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ABSTRACT: 

Malaria is a tropical disease caused by parasites from Plasmodium vivax, which are 

normally associated with Anopheles spp. In 2016, an estimated 216 million cases occurred 

worldwide, causing 445 000 deaths. N-myristoyltransferase (NMT) is a very important 

enzyme related with the transfer of myristate acid from myristoyl coenzyme A to specific 

proteins in the glycine N-terminal residue, this process occurs at the same time of the 

translation, for this, aminopeptidases withdraw the initial methionine, making glycine the 

N-terminal amino acid. NMT inhibition demonstrated to leads parasite to cell death. To 

predict new potential inhibitors against NMT Plasmodium, Computer-Aided Drug Design 

(CADD) tools were used to alignment of pharmacophores, virtual screening, validation, 

docking and molecular dynamics. 

Key words: Plasmodium, N-myristoyltransferase, Bioinformatics. 
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1. INTRODUCTION: 

 1.1 Malaria 

Malaria is a tropical disease caused by parasites from Plasmodium vivax, which are 

normally associated with Anopheles spp. After the mosquito bite, the parasite shows the 

capacity to reach the liver and multiply quickly infecting erythrocytes after incubation period, 

which can range between 8 and 30 days causing serious symptoms such as: muscle and 

abdominal pain, fever, fatigue, nausea and diarrhea, tremors and vomiting. These parasite can 

also be transmitted through blood transfusions, transplants or by sharing contaminated syringes 

(ANVISA, 2008). 

 In 2016, an estimated 216 million cases occurred worldwide, of these cases 445 000 

deaths, and an estimated US$ 2.7 billion was spent to control and elimination of malaria in 

endemic places, like Africa, which approximately 90% of malaria cases in 2016 occurred. The 

number of reported malaria cases in Brazil has decreased from 423,000 cases in 2010 to 157,100 

in 2016 and the number of deaths has decreased from 76 cases in 2010 to 37  in 2016 (WHO, 

2017). 

The first records of malaria date back to 2.700 b.C. with the mention of prolonged fevers 

and melancholies. Described by the Canon of Chinese medicine, Nei Ching. The disease has 

been described over the centuries by numerous historical figures like: Plato, Homer and 

Shakespeare, being that Hippocrates was the first to do the connection between proximity to 

standing water and the incidence of fever in population. The word malaria comes from Italian 

origin (mal’aria) because in the XIV century there was a belief that the disease was transmitted 

by marshes and contained air (FRANÇA; DOS SANTOS; FIGUEROA-VILLAR, 2008). 

One of the most important cases of malaria was registered in 1638, when the Countess 

of Chinchón was afflicted with a strong “terçan” fever. The Indians medicated her with a 

mixture of herbs called "quina-quina", which resulted in the cessation of fever and the cure. 
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The Jesuit priests of the Spanish mission eventually took with them the powder that had been 

used to produce the potion by the natives, which became known as the "Jesuit powder" 

presenting Quinone’s, the first known treatment against the parasite (DE OLIVEIRA; 

SZCZERBOWSKI, 2009) 

  The drugs resistance has been one of the major problems in the treatment issue, since 

the administration of only one drug favors selective pressures selecting the resistant mutant 

parasites. Thus, the literature suggests that the use of drugs cocktails reduce the probability of 

emergence of resistant strains (HASTINGS; DONNELLY, 2005). 

The gold standard of malaria treatment consists in artemisinin and Synthetic derivatives, 

but this treatment has shown a loss of efficiency (DAS et al., 2009). 

1.2 N-myristoyltransferase and motivation 

With the artemisinin loss of efficacy new drugs with different mechanisms of action 

have been sought, such as the inhibition of  N-myristoyltransferase (NMT)(YU et al., 2012).  

N-myristoyltransferase (NMT) is a very important enzyme in eukaryotes, highly 

conserved structure among species, however inhibitors of this enzyme may be selective for 

Plasmodium due to the ability of Homo sapiens N-myristoyltransferase 1(HsNMT1) to tolerate 

conformational changes, besides, the overexpression of HsNMT1 and HsNMT2 has been 

shown to be related to carcinomas and viral replication. (TATE et al., 2014). The NMT 

catalyzes a bi-bi mechanism: The covalent transfer of myristate acid from myristoyl coenzyme 

A to specific proteins such tyrosine kinases, G-proteins, and other heterodimer proteins, in the 

glycine N-terminal residue, this process occurs at the same time of the translation, for this, 

aminopeptidases withdraw the initial methionine, making glycine the N-terminal amino acid 

(Figure 1) (WRIGHT et al., 2010; ZHAO; MA, 2014).  
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Figure 1-Bi-Bi mechanism of NMT catalytic cycle (ZHAO; MA, 2014). 

NMT inhibition induces parasite cell death, since the myristylation is involved with 

regulation of protein complex and stability (WRIGHT et al., 2014). Besides, NMT  showed to 

be important in signaling pathway in mice during the early development (YANG et al., 2005). 

NMT was described for the first time in 1987, in Saccharomyces cerevisiae(TOWLER 

et al., 1987). In 2000 the first isolation of NMT from Plasmodium spp. has been shown, 

curiously it had only one form, differently to all metazoan, which exhibit two isoforms of this 

enzyme (TATE et al., 2014). 

NMT is also expressed in humans, which could be a hindrance however according to 

(YU et al., 2012) the residue Y296 is the key to the selectivity between Homo sapiens NMT 

and PvNMT caused by the interaction Y296 and inhibitor. 

The motivation of this work is to provide a new potential target to treat malaria, since 

chloroquine has lost efficacy and artemisinin compounds has shown an emerging resistance 

against Plasmodium falciparum and vivax (DAS et al., 2009). 
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1.3 Computer-Aided Drug Design 

For a new drug to reach the market a lot of bench test are required, which require long 

time frames and resources, thereat arises the need to use bioinformatics tools that permit to 

realize a filter in the bench tested compounds, increasing the efficiency and efficacy of the 

method, this methodology is called Computer-Aided Drug Design (ACDD), which aim to 

determine interatomic distance, electronic densities, evaluating the conformational equilibrium 

of the molecules and their minimum energy, Allowing to evaluate specific interactions of the 

drugs based on pharmacophores points, which were described at the first time by Ehrlich in 

1909 as a molecular structure that carries essential characteristics for biological activity, this 

definition was  updated in 1998 by IUPAC for a set of steric and electronic characteristics 

necessary to ensure optimal supramolecular interactions with a specify biological agent and to 

trigger or block their biological response. (BARREIRO et al., 1997; EHRLICH, 1909; OOMS, 

2000; WERMUTH et al., 1998). 

 

2.OBJECTIVES: 

 2.1 General objective 

 Predict potential ligands against PvNMT using known compounds libraries and 

bioinformatics tools. 
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 2.2 Specific objectives   

• Perform an alignment with known inhibitors against NMT vivax. 

• Create a shape-based model based on the alignment of the ligand.  

• Create potential decoys using known inhibitors. 

• Perform a shape-based model validation. 

• Perform a virtual screening using known libraries. 

• Perform molecular docking of the best ligands. 

• Selection of the best ligand according to the toxicity parameters. 

• Simulate molecular dynamics of the best complexes 

• Evaluate the protein-ligand in interactions. 

3.MATERIAL AND METHODS: 

3.1 Getting NMT, inhibitors and libraries 

The known protein-ligand complex structures of NMT from P. vivax were retrieved 

from Protein Data Bank (PDB). Six PBD protein-inhibitors complexes were chosen: 4B12, 

4B13, 4B14, 4BBH, 4CAE and 4CAF. Plasmodium vivax NMT (PvNMT) structures were used 

due to absence of Plasmodium falciparum (PfNMT) crystallography in 2016 . According to Yu 

et al., (2012) PvNMT shares 81% identity of the sequence with PfNMT, which suggests that 

PvNMT can be used as model to PfNMT. The compound libraries used on the virtual screening 

were retrieved from ZINC (IRWIN; SHOICHET, 2005) and Chembridge (Corporation, San 

Diego, California) Databases. Two subsets, ZDD, a library of commercially available approved 

drugs from ZINC and EXP, a stringent library of druglike compounds from Chembridge were 

used. 



 

6 
 

3.2 Getting shape-based model 

PharmaGist webserver (DROR et al., 2009) was used to provide a pharmacophore 

alignment using known inhibitors against NMT extracted from PDB complexes 4B12, 4B13, 

4B14, 4BBH, 4CAE and 4CAF. Alignments with the best pharmagist score were submitted to 

vRocs(HAWKINS; SKILLMAN; NICHOLLS, 2007), to create shape-based models 

3.3 Model validation 

In order to validate the shape-based models known inhibitors  based on Bell et al (2012) 

were used. The inhibitors used   are indicated in the Table 1, all 10 structures were design using 

PubChem Draw Structure (KIM et al., 2016) in SMILES format. 

Table 1-SMILES format of known inhibitors against NMT. 

C1=CC=C(C(=C1)C(=O)N([C@H]2CN(CC2)C(CN(C)C)=O)[H])C(F)(F)F 

C1=C(C=C(C=C1C2CCN(CC2)CC4=NC3=CC(=CC=C3[N]4C)C)F)F 

C1=CC=CC(C1C)C2=CCC3C(=C2)C(=NN3C)CN(C)C 

C1(=CC(=C(C=C1)CN(C(=O)C2CN(C2)C3=C(C=NC(=N3)N(CCN(C)C)C)Cl)[H])F)F 

N(C(=O)C1CN(C1)C2=C(C=NC(=N2)N(CCN(C)C)[H])Cl)(CC3=NC=C(N=C3)C)[H] 

C1=C(C=CC=N1)CCN(CC2=CC(=CC=C2)C3=CC=CC(=C3)CN4CC5C(CC4)N=CS5)[H] 

C1=CC(=CC=C1[C@@H]2[C@H](CN(C2)C(C[C@@H](CC3=CC=C(C=C3)Cl)N([H])[H])=O)CO[H])CC 

C1CC(CCN1C)N(C)C2=NC3=C(C(=N2)N(CCC#C)C)SC(=C3)C 

C1C(CCN(C1)[H])C2=C[N](C3=C2C=C(C=C3)N(C(CC4=CC=C(C=C4)F)=O)[H])[H] 

C1=CC(=CC=C1)Cl.C2[C@H](CN(C2)C(C[C@@H](CC3=CC=C(C=C3)Cl)N([H])[H])=O)CO[H] 

 

DUD-E webtool (MYSINGER et al., 2012) was used to predict decoys using known 

inhibitors (Table 1), decoys are structures that have similar proprieties with ligand but different 

chemical structure. To perform the validation using shape-based models, decoys (compounds 

that can bind but have no response) and actives structures were submitted to a comparative 

virtual screening. Previously actives and decoys were prepared using QUACPAC (OpenEye 

Scientific Software, Santa Fe, NM. http://www.eyesopen.com) to generate tautomer’s and to 
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protonate ligand states to physiological pH 7.4. Besides, Omega (HAWKINS et al., 2010) was 

used to generate 3D  bioactive conformers for each molecule 

3.4 Libraries preparation. 

 The EXP is a library extracted from ChemBrigde, which have chemical compounds 

with drug likeness proprieties. ZDD library was extracted from ZINC and have natural 

compounds that are already drugs.   

In active and ligand preparation step the EXP and ZDD were prepared using 

QUACPAC. Further  Omega (HAWKINS et al., 2010) were  used in order to filter compounds 

with druglike features and generate 3D conformers for each molecule. 

 

3.5 Virtual Screening and docking. 

Virtual screening using shape-based model were performed on vROCS. The best 500 

compounds were selected using Tanimoto combo score. In the next step a  molecular   docking 

was performed between NMT and 500 best compounds using FRED (MCGANN, 2011).  

3.6 Pharmacokinetics 

Pharmacokinetics analysis were analyzed using  PKCSM (PIRES; BLUNDELL; ASCHER, 

2015), a machine-learn platform, which relies on distance/pharmacophore patterns encoded as 

graph-based signature. In this work was choose some toxicity parameters, such as: AMES 

toxicity, Max tolerated dose (human), hERG I inhibitor, hERG II inhibitor, Oral Rate Acute 

Toxicity (LD50), Oral Rat Chronic Toxicity (LOAEL), Hepatotoxicity and Minnow toxicity.  

The AMES toxicity parameter is used to predict a potential mutagenic compound using in 

bacteria, so if the test is positive, it shows that the compound in question is mutagenic.  
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The Maximum Tolerated Dose (human) parameter estimate the toxic dose threshold of 

chemical in humans (mg/kg/day), being less or equal to 0.477 (mg/kg/day) considered as low 

and high if greater than 0.477 (mg/kg/day).  

The hERG I parameter analyses higher risks to develop the long QT syndrome (LQTS) in 

human, which is a heart rhythm disorder that can cause chaotic and rapid heartbeat. It tests if it 

generates an inhibition of the potassium channels, altering the heartbeat frequency and order. 

The Oral Rate Acute Toxicity (LD50) is the lethal dosage values that is necessary to cause 

the death of 50% of a group of tests  

The Oral Rat Chronic Toxicity refers to identify the lowest dose of compound that results 

in an observed adverse effect (LOAEL). 

The Hepatotoxicity parameters refers a liver associated side effects observed in humans, 

being able to cause or not.  

The Minnow toxicity: the lethal concentration values (LC50) represent the concentration of 

a molecule necessary to cause the death of 50% of the Flathead Minnows. 

Utilizing toxicity parameters was possible to select the best ligand in each library (EXP, 

ZDD) according to pharmacokinetics (Table 4). 

 

3.7 Molecular Dynamics 

The best compounds of each libraries, according to PKCSM parameters was submitted 

to molecular dynamics in complex of NMT. Topology and parameters for each ligand were 

performed using SwissParam (ZOETE et al., 2011), which uses CHARMM force field. The 

molecular dynamics were performed on GROMACS (ABRAHAM et al., 2015), using 

CHARMM27 force-field, water model chosen was TIP3P. The unit cell was defined as triclinic 
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shape, water and ions were added and energy minimization were performed using 10000 

picoseconds. 

3.8 Protein-ligand 2D interaction 

Protein-ligand Interactions 2D diagrams were  generate using LigPlot+(LASKOWSKI; 

SWINDELLS, 2011). Molecular dynamics frames 0 (first), 500(half) and 1000(last) were 

plotted to evaluate the protein-ligand interactions along time. 

4. RESULTS AND DISCUTION  

 4.1 Alignment and Shape-based model 

  The best result of PharmaGist’s alignment exhibited score 36.000 and 6 ligands (NMT 

inhibitors). Sixteen queries were generated from this alignment using vRocs (HAWKINS; 

SKILLMAN; NICHOLLS, 2007), The query models were edit  manually and validate using 

AUC analysis (Table 2). 

 

Table 2- All queries with the number of pharmacophoric points and area under curve(AUC) 

Query/model number Pharmacophore points AUC 

1 5 0.714 

2 5 0.764 

3 5 0.727 

4 5 0.797 

5 5 0.849 

6 5 0.749 

7 5 0.755 

8 5 0.604 

9 6 0.739 

10 6 0.780 

11 6 0.682 

12 6 0.727 

13* 6 0.880 

14 6 0.842 

15 6 0.845 

16 6 0.743 

*Best query according to AUC analysis 
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The chosen model was the number 13 (Figure 2), according the higher AUC (Figure 3), 

which means area under the curve, it is a simply probability that a randomly chosen active 

ligand instead of inactive ligand. 

 

Figure 2- Shape based model Chosen with 6 pharmacophores points, 3 acceptors, 1 donor, 1 

cation and one ring 

  

Figure 3- ROC curve obtained in the validation of the model. Dashed line indicates aleatory 

results, the red line indicated ROC curve generated, and all area under the curve indicated 

model accuracy. 
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4.2 Shape-based virtual screening and Docking 

Virtual screening was performed using model 13 on vROCS and the libraries EXP and 

ZDD which are derived from ChemBridge and ZINC respectively. From each library virtual 

screening results in the best 500 compounds according to tanimoto combo score. 

Screened libraries were submitted to protein ligand docking using FRED, the 1% best 

docked compounds according to Chemgauss4 score were maintained, 8 ligands from EXP and 

6 from ZDD. The best docked ligands were submitted to pharmacokinetics prediction analyses 

using PKCSM, which calculate proprieties, all-pair shortest paths and use a distance-based 

signature to predict the toxicity parameters (Table 3) 

4.3 Toxicity Analysis. 

The importance of toxicity analysis is to predict if the potential inhibitors presents the 

applicable parameters to drug selection, objectifying a future administration in human 

organism. The results were judged by positive/negative pharmacokinetic characteristics, in this 

work was choose some toxicity parameters, such as: AMES toxicity, Max tolerated dose 

(human), hERG I inhibitor, Oral Rate Acute Toxicity (LD50), Oral Rat Chronic Toxicity 

(LOAEL), Hepatotoxicity and Minnow toxicity (Table 3), selected ligands Exemplified (Table 

4). 
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Table 3 - Potential toxicity of the best hits in each library, the squares in green shows best values while the red squares shows the worst values. Also, the yellow squares 

represent the intermediated values. 

Código ChemBridge 

AMES 

toxicity 

Max, tolerated dose 

(human) 

hERG I 

inhibitor 

Oral Rat Acute Toxicity 

(LD50) 

Oral Rat Chronic 

Toxicity (LOAEL) 

Hepato 

toxicity 

Minnow 

toxicity 

9072821 Yes -0.37 No 2.472 1.354 Yes 2.726 

9235556 No 0.463 No 2.564 0.836 Yes -0.054 

5925531 No -0.666 No 2.824 2.083 Yes 1.403 

9223087 No -0.225 No 2.464 0.971 Yes 3.469 

5277870 Yes -0.158 No 2.435 0.339 No 0.701 

9063888 Yes -0.343 No 2.674 0.979 Yes 4.338 

9120471* No 0.261 No 2.626 0.753 Yes 3.487 

9112974 No 0.229 No 2.582 0.891 Yes 3.652 

Código ZINC AMES toxicity 

Max, tolerated dose 

(human) 

hERG I 

inhibitor 

Oral Rat Acute Toxicity 

(LD50) 

Oral Rat Chronic 

Toxicity (LOAEL) Hepatotoxicity 

Minnow 

toxicity 

ZINC00968278 No -0.524 No 2.263 1.606 No 1.392 

ZINC00968278-2 

(Tautômero) No -0.494 No 2.322 1.443 No 1.233 

ZINC03830766* No 0.017 No 2.794 2.136 No -0.352 

ZINC00968276 No -0.524 No 2.263 1.606 No 1.392 

ZINC12503187 Yes 0.37 No 2.71 1.296 Yes 1.257 

ZINC00968276-2 

(Tautômero) No -0.494 No 2.322 1.443 No 1.233 
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Table 4 -Selected ligand in each library 

Library Ligand(compound) 2D Structure 

Exp N-[3-chloro-2-(4-ethyl-1-

piperazinyl)phenyl]-3-

ethoxybenzamide 

 

ChemBridge: 9120471  

Zdd 17-hydroxyestra-

1,3,5(10)-trien-3-yl 

benzoate 

 

 ZINC03830766 

  

 

4.4 Molecular Dynamics Analysis 

The prediction of root mean square deviation (RMSD), vacuum minimum energy 

and hydrogen bonds between protein and ligand were extracted from dynamics trajectory 

using specific tools from GROMACS analysis (ABRAHAM et al., 2015).  

Estradiol analog (ZINC03830766) prediction showed a low and similar root-

mean-square deviation (RMSD) to the known inhibitor extracted from the original (X25) 

NMT- ligand complex and NMT alone (PDB:4B13). Besides, low and stable RMSD 

results denotes protein-ligand complex stability along dynamics for each complex tested 

(Figure 4). 
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Figure 4 - Root mean square deviation in nanometers over the time for ZINC: 03830766 

(yellow), X25 (gray) and only NMT(dark blue) 

ZINC03830766-NMT complex featured a higher minimum energy (Figure 5), this 

fact can contribute for lower stability, but can be explained by the similarity with 

cholesterol structure, which has condensed chains with non-polar interactions  

which are more difficult to simulate  (RÓG et al., 2009).  

 

Figure 5 Energy(kJ/mol) over time (picoseconds) for X25 (blue) and ZINC:03830766 

(Yellow) 
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ZINC03830766-NMT complex also exhibited a similar hydrogen bonds profile in 

comparison with X25-NMT complex, which indicates more similar interactions profile 

over time (Figures 6,7,11). 

 

 

Figure 6- Number of Hydrogen bonds over the time (picoseconds) for X25 

 

Figure 7- Number of Hydrogen bonds over the time (picoseconds) for ZINC:03830766 
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Figure 8- Root mean square deviation in nanometers over the time for 

ChemBridge:9120471 (orange) X25(gray) and only NMT(light blue) 

ChemBridge Molecule 9120471 prediction showed a low and similar root-mean-

square deviation (RMSD) to known inhibitor extracted from the original (X25) NMT- 

ligand complex and NMT alone (PDB:4B13). Besides, low and stable RMSD results 

denotes protein-ligand complex stability along dynamics for each complex tested (Figure 

8). 
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The 9120471-NMT complex simulation showed a lower minimum energy (Figure 

9), which can contribute to compound stability over time. 

 

Figure 9- Energy(kJ/mol) over time(picoseconds) for X25(blue) and 

ChemBridge:9120471 (Orange) 

Hydrogen bonds profile prediction (Figure 10) was discrepant for known ligand 

(Figure 6 and 11), this fact can show us a different profile of interaction over the time. 

However, in the last frames, the number of hydrogen bonds and the minimum energy are 

similar in both complexes 9120471-NMT and X25-NMT. 
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Figure 10- Number of Hydrogen bonds over the time (picoseconds) for 

ChemBridge:9120471

 

Figure 11- Number of Hydrogen bonds over the time (picoseconds) for ZINC:03830766 

(gray), ChemBridge:9120471 (orange) and X25 (blue) 

4.5 2D Interaction protein-ligand and general discussion  

In the 2D diagrams, the Figures 12,13,14 show the interaction between known 

ligand over the dynamics frames 0,500 and 1000.The Figures 15,16,17 show the 

interaction between EXP ligand over the dynamics frames 0,500,1000, and Figures 
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18,19,20 show the interaction between ZDD ligand over the dynamics the frames 

0,500,1000 respectively. 

 

Figure 12- Frame 0:  Interactions between NMT and X25, the ligand molecule is 

indicated in purple on the active site of the enzyme, the dark red shapes indicate 

hydrophobic interactions with amino acids residues, green dashed lines indicate 

hydrogen bonds, brown lines indicate non-ligand bonds and purple ligand bonds, black 

balls corresponding atoms involved in hydrophobic contact. 
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Figure 13- Frame 500:  Interactions between NMT and X25, the ligand molecule is 

indicated in purple on the active site of the enzyme, the dark red shapes indicate 

hydrophobic interactions with amino acids residues, green dashed lines indicate 

hydrogen bonds, brown lines indicate non-ligand bonds and purple ligand bonds, black 

balls corresponding atoms involved in hydrophobic contact. 
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Figure 14- Frame 1000:  Interactions between NMT and X25, the ligand molecule is 

indicated in purple on the active site of the enzyme, the dark red shapes indicate 

hydrophobic interactions with amino acids residues, green dashed lines indicate 

hydrogen bonds, brown lines indicate non-ligand bonds and purple ligand bonds, black 

balls corresponding atoms involved in hydrophobic contact. 
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Figure 15 - Frame 0: Interaction between 9120471 and NMT, the ligand molecule is 

indicated in purple on the active site of the enzyme, the dark red shapes indicate 

hydrophobic interactions with amino acids residues, green dashed lines indicate 

hydrogen bonds, brown lines indicate non-ligand bonds and purple ligand bonds, black 

balls corresponding atoms involved in hydrophobic contact. 
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Figure 16 - Frame 500: Interaction between 9120471, the ligand molecule is indicated 

in purple on the active site of the enzyme, the dark red shapes indicate hydrophobic 

interactions with amino acids residues, green dashed lines indicate hydrogen bonds, 

brown lines indicate non-ligand bonds and purple ligand bonds, black balls 

corresponding atoms involved in hydrophobic contact. 
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Figure 17- Frame 1000: Interaction between 9120471, the ligand molecule is indicated 

in purple on the active site of the enzyme, the dark red shapes indicate hydrophobic 

interactions with amino acids residues, green dashed lines indicate hydrogen bonds, 

brown lines indicate non-ligand bonds and purple ligand bonds, black balls 

corresponding atoms involved in hydrophobic contact. 
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Figure 18- Frame 0: Interaction between ZINC03830766 and NMT, the ligand molecule 

is indicated in purple on the active site of the enzyme, the dark red shapes indicate 

hydrophobic interactions with amino acids residues, green dashed lines indicate 

hydrogen bonds, brown lines indicate non-ligand bonds and purple ligand bonds, black 

balls corresponding atoms involved in hydrophobic contact. 
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Figure 19- Frame 500: Interaction between ZINC03830766 and NMT, the ligand 

molecule is indicated in purple on the active site of the enzyme, the dark red shapes 

indicate hydrophobic interactions with amino acids residues, green dashed lines indicate 

hydrogen bonds, brown lines indicate non-ligand bonds and purple ligand bonds, black 

balls corresponding atoms involved in hydrophobic contact. 
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Figure 20-Frame 1000: Interaction between ZINC03830766 and NMT, the ligand 

molecule is indicated in purple on the active site of the enzyme, the dark red shapes 

indicate hydrophobic interactions with amino acids residues, green dashed lines indicate 

hydrogen bonds, brown lines indicate non-ligand bonds and purple ligand bonds, black 

balls corresponding atoms involved in hydrophobic contact. 

 

In the 2D diagrams is also possible to see that the ligand ZINC03830766 show a 

profile of interactions with the amino acids very similar to X25, mainly for the hydrogen 

bond with the Tyr334 in both cases. The most part of the interactions of non-ligand 

residues involved in hydrophobic contact is maintained for all ligands. 

Estradiol and analogs showed already inhibition effect against protozoa 

influencing immune response, altering the response in a systemic pathway including 

innate immunity cells and adaptive immune response. Although the incidence of 

Plasmodium infections has not been intensively studied yet, females have been reported 
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a higher mortality rates even though the incidence between males and females seems the 

same. Pregnant women showed a greater risk than non-pregnant women, according to 

sex-hormones like estradiol, which can also create an immune response impairment 

(ROBERTS; WALKER; ALEXANDER, 2001). We hypothesize that estradiol and 

analogs though can potentially inhibit NMT and decreases parasite viability in an 

effective dose to inhibit the enzyme the systemic immune response is more prevalent. The 

systemic response showed to be more important than the inhibition of NMT, according 

to the estradiol levels in pregnant woman and the capacity of microbes to influence the 

hormones levels to improve their growth (VOM STEEG; KLEIN, 2017). 

The other compound tested on molecular dynamics (N-[3-chloro-2-(4-ethyl-1-

piperazinyl) phenyl]-3-ethoxybenzamide) (9120471) haven’t been synthetized and tested 

yet, according to the chemical library information and literature. 

 

5. CONCLUSION 

In this work, we simulate microenvironments and the interaction between protein 

and potential-ligands for Plasmodium vivax NMT. This study used the concept of 

alignment of known inhibitors to create sixteen shape-based models, which were 

validated, and the best were chosen to virtual screening, which was used performed a 

virtual screening using chosen libraries. Then the docking protein-ligand aided in the 

search for the best ligands for NMT. Further we elected the best potential ligands 

according their pharmacokinetics. The molecular dynamics were performed then the 

energy of the interaction, hydrogens bond interactions, and root mean square deviation 

between protein-ligand were studied. Thus, we could have selected from several more 

than 50 thousand compounds two potentially stable ligands for PvNMT, one of them 
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potentially safe (ChemBridge9120471) and other one with effects not so well known, 

these will test in future experiments. 
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