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Abstract 

 . 
The main goal of this doctoral research work is to evaluate fuzzy logic as a tool for 

uncertainty, robustness and reliability analyses of mechanical systems. In this sense, fuzzy 

logic approaches are used on various design scenarios, such as the uncertainty analysis of 

rotating systems, robust balancing procedures, and reliability-based design problems. Firstly, 

the so-called α-level optimization technique is both numerical and experimentally evaluated in 

the context of uncertainty analysis of rotating systems. A numerical application considering a 

rotor test rig with uncertainties affecting shaft Young’s modulus and bearing stiffness is used 

to evaluate and compare fuzzy uncertainty analysis with well stablished stochastic procedures. 

Then, this fuzzy logic uncertainty analysis is used to predict the extreme responses of a flexible 

rotor supported by hydrodynamic bearings with uncertainties affecting oil properties. 

Afterwards, fuzzy logic is evaluated as a tool for robust optimization by means of two novel 

fuzzy logic balancing approaches: i) a non-parametric approach formulated to enhance the so-

called IC method balancing robustness, and ii) a parametric methodology formulated to 

increase the balancing robustness of model-based balancing technique. In the first approach 

fuzzy logic tools, particularly fuzzy logic transformation and defuzzification procedures, are 

used to define a preprocessing stage in which system vibration responses sets are evaluated 

in order to obtain a more representative unbalance condition. In the second approach, fuzzy 

logic optimization is used to define fuzzy logic objective functions in which uncertainties 

affecting the balancing responses are assessed. Finally, a novel fuzzy logic reliability-based 

design methodology is proposed, revising the traditional fuzzy logic approach in terms of the 

reliability index. The resulting reliability design methodology consists of a nested algorithm in 

which an inner optimization loop is used to obtain the uncertain variables limits and an outer 

optimization loop evaluates a predefined fuzzy reliability index within the previously obtained 

bounds. Obtained results confirm fuzzy logic as a prominent tool for uncertainty, robustness 

and reliability analyses.  
 

Keywords: Fuzzy Logic, Uncertainty Analysis, Robustness and Reliability
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Resumo 

 

O principal objetivo desta tese de doutorado é avaliar o uso da lógica nebulosa 

como uma ferramenta para análise de incerteza, robustez e confiabilidade de sistemas 

mecânicos. Neste sentido, abordagens baseadas em lógica nebulosa são definidas e 

utilizadas para a análise de incertezas em máquinas rotativas, a formulação de 

procedimentos de balanceamento robusto e para formulação de problemas de projetos 

baseados em confiabilidade. Primeiramente, a técnica conhecida como otimização de 

níves α é avaliada tanto numérica como experimentalmente para a análise de incertezas 

de máquinas rotativas. Uma aplicação numérica considerando um rotor com incertezas 

que influenciam o módulo de Young do eixo e as rigidezes dos mancais é usada para 

avaliar e comparar a análise de incertezas fuzzy com procedimentos estocásticos já 

estabelecidos. Então, este procedimento de lógica nebulosa é utilizado para prever as 

respostas extremas de um rotor flexível suportado por mancais hidrodinâmicos com 

incertezas que influem sobre as propriedades do lubrificante. Posteriormente a lógica 

nebulosa é avaliada como uma ferramenta para otimização robusta por meio de dois 

novos procedimentos de balanceamento robusto, a saber: i) uma abordagem não-

paramétrica formulada para elevar a robustez do procedimento de balanceamento 

conhecido como método dos coeficientes de influência, e ii) uma abordagem 

paramétrica formulada para fazer aumentar a robustez do método de balanceamento 

baseado em modelos matemáticos representativos. Por fim, uma nova metodologia de 

lógica nebulosa para projetos baseados em confiabilidade é proposta, revisando a 

abordagem de lógica nebulosa tradicional em termos da métrica de confiabilidade. O 

procedimento proposto consiste de um algoritmo aninhado, no qual um laço interno é 

utilizado para obter os limites dos parâmetros incertos enquanto um laço externo avalia 

uma métrica de confiabilidade fuzzy predefinida, considerando os intervalos obtidos no 

laço interno. Resultados obtidos indicam a lógica nabulosa como uma ferramenta 

proeminente para análises de incerteza, robustez e confiabilidade. 

_____________________________________________________________________
Palavras-Chave: Lógica Nebulosa, Análise de Incertezas, Robustez e Confiabilidade. 



 

 

NOMENCLATURE 
 

CHAPTER 2 

 

SFEM  Stochastic Finite Element Method

PCE  Polynomial Chaos Expansion

FE  Finite Element 

MCS  Monte Carlo Simulation

KL  Karhunen-Lòeve

,ሺ࢞ܪ  ሻߠ one-dimensional random field in a Hilbert space

࢞  spatial component of a random field 

 ߠ random process 

,ுுሺ࢞ܥ ࢞ᇱሻ  autocovariance function

σ  variance of a random field

ρ  correlation coefficient

Ω  a given geometry

 ௜ߣ eigenvalues of the autocovariance function

߮௜  deterministic function

 ሻݔሺߤ mean value of a random field

 ሻߠ௜ሺߦ random variables

X  classical set 

x  generic set elements

A  subset 

µA  membership function

Ã  fuzzy set 

E  Young’s modulus 

ρ  material  density 

υ  Poisson’s coefficient 

M  mass matrix 

D  damping matrix
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Dg  gyroscopic matrix

K  stiffness matrix

Kst  stiffness matrix resulting from the transient motion 

W  weight of the rotating parts

Fu  unbalance forces

Fm  shaft  supporting  forces

q  generalized displacement

γ  mass proportional damping coefficient

β  stiffness proportional damping coefficient

kROT  angular stiffness

FRF  frequency response function

FRF௜
௠௢ௗ௘௟   FRFs generated by a FE model 

FRF௜
௘௫௣

  experimental FRFs 

Ω  operational rotation speed of the rotor

K(e)  elementary stiffness matrix

KS(e)  shaft elementary stiffness matrix

KB(e)  bearings elementary stiffness matrix

 ௦ܫ shaft area moment of inertia

   ௖௢௥,௫ܮ correlation length

ഥ௦ೝܭ
ሺ௘ሻ

  random elementary stiffness matrices

݇௢  mean value of the bearings stiffness coefficients

 ௞ߜ dispersion level

SQP  Sequential Quadratic Programming

RMS  mean square convergence analysis

C  bearings radial clearance

µh  oil viscosity 

Toil  oil temperature

Outexp,i  experimental vibration response

Outmodel,i  FE model vibration response
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CHAPTER 3 

 

Up  Rotor unbalance distribution

Vj  Vibration amplitudes

αjp  Influence coefficients 

V0  Vibration responses for the original unbalance condition 

U0  Original unbalance distribution

mt  Trial weight 

W1  Trial weight unbalance force

h  Eccentricity 

unb Unbalance condition fuzzy set 

Npos  Number of no rejections

Nneg  Number of rejections

H0 Null hypothesis 

α  Significance level of a hypothesis test

p-value  Statistic test metric

αmin  Minimum significance level 

αmax  Maximum significance level 

E  Young’s modulus

ρ  material  density

υ  Poisson’s coefficient

IDX  Discs inertia moment in X direction 

IDY  Discs inertia moment in Y direction

IDZ  Discs inertia moment in Z direction 

kxx  Self-alignment ball bearing stiffness coefficient in X direction 

kzz  Self-alignment ball bearing stiffness coefficient in Z direction 

dxx  Self-alignment ball bearing damping coefficient in X direction 

dzz  Self-alignment ball bearing damping coefficient in Z direction 

F Model-based balancing objective function 

௜ܷ
ிா௠௢ௗ௘௟ሺݔሻ FE model vibration responses in the model-based balancing 

 Vector of proposed correction weights in the model-based ݔ
balancing 
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௜ܷ
ை௥௜௚௜௡௔௟ Rotor original vibration responses in the model-based balancing 

ܲ݁ Pessimist objective function in robust model-based balancing 

 Optimist objective function in robust model-based balancing ݌ܱ

 Upper and lower limits of uncertain parameters ݌ and ݌

௜ܷ
ிா௠௢ௗ௘௟ሺݔ∗,  ௡ሻ FE model vibration response with deterministic correction weights݌

and nominal configuration 

௜ܷ
ிா௠௢ௗ௘௟ሺݔ,  ሻ FE model vibration response at optimist configuration݌

௜ܷ
ிா௠௢ௗ௘௟ሺݔ,  ሻ FE model vibration response at pessimist configuration݌

 

CHAPTER 4 

 

FLSFj Fuzzy limit state function 

Rj Structural strength 

Sj Structural stress 

gj(x) Inequality constraints 

x Vector of design variables 

ηjαk Traditional reliability index 

ηj′ Revised reliability index 

fm Failure metric 

xd Design variables 

xr Random variables 

xf Fuzzy variables 
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CHAPTER I 

 

 

INTRODUCTION 

 

The increasing demand for higher industrial productivity as driven the development of 

more efficient mechanical systems, implying on increasing reliability and robustness and 

lowering operational costs. Consequently, the development of more representative 

mathematical models is crucial in the context of modern engineering.  

Mechanical systems in general are subjected to the effects of inherent uncertainties 

that arise mainly due to operational fluctuations, manufacturing errors, damage, wear or merely 

due to the lack of knowledge regarding the system itself. These effects can be directly related 

to system performance, durability and reliability and usually are unaccounted for in design 

stages.  

Commonly, in the design or analysis of mechanical systems deterministic models are 

derived from known physical phenomena in an attempt to represent the system behavior. 

These deterministic models are unable to account for system uncertainties and usually an 

uncertainty analysis is performed in order to obtain the system extreme responses, which is 

essential for the assessment of system robustness and reliability. 

In this sense, the main goal of this PhD thesis can be defined as the evaluation of fuzzy 

logic, a simpler mathematical representation of system uncertainties, aiming at uncertainty, 

robustness and reliability analyses. Uncertainty analysis can be viewed as a mathematical 

process that aims to obtain system extreme responses when exposed to the effect of 

uncertainties. Robustness can be interpreted as the system sensitivity with respect to the 

influence of uncertainties; consequently, robust system responses are as less sensitive as 

possible to system fluctuations. Reliability emphasizes on the achievement of predefined 

constraints related to design stability and/or safety performance. Figure 1.1 illustrates the 

concept of robustness and reliability. 

The fuzzy logic approach is an intuitive technique based on fuzzy sets (ZADEH, 1965) 

and on the possibility theory (ZADEH, 1968). In the fuzzy set theory, the inherent uncertainties 

are described as incomplete and/or inaccurate information, represented by means of weighted 
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intervals. Despite being relatively recent, fuzzy set theory is gaining more attention and 

successful applications have been reported in the literature (MÖLLER, GRAF and BEER, 

2000; MÖLLER and BEER, 2004; OZBEN, HUSEYINOGLU and ARSLAN, 2014; DE ABREU 

et al., 2015). 

 

 
 

a) robustness b) reliability 

Figure 1.1 Concept of robustness and reliability. 

 

In the context of the research effort at the LMEst laboratory (UFU – Federal University 

of Uberlândia) on uncertainty analysis and robustness evaluation, the present contribution is a 

continuation of the following research projects as developed by: 

  BUTKEWITSCH (2002): evaluated a robust optimization of safety vehicular 

components; 

 KOROISHI et al. (2012): considered uncertainties effects on a flexible rotor by 

means of the Stochastic Finite Element Method (SFEM); 

 LARA-MOLINA, KOROISHI and STEFFEN Jr (2015): evaluated uncertainty 

effectes on a flexible rotor considering fuzzy and random-fuzzy parameters; 

 CAVALINI Jr et al. (2015): proposed a fuzzy approach to assess uncertainties 

effects in a flexible rotor supported by fluid film bearings; 

 CARVALHO (2017): adopted a model based balancing appraoch to obtain 

robust balancing responses considering uncertainties through Monte Carlo 

simulations.  

Consequently, the present contribution aims to evaluate the fuzzy logic approach as 

tool for uncertainty, robustness and reliability analyses. In this sense, a fuzzy uncertainty 

analysis methodology is evaluated both numerically and experimentally for a flexible rotor, 

wherein the proposed methodology performance is compared with well-established uncertainty 

Robust 
Optimum 

Global Optimum 

 ݔ∆

∆݂ 

 ݔ∆

∆݂ 

x2

x1

Feasible Region

Deterministic
Optimum

Reliable
Optimum

Uncertainities
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analysis techniques. In the sequence, two distinct approaches based on fuzzy set theory and 

fuzzy uncertainty analysis are proposed and evaluated for the robust balancing of rotating 

machines. Finally, a fuzzy reliability-based design methodology is formulated and evaluated 

for the reliability-based design of mechanical systems.   

The outline of the remainder of this contribution is as follows: 

 Chapter 2: Presents the proposed fuzzy uncertainty analysis methodology and 

the results of the numerical and experimental validation of the proposed 

approach. A brief discussion of the obtained results is also addressed. 

 Chapter 3: Introduces the proposed fuzzy robust balancing approaches. Both 

methodologies are presented; numerical and experimental results are obtained 

and discussed. 

 Chapter 4: Focuses on the proposed fuzzy reliability-based design approach, 

addressing its formulation and numerical results obtained. 

 Chapter 5: Brings some final remarks regarding the results and a brief 

discussion of possible future research steps on this topic.    
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CHAPTER II 

 

 

FUZZY UNCERTAINTY ANALYSIS 

 
In this chapter, the so-called α-level optimization procedure for fuzzy uncertainty 

analysis is presented and discussed. First, the performance of the proposed methodology is 

numerically compared with well-established uncertainty analysis approaches, whereas the 

dynamic responses of a horizontal rotor test rig are evaluated under the influence of uncertain 

rotor shaft Young’s modulus and uncertain bearing stiffness. Then, the proposed fuzzy 

uncertainty analysis methodology is experimentally validated for a flexible rotor containing 

three rigid discs and supported by two cylindrical fluid film bearings.  

The chapter begins by addressing the key issues related to uncertainty analysis and 

the proposed fuzzy approach. After, the numerical validation of the proposed methodology is 

presented. Then, the experimental validation of the fuzzy approach is demonstrated. Finally, a 

brief discussion of the obtained results is presented.  
 

2.1. Uncertainty Analysis Review 

There are different techniques that can be used to modeling uncertainties in mechanical 

systems. The stochastic approach exhibits a longer history of applications on mechanical 

systems, while the fuzzy logic technique is recently gaining more attention. 

The stochastic methodology is based on the probability theory. GHANEM and SPANOS 

(1991) contextualize the stochastic approach within the scope of structural dynamics through 

the Stochastic Finite Element Method (SFEM) and the so-called Polynomial Chaos Expansion 

(PCE) technique. The fuzzy logic approach is an intuitive technique based both on fuzzy sets 

and on the possibility theory. KOSKO (1990) brings a review about the main issues on 

fuzziness and probability.  

Concerning rotor dynamics associated problems, RÉMOND, FAVERJON and SINOU 

(2011) assessed the flexible rotor dynamics subject to uncertain parameters by SFEM and  

PCE technique. KOROISHI et al. (2012) applied the SFEM approach to a flexible rotor 

with uncertain parameters modeled as homogeneous Gaussian random fields discretized by 
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the Karhunen-Lòeve series expansion (KL series expansion). SEGUÍ, FAVERJON and 

JACQUET-RICHARDET (2013) investigated the effects of uncertainties affecting the material 

properties of blades in a multistage bladed disc system by using the PCE technique. More 

recent rotor dynamic applications of the stochastic approach can be found in (SEPAHVAND, 

NABIH and MARBURG, 2015; SINOU and JACQUELIN, 2015; SINOU, DIDIER and 

FAVERJON, 2015).  

Following the fuzzy approach, RAO and QIU (2011) presented a methodology for the 

fuzzy analyses of nonlinear rotor-bearing systems along with numerical results that were 

presented to demonstrate the computational feasibility of the proposed approach. LARA-

MOLINA, KOROISHI and STEFFEN JR. (2015) analyzed the dynamics of flexible rotors under 

uncertain parameters modeled as fuzzy and fuzzy random variables. CAVALINI JR et al. 

(2015) evaluated the dynamic behavior of a flexible rotor with three rigid discs, supported by 

two fluid film bearings. The uncertainties were considered as affecting the oil viscosity and the 

radial clearance of both bearings that support the machine.  

Both the stochastic and fuzzy logic approaches were applied to the analysis of 

uncertainties affecting the steady state characteristics and the overall dynamic behavior of 

rotating machines. In this chapter, a systematic study dedicated to compare both 

methodologies is presented aiming to assess their suitability regarding rotor dynamics 

applications.  

 

2.2. Stochastic Approach 

In the stochastic approach, the purpose is to evaluate the randomness and the 

variability of the uncertain parameters of the model. Thereby, the uncertainties are modeled 

either as random variables or as random fields. Among the various stochastic techniques that 

aim at accomplishing this goal, the SFEM and the Monte Carlo Simulation (MCS; i.e., as 

stochastic solver) are extensively used (KUNDU et al., 2014; JENSEN and PAPADIMITRIOU, 

2015; SEPAHVAND, 2016).  

 

2.2.1 Monte Carlo Simulation 

 

MCS belongs to a class of methods that can be viewed as exhaustive search 

techniques. The idea is to infer the statistical behavior of the model response without previous 

knowledge about the statistical behavior of the uncertain quantities. In this case, the uncertain 

quantities are considered as random fields and a large number of samples are evaluated (i.e., 

simple realizations of the considered field). The samples are tested by using the deterministic 
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model of the analyzed mechanical system, generating the uncertain quantity response (which 

implies a high computational cost). Therefore, the statistical characteristics of the outputs (i.e., 

the model responses) can be estimated and the variability of the model can be inferred. Figure 

2.1 presents a schematic representation of the main features associated with MCS. More 

details concerning this approach can be found in (BINDER, 1979; NEWMAN and BARKEMA, 

2001). 

 

 
 

Figure 2.1 - Schematic representation of the main features associated with MCS. 

 

It is worth mentioning that the convergence of the MCS is practically guaranteed in 

different applications, making this stochastic solver extensively used for the cases in which the 

statistical characteristic of the mechanical system is not available (HUDSON and TILLEY, 

2014; BAO and WANG, 2015; CHEN and SCHUH, 2015; CADINI and GIOLETTA, 2016). 
  

2.2.2 Stochastic Finite Element Method 

 

The SFEM can be considered as an extension of the FE method. In the classical FE 

method, the geometry of the mechanical system is discretized according to a number of finite 

elements that form the spatial mesh of the model. The deterministic responses are 

approximated by the nodal displacements, which are obtained from the solution of coupled 

differential equations.  
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If the parameters of the mechanical system are uncertain (modeled as random fields), 

the model should be represented by stochastic differential equations. Adopting the same 

spatial discretization used in the classical FE method, an incomplete representation of the 

random field is obtained. Therefore, a series expansion technique is used to discretize the 

random dimension efficiently. In this sense, the KL series expansion (GHANEM and SPANOS, 

1991) or various orthogonal series (ZHANG and ELLINGWOOD, 1994) can be applied. 

The KL series expansion is based on the application of the spectral theorem for 

compact normal operators in conjunction with Mercer’s theorem, which connects the spectral 

representation of a Hilbert-Schmidt integral operator to the corresponding Hilbert-Schmidt 

kernel. LOÈVE (1977) and GHANEM and SPANOS (1991) provide an interesting discussion 

of the mathematical basis involving KL series expansion. The key aspects of KL series 

expansion related to uncertainty analysis are presented next. 

The KL series expansion of a random field is based on the spectral decomposition of 

its auto covariance function. It is a continuous representation of the random field expressed by 

the superposition of orthogonal random variables, which are weighted by deterministic spatial 

functions (GHANEM and SPANOS, 1991). 

The auto covariance function of a one-dimensional random field	ܪሺ࢞,  ሻ, whereߠ

࢞	denotes the spatial dependence of the field and ߠ represents a random process, can be 

defined as shown in Eq. (2.1). 

 

,ுுሺ࢞ܥ ࢞ᇱሻ ൌ ,ሺ࢞ߩሺ࢞ᇱሻߪሺ࢞ሻߪ ࢞ᇱሻ (2.1) 

 

in which σ denotes the variance of the field and ρ is the correlation coefficient. 

The set of deterministic functions for which any event of the field is expanded with 

respect to a given geometry	Ω is defined by the eigenvalue problem presented in Eq. (2.2). 

 

∀	݅ ൌ 1,…		න ,ுுሺ࢞ܥ ࢞ᇱሻ
	

ஐ
߮௜ሺ࢞ᇱሻ݀Ω࢞ᇲ ൌ  ௜߮௜ሺ࢞ሻߣ

(2.2) 

 

where ߣ௜ are the eigenvalues of the auto covariance function ܥுுሺ࢞, ࢞ᇱሻ and ሼ߮௜ሽ is a 

deterministic function. 

Due to the mathematical properties of the deterministic function ሼ߮௜ሽ (i.e., the 

eigenfunctions of the autocovariance function	ܥுுሺ࢞, ࢞ᇱሻ) that are the solution of Eq. (2.2), any 

event of the random field can be expanded as shown by Eq. (2.3). 
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,ሺ࢞ܪ ሻߠ ൌ ሺ࢞ሻߤ ൅෍ඥߣ௜

ஶ

௜ୀଵ

 ሻݔሻ߮௜ሺߠ௜ሺߦ
(2.3) 

 

where ߤሺݔሻ is the mean value of the field, ߣ௜ are the eigenvalues of the auto covariance function 

,ுுሺ࢞ܥ ࢞ᇱሻ, and ߦ௜ሺߠሻ are random variables. 

The intrinsic eigenvalue problem associated with the series expansion can be 

analytically solved only for a few auto covariance functions and geometries. Detailed solutions 

for triangular and exponential covariance functions and one-dimensional homogeneous 

random fields are shown in GHANEM and SPANOS (1991) for	Ω ൌ ሾെܽ, ܽሿ. The eigenvalue 

problem has to be solved numerically regarding different cases.  

In the KL series expansion of a Gaussian process, the random variables	ߦ௜ሺߠሻ are 

independent standard normal random variables. This property is useful in practical 

applications, especially for the SFEM. Moreover, the convergence of the series representation 

given by Eq. (2.3) is guaranteed in the cases for which a Gaussian process is considered 

(LOÈVE, 1977).   

Both series expansions procedures (i.e., KL and orthogonal series) aim at determining 

the random variables that are related to the stochastic differential equations that represent the 

mechanical system. The KL and orthogonal series decompositions are not able to solve these 

equations. In order to obtain the solution of the differential equations, a stochastic solver is 

used (e.g., MCS). The solver should infer the variability of the system through the evaluation 

of the random variables.  

 

2.3. Fuzzy Logic 

 

ZADEH (1965) first introduced the fuzzy logic theory with the purpose of formalizing the 

notion of graded membership, as represented by the so-called membership function. The fuzzy 

sets are understood as the counterpart of the Boolean notion of regular sets, in a sense that 

in a fuzzy set an element can belong, not belong, or partially belong to the set.  

As presented by DUBOIS and PRADE (1997) the membership function of a fuzzy set 

can basically be seen from three different perspectives: a degree of similarity, in which the 

membership function quantifies how similar an element of the set is compared to a prototype 

element; a degree of preference, where the membership function quantifies the preference or 

the feasibility of an element of the set; or a degree of uncertainty, in which the membership 

function is the degree of possibility that a determined parameter u has the value of an specific 
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element x of the set. The notion of degree of uncertainty is the base of the possibility theory 

(ZADEH, 1968) and the main tool for fuzzy uncertainty analysis.  

Based on the concept of degree of uncertainty and through the fuzzy set theory, 

uncertainties can be modeled as fuzzy variables for the cases in which the statistical process 

that describes the random variables is unknown. The uncertain parameters are modeled as 

fuzzy numbers, where the actual value of the parameter is unknown, but limited to an interval 

weighted by a membership function. At this point, it is important to highlight that the 

membership function is a possibility distribution, not a probability distribution as required in the 

stochastic theory. Possibility is the measure of whether an event can happen, while probability 

is a measure of whether an event will happen. Therefore, the possibility distribution of a given 

uncertain parameter u quantifies the possible values that this parameter can assume. A 

probability distribution quantifies the chances that the uncertain parameter u has to assume a 

certain value x. 

 

2.3.1 Fuzzy Variables 

 

Let X be a universal classical set of objects whose generic elements are denoted by x. 

The subset A (A ∈ X) is defined by the classical membership function µA: X → {0,1}, shown in 

Figure 2.2, in which Ã represents the fuzzy set and xl and xr are the lower and upper bounds 

of the fuzzy set support, respectively. Furthermore, a fuzzy set ܣሚ is defined by means of the 

membership function µA: X → [0,1], being [0,1] a continuous interval. The membership function 

indicates the degree of compatibility between the element x and the fuzzy set ܣሚ. The closer 

the value of µA(x) is to 1, more x belongs to	ܣሚ. 

A fuzzy set is completely defined by (where 0 ≤ µA ≤ 1): 

 

  , ( ) 
AA x x x X  (2.4) 

 

 

a) Fuzzy set. b) The α-levels. 
Figure 2.2 - Fuzzy set and α-level representation 
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The fuzzy set ܣሚ can be represented by means of subsets that are denominated α-levels 

(see Figure 2.2), which correspond to real and continuous intervals. 

 

2.3.2 Fuzzy Dynamic Analysis 

 

The fuzzy dynamic analysis is an appropriate method to map a fuzzy vector of 

parameters onto output fuzzy functions by using the deterministic model of the mechanical 

system. In structural analysis, the combination of uncertainties modeled as fuzzy variables with 

the deterministic model based on the finite element method is denominated fuzzy finite element 

method. The fuzzy dynamic analysis includes two stages, based on the α-level optimization 

(MÖLLER, GRAF and BEER, 2000), as shown in Figure 2.3. In the first stage, for 

computational purposes, the input vector that corresponds to the fuzzy parameter is discretized 

by means of the α-level representation (see Figure 2.2). Thus, each element of the fuzzy 

parameter vector is considered as an interval. The second stage is related to solving an 

optimization problem. This optimization problem consists in finding the maximum or minimum 

value of the output at each α-level.  

The fuzzy analysis of a transient time-domain system demands the solution of a large 

number of optimization problems regarding all α-levels of interest for each considered time 

step. Each upper and lower bounds of the system analysis at a given time instant is obtained 

from an optimization algorithm (VANDERPLAATS, 2007). The output value of the transient 

analysis at the evaluated time-step constitutes the objective function. The inputs to this function 

are the uncertain parameters described previously as fuzzy, or fuzzy random variables. 

The fuzzy dynamic analysis based on the α-level optimization method is an eficient 

methodology for uncentainty analysis. However, the effectiveness of the method is highlly 

related to the performance of the optimization technique.  

Depending on the features of the related optimization problems (i.e., multimodal 

objective functions), only global optimization algorithms can be used, such as the Differential 

Evolution algorithm (STORN and PRICE, 1995). The use of global optimization algorithms 

imposes high computational cost to some engineering applications.   

 



13 
 

 
 

Figure 2.3 - The α-Level optimization 

 

2.4. Numerical Validation 

The numerical analysis considered the influence of uncertainties in the Young’s 

modulus of the shaft of a rotor test rig and in the stiffness of the bearings of the rotating 

machine, on the dynamic response of the system. A straightforward numerical method was 

applied to simulate the dynamic responses of a representative Finite Element model (FE 

model) of the flexible rotor with two rigid discs and two self-alignment ball bearings. It is worth 

mentioning that the FE model was derived by using the approach previously presented by 

(CAVALINI JR et al., 2016).  

 

2.4.1 Rotor Test Rig 

 
Figure 2.4a shows the rotor test rig used as a reference in the numerical validation 

process of the proposed fuzzy uncertainty analysis, which was mathematically represented by 

a model with 33 finite elements (FE model; Figure 2.4b).  

The considered rotating machine is composed of a flexible steel shaft with 860 mm 

length and 17 mm of diameter (E = 205 GPa, ρ = 7850 kg/m3, υ = 0.29), two rigid discs D1 

(node #13; 2,637 kg; according to the FE model) and D2 (node #23; 2,649 kg), both of steel 

and with 150 mm of diameter and 20 mm of thickness (ρ = 7850 kg/m3), and two self-alignment 

ball bearings (B1 and B2, located at the nodes #4 and #31, respectively). Displacement sensors 

are orthogonally mounted on the nodes #8 (S8X and S8Z) and #28 (S28X and S28Z) to collect the 

shaft vibration. The system is driven by an electric DC motor. 
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a) Test rig b) FE model 

 

Figure 2.4 - Experimental test rig (a) and its corresponding FE model (b) 

 

Equation 2.5 presents the equation of motion that governs the dynamic behavior of the 

flexible rotor supported by roller bearings (LALANNE and FERRARIS, 1998). 

 

ሷܙۻ ൅ ൣ۲ ൅ Ω۲௚൧ܙሶ ൅ ൣ۹ ൅ Ωሶ ۹௦௧൧ܙ ൌ ൅܅ ۴௨ ൅ ۴௠ (2.5) 

 

where M is the mass matrix, D is the damping matrix, Dg is the gyroscopic matrix, K is the 

stiffness matrix, and Kst is the stiffness matrix resulting from the transient motion. All these 

matrices are related to the rotating parts of the system, such as couplings, discs, and shaft. W 

stands for the weight of the rotating parts, Fu represents the unbalance forces, Fm is the vector  

of  the  shaft  supporting  forces  produced  by the ball bearings (incorporated as stiffness and 

damping coefficients in the matrix K), and q is  the  vector of generalized displacement.  

Due to the size of the matrices involved in the equation of motion, the pseudo-modal 

method is used to reduce the dimension of the FE model and provided the solution, as 

proposed by LALANNE and FERRARIS (1998). In this work, the first twelve vibration modes 

of the rotor were used to generate the displacement responses. 

A model updating procedure was used in order to obtain a representative FE model 

(Figure 2.4 - Experimental b). In this sense, a heuristic optimization technique (Differential 

Evolution, see (STORN and PRICE, 1995)) was used to determine the unknown parameters 

of the model, namely the stiffness and damping coefficients of the bearings, the proportional 

damping added to D (coefficients γ and β; Dp = γM + βK), and the angular stiffness kROT due 

to the coupling between the electric motor and the shaft (added around the orthogonal 
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directions X - horizontal  and Z - vertical of the node #1). Further information regarding the 

model updating procedure adopted in this work can be found in CAVALINI JR et al. (2016).  

The entire frequency domain process (i.e., comparison between simulated and 

experimental frequency response functions; FRF) was performed 10 times, considering 100 

individuals in the initial population of the optimizer. The objective function adopted is presented 

in Eq. (2.6). For this case only the regions close to the peaks associated with the natural 

frequencies were taken into account. 

 

ܨ ൌ෍
ฮFRF௜

௠௢ௗ௘௟ሺݔሻ െ FRF௜
௘௫௣ฮ

ฮFRF௜
௘௫௣ฮ

௡

௜ୀଵ

 
(2.6) 

 

where n is the number of FRFs used in the minimization procedure, FRF௜௠௢ௗ௘௟ሺݔሻ is the FRFs 

generated by the FE model, ݔ is the vector containing the proposed unknown parameters, and 

FRF௜
௘௫௣ is the experimental FRFs measured on the test rig.  

The experimental FRF were measured for the test rig at rest by applying impact forces 

along the X and Z directions of both discs, separately. The response signals were measured 

by two proximity probes positioned along the same directions of the impact forces, resulting 8 

FRFs. The measurements were performed by the analyzer Agilent® (model 35670A) in a 

range of 0 to 200 Hz and a frequency resolution of 0.25 Hz.  

Table 2.1 summarizes the parameters determined in the end of the minimization 

process associated with the smallest fitness value (i.e., value of the objective function; Eq (6)). 

Figure 2.5 compares simulated and experimental FRFs, and the associated phase diagram, 

considering the parameters shown in Table 2.1. Note that the FRF generated from the FE 

model is satisfactorily close to the one obtained directly from the test rig. 

 

Table 2.1 Parameters determined by the model updating procedure 

Parameters Value Parameters Value Parameters Value 

kX / B1 8.551 x 105 kX / B2 5.202 x 107 γ 2.730 

kZ / B1 1.198 x 106 kZ / B2 7.023 x 108 β 4.85 x 10-6 

dX / B1 7.452 dX / B2 25.587 kROT 770.442 

dZ / B1 33.679 dZ / B2 91.033   

*k: stiffness [N/m]; d: damping [Ns/m]. 

 

Figure 2.6 compares the experimental orbit measured at the measure plane S8 (full 

acquisition time of 4 s in steps of 0.002 s, approximately) with the one determined by the 
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updated FE model. The operational rotation speed of the rotor Ω was fixed to 1200 rev/min 

and an unbalance of 487.5 g.mm / 00 applied to the disc D1 was considered. Note that the 

responses are close, as for the FRF previously shown, thus validating the updating procedure 

performed.  

 

Figure 2.5 Simulated (‐ ‐ ‐) and experimental (──) FRFs, and associated phases, obtained 
from impact forces on D1 (X direction and S8X). 

 

 

 

Figure 2.6 Simulated (──) and experimental (──) orbits for the rotor under consideration. 

 

2.4.2 Uncertainty Scenarios 

 

Aiming at evaluating the performance of the techniques previously described, two 

uncertain scenarios concerning the rotating machine presented by Figure 2.4 were considered. 

The first scenario is confined to the analysis of the rotor FRFs, considering uncertainties 

affecting the Young’s modulus of the shaft. This material property is determined with 

reasonable accuracy by using standard material testing procedures, leading to small uncertain 
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values. It is worth mentioning that even these small variations can affect the dynamic behavior 

of the rotor system, influencing its performance, life, and reliability. The second uncertain 

scenario is dedicated to the analysis of the orbits and unbalance responses (run-up tests) of 

the rotor, introducing variations on the stiffness coefficients kX and kZ of the bearing B1 (see 

Figure 2.4 and Table 2.1).  

Three different methodologies were used to model the uncertain parameters of the 

rotating system (i.e., the Young’s modulus and the stiffness coefficients). Regarding the 

stochastic theory, two different methodologies were tested. In the first approach, the variability 

of the system was estimated through MCS associated with the Latin Hypercube sampling 

technique (see VIANA et al., 2007). No discretization procedure was used to discretize the 

random variables of the system; the deterministic FE model was used to evaluate the 

generated samples. From now on, this methodology will be referred to as MCS approach along 

the text, in a direct reference to the stochastic solver used to infer the variability of the system. 

The second approach is based on the SFEM associated with KL series expansion, considering 

an exponential autocovariance function. In this case, the random variables are discretized 

through a series expansion technique and evaluated by using the SFEM model. MCS 

combined with Latin Hypercube is used to solve the associated stochastic problem. This 

methodology will be referred to as KL method.  

Note that the main diference between the two stochastic methodologies is associated 

with the discretization of the random variables. No discretization is considered in the first 

approach (i.e., MCS approach); while for the second methodology (i.e., KL method), a random 

discretization is performed to completely represent the random variables.  

It is important to point out that the uncertain parameters were modeled as Gaussian 

random fields in both approaches. Gaussian random fields were adopted since it is expected 

that the realizations of the considered uncertain parameters are concentrated and 

symmetrically dispersed around their nominal values, approximately thus a 3σ model of 

Gaussian fields. Besides, another interesting feature of Gaussian fields is its guarantee 

convergence in the KL series expansion (LOÈVE, 1977), as previously mentioned. Also, in this 

contribution the interest in the uncertainty analysis is in the rotor working envelopes, so if other 

random fields, for instance, uniform fields, were selected, if the dispersion (3σ) were the same, 

is expected that obtained results to be identical, since the extreme realizations of the random 

field were note altered.  

In order to apply the KL decomposition, the stochastic model of the rotating machine 

(Figure 2.4b) is formulated. Therefore, the deterministic FE model was parameterized aiming 

at factoring-out the uncertain parameters of the FE elementary matrices. Equation (2.7) 

presents the parametrization performed on the stiffness matrix K(e) (elementary matrix 
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associated with K in Eq. (2.5)). Only the stiffness matrix of the rotating machine was 

parametrized, since the considered uncertain parameters are associated only to K.  

 

۹ሺ௘ሻ ൌ ۹௦
ሺ௘ሻ ൅ ۹஻

ሺ௘ሻ (2.7a)

۹௦
ሺ௘ሻ ൌ ഥ௦ܭ௦ܫܧ

ሺ௘ሻ (2.7b)

۹஻
ሺ௘ሻ ൌ ,ሺ݇௑ࢌ ݇௓ሻ   (2.7c)

 

where KS(e) is the elementary stiffness matrix of the shaft (following the Timoshenko beam 

theory), and KB(e) is the elementary stiffness matrix associated with the bearings. In this 

formulation the shaft and bearings stiffness are considered to be in series resulting in the 

resulting elementary matrix ۹ሺ௘ሻ. Also, ܫ௦ represent the area moment of inertia of the shaft and 

E is the Young’s modulus of the shaft. Further, KB(e) is considered to be a function ࢌ of ݇௑ and 

݇௓. The parameters ݇௑ and ݇௓ designate the stiffness coefficients of the bearings along the X 

and Z directions, respectively (see the deterministic parameters in Table 2.1). 

As presented in Eq. (2.3), the KL series decomposition of a random field requires the 

knowledge of the eigenvalues ߣ௜ and eigenfunctions ߮௜ of the random field associated with the 

autocovariance function. Considering a one-dimensional Gaussian field, GHANEM and 

SPANOS (1991) have shown that the eigen problem associated with the exponential 

covariance function presented in Eq. (2.8) has an analytical solution in the domain Ω௫ ൌ

ሺݔଵ,    .ଶሻݔ

 

,ଵݔுுሺܥ ଶሻݔ ൌ ଵݔ|൫െ݌ݔ݁ െ  ௖௢௥,௫൯ (2.8)ܮ/|ଶݔ

 

where ሺݔଵ, ଶሻݔ 	∈ 	 ሾ0,  ௖௢௥,௫  indicates the correlation length, characterizing theܮ ሿ andܮ

decreasing behavior of the covariance with respect to the distance between the observation 

points along the y direction.  

Considering the property of the covariance function, the eigenvalues and 

eigenfunctions are given as a function of the roots ߱௥ሺݎ ൒ 1ሻ of two transcendental equations 

through a procedure that can be summarized as follows: 

 For r odd, with r ൒ 1: 

 

௥ߣ ൌ
ଶ௅೎೚ೝ,ೣ

௅೎೚ೝ,ೣ
మ ఠೝ

మାଵ
	, ߮௥ሺݔሻ ൌ ,ሺ߱௥ݏ݋௥ܿߙ  ሻ (2.9)ݔ
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where ߙ௥ ൌ 1 ඥܮ 2⁄ ൅ ሻܮሺ߱௥݊݅ݏ ⁄⁄ܮ2  and ߱௥ is the solution of the transcendental equation 

presented in Eq. (2.10).  

 

1 ൅ ሻܮ௖௢௥,௫߱௥tanሺ߱௥ܮ ൌ 0 (2.10)

 

defined in the domain ቂሺݎ െ 1ሻ
గ

௅
, ቀݎ െ

ଵ

ଶ
ቁ గ
௅
ቃ.  

 For r even, with r ൒ 1: 

 

௥ߣ ൌ
ଶ௅೎೚ೝ,ೣ

௅೎೚ೝ,ೣ
మ ఠೝ

మାଵ
	, ߮௥ሺݔሻ ൌ ,ሺ߱௥݊݅ݏ௥ߙ ሻ (2.11)ݔ

 

where ߙ௥ ൌ 1 ඥܮ 2⁄ െ ሻܮሺ߱௥݊݅ݏ ⁄⁄ܮ2  and ߱௥ is the solution of the transcendental equation 

presented in Eq. (2.12).  

 

௖௢௥,௫߱௥ܮ ൅ tanሺ߱௥ܮሻ ൌ 0 (2.12)

 

defined in the domain ቂቀݎ െ ଵ

ଶ
ቁ గ
௅
, ݎ

గ

௅
ቃ.  

  From the solution of the eigenproblem shown previously, the elementary random 

matrices of the shaft can be computed by using Eq. (2.13). 

 

۹௦
ሺ௘ሻሺߠሻ ൌ ۹௦

ሺ௘ሻ ൅෍ܭഥ௦ೝ
ሺ௘ሻ

௡

௥ୀଵ

 ሻߠ௥ሺߦ
(2.13)

 

where ߠ is the random process and the random matrices ܭഥ௦ೝ
ሺ௘ሻ	are calculated by using Eq. 

(2.14). 

 

ഥ௦ೝܭ
ሺ௘ሻሺߠሻ ൌ න ඥߣ௥

௅

଴
߮௥ሺݔሻ்࡮ሺݔሻࡱഥ࡮ሺݔሻ݀ݔ 

(2.14)

 

where ࡱഥ is the matrix of material properties in which the parameters ܧௌ and ܫ௦ were factored-

out. 

The elementary matrices of the bearings are obtained by applying a dyadic structural 

transformation rather than an integration scheme as in the case of the shaft. The corresponding 

uncertainties are introduced by using ݇ሺߠሻ ൌ ݇௢ ൅ ݇௢ߜ௞ߦሺߠሻ, where ݇௢ designates the mean 

value of the stiffness coefficients of the bearings with the corresponding dispersion level ߜ௞. 
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Further information regarding the parametrization procedure can be found in KOROISHI et al. 

(2012).   

From the stochastic finite element matrices and by performing the standard FE matrix 

assembling procedure, the frequency domain and the time domain responses of the rotating 

machine can be obtained. The stochastic model of the flexible rotor has to be solved by a 

stochastic solver. As mentioned, in this contribution the stochastic model was solved through 

MCS combined with the Latin Hypercube technique.  

Finally, the third methodology used to model the uncertain parameters of the rotating 

system (i.e., the Young’s modulus and the stiffness coefficients) is based on the fuzzy logic 

approach. In this case, the uncertain parameters are modeled as fuzzy triangular numbers 

(i.e., fuzzy variables) and mapped through the α-level optimization method. The Sequential 

Quadratic Programming algorithm (SQP; see (VANDERPLAATS, 2007)) was used to perform 

the required minimizations and maximizations (see Figure 2.3). The respective optimization 

problems are monomodal, thus allowing the direct optimization procedure to find global optimal 

solutions.    

 

2.4.3 Frequency Domain Analysis 

 

This analysis is confined to the frequency domain, as being characterized by the 

envelopes of the FRFs of the rotor responses. In this case, the influences of the uncertainties 

affecting the Young’s modulus of the shaft on the dynamic behavior of the system are 

evaluated. 

Regarding the stochastic procedures (i.e., MCS approach and KL method), the inherent 

uncertainty was modeled as a Gaussian random field with nominal value E = 205 GPa with a 

deviation of ±5% (3ߪ model, i.e. E±15%). The convergence of the response variability was 

verified regarding the number of terms retained in the truncated KL expansion series (nKL) and 

the number of samples used for MCS (nS). In order to determine nKL and nS, the mean square 

convergence analysis (RMS) with respect to the independent realizations ߠ of the FRF was 

obtained according to Eq. (2.15).  

 

ܵܯܴ ൌ ට
ଵ

௡ೄ
∑ ሻߠ௜ሺܪ| െ ௜|ଶܪ
௡ೄ
௜ୀଵ   (2.15)

 
in which ܪ௜	represents the response obtained by the deterministic model and ܪ௜ሺߠሻ is the 

response determined from a specific realization ߠ. 
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Figure 2.7 presents the convergence analysis performed for the MCS approach and for 

the KL method (Figure 2.7a and Figure 2.7b, respectively). The number of terms retained in 

the series was verified, in which the convergence was achieved for ݊௦ ൒ 250 and ݊௄௅ ൒ 40.  

 

a) nS b) nKL 

 

Figure 2.7 Convergence verification for the frequency domain analysis. 

 

Regarding the fuzzy approach, the uncertain parameter was modeled as a fuzzy 

triangular number with the same nominal value and deviation adopted for the stochastic 

procedures (i.e., ܧ෨ ൌ 205 േ 15% GPa). For the fuzzy uncertainty analysis, the objective 

function related to the α-level optimization procedure was the norm of the ܪ௜ vector; i.e., the 

lower bound corresponds to the ܧ෨  value that minimizes the system response and the upper 

bound is related to the ܧ෨  value that maximizes the system response. 

The uncertainty analysis in the context of rotating machines can be performed aiming 

at different goals. In the case of both robust design and robust control design, the objective of 

uncertainty analysis is to obtain the minimum and maximum responses of the rotor (i.e., the 

working envelopes). In the present contribution, the fuzzy logic approach was confined to the 

uncertainty level ߙ ൌ 0 of the model. Clearly, the stochastic analysis was formulated to obtain 

the minimum and maximum responses of the rotating machine.      

Figure 2.8 shows the comparison between the uncertain envelopes of the rotor FRFs 

obtained by the stochastic and fuzzy methodologies. In this case, the FRFs were obtained 

 by considering the force applied along the X direction of the disc D1 and the measures 

obtained from the sensor S8X (see Figure 2.5). Note that the results obtained by the different 

approaches are similar. Table 2.2 summarizes the results shown in Figure 2.8, in which the 
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referred upper and lower limits (and the related values of Young’s Modulus) indicates the FRFs 

(H) working envelopes bounds. 

a) MCS versus Fuzzy b) MSC versus KL 

c) Fuzzy versus KL d) MCS, KL, and Fuzzy 

 

Figure 2.8 FRFs determined for different methods of uncertainty analysis (…. deterministic 
FRF; see Figure 2.5). 

 

Table 2.2 Results for the frequency domain analysis. 

Method 
Lower Limit Upper Limit 

 ฮܪฮ **(GPa) ܧ ฮܪฮ *(GPa) ܧ

MCS 235.52 6.4 x 10-4 174.31 7.04 x 10-4 

KL 235.63 6.4 x 10-4 174.37 7.06 x 10-4 

Fuzzy 235.75 6.4 x 10-4 174.25 7.04 x 10-4 

 .indicates the Young’s modulus value that generates the minimum response ܧ *

 .represents the Young’s modulus value that generates the maximum response ܧ**
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Regarding the associated computational cost, the fuzzy logic approach required 14 

evaluations of the FE model, while the stochastic methods required 250 evaluations of the 

deterministic model (number of samples). 

 

2.4.4 Time Domain Analysis 

 

The time domain analyses (i.e., rotor orbits and run-up test) were performed 

considering the uncertainties affecting the stiffness coefficients kX and kZ of the bearing B1 (see 

Table 2.2). For the stochastic methods, the uncertain parameters were modeled as Gaussian 

random fields with nominal values of kX = 8.551x105 N/m and kZ = 1.198x106 N/m (see Table 

2.1) with a deviation of ±10% (3ߪ model).  

Regarding the rotor orbits, the operational rotation speed of the rotor Ω was fixed to 

1200 rev/min and an unbalance of 487.5 g.mm / 00 was applied to the disc D1 (see Figure 2.6). 

A simulation time of 10 seconds with steps of 0.001 seconds was adopted.  

The convergence of the response variability was also verified in terms of the number 

of samples nS for the MCS approach and the number of terms nKL in the KL expansion. 

Analogous to the frequency domain analysis, the RMS value with respect to the independent 

realizations ߠ of the orbits was performed - Eq. (15) - considering that ܪ௜	represents the orbits 

computed by the deterministic model and ܪ௜ሺߠሻ represents the orbits computed for the 

realization	ߠ. Figure 2.9 presents the convergence analysis performed for both the MCS 

approach and KL method (Figure 2.9a and Figure 2.9b, respectively).  Convergence was 

achieved for ݊௦ ൒ 500 and ݊௄௅ ൒ 100.  

 

a) nS b) nKL 

Figure 2.9 Convergence verification for the time domain analysis associated with the orbits of 
the rotor. 
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Regarding the fuzzy approach, the uncertain parameter was modeled as belonging to 

a fuzzy triangular function with the same nominal value and deviation adopted for the 

stochastic procedures (i.e., kX = 8.551x105 N/m and kZ = 1.198x106 N/m with a deviation of 

±30%). The objective function related to the α-level optimization procedure was the norm of 

the displacement vector. 

Figure 2.10 shows the comparison between the uncertain envelopes of the rotor orbits 

obtained by using the stochastic and fuzzy methodologies. Note that the results determined by 

these two approaches are similar. However, MCS approach leads to a bigger stiffness 

coefficient kZ. Therefore, small vibration amplitudes can be observed 

along the Z direction as compared with the results obtained by the KL method and the fuzzy 

approach. Table 2.3 summarizes the results shown in Figure 2.10 in which the referred upper 

and lower limits (and the related values of stiffness coefficients) indicates working envelopes 

bounds of the of the orbits (z). The fuzzy logic approach required 26 evaluations of the FE 

model and the stochastic methods required 500 evaluations of the deterministic model.  

Regarding the run-up test, the operational rotation speed Ω of the rotor was considered 

as varying linearly from 0 to 3000 rev/min (simulation time of 10 seconds; steps of 0.001 

seconds). An unbalance of 487.5 g.mm / 00 was applied to the disc D1.  

The convergence of the response variability was also verified in terms of the number 

of samples nS for the MCS approach and the number of terms nKL for the KL expansion (see 

Figure 2.11). Similarly, to the analyses performed for the rotor orbits, the convergence of the 

RMS value was obtained for ݊௦ ൒ 500 and ݊௄௅ ൒ 100.  

Figure 2.12 presents the comparison between the envelopes of the rotor responses 

(run-up test from 0 to 3000 rev/min in 10 seconds) determined along the X direction of the disc 

D1. Note that the amplitudes associated with the lower limit were similar to the ones obtained 

by using the fuzzy and MCS approaches. A similar behavior could not be verified by using the 

KL method. However, different values of amplitudes were observed in all of the remaining 

unbalance responses. Table 2.4 summarizes the results shown in Figure 2.12.  

Similar to the orbits analysis, in the run-up test the fuzzy logic approach required 26 

evaluations of the FE model while the stochastic methods required 500 evaluations of the 

deterministic model.  

The main objective of the present contribution was to evaluate the suitability of three 

different methodologies for uncertainty analysis in the context of rotating systems.  
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a) MCS versus Fuzzy b) MSC versus KL 

c) Fuzzy versus KL d) MCS, KL, and Fuzzy 

 

Figure 2.10 Orbits determined for the different uncertainty methods (-.-.- deterministic 
response; see Figure 2.6). 

 

Table 2.3 Results for the time domain analysis associated with the rotor orbits. 

Method 
Lower Limit Upper Limit 

݇௑(N/m) ݇௓(N/m)  ݖ ௑(N/m) ݇௓(N/m)݇ ݖ

MCS 1.112x106 1.557x106 0.0038 5.991x105 8.39x105 0.0044 

KL 1.112x106 1.556x106 0.0038 5.991x105 8.39x105 0.0044 

Fuzzy 1.112x106 1.557x106 0.0038 5.986x105 8.384x105 0.0044 

* ݇ indicates the stiffness coefficients that generates the minimum response ݖ. 

**݇ represents the stiffness coefficients that generates the maximum response ݖ. 
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a) nS b) nKL 

 

Figure 2.11 Convergence verification for the time domain analysis associated with the linear 
run-up test. 

 

Table 2.4 Results for the time domain analysis associated with the run-up test. 

Method 
Lower Limit Upper Limit 

݇௑(N/m) ݇௓(N/m) ݖ ݇௑(N/m) ݇௓(N/m) ݖ 

MCS 1.109x106 1.101x106 0.0291 5.987x105 9.968x105 0.0351 

KL 1.089x106 1.063x106 0.0293 6.104x105 1.526x106 0.0347 

Fuzzy 1.091x106 1.083x106 0.0291 6.596x105 1.196x106 0.0349 

* ݇ indicates the stiffness coefficients that generates the minimum response ݖ. 

**݇ represents the stiffness coefficients that generates the maximum response ݖ. 

 

Through numerical simulations, the stochastic and fuzzy approaches were compared 

in terms of uncertain envelopes generated by the analysis of the dynamic behavior of a flexible 

rotor. For this aim, uncertainties were introduced in the Young’s modulus of the shaft and the 

stiffness coefficients of the bearing.  

The evaluated methodologies presented similar results regarding the FRFs of the 

rotating machine, suggesting that the proposed methods lead to equivalent results. However, 

this equivalence was not verified in the time domain analysis. 
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a) Upper limit – MCS versus Fuzzy b) Lower limit – MCS versus Fuzzy 

c) Upper limit – MSC versus KL d) Lower limit – MSC versus KL 

e) Upper limit – Fuzzy versus KL f) Lower limit – Fuzzy versus KL 

 

Figure 2.12 Run-up responses determined for the different uncertainty approaches. 
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The uncertainty methodologies presented different behavior with respect to the run-up 

simulations. Regarding the better scenario (i.e., minimum response – lower bound of the 

envelope), the KL method presented the less critical response (smallest vibration amplitude). 

The MCS approach obtained the most critical response (largest vibration amplitude), while the 

fuzzy approach converged to an amplitude value which lies between the responses provided 

by the stochastic methods. 

The responses obtained by using the fuzzy approach are associated to a global 

optimization solution. Therefore, it is suggested that the KL method underestimates the 

vibration amplitude of the rotor while the MCS overestimates the vibration response. Further 

analyses are necessary to confirm this conclusion. Regarding the worst scenario (i.e., 

maximum response – upper bound of the envelope), the KL method and the MCS converged 

to similar responses. The fuzzy approach obtained the most critical response (largest vibration 

amplitude), suggesting that the stochastic approaches underestimate the system response.  

The uncertainty analysis procedure is considered as a previous step that contributes to 

the decision making related to procedures such as robust design, robust control, predictive 

maintenance and risk management. The under and overestimation of one of the bounds lead 

to some difficulties for these procedures. Therefore, further analysis should be performed to 

evaluate the behavior of the system response as determined through stochastic methods. 

Regarding the computational costs, the fuzzy approach required no more than 30 

evaluations of the deterministic FE model to obtain the system responses. The stochastic 

methods required up to 500 evaluations of the deterministic FE model to determine the same 

responses. In this contribution, this relative high number of evaluations required by the 

stochastic methods did not lead to prohibitive computational time, a feature that may not be 

true in the case of complex applications, such as industrial applications.  

Another important feature to take into consideration is the mathematical complexity of 

the uncertainty approaches. The KL series expansion method has a relative mathematical 

complexity, requiring the solution of an integral eigenvalue problem. The MCS and the fuzzy 

approaches presented a simpler and straightforward mathematical modeling. Nevertheless, 

the SFEM associated with series expansion (KL method) presents a practically guaranteed 

convergence (LOÈVE, 1977). The mathematical simplicity of the MCS and fuzzy methods is 

counterweighted by the computational cost that the corresponding algorithms may require. 

In the context of the rotordynamic applications presented in this analysis, it may be 

concluded that the most adequate methodology used for uncertainty analysis in rotating 

systems depends on the problem considered. However, the author consider that the fuzzy 

logic approach appears as the most indicated methodology due to its mathematical simplicity, 

convergence characteristics, and the fact that no previous knowlegde of the uncertain values 



29 
 

variability is required or has to be adopted. Finally, the fuzzy method performance is related to 

the performance of the optimization algorithm and the features of the associated optimization 

problems. 

 

2.5 Experimental Validation 

For safety reasons the uncertainty scenarios considered in the numerical validation 

(fluctuations regarding shaft and bearing stiffness) of the proposed fuzzy uncertainty analysis 

could not be experimentally implemented. Thus, new uncertainty scenarios were formulated 

considering now a flexible with three rigid discs supported by two fluid film bearings. 

Uncertainties affecting the bearings parameters, namely oil viscosity and radial clearance were 

considered in the experimental analysis. In the remaining of this subtopic the new rotor test rig 

and its related FE model are presented along with the considered uncertainty scenarios and 

obtained results. 

    

2.5.1 Rotor Test Rig 
 

The proposed uncertainty analysis was applied to a horizontal rotating machine 

modeled by using 35 Timoshenko beam elements, which is shown in Figure 2.13. The rotor 

system is composed by a flexible steel shaft with 840 mm length and 19.05 mm diameter (E = 

1.9 x 1011 Pa, ρ = 8030 kg/m3, and υ = 0.3), three rigid discs D1 (node #16; 0.658 kg), D2 (node 

#20; 5.013 kg), and D3 (node #25; 0.658 kg), and two cylindrical hydrodynamic bearings (B1 

and B2, located at the nodes #9 and #35, respectively), each one with 19.05 mm diameter and 

12.8 mm length. The rotating parts take into account a proportional damping added to the 

matrix D (Eq. (1); Dp = γ M + β K) with coefficients γ = 5 and β = 5 x 10-6. Following the model 

proposed by LALANNE and FERRARIS (1998), it is assumed that the disc D2 increases the 

stiffness of the shaft at the disc location (elements #19 and #20; see Figure 2.13b). Special 

care was dedicated to the model of the disc D2 to comply with the stiffness increase due to 

coupling of the disc to the shaft.  

According to MEGGIOLARO and ALMEIDA (1997), the hypothesis of short sleeve 

bearing is based on the relationship Lh/2R ≤ 0.5. However, in this case Lh/2R = 12.8/19.05 = 

0.672. The displacement responses obtained from the nonlinear short bearing theory 

presented in this work were compared with the linear long bearing theory in a previous work 

(CAVALINI JR. et al., 2015). The verified similarity between the linear and nonlinear responses 

combined with the large computational cost associated with the linear theory regarding the 
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optimization task involved in this application; RIUL, STEFFEN JR and RIBEIRO (1992), justify 

the consideration of the short nonlinear bearing theory.  

 

 

a) Rotating machine. 

 

 

b) FE model. 

 

Figure 2.13 Flexible rotor used on the experimental analysis. 

 

Experimental frequency response functions (FRFs) were measured on the rotor at 

stand still for the free-free end condition by applying impact forces along the horizontal direction 

(i.e., X direction) at the nodes #4, #11, #18, #27 and #34, separately. The response signals 

were measured by three accelerometers installed along the same direction of the impact forces 

at the nodes #4, #11, and #34, resulting fifteen FRFs. The measurements were performed by 

a signal analyzer, Agilent® (model 35670A), in a range from 10 to 300 Hz and steps of 0.5 Hz. 

Figure 2.14 compares the four simulated and experimental FRFs by considering the 

parameters of the rotating machine presented above. Note that the FRFs generated from the 

FE model are satisfactorily close to the ones obtained directly from the test rig.  

#16  #20  #25 
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Concerning now the assembled test rig (i.e., rotor under operating condition), 

displacement responses are collected in the vicinity of the bearings locations (measuring 

planes S1 and S2; nodes #10 and #33, respectively) along the horizontal and vertical directions 

(X and Z, respectively).  

   

a) Impact: node #4; sensor: node #4. b) Impact: node #11; sensor: node #11. 

  

c) Impact: node #18; sensor: node #34. d) Impact: node #34; sensor: node #34. 

Figure 2.14 Simulated (- - -) and experimental (----) FRFs 

 

Figure 2.15 illustrates the displacements obtained from the measuring plane S2 (close 

to the bearing B2) with the rotor performing a linear run-down condition (2500 to 0 rpm in 10 

secs; numerical simulation). It can be observed that the first critical speed of the rotating 

machine is, approximately, 1600 rpm. In order to obtain the displacements shown in Figure 

2.15, the radial clearance of the bearings B1 and B2 were taken as C = 76.2 μm. The oil viscosity 

was considered equal to 0.0449 Pa.s (MINERAL OIL ISO 13 at 22.5oC) and calculated as a 

function of the temperature (HAMROCK, SCHMID and JACOBSON, 2004), as shows the Eq. 
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(2.16). Additionally, the simulations were performed considering the system vibrating around 

its equilibrium position. 

 

a) Horizontal vibration (X direction). b) Vertical vibration (Z direction). 

Figure 2.15 Simulated linear run-down responses obtained on the plane S2 (node #33) 
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where Toil is the oil temperature (oC). The coefficients k1 = 3.3914 and k2 = -1.1232 were 

determined from the measured oil viscosity. 

A model updating procedure was carried out to quantify the unbalance condition and 

the effect caused by the coupling between the electric motor and the shaft on the dynamic 

behavior of the test rig. In this sense, the Differential Evolution optimization technique (STORN 

and PRICE, 1995) was used to determine the unknown parameters of the model. In this way, 

the linear and angular stiffness of the coupling (klinear and kangular added 

around the orthogonal directions X and Z at the node #2) and the equivalent masses/phases 

that should be inserted on each disc to obtain the real unbalanced condition of the test rig were 

determined. The entire identification process was based on time domain dynamic responses 

(i.e., comparison between simulated and experimental displacement responses) was 

performed 10 times, considering 40 individuals in the initial population of the optimizer. The 

objective function to be minimized is given by Eq. (2.17).  
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where Outexp,i is the experimental vibration response measured directly on the test rig and 

Outmodel,i is the associated response determined by the FE model. In this case, n is the number 

of displacement responses considered in the minimization process. 

It is well known that the unbalanced masses/phases and the stiffness of the coupling 

do not change with the rotation speed of the rotor. Therefore, the minimization process was 

performed considering the rotor operating at two different rotating speeds: 1100 and 1200 rpm, 

separately. Consequently, the experimental displacement responses were measured on the 

planes S1 and S2 with the rotor operating at the same rotation speeds (full acquisition time of 

0.4 sec. in steps of 0.0005 sec., approximately; measurements performed by the analyzer 

Agilent® model 35670A).  

Table 2.5 summarizes the parameters determined in the end of the minimization 

process associated with the smallest value of the objective function (Eq. (2.17)) and the lower 

and upper limits imposed to the optimization process. Figure 2.16 compares the simulated (the 

last 0.4 sec. of the simulation) and experimental displacement responses of the rotor obtained 

on the plane S1 for the rotor operating at both considered rotation speeds. Note that the time 

responses generated from the FE model are not close enough to the ones obtained directly 

from the test rig, which can be associated with the inherent uncertainties affecting the bearings.  

 

Table 2.5 Parameters determined by the model updating procedure 

Parameters Lower limit Upper limit Optimized values 

Disc D1 
Unbalance (kg.m) 0 1.0 x 10-3 8.3583 x 10-4 

Phase (degrees) -180 180 -23.1591 

Disc D2 
Unbalance (kg.m) 0 1.0 x 10-3 7.6299 x 10-4 

Phase (degrees) -180 180 154.7898 

Disc D3 
Unbalance (kg.m) 0 1.0 x 10-3 9.7153 x 10-4 

Phase (degrees) -180 180 142.8335 

Coupling 
klinear (N/m) 0 1.0 x 102 70.8333 

kangular (N.rad/m) 0 1.0 x 102 9.6127 
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a) Rotation speed: 1100 rpm; X direction. b) Rotation speed: 1100 rpm; Z direction. 

c) Rotation speed: 1200 rpm; X direction. d) Rotation speed: 1200 rpm; Z direction. 

Figure 2.16 Simulated (- - -) and experimental (----) displacement responses obtained on the 
plane S1. 

   

It is worth mentioning that the simulated responses that were determined along the X 

direction (Figure 2.16a and Figure 2.16c) matched the ones associated with the experimental 

measurements. To obtain this result it was necessary to adjust the time shift between the two 

responses (simulated and experimental). 

 

2.5.2 Uncertainty Analysis 
 

Generally, the results determined by FE models of flexible rotors supported by fluid film 

bearings present small differences as compared with the experimental ones. This behavior 

can be attributed to the variation of the oil film temperature along the bearing, which is 

disregarded in the nonlinear model considered in this work. Additionally, the mentioned 

discrepancies are associated with machining problems affecting directly the deterministic 
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radial clearance of the bearings (leading to non-cylindrical bearings). Different malfunctions 

can lead to discrepancies between numerical and experimental vibration responses in rotating 

machines. As an example, the cavitation is a common problem observed in oil film bearings 

(ZAPOMEL and FERFECKI, 2011). 

Figure 2.17 shows the fluid film bearings used in the rotor test rig presented in Figure 

2.13a. In this case, diameter measures were taken along the sections A, B, C, and D, 

considering four different measuring points (i.e., 1, 2, 3, and 4). Table 2.6 and Table 2.7 

presents the measures performed on the bearings located at the left and right-hand sides of 

the rotor, respectively. The left-hand side bearing is the one located close to the electric motor 

of the test rig (Figure 2.13a). 

  

 

 

Figure 2.17 Measuring points and measuring sections on the bearings. 

 

Table 2.6 Diameter measures performed on the bearing near the coupled. 

 Measuring points  

Sections  1 2 3 4 **Mean value 
(mm) 

A (mm)  19.199 19.191 19.180 19.167 19.184 

B (mm) 19.196 19.192 19.179 19.168 19.184 

C (mm) 19.199 19.193 19.178 19.169 19.185 

D (mm) 19.199 19.192 19.179 19.171 19.185 

*Mean value 
(mm) 

19.198 19.192 19.179 19.169 19.185 

*Mean value considering a given measuring point. **Mean value considering a given section. 
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Table 2.7 Diameter measures performed on the right-hand side bearing. 

 Measuring points  

Sections  1 2 3 4 **Mean value 
(mm) 

A (mm)  19.222 19.194 19.180 19.168 19.191 

B (mm) 19.225 19.194 19.177 19.168 19.191 

C (mm) 19.225 19.196 19.180 19.167 19.192 

D (mm) 19.224 19.194 19.179 19.167 19.191 

*Mean value 
(mm) 

19.224 19.195 19.179 19.168 19.191 

*Mean values considering a given measuring point. **Mean values considering a given section. 

 
The diameter of the shaft was also measured at the position of the bearings, resulting 

a mean value of 19.01 mm (the deterministic diameter is equal to 19.05 mm, as given by the 

manufacturer). It can be observed that the left hand side bearing presented mean values 

(**Mean value – Table 2.6) of radial clearance as CSectionA = CSectionB = 87 μm and CSectionC = 

CSectionD = 87.5 μm (variations of 14.17% and 14.83%, respectively, related to the deterministic 

value of the radial clearance; i.e., C = 76.2 μm). Regarding the opposite bearing, the following 

mean values (**Mean value – Table 2.7) were found: CSectionA = CSectionB = CSectionD = 90.5 μm 

and CSectionC = 91 μm (variations of 18.77% and 19.42%, respectively, related to the 

deterministic value of the radial clearance). Therefore, the bearings seem to be non-cylindrical 

(see all the diameters measured along the measuring points and measuring sections in Table 

2.6 and Table 2.7). However, the radial clearance is considered as being constant in the 

nonlinear model proposed by CAPONE (1986). Consequently, uncertainty analysis is 

necessary to predict the dynamic behavior of the rotating machine. It is worth mentioning that 

both journal bearings are not perfectly cylindrical. Note in Table 2.6 and Table 2.7 that a non-

perfect cylindrical shape is obtained by measuring the diameters along different measuring 

sections and measuring points. Additionally, the diameter measures reveal a quasi-conic 

shape for both bearings. 

Table 2.8 shows the uncertainty scenarios considered in this contribution, namely the 

introduction of uncertainties in the radial clearance of both bearings (scenario 01), the influence 

of uncertainties in the oil viscosity (scenario 02), and the influence of both uncertain parameters 

on the dynamic behavior of the rotating machine (uncertainties in the radial clearance and in 

the oil viscosity; scenario 03). The analysis were performed considering the rotor operating at 

two rotating speeds: 1100 and 1200 rpm, separately. The uncertain parameters were modeled 

by using fuzzy triangular numbers as shown above. The uncertainty intervals associated with 

the radial clearances (i.e., ± 32.0%) were defined from the maximum variation obtained from 
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the measures performed at the bearings. The intervals associated with the oil film temperature 

were defined by following the variation adopted for the radial clearances (i.e., ± 32.0%). It is 

worth mentioning that the literature suggests large variations in the oil film temperature along 

the bearing (DANIEL and CAVALCA, 2013; HEINRICHSON, 2006).  

 

Table 2.8 Uncertainty scenarios considered in the present contribution. 

Scenarios Deterministic parameters Uncertainty intervals (± 32%) 

Scenario 01 C = 76.2 μm 51.82 μm ≤ C ≤ 100.58 μm 

Scenario 02 Toil = 22.5oC 15.3oC ≤ Toil ≤ 29.7oC 

Scenario 03 C = 76.2 μm 51.82 μm ≤ C ≤ 100.58 μm 

Toil = 22.5oC 15.3oC ≤ Toil ≤ 29.7oC 

 

 

In order to solve the optimization problem associated with the described fuzzy analysis, 

the SQP algorithm was used (VANDERPLAATS, 2007). The norm of the vibration response 

obtained along the X direction of the measuring plane S2 (node #33) was written to represent 

the objective function of the minimization and maximization problems inherent to the fuzzy 

analysis. 

Figure 2.18a shows the orbits determined in the measuring plane S1 by the updated FE 

model (i.e., obtained from the deterministic parameters; see Table 2.8), the lower and upper 

limits (α = 0) for the uncertainty scenario 01 (i.e., variations in the radial clearances), and the 

associated experimental orbit. In this case, the rotor is operating at 1100 rpm. The results 

obtained from the measuring plane S2 is presented in Figure 2.18b., Figure 2.18c and Figure 

2.18d present the corresponding orbits for the rotor operating at 1200 rpm. Note that the 

displacements determined by applying the uncertainty scenario 01 in the FE model can predict 

satisfactorily the dynamic behavior of the rotor shown in Figure 2.13. 

 In CAVALINI JR  et al. 2015), it was demonstrated that the uncertainties in the radial 

clearances are able to modify the location of the orbits center. This is an expected result, since 

the hydrodynamic force is directly affected by the radial clearance and oil viscosity. However, 

the same phenomena cannot be observed in the numerical simulations presented in this work 

since the system is vibrating around its equilibrium position.  
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      a) Rotation speed: 1100 rpm; Plane S1.       b) Rotation speed: 1100 rpm; Plane S2. 

  

      c) Rotation speed: 1200 rpm; Plane S1.       d) Rotation speed: 1200 rpm; Plane S2. 

Figure 2.18 Envelope of the orbits considering the uncertainty scenario 01                   
(---- lower limit / α = 0; ---- upper limit / α = 0; ---- nominal; •••• experimental) 

 

Figure 2.19 shows the orbits determined in the measuring planes S1 and S2 by the 

updated FE model (i.e., obtained from the deterministic parameters; see Table 2.8), the lower 

and upper limits (α = 0) for the uncertainty scenario 02 (i.e., variations in the oil film 

temperature), and the associated experimental orbits. In this case, the rotor is operating at 

1100 and 1200 rpm, separately. Note that smaller changes are observed in the results when 

uncertainties are introduced in the oil viscosity. Additionally, the displacements determined by 

applying the uncertainty scenario 02 in the FE model is not able to predict the dynamic behavior 

of the system. Remember that the intervals associated with the oil film temperature were 

defined by following the variation adopted for the radial clearances (i.e., ± 32.0%). 
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      a) Rotation speed: 1100 rpm; Plane S1.       b) Rotation speed: 1100 rpm; Plane S2. 

  

      c) Rotation speed: 1200 rpm; Plane S1.       d) Rotation speed: 1200 rpm; Plane S2. 

Figure 2.19 Envelope of the orbits considering the uncertainty scenario 02                   
(---- lower limit / α = 0; ---- upper limit / α = 0; ---- nominal; •••• experimental 

 

The results shown in Figure 2.19 suggest that a combination of both considered 

uncertain parameters (i.e., the radial clearance and the oil film temperature) are affecting the 

dynamic behavior of the rotating machine, which is expected in industrial rotating machines 

suported by journal bearings. Therefore, Fig. 2.20 shows the theoretical orbits determined at 

the measuring planes S1 and S2 by the updated FE model, the lower and upper limits (α = 0) 

for the uncertainty scenario 03 (i.e., variations in the radial clearance and oil film temperature, 

simultaneously; see Table 2.8). The associated experimental orbits measured in the rotor test 

rig are presented for comparison purposes (the rotor is operating at 1200 rpm). Note that the 

displacements determined by applying the uncertainty scenario 03 in the FE model can predict 



40 
 

satisfactorily the dynamic behavior of the rotor as shown in Figure 2.13. Additionally, the 

difference between the vibration responses associated with the lower and upper limits (α = 0) 

in Fig. 2.20 are greater than the ones obtained for the uncertain scenario 01 (compare Figure 

2.18 and Fig. 2.20 for Ω = 1200 rpm). Therefore, the combination of both uncertain parameters 

leads to an addition effect on the vibration response of the rotor system. The amplitude of the 

vibration response associated with the upper limit increased as compared with the results 

shown in Figure 2.18. Differently, the amplitude of the responses associated with the lower 

limit is now decreased. 
 

  

      a) Rotation speed: 1200 rpm; Plane S1.       b) Rotation speed: 1200 rpm; Plane S2. 

Figure 2.20 Envelope of the orbits considering the uncertainty scenario 03                   
(---- lower limit / α = 0; ---- upper limit / α = 0; ---- nominal; •••• experimental) 

 
In this section the fuzzy logic approach was used to evaluate the dynamic responses 

of a flexible rotor supported by oil film bearings. Three uncertainty cases were analyzed: i) 

uncertainties in the oil viscosity, ii) uncertainties in the radial clearance applied to both bearings 

that support the machine, and iii) the influence of both uncertain parameters on the dynamic 

behavior of the rotating machine. The fuzzy analysis is an advantageous approach since it is 

able to predict the real upper and lower limits of the uncertainty envelope. The numerical 

applications and experimental tests led to similar results. The small differences observed are 

attributed to the variation of the oil film temperature along the bearing (normally disregarded in 

the models) and to machining problems affecting the radial clearance. It was observed that the 

left-hand side bearing presented variations of approximately 14.5% considering the various 

measuring sections, as related to the deterministic value of the radial clearance. Similarly, the 

opposite bearing presented variations of approximately 19%. The diameter measurements 
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presented in Table 2.6 and Table 2.7 revealed that the bearings used in the test rig have a 

non-cylindrical shape.  

Finally, in this chapter the use of fuzzy logic applied to the uncertainty analysis of 

rotating systems, by means of the so-called α-level optimization procedure was evaluated. The 

proposed methodology was numerically validated presenting responses (in terms of 

uncertainty envelopes) similar to well-established stochastic approaches with the advantage 

of reduced computational cost and simpler mathematical formulation. The proposed 

methodology was also experimentally evaluated obtaining satisfactory results in the 

uncertainty analysis of a flexible rotor.   Therefore, the obtained results demonstrate that the 

proposed fuzzy uncertainty analysis methodology is well suited for the uncertainty analysis of 

rotating systems.



 

CHAPTER III 

 

 

ROBUST OPTIMIZATION BY MEANS OF FUZZY LOGIC 

 

In this chapter, two distinct fuzzy robustness optimization approaches are presented 

and evaluated in terms of rotor balancing applications. First, a non-parametric approach is 

proposed in an attempt to enhance an existing balancing technique robustness. This 

methodology is based on the concept of fuzzy sets and defuzzification, which are revisited in 

this chapter. The proposed approach is evaluated both numerically and experimentally. Then, 

a parametric robustness optimization methodology is proposed and evaluated numerically 

aiming at increasing balancing robustness of the so-called model-based balancing approach. 

This approach strongly relies in concepts of fuzzy optimization. 

  Throughout the chapter, the key aspects related to both methodologies are addressed 

and the obtained results for each approach are evaluated. Finally, a brief discussion regarding 

obtained results is presented.  

 

3.1 Rotor Balancing Review  

Balancing is a systematic procedure for adjusting the radial mass distribution of a rotor 

to approximate its barycenter to the geometric centerline, thus reducing the vibration amplitude 

and lateral forces applied to the bearings and surrounding structures due to unbalancing 

(EISENMANN and EISENMANN JR, 1998). Different signal-based solutions have been 

proposed to minimize the damage effects of unbalance, such as the modal balancing, four-

runs without phase, combined techniques, and the so-called influence coefficients method (IC 

method) (STEFFEN JR and LACERDA, 1996; WOWK, 1998; ISHIDA and YAMAMOTO, 

2012). 

Although widely used in industry, the signal-based techniques present some adverse 

aspects that encourage researchers to propose new balancing approaches. Existing methods 

demonstrated to be time-consuming, since trial weights are positioned at specific locations 

along the rotor to determine the sensitivity of the vibration responses to unbalance variations. 

The correction weights and their corresponding angular positions are obtained so that the 

vibration amplitudes of the rotor system are minimized. Additionally, classical signal-based 

balancing methodologies consider that the relationship between the unbalance excitation and 
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the resulting vibration is linear. However, if some nonlinearity exists in the structure, the 

obtained results are not satisfactory (CAVALINI JR et al., 2012).  

KANG et al. (2008) evaluated the accuracy of an improved IC method that minimizes 

the condition number of the influence coefficients. The authors observed an inverse relation 

between the condition number and the balancing efficiency. The obtained results demonstrate 

that the balancing performance can be improved by proper selection of sensors and balancing 

planes locations. The sensitivity of the signal-based techniques with respect to the locations 

of sensors and balancing planes was considered as adverse condition. 

An important practical problem of the IC balancing is associated with the availability of 

balancing planes to accept correction weights obtained by optimization. UNTAROIU, ALLAIRE 

and FOILES (2008) focused on practical constraints related to balancing in industrial 

applications. Regarding restrictions associated with the positions of correction weights, the 

authors proposed a constrained optimization approach based on the IC method. 

Aiming at overcoming some limitations faced by the signal-based techniques, a model 

based balancing approach was presented by SALDARRIAGA et al. (2010). This technique 

does not require linear relationship between unbalance and vibration responses; besides, trial 

weights are not required. The unbalance is identified by solving a typical inverse problem 

through a pseudo-random optimization method, such as Genetic Algorithms, Simulated 

Annealing, Particle Swarm Optimization, Ant Colony, Differential Evolution, etc. The method 

presented by SALDARRIAGA et al. (2010) showed to be well adapted for industrial 

applications only if a representative mathematical model of the rotating machine is available 

(even for the uncertain parameters affecting the system). 

According to LI, LIN and ALLAIRE (2008), the effect of uncertain parameters on 

balancing techniques have been ignored over the years except for a few authors, who claim 

that vibration responses can vary with the uncertainties. However, it is worth mentioning that 

the industry is aware of uncertainties affecting the balancing results and have developed in-

house procedures to overcome this problem for specific products. Measurement errors (i.e., 

disturbance and noise), unbalance variation (e.g., change of unbalance due to thermal bow 

and variation of the oil film temperature in journal bearings), and geometric restrictions 

associated with the introduction of correction masses in the machine, are sources of 

uncertainties. Consequently, the success of signal-based balancing techniques depends on 

both the accuracy of vibration measurements and the knowledge on the uncertainties affecting 

the rotor vibration responses.  

In this context, LI, LIN and ALLAIRE (2008) proposed a robust balancing approach 

devoted to high speed rotating machines. The methodology was formulated based on a convex 

optimization problem, combining the advantages of the IC method and the modal balancing 
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approach. The influence coefficients, unbalanced rotor vibration, and correction masses were 

modeled as random parameters (i.e., uncertain variables). Both uniform and normal probability 

distributions were considered in Monte Carlo simulations (MC simulations). 

 

3.2 Non-Parametric Evaluation  

In this section, a revised IC balancing methodology based on fuzzy logic approach is 

evaluated in terms of overall balancing robustness. In the proposed approach, rotor vibration 

responses measured over a long period are submitted to a fuzzy transformation procedure, 

adapted from POTA, ESPOSITO and DE PIETRO (2013), wherein rotor unbalance fuzzy sets 

are generated. Rotor unbalance condition (i.e., vibration amplitudes and associated angular 

positions) is obtained through a defuzzification process, which is introduced in the IC method 

for balancing purposes. Therefore, system uncertainties manifested in the measurement data 

set are assessed by means of a fuzzy logic approach at a proposed preprocessing stage. The 

effectiveness of the methodology is demonstrated both numerically and experimentally. A test 

rig composed by a horizontal flexible shaft, two rigid discs, and supported by rolling and oil film 

bearings is used. The rotation speed of the rotor system and the temperature of the lubricant 

oil (oil film bearing) are considered as uncertain parameters. The goal of this approach is to 

obtain vibration amplitudes that are less sensitive to operational fluctuations of the rotating 

machine. 

 

3.2.1 IC Balancing Method 

 

The IC method is widely used in industry to balance flexible rotors, leading to 

satisfactory and reliable results. Once the balancing planes, measuring planes, and trial 

weights are defined, the additional information required by the IC method is the vibration 

amplitudes and corresponding phase angles associated to the unbalanced system. As 

mentioned, the vibration responses are considered as uncertain information in the proposed 

robust balancing approach. 

Few definitions are important to understand the mathematical formulation of the IC 

method. Trial weights are masses fixed to proper planes defined to apply a known unbalance 

force in the rotating machine. Measuring planes are locations suitable to the installation of 

vibration sensors. Correction weights are masses fixed at certain angular positions so that the 

vibration amplitude is reduced to a satisfactory level. The correction masses and 

corresponding angular positions are determined by the IC method. Balancing planes are 

planes in which the correction weights are installed (WOWK, 1998). 
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Equation (3.1) presents the relationship between the original rotor unbalance 

distribution Up, the associated vibration amplitudes Vj, and the so-called influence coefficients 

αjp. The influence coefficients are complex values (i.e., amplitude and phase angle information) 

that relate the resulting vibration amplitudes measured at the position j due the unbalance force 

generated by the mass fixed at the position p. 

 

1 1
j jp p

v x v x n n xV α U  (3.1) 

 

where v is the number of measurement points (j = 1, …, v) and n is the number of 

balancing planes (p = 1, …, n). In this case, the residual unbalance presented in the rotor is 

neglected. 

For a given rotation speed Ω, Eq. (3.1) can be rewritten as follows: 
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in which V0 is the vector of vibration responses associated with the original unbalance 

distribution U0 of the rotor. 

The influence coefficients matrix α is determined by using a trial weight mt attached first 

in the balancing plane p = 1. The angular position of mt is taken as a reference value for the 

correction weights. This trial weight introduces an additional unbalance force in the rotor given 

by W1 = mth, where h is the eccentricity of the trial weight. For the same rotation speed Ω, the 

new unbalance condition of the rotor is shown in Eq. (3.3). 
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where V1 is the vector of vibration responses associated with the new unbalance 

distribution U1.  

Disregarding the trial weights from the total mass of the rotating machine, the matrix α 
can be considered constant in Eq. (3.2) and Eq. (3.3). Therefore, Eq. (3.4) is obtained by 

subtracting Eq. (3.3) from Eq. (3.2), as follows: 
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The trial weight is then removed from the balancing plane p = 1 and the process is 

repeated for the remaining balancing planes. Therefore, α can be fully determined. The 

generalization of the IC method is given by Eq. (3.5), in which α, V, and W are complex 

quantities. 
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The correction masses mc are obtained by inverting α and multiplying the resulting 

equation by the initial vibration response V0 (see Eq. (3.2)). If the number of balancing planes 

is equal to the number of vibration sensors (i.e., n = v in Eq. (3.1)), α is inverted directly. 

Otherwise, the pseudo-inverse technique should be used. Different rotation speeds Ω can be 

used simultaneously in the IC method, providing a broad band balancing efficiency. Additional 

information on the IC method can be found in (EHRICH, 1992; EISENMANN and EISENMANN 

JR, 1998; WOWK, 1998; MUSZYNSKA, 2005; BENTLY and HATCH, 2002). 

In the proposed approach, the uncertainty analysis is performed as a preprocessing 

stage. Measurement data sets are used to define an unbalance condition that takes into 

account the effects of operational fluctuations on the rotor vibration responses. This means 

that the basic mathematical formulation of the IC method is not modified. The uncertain 

information is associated only with the rotor vibration responses. 

 

3.2.2 Fuzzy Logic Concepts 

 

Epistemic uncertainties (i.e., uncertainties that are not random in nature) are commonly 

identified in balancing applications. For instance, what are the interval of vibration amplitudes 

and their corresponding phase angles that defines a balanced or unbalanced rotor? This 

question is more related to the lack of knowledge about the operating conditions of the rotor 

system (e.g., rotation speed, oil film temperature in the journal bearings, thermal bow, etc.) 

than to the randomness of the associated phenomenon (e.g., disturbance and noise affecting 

the vibration measures, etc.).  

As previously mentioned, possibility is considered as the measure of whether an event 

can happen. Differently, probability is defined as a measure of whether an event will happen. 
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Thus, the possibility distribution of a given parameter u (i.e., parameter u fuzzy set) quantifies 

possible values that this parameter can assume, while a probability distribution quantifies the 

odds that the parameter u has to assume a certain value x. In the proposed methodology, the 

rotor unbalance condition is treated as an uncertain information. Fuzzy sets are derived from 

measured vibration responses (i.e., vibration amplitudes and corresponding phase angles) 

representing the unbalance conditions that the rotating machine can assume, instead of 

concerning which is the current response of the system.   

Considered uncertainties are computationally modeled as fuzzy numbers through the 

fuzzy set theory, where the actual value of the parameter is unknown but limited by an interval 

weighted by a membership function. Following the interpretation of degree of uncertainty, the 

membership function of a fuzzy set is the continuous interval [0, 1] that weights the degree of 

pertinence of the element x with respect to the fuzzy set Ã. Thus, the values of Ã(x) close to 1 

indicate a high compatibility of the element x with the set Ã.  

In this contribution, the fuzzy set is regarded as a possibility distribution and is used to 

model the rotor unbalance condition. Treating the unbalance condition as a fuzzy set, i.e., 

unb={(u,μunb(u*))|u*U}, where u is a measured data and µ is the membership function of the 

unbalance fuzzy set, the resulting fuzzy numbers are weighted intervals that indicate the 

condition of the rotor. In this way, μunb = 0 indicates a balanced condition, μunb = 1 indicates an 

unbalanced condition, and 0 < μunb < 1 indicates a condition that could either be balanced or 

unbalanced.  

The key aspect of the fuzzy approach for uncertainty analysis is the definition of the so-

called membership function. A membership function can assume different shapes, which can 

affect the results of the uncertainty analysis. Usually, in a fuzzy decision system, the user 

imposes the shape of the membership function. The triangular or pseudo-triangular are the 

most used shapes. However, in this paper, the knowledge contained in the rotor vibration 

responses measured over a long period is incorporated into a fuzzy set. In this case, the 

method presented by POTA, ESPOSITO and DE PIETRO (2013) was adapted to extract fuzzy 

interpretation from the statistical data for inference purposes. 

The transformation scheme is based on the application of the statistical test of 

hypothesis (i.e., Fisherian test). The method enables the construction of normal fuzzy sets, 

which can be adapted to have pseudo-triangular, pseudo-trapezoidal, or pseudo-CDF shapes 

(i.e., cumulative distribution function). From the measured vibration responses (large set of 

statistical samples), the membership function is obtained by using Eq. (3.6).  
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where Npos represents the number of no rejections of the hypothesis test (i.e., acceptance of 

the null hypothesis) and Nneg is the number of rejections. Equation (3.6) is applied to all the 

measured vibration responses. 

Consider the construction of the membership function µunb(U), where U represents a 

set of vibration responses measured along the rotor. A hypothesis test is applied to determine 

the fraction of U that belongs to the set unb. The no rejection of the null hypothesis reveals the 

fraction of U that belongs to the unbalance set, while the rejection of the null hypothesis reveals 

the fraction of U that does not belong to the set unb. The membership function is determined 

first by obtaining the probability density function of U (i.e., PDF(U)). Then, for a given vibration 

response u* of the set U, the null hypothesis H0 ≡ “u* belongs to unb” can be interpreted as the 

hypothesis H0 ≡ “u* is an occurrence of a random variable for which the probability density 

function is PDF(U)”. The acceptance or rejection of the null hypothesis is made by comparing 

the p-value of the statistic test with the decision rule α (i.e., the significance level of the 

hypothesis test). 

Assuming, for instance, a set of vibration responses U uniformly distributed on the 

interval [15, 30] µm with PDF(U) unknown, what can be inferred if u*= 26 µm? Considering a 

statistic test p-value = 0.2 and the decision rule of α = 0.1, u*= 26 µm corresponds to not 

rejecting the null hypothesis (p-value >α). Adopting the same set of vibration responses U, the 

test can be performed for all measured vibration responses (e.g. 100 samples) by varying the 

decision rule value in the interval [αmin, αmax]. Suppose, for instance that 15 tests return 

requiring that H0 has to be rejected, since they have been processed considering the decision 

rule α> 0.2. Consequently, 85 tests did not reject the null hypothesis and µunb(u*) = 0.85 (i.e., 

85/(85+15) = 0.85; see Eq. (3.6)). This value of membership function indicates a high 

compability of the measured value 26 µm with the set of unbalance response unb.   

The values adopted for the interval of α may change the shape of the membership 

function of the corresponding fuzzy set. Consequently, pseudo-triangular, pseudo-trapezoidal, 

or pseudo-CDF shapes can be obtained based on the decision rule interval [αmin, αmax]. More 

details about the fuzzy transformation procedure is found in POTA, ESPOSITO and DE 

PIETRO (2013). A pseudo-code for the fuzzy transformation approach is shown in Figure 3.1.  

The fuzzy transformation procedure is able to construct a fuzzy set based on the 

vibration responses of the rotor system. Considering that the balancing procedure is a 

decision-making approach, the fuzzy information must be aggregated into a single value (i.e., 

a crisp value) that represents the uncertain information. The aggregation process of a fuzzy 

set is known as defuzzification in which all the information contained in a fuzzy set is 

aggregated into a real value (for further information regarding defuzzification, see (MÖLLER 
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and BEER, 2004 and TAKAGI and SUGENO, 1985). Thus, a fuzzy logic defuzzification tool is 

required by the proposed methodology. 
 

 
 

Figure 3.1 - Pseudo-code of the fuzzy transformation procedure (adapted from POTA, 
ESPOSITO and DE PIETRO, 2013). 

 
Different defuzzification techniques are available in the literature, such as the Centroid, 

Bisector, smallest of maximum (SOM), mean of maximum (MOM), and the largest of maximum 

(LOM) (TAKAGI and SUGENO, 1985). The Centroid method determines the value that 

represents the uncertain information as being the area center (i.e., gravity center) of the 
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membership function. Similarly, the Bisector method calculates the bisector of the fuzzy set to 

obtain the value that represents the uncertain information. The selected value by SOM is the 

smallest component of the fuzzy set associated with µunb (u*) = 1.0. The largest component that 

results in µunb (u*) = 1.0 is chosen as being the value in the LOM.  

The MOM approach determines the value that represents the uncertain information 

corresponding to the mean of the components that are associated with µunb (u*) = 1.0. Figure 

3.2 illustrates the mentioned defuzzification techniques considering hypothetical rotor vibration 

responses represented by a pseudo-trapezoidal membership function. Note that the Bisector, 

MOM, and Centroid methods return intermediate defuzzified values arranged from the left to 

the right, respectively. The SOM and LOM approaches determined the left and right limit 

values, respectively (see µunb (u*) = 1.0 in Figure 3.2). 

 

 

 

Figure 3.2 - Defuzzification techniques represented by a pseudo-trapezoidal membership 
function. 

 

In the context of fuzzy logic, fuzzy transformation, and defuzzification approach, the 

proposed balancing methodology can be summarized as follows: i) the fuzzy transformation is 

used to determine fuzzy sets associated with the measured vibration amplitudes and 

corresponding phase angles; ii) a defuzzification technique is applied in each fuzzy set 

resulting in equivalent vibration amplitudes and phase angles; iii) these values are introduced 

in the IC method to determine correction weights and corresponding angular positions that 

minimizes the sensitivity of the rotor vibration responses to the uncertain parameters 

associated to the measured vibration data. Figure 3.3 presents a summarized flowchart of the 

proposed methodology. 
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Figure 3.3 - Flowchart of the proposed revised IC method. 

 

3.2.3 Numerical Application 

 

Figure 3.4a shows the rotor test rig used for the validation of the proposed robust non-

parametric balancing procedure, which is represented by a model with 24 finite elements 

formulated according to the Timoshenko beam theory (FE model; Figure 3.4b). The rotor is 

composed by a flexible steel shaft with 836 mm length and 19 mm diameter (E = 192 GPa, ρ 

= 7930 kg/m3, υ = 0.29), two aluminum rigid discs D1 (node #8; 0.676 kg; IDX = IDZ = 1.028 x 

10-3 kgm2; IDY = 2.028 x 10-3 kgm2) and D2 (node#18; 0.676 kg; IDX = IDZ = 1.028 x 10-3 kgm2; 

IDY = 2.028 x 10-3 kgm2), and two bearings B1 and B2 located at the nodes #3 and #24, 

respectively. B1 is a self-alignment ball bearing represented by the following stiffness k and 

damping d coefficients: kxx = 1x108 N/m, kzz = 1x109 N/m, dxx = 100 Ns/m, and dzz = 200 Ns/m. 

B2 is a cylindrical oil film bearing with 12.8 mm length, 19 mm diameter, and 75 μm radial 

clearance. The stiffness and damping coefficients of the bearing B1 were estimated by 

considering a previous model updating procedure similar to the one presented in section 2.4 

of the previous chapter (see CAVALINI JR et al., 2016). The oil viscosity was calculated as a 
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function of the temperature - according to the same procedure discussed in section 2.5 of 

chapter two (see Eq. 2.16). The rotating parts of the FE model presented in Figure 3.4b take 

into account a proportional damping added to the matrix D (Dp = γM + βK) with coefficients γ 

= 2.327 Ns/kg.m and β = 3.97 x 10-6 s. 

 

 

(a) 
 

(b) 
 

Figure 3.4 – Rotor used in the numerical simulation: a) Test rig; b) FE model. 

 

The set of vibration responses used in the proposed balancing approach was 

generated through Monte Carlo (MC) simulations, considering the oil film temperature (Toil), 

the rotation speed (Ω), and the unbalance condition of the rotor system as uncertain variables. 

The oil film temperature was allowed to vary in the range 20.71°C to 25.3°C, while the rotation 

speed was limited in the interval 1080 rev/min to 1320 rev/min (mean values of 23 °C and 1200 

rev/min). In this case, a mean unbalance value of 1.5x10-4 kgm / 180° was introduced in each 

disc of the rotor. Thus, the unbalance condition was allowed to vary in the range 1.35x10-4 kgm 

to 1.65x10-4 kgm. The variation of the associated angular positions was limited in the interval 

162º to 198°. It is worth mentioning that the random variables were modeled as Gaussian 

random fields, in which the convergence of the MC simulations was achieved considering 400 

samples. Obviously, different parameters could have been considered as uncertain 

information. In this numerical evaluation, the proposed balancing procedure was applied 
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considering the discs as corresponding to the balancing and measuring planes (horizontal 

vibration responses; see Figure 3.4b). 

Figure 3.5 presents the membership functions obtained by using the fuzzy 

transformation procedure. Pseudo-CDF (or half bell) fuzzy sets were generated to represent 

the vibration amplitudes and their corresponding phase angles associated with the 400 

configurations generated by the MC simulation (i.e., the vertical lines are associated with the 

samples). In this case, αmax = 0.99 (maximum decision rule value), αmin = 0 (minimum decision 

rule value), and the left tail hypothesis test were used (see Figure 3.1). Thus, 99% of the rotor 

vibration responses in the resulting fuzzy sets are treated as uncertain information, while 1% 

are interpreted as either a balanced or unbalanced rotor condition (µunb(u*) = 0 or µunb(u*) = 1, 

respectively). It is worth mentioning that different limits for the decision rule and hypothesis 

tests can be used to improve the performance of the proposed method.  

For this particular analysis, both the Centroid and Bisector defuzzification methods lead 

to similar results (see Figure 3.2). Consequently, only the Bisector method was evaluated. 

Additionally, the SOM, LOM, and MOM approaches present similar values due to the reduced 

number of elements associated with µunb (u*) = 1.0 (see Figure 3.5). Thus, only the SOM 

(modeling the first unbalanced rotor vibration response) and LOM (representing the worst 

measured vibration response) techniques were applied in the fuzzy sets of Figure 3.5. The 

resulting fuzzy information was used as the initial unbalance condition for the IC method.  

Table 3.1 presents the fuzzy unbalance condition, the obtained correction weights, and 

the corresponding angular positions. The results obtained by the deterministic IC method are 

also presented for comparison purposes. In this case, Toil = 23oC, Ω = 1200 rev/min, and an 

unbalance of 1.5x10-4 kgm / 180° was applied to each disc of the rotor (i.e., nominal operating 

condition). The applied trial weight was 2.37x10-4 kgm / 180o (mc = 3.9 g). Note that the 

correction weights obtained by the proposed methodology are smaller than the values 

determined by using the deterministic IC method, except for the Bisector technique considering 

the disc D2.  

The correction weights presented in Table 3.1 were applied in the FE model considering 

the 400 samples generated by MC simulations. Figures 3.6a, 3.6b, and 3.6c show the vibration 

amplitudes of the rotating machine balanced through the proposed robust IC method, which 

were obtained by applying the Bisector, SOM, and LOM defuzzification approaches, 

respectively (vibration responses measured along the horizontal direction of disc D1). Fig. 3.6d 

shows the vibration amplitudes of the balanced rotor by using the deterministic IC method. The 

vibration responses of the unbalanced rotor are also presented for comparison purposes. As 

expected, the deterministic and robust balancing methodologies were able to attenuate the 
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rotor vibration amplitudes. Similar results were obtained by considering the vibration responses 

obtained along the horizontal direction of the disc D2. 

 

  

(a) (b) 

  

(c) (d) 
Figure 3.5 - Membership functions obtained by the considered transformation approach: a) 
vibration amplitude of D1; b) phase angle of D1; c) vibration amplitude of D2; d) phase angle of 
D2. 

 

Table 3.1 Numerical application of the robust and deterministic balancing approaches. 

 Unbalance [µm / degrees] Correction weight [g] Angular position 
[degrees] 

 Disc D1 Disc D2 Disc D1 Disc D2 Disc D1 Disc D2 
Bisector 13.85/-70.6 21.57/-68.4 2.38 2.28 -1.278 16.783 
SOM 18.24/-169 28.48/-65.4 2.25 2.23 -2.486 13.383 
LOM 19.81/-69.7 30.82/-65.8 2.21 2.21 -2.872 12.876 
Deterministic 14.34/-167 22.33/-66.5 2.45 2.25 -3.216 17.161 
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(a) (b) 

(c) (d) 
 

Figure 3.6  – Vibration responses obtained at the disc D1 considering the robust and 
deterministic IC methods ( ○ unbalanced; □ balanced): a)Bisector; b)SOM; c)LOM; d) 
Deterministic. 

 

Table 3.2 presents the minimum and maximum vibration amplitudes obtained at the 

discs D1 and D2 considering the 400 simulations performed in the balanced rotating machine. 

In this case, the results obtained considering the Bisector, SOM, LOM (robust IC methods), 

and deterministic IC method are compared (results associated with Figure 3.6). Note that the 

deterministic IC method presented maximum vibration amplitudes of 2.87 µm and 4.65 µm 

(related to the discs D1 and D2, respectively) and variations of 2.87µm and 4.54 µm. The SOM 

based technique results in maximum vibration amplitudes of 2.55 µm and 4.28 µm, 

respectively, and variations of 2.35 µm and 4.21 µm, respectively. Additionally, smaller 

vibration amplitudes were reached by the LOM and Bisector approaches (compare the 

mentioned approaches with the deterministic maximum amplitudes in Table 3.2). Thus, the 

robust IC method demonstrated to be less sensitive to the uncertain configurations of the rotor. 

It is worth mentioning that the result obtained by the SOM technique seems to be better 

adapted to the robust balancing approach. Additionally, the deterministic IC method leads to 
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the minimum vibration amplitudes when the nominal configuration of the rotor was considered 

(i.e., Toil = 23oC, Ω = 1200 rev/min, and an unbalance of 2.5x10-4 kgm / 0°applied to each disc). 

 
Table 3.2 Vibration amplitudes obtained at the discs D1 and D2 considering the balanced rotating 
machine. 

 Disc D1 Disc D2 
 Bisector SOM LOM Det* Bisector SOM LOM Det* 
Maximum[µm] 2.82 2.55 2.75 2.87 4.58 4.28 4.18 4.65 
Minimum[µm] 0.09 0.2 0.25 0 0.01 0.07 0.04 0.11 
Variation [µm] 2.73 2.35 2.5 2.87 4.57 4.21 4.14 4.54 

* Det = deterministic IC method. 

 

 

3.2.4 Experimental Validation 

 

The proposed balancing technique was applied to the rotor test rig shown in Figure 

3.4a. In this case, the disc D2 was considered as the balancing plane and the vertical vibration 

responses of the system were measured close to the bearing B2 (i.e., oil film bearing; see 

Figure 3.7). Therefore, according to the machine configuration, the IC method was applied 

experimentally considering a single balancing plane and a single measuring plane. 

 

 

 

Figure 3.7 - Proximity sensors located close to the oil film bearing. 

  

The set of vibration responses was generated by considering the oil film temperature 

(Toil) and rotation speed (Ω) as uncertain variables. During 24 hours of experimental tests, Toil 

was allowed to vary from 22 °C to 29 °C and Ω was limited in the interval 500 rev/min to 700 

rev/min (changes in steps of 50 rev/min). The range of rotating speeds used in the 

experimental application was reduced as compared with the speeds used in the numerical 
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analyses. High vibration amplitudes were obtained with the system operating between 1080-

1320 rev/min. Consequently, 560 experimental samples were acquired. 

Figure 0.8 presents the membership functions obtained by using the fuzzy 

transformation procedure. Pseudo-CDF fuzzy sets were generated to represent the vibration 

amplitudes and their corresponding phase angles associated with the 560 rotor configurations. 

Similar to the numerical analysis, αmax = 0.99 (maximum decision rule value), αmin =0 (minimum 

decision rule value), and the left tail hypothesis test were used. Thus, 99% of the rotor vibration 

responses in the resulting fuzzy sets are treated as uncertain information, while 1% are 

interpreted as either a balanced or unbalanced rotor condition (µunb (u*) = 0 or µunb (u*) = 1, 

respectively). In this case, due to the similar results presented in Table 3.2, only the SOM 

approach was used to aggregate the fuzzy information into a single unbalance response. The 

shapes of the fuzzy sets were selected based on the numerical results. 

Table 3.3 presents the fuzzy unbalance condition, the obtained correction weights, and 

the corresponding angular positions. The results obtained by the deterministic IC method are 

presented for comparison purposes. 

 

(a) (b) 
 

Figure 0.8 - Experimental membership functions obtained by the considered transformation 
approach: a) vibration amplitude; b) phase angle. 

 

The applied trial weight was mc = 4.3 g. Note that once more the correction weight 

obtained by the deterministic approach is bigger than the value determined through the 

proposed method. The correction weights presented in Table 3.3 were applied to the rotor test 

rig. Then, 560 new samples (i.e., 560 new vibration measurements) for each methodology (i.e. 

deterministic IC method and robust IC method) were acquired during 24 hours of experimental 

tests considering the same uncertain intervals (i.e., 22 °C ≤ Toil ≤ 29 °C and 500 rev/min ≤ Ω ≤ 

700 rev/min). 
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Table 3.3 Experimental application of the robust and deterministic balancing approaches. 

 Unbalance [µm / 
degrees] 

Correction weight 
[g] 

Angular position 
[degrees] 

SOM 26.16/-83.2 21.78 -140.0 
Deterministic 27.61/-79.9 29.07 -160.0 

 

Figure 3.9 shows both the vibration amplitudes of the balanced rotor by using the 

proposed robust IC method and the deterministic approach (vibration responses measured 

along the horizontal and vertical directions). The vibration responses of the unbalanced rotor 

are also presented for comparison purposes. As expected, the deterministic and robust 

balancing methodologies were able to attenuate the vibration amplitudes of the rotor. It is worth 

mentioning that the vibration amplitudes of the unbalanced and balanced conditions 

associated with a given sample may not correspond to the same rotor configuration (i.e., Toil 

and Ω). 

Table 3.4 presents the minimum and maximum experimental vibration amplitudes 

obtained for the balanced rotating machine. In this case, the robust and deterministic IC 

methods are compared (results associated with Figure 3.9). Note that the deterministic IC 

method presented variations of 2.9 µm and 3.2 µm (with respect to the horizontal and vertical 

directions, respectively), while the robust approach results in a variation of 2.2 µm in both 

directions. However, higher maximum vibration amplitudes were obtained by the proposed 

approach (see Table 3.4). Nonetheless, the goal of the proposed approach is not to reduce 

the maximum overall vibration amplitude of the rotating system but rather to reduce the system 

sensitivity to the uncertain scenarios. As observed in the numerical analysis, the experimental 

results demonstrate that the proposed approach is less sensitive to operational fluctuations 

than the deterministic IC method (see the variation results in Table 3.4).  

Aiming at assessing the proposed methodology effectiveness, an experimental test 

was performed, as follows. The rotor system was driven out of its considered uncertain 

information boundaries. Figure 3.10 shows both the robust and deterministic balancing results 

obtained by extrapolating the rotor operational speed range while considering constant oil 

temperature (23 ± 0.5 °C). In this particular test, the oil temperature was treated as a 

deterministic value for the sake of simplicity. The maximum vibration amplitudes measured for 

each rotating speed are being presented. The robust IC method correction weight was 

obtained considering the system rotation speed Ω limited in the interval 500 - 700 rev/min. In 

this test case, Ω was allowed to reach 1000 rev/min (i.e., 300 rev/min higher than the value 

used in the robust approach). Note that near 900 rev/min the maximum vibration amplitude 

obtained by using the robust balancing approach is smaller than the vibration amplitude 

measured considering the deterministic IC method. Therefore, these results suggest that the 
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robust IC method is able to provide smaller vibration amplitudes for the cases in which the 

rotor system is exposed to operating conditions in the neighborhoods of the range considered 

in the uncertainty analysis. Additionally, it can be observed that the robust balancing leads to 

a smaller variation of the vibration amplitude according to the evaluated speed range. The 

vibration amplitude along the horizontal direction changed from, approximately, 14 µm to 40 

µm. In the vertical direction, the vibration amplitude changes from 10 µm to 32 µm. Regarding 

the deterministic balancing, the vibration amplitudes changed from, approximately, 8 µm to 42 

µm and 6 µm to 35 µm along the horizontal and vertical directions, respectively. 

 

(a) (b) 

(c) (d) 
 

Figure 3.9 – Experimental vibration responses obtained by using the robust and deterministic 
IC methods ( ○ unbalanced; □ balanced): a) horizontal/deterministic; b) horizontal/robust; c) 
vertical/deterministic; d) vertical/robust. 

 

Table 3.4 Vibration amplitudes of the balanced rotor obtained during the experimental tests. 

 Horizontal direction Vertical direction 
 Robust Deterministic Robust Deterministic 

Maximum[µm] 14.2 12.5 12 8.5 
Minimum[µm] 12 9.6 9.8 5.3 
Variation [µm] 2.2 2.9 2.2 3.2 
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(a) (b) 
 

Figure 3.10 – Extrapolation of the rotation speeds considering the robust and deterministic IC 
method (□ deterministic; ○ robust): a) horizontal direction; b) vertical direction. 

 

In this section, a robust non-parametric balancing approach was presented based on 

the well-known IC method. A preprocessing stage is added to the process. Vibration responses 

measured over a given period are assessed by means of fuzzy uncertainty analysis, wherein 

a fuzzy transformation is used to derive unbalance fuzzy sets of the measured data. 

Consequently, a representative unbalance condition of the rotating machine is determined 

through a defuzzification process. The unbalance condition that is determined through the 

uncertainty analysis of the measured data is then used in the algorithm of the IC method in 

order to obtain robust balancing responses.  

 The performance of the proposed methodology was evaluated both numerically and 

experimentally, so that uncertainties affecting oil temperature and the rotation speed of the 

rotor were taken into account. The robust IC method was able to find robust solutions for all 

test cases analyzed. In the numerical analysis, the influence of the defuzzification techniques 

on the balancing performance was evaluated. The numerical results indicated that the pseudo-

CDF shape associated with the SOM defuzzification technique was more suitable to obtain a 

satisfactory performance of the robust IC method.  

Regarding the experimental tests, the proposed methodology leads to better balancing 

results as compared with the deterministic approach, in terms of robustness. The proposed 

approach was able to reduce system sensitivity to uncertainties; however, higher maximum 

vibration amplitudes was observed. The robust IC method provided better results for the cases 

in which the system was exposed to conditions that were out of the uncertainty analysis range. 

It is worth mentioning that the robust IC method resulted in a correction weight 25% lighter 

than the value obtained by the deterministic approach. 
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As mentioned, the goal of the proposed methodology is to reduce the sensitivity of the 

system to operational fluctuations, rather than reducing the maximum observed vibration 

amplitude. In this sense, the presented results indicate that the proposed robust IC method 

leads to less sensitive balancing responses as compared with the standard IC method. Is 

important to point out that this robustness increasement was achieved through the simple 

addition of a preprocessing stage in which fuzzy logic tools are used to define a more 

representative rotor unbalance condition.   

The results obtained indicate that the proposed methodology is sufficiently robust to 

handle changes on the rotor operational conditions, as long as these fluctuations are 

manifested in the measurement data set used to formulate the rotor fuzzy sets. 

 

3.3 Parametric Evaluation  

In this section a robust model-based balancing approach is evaluated. This alternative 

technique first identifies the model of the machine, and then the unbalance is determined by 

solving a typical inverse problem through an optimization method taking into account the 

inherent uncertainties that affect the balancing performance. The robust balancing 

methodology is based on a multi-objective fuzzy optimization procedure, in which the 

uncertainties are treated as fuzzy variables. The balancing response robustness is evaluated 

by means of an additional objective function that minimizes a predefined robustness metric. 

The numerical investigation is applied to a rotor composed by a horizontal flexible shaft, two 

rigid discs, and two ball bearings, the same rotor of Section 2.4 of Chapter 2. 

 

3.3.1 Model-based Balancing Method 
 

Figure 3.11 shows a flowchart to illustrate the balancing methodology as proposed by 

SALDARRIAGA et al. (2010). The model based balancing method begins by inserting a set of 

randomly generated masses and phase angles in each balancing plane of the representative 

FE model. In this case, the simulated time-domain responses are obtained for each generated 

unbalance forces. The vibration responses are determined at the same positions along the 

shaft in which the responses were acquired on the rotor in an unknown unbalance condition 

(original rotor). Such measures are compared by using the objective function F presented in 

Eq. (3.7). If the best result of this function corresponds to a minimum value, the unbalance 

affecting the rotor is identified. This means that obtained weights with its respective angular 

positions are capable of reproducing the unbalance response of the original rotor. If the 

function does not find a value close to zero, the optimization method will propose new 
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unbalance values and the process will continue iteratively until the target is found. In order to 

obtain the balancing conditions of the rotor, it is necessary to add 1800 to the previously found 

phase angles, keeping however the same masses obtained, which are now the correction 

weights.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11 - Model-based balancing methodology flowchart. 
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(3.7) 

 

where ݊ is the number of sensors used in the procedure, ௜ܷ
ிா௠௢ௗ௘௟ሺݔሻ is the vibration response 

obtained by using the FE model, ݔ is the vector containing the proposed correction weights 

and associated phase angles by the optimization method, and ௜ܷ
ை௥௜௚௜௡௔௟ is the vibration 

response measured on the original rotor.  

The uncertainties considered on the applications presented in this section are 

introduced directly on the FE model parameters, thus defining a parametric uncertainty 

analysis. The proposed robust balancing methodology is characterized by uncertainties 

affecting, for example, the stiffness and damping of the bearings (i.e., due to fixation problem), 

the dimensions of the discs and shaft (i.e., due to wear), and so on. Therefore, it is expected 

that a superior balancing performance be obtained when the correction weights and associated 

phase angles determined by using the robust methodology are used. Possible variations on 

the geometric and physic properties of the rotating machine can be considered during the 

balancing process, which explain the expected superior performance. 

Rotating machine 
(unknown condition) 

Rotating machine 
(representative FE model) 

Vibration measurements 
(time-domain) 

Vibration responses 
(time-domain) 

Unbalance forces 
(masses and phase angles) 

Objective function F 
(Eq. (3.7)) 

Optimization method 
(Differential Evolution) 
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3.3.2 Robust Model-based Balancing Method 

 

The goal of the proposed methodology is to increase the robustness of the model based 

balancing technique. In this sense, fuzzy optimization is used to assess balancing robustness. 

Fuzzy optimization is a tool based on fuzzy uncertainty analysis. As previously discussed (see 

Section 2.3) based on the possibility theory (ZADEH, 1968), a fuzzy set can be understood as 

the union of the pessimist and optimist values (i.e. lower and upper values, respectively) of an 

uncertain parameter with each level of possibility (i.e., levels of the membership function) been 

possible realizations of the uncertain parameter. In the fuzzy set theory, the uncertainties are 

described as fuzzy inputs and the mathematical model is represented as a fuzzy function that 

maps those inputs. The so-called α-level optimization (MÖLLER, GRAF and BEER, 2000, also 

see Section 2.3) is a method used for mapping fuzzy inputs, in which, the fuzzy inputs are 

discretized by means of α-cuts creating a crisp subspace that is the search space of an 

optimization problem. The optimization process is carried out in order to find the minimum and 

maximum values of the model output for each α-level (i.e., lower and upper limits of the 

correspondent α-level, respectively; see Figure 2.2 and Figure 2.3).  

At the end of the fuzzy uncertainty analysis of a system, the set of values of the 

uncertain information that maximizes the model response (the optimist values) and the set of 

values that minimizes the model response (the pessimist values) are known. Therefore, two 

uncertain scenarios can be considered: (i) a scenario in which the uncertain values assume its 

pessimist values; and (ii) a scenario where the uncertain values are at its optimist values. Thus, 

is expected that a robust solution will represent a better solution when both scenarios are 

considered. Considering the proposed robust balancing methodology, the pessimist scenario 

and the optimist scenarios are defined, respectively, by Eq. (3.8) and Eq. (3.9). 

 

ܲ݁ ቀݔ, ቁ݌ ൌ෍ቌ
ቛ ௜ܷ

ிா௠௢ௗ௘௟ሺݔ, ሻ݌ െ ௜ܷ
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ฮ ௜ܷ
ிா௠௢ௗ௘௟ሺݔ∗, ௡ሻฮ݌

ቍ

௡

௜ୀଵ
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(3.9) 

 

where ܲ݁ and ܱ݌ are the objective functions associated with the pessimist and optimist 

evaluations, respectively. The upper and lower limits of the uncertain information are 

represented by ݌ and ݌, respectively. ௜ܷ
ிா௠௢ௗ௘௟ሺݔ,  ሻ stands for the vibration response݌

determined from the FE model considering the lower limit values of the uncertain parameters. 
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Consequently, ௜ܷ
ிா௠௢ௗ௘௟ሺݔ,  ሻ stands for the vibration response determined from the FE model݌

considering the upper limit values of the uncertain parameters. In this case, the value 

௜ܷ
ிா௠௢ௗ௘௟ሺݔ∗,  ௡ሻ represents the vibration response of the FE model determined after the݌

application of a previous deterministic balancing procedure response (following the scheme 

presented in Figure 3.11 and using Eq. (3.7) as the objective function). Thus, ݔ∗ is the vector 

containing the deterministic correction masses and phase angles and ݌௡ is the nominal values 

of the considered uncertain parameters. 

Therefore, a robustness metric can be defined based on Eq. (3.8) and Eq. (3.9) 

considering both sets of uncertain scenarios. The robustness metric is illustrated by Eq. (3.10). 

In this case, the minimization of the Eq. (3.10) leads to a robust balance solution for the 

considered original rotor system. 

 

݋ݎ ൌ ܲ݁ ቀݔ, ቁ݌ ൅ ,ݔሺ݌ܱ ሻ (3.10)݌

 

The robustness evaluation procedure as presented was formulated as a nested 

optimization problem, in the sense that the deterministic model-based response ݔ∗ is required 

for the evalution of the robustness metric, and only the robustness metric (given by Eq.3.10) 

is accounted in the optimization process. However, the procedure can be easily formulated as 

a multi-objective optimization problem in which both objectives, related to Eq. (3.7) and Eq. 

(3.10) are simultaneously assessed.  

Figure 3.12 presents a summarized flowchart of the proposed robust balancing method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 - Simplified flowchart of the robust model-based balancing method. 
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3.3.3 Numerical Evaluation 

 

For the numerical validation of the proposed methodology, the rotor test rig used in the 

numerical validation of the fuzzy uncertainty analysis (see Section 2.4). As mentioned, the 

proposed robust balancing methodology is characterized by parametric uncertainties affecting, 

for instance, the stiffness and damping of the bearings (i.e., due to fixation problem), the 

dimensions of the discs and shaft (i.e., due to wear), and so on. Therefore, it is expected that 

a superior balancing performance be obtained when the correction masses and associated 

phase angles determined by using the robust methodology are used. In this context, the 

performance of the proposed methodology was evaluated by considering the stiffness along 

the horizontal and vertical directions of the bearing B2 (kX / B2 and kZ / B2, respectively; see 

Figure 2.4 and Table 2.1) as uncertain information. Table 3.5 shows the uncertainty scenario 

considered in this section. The stiffness variation was introduced in order to simulate an abrupt 

screw loss at the fixation support of the bearing. 

 

Table 3.5 Uncertainty scenario considered in the present contribution. 

Stiffness Experimental 
parameters 

Uncertainty intervals 

kX / B2 (N/m) 5.202 x 107 5.202 x 103 ≤ kX ≤ 5.202 x 
107 

kZ / B2 (N/m) 7.023 x 108 7.023 x 103 ≤ kZ ≤ 7.023 x 
108 

*The experimental parameters are also presented in Table 2.1. 
 

Three different optimization methodologies devoted to the robust balancing were used 

in this application, namely the deterministic approach (i.e., cost function presented in Eq. (3.7)), 

a robustness evaluation (i.e., cost function related exclusively to Eq. (3.10)), and a multi-

objective optimization associated with both presented pessimist and optimist cost functions 

(Eq. (3.8) and Eq. (3.9), respectively). Table 3.6 presents the correction masses and phase 

angles obtained by using the proposed optimization procedures with the rotor operating at 

1200 rev/min. In this case, unbalance masses were randomly distributed along the shaft of the 

rotor (0 ≤ unbalance – g.mm ≤ 300; -π ≤ phase angle – rad ≤ π). Thus, unbalance forces were 

introduced randomly at each node of the FE model (see Figure 2.4). It is worth mentioning that 

applying the considered unbalance forces on the deterministic FE model (i.e., using the 

parameters shown in Table 2.1), the maximum amplitude of the vibration responses (0 to peak 

amplitude) obtained by the displacement sensors S8X, S8Z, S28X, and S28Z, were 43.6 μm, 38.9 

μm, 31.5 μm, and 29.8 μm, respectively. 
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Figure 3.13 shows the orbits determined in the measurement planes S8 and S28 from 

the FE model considering the optimist uncertain information, which is the upper limit of the 

uncertain interval (see Table 3.5). Note that the optimist information is identical to the 

deterministic case (kX / B2 = 5.202 x 107 N/m and kZ / B2 = 7.023 x 108 N/m). The orbits were 

obtained by using the correction masses and phase angles presented in Table 3.6. As 

expected, the deterministic solution provided the better balancing performance, presenting 

maximum vibration amplitudes about 1 μm. Differently, the robust design leads to the worst 

result with vibration amplitudes around 40 μm. The multi-objective design showed an 

intermediary result, with vibration amplitudes reaching 6 ߤm. The orbits obtained from the FE 

model considering the pessimist uncertain information (lower limit of the uncertain interval; see 

Table 3.5) are presented in Figure 3.14. 

 

Table 3.6 Balancing responses for each methodology used. 

Parameters Deterministic Robust Multi-Objective 
unbalance / 
D1  

669.66 g.mm 55.97 g.mm 861.13 g.mm 

phase / D1 -90.82° -29.17º -78.75º 
unbalance / 
D2 

333 g.mm 0 g.mm 462.32 g.mm 

phase / D2 50.22° 0o 89.73º 
 * The multi-objective solution was found through the compromise programing approach 
(VANDERPLAATS, 2007). 

 

a) Measurement plane S8. b) Measurement plane S28. 
 

Figure 3.13 - Deterministic (──), robust (──) and multi-objective (──) vibration responses 
considering the optimist uncertain information. 
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a) Measurement plane S8. b) Measurement plane S28. 
 

Figure 3.14 - Deterministic (──), robust (──) and multi-objective (──) vibration responses 
considering the pessimist uncertain information. 

 

Considering the pessimist analysis, Figure 3.14 shows that the performance of the 

robust and multi-objective balancing processes (see Figure 3.14a and Figure 3.14b, 

respectively) seems to be better than the one obtained by using the deterministic process. 

Reminding that the pessimist information is associated with the lower limit of the uncertain 

interval (simulating an abrupt screw loss at the fixation support of the bearing). In this case, 

the stiffness of the bearing B2 along the horizontal and vertical directions were considered as 

kX / B2 = 5.202 x 103 N/m and kZ / B2 = 7.023 x 103 N/m (see Table 3.5). Consequently, it can 

be observed that the robust and multi-objective solutions present the expected superior 

balancing performance when compared with the deterministic approach.  

Evaluating both pessimist and optimist information, it can be observed that the 

deterministic design presents a fluctuation of approximately 500 times in amplitude (i.e., 

difference between the maximum displacement associated with both pessimist and optimist 

information). The multi-objective design presented a fluctuation of nearly 66 times between the 

mentioned displacements, while the robust design showed a fluctuation of about 6.5 times 

among the maximum amplitudes. Figure 3.15 illustrate these results. 

 

-1 -0.5 0 0.5 1
x 10-4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-4 Pessimist Scenario: Disc 1

Amplitude X [m]

Am
pl

itu
de

 Z
 [m

]

-4 -2 0 2 4
x 10-4

-5

0

5
x 10-4 Pessimist Scenario: Disc 2

Amplitude X [m]

Am
pl

itu
de

 Z
 [m

]



68 
 

a) Measurement plane S8. b) Measurement plane S28. 
 

Figure 3.15 - Deterministic (──), robust (──) and multi-objective (──) vibration responses 
considering the optimist and pessimist uncertain information. 

 

In this section, the deterministic model-based balancing methodology were compared 

with two different methods based on fuzzy optimization. The uncertainties considered on the 

application presented were introduced directly on the stiffness coefficients of the self-alignment 

ball bearings. The numerical application showed that the proposed methodology is able in 

finding robust solutions, regardless the amplitude of the uncertain information fluctuation. 

Therefore, a robust balance of a rotating system can be achieved through the fuzzy robust 

optimization procedure here proposed. 

The vibration amplitudes shown in Figure 3.14 and Figure 3.15 clearly represent poor 

balancing performances with the vibration amplitudes of the balanced system varying from 300 

 m. As mentioned, the unbalanced rotating machine presented displacementߤ m to 500ߤ

amplitudes of 43.6 μm, 38.9 μm, 31.5 μm, and 29.8 μm (sensors S8X, S8Z, S28X, and S28Z, 

respectively). However, this analysis was dedicated to demonstrating the robust balancing 

concept. Therefore, an experimental investigation should be performed in order to ascertain 

the results obtained in the numerical application. However, due to the risks associated with the 

abrupt variation of the bearing stiffness, a different uncertain scenario should be evaluated.  
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CHAPTER IV 

 

 

RELIABILITY DESIGN USING FUZZY LOGIC 

 

In this chapter, a novel fuzzy reliability-based design methodology is presented and 

discussed. This methodology is based on the fuzzy logic approach and considers the possibility 

concept and fuzzy states assumptions, in which the uncertain parameters are modeled as 

fuzzy variables. Thus, the associated optimization problems are solved through a nested 

algorithm. An inner optimization loop is used to obtain the uncertain variables limits and an 

outer optimization loop evaluates a predefined fuzzy reliability index within the previously 

obtained bounds. The performance of the proposed approach is evaluated through a 

benchmark function and two engineering design problems. The reliability fuzzy approach is 

compared with an existing stochastic strategy.  

The chapter begins by revisiting key aspects of reliability-based optimization and fuzzy 

logic for uncertainty analysis. After, the traditional fuzzy reliability analysis is discussed, 

followed by the introduction of the proposed fuzzy reliability analysis. Then, the proposed 

approach is numerically evaluated by means of a benchmark function and two engineering 

problems. Finally, a brief discussion regarding the obtained results is presented. 

 

4.1 Reliability-based Optimization Review  

 

Safety operating conditions of engineering systems are commonly defined at the design 

level considering deterministic analyses. The design variables are modeled as deterministic 

quantities and, consequently, extreme responses due to uncertainties are not taken into 

account. Thus, the systems performance can be affected by the uncertainties, resulting, in 

some cases, to unsafety operating conditions and even to catastrophic failures.  

The effects of uncertainties should be taken into account for more accurate design 

processes. For this purpose, robust design (RD) and reliability-based optimization (RBO) 

approaches have been applied to deal with engineering system design. RD approaches 

focuses on making the design not sensitive to small variations on the uncertain parameters 
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(BEYER and SENDHOFF, 2007; GABREL, MURAT and THIELE, 2014). Differently, RBO 

emphasizes high reliability in design by ensuring the achievement of the constraints at a 

desired level (LOBATO et al., 2017). 

According to LOBATO et al. (2017), the RBO approach is based on the probability of 

system performance failure. Therefore, deterministic analyses around the nominal solution are 

necessary and the Monte Carlo simulation is commonly used in this sense. The main difficult 

associated with this approach is the required computational cost. Aiming to overcome this 

limitation, optimization-based approaches have been proposed to assess the probability of 

failure without the necessity of sampling techniques. In this sense, the stochastic variables are 

converted from physical to the standard Hilbert space and an optimization problem is 

formulated to obtain the largest probability of failure (AGARWAL, 2004; DU and CHEN., 2004; 

LOBATO et al., 2017). 

RBO stochastic approaches are formulated around two strong assumptions (CHENG 

and MON, 1993), namely i) the system behavior can be fully represented by probability 

measures (probability assumption) and ii) the failure states are precise definitions; i.e., at any 

given time the system is either in safety state or in failure state, with no transient state (binary-

state assumption). However, in several applications, due to imprecise information (or lack of 

information), some uncertain parameters do not satisfy the probability and/or binary-state 

assumptions, making the probability theory unsuitable to handle the system uncertainties.      

In order to provide an alternative, RBO methodology, CHENG and MON (1993) derived 

the notion of fuzzy states and fuzzy reliability. The fuzzy states were defined based on the 

binary-state assumption, in which, at any time, a given uncertain parameter may belong to one 

of two possible fuzzy states, namely fuzzy safety and fuzzy failure states. The authors, in terms 

of interval confidence, obtained interval ranges of fuzzy reliability by using fuzzy arithmetic 

operations. In this case, the uncertain parameters were treated as fuzzy triangular numbers. 

This procedure was later extended by MON and CHENG (1994) to handle different types of 

fuzzy sets. CREMONA and GAO. (1999) defined a new confidence measure in terms of the 

distance from the failure surface, similar to the most probable point for failure concept of the 

probabilistic theory.  

In BING, MEILIN and KAI (2000), a fuzzy stress-random strength interference model is 

proposed. The structural stress and strength are modeled as fuzzy and random variables, 

respectively. Failure state is defined as a fuzzy event and the failure probability is obtained 

through fuzzy probability evaluation. LI, LU and XU (2015) proposed a novel fuzzy reliability 

model to measure the safety condition of structures with fuzzy variables following the 

probability perspective. This approach was used to treat membership levels of different fuzzy 

variables as independent standard uniform distributions. In WANG et al. (2017), the fuzzy 
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reliability analysis of heat transfer systems was derived by integral operations. The process is 

based on interval ranking method and fuzzy reliability indices. 

The mentioned contributions focus on revising the binary-state assumption. In most of 

them, the uncertain information was treated as a random variable, being analyzed by using the 

probability theory. However, in several applications uncertainties randomness is difficult to be 

precisely represented. In this work, a novel fuzzy reliability analysis methodology is proposed, 

in which the uncertain parameters are treated as fuzzy variables (i.e., the probability 

assumption is modified). In this methodology, a nested optimization algorithm is used to 

evaluate the problem responses considering uncertainties. An inner optimization loop is used 

to obtain the bounds of the uncertain variables and an outer optimization loop evaluates a 

predefined fuzzy reliability index (i.e., the binary-state assumption is modified) within the 

previously obtained bounds. A Benchmark function and two classical design problems are 

used to evaluate the effectiveness of the proposed methodology.  

 

4.2 Fuzzy Set Theory Revisited  

 

Uncertainties in engineering systems can either be epistemic or random in nature. 

ZADEH (1965) proposed the concept of fuzzy sets, in which the so-called membership 

functions are used to treat epistemic uncertainties. These membership functions are 

interpreted as a degree of uncertainty, which defines the associated degree of possibility that 

a parameter u assumes according to a specific element x in the fuzzy set. The membership 

function µ is a continuous closed interval [0, 1] that weights the pertinence of the element x 

with respect to the fuzzy set Ã. Values of µÃ(x) close to 1 indicate high compatibility of x to the 

set Ã. Thus, uncertainties can be computationally modeled as fuzzy numbers by using the 

fuzzy set theory, in which the parameter value is unknown but limited in an interval weighted 

by a membership function.  

For computational purposes, the fuzzy set Ã can be represented by subsets namely α-

levels. These subsets correspond to real and continuous intervals and are defined by Aαk, as 

shown in Eq. (4.1). If the fuzzy set is convex (considering a unidimensional case), each α-level 

Aαk corresponds to the interval [xαkl, xαkr] (see Eq. (4.2)). The α-level α0 represents the support 

of the fuzzy set, which is the largest fuzzy set interval containing all considered realizations of 

the uncertain variable.   

 

 , ( )k kA
A x X x      (4.1) 
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The robustness and/or reliability on the design can be evaluated by mapping the system 

responses according to the uncertain parameters. In the fuzzy uncertainty analysis, this can 

be achieved by using a two-stage procedure, known as α-level optimization (see Section 2.3 

and Figure 2.3). Firstly, the fuzzy parameters are discretized in α-levels. Thus, for a given α-

level αk, each uncertain parameter xi (i = 1, …, n; where n is the number of uncertain variables) 

is considered as an interval Xiαk = [xiαkl, xiαkr]. Then, two optimization problems are defined 

aiming to obtain the uncertain parameters configurations that leads to the minimum and 

maximum system responses, as defined in Eq. (4.3). 
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(4.3) 

 

in which zαkl and zαkr correspond to the upper and lower bounds of the interval zαk = [zαkl, zαkr] 

in the α-level αk, respectively. The vector of fuzzy parameters and the corresponding vector of 

α-level intervals are given by x = (x1, …, xn) and X = (X1, …, Xn), respectively. 

Therefore, the effects of uncertain parameters on the system design can be assessed 

by using an optimization procedure. In this section, the α-level optimization procedure was 

modified to be performed only for the α-level α0. Thus, the optimization procedure is applied 

by considering only the support of the associated fuzzy sets, which corresponds to the inner 

loop of the proposed reliability analysis. 

 

4.3 Traditional Fuzzy Reliability Analysis  

 

In deterministic design problems, the solution is obtained on a given constraint 

boundary or at the intersection of constraints boundaries (see Figure 1.1). However, if any 

perturbation arises in the vector of design variables x1 and x2, the violation of some 

operational/design constraints could emerge resulting in an infeasible condition. Thus, a 

reliability measure must be assessed to find reliable and feasible solutions considering the 

effects of uncertainties.  
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In traditional fuzzy reliability analysis (WANG et al., 2017), the uncertain information is 

represented as a set of fuzzy parameters. Fuzzy limit state functions (FLSF) are defined with 

respect to the vector of fuzzy parameters, as given by Eq. (4.4).  

 

( )j j j jFLSF S R g   x  (4.4) 

 

in which Rj and Sj are the so-called structural strengths and stresses, respectively, gj(x) is 

defined from the inequality constraints of the problem, and j = 1, …, N (N is the number of 

constraints). 

A critical surface (hypersurface gj(x)=0) is defined, separating the variable space into 

two parts, namely failure domain ({x| gj(x)>0, xi ∈ Rn}) and safety domain ({x| gj(x)≤0, xi ∈ Rn}; 

feasible domain in Figure 1.1). Therefore, reliability is defined as the difference between 

structural stress and strength. The limit state functions FLSFj, the structural strengths Rj, and 

structural stresses Sj are treated as fuzzy variables. 

Following the α-level representation, FLSFj can be rewritten as an interval with respect 

to the α-level αk (FLSFjαk = gj(xαk)). Thus, a reliability index ηjαk is obtained as presented by Eq. 

(4.5) (index similar to the probabilistic reliability coefficient β). 

 

k

k

kr kl
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j

j
j j
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 


 
(4.5) 

 

in which FLSFjCαk represents the midpoint of FLSFj along αk, FLSFjαkr and FLSFjαkl correspond 

to the lower and upper bounds of the interval FLSFjαk = [FLSFjαkl, FLSFjαkr]. 

Equation (4.5) indicates that the safety domain is achieved if ηjαk≤0 (gj(xαk) ≤ 0 for x ∈
	Xαk at the α-level αk). The failure state is obtained if ηjαk>0, since gj(xαk) > 0 for x ∈	Xαk. However, 

a transient state is obtained when -1 ≤ ηjαk ≤ 1 (both safety or failure states can be achieved), 

as gj(xαk) ≤ 0 or gj(xαk)> 0 for x	∈	Xαk. In traditional fuzzy reliability analysis, the binary-state 

assumption is violated and a clear fuzzy transient state is defined. As mentioned, the safety 

condition is achieved when ηjαk ≤ 0. Consequently, a minimum value of αk that ensures safety 

can be obtained. This value corresponding to the intersection point between the structural 

strength and stress membership functions (WANG et al., 2017) (see Figure 4.1). 

 

 

 

 



74 
 

 
 

Figure 4.1 – Minimum failure possibility and fuzzy limit state function representations. 

 

 

4.4 Proposed Fuzzy Reliability Analysis 

 

The traditional fuzzy analysis presents two major drawbacks. Firstly, the minimum 

failure possibility (minimum value of αk that ensures safety) is determined based on the 

structural strength and stress membership functions. Thus, different possibility distributions 

(shapes of the membership functions) could result in different failure possibility values. 

Additionally, safety configurations could exist along the transient domain -1 ≤ ηj αk ≤ 1, which 

can be disregarded in the traditional formulation and in more conservative approaches.  

In order to overcome the mentioned limitations, some aspects of the traditional fuzzy 

analysis were modified in the present contribution. Following the traditional approach, the fuzzy 

variables are evaluated by using the α-level representation and the failure possibility is 

assessed through the reliability index presented in Eq. (4.5). However, the traditional approach 

leads to failure possibilities which are dependent of the α-level intervals. Thus, the reliability 

index presented in Eq. (4.5) is rewritten as presented by Eq. (4.6) to eliminate the dependence 

of the possibility distribution (shape of the membership function). 
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(4.6) 

 

where ηj′ is obtained considering only the support of the fuzzy limit state function FLSFj′. 

FLSFjR′ and FLSFjL′ correspond to the upper and lower bounds of fuzzy variable FLSFj′ support, 

respectively (limits of the interval FLSFj′α0 = [FLSFj′α0l, FLSFj′α0r]). 
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In the proposed methodology, the possibility distribution of a fuzzy set is defined on the 

support. Thus, the modified fuzzy metric value will be equal even if different possibility 

distributions are considered (the supports are the same for any shape of membership function).  

Regarding Eq. (4.6), the proposed formulation leads to positive values of ηj′ when a 

failure state is achieved since FLSFjL′ > 0 and FLSFjR′ > FLSFjL′ (resulting in gj(x)>0). 

Otherwise, negative values of ηj′ could represent either safety or transient states. If η′ ≤ -1, the 

system is definitely in a safety state since FLSFjL′ < 0 and FLSFjR′ < 0 (resulting in gj(x) < 0). 

The proposed metric must necessarily be lower or equal to -1 as FLSFjL′ < 0 and FLSFjR′ < 0. 

In this case, |FLSFjL′| > |FLSFjR′|, thus FLSFjR′ െFLSFjL′ > 0, and |FLSFjL′| >FLSFjR′ െFLSFjL′. 

The final possible configuration is FLSFjR′ > 0 and FLSFjL′ < 0, in which ηj′ would belong to the 

interval (-1,0] and gj(x) could either be positive or negative defining then a transient state.  

In the traditional reliability fuzzy analysis, the aim is to obtain the system configuration 

that leads to the minimum possibility of failure. Differently, the proposed approach determines 

any possible safety configuration, which is evaluated by using an optimization process that 

assesses the proposed reliability metric. Figure 4.2 presents the flowchart of the proposed 

methodology. It is worth mentioning that desired reliability indexes can be obtained by rewritten 

the reliability objective function as an error function. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – Flowchart of the proposed fuzzy reliability analysis. 
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In the proposed fuzzy approach, the possibility of failure is defined by considering only 

the support interval and is associated only to transient states (ηj′ belonging to the interval (-1, 

0]). In the safety domain, the failure possibility is null. Differently, in the failure domain the 

failure possibility is assured. Equation (4.7) presents the failure metric fm that evaluates the 

possibility of failure along transient states, regarding the width of the support interval (i.e., 

FLSFjR′+|FLSFjL′|) and the width of the failure interval (FLSFjR′). 

 

'

' '

j R
jm

j R jL

FLSF
f

FLSF FLSF



 

(4.7) 

 

Note that the proposed approach results in a nested optimization procedure. An inner 

optimization loop is carried out to determine FLSFR′ and FLSFL′, which corresponds to the 

maximum and minimum values of FLSF′, respectively. Then, an outer optimization loop is 

performed to minimizes ηj′ with respect to predefined uncertain limits (within [FLSFL′, FLSFR′]).   

 

4.5 Numerical Evaluation 

 

In this section, three test cases are presented aiming to evaluate the proposed reliability 

design optimization methodology, namely i) a nonlinear limit state problem, ii) a cantilever 

beam problem, and iii) a car-side impact problem. The results obtained by using the 

probabilistic analysis IRA-DE (LOBATO et al., 2017) is also presented for comparison 

purposes. 

 

4.5.1 Nonlinear Limit State Function 
 

The original RBO problem was formulated by QU and HAFTKA (2004) and is 

mathematically represented as shows Eq. (4.8). This problem was originally formulated as 

containing two design variables (xd1 and xd2) and two random variables (xr1 and xr2), normally 

distributed with mean values 5 and 3, respectively, and variation coefficients equal to 0.3 for 

both variables. Equation (4.9) presents the considered problem rewritten as a reliability fuzzy 

problem. Following a 5σ model (i.e. ݔ௥ 	ൌ ߤ	 േ  the design test case random variables were (ߪ5	

converted into fuzzy variables, defined by the support intervals [3.5, 6.5] and [1.5, 4.5] for the 

variables xf1 and xf2, respectively.  
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Figure 4.3 presents the Pareto’s curve obtained by using the proposed reliability 

approach, in which the safety, transient, and failure domains are indicated. The associated 

multi-objective optimization problem was solved by using the compromise programming 

technique allied to the Sequential Quadratic Programming (SQP) algorithm 

(VANDERPLAATS, 2007). The Pareto’s curve was generated considering different weights for 

the design and reliability cost functions, in which the corresponding mono-objective 

optimization problems were carried out to obtain the target value for both cost functions.  As 

expected, the value of the cost function increases as the reliability index η′ decreases. Figure 

4.4 illustrates the variation of the FLSF′ support for all obtained designs (according to η′), 

showing that the design reliability increases as η′→-∞ (FLSFR′ and FLSFL′ tend to negative 

values).  

Table 4.1 shows the results obtained by using the fuzzy reliability approach and the 

IRA-DE technique as proposed by LOBATO et al. (2017). Considering the minimum safety 

possibility (design variables values that ensures η′ = -1), it can be observed that the proposed 

fuzzy approach was able to determine a smaller cost function value (f = 29.89) when compared 

with the IRA-DE technique (f = 63.09; target reliability R of 98.9830% corresponding to β=2.32). 

In this case, IRA-DE was more conservative than the design obtained by using the fuzzy 

approach, meaning that greater reliability is ensured (in fact IRA-DE response ensures 

reliability even in a 6σ model) but at the expense of the design cost function value. Note that 

targeting the same cost function value obtained in LOBATO et al. (2017) (f = 63.09), a safety 

configuration with η′ = -1.066 was obtained by the fuzzy approach. 

 

4.5.2 Cantilever Beam Problem 
 

This test case was previously investigated by QU and HAFTKA, (2004); KUO-WEI and 

GAUTAMA, (2014); and LOBATO et al. (2017). The problem consists to find the minimum 

cross-sectional area of the beam presented in Figure 4.5 following Eq. (4.10). 
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Figure 4.3 – Pareto’s curve corresponding to the optimal design solutions of the nonlinear 
limit state problem. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – FLSF′ behavior for the nonlinear limit state problem. 

 

Table 4.1 Results associated with the nonlinear limit state problem. 

 f xd1 xd2 FLSFL′ FLSFR′ η′ fm 

IRA-DE 63.09 5.62062 5.61281 -124.267 -7.6964 -1.066 0 

Fuzzy 29.89 3.8852 2.52350 -55.0008 -0.0001 -1 0 
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Figure 4.5 - Cantilever beam problem (LOBATO et al., 2017). 

 

where xd1 and xd2 are the width and height of the beam, respectively, defined as the design 

variables with lower and upper limits of 0 and 10, respectively. 

The two loads xr1 and xr2 applied at the free end of the beam, the Young’s modulus xr3, 

and the yield strength xr4 are random parameters with normal distribution. Similar to the 

nonlinear limit state problem, the random variables were converted into fuzzy variables, only 

that in this test case a 2σ model (i.e. ݔ௥ 	ൌ ߤ	 േ  were considered. The stochastic and (ߪ2	

resulting fuzzy data are presented in Table 4.2. 

 

Table 4.2 Stochastic and fuzzy data used in the cantilever beam problem. 

Variable Mean 

value 

Std Variable Nominal Lower 

limit 

Upper 

limit 

xr1 (lb) 500 100 xf1 (lb) 500 300 700 

xr2 (lb) 1000 100 xf2 (lb) 1000 800 1200 

xr3 (psi) 29×106 1.45×106 xf3 (psi) 29×106 26.1×106 31.9×106 

xr4 (psi) 40000 2000 xf4 (psi) 40000 36000 44000 

 

The length L of the cantilever beam is 254 cm and the tip displacement have to be 

smaller than the allowable displacement do = 7.724 cm. The original definition of the first and 

second failure modes are shown in Eq. (4.11) and the redefined fuzzy problem is given by Eq. 

(4.12). 
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The cantilever beam problem is composed by two distinct failure modes, each one with 

a corresponding fuzzy limit state function (FLSF1′ and FLSF2′). In the proposed fuzzy 

procedure, the reliability analysis is performed transforming the reliability constraints in cost 

functions. Consequently, additional cost functions should be included in the multi-objective 

problem in cases which more than one limit state function are defined. In order to overcome 

this limitation, the worst corresponding reliability index (maximum η′) is minimized as shown in 

Eq. (4.12). Thus, values of the reliability index associated with other limit state functions are 

ensured to be smaller than the currently evaluated η′ value in the optimization procedure 

(safety is pursued in all limit state functions). 

Figure 4.6 presents the obtained Pareto’s curve for the cantilever beam problem, in 

which safety and transient configurations were achieved. Figure 4.7 illustrates the behavior of 

both FLSF′ functions regarding the obtained designs.  

Table 4.3 and Table 4.4 shows the results associated with the minimum safety 

possibility analysis, obtained by using the proposed fuzzy approach.  

Note that the probabilistic response (IRA-DE; target reliability of 99.8651% - β=3) in the 

proposed methodology standards (fuzzy response considering design cost function value of f 

= 9.52, see Figure 4.7) consists of a transient response for the first failure mode (η′FLSF1 = -

0.94), with an associated possibility failure fmFLSF1 = 0.06. Regarding the second failure mode, 

the response results in an unavoidable failure state (η′FLSF2 = 1.02). The fuzzy minimum 

response ensured a safety state for both failure modes (η′FLSF1 = -2.59 and η′FLSF2 = -1; see 

Table 4.4 and Figure 4.7).  

Differently of the nonlinear limit state problem, the minimum response safety 

configuration resulted in a bigger cost function value (f = 18.73; see Table 4.3) when compared 

with the probabilistic response (f = 9.52; see Table 4.3). This increase in design cost function 

value is justified with achievement of safety configurations for both failure modes in the fuzzy 

approach. 
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Figure 4.6 - Pareto’s curve corresponding to the optimal design solution of the cantilever 
beam problem. 

 

 

 

Figure 4.7 - Behavior of FLSF1′ and FLSF2′ according to η′ for the cantilever beam problem. 

 

Table 4.3 Optimization results associated with the cantilever beam problem. 

 f (cm2) xd1 (cm) xd2 (cm) 

IRA-DE 9.52 2.4488 3.8877 

Fuzzy 18.73 4.0452 4.6314 

 

Table 4.4 Reliability results associated with the cantilever beam problem. 

 FLSF1L′ FLSF1R′ η1′ fm
FLSF1 FLSF2L′ FLSF2R′ η2′ fm

FLSF2 neval 

IRA-DE -23310 1468 -0.94 0.06 11.48 22.75 1.02 1 20684* 

Fuzzy -36093 -22160 -2.59 0 -2.152 1.6x10-8 -1 0 298** 

  * Mean value. ** Mean after 31 runs considering both inner and outer loops. 
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4.5.3 Car-side Impact Problem 
 

The car side-impact problem (GU et al., 2001) consists in a car subjected to a side-

impact following the standards of the European Enhanced Vehicle-Safety Committee (EEVC). 

In this test case, there are being considered the effects of the side-impact on a dummy in terms 

of the head injury, load in abdomen, pubic symphysis force, viscous criterion, rib deflections at 

the upper, and middle and lower rib locations (DEB et al., 2009). In addition, effects on the car 

are considered in terms of the B-Pillar velocity at its midpoint and the velocity of the front door 

at the B-Pillar. The optimization problem consists in minimizing the weight of the car, as defined 

by Eq. (4.13). 

 

1 2 3 4 5 6 7min  1.98+4.9 +6.67 +6.98 +4.01 +1.78 +0.00001 +2.73
d

d d d d d d dx
x x x x x x x  (4.13)

 

in which xd1 is the thickness of inner B-Pillar, xd2 is the thickness of the B-Pillar reinforcement, 

xd3 is the thickness of inner floor side, xd4 is the thickness of the cross members, xd5 is the 

thickness of the door beam, xd6 is the thickness of the door beltline reinforcement, and xd7 is 

the thickness of the roof rail. This problem is subject to EEVC restrictions on safety 

performance, which are given by Eqs. (4.14) to (4.24). 
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x x x x x x x x

    


 
(4.15)

3 5 1 1 1 2 2 6

2 7 3 1 3 2 5 6

5 3 6 3 1 4

2
2 3 2

= 0.214 0.00817 0.131 0.0704 + 0.03099 +

0.018 +0.0208 0.121 0.00364 +

0.0007715 0.0005354 0.00121 +

0.00184 0.018 0.32 m/s

d d r d r d d

d d d r d r d d

d r d r r r

r r d

g x x x x x x x

x x x x x x x x

x x x x x x

x x x

  
  

 

 

 

(4.16)

2
4 2 3 1 3 3 7 2 2= 0.74 0.61 0.163 +0.001232 0.166 0.227 0.32 m/sd d r d r d r dg x x x x x x x x      (4.17)

5 3 1 2 5 3 6 2 7 1

2 3

28.98  3.818 4.2 +0.0207 6.63 7.77

+0.32 32 mm
d d d d r d r d r

r r

g x x x x x x x x x

x x

    


 
(4.18)

6 3 3 1 2 2 1 5 3

7 1 1 2

33.86 2.95 0.1792 5.057 11 0.0215

9.98 22 32 mm
d r d d d r d r

d r r r

g x x x x x x x x

x x x x

      
  

 
(4.19)

7 2 1 1 3 346.36 9.9 12.9 +0.1107 32 mmd d r d rg x x x x x     (4.20)

2
8 4 2 3 4 3 6 3 44.72 0.5 0.19 0.0122 +0.009325 +0.000191 4 KNd d d d r d r rg x x x x x x x x      (4.21)

9 1 2 2 1 3 3 4 3

6 3

10.58 0.674 1.95 0.02054 0.0198

+0.028 9.9 mm/ms
d d d r d r d r

d r

g x x x x x x x x

x x

    


 
(4.22)
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10 3 7 5 6 2 3 2 4

2
4

16.45 0.489 0.843 0.0432 0.0556

0.000786 15.7 mm/ms

d d d d r r r r

r

g x x x x x x x x

x

    

 
 

(4.23)

1 2 3 4

5 6 7

0.5 1.5,  0.45 1.35,  0.5 1.5,  0.5 1.5,  

0.875 2.625,  0.4 1.2,  0.4 1.2
d d d d

d d d

x x x x

x x x

       
     

 
(4.24)

 

where xr1 is the material of the inner B-Pillar, xr2 is the material of the inner floor side, xr3 is the 

barrier height, and xr4 is the barrier hitting position. 

Following the strategy proposed by DEB et al. (2009), the system variables were 

separated in two different sets: the uncertain decision variables xd= (xd1, …, xd7) and the 

uncertain random variables xr = (xr1, …, xr4). All variables present normal distribution around 

their mean values and are assumed as being independent. The uncertain design variables are 

modeled with unknown mean values, which are determined by using an optimization 

procedure, with standard deviation of 0.03 mm (except xd5 that presents a constant standard 

deviation of 0.05 mm). Table 4.5 shows the characteristics of remaining random and fuzzy 

variables, whereas a 3σ model (i.e. ݔ௥ 	ൌ ߤ	 േ  was considered in order to convert random (ߪ3	

variables into fuzzy variables. 
  

Table 4.5 Stochastic and fuzzy data used in the car side-impact problem. 

 Mean value Standard 

deviation 

 Nominal 

value 

Lower limit Upper limit 

xr1 (mm) 0.345 0.006 xf1 (mm) 0.345 0.3270 0.3630 

xr2 (mm) 0.192 0.006 xf2 (mm) 0.192 0.1740 0.2100 

xr3 (mm) 0 10 xf3 (mm) 0 -30 30 

xr4 (mm) 0 10 xf4 (mm) 0 -30 30 

 

The key aspect of the car side-impact problem is that the design variables are uncertain 

parameters. Thus, at each iteration of the outer optimization loop, the fuzzy transformation is 

applied to determine the fuzzy uncertain interval associated with the design variables. The 

fuzzy reliability analysis of the car side-impact problem results in ten distinct failure modes 

associated with the multi-objective procedure. In this case, the minimization of the worst 

reliability index and Eq. (4.13) are the considered cost functions. 

Table 4.6 and Table 4.7 illustrates the results obtained by the proposed fuzzy approach, 

corresponding to the better reliability index response in the multi-objective procedure. In this 

test case, safety and transient domain responses were determined by the proposed fuzzy 

approach considering the same cost function value obtained by using IRA-DE (see f = 26.6274 

in Table 4.6; target reliability of 99.8651% corresponding to β=3). Note that the safety state is 
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ensured for the first, third, ninth, and tenth failure modes, while the remaining failure modes 

leads to transient states with the highest failure possibility of fm = 0.71 for the fourth failure 

mode. Similar results were found considering the best configuration achieved by using the 

proposed fuzzy reliability approach (results associated with f = 36.1915 showed in Table 4.6) 

with the main difference regarding IRA-DE results being safety state assurance in five of the 

ten failure modes (first, third, sixth, ninth, and tenth failure modes).  

 

Table 4.6 Optimization results associated with car-side impact problem. 

 xd1 

(mm) 

xd2 

(mm) 

xd3 

(mm) 

xd4 

(mm) 

xd5 

(mm) 

xd6 

(mm) 

xd7 

(mm) 

f           

(Eq. (14)) 

neval 

IRA-

DE 
0.500 1.062 0.923 1.500 0.875 1.200 0.400 26.6274 

27980* 

Fuzzy 1.500 1.164 1.093 1.231 2.222 0.645 0.944 36.1915 5950** 

  * Mean value. ** Mean after 11 runs considering both inner and outer loops. 

 

Table 4.7 Reliability results associated with the car-side impact problem. 

 FLSF1′ FLSF2′ FLSF3′ FLSF4′ FLSF5′ FLSF6′ FLSF7′ FLSF8′ FLSF9′ FLSF10′ 

IRA-DE 

FLSF′L -0.82 -26.2 -0.13 -0.03 -2.86 -8.78 -3.10 -0.56 -2.23 -7×105 

FLSF′R -0.18 26.1 -0.05 0.06 4.90 4.54 6.17 0.23 -0.10 0.19 

η′ -1.28 -0.50 -1.62 -0.32 -0.37 -0.66 -0.33 -0.71 -1.05 -1 

fm 0 0.50 0 0.71 0.61 0.34 0.67 0.30 0 0 

Fuzzy 

FLSF′L -0.70 -61.8 -0.26 -0.06 -7.94 -16.4 -9.28 -0.54 -2.73 -7×105 

FLSF′R -0.32 61.5 -0.08 0.05 2.42 -3.47 1.60 0.37 -0.64 -0.39 

η′ -1.84 -0.50 -1.49 -0.57 -0.77 -1.27 -0.85 -0.60 -1.30 -1 

fm 0 0.50 0 0.43 0.23 0 0.15 0.40 0 0 

 

 

The fuzzy approach was able to reduce the maximum failure possibility, when 

compared to the IRA-DE method proposed by LOBATO et al. (2017) (fm = 0.71 for the fourth 

failure mode in IRA-DE, while fm = 0.50 for the second failure mode in the fuzzy approach). 

The failure possibility of most failure modes, with the exception of the eighth failure mode, were 

also reduced by applying the fuzzy approach. It is worth mentioning that the design cost 

function value increased according to the mentioned failure possibility reduction (see Table 

4.6).      
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In this chapter, a novel fuzzy reliability analysis methodology was proposed. The 

traditional fuzzy approach was modified in terms of the reliability index, thus eliminating the 

dependence of the so-called membership functions. In this case, the reliability analysis is 

performed on the support interval of the associated fuzzy limit state functions. Therefore, the 

resulting fuzzy reliability design consists of a multi-objective optimization problem wherein a 

first cost function is associated with design evaluation and an additional cost function is 

included in the problem to deal with the reliability analysis.  

The performance of the proposed algorithm was evaluated by means of three different 

test cases. The obtained results demonstrated the efficiency and flexibility of the proposed 

fuzzy methodology, as represented by its capability of obtaining safety, transient, or failure 

system design configurations. The examples discussed above show that the proposed 

approach can effectively assess reliability in design problems with uncertain quantities without 

the the necessity of defining either a probability density function (stochastic approaches) or a 

possibility distribution (traditional fuzzy approach). In the proposed methodology, only the 

definition of a support fuzzy interval is required, thus eliminating the probability density function 

and/or possibility distribution dependency. 

 

 

  
 



 

CHAPTER V 

 

 

FINAL REMARKS 

 

This chapter summarizes the present research work discussing its main results and 

contributions, as well as addressing the prospects for future works. 

As previously stated, the main goal of this research work was to evaluate fuzzy logic 

as a tool for uncertainty, robustness and reliability analyses of mechanical systems. In this 

sense, Chapter 2 focused on presenting the mathematical basis of fuzzy uncertainty analysis, 

addressing its fundamental concepts and comparing the proposed fuzzy methodology with 

existing stochastic approaches. The proposed fuzzy uncertainty analysis technique was then 

numerically validated by means of the uncertainty assessment of a rotor test rig; the obtained 

results were compared with those stemming from stochastic approaches responses. At this 

point, the presented fuzzy logic approach was experimentally validated by means of the 

assessment of uncertainty effects found in a flexible rotor supported by hydrodynamic 

bearings. Although the presented fuzzy uncertainty analysis methodology is relatively well 

known, the numerical and experimental validation presented in this work is novel, resulting an 

interesting contribution for uncertainty analysis, in general terms. As discussed in Chapter 2 

the obtained results demonstrated the suitability of fuzzy logic for the uncertainty analysis of 

rotating systems, being able to obtain system extreme responses in both frequency and time 

domains.  

In Chapter 3, fuzzy logic was evaluated as a tool for robustness optimization by means 

of two novel rotor balancing approaches based on fuzzy logic: i) a non-parametric approach 

formulated to enhance the so-called IC method balancing robustness, and ii) a parametric 

methodology formulated to increase the balancing robustness of model-based balancing 

approach. In the first approach, fuzzy logic tools, particularly fuzzy transformation and 

defuzzification procedures, were used to define a preprocessing stage in which system 

vibration responses sets are evaluated in order to obtain a more representative unbalance 

condition. In the second approach, fuzzy optimization is used to define fuzzy objective 

functions in which uncertainties effects on the balancing responses are assessed. The non-

parametric approach was validated both numerically and experimentally, while the parametric 

approach was only numerically evaluated. In one hand, obtained results demonstrate that the 
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non-parametric methodology is sufficiently robust to handle uncertainties effects on the 

balancing responses, as long as these effects appear in the measured data used in the 

preprocessing stage. On the other hand, the numerical application of the parametric approach 

shows that the proposed methodology is able to finding robust solutions, regardless the 

amplitude fluctuation of the uncertain information. However, an experimental investigation 

should be performed in the future to validate the numerical results obtained. As confirmed by 

the results, fuzzy logic can be effectively used for robust optimization of mechanical systems. 

In this sense, the main contributions of this research work in terms of rotor balancing are the 

two new robust balancing approaches, as explained above. In terms of robust optimization, 

the main contribution of this work is related to a methodology that is based on simple 

mathematical formulations for robust optimization, without the requirement of either probability 

definitions (i.e., uncertain variables probability density functions) or sampling techniques.  

Finally, in Chapter 4, a novel fuzzy logic reliability-based design methodology is 

discussed. The proposed methodology revises the traditional fuzzy approach in terms of the 

reliability index, eliminating the dependence of the so-called membership functions. In this 

sense, the reliability analysis is performed on the support interval of the associated fuzzy logic 

limit state functions. Therefore, the resulting fuzzy logic reliability design consists of a multi-

objective optimization problem wherein a first cost function is related to design evaluation and 

an additional cost function is included in the problem to deal with the reliability analysis. Thus, 

the associated reliability-based design optimization problems are solved through a nested 

algorithm. An inner optimization loop used to obtain the uncertain variables limits and an outer 

optimization loop that evaluates a predefined fuzzy logic reliability index within the previously 

obtained bounds. The performance of the proposed algorithm was evaluated by means of 

three different test cases. The examples presented show that the proposed methodology can 

effectively assess reliability in design problems with uncertain quantities without the definition 

of either a probability density function (stochastic approaches) or a possibility distribution 

(traditional fuzzy logic approach). In this sense the main contribution of the proposed 

methodology, is the elimation of dependency of probability density function and/or possibility 

distribution. 

Consequently, the main contributions of this doctoral research work can be 

summarized as follows: 

 Numerical and experimental validation of the fuzzy uncertainty analysis α-level 

optimization procedure for rotating systems.  

 Demonstration that fuzzy logic uncertainty analysis can be used to obtain 

system extreme responses in both frequency and time domains of 

rotordynamics applications. 
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 Formulation of two novel robust balancing approaches based on fuzzy logic. A 

non-parametric approach that was numerically and experimentally validated 

and a parametric approach based on fuzzy optimization that was numerically 

investigated. 

 Enhancement of overall balancing robustness by means of simple data 

analysis, as demonstrated in the balancing techniques, where measurements 

sets are used in the non-parametric approach. 

 Definition of a revised fuzzy logic reliability-based design technique in which 

both probability and possibility distributions dependency were eliminated. 

 Demonstration of the competitive results provided by using fuzzy logic approach 

on uncertainty analysis, robust optimization and reliability-based design, aiming 

at applications on dynamics of flexible rotors. 

       

           To characterize the contributions of this doctorate thesis, journal papers and conference 

papers are presented in the Appendix A. 

 

For future works, the author suggests the following research efforts: 

 The use of fuzzy logic tools, particularly fuzzy logic uncertainty analysis 

associated with defuzzification procedures to determine robust parameters for 

design purposes. 

 The use of fuzzy logic technique in uncertainty propagation analysis as done in 

stochastic approaches such as Bayesian networks, as focusing on enhancing 

system reliability.  

 Evaluation of the influence of fuzzy logic transformation parameters on the non-

parametric robust balancing method (i.e., decision rule α range, and shape of 

membership functions) in an attempt to automate the procedure and eliminate 

users’ influence on the results. 

 Experimental investigation regarding the parametric robust balancing 

procedure aiming at validating the simulation results obtained. 

 Application of the proposed robust balancing approaches, particularly the non-

parametric procedure, to complex rotating machinery for testing on different 

case studies. 

 Application of the new fuzzy logic reliability-based approach in more complex 

mechanical systems (such as rotating systems) aiming at applications on 

reliability-based design and structural health monitoring.  
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 Study of fuzzy logic optimization procedures aiming at simultaneously 

assessing system robustness and reliability (defining, for instance, a robust and 

reliable balancing procedure).  
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Resumo Expandido em Português 

 

O principal objetivo deste trabalho foi avaliar o uso da Lógica Fuzzy como uma 

ferramenta para análises de incertezas, robustez e confiabilidade. Neste sentido, no Capítulo 

2 a base matemática da anaálise de incertezas via lógica fuzzy é discutida, abordando seus 

conceitos fundamentais e comparando a metodologia fuzzy utilizada com abordagens 

estocásticas existentes.  A metodologia fuzzy proposta foi numérica validada por meio da 

análise de incertezas em um rotor flexível e os resultados obtidos foram comparados com 

respostas das abordagens estocásticas clássicas. Posteriormente a metodologia proposta foi 

experimentalmente validada através da análise dos efeitos das incertezas em um rotor flexível 

suportado por mancais hidrodinâmicos. Os resultados obtidos demonstraram que a lógica 

fuzzy é uma ferramenta adequada para a análise de incertezas em sistemas rotativos, sendo 

capaz de obter as respostas extremas do sistema tanto no domínio da frequência como no 

domínio do tempo. No Capítulo 3 o uso da lógica fuzzy como uma ferramenta para otimização 

robusta foi avaliada por meio de duas novas abordagens fuzzy para balanceamento, uma 

abordagem não-paramétrica formulada para aumentar a robustez do método de 

balanceamento conhecido como Coeficientes de Influência, e uma metodologia paramétrica 

desenvolvida para aumentar a robustez da metodologia de balanceamento baseada em 

modelos representativos. Na primeira abordagem ferramentas da lógica fuzzy, em especial os 

procedimentos de transformação fuzzy e de desfuzificação, são utilizados para definir uma 

etapa de pré-processamento na qual conjuntos de respostas de vibração do sistema são 

avaliadas objetivando obter uma condição de desbalanceamento representativa do sistema. 

Na segunda abordagem, teoria de otimização fuzzy é utilizada para definer funções objetivo 

fuzzy nas quais os efeitos das incertezas na resposta ao balanceamento do sistema são 

avaliados. A abordagem não-paramétrica foi numérica e experimentalmente validada, 

enquanto a abordagem paramétrica foi avaliada por meio de uma aplicação numérica.  Por 
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fim, no Capítulo 4, uma nova metodologia fuzzy para projetos baseados em confiabilidade é 

discutida. A metolodogia proposta revisa a abordagem fuzzy tradicional em termos da métrica 

de confiabilidade, eliminando a dependência das funções de pertinência. Desta forma, a 

metodologia proposta consiste de um problema de otimização multi-objetivo no qual uma 

função objetivo está relacionada com a avaliação do projeto e uma função objetiva adicional 

é formulada para avaliar a confiabilidade do projeto. A avaliação da confiabilidade do projeto 

é feita por meio de um algoritmo aninhado, no qual um loop interno é utilizado para definir os 

limites das variáveis incertas, e um loop externo avaliada uma métrica de confiabilidade fuzzy 

predefinida considerando os limites obtidos no loop interno. Os exemplos apresentados 

demonstram como a abordagem proposta pode avaliar de forma eficaz a confiabilidade de um 

projeto com parâmetros incertos sem a definição de funções de densidade de probabilidade 

ou distribuições de possibilidade. 
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