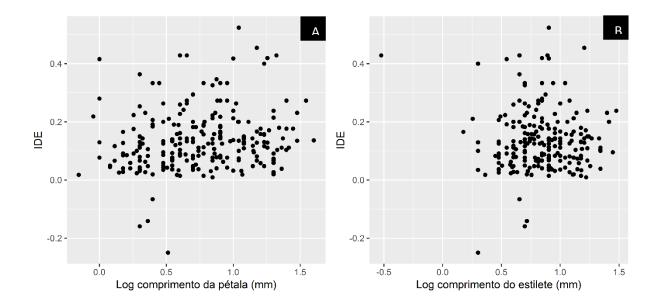
- Soltis PS, Brockington SF, Yoo MJ, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE, 2009b. Floral variation and floral genetics in basal angiosperms. American Journal of Botany. 96:110–128.
- **Stebbins GL. 1950.** Variation and evolution in plants. Columbia University Press. New York.
- **Stebbins GL. 1970**. Adaptive radiation of reproductive characteristics in Angiosperms, I: pollination mechanisms. Annual Review of Ecology and Systematics 1: 307–326.
- **Stebbins GL. 1981**. "Why Are There So Many Species of Flowering Plants?" Bioscience 31: 573-577.
- **Stockey RA, Graham SW & Crane PR. 2009**. "Introduction to the Darwin Special Issue: The Abominable Mystery," American Journal of Botany 96, no 1: 3-4. DOI: 10.3732/ajb.0800402
- Sytsma KJ, Litt A, Zjhra ML, Pires JC, Nepokroeff M, Conti E, Walker J & Wilson PG.
 2004. Clades, Clocks, and Continents: Historical and Biogeographical Analysis of Myrtaceae, Vochysiaceae, and Relatives in the Southern Hemisphere. Journal of Plant Sciences. 165(4): 85–105.
- **Taylor TN, Taylor EL, Krings M. 2009**. Paleobotany: The Biology and Evolution of Fóssil Plants Academic Press.
- **Taylor WA, 2009**. Laminae in Palynomorph Walls from the Middle Cambrian-Early Devonian. Review of Palaeobotany and Palynology 156: 7–13.
- **Thompson JN, Schwind C, Guimarães PRJr & Friberg M, 2013**. Diversification through multitrait evolution in a coevolving interaction. Proceedings of the National Academy of Sciences, USA 110:11487–11492


- **Thorp RW, 1979**. Structural, behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen. Annals of the Missouri Botanical Garden. 66:788-812.
- **Todd JE, 1882**. On the flowers of Solanum rostratum and Cassia chamaecrista. The American Naturalist, 16:281-287.
- **Vallejo-Marín M, Manson JS, Thomson JD, Barrett SCH. 2009.** Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. Journal of Evolutionary Biology 22: 828 839.
- Vallejo-Marín M, Silva EM, Sargent RD, Barrett SCH. 2010. Trait correlates and functional significance of heteranthery in flowering plants. New Phytologist 188: 418–425
- Vallejo-Marín M, Walker P, Reilly L, Solís-Montero L, Igic B. 2014. Recurrent modification of floral morphology in heterantherous Solanum reveals a parallel shift in reproductive strategy. Philosophical Transactions of the Royal Society, B. Biological Sciences. 369: 20130256.
- **Vallejo-Marín M. 2019**. Buzz pollination: studying bee vibrations on flowers. New Phytologist. DOI:10.1111/nph.15666
- Van der Niet T & Johnson SD. 2012. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution 27: 353–361.
- Vasconcelos TNC, Chartier M, Prenner G, Martins AC, Schönenberger J, Wingler A & Lucas E. 2018. Floral uniformity through evolutionary time in a species-rich tree lineage. New Phytologist. DOI:10.1111/nph.15453
- Vasconcelos TNC. 2013. Evolução das Estratégias de Floração na Ordem Myrtales. Brasília: Instituto de Ciências Biológicas, Universidade de Brasília. 139 p. Dissertação de Mestrado.

- **Velloso MSC, Brito VLG, Caetano APS & Romero R. 2018**. Anther specializations related to the division of labor in Microlicia cordata (Spreng.) Cham. (Melastomataceae). Acta Botanica Brasilica, *32*(3), 349-358. DOI: 10.1590/0102-33062017abb0358
- Veranso-Libalah MC, Stone RD, Fongod AGN, Couvreur TLP & Kadereit G. 2017.


 Phylogeny and systematics of African Melastomateae (Melastomataceae). TAXON 66

 (3) June 2017: 584–614. DOI: 10.12705/663.5
- **Vogel S, 1978**. Evolutinary shifts from reward to deception in pollen flowers. In The Pollination of flowers by Insects, pp 89-96. Linnean Society Symposium Series, n 6, 213 p.
- Westerkamp C. 2004a. Flores e abelhas na disputa. Ciência Hoje 34(203), 66-68.
- **Wiens JJ. 2004**. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution, 58: 193-197. DOI:10.1111/j.0014-3820.2004.tb01586.x
- **Williams IH. 1994**. The dependences of crop production within the European Union on pollination by honeybees. Agricultural Zoology Reviews. 6, 229–257.
- Willmer P. 2011. Pollination and Floral Ecology. (1ª edição) Princeton University Press
- Zeng SJ, Huang GH, Liu Q, Yan XK, Zhang GQ & Tang GD. 2016. Fordiophyton zhuangiae (Melastomataceae), a new species from China based on morphological and molecular evidence. Phytotaxa 282 (4): 259–266. DOI: 10.11646/phytotaxa.282.4.2


FIGURAS

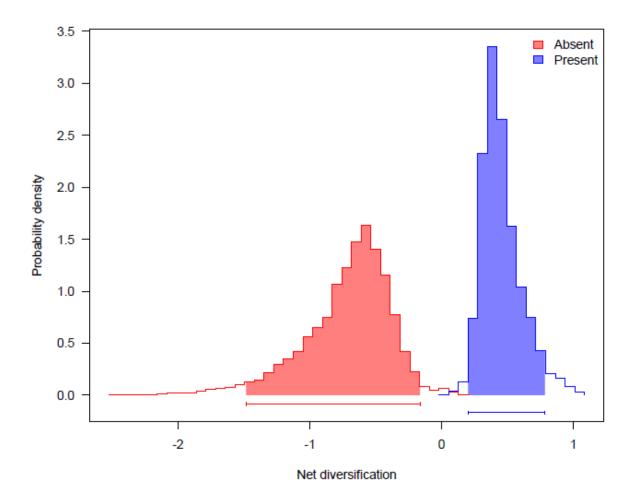

Figura 1 – Reconstrução de atributos morfológicos. Inferência bayesiana mostrando a evolução do índice de dimorfismo de estames (IDE) nas diferentes tribos de Melastomataceae. Azul = ausência de IDE, vermelho = presença de IDE (n = 345).

Figura 2 – Correlação evolutiva entre sistema de polinização (dependente e independente de polinizadores) e o índice de dimorfismo de estames (IDE) (t = -2,9748; p < 0,01).

Figura 3 – Correlação evolutiva positiva entre o *log* do comprimento das pétalas (mm) e o índice de dimorfismo de estames (r = 0.6578; p < 0.01) A; não houve correlação evolutiva entre o *log* do comprimento do estilete (mm) e o IDE (r = 0.0715; p > 0.05).

Figura 4 – Taxa de diversificação das espécies com presença de dimorfismo de estames (azul) e ausência de dimorfismo de estames (vermelho).

Tabela 1 Valores das correlações evolutivas entre o *log* dos valores dos atributos analisados e com o sistema reprodutivo

Atributos correlacionados	Estatística	p
IDE x Sistema Reprodutivo	t = -2.9748	0,0039
IDE x pétalas	r = 0,6578	0,0013
IDE x estiletes	r = 0.0715	0,6889
IDE x estames antessépalos	r = 0.2897	0,0341
IDE x estames antepétalos	r = -0.6079	0,0000
Estames antepétalos x pétalas	r = -0.1152	0,0096
Estames antessépalos x pétalas	r = -0.0576	0,1836
Estiletes x pétalas	r = 0,6812	0,0000
Estames antessépalos x estiletes	r = -0.0895	0,0955
Estames antepétalos x estiletes	r = -0.0970	0,0754
Estames antessépalos x estames antepétalos	r = 0.8831	0,0000

Tabela 2 – Comparação entre os modelos evolutivos para análises de taxas evolutivas

	K	lnl	AIC
BiSSE	6	-1151.978958	2316.213235
BiSSE (equal speciation)	5	-1154.659254	2319.500327
BiSSE (equal extinction)	5	-1152.450318	2315.082455
CID2 (null model)	12	-1090.103174	2205.172292

ANEXO 1

Material Suplementar

Tabela S1 – Lista de espécies estudadas e código de acessos do Genbank para todos os marcadores utilizados.

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Bertolonieae	Bertolonia maculata	-	-	-	-	AF215550	-	AF215512	AF215597	
Bertolonieae	Bertolonia mosenii	-	-	-	-	JF831973	-	JF831998	JF832024	-
Bertolonieae	Salpinga margaritacea	-	-	-	-	JQ899130	-	JQ899105	JQ899080	-
Blakeeae	Blakea storkii	KY821017	-	-	KY782444	_	_	-	-	-
Blakeeae	Blakea wilsoniorum	KY821033	-	-	KY782460	_	_	-	-	-
Cambessedesieae	Behuria comosa	-	-	-	-	JQ899111	-	JQ899084	JQ899060	-
Cambessedesieae	Cambessedesia corymbosa	-	-	-	-	-	-	AY553778	-	-
Cambessedesieae	Cambessedesia eichleri	-	-	KF462833	-	JQ899113	-	JQ899087	JQ899063	-
Cambessedesieae	Cambessedesia espora	JQ730273	-	KF462834	JQ730062	JQ899114	JQ730481	JQ899088	JQ899064	-
Cambessedesieae	Cambessedesia gracilis	-	-	-	GU944483	-	-	-	-	-
Cambessedesieae	Cambessedesia hilariana	JQ730274	-	KF462835	JQ730063	JQ899115	JQ730482	JQ899089	JQ899065	KU500987
Cambessedesieae	Cambessedesia membranacea	-	-	-	-	AY553782	-	-	AY553775	-
Cambessedesieae	Dolichoura spiritusanctensis	KF819989	-	KF820734	EU055683	EU055940	KF821934	JQ899090	JQ899066	-
Cambessedesieae	Huberia ovalifolia	-	-	-	-	JQ899120	-	JQ899094	JQ899070	-
Cambessedesieae	Merianthera bullata	-	-	-	-	JQ899128	-	JQ899103	JQ899078	-
Cambessedesieae	Merianthera eburnea	-	-	-	-	JQ899123	-	JQ899097	-	-
Cambessedesieae	Merianthera parvifolia	-	-	-	-	JQ899127	-	JQ899102	JQ899077	-
Cambessedesieae	Merianthera verrucosa	-	-	-	-	JQ899125	-	JQ899099	JQ899074	-
CAP	Alzatea verticillata	-	-	-	AM235849.1	AF215591.1	-	U26316.2	AY151598.1	AY151536.1
CAP	Brachysiphon acutus	-	-	-	AM235856.1	AJ605095.1	-	AJ605084.1	AY151605.1	AY151543.1

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
CAP	Crypteronia griffithii	-	-	-	-	AJ605098.1	-	AJ605087.1	AJ605108.1	-
CAP	Crypteronia paniculata	-	-	-	AM235848.1	AY498833.1	-	AF215545.1	AY151597.1	AY151535.1
CAP	Olinia emarginata	-	-	-	AM235852.1	AJ605102.1	-	AJ605089.1	AY151601.1	AY151539.1
CAP	Olinia ventosa	-	-	-	AM235855.1	AF215594.1	-	AF215546.1	AY151604.1	AY151542.1
CAP	Penaea mucronata	-	-	-	AM235871.1	AF270756.1	-	AJ605090.1	AY151620.1	AY151558.1
CAP	Rhynchocalyx lawsonioides	-	-	-	AM235850.1	AF270757.1	-	AF215547.1	AY151599.1	AY151537.1
CAP	Saltera sarcocolla	-	-	-	AM235872.1	AJ605103.1	-	AJ605091.1	AY151621.1	AY151559.1
Cyphostyleae	Allomaieta ebejicosana	-	-	-	-	JF831961	-	JF831986	JF832012	-
Cyphostyleae	Allomaieta pancurana	-	-	-	-	JF831967	-	JF831992	JF832017	-
Cyphostyleae	Allomaieta zenufanasana	-	-	-	-	JF831970	-	JF831995	JF832020	-
Cyphostyleae	Alloneuron ulei	-	-	-	-	JF831971	-	JF831996	JF832021	-
Dissochaeteae	Dissochaeta bracteata	-	-	-	-	AF289369	-	-	AF294471	-
Henrietteeae	Bellucia grossularioides	-	-	-	GU968787	EU711372	-	EU711385	JF832023	-
Henrietteeae	Bellucia spruceana	KY821087	-	-	EF683149	GU968823	-	KF781625	-	-
Henrietteeae	Henriettea martiusii	-	-	-	AY460564	EU711375	-	EU711391	JF832032	-
Henrietteeae	Henriettea uniflora	-	-	-	GU968795	GU968817	-	-	-	-
Marcetieae	Aciotis acuminifolia	JQ730248	-	-	JQ730037	-	JQ730457	-	-	KU500922
Marcetieae	Aciotis circaeifolia	JQ730249	KU501108	KF462812	JQ730038	-	JQ730458	-	-	KU500926
Marcetieae	Aciotis indecora	JQ730250	KU501109	KF462813	JQ730039	-	JQ730459	-	AF215604	KU500927
Marcetieae	Aciotis paludosa	JQ730251	-	KF462814	JQ730040	-	JQ730460	-	-	KU500925
Marcetieae	Aciotis rubricaulis	JQ730253	KU501111	KF462816	JQ730042	-	JQ730462	JQ592642	-	KU500929
Marcetieae	Acisanthera bivalvis	KU501172	KU501117	KU501003	KU501064	-	-	-	-	KU500936
Marcetieae	Acisanthera crassipes	-	KU501118	KU501004	KU501065	-	-	-	-	KU500937
Marcetieae	Acisanthera genliseoides	KU501173	KU501119	KU501005	KU501066	-	-	-	-	KU500938
Marcetieae	Acisanthera hedyotoidea	JQ730255	-	KF462818	JQ730044	-	JQ730464	-	-	-
Marcetieae	Acisanthera limnobios	KU501174	-	KU501006	-	-	-	-	-	-
Marcetieae	Acisanthera quadrata	JQ730256	-	KF462819	JQ730045	-	JQ730465	-	-	-
Marcetieae	Acisanthera uniflora	KU501169	-	-	KU501062	-	-	-	-	KU500933
Marcetieae	Acisanthera variabilis	KU501170	KU501115	KU500998	-	-	_	-	-	KU500934

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Marcetieae	Comolia edmundoi	KU501176	KU501121	-	-	-	-	-	-	KU500940
Marcetieae	Comolia lanceiflora	KU501177	KU501123	KU501009	KU501068	-	-	-	-	KU500941
Marcetieae	Comolia microphylla	JQ730281	KU501125	KF462841	JQ730070	JF831975	JQ730488	JF832000	JF832028	KU500945
Marcetieae	Comolia ovalifolia	-	-	KU501020	KU501077	-	-	-	-	-
Marcetieae	Comolia sertularia	JQ730282	KU501122	KF462842	JQ730071	-	JQ730489	-	-	-
Marcetieae	Comolia sessilis	KU501178	-	KU501011	-	-	-	-	-	-
Marcetieae	Comolia smithii	-	-	KU501018	KU501075	-	-	-	-	-
Marcetieae	Comolia stenodon	-	-	KU501008	-	-	-	-	-	-
Marcetieae	Comolia vernicosa	JQ730283	KU501149	KF462843	JQ730072	-	JQ730490	-	-	KU500971
Marcetieae	Comolia villosa	KU501180	KU501124	KU501014	KU501071	-	KF462997	-	-	KU500944
Marcetieae	Macairea radula	JQ730307	KU501133	KF462859	JQ730095	EU711378	JQ730514	EU711394	JF832036	KU500954
Marcetieae	Marcetia acerosa	-	-	-	JQ730097	-	JQ730516	-	-	-
Marcetieae	Marcetia ericoides	JQ730310	-	-	JQ730099	-	JQ730518	-	-	-
Marcetieae	Marcetia taxifolia	JQ730311	KU501148	KU501041	AY460431	GU968825	JQ730521	-	-	KU500970
Marcetieae	Nepsera aquatica	JQ730327	KU501131	-	AY460433	AF215569	JQ730537	JQ592692	AF210373	KU500952
Marcetieae	Siphanthera arenaria	KU501203	-	KU501045	KU501099	-	-	-	-	KU500974
Marcetieae	Siphanthera cordata	KU501208	-	KU501048	KU501102	-	-	-	-	KU500977
Marcetieae	Siphanthera cordifolia	KU501201	KU501151	KU501042	KU501096	-	-	-	-	KU500973
Marcetieae	Siphanthera dawsonii	KU501207	-	KU501049	KU501103	-	-	-	-	-
Marcetieae	Siphanthera fasciculata	-	-	KU501043	KU501097	-	-	-	-	-
Marcetieae	Siphanthera foliosa	KU501202	KU501152	KU501044	KU501098	-	-	-	-	-
Marcetieae	Siphanthera gracillima	KU501206	KU501154	KU501047	KU501101	-	-	-	-	KU500976
Marcetieae	Siphanthera hostmannii	JQ730353	KU501155	KF462883	JQ730142	-	JQ730564	-	-	KU500978
Marcetieae	Siphanthera paludosa	KU501204	KU501153	KU501046	KU501100	-	-	AY553780	AY553776	KU500975
Marcetieae	Siphanthera subtilis	KU501209	-	KU501050	KU501104	-	-	-	-	KU500979
Melastomateae	Centradenia floribunda	-	-	-	-	-	KF462995	-	-	-
Melastomateae	Centradenia grandifolia	JQ730276	-	KF462837	JQ730065	-	-	-	-	-
Melastomateae	Centradenia inaequilateralis	JQ730277	-	KF462838	JQ730066	AF215563	JQ730484	EU711387	JF832027	-
Melastomateae	Desmoscelis villosa	JQ730284	-	KF462844	AY460430	EU711374	JQ730491	EU711389	JF832029	-

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Melastomateae	Pterolepis alpestris	JQ730339	-	-	JQ730129	-	JQ730549	-	-	-
Melastomateae	Pterolepis glomerata	JQ730340	KU501158	KF462876	JQ730130	AF215571	JQ730550	AF215526	AF210376	KU500982
Melastomateae	Pterolepis parnassiifolia	JQ730341	-	-	JQ730131	-	JQ730551	-	-	-
Melastomateae	Pterolepis polygonoides	-	-	-	-	-	KF463008	-	-	-
Melastomateae	Pterolepis repanda	JQ730342	-	-	JQ730132	-	JQ730552	-	-	-
Melastomateae	Pterolepis rotundifolia	JQ730343	-	-	-	-	JQ730553	-	-	-
Melastomateae	Pterolepis trichotoma	KF407966	-	-	-	-	KF463009	-	-	-
Melastomateae	Tibouchina aegopogon	-	-	KF462890	-	-	JQ730571	-	-	-
Melastomateae	Tibouchina angustifolia	JQ730362	-	KF462892	JQ730151	-	JQ730574	-	-	-
Melastomateae	Tibouchina arborea	JQ730363	-	KF462893	JQ730152	-	JQ730575	-	-	-
Melastomateae	Tibouchina aspera	JQ730365	-	KF462895	JQ730154	-	JQ730577	-	-	-
Melastomateae	Tibouchina barnebyana	JQ730368	-	KF462898	JQ730157	-	-	-	-	-
Melastomateae	Tibouchina blanchetiana	JQ730372	-	KF462902	JQ730161	-	-	-	-	-
Melastomateae	Tibouchina candolleana	JQ730375	-	KF462907	JQ730164	-	JQ730585	-	-	-
Melastomateae	Tibouchina cardinalis	JQ730376	-	KF462908	JQ730165	-	JQ730586	-	-	-
Melastomateae	Tibouchina collina	-	-	KF462917	-	-	-	-	-	-
Melastomateae	Tibouchina corymbosa	JQ730385	-	KF462918	JQ730176	-	JQ730596	-	-	-
Melastomateae	Tibouchina estrellensis	JQ730389	-	KF462924	JQ730180	-	JQ730600	-	-	-
Melastomateae	Tibouchina fissinervia	JQ730390	-	KF462925	JQ730181	-	JQ730601	-	-	-
Melastomateae	Tibouchina fothergillae	JQ730391	-	KF462926	JQ730182	-	JQ730602	-	-	-
Melastomateae	Tibouchina frigidula	JQ730394	-	KF462929	JQ730185	-	JQ730605	-	-	-
Melastomateae	Tibouchina gracilis	JQ730398	-	KF462933	JQ730190	-	JQ730610	-	-	-
Melastomateae	Tibouchina granulosa	JQ730399	-	KF462934	JQ730191	-	JQ730611	-	-	-
Melastomateae	Tibouchina heteromalla	JQ730401	-	KF462936	JQ730193	-	JQ730613	-	-	KU500983
Melastomateae	Tibouchina hieracioides	JQ730402	-	KF462937	JQ730194	-	JQ730614	-	-	-
Melastomateae	Tibouchina laevicaulis	JQ730407	-	KF462942	JQ730199	-	JQ730619	-	-	-
Melastomateae	Tibouchina macrochiton	JQ730413	-	KF462946	JQ730205	-	JQ730625	-	-	-
Melastomateae	Tibouchina martialis	JQ730415	-	KF462950	JQ730207	-	JQ730627	-	-	-
Melastomateae	Tibouchina martiusiana	JQ730416	-	KF462951	JQ730208	-	JQ730628	-	-	-

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Melastomateae	Tibouchina nodosa	JQ730423	-	KF462959	JQ730215	-	JQ730635	-	-	-
Melastomateae	Tibouchina oreophila	JQ730425	-	KF462960	JQ730217	-	JQ730637	-	-	-
Melastomateae	Tibouchina papyrus	JQ730427	-	KF462962	JQ730219	-	JQ730639	-	-	-
Melastomateae	Tibouchina pereirae	JQ730429	-	KF462964	JQ730221	-	JQ730641	-	-	-
Melastomateae	Tibouchina pulchra	JQ730430	-	KF462965	JQ730222	-	JQ730642	-	-	-
Melastomateae	Tibouchina salviaefolia	JQ730433	-	KF462967	JQ730225	-	JQ730645	-	-	-
Melastomateae	Tibouchina sellowiana	JQ730435	-	KF462970	JQ730227	-	JQ730647	-	-	-
Melastomateae	Tibouchina semidecandra	JQ730436	-	KF462971	JQ730228	-	JQ730648	-	-	-
Melastomateae	Tibouchina stenocarpa	JQ730441	-	KF462976	JQ730233	-	JQ730653	-	-	-
Melastomateae	Tibouchina trichopoda	JQ730443	-	KF462978	JQ730235	-	JQ730655	KF981241	-	-
Melastomateae	Tibouchina urceolaris	JQ730445	-	KF462980	JQ730236	-	JQ730657	-	-	-
Melastomateae	Tibouchina velutina	JQ730448	-	KF462984	JQ730239	-	JQ730660	-	-	-
Merianieae	Axinaea affinis	-	-	-	AY460447	-	-	-	-	-
Merianieae	Axinaea costaricensis	KF819866	-	KF820584	KF821402	-	KF821786	-	-	-
Merianieae	Axinaea macrophylla	KF819870	-	KF820588	KF821405	-	KF821790	-	-	-
Merianieae	Meriania brevipedunculata	KJ933883	-	KJ933924	KJ933971	-	KJ934024	-	-	-
Merianieae	Meriania involucrata	KF820116	-	KF820880	EF418874	EU055970	KF822066	-	-	-
Merianieae	Meriania leucantha	KF820117	-	KF820881	KF821541	-	KF822067	-	-	-
Merianieae	Meriania parvifolia	KJ933885	-	KJ933926	KJ933973	-	KJ934026	-	-	-
Merianieae	Meriania purpurea	KF820119	-	KF820885	KF821542	-	KF822071	-	-	-
Merianieae	Meriania squamulosa	KJ933886	-	KJ933927	KJ933974	-	KJ934027	-	-	-
Miconieae	Calycogonium bissei	KF819873	-	KF820591	KF821408	-	KF821793	-	-	-
Miconieae	Charianthus alpinus	KY821081	-	KF820610	AY460463	EU055902	KF821813	-	-	-
Miconieae	Charianthus corymbosus	-	-	KF820611	AY460464	-	KF821814	-	-	-
Miconieae	Charianthus dominicensis	KF819892	-	KF820612	AY460465	-	KF821815	-	-	-
Miconieae	Charianthus grenadensis	-	-	-	AY672842	-	-	-	-	-
Miconieae	Charianthus nodosus	KF819893	-	KF820613	AY460466	EU055903	KF821816	-	-	-
Miconieae	Charianthus purpureus	-	-	-	AY460467	-	-	-	-	-
Miconieae	Clidemia biserrata	KF819903	-	KF820625	KF821426	_	KF821828	_	-	_

Miconicae Clidemia abeblis KF81916 - KF820641 KF821432 - KF821850 -	Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Miconieae Clidemia epibaterium KF819922 KF820650 KF821434 KF821864 KF820664 AY460478 KF821864 KF820664 AY460478 KF821866 KD82198 KR062 Miconieae Clidemia intra KF819937 KF820666 AY460481 AF215579 KF821869 KR062 Miconieae Clidemia rubra KF819953 KF820696 AY460481 AF215579 KF821892 AF215535 AF215616 Miconieae Clidemia vercedata KF820695 AY460481 AF215579 KF821893 AF215516 AF215616 AF	Miconieae	Clidemia capitellata	KF819907	-	KF820629	EU055655	EU055906	KF821831	-	-	KR062661
Miconieae Clidemia heteroneura - KF820664 AY460478 - KF821866 C- - - A Miconieae Clidemia pirra KF819934 KR062211 KF820666 AY460479 - KF821866 KJ082198 - KR062 Miconieae Clidemia pirranis KF819953 - KF820669 KF821442 - KF821869 - - - - Miconieae Clidemia surceolata KF819955 - KF820669 AY460481 AF21557 KF821895 - - AF215616 - Miconieae Clidemia urceolata - - KF820713 EU055975 KF821995 - KM880696 KM887050 KM893580 EU055932 KM893674 - - KM893 - KM893674 - - KM893 - KM893744 GQ981710 - - KM893 - KM89369 - KM893 - KM893 - KM893 - KM893 <td< td=""><td>Miconieae</td><td>Clidemia debilis</td><td>KF819916</td><td>-</td><td>KF820641</td><td>KF821432</td><td>-</td><td>KF821842</td><td>-</td><td>-</td><td>-</td></td<>	Miconieae	Clidemia debilis	KF819916	-	KF820641	KF821432	-	KF821842	-	-	-
Miconieae Clidemia hirra KF819934 KR062211 KF820666 AY460479 - KF821866 CJ028188 - KR060 Miconieae Clidemia japurensis KF819937 - KF820669 KF821442 - KF821869 -<	Miconieae	Clidemia epibaterium	KF819922	-	KF820650	KF821434	-	KF821850	-	-	-
Miconieae Clidemia japurensis KF81997 - KF820692 KF821442 - KF821869 - - - - - Miconieae Clidemia rubra KF819953 - KF820692 AY460481 AF215579 KF821892 AF215535 AF215616 - Miconieae Clidemia sericea KF81995 - KF820696 AY460483 EU055930 KF821895 -	Miconieae	Clidemia heteroneura	-	-	KF820664	AY460478	-	KF821864	-	-	-
Miconieae Clidemia rubra KF819953 - KF820692 AY460481 AF215579 KF821892 AF215535 AF215616 - Miconieae Clidemia sericea KF819955 - KF82066 AY460483 EU055926 KF821895 - - - Miconieae Clidemia urceolata - - KR820713 EU055675 EU055932 KR891013 -	Miconieae	Clidemia hirta	KF819934	KR062211	KF820666	AY460479	-	KF821866	KJ082198	-	KR062663
Miconieae Clidemia sericea KF819955 - KF820696 AY460483 EU055926 KF821895 - - - Miconieae Clidemia urceolata - - KF820713 EU055975 EU055930 KF821913 - - - Miconieae Conostegia bigibbosa KM886946 KM887070 KM893580 CM893580 EU055932 KM893674 - - KM893 Miconieae Conostegia bracteata KM886940 KM887070 KM893580 KM893580 - KM893660 - - KM893 Miconieae Conostegia centronioides KM886942 KM887044 KM893560 KM893608 - KM893716 - - KM893 Miconieae Conostegia centronioides KM886947 KM887088 KM893608 KM893613 - KM893716 - - KM893 Miconieae Conostegia cinnamomea KM886965 KM87081 KM893461 - KM893694 GQ981711 - KM893694 Miconi	Miconieae	Clidemia japurensis	KF819937	-	KF820669	KF821442	-	KF821869	-	-	-
Miconieae Clidemia urceolata - - KF820713 EU055975 EU055930 KF821913 - - - Miconieae Conostegia bigibbosa KM886946 KM887065 KM893530 KM893587 EU055932 KM893674 - - KM89368 Miconieae Conostegia bracteata KM88690 KM887059 KM893510 KM893580 - KM893669 - - KM893669 Miconieae Conostegia caelestis KM886942 KM887044 KM893563 KM893608 - KM893729 - - KM89369 Miconieae Conostegia centronioides KM886942 KM887088 KM893472 KM893613 - KM893716 - - KM89369 Miconieae Conostegia cinnamomea KM886950 KM887081 KM893482 KM893643 - KM893694 GO981711 - KM89369 Miconieae Conostegia cinnamomea KM88665 KM887016 KM893510 KM893642 - KM893694 GO981711 - </td <td>Miconieae</td> <td>Clidemia rubra</td> <td>KF819953</td> <td>-</td> <td>KF820692</td> <td>AY460481</td> <td>AF215579</td> <td>KF821892</td> <td>AF215535</td> <td>AF215616</td> <td>-</td>	Miconieae	Clidemia rubra	KF819953	-	KF820692	AY460481	AF215579	KF821892	AF215535	AF215616	-
Miconieae Conostegia bigibbosa KM886946 KM887065 KM893530 KM893587 EU055932 KM893674 - - KM898 Miconieae Conostegia bracteata KM887011 KM887070 KM893510 KM893580 - KM893734 GQ981710 - KM898 Miconieae Conostegia brenesii KM886990 KM887059 KM893560 KM893590 - KM893669 - - KM893 Miconieae Conostegia caelestis KM886942 KM887088 KM893608 - KM893716 - - KM89369 Miconieae Conostegia cinnamomea KM886950 KM887081 KM893482 KM893643 - KM893694 GQ981711 - KM89369 Miconieae Conostegia cinnamomea KM886965 KM887061 KM893501 KM893642 - KM893689 - - KM89369 Miconieae Conostegia extinctoria - - KM893151 KM893581 - - - - - - <td>Miconieae</td> <td>Clidemia sericea</td> <td>KF819955</td> <td>-</td> <td>KF820696</td> <td>AY460483</td> <td>EU055926</td> <td>KF821895</td> <td>-</td> <td>-</td> <td>-</td>	Miconieae	Clidemia sericea	KF819955	-	KF820696	AY460483	EU055926	KF821895	-	-	-
Miconieae Conostegia bracteata KM887011 KM887070 KM893510 KM893580 - KM893734 GQ981710 - KM89898 Miconieae Conostegia brenesii KM886990 KM887059 KM893640 KM893594 - KM893669 - - KM89369 Miconieae Conostegia caelestis KM886942 KM887044 KM893633 KM893608 - KM893729 - - KM89369 Miconieae Conostegia centronioides KM886974 KM887088 KM893643 - KM893716 - - KM89369 Miconieae Conostegia cinnamomea KM886965 KM887011 KM893482 KM893643 - KM893694 GQ981711 - KM893694 Miconieae Conostegia cuatrecasii KM886965 KM887015 KM893613 - - KM893689 - - KM893694 Miconieae Conostegia extinctoria - - KM893613 - - - KM893689 - - -	Miconieae	Clidemia urceolata	-	-	KF820713	EU055675	EU055930	KF821913	-	-	-
Miconieae Conostegia brenesii KM886990 KM887059 KM893460 KM893594 - KM893669 - - KM89369 Miconieae Conostegia caelestis KM886942 KM887044 KM893563 KM893608 - KM893729 - - KM89369 Miconieae Conostegia centronioides KM886974 KM887081 KM893613 - KM893716 - - KM89369 Miconieae Conostegia cinnamomea KM886950 KM887081 KM893482 KM893643 - KM893689 GQ981711 - KM89369 Miconieae Conostegia cuatrecasii KM886965 KM887061 KM893601 KM893642 - KM893689 - - KM893 Miconieae Conostegia extinctoria - - KM893643 - - - KM893 Miconieae Conostegia icosandra KK819974 KM887105 KF820719 AY460486 EU055933 KF821919 EU711388 - KM893 Miconieae	Miconieae	Conostegia bigibbosa	KM886946	KM887065	KM893530	KM893587	EU055932	KM893674	-	-	KM893784
Miconieae Conostegia caelestis KM886942 KM887044 KM893603 KM893608 - KM893729 - - KM898691 Miconieae Conostegia centronioides KM886974 KM887088 KM893472 KM893613 - KM893716 - - KM89369 Miconieae Conostegia cinnamomea KM886965 KM887081 KM893482 KM893643 - KM893694 GQ981711 - KM89369 Miconieae Conostegia cuatrecasii KM886965 KM887061 KM893463 - KM893689 - - KM893689 Miconieae Conostegia cosandra KF819974 KM887105 KF820719 AY460486 EU055933 KF821919 EU711388 - KM893 Miconieae Conostegia lasiopada KF819975 KM887080 KF820720 KF821472 - KF821920 - - KM893 Miconieae Conostegia macrantha KM886968 KM887125 KM893548 KM893583 - KM893673 - -	Miconieae	Conostegia bracteata	KM887011	KM887070	KM893510	KM893580	-	KM893734	GQ981710	-	KM893793
Miconieae Conostegia centronioides KM886974 KM887088 KM893472 KM893613 - KM893716 - - KM89381 Miconieae Conostegia cinnamomea KM886950 KM887081 KM893482 KM893643 - KM893694 GQ981711 - KM893689 Miconieae Conostegia cuatrecasii KM886965 KM887061 KM893601 KM893642 - KM893689 - - KM893689 Miconieae Conostegia extinctoria - - - KM893643 -	Miconieae	Conostegia brenesii	KM886990	KM887059	KM893460	KM893594	-	KM893669	-	-	KM893830
Miconieae Conostegia cinnamomea KM886950 KM887081 KM893482 KM893643 - KM893694 GQ981711 - KM893694 Miconieae Conostegia cuatrecasii KM886965 KM887061 KM893501 KM893642 - KM893689 - - - KM893693 Miconieae Conostegia extinctoria - - KM887105 KF820719 AY460486 EU055933 KF821919 EU711388 - <td< td=""><td>Miconieae</td><td>Conostegia caelestis</td><td>KM886942</td><td>KM887044</td><td>KM893563</td><td>KM893608</td><td>-</td><td>KM893729</td><td>-</td><td>-</td><td>KM893777</td></td<>	Miconieae	Conostegia caelestis	KM886942	KM887044	KM893563	KM893608	-	KM893729	-	-	KM893777
Miconieae Conostegia cuatrecasii KM886965 KM887061 KM893501 KM893642 - KM893689 - - KM893689 Miconieae Conostegia extinctoria - - KM893463 - <	Miconieae	Conostegia centronioides	KM886974	KM887088	KM893472	KM893613	-	KM893716	-	-	KM893762
Miconieae Conostegia extinctoria - - KM893463 -	Miconieae	Conostegia cinnamomea	KM886950	KM887081	KM893482	KM893643	-	KM893694	GQ981711	-	KM893763
Miconieae Conostegia icosandra KF819974 KM887105 KF820719 AY460486 EU055933 KF821919 EU711388 - KM893513 Miconieae Conostegia jaliscana - - KM893513 -	Miconieae	Conostegia cuatrecasii	KM886965	KM887061	KM893501	KM893642	-	KM893689	-	-	KM893805
Miconieae Conostegia jaliscana - - KM893513 -	Miconieae	Conostegia extinctoria	-	-	KM893463	-	-	-	-	-	-
Miconieae Conostegia lasiopoda KF819975 KM887080 KF820720 KF821472 - KF821920 - - KM893583 Miconieae Conostegia macrantha KM886966 KM887125 KM893488 KM893583 - KM893673 - - KM893 Miconieae Conostegia micrantha KM886988 KM887062 KM893548 KM893599 - KM893732 - - KM893 Miconieae Conostegia montana KF819977 KM887091 KF820722 KM893621 EU055934 KF821922 - - KM893 Miconieae Conostegia monteleagreana KF819978 KM887078 KF820723 EF418810 - KF821923 - - KM893 Miconieae Conostegia oerstediana KM886998 KM887063 KM893527 KM893579 - KM893646 - - - KM893 Miconieae Conostegia pittieri KF819980 KM887112 KF820725 EU055678 EU055935 KF821925 - <td>Miconieae</td> <td>Conostegia icosandra</td> <td>KF819974</td> <td>KM887105</td> <td>KF820719</td> <td>AY460486</td> <td>EU055933</td> <td>KF821919</td> <td>EU711388</td> <td>-</td> <td>KM893781</td>	Miconieae	Conostegia icosandra	KF819974	KM887105	KF820719	AY460486	EU055933	KF821919	EU711388	-	KM893781
Miconieae Conostegia macrantha KM886966 KM887125 KM893488 KM893583 - KM893673 - - KM893673 Miconieae Conostegia micrantha KM886988 KM887062 KM893548 KM893599 - KM893732 - - KM893599 Miconieae Conostegia montana KF819977 KM887091 KF820722 KM893621 EU055934 KF821922 - - KM89352 Miconieae Conostegia monteleagreana KF819978 KM887078 KF820723 EF418810 - KF821923 - - KM89352 Miconieae Conostegia oerstediana KM886998 KM887063 KM893527 KM893579 - KM893646 - - - KM89352 Miconieae Conostegia pittieri KF819980 KM887112 KF820725 EU055678 EU055935 KF821925 - - - - - - - - - - - - - - - - <td>Miconieae</td> <td>Conostegia jaliscana</td> <td>-</td> <td>-</td> <td>KM893513</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Miconieae	Conostegia jaliscana	-	-	KM893513	-	-	-	-	-	-
Miconieae Conostegia micrantha KM886988 KM887062 KM893548 KM893599 - KM893732 - - KM893732 Miconieae Conostegia montana KF819977 KM887091 KF820722 KM893621 EU055934 KF821922 - - KM893621 Miconieae Conostegia monteleagreana KF819978 KM887078 KF820723 EF418810 - KF821923 - - - KM893646 Miconieae Conostegia oerstediana KM886998 KM887063 KM893527 KM893579 - KM893646 - - - KM893646 Miconieae Conostegia pittieri KF819980 KM887112 KF820725 EU055678 EU055935 KF821925 - - - - KM893 Miconieae Conostegia plumosa - - KM893558 - - - - - - - - - - - - - - - - - <	Miconieae	Conostegia lasiopoda	KF819975	KM887080	KF820720	KF821472	-	KF821920	-	-	KM893775
Miconieae Conostegia montana KF819977 KM887091 KF820722 KM893621 EU055934 KF821922 - - KM893621 Miconieae Conostegia monteleagreana KF819978 KM887078 KF820723 EF418810 - KF821923 - - - KM89352 Miconieae Conostegia oerstediana KM886998 KM887063 KM8873527 KM893579 - KM893646 - - - KM893 Miconieae Conostegia pittieri KF819980 KM887112 KF820725 EU055678 EU055935 KF821925 - - - KM893 Miconieae Conostegia plumosa - - KM893558 - - - - - - KM893728 - - - - - - KM893728 - - - - - - - - - - - - - - - - - - - <t< td=""><td>Miconieae</td><td>Conostegia macrantha</td><td>KM886966</td><td>KM887125</td><td>KM893488</td><td>KM893583</td><td>-</td><td>KM893673</td><td>-</td><td>-</td><td>KM893767</td></t<>	Miconieae	Conostegia macrantha	KM886966	KM887125	KM893488	KM893583	-	KM893673	-	-	KM893767
Miconieae Conostegia monteleagreana KF819978 KM887078 KF820723 EF418810 - KF821923 - - KM89352 Miconieae Conostegia oerstediana KM886998 KM887063 KM893527 KM893579 - KM893646 - - - KM893 Miconieae Conostegia pittieri KF819980 KM887112 KF820725 EU055678 EU055935 KF821925 - - - KM893 Miconieae Conostegia plumosa - - KM893558 - - - - - - KM893728 - - - KM893728 - - - KM893728 - - - - KM893728 -<	Miconieae	Conostegia micrantha	KM886988	KM887062	KM893548	KM893599	-	KM893732	-	-	KM893766
Miconieae Conostegia oerstediana KM886998 KM887063 KM893527 KM893579 - KM893646 - - KM893578 Miconieae Conostegia pittieri KF819980 KM887112 KF820725 EU055678 EU055935 KF821925 - - - KM89358 Miconieae Conostegia plumosa - - KM893558 - - - - - - KM893728 - - - KM893728 - - - KM893728 - - - KM893728 - - - - KM893728 -	Miconieae	Conostegia montana	KF819977	KM887091	KF820722	KM893621	EU055934	KF821922	-	-	KM893760
Miconieae Conostegia pittieri KF819980 KM887112 KF820725 EU055678 EU055935 KF821925 - - - KM89358 Miconieae Conostegia plumosa - - KM893558 - <t< td=""><td>Miconieae</td><td>Conostegia monteleagreana</td><td>KF819978</td><td>KM887078</td><td>KF820723</td><td>EF418810</td><td>-</td><td>KF821923</td><td>-</td><td>-</td><td>KM893739</td></t<>	Miconieae	Conostegia monteleagreana	KF819978	KM887078	KF820723	EF418810	-	KF821923	-	-	KM893739
Miconieae Conostegia plumosa - - KM893558 -	Miconieae	Conostegia oerstediana	KM886998	KM887063	KM893527	KM893579	-	KM893646	-	-	KM893786
Miconieae <i>Conostegia polyandra</i> KM887003 KM887050 KP244334 KM893569 - KM893728 KM893728	Miconieae	Conostegia pittieri	KF819980	KM887112	KF820725	EU055678	EU055935	KF821925	-	-	KM893815
	Miconieae	Conostegia plumosa	-	-	KM893558	-	-	-	-	-	-
Miconiaga Conoctaria procara VM886072 VM887054 VM802480 VM802570 VM802657 VM802	Miconieae	Conostegia polyandra	KM887003	KM887050	KP244334	KM893569	-	KM893728	-	-	KM893774
Wilcolleac Conosiegia procera Kivi6007/2 Kivi607034 Kivi6753407 - Kivi675057 Kivi675057	Miconieae	Conostegia procera	KM886972	KM887054	KM893489	KM893570	-	KM893657	-	-	KM893818

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Miconieae	Conostegia pyxidata	KM886945	KM887104	KM893520	KM893571	-	KM893672	-	-	KM893765
Miconieae	Conostegia rhodopetala	KF819981	KM887122	KF820726	EU055679	EU055936	KF821926	-	-	KM893752
Miconieae	Conostegia rubiginosa	-	KM887087	KM893515	KM893573	-	-	-	-	KM893782
Miconieae	Conostegia rufescens	KF819982	KM887090	KF820727	KM893568	EU055937	KF821927	-	-	KM893759
Miconieae	Conostegia setifera	KM886980	KM887049	KM893557	KM893633	-	KM893718	-	-	KM893776
Miconieae	Conostegia setosa	KF819983	KM887067	KF820728	EU055680	-	KF821928	-	-	KM893780
Miconieae	Conostegia speciosa	KF819984	KM887072	KF820729	AY460490	-	KF821929	-	-	KM893764
Miconieae	Conostegia subcrustulata	KF819985	KM887116	KF820730	EU055681	EU055938	KF821930	JQ592658	-	KM893832
Miconieae	Conostegia superba	KF819972	KM887099	KF820717	KF821471	-	KF821917	-	-	KM893751
Miconieae	Conostegia tenuifolia	KF819987	KM887064	KF820732	AY460491	-	KF821932	-	-	KM893798
Miconieae	Conostegia volcanalis	KM887030	KM887057	KM893525	KM893566	-	KM893647	-	-	KM893795
Miconieae	Conostegia xalapensis	KF819988	KM887117	KF820733	KM893605	EU055939	KF821933	JQ592661	-	KM893755
Miconieae	Leandra amplexicaulis	KF820012	GQ139281	KF820761	EU055685	EU055946	GQ139338	-	-	KR062670
Miconieae	Leandra aspera	-	KR062219	KR062370	KR062487	-	-	-	-	KR062673
Miconieae	Leandra aurea	KF820013	KR062220	KF820764	KF821493	-	KF821959	-	-	KR062674
Miconieae	Leandra cancellata	-	KR062229	KF820768	KR062493	-	KF821962	-	-	KR062683
Miconieae	Leandra eichleri	-	KR062249	KR062392	KR062507	-	-	-	-	KR062705
Miconieae	Leandra erostrata	-	KR062250	KR062393	KR062508	-	KR062606	-	-	KR062706
Miconieae	Leandra foveolata	-	KR062255	KF820788	KF821502	-	KF821979	-	-	KR062714
Miconieae	Leandra glazioviana	GQ139259	GQ139285	KF820792	KF821503	EU055955	GQ139343	-	-	KR062716
Miconieae	Leandra hirta	KF820078	KR062260	KF820844	KF821519	-	KF822032	-	-	KR062719
Miconieae	Leandra lapae	-	KR062274	KR062412	KR062525	-	-	-	-	KR062732
Miconieae	Leandra melastomoides	KF820030	KR062278	KF820789	EF418830	-	KF821980	-	-	KR062736
Miconieae	Leandra pennipilis	-	KR062296	KR062429	KR062542	-	-	-	-	KR062755
Miconieae	Leandra polystachya	KF820057	KR062300	KF820819	KF821512	-	KF822011	-	-	KR062759
Miconieae	Leandra quinquedentata	GQ139260	GQ139286	KF820823	KR062547	EU055956	GQ139344	-	-	KR062764
Miconieae	Leandra reversa	KF820064	-	KF820828	EU055701	EU055958	KF822018	-	-	-
Miconieae	Leandra salicina	-	KR062318	KR062444	KR062556	EU055960	GQ139346	-	-	KR062781
Miconieae	Leandra sericea	-	KR062320	KR062446	KR062558	-	KR062641	-	-	KR062783

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Miconieae	Leandra tetraquetra	KF820079	KR062324	KF820845	EF418864	-	KF822033	-	-	KR062788
Miconieae	Leandra therezopolitana	-	KR062326	KR062450	KR062562	-	KR062642	-	-	KR062789
Miconieae	Leandra ulaei	KF820081	KR062330	KF820847	EF418865	-	KF822035	-	-	KR062792
Miconieae	Leandra umbellata	-	KR062332	KR062454	KR062565	-	KR062644	-	-	KR062794
Miconieae	Leandra variabilis	-	KR062334	KF820781	EF418824	-	KF821972	-	-	KR062796
Miconieae	Maieta guianensis	KF820093	-	KF820857	AY460498	AF215581	KF822044	AF215537	AF215618	-
Miconieae	Miconia alata	KF820135	-	KF820908	KF821553	-	KF822090	-	-	-
Miconieae	Miconia albicans	KF820136	-	KF820909	KF821554	EU055978	KF822092	-	-	-
Miconieae	Miconia alborufescens	KF820138	-	KF820910	EU055714	-	KF822093	-	-	-
Miconieae	Miconia argyrophylla	KF820153	-	KF820925	EF418882	EU055983	KF822108	-	-	-
Miconieae	Miconia baumgratziana	-	-	KF821200	KF821697	-	KF822386	-	-	-
Miconieae	Miconia brasiliensis	GQ139263	GQ139292	KF820945	GQ139307	GQ139322	GQ139350	-	-	-
Miconieae	Miconia brunnea	KF820173	-	KF820948	EU055730	EU055994	KF822131	-	-	-
Miconieae	Miconia budlejoides	KF820174	-	KF820950	EU055732	EU055996	KF822133	-	-	-
Miconieae	Miconia calvescens	KF820178	-	KF820955	EU055736	EU056000	KF822138	-	-	-
Miconieae	Miconia capixaba	KF820181	-	KF820959	EU055738	EU056002	KF822142	-	-	-
Miconieae	Miconia castaneiflora	KF820183	-	KF820961	KF821575	-	KF822144	-	-	-
Miconieae	Miconia chamissois	KF820197	-	KF820974	EU055748	EU056008	KF822158	-	-	-
Miconieae	Miconia chartacea	KF820198	-	KF820975	EU055749	EU056009	KF822159	KF981238	-	-
Miconieae	Miconia chrysophylla	KF820200	-	KF820977	EU055750	EU056010	KF822161	-	-	-
Miconieae	Miconia ciliata	KF820367	-	KF821156	KF821678	-	KF822344	-	-	-
Miconieae	Miconia cinerascens	KF820202	-	KF820981	EU055751	EU056011	KF822164	-	-	-
Miconieae	Miconia cinnamomifolia	KF820204	-	KF820982	EU055753	EU056013	KF822166	-	-	-
Miconieae	Miconia corallina	KF820211	-	KF820990	KF821587	-	KF822174	-	-	-
Miconieae	Miconia crassinervia	KF820215	-	KF820994	-	-	KF822178	-	-	-
Miconieae	Miconia cubatanensis	KF820219	-	KF820999	EU055761	EU056020	KF822183	KF981240	-	-
Miconieae	Miconia cuspidata	KF820221	-	KF821002	EF418886	-	KF822185	-	-	-
Miconieae	Miconia cyathanthera	KF820224	-	KF821005	KF821592	-	KF822188	-	-	-
Miconieae	Miconia discolor	KF820233	-	KF821015	EU055767	EU056024	KF822198	-	-	-

Miconieae Miconia dispar KF820244 - KF821092 KF821092 KF821092 KF821092 KF821092 KF821092 KF821093 KF821093 KF822011 - - - - Miconieae Miconia elegans KF820247 - KF821032 KF821067 - KF822121 -	Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Miconieae Miconia elegans KF820247 . KF821032 KF821630 KF821633 . <	Miconieae	Miconia dispar	KF820234	-	KF821016	KF821597	-	KF822199	-	-	-
Miconiae Miconia evanescens KF81925 - KF820633 KF821436 - KF821853 -	Miconieae	Miconia egensis	KF820244	-	KF821029	KF821605	-	KF822211	-	-	-
Miconiae Miconia fasciculata KF820252 . KF821037 EU055774 EU056033 KF822219 .	Miconieae	Miconia elegans	KF820247	-	KF821032	KF821607	-	KF822214	-	-	-
Miconieae Miconia ferruginata - - KF821038 KF821610 - KF822228 - - - Miconieae Miconia gratissima KF82069 - KF821054 KF821620 - KF822238 - <td>Miconieae</td> <td>Miconia evanescens</td> <td>KF819925</td> <td>-</td> <td>KF820653</td> <td>KF821436</td> <td>-</td> <td>KF821853</td> <td>-</td> <td>-</td> <td>-</td>	Miconieae	Miconia evanescens	KF819925	-	KF820653	KF821436	-	KF821853	-	-	-
Miconieae Miconia gratissima KF820269 - KF821054 KF821620 - KF822238 - - - - - - KF821056 KF821622 - KF822241 - - - - - - KF821057 KF821623 - KF822242 - - - - - - KF821057 KF821623 - KF822242 -	Miconieae	Miconia fasciculata	KF820252	-	KF821037	EU055774	EU056033	KF822219	-	-	-
Miconiae Miconia hirtella - - KF821056 KF821622 - KF822421 - - - - - - - KF821057 KF821623 - KF822422 -<	Miconieae	Miconia ferruginata	-	-	KF821038	KF821610	-	KF822220	-	-	-
Miconiae Miconia holosericea - - KF821057 KF821623 - KF822424 - - - Miconiae Miconia hyemalis KF82076 - KF820973 EU055782 - KF822246 - - - Miconiae Miconia ibaguensis KF82079 - KF821063 AY460514 EU056042 KF822249 - - - Miconiae Miconia kollmannii GQ139264 GQ139293 KF821074 GQ139308 GQ139323 GQ139351 - - - Miconiae Miconia lacercenata - - - EU055790 EU056048 KF822269 - - - Miconiae Miconia laejudota KF823030 - KF821088 EU055790 EU056053 KF822275 - - - Miconiae Miconia longispicata KF820311 - KF821089 EU055797 - - KF822286 - - - Miconiae Micon	Miconieae	Miconia gratissima	KF820269	-	KF821054	KF821620	-	KF822238	-	-	-
Miconieae Miconia hyemalis KF820276 - KF820973 EU055782 - KF822246 -	Miconieae	Miconia hirtella	-	-	KF821056	KF821622	-	KF822241	-	-	-
Miconieae Miconia ibaguensis KF820279 - KF821063 AY460514 EU056042 KF822249 - - - Miconieae Miconia kollmannii GQ139294 GQ139293 KF821074 GQ139308 GQ139323 GQ139351 -	Miconieae	Miconia holosericea	-	-	KF821057	KF821623	-	KF822242	-	-	-
Miconieae Miconia kollmannii GQ139264 GQ139293 KF821074 GQ139308 GQ139323 GQ139351 - - - - - - EU055790 EU056048 KF822699 - - - - - - - EU055790 EU056048 KF822699 -	Miconieae	Miconia hyemalis	KF820276	-	KF820973	EU055782	-	KF822246	-	-	-
Miconieae Miconia latecrenata - - - EU055790 EU056048 KF822269 - - - - Miconieae Miconia lepidota KF820300 - KF821088 EU055792 EU056050 KF822275 - <td< td=""><td>Miconieae</td><td>Miconia ibaguensis</td><td>KF820279</td><td>-</td><td>KF821063</td><td>AY460514</td><td>EU056042</td><td>KF822249</td><td>-</td><td>-</td><td>-</td></td<>	Miconieae	Miconia ibaguensis	KF820279	-	KF821063	AY460514	EU056042	KF822249	-	-	-
Miconieae Miconia lepidota KF820300 - KF821088 EU055792 EU056050 KF822275 - - - - - - - KF821092 EU055794 EU056053 KF822279 - <th< td=""><td>Miconieae</td><td>Miconia kollmannii</td><td>GQ139264</td><td>GQ139293</td><td>KF821074</td><td>GQ139308</td><td>GQ139323</td><td>GQ139351</td><td>-</td><td>-</td><td>-</td></th<>	Miconieae	Miconia kollmannii	GQ139264	GQ139293	KF821074	GQ139308	GQ139323	GQ139351	-	-	-
Miconieae Miconia ligustroides KF820304 - KF821092 EU055794 EU056053 KF822279 - <td>Miconieae</td> <td>Miconia latecrenata</td> <td>-</td> <td>-</td> <td>-</td> <td>EU055790</td> <td>EU056048</td> <td>KF822269</td> <td>-</td> <td>-</td> <td>-</td>	Miconieae	Miconia latecrenata	-	-	-	EU055790	EU056048	KF822269	-	-	-
Miconieae Miconia longispicata KF820311 - KF821099 EU055797 - KF822286 - - - Miconieae Miconia lourteigiana KF820313 - KF821101 KF821642 - KF822288 - - - Miconieae Miconia lymanii KF820317 - KF821105 EU055800 EU056057 KF822292 - - - Miconieae Miconia macrocarpa KF820554 - KF821373 EF418921 - KF822546 - - - Miconieae Miconia macrothyrsa KF820319 - KF821107 KF821646 - KF822294 - - - Miconieae Miconia minutiflora KF820335 - KF821123 KF821656 EU056062 KF822310 - - - Miconieae Miconia nirutiflora KF820337 - KF821125 EU055806 EU056063 KF822321 HM446829 - - Miconieae <	Miconieae	Miconia lepidota	KF820300	-	KF821088	EU055792	EU056050	KF822275	-	-	-
Miconieae Miconia lourteigiana KF820313 - KF821101 KF821642 - KF822288 - - - - Miconieae Miconia lymanii KF820317 - KF821105 EU055800 EU056057 KF822922 - - - - Miconieae Miconia macrocarpa KF820554 - KF821373 EF418921 - KF822546 - - - Miconieae Miconia macrothyrsa KF820319 - KF821107 KF821646 - KF822294 - - - Miconieae Miconia minutiflora KF820335 - KF821123 KF821656 EU056062 KF822310 - - - Miconieae Miconia mirabilis KF820337 - KF821125 EU055806 EU056063 KF822312 HM446829 - - Miconieae Miconia nervosa KF820346 - KF821133 KF821663 - KF822321 GQ981804 - - <tr< td=""><td>Miconieae</td><td>Miconia ligustroides</td><td>KF820304</td><td>-</td><td>KF821092</td><td>EU055794</td><td>EU056053</td><td>KF822279</td><td>-</td><td>-</td><td>-</td></tr<>	Miconieae	Miconia ligustroides	KF820304	-	KF821092	EU055794	EU056053	KF822279	-	-	-
Miconieae Miconia lymanii KF820317 - KF821105 EU055800 EU056057 KF822292 - - - - Miconieae Miconia macrotarpa KF820554 - KF821373 EF418921 - KF822546 - - - Miconieae Miconia macrothyrsa KF820319 - KF821107 KF821646 - KF822294 - - - Miconieae Miconia minutiflora KF820335 - KF821123 KF821656 EU056062 KF822310 - - - Miconieae Miconia mirabilis KF820337 - KF821125 EU055806 EU056063 KF822312 HM446829 - - Miconieae Miconia nervosa KF820346 - KF821163 - KF822321 GQ981804 - - Miconieae Miconia paniculata KF820352 - KF821140 EU055810 EU056066 KF822328 - - - Miconieae <td< td=""><td>Miconieae</td><td>Miconia longispicata</td><td>KF820311</td><td>-</td><td>KF821099</td><td>EU055797</td><td>-</td><td>KF822286</td><td>-</td><td>-</td><td>-</td></td<>	Miconieae	Miconia longispicata	KF820311	-	KF821099	EU055797	-	KF822286	-	-	-
Miconieae Miconia macrocarpa KF820554 - KF821373 EF418921 - KF822546 - - - - Miconieae Miconia macrothyrsa KF820319 - KF821107 KF821646 - KF822294 - - - - Miconieae Miconia minutiflora KF820335 - KF821123 KF821656 EU056062 KF822310 - - - - Miconieae Miconia mirabilis KF820337 - KF821125 EU055806 EU056063 KF822312 HM446829 - - Miconieae Miconia nervosa KF820346 - KF821133 KF821663 - KF822321 GQ981804 - - Miconieae Miconia paniculata KF820352 - KF821140 EU055810 EU056066 KF822328 - - - Miconieae Miconia paniculata KF820359 - KF821025 EU055771 EU056029 KF822336 - - <	Miconieae	Miconia lourteigiana	KF820313	-	KF821101	KF821642	-	KF822288	-	-	-
Miconieae Miconia macrothyrsa KF820319 - KF821107 KF821646 - KF822294 - - - Miconieae Miconia minutiflora KF820335 - KF821123 KF821656 EU056062 KF822310 - - - Miconieae Miconia mirabilis KF820337 - KF821125 EU055806 EU056063 KF822312 HM446829 - - Miconieae Miconia nervosa KF820346 - KF821133 KF821663 - KF822321 GQ981804 - - Miconieae Miconia octopetala KF820352 - KF821140 EU055810 EU056066 KF822328 - - - Miconieae Miconia paniculata KF820241 - KF821025 EU055771 EU056029 KF822207 - - - Miconieae Miconia paradoxa KF820359 - KF821151 KF821675 - KF822339 - - - Miconieae	Miconieae	Miconia lymanii	KF820317	-	KF821105	EU055800	EU056057	KF822292	-	-	-
Miconieae Miconia minutiflora KF820335 - KF821123 KF821656 EU056062 KF822310 - - - - Miconieae Miconia mirabilis KF820337 - KF821125 EU055806 EU056063 KF822312 HM446829 - - Miconieae Miconia nervosa KF820346 - KF821133 KF821663 - KF822321 GQ981804 - - Miconieae Miconia octopetala KF820352 - KF821140 EU055810 EU056066 KF822328 - - - Miconieae Miconia paniculata KF820241 - KF821025 EU055771 EU056029 KF822207 - - - Miconieae Miconia panduliflora KF820359 - KF821148 - - KF822336 - - - Miconieae Miconia penduliflora KF820362 - KF821151 KF821676 EU056071 KF822341 - - - - </td <td>Miconieae</td> <td>Miconia macrocarpa</td> <td>KF820554</td> <td>-</td> <td>KF821373</td> <td>EF418921</td> <td>-</td> <td>KF822546</td> <td>-</td> <td>-</td> <td>-</td>	Miconieae	Miconia macrocarpa	KF820554	-	KF821373	EF418921	-	KF822546	-	-	-
Miconieae Miconia mirabilis KF820337 - KF821125 EU055806 EU056063 KF822312 HM446829 - - Miconieae Miconia nervosa KF820346 - KF821133 KF821663 - KF822321 GQ981804 - - Miconieae Miconia octopetala KF820352 - KF821140 EU055810 EU056066 KF822328 - - - - Miconieae Miconia paniculata KF820241 - KF821025 EU055771 EU056029 KF822207 - - - - Miconieae Miconia paradoxa KF820359 - KF821148 - - - KF822336 - - - Miconieae Miconia penduliflora KF820362 - KF821151 KF821675 - KF822341 - - - Miconieae Miconia pepericarpa KF820364 - KF821153 KF821676 EU056071 KF822341 - - - <td>Miconieae</td> <td>Miconia macrothyrsa</td> <td>KF820319</td> <td>-</td> <td>KF821107</td> <td>KF821646</td> <td>-</td> <td>KF822294</td> <td>-</td> <td>-</td> <td>-</td>	Miconieae	Miconia macrothyrsa	KF820319	-	KF821107	KF821646	-	KF822294	-	-	-
Miconieae Miconia nervosa KF820346 - KF821133 KF821663 - KF822321 GQ981804 - - - Miconieae Miconia octopetala KF820352 - KF821140 EU055810 EU056066 KF822328 - - - - Miconieae Miconia paniculata KF820241 - KF821025 EU055771 EU056029 KF822207 - - - - Miconieae Miconia paradoxa KF820359 - KF821148 - - - KF822336 - - - Miconieae Miconia penduliflora KF820362 - KF821151 KF821675 - KF822339 - - - Miconieae Miconia pepericarpa KF820364 - KF821153 KF821676 EU056071 KF822341 - - -	Miconieae	Miconia minutiflora	KF820335	-	KF821123	KF821656	EU056062	KF822310	-	-	-
Miconieae Miconia octopetala KF820352 - KF821140 EU055810 EU056066 KF822328 - - - - Miconieae Miconia paniculata KF820241 - KF821025 EU055771 EU056029 KF822207 - - - - Miconieae Miconia paradoxa KF820359 - KF821148 - - - KF822336 - - - - Miconieae Miconia penduliflora KF820362 - KF821151 KF821675 - KF822339 - - - - Miconieae Miconia pepericarpa KF820364 - KF821153 KF821676 EU056071 KF822341 - - - - -	Miconieae	Miconia mirabilis	KF820337	-	KF821125	EU055806	EU056063	KF822312	HM446829	-	-
Miconieae Miconia paniculata KF820241 - KF821025 EU055771 EU056029 KF822207 - - - - Miconieae Miconia paradoxa KF820359 - KF821148 - - - KF822336 - - - - Miconieae Miconia penduliflora KF820362 - KF821151 KF821675 - KF822339 - - - - Miconieae Miconia pepericarpa KF820364 - KF821153 KF821676 EU056071 KF822341 - - - -	Miconieae	Miconia nervosa	KF820346	-	KF821133	KF821663	-	KF822321	GQ981804	-	-
Miconieae Miconia paradoxa KF820359 - KF821148 - - - KF822336 - - - - Miconieae Miconia penduliflora KF820362 - KF821151 KF821675 - KF822339 - - - - Miconieae Miconia pepericarpa KF820364 - KF821153 KF821676 EU056071 KF822341 - - - -	Miconieae	Miconia octopetala	KF820352	-	KF821140	EU055810	EU056066	KF822328	-	-	-
Miconieae Miconia penduliflora KF820362 - KF821151 KF821675 - KF822339 - - - - Miconieae Miconia pepericarpa KF820364 - KF821153 KF821676 EU056071 KF822341 - - - -	Miconieae	Miconia paniculata	KF820241	-	KF821025	EU055771	EU056029	KF822207	-	-	-
Miconieae <i>Miconia pepericarpa</i> KF820364 - KF821153 KF821676 EU056071 KF822341	Miconieae	Miconia paradoxa	KF820359	-	KF821148	-	-	KF822336	-	-	-
• • •	Miconieae	Miconia penduliflora	KF820362	-	KF821151	KF821675	-	KF822339	-	-	-
Miconieae <i>Miconia phanerostila</i> KF820366 - KF821155 KF821677 - KF822343	Miconieae	Miconia pepericarpa	KF820364	-	KF821153	KF821676	EU056071	KF822341	-	-	-
*	Miconieae	Miconia phanerostila	KF820366	-	KF821155	KF821677	-	KF822343	-	-	-

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Miconieae	Miconia poeppigii	KF820372	-	KF821161	EU055818	EU056074	KF822348	-	-	-
Miconieae	Miconia prasina	KF820376	-	KF821165	AY460520	EU056076	KF822352	HM446830	-	-
Miconieae	Miconia punctata	KF820382	-	KF821175	EU055821	EU056078	KF822361	JQ592680	-	-
Miconieae	Miconia radulaefolia	KF820390	-	KF821183	KF821691	-	KF822370	-	-	-
Miconieae	Miconia regelii	KF820392	-	KF821187	KF821692	-	KF822373	-	-	-
Miconieae	Miconia rimalis	KF820396	-	KF821191	EU055827	-	KF822377	-	-	-
Miconieae	Miconia rubiginosa	KF820399	-	KF821196	AY460525	-	KF822382	-	-	-
Miconieae	Miconia sclerophylla	KF820409	-	KF821208	EU055835	EU056092	KF822395	-	-	-
Miconieae	Miconia staminea	KF820288	-	KF821073	EU055789	EU056046	KF822259	-	-	-
Miconieae	Miconia stenostachya	KF820428	-	KF821229	EU055843	EU056102	KF822416	-	-	-
Miconieae	Miconia subcompressa	KF820432	-	KF821233	EU055845	EU056104	KF822420	-	-	-
Miconieae	Miconia theizans	KF820442	KX073088	KF821241	KF821714	EU056108	KF822429	-	-	KX073193
Miconieae	Miconia tomentosa	-	-	KF821248	EF418905	-	JQ730528	-	-	-
Miconieae	Miconia tristis	KF820455	-	KF821258	EU055855	EU056113	KF822445	-	-	-
Miconieae	Miconia umbellata	KF819967	-	KF820711	EU055674	EU055929	KF821911	KJ082197	-	-
Miconieae	Miconia willdenowii	KF820469	-	KF821272	EU055858	EU056117	KF822459	-	-	-
Miconieae	Ossaea amygdaloides	KF820474	KR062341	KF821277	KF821731	-	KF822464	-	-	KR062805
Miconieae	Ossaea angustifolia	GQ139265	GQ139294	KF821278	GQ139309	GQ139324	GQ139352	-	-	KR062807
Miconieae	Ossaea confertiflora	KF820483	KR062347	KF821287	KF821737	-	KF822473	-	-	KR062813
Miconieae	Ossaea congestiflora	KF820484	KR062348	KF821288	EF418912	-	KF822474	-	-	KR062814
Miconieae	Ossaea marginata	KF820491	KR062354	KF821297	KF821745	-	KF822482	-	-	KR062820
Miconieae	Ossaea sanguinea	KF820505	KR062355	KF821313	EU055865	EU056124	GQ139353	-	-	KR062822
Miconieae	Pachyanthus angustifolius	KF820510	-	KF821321	EU055870	-	KF822504	-	-	EF549719
Miconieae	Pachyanthus clementis	KF820512	-	KF821323	EU055872	-	KF822506	-	-	EF549720
Miconieae	Pachyanthus cubensis	KF820513	-	KF821324	EU055873	-	KF822507	-	-	EF549721
Miconieae	Pachyanthus mantuensis	KF820516	-	KF821327	EU055876	-	KF822510	-	-	EF549724
Miconieae	Pachyanthus poiretii	KF820522	-	KF821333	EU055882	-	KF822516	-	-	EF549729
Miconieae	Pachyanthus tetramerus	KF820524	-	KF821335	EU055884	-	KF822518	-	-	EF549731
Miconieae	Pachyanthus wrightii	KF820525	-	KF821336	EU055885	-	KF822519	-	-	EF549732

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Miconieae	Pleiochiton blepharodes	GQ139254	GQ139275	KF821344	GQ139304	GQ139318	GQ139331	-	-	KR062829
Miconieae	Pleiochiton ebracteatum	GQ139268	GQ139298	KR062477	GQ139313	GQ139325	GQ139357	-	-	KR062831
Miconieae	Tetrazygia decorticans	KF820543	-	KF821362	EU069393	-	KF822535	-	-	EF549740
Miconieae	Tococa bullifera	KF820559	-	KF821377	KF821774	-	KF822551	-	-	-
Miconieae	Tococa coronata	KF820565	-	KF821383	AY460552	-	KF822557	-	-	-
Miconieae	Tococa guianensis	KF820567	-	KF821385	AY460554	EU056136	KF822559	AM235650	AM235453	-
Miconieae	Tococa subciliata	KF820579	-	KF821396	AY460561	-	KF822571	MF786369.1	-	-
Microlicieae	Chaetostoma armatum	JQ730280	-	KF462840	JQ730069	-	JQ730487	-	-	-
Microlicieae	Lavoisiera alba	-	-	-	AY553729	-	-	-	AY553753	-
Microlicieae	Lavoisiera caryophyllea	-	-	-	AY553730	-	KF462999	-	AY553754	-
Microlicieae	Lavoisiera confertiflora	KF407959	-	-	AY553726	-	KF463000	-	AY553750	-
Microlicieae	Lavoisiera cordata	-	-	-	-	AF215582	-	AF215540	AF210371	-
Microlicieae	Lavoisiera crassifolia	-	-	-	AY553727	-	-	-	AY553751	-
Microlicieae	Lavoisiera imbricata	JQ730304	-	KF462856	KF463034	-	KF463001	-	AY553755	-
Microlicieae	Lavoisiera macrocarpa	-	-	-	AY553733	-	-	-	-	-
Microlicieae	Lavoisiera mucorifera	KF407958	KU501157	KF462855	JQ730092	-	JQ730512	-	AY553752	KU500981
Microlicieae	Lavoisiera pulchella	JQ730306	-	KF462857	JQ730093	EU711376	JQ730513	EU711392	JF832034	-
Microlicieae	Lavoisiera subulata	-	-	-	AY553732	-	-	-	AY553756	-
Microlicieae	Microlicia fasciculata	-	-	-	-	AF215583	-	AF215541	AF210370	-
Microlicieae	Microlicia fulva	KF407963	KU501156	KU501051	KU501105	-	KF463004	-	-	KU500980
Microlicieae	Microlicia isophylla	KF407965	KU845169	-	KU845166	-	KF463007	-	-	KU845162
Microlicieae	Microlicia minima	-	-	-	AY553734	-	-	-	AY553757	-
Microlicieae	Poteranthera pusilla	-	-	-	KU845164	-	-	-	-	-
Microlicieae	Rhynchanthera grandiflora	JQ730348	-	KF462881	AY460436	AF215584	JQ730559	MF786392.1	AY553771	-
Microlicieae	Rhynchanthera serrulata	JQ730349	-	-	AY460435	-	JQ730560	-	-	-
Microlicieae	Trembleya parviflora	JQ730451	-	KF462987	JQ730242	-	JQ730663	-	AY553768	-
Olisbeoideae	Lijndenia danguyana	-	-	FJ792908	AY903362	-	-	-	-	-
Olisbeoideae	Lijndenia roborea	-	-	FJ792912	FJ792961	-	-	-	-	-
Olisbeoideae	Memecylon batekeanum	-	-	KC522985	KC523141	-	-	-	-	-

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Olisbeoideae	Memecylon buxifolium	-	-	KC523036	KC523193	-	-	-	-	-
Olisbeoideae	Memecylon cogniauxii	-	-	KC522989	KC523145	-	-	-	-	-
Olisbeoideae	Memecylon erythranthum	-	-	KC522996	KC523152	-	-	-	-	-
Olisbeoideae	Memecylon flavovirens	-	-	KC522998	KC523154	-	-	KU568101	-	-
Olisbeoideae	Memecylon germainii	-	-	KC523003	KC523160	-	-	-	-	-
Olisbeoideae	Memecylon greenwayi	-	-	KC523004	KC523161	-	-	-	-	-
Olisbeoideae	Memecylon sitanum	-	-	KC522977	KC523131	-	-	-	-	-
Olisbeoideae	Mouriri guianensis	-	-	FJ792921	FJ792969	AF215575	-	AF215529	AF215610	-
Olisbeoideae	Warneckea parvifolia	-	-	KC897076	KC897084	-	-	-	-	-
Rhexieae	Arthrostemma ciliatum	KF407950	-	-	KF463024	AF215562	KF462990	AF215522	AF215605	-
Rhexieae	Arthrostemma primaevum	JQ730261	-	KF462821	JQ730050	-	JQ730469	-	-	-
Rhexieae	Rhexia alifanus	-	-	-	DQ985623	-	-	-	-	-
Rhexieae	Rhexia aristosa	JQ730345	-	KF462878	JQ730134	-	JQ730555	-	-	KU500986
Rhexieae	Rhexia cubensis	-	-	-	DQ985627	-	-	KY627364.1	-	-
Rhexieae	Rhexia lutea	-	-	-	DQ985628	-	-	-	-	-
Rhexieae	Rhexia mariana	-	-	-	JQ730135	AF272819	JQ730556	KJ773817	AF323723	-
Rhexieae	Rhexia nashii	-	-	-	DQ985632	-	-	KY627398.1	-	-
Rhexieae	Rhexia nuttallii	-	-	-	DQ985634	-	-	KJ773818	-	-
Rhexieae	Rhexia parviflora	-	-	-	DQ985635	-	-	KX397915	-	-
Rhexieae	Rhexia petiolata	-	-	-	DQ985637	-	-	KJ773819	-	-
Rhexieae	Rhexia virginica	JQ730346	-	KF462879	JQ730136	AF215587	JQ730557	MG249430.1	AF215623	-
Sonerileae	Bredia quadrangularis	-	-	-	KT354878	-	-	-	-	-
Sonerileae	Calvoa grandifolia	-	-	-	-	-	-	AY667151	AY660632	-
Sonerileae	Calvoa orientalis	-	-	-	-	AF215589	-	AF215544	-	-
Sonerileae	Catanthera pilosa	-	-	-	-	AF289367	-	-	-	-
Sonerileae	Catanthera quintuplinervis	-	-	-	-	AF289368	-	-	-	-
Sonerileae	Catanthera tetrandra	-	-	-	-	-	-	-	AF289365	-
Sonerileae	Fordiophyton chenii	-	-	-	KM521843	KT354886	-	KT354895	KM521854	-
Sonerileae	Fordiophyton huizhouense	-	-	-	KM521845	KT354887	-	KT354896	KM521856	-

Clade	Espécies	accD-psaI	atpF-atpH	nrETS	nrITS	ndhF	psbK-psbI	rbcL	rpl16	trnS-trnG
Sonerileae	Medinilla alternifolia	-	-	-	-	AF289374	-	-	AF322229	-
Sonerileae	Medinilla rubrifrons	-	-	-	-	AF289375	-	AY456134	AF294838	-
Sonerileae	Medinilla serpens	-	-	-	-	AF289376	-	-	-	-
Sonerileae	Medinilla sessiliflora	-	-	-	-	AF289377	-	-	-	-
Sonerileae	Medinilla stephanostegia	-	-	-	-	AF289378	-	-	-	-
Sonerileae	Medinilla suberosa	-	-	-	-	AF289379	-	-	-	-
Sonerileae	Plagiopetalum esquirolii	-	-	-	-	-	-	KX527445	-	-

Tabela S2 - Seleção do melhor modelo evolutivo pelo PartitionFinder2

subset	Best Model	sites	subset id	Partition names
1	GTR+G	3654	d08b5c8cf3bf3ce7dadecf578beab87a	psbK, accD, trnS
2	GTR+G	2973	fd6b9830713753180c52972feaa060ad	ndhF, rpl16, atpF
3	GTR+G	1322	9f83d7b9359e04e720c97dda6d23b901	rbcL
4	GTR+G	805	51e34ed2a59969c5d9012587d60dba6b	ETS
5	GTR+G	1531	3e20bd3a6d22f0aa618265e2436c9a13	ITS

Tabela S3 - Dados morfológicos coletados para cada espécie analisada no trabalho. IDE = valores encontrados para o Índice de dimorfismo de estames. Os valores brutos do comprimento médio dos atributos analisados estão em milímetros; sendo EP = estames de polinização, EA = estames de alimentação, FI = filete, ES = estilete, PE = pétala. Referências das descrições taxonômicas (DT) e do Sistema de polinização (SP) - (dependente ou independente de abelhas).

Clado		Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
1.	Bertolonieae	Bertolonia maculata	0	8,00	8,00	4,00	7,00	9,00	Bacci et al., 2017		
2.	Bertolonieae	Salpinga margaritacea	0,090909	3,00	2,50	NA	5,9	11,00	Meyer, 2012		
3.	Bertolonieae	Bertolonia mosenii	0	2,50	2,50	5,50	8,00	10,00	Goldenberg et al., 2016		
4.	Blakeeae	Blakea storkii	0,135135	21,00	16,00	12,00	23,00	4,20	Almeda, 2000		
5.	Blakeeae	Blakea wilsoniorum	0	14,00	14,00	8,00	22,00	30,00	Almeda, 2000		
6.	Cambessedesieae	Cambessedesia corymbosa	0,230769	12,00	7,50	4,50	1,50	7,00	Martins, 1984		
7.	Cambessedesieae	Cambessedesia membranacea	0,263158	12,00	7,00	3,00	1,20	6,00	Martins, 1984		
8.	Cambessedesieae	Cambessedesia espora	0,095238	11,50	9,50	5,50	10,00	7,00	Martins, 1984	Brito et al. 2017	Dependente
9.	Cambessedesieae	Huberia ovalifolia	0	10,00	10,00	NA	30,00	10,00	Bochorny & Goldenberg, 2017		
10.	Cambessedesieae	Merianthera bullata	0,127272	9,30	7,20	NA	17,00	25,00	Bochorny & Goldenberg, 2017		
11.	Cambessedesieae	Merianthera parvifolia	0,125	9,00	7,00	NA	15,00	34,00	Bochorny & Goldenberg, 2017		
12.	Cambessedesieae	Cambessedesia hilariana	0,142857	8,00	6,00	7,00	15,00	4,00	Campos, 2005	Brito et al. 2017	Dependente
13.	Cambessedesieae	Merianthera verrucosa	0,117647	7,60	6,00	NA	15,00	15,00	Bochorny & Goldenberg, 2017		
14.	Cambessedesieae	Cambessedesia gracilis	0,2	7,50	5,00	2,50	8,00	6,00	Martins, 1984		
15.	Cambessedesieae	Merianthera eburnea	0,184	7,40	5,10	NA	15,00	23,50	Goldenberg, 2012		
16.	Cambessedesieae	Cambessedesia eichleri	0,1	5,50	4,50	4,50	10,00	5,00	Bochorny & Goldenberg, 2017		
17.	Cambessedesieae	Behuria comosa	0	3,50	3,50	3,00	8,50	5,00	Bochorny & Goldenberg, 2017		
18.	Cambessedesieae	Dolichoura spiritusanctensis	0	3,00	3,00	2,50	5,00	8,00	Bochorny & Goldenberg, 2017		
19.	Cyphostyleae	Allomaieta ebejicosana	0	6,70	6,70	4,00	4,00	8,00	Losano & Losano, 1999		
20.	Cyphostyleae	Allomaieta pancurana	0	6,50	6,50	3,00	3,00	21,00	Losano & Losano, 1999		
21.	Cyphostyleae	Allomaieta zenufanasana	0	6,00	6,00	4,00	5,00	11,00	Losano & Losano, 1999		
22.	Cyphostyleae	Alloneuron ulei	0,103448	1,60	1,30	0,60	3,00	2,40	Wallnöfer, 1996		
23.	Dissochaeteae	Dissochaeta bracteata	0	23,00	23,00	8,00	10,00	5,00	Goro & VelDkan, 2010		
24.	Henrietteeae	Bellucia spruceana	0,014409	17,80	17,30	10,00	22,90	20,70	Corrêa, 2017		
25.	Henrietteeae	Bellucia grossularioides	0,014245	17,60	-	,			Corrêa, 2014	Santos et al. 2012	Dependente
26.	Henrietteeae	Henriettea martiusii	0	16,70	16,70	8,20	21,40	13,90	Corrêa, 2014		
27.	Henrietteeae	Henriettea uniflora	0	5,00	5,00	3,00	5,70	7,20	Judd et al., 2008		
28.	Marcetieae	Comolia lanceiflora	0,241379	18,00	11,00	9,00	11,00	9,00	Seco, 2006		
29.	Marcetieae	Comolia stenodon	0,142857	16,00	,	8,00	15,00	5,00	Seco, 2006		
30.	Marcetieae	Comolia ovalifolia	0,034482	15,00	14,00	7,00	17,00	12,00	Seco, 2006		

Clado		Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
	Marcetieae	Comolia sessilis	0,217391	14,00	9,00	8,00	18,00	17,00	Seco, 2006		
32.	Marcetieae	Comolia villosa	0,181818	13,00	-	7,00	12,00	20,00	Seco, 2006		
33.	Marcetieae	Comolia sertularia	0,090909	12,00	10,00	6,00	8,00	4,00	Seco, 2006		
34.	Marcetieae	Macairea radula	0,346405	10,30	5,00	2,50	9,00	7,50	Araújo, I., 2013		
35.	Marcetieae	Comolia smithii	0,186046	10,20	7,00	1,20	10,00	8,00	Seco, 2006		
36.	Marcetieae	Comolia vernicosa	0,176470	10,00	7,00	5,00	10,00	3,00	Seco, 2006		
37.	Marcetieae	Comolia microphylla	0,125	9,00	7,00	5,00	7,00	6,00	Seco, 2006		
38.	Marcetieae	Marcetia taxifolia	0,090909	9,00	7,50	4,50	12,00	7,00	Oliveira, 2014		
39.	Marcetieae	Marcetia ericoides	0,05	8,40	7,60	5,60	9,50	7,50	Faria, 2008		
40.	Marcetieae	Acisanthera variabilis	0,066667	8,00	7,00	4,00	6,20	3,50	Araújo, I., 2013		
41.	Marcetieae	Acisanthera quadrata	0,166666	7,00	5,00	NA	13,00	15,00	Oliveira, 2014		
42.	Marcetieae	Comolia edmundoi	0,076923	7,00	6,00	3,00	5,00	3,00	Seco, 2006		
43.	Marcetieae	Acisanthera bivalvis	0,06779	6,30	5,50	3,50	8,00	11,00	Faria, 2008		
44.	Marcetieae	Marcetia acerosa	0,363636	6,00	2,80	2,00	6,70	5,50	Araújo, I., 2013		
45.	Marcetieae	Nepsera aquatica	0,325842	5,90	3,00	3-5,9	15,00	6,00	Faria, 2008		
46.	Marcetieae	Acisanthera limnobios	0,428571	5,00	2,00	1,00	0,30	4,00	Oliveira, 2014		
47.	Marcetieae	Aciotis rubricaulis	0,156626	4,80	3,50	2,30	6,00	6,00	Faria, 2008		
48.	Marcetieae	Acisanthera hedyotoidea	0,210526	4,60	3,00	2,20	1,80	3,30	Faria, 2008		
49.	Marcetieae	Aciotis acuminifolia	0,076923	4,20	3,60	2,50	6,10	3,50	Corrêa, 2014	Santos et al. 2012	Independente
50.	Marcetieae	Aciotis indecora	0,042253	3,70	3,40	2,10	5,50	3,20	Corrêa, 2014		
51.	Marcetieae	Aciotis circaeifolia	0,0625	3,40	3,00	2,20	6,50	8,40	Corrêa, 2014		
52.	Marcetieae	Siphanthera paludosa	0,181818	3,25	2,25	3,00	8,00	5,00	Almeida & Robinson, 2011		
53.	Marcetieae	Acisanthera crassipes	0,132075	3,00	2,30	2,00	3,00	5,00	Lima, 2014		
54.	Marcetieae	Acisanthera uniflora	0,034482	3,00	2,80	2,00	3,00	2,00	Faria, 2008		
55.	Marcetieae	Siphanthera arenaria	0	3,00	3,00	2,00	4,50	4,50	Araújo, I., 2013		
56.	Marcetieae	Aciotis paludosa	0	2,00	2,00	1,00	3,50	2,50	Guimarães, 2014		
57.	Marcetieae	Acisanthera genliseoides	0	2,00	0,20	1,90	2,00	4,00	Oliveira, 2014		
58.	Marcetieae	Siphanthera cordifolia	0,454545	2,00	0,75	3,00	5,75	4,50	Almeida & Robinson, 2011		
59.	Marcetieae	Siphanthera cordata	0,4	1,75	0,75	4,50	9,00	5,00	Almeida & Robinson, 2011		
60.	Marcetieae	Siphanthera fasciculata	0,428571	1,25	0,50	4,00	6,75	5,00	Almeida & Robinson, 2011		
61.	Marcetieae	Siphanthera foliosa	0,142857	1,00	0,75	1,75	2,00	3,25	Almeida & Robinson, 2011		
62.	Marcetieae	Siphanthera gracillima	0,142857	1,00	0,75	2,75	4,00	3,50	Almeida & Robinson, 2011		
63.	Marcetieae	Siphanthera dawsonii	0,2	0,75	0,50	2,50	4,00	3,00	Almeida & Robinson, 2011		
64.	Marcetieae	Siphanthera hostmannii	0,2	0,75	0,50	1,75	4,00	2,00	Almeida & Robinson, 2011		
65.	Marcetieae	Siphanthera subtilis	-0,25	0,75	1,25	3,50	7,50	5,00	Almeida & Robinson, 2011		
66.	Melastomateae	Tibouchina pulchra	0,212121	40,00	26,00	14,00	30,00	1,70	Silva, 2005		
67.	Melastomateae	Tibouchina blanchetiana	0,03125	33,00	31,00	23,00	NA	15,00	Freitas, 2011		
68.	Melastomateae	Tibouchina aspera	0,083333	26,00	22,00	12,00	22,00	23,00	Lima, 2014		

Clado		Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
69.	Melastomateae	Tibouchina sellowiana	0,238095	26,00	16,00	8,00	23,00	14,00	Silva, 2005		
70.	Melastomateae	Tibouchina velutina	0,130434	26,00	20,00	12,00	NA	20,00	Freitas, 2011		
71.	Melastomateae	Tibouchina trichopoda	0,230769	24,00	15,00	8,00	16,00	10,00	Silva, 2005		
72.	Melastomateae	Tibouchina urceolaris	0,170731	24,00	17,00	10,00	15,00	17,00	Freitas, 2011		
73.	Melastomateae	Tibouchina pereirae	0,15	23,00	17,00	10,00	NA	20,00	Freitas, 2011		
74.	Melastomateae	Tibouchina stenocarpa	0,058823	22,50	20,00	12,50	16,50	18,50	Araújo, I., 2013	Brito et al. 2017	Dependente
75.	Melastomateae	Tibouchina papyrus	0,128205	22,00	17,00	12,00	17,00	20,00	Oliveira, 2014	Santos et al. 2012	Dependente
76.	Melastomateae	Tibouchina candolleana	0,135135	21,00	16,00	11,50	18,50	23,50	Araújo, I., 2013		
77.	Melastomateae	Tibouchina barnebyana	0,081081	20,00	17,00	10,00	NA	35,00	Freitas, 2011		
78.	Melastomateae	Tibouchina salviaefolia	0,111111	20,00	16,00	9,00	NA	20,00	Freitas, 2011		
79.	Melastomateae	Pterolepis parnassifolia	0,043478	18,00	16,50	10,00	NA	14,00	Renner, 1994		
80.	Melastomateae	Pterolepis rotundifolia	0,117647	17,10	13,50	9,00	NA	15,00	Renner, 1994		
81.	Melastomateae	Tibouchina fothergillae	0,072555	17,00	14,70	9,00	13,50	24,90	Corrêa, 2014	Brito et al. 2017	Dependente
82.	Melastomateae	Tibouchina semidecandra	0,214285	17,00	11,00	6,00	25,00	30,00	Campos, 2005	Santos et al. 2012	Dependente
83.	Melastomateae	Tibouchina frigidula	0,03125	16,50	15,50	8,50	13,50	25,00	Araújo, I., 2013	Brito et al. 2017	Dependente
84.	Melastomateae	Pterolepis alpestris	0,032258	16,00	15,00	8,00	11,50	13,00	Renner, 1994		
85.	Melastomateae	Tibouchina corymbosa	0,066666	16,00	14,00	7,00	NA	2,00	Silva, 2013		
86.	Melastomateae	Tibouchina aegopogon	0,111111	15,00	12,00	4,00	12,00	15,00	Faria, 2008	Santos et al. 2012	Dependente
87.	Melastomateae	Tibouchina fissinervia	0,137254	14,50	11,00	5,50	22,00	26,00	Faria, 2008		
88.	Melastomateae	Tibouchina collina	0,272727	14,00	8,00	4,00	6,50	3,50	Araújo, I., 2013		
89.	Melastomateae	Pterolepis repanda	0,078125	13,80	11,80	6,80	13,00	20,00	Renner, 1994		
90.	Melastomateae	Tibouchina cardinalis	0,038461	13,50	12,50	6,00	8,50	10,00	Araújo, I., 2013		
91.	Melastomateae	Tibouchina nodosa	0,019607	,	12,50	7,00	13,00	10,00	Oliveira, 2014		
92.	Melastomateae	Centradenia grandifolia	0,019607	12,50	8,50	4,00	12,50	11,00	Almeda, 1977	Santos et al. 2012	Dependente
93.	Melastomateae	Tibouchina angustifolia	0,041666	12,50	11,50	6,00	9,00	11,50	2		
94.	Melastomateae	Tibouchina gracilis	0,066666	12,00	10,50	6,00	13,50	18,50	Araújo, I., 2013		
95.	Melastomateae	Tibouchina martialis	0,263157	12,00	7,00	2,00	16,00	18,00	Oliveira, 2014	Brito et al. 2017	Dependente
96.	Melastomateae	Tibouchina arborea	0,263157	11,00	6,00	5,00	NA	30,00	Freitas, 2011		
97.	Melastomateae	Tibouchina martiusiana	0,157894	11,00	8,00	11,00	17,00	12,00	Campos, 2005		
98.	Melastomateae	Tibouchina laevicaulis	0	10,00	- ,	1,00	13,00	20,00			
99.	Melastomateae	Tibouchina heteromalla	0,103448	8,00	6,50	3,50	5,00	10,50	Araújo, I., 2013	Brito et al. 2017	Dependente
100	. Melastomateae	Tibouchina hieracioides	0	8,00	8,00	8,00	15,00	16,00	Campos, 2005		
101	. Melastomateae	Pterolepis polygonoides	0,2	7,50	5,00	2,50	NA	8,00	Renner, 1994		
102	. Melastomateae	Centradenia inaequilateralis	0,333333	7,00	3,50	2,50	4,00	7,00	Almeda, 1977		
103	. Melastomateae	Pterolepis glomerata	0,037037	7,00	6,50	4,00	4,00	7,50	Araújo, I., 2013	Santos et al. 2012	Independente
104	. Melastomateae	Pterolepis trichotoma	0,272727	7,00	4,00	2,00	7,00	6,00	Oliveira, 2014		
105	. Melastomateae	Centradenia floribunda	0,1	5,50	4,50	3,00	8,00	11,00	Almeda, 1977	Santos et al. 2012	Dependente
106	. Melastomateae	Desmoscelis villosa	0,176470	5,00	3,50	2,00	3,50	5,50	Araújo, I., 2013	Santos et al. 2012	Dependente

Clado	Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
107. Melastomateae	Tibouchina macrochiton	0	3,50	3,50	1,50	10,00	25,00	Freitas, 2011		
108. Melastomateae	Tibouchina estrellensis	0,176470	3,20	2,40	1,20	NA	4,50	Silva, 2013		
109. Melastomateae	Tibouchina granulosa	0,111111	3,00	2,40	1,20	NA	4,70	Silva, 2013	Brito et al. 2017	Dependente
110. Melastomateae	Tibouchina oreophila	0	2,00	2,00	1,20	NA	23,00	Freitas, 2011		
111. Merianieae	Meriania leucantha	0,112781	22,20	17,70	10,30	23,00	36,00	Michelangeli, 2015		
112. Merianieae	Meriania purpurea	0,019138	21,30	20,50	12,00	22,00	33,00	Michelangeli, 2015		
113. Merianieae	Meriania involucrata	0,085889	17,70	14,90	6,90	14,00	30,00	Michelangeli, 2015		
114. Merianieae	Meriania brevipedunculata	-0,06627	15,50	17,70	7,90	11,20	22,00	Michelangeli, 2015		
115. Merianieae	Axinaea affinis	0,076923	14,00	12,00	6,00	20,00	15,00	Eves, 1936		
116. Merianieae	Axinaea macrophylla	0,083333	13,00	11,00	6,00	15,00	12,00	Eves, 1936		
117. Merianieae	Meriania parvifolia	-0,1413	7,90	10,50	3,50	8,00	11,00	Michelangeli, 2015		
118. Merianieae	Axinaea costaricensis	0	6,00	6,00	3,00	10,00	15,00	Eves, 1936		
119. Merianieae	Meriania squamulosa	-0,15942	5,80	8,00	2,10	7,20	4,00	Michelangeli, 2015		
120. Miconieae	Pachyanthus wrightii	0,073446	9,50	8,20	4,30	12,50	17,00	Granados, 2012		
121. Miconieae	Tetrazygia decorticans	0	7,40	7,40	4,00	9,00	5,50	Granados, 2007		
122. Miconieae	Pachyanthus tetramerus	0,057851	6,40	5,70	3,10	8,70	11,00	Granados, 2012		
123. Miconieae	Pleiochiton ebracteatum	0,155555	5,20	3,80	NA	14,00	5,50	Goldenberg, 2015		
124. Miconieae	Pachyanthus cubensis	0,087719	15,50	13,00	7,00	14,40	16,00	Granados, 2012		
125. Miconieae	Tococa coronata	0	14,90	14,90	7,80	22,50	12,10	Corrêa, 2014	Santos et al. 2012	Dependente
126. Miconieae	Tococa bullifera	0	11,80	11,80	6,00	12,90	7,80	Corrêa, 2014	Santos et al. 2012	Dependente
127. Miconieae	Pachyanthus poiretii	0,131707	11,60	8,90	4,60	11,20		Granados, 2012		
128. Miconieae	Pachyanthus mantuensis	0,018181	11,20	10,80	5,80	14,00	20,00	Granados, 2012		
129. Miconieae	Tococa guianensis	0		10,50	5,00	8,50	3,50	Araújo, I., 2013	Santos et al. 2012	Dependente
130. Miconieae	Charianthus nodosus	0,108910	28,00		19,00	28,00		Penneys, 2005		
131. Miconieae	Charianthus alpinus	0,139784	26,50	20,00	17,00	21,00	11,75	Penneys, 2005		
132. Miconieae	Charianthus purpureus	0,103448	24,00	19,50	16,00	26,00	10,88	Penneys, 2005		
133. Miconieae	Charianthus grenadensis	0,090909	18,00	15,00	12,40	22,00	14,13	Penneys, 2005		
134. Miconieae	Leandra umbellata	0,259259	17,00	10,00	6,00	14,00	6,30	Reginato, 2016		
135. Miconieae	Miconia umbellata	0,415525	15,50	6,40	3,70	16,00	8,00	Judd & Ionta, 2013		
136. Miconieae	Leandra variabilis	0	15,00	15,00	7,00	NA	1,60	Silva, 2013	Brito et al. 2017	Independente
137. Miconieae	Miconia gratissima	0	14,90	,	-	16,60	7,00	Corrêa, 2014		
138. Miconieae	Miconia staminea	0	-	14,50	6,00	NA	8,00	Silva, 2013		
139. Miconieae	Miconia holosericea	0,165289	14,10	10,10	5,00	15,30	7,20	Corrêa, 2014		
140. Miconieae	Leandra glazioviana	0,166666	14,00	10,00	4,50	11,00	7,00	Reginato, 2016		
141. Miconieae	Miconia mirabilis	0	14,00	-	6,00	NA	6,00	Silva, 2013		
142. Miconieae	Conostegia superba	0,179487	11,50	8,00	3,00	5,25	6,50	Kriebel, 2016		
143. Miconieae	Calycogonium bissei	0	11,00	11,00	6,00	5,00	8,00	Granados, 2010		
144. Miconieae	Conostegia macrantha	0,1	11,00	9,00	5,25	8,00	16,00	Kriebel, 2016	Santos et al. 2012	Dependente

Clado	Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
145. Miconieae	Leandra amplexicaulis	0,139896	11,00	8,30	2,50	12,00	5,00	Reginato, 2016		
146. Miconieae	Miconia tomentosa	0	11,00	11,00	NA	15,10	3,90	Corrêa, 2014	Santos et al. 2012	Independente
147. Miconieae	Charianthus dominicensis	0,042677	10,75	9,87	7,00	13,75	7,34	Penneys, 2005		
148. Miconieae	Charianthus corymbosus	0,05	10,50	9,50	6,60	13,00	7,63	Penneys, 2005		
149. Miconieae	Leandra therezopolitana	0,065989	10,50	9,20	5,00	13,00	1,30	Reginato, 2016		
150. Miconieae	Miconia octopetala	0,025380	10,10	9,60	6,00	7,00	7,00	Caddah, 2013		
151. Miconieae	Conostegia bigibbosa	0,052631	10,00	9,00	5,50	8,50	11,25	Kriebel, 2016		
152. Miconieae	Conostegia cuatrecasii	0	10,00	10,00	5,50	6,70	12,00	Kriebel, 2016		
153. Miconieae	Leandra aspera	0,083798	9,70	8,20	4,50	11,00	4,20	Reginato, 2016		
154. Miconieae	Leandra ulaei	0,141176	9,70	7,30	4,10	10,00	5,80	Reginato, 2016		
155. Miconieae	Conostegia icosandra	0,161290	9,00	6,50	5,00	6,00	8,00	Kriebel, 2016		
156. Miconieae	Conostegia oerstediana	0,125	9,00	7,00	5,00	8,00	11,00	Kriebel, 2016		
157. Miconieae	Conostegia pittieri	0,125	9,00	7,00	6,50	6,50	14,00	Kriebel, 2016		
158. Miconieae	Leandra hirta	0	9,00	9,00	4,00	NA	3,00	Silva, 2013		
159. Miconieae	Leandra melastomoides	0,058823	9,00	8,00	5,00	9,50	3,50	Araújo, I., 2013	Santos et al. 2012	Independente
160. Miconieae	Miconia macrothyrsa	0,058823	9,00	8,00	6,00	8,00	4,00	Faria, 2008		
161. Miconieae	Pachyanthus clementis	0	9,00	9,00	5,00	15,00	12,00	Granados, 2012		
162. Miconieae	Leandra sericea	0,125827	8,50	6,60	4,00	10,00	4,00	Reginato, 2016		
163. Miconieae	Miconia nervosa	0,030303	8,50	8,00	4,00	10,00	2,00	Faria, 2008	Brito et al. 2017	Dependente
164. Miconieae	Maieta guianensis	0	8,10	8,10	3,00	7,40	6,50	Corrêa, 2014	Santos et al. 2012	Independente
165. Miconieae	Conostegia pyxidata	0,142857	8,00	6,00	4,40	9,00	17,00	Kriebel, 2016		_
166. Miconieae	Conostegia setifera	0,142857	8,00	6,00	3,50	5,00	11,00	Kriebel, 2016		
167. Miconieae	Conostegia volcanalis	0,066667	8,00	7,00	3,75	7,00	15,00	Kriebel, 2016		
168. Miconieae	Miconia longispicata	0,206349	7,60	5,00	3,00	8,30	1,70	Corrêa, 2014		
169. Miconieae	Conostegia procera	0,111111	7,50	6,00	4,00	8,00	14,00	Kriebel, 2016		
170. Miconieae	Pachyanthus angustifolius	0	7,50	7,50	3,90	12,80	11,70	Granados, 2012		
171. Miconieae	Miconia subcompressa	0,223140	7,40	4,70	2,90	4,80	6,30	Judd et al., 2015		
172. Miconieae	Miconia radulaefolia	0,106060	7,30	5,90	2,80	9,50	6,10	Corrêa, 2014		
173. Miconieae	Conostegia brenesii	0,074074	7,25	6,25	4,25	6,50	6,50	Kriebel, 2016		
174. Miconieae	Tococa subciliata	0,035971	7,20	6,70	NA	18,4	10,6	Corrêa, 2014		
175. Miconieae	Conostegia centronioides	0,186440	7,00	4,80	3,00	8,00	9,00	Kriebel, 2016		
176. Miconieae	Conostegia jaliscana	0	7,00	7,00	4,00	6,00	8,00	Kriebel, 2016		
177. Miconieae	Conostegia polyandra	0,166666	7,00	5,00	3,00	10,00	9,50	Kriebel, 2016		
178. Miconieae	Conostegia rufescens	0,076923	7,00	6,00	3,50	7,00	11,00	Kriebel, 2016		
179. Miconieae	Conostegia xalapensis	0,272727	7,00	4,00	2,50	6,25	8,00	Kriebel, 2016		
180. Miconieae	Leandra lapae	0,085271	7,00	5,90	3,40	9,00	4,00	Reginato, 2016		
181. Miconieae	Miconia albicans	0	7,00	7,00	3,50	4,50	3,00	Araújo, I., 2013	Brito et al. 2017	Independente
182. Miconieae	Miconia penduliflora	0,044776	7,00	6,40	3,50	5,30	6,80	Caddah, 2013		_

Clado	Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
183. Miconieae	Pleiochiton blepharodes	0	7,00	7,00	3,00	NA	10,00	Silva, 2013		
184. Miconieae	Miconia alata	0,175438	6,70	4,70	2,50	6,20	2,50	Corrêa, 2014	Santos et al. 2012	Independente
185. Miconieae	Clidemia rubra	0	6,60	6,60	2,60	8,70	2,80	Corrêa, 2014	Santos et al. 2012	Independente
186. Miconieae	Clidemia hirta	0	6,50	6,50	2,50	5,00	5,50	Araújo, I., 2013	Brito et al. 2017	Independente
187. Miconieae	Conostegia bracteata	0,130434	6,50	5,00	2,75	4,25	7,00	Kriebel, 2016		
188. Miconieae	Conostegia rhodopetala	0,181818	6,50	4,50	2,25	5,00	8,00	Kriebel, 2016		
189. Miconieae	Conostegia rubiginosa	0,083333	6,50	5,50	3,25	7,00	9,00	Kriebel, 2016		
190. Miconieae	Conostegia speciosa	0,238095	6,50	4,00	2,00	4,00	7,25	Kriebel, 2016		
191. Miconieae	Leandra cancellata	0	6,50	6,50	4,00	5,00	3,00	Araújo, I., 2013		
192. Miconieae	Leandra polystachya	0,04	6,50	6,00	4,00	6,00	3,50	Faria, 2008	Brito et al. 2017	Independente
193. Miconieae	Miconia calvescens	0	6,50	6,50	3,50	NA	1,80	Silva, 2013		_
194. Miconieae	Miconia stenostachya	0,130434	6,50	5,00	2,50	3,50	2,00	Araújo, I., 2013	Brito et al. 2017	Independente
195. Miconieae	Miconia lepidota	0,125	6,30	4,90	2,70	4,80	1,80	Corrêa, 2014	Santos et al. 2012	Dependente
196. Miconieae	Miconia dispar	0,129629	6,10	4,70	2,40	5,40	2,00	Corrêa, 2014		-
197. Miconieae	Conostegia extinctoria	0,12962	6,00	4,75	3,00	8,00	5,00	Kriebel, 2016		
198. Miconieae	Conostegia lasiopoda	0,2	6,00	4,00	3,00	8,00	8,00	Kriebel, 2016		
199. Miconieae	Conostegia montana	0,090909	6,00	5,00	2,50	3,75	5,25	Kriebel, 2016		
200. Miconieae	Ossaea congestiflora	0,043478	6,00	5,50	3,00	7,00	1,00	Araújo, I., 2013		
201. Miconieae	Miconia phanerostila	0,082568	5,90	5,00	2,70	5,90	1,80	Corrêa, 2014		
202. Miconieae	Miconia egensis	0,106796	5,70	4,60	2,50	4,30	2,20	Corrêa, 2014	Santos et al. 2012	Independente
203. Miconieae	Miconia ferruginata	0,017857	5,70	5,50	2,50	4,50	4,50	Araújo, I., 2013	Brito et al. 2017	Independente
204. Miconieae	Miconia discolor	0,009009	5,60	5,50	3,00	5,20	2,20	Caddah, 2013	Santos et al. 2012	Independente
205. Miconieae	Clidemia urceolata	0	5,50	5,50	3,00	5,00	3,50	Araújo, I., 2013	Brito et al. 2017	Independente
206. Miconieae	Conostegia caelestis	0,047619	5,50	5,00	2,50	4,00	10,00	Kriebel, 2016		_
207. Miconieae	Conostegia micrantha	0,222222	5,50	3,50	1,50	4,00	5,25	Kriebel, 2016		
208. Miconieae	Conostegia plumosa	0,128205	5,50	4,25	2,50	6,00	6,00	Kriebel, 2016		
209. Miconieae	Conostegia setosa	0,157894	5,50	4,00	2,75	5,00	7,00	Kriebel, 2016		
210. Miconieae	Miconia argyrophylla	0,148936	5,40	4,00	1,70	5,20	2,30	Corrêa, 2014	Santos et al. 2012	Independente
211. Miconieae	Miconia crassinervia	0,125	5,40	4,20	1,80	3,80	2,20	Corrêa, 2014		
212. Miconieae	Miconia punctata	0,218390	5,30	3,40	1,90	2,80	2,30	Corrêa, 2014		
213. Miconieae	Conostegia subcrustulata	0,111111	5,00	4,00	2,75	4,50	5,00	Kriebel, 2016		
214. Miconieae	Conostegia tenuifolia	0,176470	5,00	3,50	2,00	6,00	8,25	Kriebel, 2016		
215. Miconieae	Leandra aurea	0	5,00	5,00	4,00	8,00	40,00	Campos, 2005	Brito et al. 2017	Independente
216. Miconieae	Leandra reversa	0	5,00	5,00	3,00	NA	2,30	Silva, 2013	Brito et al. 2017	Dependente
217. Miconieae	Miconia brasiliensis	0	4,70	4,70	2,00	NA	1,50	Silva, 2013		-
218. Miconieae	Miconia cinerascens	0,253333	4,70	2,80	1,50	8,20	4,50	Caddah, 2013	Brito et al. 2017	Dependente
219. Miconieae	Clidemia japurensis	0	4,60	4,60	3,00	7,80	3,60	Corrêa, 2014		-
220. Miconieae	Clidemia capitellata	0	4,50	4,50	2,00	6,50	4,50	Araújo, I., 2013	Santos et al. 2012	Independente

Clado	Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
221. Miconieae	Conostegia monteleagreana	0,2	4,50	3,00	2,50	5,00	5,00	Kriebel, 2016		
222. Miconieae	Miconia alborufescens	0	4,50	4,50	3,00	4,50	2,50	Araújo, I., 2013	Brito et al. 2017	Dependente
223. Miconieae	Miconia elegans	0	4,50	4,50	1,00	4,00	1,50	Araújo, I., 2013	Santos et al. 2012	Dependente
224. Miconieae	Miconia paradoxa	0,	4,50	4,50	2,50	4,50	2,00	Araújo, I., 2013		
225. Miconieae	Miconia lourteigiana	0,189189	4,40	3,00	1,40	3,20	1,20	Corrêa, 2014		
226. Miconieae	Clidemia epibaterium	0	4,30	4,30	1,60	5,30	3,80	Corrêa, 2014	Santos et al. 2012	Independente
227. Miconieae	Conostegia cinnamomea	0,133333	4,25	3,25	2,25	6,25	4,25	Kriebel, 2016		
228. Miconieae	Miconia fasciculata	0,037037	4,20	3,90	2,60	6,20	2,50	Caddah, 2013		
229. Miconieae	Miconia poeppigii	0,12	4,20	3,30	1,50	3,90	1,20	Corrêa, 2014		
230. Miconieae	Leandra foveolata	0	4,00	4,00	4,00	10,00	3,00	Campos, 2005		
231. Miconieae	Miconia macrocarpa	0,212121	4,00	2,60	1,00	5,70	3,80	Judd & Ionta, 2013		
232. Miconieae	Miconia sclerophylla	0	4,00	4,00	2,50	3,00	2,50	Araújo, I., 2013		
233. Miconieae	Miconia theizans	0	4,00	4,00	2,50	3,50	1,00	Araújo, I., 2013	Brito et al. 2017	Dependente
234. Miconieae	Miconia hyemalis	0,04	3,90	3,60	2,40	3,80	2,50	Caddah, 2013	Brito et al. 2017	Independente
235. Miconieae	Ossaea marginata	0	3,90	3,90	1,70	NA	1,50	Silva, 2013		
236. Miconieae	Clidemia heteroneura	0,027027	3,80	3,60	2,00	6,80	1,90	Corrêa, 2014		
237. Miconieae	Miconia budlejoides	0	3,80	3,80	1,80	3,00	2,10	Caddah, 2013		
238. Miconieae	Miconia chamissois	0	3,80	3,80	1,30	6,50	2,00	Araújo, I., 2013	Santos et al. 2012	Dependente
239. Miconieae	Miconia cinnamomifolia	0,027027	3,80	3,60	1,80	NA	1,60	Silva, 2013		_
240. Miconieae	Miconia corallina	0,027777	3,70	3,50	2,50	4,20	2,00	Caddah, 2013	Brito et al. 2017	Dependente
241. Miconieae	Miconia brunnea	0	3,60	3,60	2,30	4,80	2,50	Caddah, 2013		-
242. Miconieae	Miconia chrysophylla	0,076923	3,50	3,00	1,80	3,20	1,80	Corrêa, 2014		
243. Miconieae	Miconia cuspidata	0,272727	3,50	2,00	NA	4,50	3,50	Faria, 2008		
244. Miconieae	Miconia rimalis	0	3,50	3,50	1,50	3,50	2,50	Araújo, I., 2013		
245. Miconieae	Miconia tristis	0	3,50	3,50	2,00	NA	1,50	Silva, 2013	Brito et al. 2017	Dependente
246. Miconieae	Miconia capixaba	0,079365	3,40	2,90	2,00	4,50	1,70	Caddah, 2013		
247. Miconieae	Miconia castaneiflora	0,0625	3,40	3,00	2,30	3,00	2,20	Caddah, 2013		
248. Miconieae	Leandra tetraquetra	0,066666	3,20	2,80	NA	6,50	3,00	Meyer, 2012		
249. Miconieae	Miconia ibaguensis	0,049180	3,20	2,90	1,20	3,00	2,00	Araújo, I., 2013	Brito et al. 2017	Independente
250. Miconieae	Miconia willdenowii	0,033333	3,10	2,90	1,70	NA	2,10	Caddah, 2013		•
251. Miconieae	Clidemia sericea	0	3,00	3,00	NA	7,00	1,00	Faria, 2008		
252. Miconieae	Leandra pennipilis	0	3,00	3,00	4,00	9,00	4,00	Campos, 2005		
253. Miconieae	Leandra salicina	0	3,00	3,00	5,00	9,00	2,00	Campos, 2005		
254. Miconieae	Miconia hirtella	0	3,00	3,00	2,00	2,00	1,00	Faria, 2008		
255. Miconieae	Miconia ligustroides	0,090909	3,00	2,50	1,50	1,50	1,50	Araújo, I., 2013	Brito et al. 2017	Independente
256. Miconieae	Miconia prasina	0,2	3,00	2,00	NA	2,00	3,00	Faria, 2008	Brito et al. 2017	Independente
257. Miconieae	Miconia rubiginosa	0	3,00	3,00	1,00	2,00	1,50	Faria, 2008	Santos et al. 2012	Independente
258. Miconieae	Ossaea amygdaloides	0	3,00	3,00	1,30	ŃA	2,00	Silva, 2013	Brito et al. 2017	Independente

Clado	Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
259. Miconieae	Clidemia debilis	0,074074	2,90	2,50	NA	4,00	2,30	Faria, 2008		
260. Miconieae	Miconia latecrenata	0,017543	2,90	2,80	1,50	NA	1,50	Silva, 2013	Santos et al. 2012	Independente
261. Miconieae	Miconia lymanii	0,035714	2,90	2,70	1,80	3,80	1,90	Caddah, 2013		
262. Miconieae	Miconia regelii	0,191489	2,80	1,90	1,10	3,10	0,90	Corrêa, 2014		
263. Miconieae	Ossaea confertiflora	0	2,80	2,80	1,20	NA	2,00	Silva, 2013	Santos et al. 2012	Independente
264. Miconieae	Leandra eichleri	0	2,50	2,50	2,50	7,00	2,50	Campos, 2005		
265. Miconieae	Ossaea angustifolia	0,15	2,30	1,70	NA	6,40	3,40	Goldenberg, 2015		
266. Miconieae	Ossaea sanguinea	0,15	2,30	1,70	NA	7,30	4,40	Goldenberg, 2015		
267. Miconieae	Clidemia biserrata	0,047619	2,20	2,00	NA	5,50	4,00	Faria, 2008		
268. Miconieae	Miconia cyathanthera	0,189189	2,20	1,50	1,00	3,00	1,00	Araújo, I., 2013		
269. Miconieae	Miconia kollmannii	0,023255	2,20	2,10	1,50	2,30	0,70	Caddah, 2013		
270. Miconieae	Leandra erostrata	0	2,00	2,00	2,00	7,00	1,50	Campos, 2005	Brito et al. 2017	Dependente
271. Miconieae	Leandra quinquedentata	0	2,00	2,00	2,30	8,00	4,00	Araújo, I., 2013		
272. Miconieae	Miconia chartacea	0	2,00	2,00	2,00	5,00	2,00	Campos, 2005	Brito et al. 2017	Dependente
273. Miconieae	Miconia ciliata	0,230769	2,00	1,25	NA	2,50	2,50	Faria, 2008	Santos et al. 2012	Dependente
274. Miconieae	Miconia cubatanensis	0	2,00	2,00	1,00	2,50	1,00	Araújo, I., 2013		_
275. Miconieae	Miconia minutiflora	0,272727	1,75	1,00	NA	3,00	2,50	Faria, 2008	Santos et al. 2012	Dependente
276. Miconieae	Miconia pepericarpa	0,034482	1,50	1,40	0,90	3,00	1,40	Caddah, 2013	Santos et al. 2012	Dependente
277. Miconieae	Miconia paniculata	0,1	1,10	0,90	NA	3,00	1,70	Meyer, 2012		
278. Microlicieae	Lavoisiera pulchella	0,092307	7,10	5,90	NA	7,80	21,00	Goldenberg, 2015	Brito et al. 2017	Independente
279. Microlicieae	Microlicia fasciculata	0,04	6,50	6,00	5,00	6,00	10,00	Faria, 2008	Santos et al. 2012	Independente
280. Microlicieae	Chaetostoma armatum	0,28	6,40	3,60	NA	11,00	8,00	Goldenberg, 2015	Brito et al. 2017	Dependente
281. Microlicieae	Microlicia minima	0	4,50	4,50	2,50	5,00	4,50	Pataro et al. 2017		
282. Microlicieae	Lavoisiera mucorifera	0,227273	13,50	8,50	6,00	7,00	18,00	Martins e Almeda 2017		
283. Microlicieae	Lavoisiera alba	0,136363	12,50	9,50	5,00	15,00	22,00	Martins e Almeda 2017		
284. Microlicieae	Lavoisiera caryophyllea	0,095238	11,50	9,50	7,00	9,00	25,00	Martins e Almeda 2017		
285. Microlicieae	Lavoisiera macrocarpa	0,133333	17,00	13,00	8,00	10,00	35,00	Martins e Almeda 2017		
286. Microlicieae	Lavoisiera cordata	0,084745	16,00	13,50	8,00	12,00	25,00	Martins e Almeda 2017		
287. Microlicieae	Lavoisiera confertiflora	0,333333	13,00	6,50	5,00	17,00	20,00	Martins e Almeda 2017		
288. Microlicieae	Lavoisiera crassifolia	0,263157	12,00	7,00	4,00	7,00	28,00	Martins e Almeda 2017		
289. Microlicieae	Rhynchanthera grandiflora	0,142857	12,00	9,00	5,00	2,00	17,00	Faria, 2008	Brito et al. 2017	Dependente
290. Microlicieae	Rhynchanthera serrulata	0,333333	12,00	6,00	5,00	16,00	15,00	Kriebel, 2016		
291. Microlicieae	Lavoisiera subulata	0,161290	9,00	6,50	5,00	8,00	14,00	Martins e Almeda 2017		
292. Microlicieae	Lavoisiera imbricata	0,076923	7,00	6,00	4,00	4,00	8,00	Faria, 2008	Brito et al. 2017	Dependente
293. Microlicieae	Trembleya parviflora	0	4,00	4,00	2,00	3,00	6,00	Campos, 2005	Brito et al. 2017	Dependente
294. Microlicieae	Microlicia fulva	0,142871	2,00	1,50	2,50	5,00	6,00	Campos, 2005		
295. Microlicieae	Microlicia isophylla	0,142857	2,00	1,50	2,50	5,00	7,00	Campos, 2005		
296. Microlicieae	Poteranthera pusilla	0	2,00	2,00	1,20	NA	3,00	Oliveira, 2014		
	•									

Clado	Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP	SP
297. Olisbeoideae	Memecylon buxifolium	0	9,50	9,50	8,00	NA	NA	Stone, 2014		
298. Olisbeoideae	Lijndenia danguyana	0,133333	8,50	6,50	4,50	12,00	3,00	Stone, 2017		
299. Olisbeoideae	Lijndenia roborea	0,133333	8,50	6,50	5,00	12,00	3,00	Stone, 2017		
300. Olisbeoideae	Memecylon greenwayi	0	5,25	5,25	3,75	5,00	2,00	Stone, 2014		
301. Olisbeoideae	Warneckea parvifolia	0,11627	4,80	3,80	3,00	5,00	1,30	Stone, 2014		
302. Olisbeoideae	Memecylon erythranthum	0	4,75	4,75	3,25	4,50	2,00	Stone, 2014		
303. Olisbeoideae	Memecylon batekeanum	0	4,50	4,50	2,50	4,00	4,50	Stone, 2006		
304. Olisbeoideae	Memecylon sitanum	0	3,75	3,75	2,50	4,00	2,00	Stone, 2014		
305. Olisbeoideae	Memecylon cogniauxii	0	3,30	3,30	2,00	4,50	1,75	Stone, 2014		
306. Olisbeoideae	Mouriri guianensis	0,333333	10,00	5,00	4,00	17,50	8,00	Kriebel, 2016		
307. Olisbeoideae	Memecylon flavovirens	0	6,00	6,00	5,00	8,00	3,50	Stone, 2014		
308. Olisbeoideae	Memecylon germainii	0	4,00	4,00	2,50	3,50	1,80	Stone, 2014		
309. Rhexieae	Rhexia lutea	0	2,50	2,50	NA	NA	13,00	James, 1956	Santos et al. 2012	Dependente
310. Rhexieae	Arthrostemma ciliatum	0,272727	12,25	7,00	5,00	11,00	30,00	Almeda, 1993		
311. Rhexieae	Arthrostemma primaevum	0,417722	14,00	5,75	5,00	6,00	16,00	Almeda, 1994		
312. Rhexieae	Rhexia cubensis	0	11,00	11,00	NA	NA	20,00	James, 1956	Santos et al. 2012	Dependente
313. Rhexieae	Rhexia nashii	0	11,00	11,00	NA	NA	25,00	James, 1956	Santos et al. 2012	Dependente
314. Rhexieae	Rhexia alifanus	0	9,00	9,00	NA	NA	25,00	James, 1956	Santos et al. 2012	Dependente
315. Rhexieae	Rhexia aristosa	0	9,00	9,00	NA	NA	20,00	James, 1956	Santos et al. 2012	Dependente
316. Rhexieae	Rhexia mariana	0	8,00	8,00	NA	NA	20,00	James, 1956	Santos et al. 2012	Independente
317. Rhexieae	Rhexia virginica	0	7,00	7,00	NA	NA	17,00	James, 1956	Santos et al. 2012	Dependente
318. Rhexieae	Rhexia parviflora	0	3,00	3,00	NA	NA	9,00	James, 1956	Santos et al. 2012	Dependente
319. Rhexieae	Rhexia nuttallii	0	2,00	2,00	NA	NA	12,00	James, 1956	Santos et al. 2012	Dependente
320. Rhexieae	Rhexia petiolata	0	2,00	2,00	NA	NA	20,00	James, 1956	Santos et al. 2012	Dependente
321. Sonerileae	Fordiophyton chenii	0,419354	22,00	9,00	NA	15,00	8,00	Zeng et al., 2016		
322. Sonerileae	Fordiophyton huizhouense	0,428571	20,00	8,00	NA	13,00	7,00	Zeng et al., 2016		
323. Sonerileae	Catanthera tetrandra	0	17,00	17,00	6,00	12,00	11,00	Nayar, 1982		
324. Sonerileae	Medinilla rubrifrons	0	17,00	17,00	8,00	10,00	NA	Regalado, 1990		
325. Sonerileae	Bredia quadrangularis	0,333333	14,00	7,00	NA	22,00	12,00	Ching-Long Yeh 2006		
326. Sonerileae	Catanthera pilosa	0,047619	11,00	10,00	4,00	10,00	7,50	Nayar, 1982		
327. Sonerileae	Catanthera quintuplinervis	0,157894	11,00	8,00	5,00	14,00	10,50	Nayar, 1982		
328. Sonerileae	Plagiopetalum esquirolii	0,157895	11,00	8,00	NA	NA	10,00	Flora da China		
329. Sonerileae	Medinilla alternifolia	0,066666	8,00	7,00	2,00	7,00	7,00	Regalado, 1990		
330. Sonerileae	Calvoa orientalis	0	6,00	6,00	4,00	4,00	15,00	Figueiredo, 2001		
331. Sonerileae	Medinilla suberosa	0	6,00	6,00	4,00	5,50	3,50	Regalado, 1990		
332. Sonerileae	Calvoa grandifolia	0,047619	5,50	5,00	3,00	5,00	18,00	Figueiredo, 2001		
333. Sonerileae	Medinilla sessiliflora	0	4,50	4,50	1,50	4,00	4,00	Regalado, 1990		
334. Sonerileae	Medinilla serpens	0	4,00	4,00	3,00	9,00	7,00	Regalado, 1990		

Clado	Espécies	IDE	EP	EA	FI	ES	PE	Referência da DT	Referência do SP SP
335. Sonerileae	Medinilla stephanostegia	0	4,00	4,00	NA	8,00	8,00	Regalado, 1990	

Tabela S4 - Valores do sinal filogenético (K de Blomberg) para cada atributo analisado

Atributo	K	p
Índice de dimorfismo de estames	0,08240274	0,001
Pétalas	0,07593575	0,002
Estames de polinização	0,118526	0,001
Estames de alimentação	0,1221946	0,001
Estilete	0,05665742	0,307

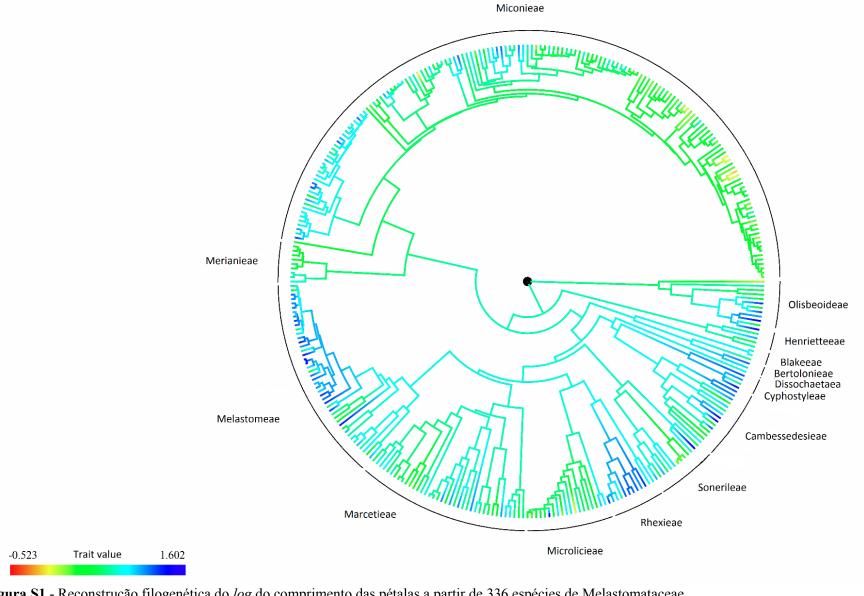


Figura S1 - Reconstrução filogenética do *log* do comprimento das pétalas a partir de 336 espécies de Melastomataceae.

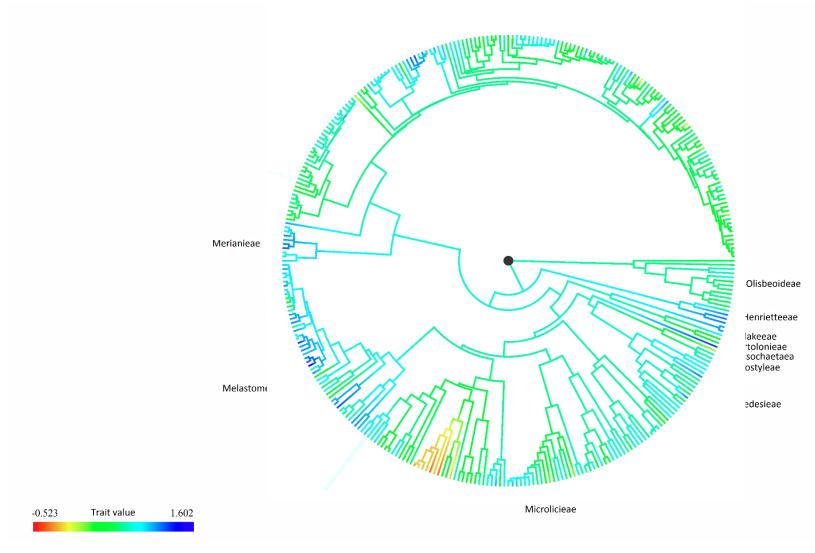


Figura S2 - Reconstrução filogenética do *log* do comprimento dos estames alimentação a partir de 336 espécies de Melastomataceae.

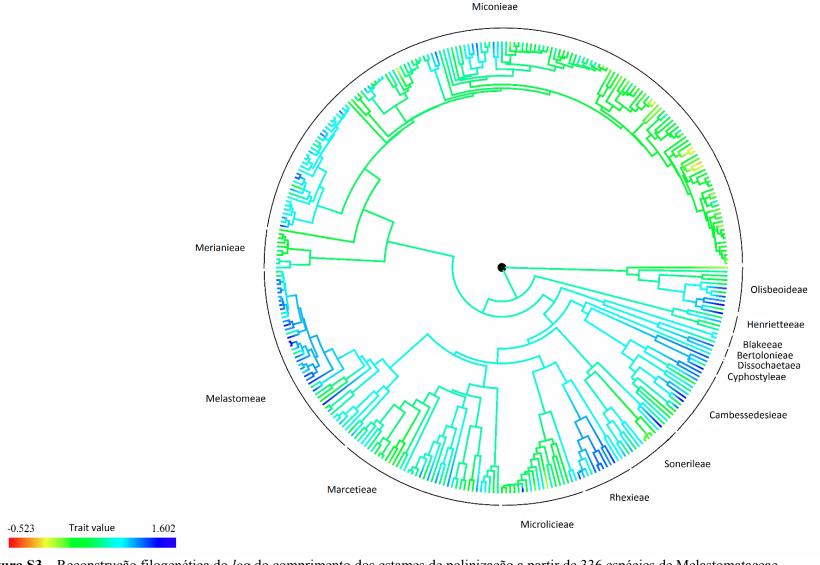


Figura S3 – Reconstrução filogenética do *log* do comprimento dos estames de polinização a partir de 336 espécies de Melastomataceae.

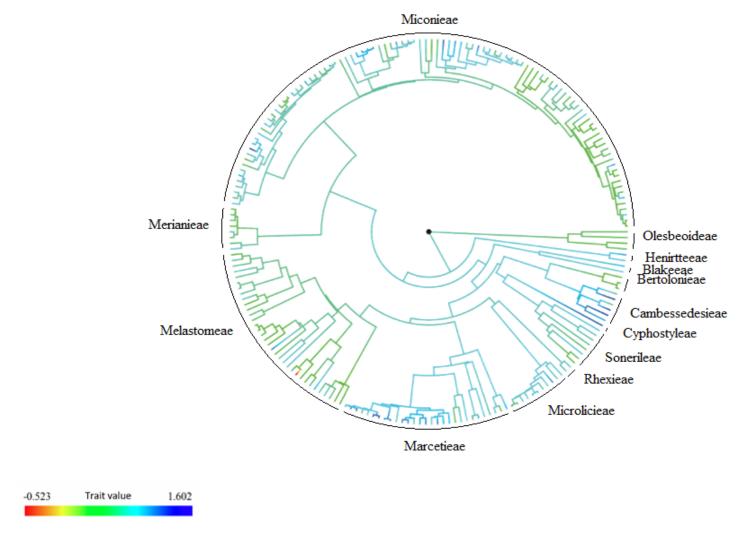


Figura S4 – Reconstrução filogenética do log do comprimento dos estiletes a partir de 295 espécies de Melastomataceae

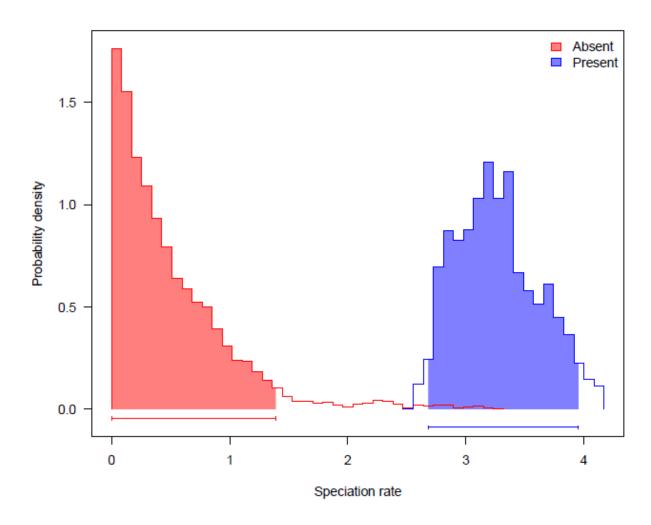


Figura S5 – Taxa de especiação das espécies com dimorfismo de estames (azul) e sem dimorfismo de estames (vermelho).

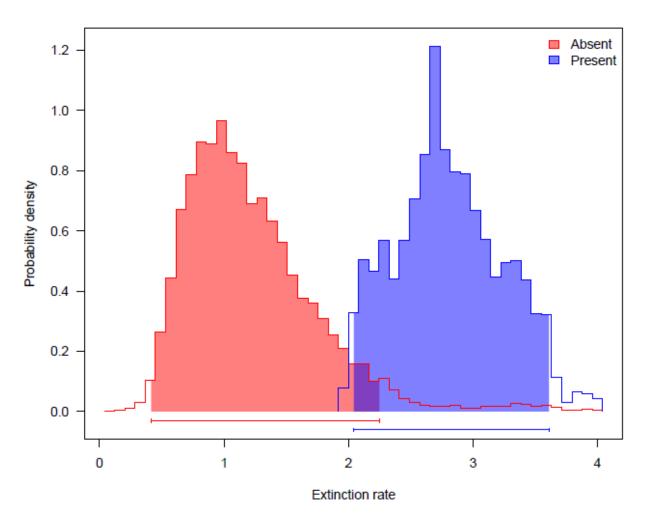
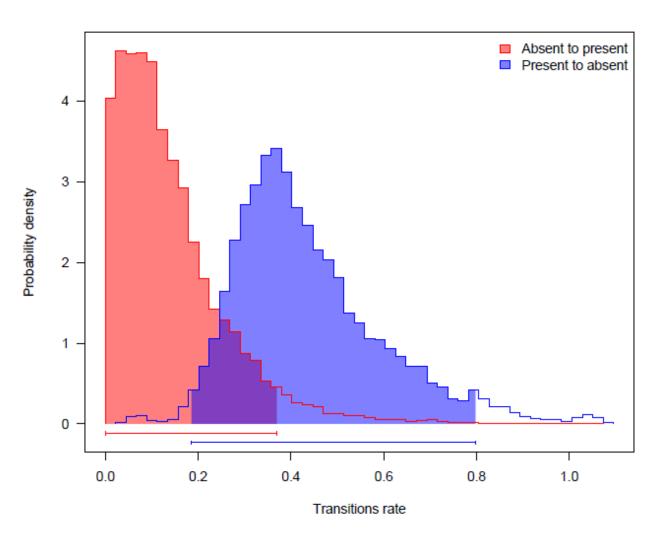



Figura S6 – Taxa de extinção das espéceis com dimorfismo de estames (azul) e sem dimorfismo de estames (vermelho).

Figura S7 – Taxa de transição entre presença e ausência de dimorfismo de estames

REFERÊNCIAS DAS DESCRIÇÕES TAXONÔMICAS DAS ESPÉCIES ANALISADAS

- **Almeda F, 1977.** Systematics of the Neotropical genus Centradenia (Melastomataceae). Journal of the Arnold Arboretum 58 (2): 73–108.
- **Almeda F, 1993**. Melastomataceae. En: Rzedowski, G. C. de y J. Rzedowski (eds.). Flora del Bajío y de regiones adyacentes. Fascículo 10. Instituto de Ecología-Centro Regional del Bajío. Consejo Nacional de Ciencia y Tecnología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán, México.
- **Almeda F, 1994**. Arthrostemma primaevum (Melastomataceae): A New Species Endemic to Southeastern Mexico. Brittonia, Vol. 46, No. 1, pp. 75-80. DOI: 10.2307/2807463
- **Almeda F, 2000**. A synopsis of the genus Blakea (Melastomataceae) in Mexico and Central America. Novon 10: 299–319. DOI: 10.2307/3392974
- Almeda F & Penneys DS, 2013. New and reconsidered species of tropical American Melastomataceae. Brittonia 66(2): 160–169 (2014), DOI: 10.1007/s12228-013-9320-2
- **Almeida & Robinson, 2011.** Systematics and phylogeny of Siphanthera (Melastomataceae). Systematic Botany Monographs 93: 1-101.
- **Araújo IM, 2013.** Melastomataceae no Parque Estadual do Biribiri, Diamantina, Minas Gerais, Brasil: tratamento sistemático e comparação florística. 128f. Dissertação de mestrado, Universidade Federal de Uberlândia. 2013.
- **Bacci LF, Amorim AM & Goldenberg R, 2017.** Flora do Espírito Santo: Bertolonia (Melastomataceae). Rodriguésia 68(5): 1663-1676. 2017. DOI: 10.1590/2175-7860201768510
- **Caddah MK, 2013.** Estudos taxonômicos e filogenéticos em Miconia sect. Discolor (Melastomataceae, Miconieae). Tese de doutorado. Universidade Estadual de Campinas. 2013.
- Campos BC, 2005. A família Melastomataceae nos campos rupestres e cerrados de altitude do Parque Estadual do Ibitipoca, Lima Duarte, MG, Brasil. Dissertação de mestrado. 157p. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Escola Nacional de Botânica Tropical.
- Yeh CL & Yeh CR, 2006. Bredia quadrangularis Cogn. (Melastomataceae), a Newly Recorded Plant in Taiwan. Taiwan J For Sci 21(1): 119-23, 2006.
- **Corrêa AL, 2014.** Melastomataceae na Reserva de Desenvolvimento Sustentável do Tupé, Amazonas, Brasil /Manaus. Dissertação de mestrado. 88f. Instituto nacional de pesquisas da amazônia INPA.
- **Corrêa AL, Scudeller VV & Goldenberg R, 2017.** Melastomataceae in the Reserva de Desenvolvimento Sustentável do Tupé, Amazonas, Brazil. Phytotaxa 323 (2): 101–127. DOI: 10.11646/phytotaxa.323.2.1
- Eves DS, 1936. A Revision of the Genus Axinaea (Melastomaceae). Bulletin of the Torrey Botanical Club, Vol. 63, No. 4, pp. 211-226.
- **Faria CA, 2008.** Melastomataceae do Parque Nacional de Brasília, Distrito Federal, Brasil. Dissertação de Mestrado. Universidade de Brasília, Brasília, 88 pp.

- **Figueiredo E, 2001.** A revision of Caluoa Hook. f. (Melastomataceae). Botanical Journal of the Linnean Society, 136: 179-205. DOI: 10.1006/boj1.2001.0444
- Flora da China disponível em:< http://flora.huh.harvard.edu/china>
- **FReitas JG, 2011.** Estudos florísticos e taxonômicos em Tibouchina Aubl. (Melastomataceae; Melastomateae) no Estado da Bahia, Brasil. Dissertação de mestrado. 191p. Universidade Estadual de Feira de Santana.
- Goldenberg R., Baumgratz JFA & D'el Rei Souza ML, 2012. Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros. Rodriguésia. 63 (1): 145–161. DOI: 10.1590/S2175-78602012000100011
- Goldenberg R., Almeda F, Sosa K, Ribeiro RC & Michelangeli FA, 2015. Rupestrea: a new Brazilian genus of Melastomataceae, with anomalous seeds and dry indehiscent fruits. Systematic Botany 40: 561–571.DOI: 10.1600/036364415X688862
- **Goldenberg R, Bacci LF & Bochorny T, 2016**. Behuria, Bertolonia, Cambessedesia, Huberia e Mouriri, e chave para identificação de gêneros de Melastomataceae no Estado do Paraná. Rodriguésia 67(2): 445-454. 2016. DOI: 10.1590/2175-7860201667215
- **Granados ERB, 2007.** Tetrazygia decorticans (Miconieae, Melastomataceae), a new species from Cuba, Willdenowia 37: 313-317. Berlin-Dahlem. DOI:10.3372/wi.37.37120
- **Granados ERB, 2010**. Calycogonium bissei, a new melastome (Melastomataceae, Miconieae) from Cuba, Willdenowia 40: 281 284. Berlin-Dahlem. DOI:10.3372/wi.40.40209
- **Granados ERB, 2012**. Taxonomía de Pachyanthus (Melastomataceae: Miconieae). Brittonia 64: 179–207
- Guimarães PJF & Silva MFO, 2014. Aciotis, Acisanthera, Marcetia e Pterolepis (Melastomateae-Melastomataceae) no estado do Rio de Janeiro. Rodriguésia 65(4): 1023-1035. DOI: 10.1590/2175-7860201465412
- **James CW, 1956.** A revision of Rhexia (Melastomataceae). Dissertation submitted to the Graduate School of Arts and Sciences of Duke University in partial fulfillment of the degree of Doctor of Philosophy. (Contribution from the Botanical Laboratory, the University of Tennessee, N. Ser. 172).
- **Judd WS, Ionta GM, Clase T & Skean Jr JD, 2008.** Tetrazygia paralongicollis (Miconieae: Melastomataceae), a new species from the Sierra de Baoruco and Sierra Martin Garcia, Dominican Republic. J. Bot. Res. Inst. Texas 2: 35–40.
- **Judd WS & Ionta GM, 2013.** Taxonomic studies in the Miconieae (Melastomataceae). X. Revision of the species of the Miconia crotonifolia complex. Brittonia, 65(1), 2013, pp. 66–95
- **Judd WS, Majure LC, Ionta GM & Neubig KM, 2015.** Taxonomic studies in the Miconieae (Melastomataceae). XIII. Systematics of Miconia subcompressa, a Hispaniolan endemic comprised of three eco-geographic subspecies. Phytotaxa 197 (2): 061–083. DOI: 10.11646/phytotaxa.197.2.1
- **Kartonegoro A & Veldkamp JF, 2010**. A revision of *Dissochaeta* (Melastomataceae) in Java. *Reinwardtia* 13(2): 125–145.

- **Kriebel R, 2016**. A Monograph of Conostegia (Melastomataceae, Miconieae). PhytoKeys 67: 1–326. Doi: 10.3897/phytokeys.67.6703
- **Lima LFG, Santos JUM, Rosário AS & Baumgratz JFA, 2014.** Melastomataceae em formações costeiras de restingas no Pará, Brasil. Acta Amazonica, vol. 44(1) 2014: 45 58.
- **Losano G & Losano NB, 1999.** Los generos Allomaieta y Cyphostyla (MELASTOMATACAE). Rev. Acad. Colomb. Clene: vol. Xxiii. Numero 86.
- **Martins 1984.** Revisão taxonômica do gênero Cambessedesia DC. (Melastomataceae). Tese de Mestrado. UniversidadeEstadual de Campinas, São Paulo, Brazil, 191 pp.
- Martins AB & Almeda F, 2017. A Monograph of the Brazilian endemic genus Lavoisiera (Melastomataceae: Microlicieae). Phytotaxa 315 (1): 001–194. DOI: 10.11646/phytotaxa.315.1.1
- **Meyer FS & Goldenberg R, 2012**. Aciotis, Acisanthera, Marcetia, Microlepis, Pterolepis e Siphanthera (Melastomataceae, Melastomateae) no estado do Paraná, Brasil. Rodriguésia 63: 293-303.
- Michelangeli FA, Reyes WC, Sosa K, 2015. A revision of Meriania (Melastomataceae) in the Greater Antilleswith emphasis on the status of the Cuban species. The New York Botanical Garden Press, Bronx. Brittonia, DOI: 10.1007/s12228-015-9366-4
- **Michelangeli FA & Goldenberg R, 2016.** Miconia papillosperma (Melastomataceae, Miconieae): a new species from Amazonas, Brazil. PhytoKeys 63: 31–40. Doi: 10.3897/phytokeys.63.7368
- Nayar MP, 1982. REVISION OF THE GENUS CATANTHERA F.v. MUELL. (MELASTOMATACEAE). Published by Herbarium Bogoriense LBN, Bogor. Vol. 10, Part 1, pp. 35 61.
- **Oliveira ALF, 2014.** A tribo Melastomateae (Melastomataceae) no estado de Goiás, Brasil. Dissertação de mestrado. 133p. Instituto de Biologia. Universidade Federal de Uberlândia.
- Pataro L, Romero R & Roque N, 2017. Microlicieae (Melastomataceae) no município de Mucugê, Chapada Diamantina, Bahia, Brasil. Rodriguésia 68(4): 1287-1311. 2017. DOI: 10.1590/2175-7860201768412
- **Penneys DS & Judd WS, 2005**. A Systematic Revision and Cladistic Analysis of Charianthus (Melastomataceae) using Morphological and Molecular Characters. The American Society of Plant Taxonomists. Systematic Botany, 30(3):559-584. 2005. DOI: 10.1600/0363644054782125
- Regalado JC, 1990. Revision of Medinilla (Melastomataceae) of Borneo. BLUMEA (35) 5-70.
- **Reginato M, 2016.** Taxonomic revision of Leandra sect. Leandra (Melastomataceae, Miconieae). Phytotaxa 262 (1): 001–097. DOI: 10.11646/phytotaxa.262.1.1
- **Renner SS, 1994**. A revision of Pterolepis (Melastomataceae: Melastomateae). Nordic Journal of Botany 14: 73–104. DOI: 10.1111/j.1756-1051.1994.tb00575.x

- **Seco RC, 2006.** Estudos taxonômicos no gênero Comolia DC. (Melastomataceae Melastomateae) no Brasil. Dissertação de mestrado. 120p. Universidade Estadual de Campinas. Instituto de Biologia.
- **Silva CV & Affonso P, 2005.** Levantamento de Tibouchina Aubl. (Melastomataceae) no Parque Estadual da Serra do Mar Núcleo Curucutu São Paulo. Revista Insituto Flor. São Paulo, v. 17, n. 2, p. 195-206.
- **Silva MFO, Andreata RHP & Guimarães PJF, 2013.** Melastomataceae no Parque Estadual da Pedra Branca, Rio de Janeiro, RJ, Brasil. Hoehnea 40(4): 679-700.
- **Stone RD, 2006.** Phylogeny of major lineages in Melastomataceae subfamily Olisbeoideae: utility of nuclear Glyceraldehyde3-Phosphate Dehydrogenase (GapC) gene sequences. Systematic Botany 31: 107-121.
- **Stone RD & Ntetha NA, 2013.** Warneckea parvifolia (Melastomataceae–Olisbeoideae), a new "sandforest" endemic from northeastern KwaZulu-Natal (South Africa) and southernmost Mozambique, and a phylogenetic analysis of eastern and southern African representatives of W. section Warneckea. South African Journal of Botany 88, 317–325.
- **Stone RD, 2014.** The species-rich, paleotropical genus Memecylon (Melastomataceae): molecular phylogenetics and revised infrageneric classification of the African species. Taxon 63: 539-561.
- **Stone RD, 2017**. Revised treatment of the genus Lijndenia (Melastomataceae, Olisbeoideae) in Madagascar. Candollea 72: 67-86. DOI: 10.15553/c2017v721a7
- **Bochorny T & Goldenberg R, 2017.** Flora do Espírito Santo: clado de Merianthera e gêneros afins (Melastomataceae). Rodriguésia 68(5): 1677-1692. DOI: 10.1590/2175-7860201768511
- **Wallnöfer B, 1996**. A revision of the genus *Alloneuron* Pilg. and segregation of Wurdastom gen. n. (Melastomataceae). Annals of the Natural History Museum in Vienna. Series B For botany and zoology 98:447–462
- Zeng Sj, Zou Lh, Wang P, Hong Wj, Zhang Gq, Chen Lj & Zhuang Xy, 2016. Preliminary phylogeny of Fordiophyton (Melastomataceae), with the description of two new species. Phytotaxa 247 (1): 045–061. DOI: 10.11646/phytotaxa.247.1.3