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FACULDADE DE ENGENHARIA MECÂNICA
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”Energy cannot be created or destroyed, it can only be

changed from one form to another.”

Albert Einstein
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gratefull to my master degree supervisor, Herśılia de Andrade e Santos, who told me about the

Graduate Mechanical Engineering program of UFU.

Finally, I thank the financial support from CNPQ, CAPES, FAPEMIG and PETROBRAS

to conduct the present work.



v

DUARTE, B.A.F., Phase change modelling for non-isothermal flows: A mathematical,

numerical and computational model for pure substances. 2018. 178 f. Tese de Doutorado,

Universidade Federal de Uberlândia, Uberlândia.

RESUMO

A dinâmica de fluidos computacional é uma importante ferramenta para o estudo de es-

coamentos presentes na natureza e em aplicações de engenharia. A modelagem computacional

de problemas t́ıpicos de engenharia permite aumentar a eficiência de processos produtivos e de

equipamentos em diversos setores da economia. Além disso, o estudo de caracteŕısticas funda-

mentais de escoamentos possibilita a criação de um arcabouço teórico importante para diversas

linhas de pesquisa dessa área. Nos últimos anos, a modelagem de problemas de mudança de

fase tem sido conduzida utilizando modelos computacionais. Na presente tese de doutorado, foi

desenvolvido um modelo matemático, numérico e computacional de escoamentos não-isotérmicos

com mudança de fase. O código MFSim foi utilizado para a performance de todas as simulações

computacionais e o cluster do Laboratório de Mecânica dos Fluidos (MFLab) foi empregado para

a execução das simulações na Universidade Federal de Uberlândia (UFU). O modelo computa-

cional foi verificado e validado com inúmeros casos da literatura. Finalmente, um complexo caso

de condensação de contato direto (DCC) em cross-flow foi conduzido, demonstrando a potencial-

idade do código MFSim para modelar até mesmo problemas de grande complexidade. Problemas

de ebulição de ĺıquido ao redor de uma bolha de vapor foram utilizados para vallidação com

solução teórica e anaĺıtica. Os resultados do presente trabalho apresentaram baixos desvios em

relação aos resultados prévios da literatura. Correntes espúrias foram investigadas e quantificadas.

Finalmente, forças particulares a problemas de mudança de fase em CFD foram quantificadas e

sua influência nos problemas estudados foram nulas mesmo para situações cŕıticas.

Palavras chave: CFD, DCC, ebulição, condensação, bolhas, força de recuo.
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ABSTRACT

The Computational Fluid Dynamic (CFD) is an important methodology to study the charac-

teristics of flows in nature and in several engineering applications. Modelling non-isothermal flows

may be usefull to predict the main flow dynamics which allows the improvement of efficiency in

equipments and processes for industrial purpose. In addition, investigations using computational

models may provide key information about the fundamental characteristics of flow, developing

the theoretical groundwork of physical processes. In the last years, the topic of phase change has

been intensively studied using CFD due to the computational and numerical advances reported in

the literature. In the present work, phase change is studied using a mathematical, numerical and

computational model developed in this thesis. The homemade code MFSim was used to run all

the computational simulations in the cluster from the Fluid Mechanics laboratory (MFLab) from

the Federal University of Uberlandia (UFU). The computational model was verified and validated

against several cases from the literature. The model developed in the present thesis showed

results with high accuracy and low differences compared to previous works in the literature. After

the performance of several validation cases, some topics were deeply investigated. Finally, a com-

plex case study of Direct contact condensation (DCC) was studied and the computational model

provided accurate results compared to the literature. The present thesis reported the advances

on modelling computationally the topic of phase change using the homemade code MFSim and

several interesting conclusions were developed and some numerical issues were overcame. Boiling

cases were validated against theoretical and analytical solution from the literature. The results

show low deviations compared to the references. Finally, spurious currents magnitude were quan-

tified for phase change problems and particular forces due to phase change were investigated.

The results show null importance of these forces in the phase change model studied.

Keywords: CFD, DCC, boiling, condensation, bubble, recoil force.
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CHAPTER I

INTRODUCTION

These chapter describes the objectives, justification, originality, highlights and organiza-

tion of the thesis. The objective subsection describes the main and secondary objectives; the

justification subsection presents the arguments supporting the thesis motivation; the highlights

subsection shows the main topics investigated in the present work; finally, the organization sub-

section describes the arrangement employed in the thesis composition.

The present work was focused on modelling mathematically, numerically and computa-

tionally phase change in non-isothermal flows. The study was restricted to investigate flows

considering pure substances and monocomponent fluids. The continuos hypothesis was adopted

and the fluids were considered Newtonian.

According to the First Law of the Thermodynamic, the energy from a given system cannot

be created or destroyed, since it can only be transformed from one form to another. There

are several phenomena in nature and in engineering applications where one form of energy is

converted to another, respecting the principle of total energy conservation.

The phase change phenomenon is a common example of an energy conversion process,

where a certain amount of sensible energy is converted to latent energy, leading to complex

chemical reactions (PAN; WEIBEL; GARIMELLA, 2016). The main consequence of the phase

change process is the modification of the physical state of a given substance (POLING; PRAUS-

NITZ; O’CONNELL, 2001).
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When flow is subjected to phase change, its physical state is modified and the fluid prop-

erties are modified where the phase transition occured. It’s imperative to study the phase change

phenomenon since the phase change process may deeply modify the fluid properties in the region

where phase transition occurs. Water, for example, at Standart Temperature Pressure (STP) con-

dition, presents specific mass of approximately 1000kg/m3 when is liquid; however, water vapour

presents specific mass of approximately 1.5kg/m3 (POLING; PRAUSNITZ; O’CONNELL, 2001).

In addition, phase change may severely modify the temperature field affecting the flow dynamics

of several phenoma. In the present thesis, the phase change phenomenon was studied from a

mathemathical, numerical and computational model developed which was applied to the in house

code MFSim.

1.1 Objectives

The present work aimed to achieve one general objective and seven specific objectives.

These objectives were described in details in the following subsections.

1.1.1 General objective

The main objective of the present work was to develop a mathematical, numerical and

computational model of non-isothermal two-phase flows subjected to phase change. The MFSim

code was the plataform chosen to the computational implementation of the model developed in

the present thesis, as well as the model verification and validation.

1.1.2 Specific objectives

The following objectives were defined for the present work:

1. Develop a bibliographic revision about the state of art of computational modelling non-

isothermal two-phase flows and phase change;

2. Develop the thermal energy module in the MFSim code and perform verification and vali-

dation cases;

3. Develop a model to predict specific mass variations due to temperature variations and apply

the model in the MFSim code;
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4. Develop a mathematical, numerical and computational model of two-phase flows with phase

change;

5. Include the phase change model in the MFSim code and perform validation cases;

6. Compose scientific papers and reports from the results obtanied in the present work;

7. Compose the thesis.

1.2 Justification

The present thesis was the first work focused on the study of non-isothermal flows with

phase change in the research group from the Fluid Mechanics Laboratory (MFLab) in the Federal

University of Uberlandia (UFU). MFLab research group has a strong insertion in mathematical,

numerical and computational methodologies for general fluid mechanics problems and most part

of its motivation has been research projects related to the brazilian industry. However, the

influence of phase change process and temperature field variations have been generally not taken

into consideration in the previous investigations conducted before the present thesis; since the

purpose of the previous works were restricted to evaluate other variables of interest.

Recently, some research problems from MFLab projects have required the study of some

complex phenomena where phase change is relevant to the fluid dynamics of flow. Then, the

justification of the present thesis is the development of the initial steps of a new research line in

the MFLab group where phase change is studied.

The main contributions from the present work was the development of a energy equation

module as well as a phase change module in the MFSim code, allowing to study several important

engineering applications.

1.3 Originality of the present thesis

According to the thesis objectives, several original contributions were proposed to be

achieved at the end of the present work. The major contributions expected from the present

thesis were the investigation of the following items:
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1. Mathematical, numerical and computational methodologies of a temperature-dependent

specific mass approach for non-isothermal flows;

2. Mathematical, numerical and computational methodologies for flows subjected to phase

change;

3. Evaluation of the influence of dimensionless parameters in non-isothermal flows such as the

Grashof, Prandtl, Nusselt and Jakob numbers.

Additional original contributions were obtanied according to the thesis progression in time,

such as the following items:

1. Investigation of the recoil force in phase change problems;

2. Evaluation of a particular effect in phase change problems when using the non-divergent

form of momentum equation;

3. Computation of adaptive mesh refinement (AMR) efficiency in phase change simulations

using MFSim code

4. Comparison between two different approaches of pressure interface treatment in phase

change problems.

The introduction of a phase change model in the MFSim code was itself an original con-

tribution in the brazilian research scenario, since few relevant publications from Brazil of flows

with pure substances subjected to phase change have been found in the main cientific databases

(ISI Web of Knowlegde and ScienceDirect).

The later topics provided the production of relevant information for composing papers

which are in progress of publication in some scientific journals. One paper was published in the

Journal of the Brazilian Society of Mechanical Sciences and Engineering (10.1007/s40430-018-

1181-x). There is another work under review in the International Journal of Multiphase flows. In

addition, three papers were published in the 24th ABCM International Congress of Mechanical

Engineering and another paper was published in the 57th Brazilian Conference of Chemistry.
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1.4 Highlights

In this section, some results-oriented points were presented to provide the readers an

overview of the main findings of the present thesis.

1.4.1 Grashof number influence in local thermal transfer rate

In single-phase flows, the increase of Grashof number increases the local thermal transfer

rate and isotherms pattern. Figure 1.1 illustrates the isotherms for different Grashof numbers in

a simulation of natural convection of single-phase flow.

(a) (b)

(c) (d)

Figure 1.1: Central slice showing isotherms considering Pr=0.71 and Gr=1.4 × 103 (a),
Gr=1.4× 104 (b), Gr=1.4× 105 (c), Gr=1.4× 106 (d).

In two-phase flows, the inclusion of a dispersed phase with lower Grashof number than the

continuos phase lowered the local thermal transfer rate. Figure 1.2 shows the isotherms in a case

of natural convection with a bubble considering an initial radius of 0.15L and 0.31L, respectively.
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(a) (b)

Figure 1.2: Isotherms at central xz-plane for r = 0.15L (a) and r = 0.31L (b). Interface is
represented by a contour line.

1.4.2 Atwood number influence in the development of a Rayleigh-Taylor instability

The increase of Atwood number increases the intensity of the baroclinic torque and the

speed of the developement of the Rayleigh-Taylor instability. In addition, the simulation with

higher Atwood number presented a higher local thermal transfer rate. Figure 1.3 shows the

velocity field for the simulations of Rayleigh-Taylor instability for Atwood number of 1 and 0.33,

respectively.

(a) (b)

Figure 1.3: Velocity vectors at central xz-plane for A = 1.0 (a) and A = 0.33 (b). Interface
is represented by a contour line.
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1.4.3 Prandtl number influence in local thermal transfer rate

In two-phase flows, the introduction of a dispersed phase with different Prandtl number than

the continuos phase may affect the local thermal transfer rate. The inclusion of a dispersed phase

with lower Prandlt number than the continuos phase would reduce the local thermal transfer rate;

as well as, the inclusion of a dispersed phase with a higher Prandtl number than the continuos

phase would increase the local thermal transfer rate.

Figure 1.4 shows the isotherms for the case where the inclusion of a dispersed phase have

increased and reduced the local thermal transfer rate, respectively.

(a) (b)

Figure 1.4: Isotherms at central xz-plane for the case of thermal transfer increase (a) and
reducement (b). Interface is represented by a contour line.

1.4.4 Benchmark between Oberbeck-Boussinesq approximation (OB) X new temperature-

dependent specific mass approach (NOB)

A new temperature-dependent specific mass approach showed results with higher accuracy

than OB, indicating that the variations of specific mass in energy and momentum equations are

relevant, particularly for turbulent flows. The analysis of the flow for a large range of Rayleigh

number was performed and a typical turbulent structure was found in the turbulent regime. Figure

1.5 shows the presence of Tollmien–Schlichting instability for turbulent flow (Ra = 1010).
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(a)

(b)

Figure 1.5: Tollmien–Schlichting instability in a case of single-phase flow natural convection.

1.4.5 Particular forces in phase change problems included in the computational model

The present work has described for the first time in the literature the importance of an

additional force due to the use of the non-divergent form of momentum equation when phase

change occurs. The magnitude of the force was quantified and its importance was evaluated in

some test cases.

In additional, the recoil force was investigated. The recoil force effects were also measured

in phase change simulations and its magnitude was compared to the effects of interfacial tension

force.

1.4.6 Evaluation of spurious currents in phase change problems

A diffuse and a sharp interface treatment for pressure were evaluated in phase change

problems.

Figure 1.6 shows the spurious currents in phase change simulations considering a constant

mass density flux of 10.0kg/m2s.

1.4.7 Calculation of the adaptive mesh refinement efficiency in several problems

Adaptive mesh refinement efficiency was computed and compared to previous works in the

literature. Figure 1.7 illustrates the mesh configuration at the beggining and at the end of a
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(a) (b)

Figure 1.6: Spurious currents in phase simulations considering ṁ′ = 10.0 using a diffuse (a)
and a sharp (b)interface treatment.

simulation of a Rayleigh-Taylor instability.

(a) (b)

Figure 1.7: Interface and mesh configuration (a) at the initial time of the simulation and (b)
at the final time.

1.4.8 Film boiling simulations using AMR

Film boiling simulations were performed and the two typical structures (bubble and spikes)

of Rayleigh-Taylor instability were identified. Fig. 1.8 shows the interface contour and the grid

configuration employed at the initial time of the simulation and at the final time.
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(a) (b)

Figure 1.8: Interface and mesh configuration (a) at the initial time of the simulation and (b)
at the final time.

1.4.9 Simulation of a water bubble condensation

Simulations of an ascending water bubble in condensation were performed and the results

were compared to the literature. The figure below shows the water bubble interface at the initial

time and after 3ms when condensation has almost completely vanished the vapor phase.

(a) (b)

Figure 1.9: Water vapour bubble in condensation at the initial and final time of the compu-
tational simulation.
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1.4.10 Simulation of steam jet in condensation subjected to a liquid cross-flow

Simulations of a steam jet condensation with a liquid cross-flow was investigated. The

figure below shows the interface contour from the saturated vapour jet in cross-flow with liquid

water.

Figure 1.10: Water vapour jet in cross-flow with liquid water.

1.5 Thesis organization

The present work was organized in 7 chapters, namely:

� Chapter 1: it contains the introduction of the work. The objectives and the main orig-

inal contributions are described. The thesis main results are highlighted and the thesis

organization is informed;

� Chapter 2: a background of the thesis topic is presented and the state-of-art of computa-

tional modelling of non-isothermal flows subjected to phase change is described in details;
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� Chapter 3: the mathematical model used in the simulations is described. First, the mathe-

matical model of non-isothermal flows without phase change is presented; then, the math-

emathical model of non-isothermal flows subjected to phase change is reported. Finally,

a detailed subsection described the equations used in the cases where the specific mass

variations were modelled according to the temperature field.

� Chapter 4: the numerical and computational models employed in the present work are

described. Details about the numerical discretizations, numerical treatment of interface and

fluid variables were presented. The code MFSim is presented and its main characteristics

are described.

� Chapter 5: the results are presented and compared to literature previous results. In addition,

the main results were summarized and a discussion was subsequentely provided.

� Chapter 6: the conclusions of the present thesis were presented. Each specific objective

previously defined in the thesis plan provided one or more conclusions according to the

results obtanied.

� Chapter 7: it presents the main suggestions of future works based on the advances achieved

in the present thesis.



CHAPTER II

BACKGROUND

In this chapter, the authors present the central aspects related to modelling computationally

non-isothermal flows with and without phase change, according to the literature. The main topics

related to the thesis investigations are here described using the information found in the literature.

The majority of ordinary fluid dynamic problems usually does not require information about

the temperature field (TRYGGVASON; SCARDOVELLI; ZALESKI, ), since the variables of in-

terest are usually the velocity or pressure (DUARTE et al., 2018). However, for most of the

engineering applications, the temperature is an indispensable variable, affecting directly the flow

characteristics such as in phase change problems (TANGUY et al., 2014) or indirectly, modifying

the physical properties of fluids due to the temperature variations (MONTIEL-GONZALEZ et al.,

2015; DUARTE et al., 2018).

The importance of the temperature field in the computational fluid dynamics (CFD) is

usually restricted to problems where the effects of temperature are proeminent or necessary

to the flow characteristics since it represents the additional costs to solve the energy equation

(TRYGGVASON; SCARDOVELLI; ZALESKI, ). To model the phase change phenomenon, the

temperature field is obviously necessary to be known in the computational simulations; however,

for several other problems, the temperature field hardly call attention to the literature, although

it may bring severe consequences to the flow dynamic (DUARTE et al., 2018).

In the next sections, a background about non-isothermal flows is presented. First, compu-
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tational aspects of modelling non-isothermal flows without phase change are reported. Then, the

state-of-art of modelling phase change computationally is presented and its main characteristics

are described.

2.1 Non-isothermal flows without phase change

In this section, some topics related to the computational aspects of modelling non-isothermal

flows without phase change are reported. First, the importance of the specific mass variations due

to the temperature field will be described. Then, the influence of some dimensionless parameters

in non-isothermal flows are presented. Finally, the influence of bubbles in non-isothermal flows

are briefly reported.

2.1.1 Specific mass variations due to temperature field

Although the term “density” is more commonly used than “specific mass” in the literature,

the authors of the present work consider that “density” is suitable for referring to the property of

an object or of a composed substance. On the other hand, “specific mass” refers to the property

of a substance. Therefore, in the present thesis, the term “specific mass” will be used to define

the amount of mass per unit volume.

Most of the fluid physical properties are temperature-dependent since the variations of tem-

perature may modify the fundamental characteristics of fluids (POLING; PRAUSNITZ; O’CONNELL,

2001). In the computational fluid dynamics (CFD), the importance of these fluids properties vari-

ation is restricted to problems where the temperature fields affects directly the flow dyamics such

as natural convection problems (MONTIEL-GONZALEZ et al., 2015). For most of the natural

convection problems, the traditional Oberbeck-Boussinesq approximation is sufficient to model

computationally the flow dynamic correctly. On the other hand, the majority of the engineering

applications are related to turbulent flows and usually with the presence of strong temperature

gradients (AKHTAR; KLEIS, 2013).

The literature presents some alternative forms to model the effects of specific mass vari-

ations without invoking the OB. One form to model the specific mass variations is to solve the

continuity, momentum and energy equations considering variable specific mass in all the equa-
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tions. The later way requires to solve the flow as compressible, where the continuity equation is

solved without the usual simplification seen for incompressible flows. The literature also presents

another form to account the effects of specific mass variations without invoking OB or solving

the diferential equations considering the flow as compressible. The later form is generally known

as non-Oberbeck Boussinesq models (NOB), where the specific mass is considered variable in all

the terms from the momentum and energy equations; although the continuity equation preserves

the incompressible condition with null velocity-divergence.

The NOB method was fundamentally based on Markatos e Pericleous (1984), who previ-

ously studied natural convection in a 2D numerical model. Markatos e Pericleous (1984) employed

an extension of OB, considering specific mass as a function of the temperature in all the terms of

the momentum and energy equations. More recently, Montiel-Gonzalez et al. (2015) presented

a numerical investigation of thermal convection problems with a comparison between OB and

a new temperature-dependent method for all the fluid properties, and considering null velocity

divergence. Their work obtained numerical results with higher accuracy in the approach using

variable fluid properties as functions of temperature.

Most of what is known about natural convection is due to the use of OB (GRAY; GIOR-

DINI, 1976) and more than one hundred years after the publication of OB, it is still probably

the most employed formulation for natural convection (ZEYTOUNIAN, 2003). Some of the lit-

erature, e.g., Montiel-Gonzalez et al. (2015) and Markatos e Pericleous (1984), have proposed

alternative mathematical formulations to achieve more accurate results about thermal transfer

without invoking OB, but still assuming null velocity divergence. A large number of flows sub-

jected to thermal transfer are assumed to be incompressible, since the impact of a variable specific

mass in the continuity equation is not relevant. On the other hand, the effects of a temperature-

dependent approach for the specific mass in the momentum equation are particularly important

for non-isothermal flows, as previously stated by OB (BOUSSINESQ, 1903). Therefore, when

the flow is assumed incompressible, the velocity divergence is small enough to be considered null.

However, variations of the specific mass in the momentum and energy equations may be pertinent

due to the influence of temperature on the properties of the fluid, as found by Montiel-Gonzalez

et al. (2015).

The importance of modeling variations in the properties of the fluid depending on the
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temperature field is recently being more investigated in several non-isothermal problems and this

research has been important for bringing new insights into thermal transfer mechanisms. Several

studies have investigated the thermodependency of the fluid variables in non-isothermal flows,

such as Darbouli et al. (2016) and Montiel-Gonzalez et al. (2015).

The relevance of the specific mass variations due to the temperature field is particularly

critical to a major part of fluid dynamic problems, namely natural convection cases. The variations

of specific mass plays an important role on the flow characteristics modifying the velocity and

pressure fields. Therefore, the specific mass is modeled here using a temperature-dependent

approach and a benchmark is conducted with the traditional Oberbeck–Boussinesq approximation

(OB).

In the literature, similar numerical studies on non-Oberbeck–Boussinesq buoyancy induced

flows have been reported in the laminar and turbulent regimes; however, no similar investigation

has been presented in three dimensions, which is particularly relevant for turbulence.

2.1.2 Influence of relevant dimensionless numbers on non-isothermal flows

There are several dimensionless numbers related to the physics of non-isothermal flows such

as the Grashof, Prandtl, Rayleigh, Eckert, Brinkman and Nusselt numbers. These dimensionless

numbers generally characterize the relation between the temperature field and the flow dynamics.

Next, these dimensionless numbers are briefly described.

The Grashof number represents the ratio of gravitational to viscous force on a fluid and

it’s defined according to the following equation (WHITE, 1974):

Gr =
gβ(Ts − T∞)L3

ν2
(2.1)

where: g is the gravity acceleration field, β is the volumetric expansion coefficient, Ts is the tem-

perature at a given reference surface, T∞ is the temperature of reference, L is the characteristic

length and ν is the kinematic fluid viscosity. The Prandtl number defines the ratio of momentum

diffusivity to thermal diffusivity and it’s given by the following expression (WHITE, 1974):

Pr =
µCp

k
(2.2)
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where: Cp is the specific thermal energy, µ is the dynamic viscosity and k is the thermal con-

ductivity. The Rayleigh number consist of the product of Prandtl and Grashof numbers which is

expressed below:

Ra = PrGr (2.3)

The Rayleigh number expresses the ratio between the buoyancy and viscosity forces as well as the

ratio between the momentum and thermal difussivities. The Eckert number consist of the ratio

between the kinetic energy by the boundary layer enthalpy and is defined by the expression given

below:

Ec =
u2

CpδT
(2.4)

where u is the local flow velocity, Cp is the specific thermal energy and δT is the difference

between wall and local temperature. The Brinkman number is a dimensionless number associated

to the ratio between the thermal energy produced by viscous transformation and thermal energy

transported by molecular diffusion. The Brinkman number is given by the following expression:

Br =
µu2

k(Tw − T0)
(2.5)

where Tw is the wall temperature and T0 is the temperature of reference.

The Nusselt number may be defined according to the following expression (DEEN; KUIPERS,

2013):

Nu =
L

∆T

∂T

∂x
|x=0 (2.6)

where: T is the temperature and ∆T is the temperature difference between the east and west

walls. The Nusselt number (Nu) represents the ratio between the conductive and advective

thermal transfer processes; therefore, when Nu < 1, there is the predominancy of conduction,

and when Nu > 1, the advection effects are more proeminent than the conduction (WAN;

PATNAIK; WEI, 2001).
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According to the literature, the Grashof and the Prandtl numbers directly affect the thermal

transfer rate in non-isothermal flows. The work from Chandra e Chhabra (2012) investigated

the impact of the variations of these dimensionless numbers on the Nusselt number and the

later authors found the increasement of the Nusselt number when Prandtl and Grashof number

increased. However. the later work studied only single-phase flows. The influence of the Grashof

number on the Nusselt number is already consolidated in the literature (PADILLA; LOURENCO;

SILVEIRA-NETO, 2013; WAN; PATNAIK; WEI, 2001) and its increasement necessarly increases

the thermal transfer rate. However, the role of the Prandtl number is yet not so studied in the

literature.

2.1.3 Influence of bubbles on non-isothermal flows

It has been extensively reported in the literature the increasement of the thermal transfer

rate due to the introduction of bubbles in single-phase flows; however, this topic has not yet been

completely elucidated.

The thermodynamic effects of the addition of bubbles in single-phase flows are widely

described in several experimental and numerical studies in the literature. According to Deen e

Kuipers (2013), it is generally agreed in the literature that the introduction of a gas into a liquid

enhances the turbulence in the medium and thus increases the thermal transfer rate to immersed

surfaces. Deen e Kuipers (2013) additionally defend that higher gas velocities enhances even more

the thermal transfer rate. Deckwer (1980) suggested that the presence of bubbles can increase the

thermal transfer rate in a gas-liquid bubble column by more than one order of magnitude. Oresta

et al. (2007) studied the thermal transfer mechanisms in a case of Rayleigh-Benard convection

in a liquid with vapor bubbles. The authors from the later work concluded that the presence

of bubbles had a profound effect on the flow structure and on the Nusselt number calculated.

Deen e Kuipers (2013) found that the passage of a bubble in a vertical chanel increased the

local thermal transfer from a hot wall. Tamari e Nishikawa (1976) reported that the presence of

bubbles increased the convection due the addition of bouyancy force. Dabiri e Tryggvason (2015)

studied turbulent bubbly flow and reported that the presence of bubbles increased the mixing and

reduced the temperature difference between the hot wall and the bulk of the flow. The later work

presents the Nusselt number increasement of 60% when bubbles were included in the domain
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(considering 3% of volume fraction).

According to Dabiri e Tryggvason (2015), the presence of moving bubbles generally in-

creases the local thermal transfer. Bukhari e Siddiqui (2007) studied natural convection for

two-phase flow and concluded that thermodynamic patterns, such as the thermal exchange at

the interface, may be directly affected by some hydraulic patterns such as the velocity field. The

authors from the later work concluded that the turbulent structures on the air and water phases

played an important role enhancing the thermal and mass transfer rates. Chandra e Chhabra

(2012) presented a quantitative analysis of the influence of the Prandtl and the Grashof numbers

in single-phase flows, reporting the Prandtl number importance in regulating the thermal transfer

rate on immersed surfaces in single-phase flows.

Although the literature has obtained, majority, higher thermal transfer coefficients in two-

phase flows compared to single-phase flows; there is no quantitative analysis or conclusions

elucidating the causes of the numerical or experimental results obtained. In addition, some

works have presented opposite results, such as Qiu, Wang e Jiang (2014) which obtanined the

decreasement of the thermal transfer rate by the inclusion of bubbles in the flow.

It’s imperative to examine the thermal transfer characteristics using dimensionless parame-

ters in order to establish general conclusions and to improve the understanding of the underlying

mechanisms involving the thermal transfer mechanisms. Since information about the thermal

transfer rate in single-phase and two-phase flows are crucial to several industrial processes as well

as in a variety of equipments employed in engineering applications, computational investigations

may guide and improve the efficiency of the thermal transfer processes. In addition, new studies

on these topics may report new insights into the thermal transfer mechanisms, openning new

research opportunities related to non-isothermal two-phase flows.

2.2 Non-isothermal flows with phase change

In this section, a general overview of modelling phase change computationally will be

presented. Phase change is a topic yet few consolidated in the literature of CFD since several issues

remain few understood, such as micro-layer phase change (CHEN; UTAKA, 2015), nucleation

points (AKHTAR; KLEIS, 2013) and phase change in multicomponent fluids (STROTOS et al.,



20

2011).

The main topics related to the thesis investigations are reported in this section and the

state-of-art of modelling phase change computationally are described according to the literature.

2.2.1 Computational simulations of phase change

Phase change is a relevant issue in industrial applications (HAELSSIG; THIBAULT; ETEMAD,

2010) since it plays a critical role in a large number of processes (WELCH; WILSON, 2000; JU-

RIC; TRYGGVASON, 1998). Boiling, for example, is a highly efficient way to transfer thermal

energy, notably in industrial thermal exchangers (NIKOLAYEV et al., 2016). Moreover, chemical

separation techniques, such as distillation, are characterized by simultaneous mass and energy

transfer (HAELSSIG; THIBAULT; ETEMAD, 2010). Droplet evaporation is another indubitable

important phenomenon presenting great importance for certain applications (STROTOS et al.,

2011), particularly burning liquid-fuels. The earlies phase change numerical works in the litera-

ture presented important aspects of mathematical and numerical modelling which can be seen

in (JURIC; TRYGGVASON, 1998) and (WELCH; WILSON, 2000). Later, several advances in

mathematical and numerical modelling have been achieved and reported in the literature with

even complex simulations for industrial applications (TANGUY et al., 2014).

Numerical simulations of phase change are relevant to collect information about flow char-

acteristics since experiments dealing with phase change are usually difficult to be correctly con-

ducted (PAN; WEIBEL; GARIMELLA, 2016) due to the small spatial scales (WELCH; WILSON,

2000) and the rapidity of phase change process (JURIC; TRYGGVASON, 1998). Phase change

simulations present several numerical obstacles (TRYGGVASON; LU, 2015). One of the most

challenging aspects is notably the physical properties discontinuities occuring at the interface

between two fluids (TSUI et al., 2014). In addition, the jump conditions across the interface of

fluid properties, such as pressure, represent an important aspect to be considered in phase change

simulations (TANGUY et al., 2014).

In order to impose jump conditions at the interface, a sharp or a diffuse interface treatment

can be used for each fluid variable. A sharp interface treatments usually provide an accurate

definition of a fluid variable across the interface, improving the resolution of the jump condition

(TANGUY; MENARD; BERLEMONT, 2007). On the other hand, the results from a diffuse



21

interface treatment generally presents a poor representation of the jump conditions at the interface

since the fluid properties are smoothed across the boundary between the two fluids (TANGUY et

al., 2014). The development of spurious currents at the interface is a typical consequence in the

velocity field due to the employment of a diffuse interface treatment for pressure.

Fictitious velocities emerges due to an erroneous estimation of the surface tension force

(HARVIE; DAVIDSON; RUDMAN, 2006) and pressure gradient according to the numerical

schemes employed (AKHTAR; KLEIS, 2013). In addition, the spurious currents tend to be in-

tensified in the phase change problems (TANGUY et al., 2014), then they should be particularly

controlled in these numerical simulations. The spurious currents generally appear close to the

interface when computations of a static bubble or droplet are performed with a diffuse interface

treatment for pressure due to the surface tension force calculation (FRANCOIS et al., 2006).

According to Tanguy et al. (2014), the spurious currents intensity increases when phase change

occurs due to the jump condition on the velocity field. In addition, the presence of spurious cur-

rents may be partly responsible for an inaccurate interface evolution in time since this boundary’s

advection is performed using the local velocity field.

Tanguy et al. (2014) have presented inaccurate results for a diffuse interface treatment

in phase change simulations. Other works in the literature using a diffuse interface treatment,

as Samkhaniani e Ansari (2016) and Lee, R. e Aute (2017) found numerical results with a low

deviation with the literature. More studies are necessary to understand the consequences of using

a diffuse interface treatment instead of a sharp strategy for one or more fluid variables in phase

change simulations. In addition, it’s appropriate to quantify these fictitious velocity field in the

phase change simulations in order to evaluate its consequences and to visualize the behavior of

the interface motion in time to confirm the acuracy of the numerical model employed.

As previously seen, modelling phase change computationally may be difficult due to the

small scales of time and space. Using dimensionless numbers it is possible to model even complex

problems by modifying some physical properties of the problems but preserving the main dimen-

sionless number related to the phenomenon represented. One important dimensionless number

in the phase change topic is the Jakob number. The Jakob number is defined according to the
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following expression:

Ja =
ρlCpl(T∞ − Tsat)

ρvL
(2.7)

where: T∞ is the temperature of reference far from the dispersed phase, Tsat is the saturation

temperature and L is the latent energy.

2.2.2 Jump conditions in phase change simulations

Literature presents two numerical strategies to impose jump conditions of fluid variables

across the interface, namely the Whole Domain formulation and the Jump Condition formulation

(TANGUY et al., 2014). The Whole Domain methodology uses a Delta Functions method (Delta),

in which the jump conditions are smoothed around the interface, smearing out discontinuities

terms. On the other hand, the Jump Condition formulation uses a Ghost Fluid Method (GFM)

in which the interface is treated imposing the jump conditions by ghost cells (TANGUY et al.,

2014; TANGUY; MENARD; BERLEMONT, 2007).

The Delta method computes the surface tension force using a continuum surface force

(CSF) model (BRACKBILL; KOTHE; ZEMACH, 1992) which usually generates spurious currents

due to a numerical imbalance between the pressure gradient and the related surface tension force

(FRANCOIS et al., 2006). Even though the presence of spurious currents has been extensively

observed by researchers since CSF conception, to date there has been little quantitative analysis

of their importance (HARVIE; DAVIDSON; RUDMAN, 2006), specially when applied to problems

involving phase change. Numerous approaches have been proposed to supress spurious currents;

although, several methods have difficulties to not induce unphysical flows due to the numerical

error in estimating the interfacial surface tension (PAN; WEIBEL; GARIMELLA, 2016). Con-

versely, the GFM approach computes the surface tension force without a smooth transition due

to a sharp jump condition for pressure at the interface (FRANCOIS et al., 2006).

2.2.3 Particular forces in phase change problems

Two forces were evaluated in the present work in order to better understand the importance

and consequences of modelling them in phase change problems, namely: the recoil force and the
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additional force due to the use of the non-divergent form of momentum equation. For the first

time in the literature of phase change, the additional force due to the use of the non-divergent

form of momentum equation is presented and quantified. The need of this additional term in

phase change problems is reserved to the use of the non-divergent form of momentum equation

and the occurence of mass transfer at the interface. Since the interface cells do not present null-

divergence velocity in phase change problems, the non-divergent form of momentum equation

naturally receives an additional term from the continuity equation. The details of this extra force

term are described in the mathematical model section; later, the computational results section

presents a quantitative analysis of the additional force term in phase change simulations.

During phase change, a recoil force appears at the interface between the two fluids due to

volume change (RAGHUPATHI; KANDLIKAR, 2016). The intensity of recoil force depends on

the mass density flux occuring at the interface. The recoil force may be defined according to the

following expression (NIKOLAYEV et al., 2016):

~frecoil = ṁ′′
2
(

1

ρv
− 1

ρl

)
~n (2.8)

where: ṁ′′ is the mass density flux (this term is described in the mathematical model section), ρ

is the specific mass and ~n is the normal vector.

The study of the recoil force in CFD investigations begun in the last 30 years (RAGHU-

PATHI; KANDLIKAR, 2016); however, few numerical works dealing with phase change have

quantified or evaluated the role and the importance of this force in momentum equation. The

term which models the influence of the recoil force is included in several works in the literature

as Lee, R. e Aute (2017), Tanguy et al. (2014), although is not even cited in other works such

as Welch e Wilson (2000), Akhtar e Kleis (2013). Until the present moment, few works have

studied the influence of the recoil force in phase change problems, such as Raghupathi e Kand-

likar (2016). The relevance of this term have been ignored in several works of the phase change

literature and at the same time it has been included in numerous numerical works without an

evaluation of its importance or influence. The knowledge of the relevance of the recoil force in

phase change problems may be important to understand the underlying mechanisms behind phase

change fundamentals. Therefore, in the present work, numerical simulations were performed to
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compute the magnitude of this force and its importance to phase change problems.

2.2.4 Adaptive mesh refinement (AMR) in phase change problems

It’s known that an accurate numerical solution of partial differential equations rely on the

discretization on a computational grid with sufficiently high resolution. On the other hand, the

simulations using uniform grids overly increase the computational costs due to a large domain

region unnecessarly refined. A uniform and fine grid is generally associated with a high compu-

tational cost which may limit the applicability of solving several complex problems of interest.

Conversely, the AMR methodology is a computational tool allowing the definition of a criteria

to guide a spatially non-uniform mesh refinement according to an indicator function, such as

vorticity, temperature gradient or interface presence.

AMR may provide a strategy to solve complex problems using lower computational re-

sources compared to uniform grids (AKHTAR; KLEIS, 2013) and it reduces the computational

power requirement without affecting the precision from the numerical results (NINGEGOWDA;

PREMACHANDRAN, 2014). The interest in using AMR in multiphase flows is particularly large

since the interface region frequently requires fine grids due to the calculation of high gradients and

the rest of the domain usually do not require fine grids (NIKOLOPOULOS; THEODORAKAKOS;

BERGELES, 2007).

Recently, phase change literature present several works which employ AMR strategy to

model some large scale or complex problems. In the present work the refinement criteria was

related to the interface location which the majority of works in the phase change literature does,

such as Akhtar e Kleis (2013). In order to compute a quantitative evaluation of the improvement

of time and computational power saved with AMR compared to uniform grids, an expression of

AMR efficiency is used to quantify the enhancement of AMR strategy from the literature.

2.2.5 Direct contact condensation

Modelling complex fluid dynamic problems to predict its main characteristics is important

to the improvement of a variety of industrial processes and engineering applications. Since the ma-

jority of these problems are related to non-isothermal flows as well as phase change phenomenon,

there is the need to include models to consider the influence of these particular effects. In the
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field of phase change phenomenon, the Computational Fluid Dynamic (CFD) has become a pro-

gressively important tool to solve complex flows for a variety of engineering applications (TRYG-

GVASON; SCARDOVELLI; ZALESKI, ). An important problem related to phase change is the

cross-flow of a liquid with a condensing vapour jet which is present in several industrial applica-

tions (ZOHOU et al., 2017; CLERX et al., 2011; PATEL; TANSKANEN; R.KYRKI-RAJAMÃ¤KI,

2014). The later problem is part of a well-known field in the phase change literature which is

denominated direct contact condensation (ZARE; JAMALKHOO; PASSANDIDEH-FARD, 2018).

Direct contact condensation (DCC) is the process where saturated vapour contacts and condenses

directly through a subcooled liquid interface (PATEL; TANSKANEN; R.KYRKI-RAJAMÃ¤KI,

2014). The DCC phenomenon is deeply complex and; modelling it in a cross-flow becomes

even more challenging, since the fundamental processes are still few understood (ZARE; JA-

MALKHOO; PASSANDIDEH-FARD, 2018).

Jets in cross-flow are widely encountered in a large variety of industrial applications, such as

pipe tee mixers. A recurrent case of cross-flow is the application of condensing jets of a saturated

vapor injected into a flowing liquid (CLERX; GELD; KUERTEN, 2013; XU et al., 2016). Direct

steam injection is an efficient procedure to heat fluid in a fast way (WISSEN; SCHREEL; GELD,

2005), specially when a high mixing rate is needed (CLERX; GELD; KUERTEN, 2013). The

technique of systems with direct heating via steam injection is widely used by the dairy industry

for the sterilization of milk products (CLERX et al., 2011).

Experiments modelling condensing jets are particularly difficult to be performed since a

number of expensive and complex equipments are necessary to control the thermodynamic condi-

tions as well as to collect the data to future analysis (TRYGGVASON; SCARDOVELLI; ZALESKI,

). Most of the information found in the literature related to condensing jets studied the jet cen-

terline trajectory using the temperature or the velocity fields (CLERX; GELD; KUERTEN, 2013;

CLERX et al., 2011). Other works, were focused on the axial velocity and pressure distribution

as well as the jet penetration length (ZOHOU et al., 2017). There is few information about the

condensing jet characteristics and specially when subjected to cross-flow (ZARE; JAMALKHOO;

PASSANDIDEH-FARD, 2018); in addition, most of the previous numerical works presents limi-

tations, such as performing simulations in 2D (ZOHOU et al., 2017; TANSKANEN et al., 2014).

The general physical behavior of the case of condensing jet in cross-flow is well known in
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the literature which usually reports the formation of three different regions when steam is injected

in the domain. The first region is composed of pure steam right next to the nozzle exit which is

commonly called steam plume due to its shape. The second region is generally named interface

since it consists of a small region next to the plume where the condensation process is more

intense due to the larger temperature gradients (CLERX; GELD; KUERTEN, 2013). Finally, the

third region represents hot liquid with small vapour bubbles, comprising the most part of the

domain (ZARE; JAMALKHOO; PASSANDIDEH-FARD, 2018).

The flow characteristics of the condensing jet in cross-flow modifies according to the steam

mass flux imposed (CLERX; GELD; KUERTEN, 2013). At high steam mass fluxes, the steam

forms an oscillatory or a stable vapor which ends at a certain distance from the injector. At

low steam mass flux, the condensing steam forms a vapor pocket which continuosly grows and

collapses at the steam injection hole. At very low mass flux, the steam-liquid interface is advected

periodically in and out of the injection hole, characterizing the chugging regime (CLERX et al.,

2011).

Recently, the literature has presenting relevant phase change studies with accurate results

using computational models, namely the movement of bubbles (TANGUY et al., 2014) or even

jets (ZOHOU et al., 2017) and sprays (KITANO et al., 2014). The numerical and computational

models found in the phase change literature allows the performance of simulations on even large

domains, however relevant information at the microscale is inevitably lost.



CHAPTER III

MATHEMATICAL MODEL

In this chapter, the mathematical model used for non-isothermal flows without and with

phase change is described. First, the mathematical model used for the cases without phase

change is reported. Then, the mathematical formulation used for modelling non-isothermal flows

with phase change is presented.

3.1 Non-isothermal flows without phase change

In this section, the mathematical model used for non-isothermal flows without phase change

is described. Two different approaches were employed to model non-isothermal flows without

phase change, namely the OB and NOB models.

3.1.1 Formulation using the Oberbeck-Boussinesq approximation (OB)

In OB, the continuity, momentum, and energy equations are given by the following expres-

sions (GRAY; GIORDINI, 1976):

~∇.~v = 0, (3.1)
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ρ0
D~v

Dt
= −~∇p+ (ρ− ρ0)~g + ~∇.

[
µ
(
~∇~v + (~∇~v)T

)]
, (3.2)

DT

Dt
= α∇2T, (3.3)

where v represents the velocity, ρ0 represents the specific mass of reference, p is the pressure, ρ

represents the specific mass, and µ is the dynamic viscosity, T represents the temperature and α

is the thermal diffusivity.

The following thermodynamic relation was employed in the momentum equation to com-

pute variable specific mass effects as a function of the temperature (WANG; ZHANG; GUO,

2017):

(ρ− ρ0)~g = −ρ0β(T − T0)~g, (3.4)

where T0 represents the temperature of reference and β is the volumetric expansion coefficient.

The total variation of ρ is given by dρ = ∂ρ
∂T
|p=ctedT + ∂ρ

δp
|T=ctedp = ∂ρ

∂T
|p=ctedT . Equation 4 can

be found by integrating this last expression and taking β = 1
T

and M,R and p constant.

3.1.2 Formulation using the new temperature-dependent specific mass approach (NOB)

The non-Oberbeck–Boussinesq (NOB) comprises a relaxation of OB restrictions by allowing

a variable specific mass in all the terms of the momentum and energy equations (MONTIEL-

GONZALEZ et al., 2015). In addition, the limitation of the Oberbeck–Boussinesq approximation

(OB) to single-phase flows is overcome. However, the mathematical formulation introduced in

the present thesis still remains an approximation since the continuity equation is solved as null

velocity-divergent (DUARTE et al., 2018).

The specific mass is calculated based on the temperature field and a divergence free-velocity

is imposed on the NOB due to the small effects of variations of the specific mass in the continuity

equation, as previously demonstrated by the OB. The purpose of the NOB is to overcome the
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OB’s restriction to single-phase flows, as well as to model the effects of specific mass variations

more accurately, especially in problems with prominent thermal transfer effects, as occur in the

turbulent regime. Since the effects of a variable specific mass in the momentum and energy

equations were taken into account by the NOB, it was expected that the thermal transfer results

of the NOB would be improved compared with those of the OB (DUARTE et al., 2018).

In NOB, the continuity, momentum, and energy equations are given by the following ex-

pressions, as seen in Markatos e Pericleous (1984):

~∇.~v = 0, (3.5)

ρ
D~v

Dt
= −~∇p+ ~∇.

[
µ
(
~∇~v + (~∇~v)T

)]
+ ρ~g, (3.6)

ρCp
DT

Dt
= ∇.(k∇T ). (3.7)

The specific mass is calculated using the ideal gas law, given by the following equation (POLING;

PRAUSNITZ; O’CONNELL, 2001):

ρ =
pM

RT
, (3.8)

where M is the molar mass and R is the gas constant.

A constant atmospheric pressure was assumed since the experimental data available in the

literature used for validation has assumed an imposed constant pressure in order to conduct the

experiments. Details are described in Leong, Hollands e Brunger (1999).

3.2 Non-isothermal flows with phase change

In this section, the mathematical formulation used to model non-isothermal flows with

phase change is presented. First, the general mathematical formulation is described; then, an



30

issue related to the use of the non-divergent form of the momentum equation is described.

3.2.1 Description of the general mathematical formulation

The mathematical formulation was employed in the non-divergent form as recommended

by Deen e Kuipers (2013). Putting ρCp inside the substantial derivative would lead to a non-

physical change of the enthalpy if two materials next to each other present the same temperature

but different ρCp, as demonstrated by Deen e Kuipers (2013). Therefore, the non-divergent form

was used in the numerical simulations in order to avoid non-physical issues.

In order to compute the amount of phase change occuring at the interface, the present

model uses the calculation of the mass density flux (ṁ′′). The mass density flux is included in

the mathematical formulation using source terms in the continuity and energy equations and it

is defined according to the following expression (TANGUY et al., 2014):

ṁ′′ =
kl~∇Tl.~n− kv ~∇Tv.~n

L
(3.9)

where: k is the thermal conductity, L is the latent energy, T is the temperature and ~n is the

normal vector.

Phase change problems present null velocity-divergent in the bulk of each phase and at the

interface there is a source term for mass balance (JURIC; TRYGGVASON, 1998). The continuity

equation is expressed using a Dirac delta function in the right-hand-side to account the source

term only over the interface, according to the following equation (TANGUY et al., 2014):

~∇.~v =

∫
Γ

(
1

ρv
− 1

ρl

)
ṁ′′δ( ~xk)dΓ (3.10)

where: ~v is the velocity, ρ is the specific mass, δ represents the Dirac Delta function, ~xk is the

position of the interface Γ. Considering low Mach number flows with low temperature variations,

it can be expected the divergence-free condition (except at the interface when phase changes

occurs).
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The momentum balance equation is given by (JURIC; TRYGGVASON, 1998):

ρ

(
∂~v

∂t
+ ~∇.(~v~v)

)
= −~∇p+ ~∇.

[
µ
(
~∇~v + (~∇~v)T

)]
+ ρ~g + ~fst + ~frecoil (3.11)

where: p is the pressure, µ is the dynamic viscosity, ~g is the gravity acceleration, ~fst is the source

term to account the surface tension effects and ~frecoil is the source term which computes the

recoil force effects at the interface.

The effects of surface tension are included in the formulation using the model of Brackbill,

Kothe e Zemach (1992). This model specifies the surface tension force per unit volume as:

~fst =
ρσκ~∇α

1
2
(ρl − ρv)

(3.12)

where σ is the surface tension coefficient, κ is the local curvature and α is the volume fraction

of the dispersed phase.

Since this study deals with isobaric phenomena which only imply weak pressure gradients

due to dynamical effects, the energy equation was formulated using the internal energy as primitive

variable, as recommended by Tanguy et al. (2014). The energy equation also presents a source

term using a Dirac delta function to model the energy transfered at the interface due to phase

change (TANGUY et al., 2014):

ρCp
DT

Dt
= ∇.(k∇T )−

∫
Γ

ṁ′′Lδ( ~xk)dΓ (3.13)

where: Cp is the specific thermal energy. The additional term in the energy equation corresponds

to the amount of energy employed in phase change whenever a corresponding mass source term

was also added. The source term in the energy equation is important to assure the correct

calculations of the thermal fluxes at the interface (WELCH; WILSON, 2000) which is used to

compute the mass density flux.
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3.2.2 Additional term in the non-divergent form of momentum equation

The mass balance at the bulk of each phase is given by the following expression (LEE; R.;

AUTE, 2017):

∂ (αρ)

∂t
+ ~∇. (αρ~v) = 0, (3.14)

where α presents the volume fraction from the continuos phase. Since the flow is incompressible,

the mass balance at each phase is given by the following equation (LEE; R.; AUTE, 2017):

~∇.~v = 0. (3.15)

On the other hand, considering a fluid particle placed at the interface, an additional source term

emerges due to phase change in order to consider the variations of specific mass in these cells

during the volume expansion or contraction. Considering incompressible flow, the mass balance

includes a source term at the interface cells given by the following expression:

~∇.~v =

∫
Γ

(
1

ρv
− 1

ρl

)
ṁ′′δ( ~xk) dΓ. (3.16)

An interesting remark about the momentum equation in phase change problems which has

not yet been described in the literature is the appearence of an additional force term in the non-

divergent form compared to the divergent form. An additional force appears due to the non-zero

velocity divergence in the continuity equation at the interface cells. Until the present moment,

the literature has not pointed out the difference between the divergent or non-divergent forms

of the momentum equation. Next, this difference will be described and quantified later in the

numerical results section.

Writing the momentum equation in the not divergent form from the divergent form, the

expression of the continuity equation appears naturally due to the product rule for the derivatives,

as shown in the following expression:

∂ (ρ~v)

∂t
+ ~∇. (ρ~v)~v = ρ

[
∂~v

∂t
+
(
~v.~∇

)
~v

]
+ ~v

[
∂ρ

∂t
+ ~∇. (ρ~v)

]
︸ ︷︷ ︸

extra−term

= ρ~g + ~∇.σ̄ + ~fσ. (3.17)



33

Since the continuity equation is non-zero over the interface cells, an additional term appears at

the interface cells due to phase change. This additional force is modelled according to the mass

balance source term which is defined in the following expression only at the interface:

ρ

[
∂~v

∂t
+
(
~v.~∇

)
~v

]
+ ~v

[
ρ

∫
Γ

(
1

ρv
− 1

ρl

)
ṁ′′δ( ~xk) dΓ

]
︸ ︷︷ ︸

extra−term

= ρ~g + ~∇.σ̄ + ~fσ. (3.18)

Therefore, the non-divergent form naturally imposes an additional force due to phase change

which is not explicitly present in the divergent form of momentum equation. The simulations in

the present paper were perfomed in the non-divergent form and tests were conducted comparing

the effects of this additional force in the non-divergent form of momentum equation.

3.2.3 Turbulence model

Turbulence modeling was performed using Large Eddy Simulation (LES) and the turbulence

closure was done via the dynamic model of Germano et al. (1991) and Lilly (1992). The dynamic

turbulence model used was first proposed by Germano et al. (1991) and then modified by Lilly

(1992).

3.2.4 Interface location and transport

The Volume of Fluid (VOF) method (HIRT; NICHOLS, 1981) was employed to define the

location and transport of the interface in the two-phase flows simulations. The VOF method

employed in the MFSim code uses the PLIC algorithm (WACHEM; SCHOUTEN, 2002).

The VOF model employs a color function ϕ(~x, t) to indicate the fractional amount of fluid

present at a certain position ~x and time t. The color function ϕ was calculated using the following

equation (WACHEM; SCHOUTEN, 2002):

∂ϕ

∂t
+ [~vnormal.~∇ϕ] = 0. (3.19)

The surface tension effects are included in the formulation using Brackbill, Kothe e Zemach
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(1992) model. This model specifies surface tension force per unit of volume as:

−→
f st(~x, t) =

ρσκ∇φ
1
2
(ρliq + ρvap)

, (3.20)



CHAPTER IV

NUMERICAL AND COMPUTATIONAL MODEL

4.1 Numerical model

The partial differential equations were solved with a standard finite volume method on a

staggered rectangular three-dimensional grid. Velocity–pressure coupling was accomplished using

a two-step projection method (CHORIN, 1968) with an explicit treatment for advection terms

and an implicit treatment for pressure and diffusion terms. The Barton scheme (CENTRELLA;

WILSON, 1984) was used for the spatial discretization of the advective terms.

4.1.1 Phase change model

The phase change model employs an approach similar to Tanguy et al. (2014) in order

to account for an adequate mass, momentum, and energy transport across the interface. The

phase change amount is predicted using the thermal transfer information at the interface and

considering the energy source term as the latent energy relevant to the phase change in the

interface cells when solving the energy equation (KIM; JEON; PARK, 2017).

In order to compute the temperature gradients at the interface to estimate the mass

density flux, the interface is assumed to be at saturation temperature and the volume of fluid

(VOF) method is used to construct the proper thermal flux, as previously described by Welch

e Wilson (2000). The interface temperature was assumed to be constant in time, which is a
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common simplification appropriate for most cases with low effects of thermal resistance and

pressure jump, as previously investigated by Juric e Tryggvason (1998). Much of the phase

change literature has employed this simplification, which is adequate for modeling classical and

even complex problems, cf. Tanguy et al. (2014) and Pan, Weibel e Garimella (2016). Therefore,

the interface temperature variations in time have been ignored.

If no phase change occurs, the interface velocity is equal to the fluid velocity at the interface.

Otherwise, the interface velocity should be computed with the fluid motion and using a phase

change component (TANGUY et al., 2014; LEE; R.; AUTE, 2017), as shown in the following

expression:

~vnormal = ~vfluid−motion + ~vphase−change. (4.1)

The velocity component due to a phase change is defined according to the mass density

flux previously calculated (LEE; R.; AUTE, 2017).

~vphase−change = ṁ′′
(

1

ρv
− 1

ρl

)
~n (4.2)

The imposition of a constant mass density flux allows an exact solution for the interface

velocity when the fluid motion does not affect the interface position. Therefore, expression 4.3

is useful for the purpose of validating static problems, as previously described by Tanguy et al.

(2014) and Lee, R. e Aute (2017).

4.1.2 Interface treatment for pressure

The whole domain formulation treats the interface as diffuse, using the Delta function

method (Delta). The earliest work on phase change used the Delta method, described in Welch

e Wilson (2000) and Juric e Tryggvason (1998). In this approach, the jump conditions at the

interface are expressed by introducing singular source terms in the equations.

In the Delta method, an additional source term is placed for the temporal discretization of
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the momentum equation according to the following algorithm (TANGUY et al., 2014):

~v∗ = ~vn −∆t

[
~vn.~∇~vn −

~∇.(2µSn)

ρn+1
+
σκ~n

ρn+1
− ~g

ρn+1
−
~frecoil
ρn+1

]
, (4.3)

~∇.

(
~∇pn+1

ρn+1

)
=
~∇.~v∗

∆t
−

∫
Γ

(
1
ρv
− 1

ρl

)
ṁ′′δ( ~xk)dΓ

∆t
, (4.4)

~vn+1 = ~v∗ −∆t
~∇pn+1

ρn+1
, (4.5)

where S is the deformation tensor.

On the other hand, the Jump Condition formulation treats the interface as sharp by using

the Ghost Fluid Method (GFM), described in Liu, Fedkiw e Kang (2000), who developed a Ghost

Fluid Method (GFM) to capture sharp interface boundary conditions in multiphase flows. They

proposed a boundary condition capturing approach for the variable coefficient Poisson equation

on domains with an embedded interface. In this approach, the equations are written in each

phase separately and additional jump conditions have to be imposed at the interface to respect

mass conservation. The GFM treats the Poisson equation with both variable coefficients and a

discontinuous solution can be obtained, according to Liu, Fedkiw e Kang (2000); alternatively,

the Delta method uses a projection method to solve the momentum and Poisson equations with

a source term.

Finally, in the GFM method, the pressure must respect the following jump condition (TAN-

GUY et al., 2014):

[p]Γ = σκ−
(

1

ρv
− 1

ρl

)
ṁ2′′ , (4.6)

where the second term represents the recoil pressure occuring with a phase change (TANGUY et

al., 2014). This term represents the pressure jump condition due to a recoil force presence at the

interface. A vapor recoil force appears due to the fluid’s expansion while transforming liquid to
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vapor (NIKOLAYEV et al., 2016).

4.2 Computational model

The transient equations were solved according to the finite volume method using the

MFSim program, which has been developed over the last ten years in cooperation with a large

research group and with the scientific support of Petrobras, a semi-public Brazilian multinational

corporation in the petroleum industry, headquartered in Rio de Janeiro, Brazil.

The code MFSim provides a powerful computational plataform allowing any user to solve

even complex engineering problems. The code presents the energy and momentum equations in

the divergent and non-divergent form. In the last year, a module for solving compressible flows

has been added to MFSim code, allowing the user to perform simulations with the complete

continuity equation. The MFSim code allows the user to include any immersed boundary inside

the computational domain using the method of Peskin (PESKIN, 1982).

The general algorithm of MFSim code comprises the following steps:

1. Fluid physical properties definition in the computational domain;

2. Interface advection using VOF according to the PLIC algorithm;

3. Definition of the new position of the interface;

4. Calculation of the estimated velocity field according to the fractional step method previously

described;

5. Calculation of the pressure correction field;

6. Correction of the velocity field using the pressure correction;

7. Solution the energy equation.

The code MFSim is written mainly using the language Fortran 90 and some particular

modules are writeen in C language. In the last year, a graphic interface was created to the MFSim

code in order to allow users without any know-how perform computational simulations. The code

is continuosly in progress, since it is the product of multiple masters and thesis works. At this
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moment, there are about 20 undergraduate and graduate students working on the development of

the code. Related to the topic of the present thesis, a module of phase change using a lagrangian

approach is also being developed by another student.

The present thesis has contributed to the creation of the energy equation module as well as

the phase change module using an eulerian approach. All simulations were performed in a parallel

ambient in the fluid mechanics laboratory cluster at the Federal University of Uberlândia, Brazil.

The code uses single and multi-block structured meshes and a variable time step. The magnitude

of the allowable time step for stable calculations is determined from the convective and viscous

terms. The constraint is defined according to the CFL (Courant-Friedrichs-Lewis condition) and

the mesh size (AKHTAR; KLEIS, 2013).

The tolerance of the numerical model in providing a solution to the continuity, momentum,

and energy equations was 10−6. The code MFSim uses a composite grid, which is block-structured

and is defined as an hierarchical sequence of nested, progressively finer grid levels. Each level

is formed by a set of non-overlapping parallelepipedal grid blocks aligned with the cartesian

coordinate axes and the refinement ratio between two successive levels is two. If the user choose

to use dynamic mesh, the mesh is replaced dynamically to ensure that the region of interest

represented by the mesh refinement criteria is covered with the finest level at all times. The

figure 4.1 illustrates a simulation of a boiling liquid jet impact on an immersed conical surface.

(a) (b)

Figure 4.1: Boiling liquid jet with an immersed conical surface at time t=0.17s (a) and
t=1.37s (b).
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The phase change algorithm is written separately in a module of the MFSim code; however,

the phase change model has connections to the algorithm of the thermal energy equation, the

Poisson equation and VOF algorithm. The general algorithm from the phase change module

consists of the following steps:

1. Calculation of the mass density flux

2. Calculation of the additional velocity components due to phase change

3. Incorporation of the additional velocity field due to phase change in the VOF advection

4. Incorporation of the mass density flux in the source terms in the Poisson equation

5. Incorporation of the mass density flux in the energy equation

The figure 4.2 illustrates the general nomenclature adopted to the domain faces according

to geographic orientation; in addition, the coordinate axis components are also presented.

Figure 4.2: Three-dimensional view of the general computational domain of the simulations
performed in the present work.



CHAPTER V

RESULTS

This chapter reports the results obtanied in the present thesis. All the results were presented

and discussed according to literature previous results. The main results were here described in

details; for further information and to cite the work found here, the readers are invited to read

the papers published by the authors (DOI information is provided in the introduction chapter).

This chapter presents nine sections, namely:

1. Verification of the thermal energy equation;

2. Validation of the thermal energy equation;

3. Benchmark between OB and NOB;

4. Influence of dimensionless parameters in non-isothermal single-phase flows;

5. Influence of dimensionless parameters in non-isothermal two-phase flows;

6. Validation of the phase change model;

7. Investigation about the spurious currents in phase change problems;

8. Investigation about particular forces in phase change problems;

9. Case study of a Direct Contact Condensation (DCC) with a jet in cross-flow.



42

5.1 Numerical verification of the thermal energy equation in the MFSim code

The first step in the present work was the implementation of the thermal energy equation

in the MFSim code. This implementation was based on the module of the transport equation of

a generical scalar, which already was available in the MFSim code. Therefore, a new module was

created in the MFSim code to hold the thermal energy equation.

Initially, the thermal energy equation was implemented in the divergent form and some

simulations were conducted. The thermal energy equation in the divergent form is given by the

following expression.

∂(ρCpT )

∂t
+ ~∇.(ρCpT~v) = ~∇.(k~∇T ) + Sreac + Stemp (5.1)

where ~v is the velocity, ρ is the specific mass, T is the temperature, k is the thermal conductivity,

Cp is the specific thermal energy, Sreac is the reactional source term to account the phase change

process and Stemp is the source term used to numerical verification procedure.

According to the literature review, it was suggested to employ the non-divergent form of

the thermal energy equation as seen on the phase change works of Tanguy et al. (2014), Welch

e Wilson (2000) and Lee, R. e Aute (2017). According to Deen e Kuipers (2013), the divergent

form of the energy equation may pose some numerical difficulties since the divergent form of the

thermal energy equation may lead to inconsistent physical generation of entrophy, and then a

non-divergent form was needed.

The non-divergent form of the thermal energy equation was implemented and all the sim-

ulations presented in the present thesis employed these mathematical formulation as suggested

by the literature. The non-divergent form of the thermal energy equation implemented in the

MFSim code is given by the following expression:

ρCp
∂T

∂t
+ ρCp~∇.(T~v) = ~∇.(k~∇T ) + Sreac + Stemp. (5.2)

In this section, the verification procedure will be presented for the thermal energy equation

implemented in the MFSim code. The verification procedure is the act of checking if a particular

equation included in a code has been correctly written. Since the MFSim code uses a composite
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grid, the verification process is conducted using more than one mesh level to test the code

considering non-uniform grids.

The implementation of the thermal energy equation was verified by a procedure using the

method of manufactured solutions in a cubic domain. The method of manufactured solutions is

a technique by which numerical methods within computational codes can be verified to ensure

that they have been implemented correctly.

The procedure of numerical verification is based on the calculation of the order of con-

vergence of a given variable of interest. As the temperature is calculated using a second order

numerical scheme, it was expected to obtain order of convergence of two. The order of conver-

gence of a given method is the quotient of the error (between exact and numerical solution) by

the refinement ratio (quotient of the number of cells used in the more refined mesh by the less

refined mesh). The code verification was conducted according to Roache (1998).

In order to perform the verification procedure, an analytical solution was proposed for all the

fluid and flow variables. The expressions defined to each flow variable were selected to preserve

the flow physical characteristics as well as to ensure relevant variations in time and space, trying

to test the variations which the variable would be subjected in a common physical problem to be

simulated later. Therefore, all the fluid properties could not assume negative or null values and

each variable was subjected to relevant variations inside the domain and through the simulation

time.

The figure 5.1 illustrates the u-velocity component field at the simulation’s final time.

The exact analytical solutions proposed for the velocities componenents, pressure, tem-

perature, specific mass, dynamic viscosity, specific heat capacity and thermal conductivity are

presented by the following expressions, respectively:

ue(~x, t) = [sin(a1πx+ a2πy + a3πz + a4t)]
2, (5.3)

ve(~x, t) = −[cos(a1πx+ a2πy + a3πz + a4t)]
2, (5.4)
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Figure 5.1: Three-dimensional view of the u-velocity component field at 10.0s.

we(~x, t) =
a1(cos(a1πx+ a2πy + a3πz + a4t)

2)

a3

+

a2(cos(a1πx+ a2πy + a3πz + a4t)
2)

a3

,

(5.5)

pe(~x, t) = 1.1{[cos(a1πx+ a2πy + a3πz + a4t)]
2}, (5.6)

Te(~x, t) = sin(a1πx+ a2πy + a3πz)cos(a4t), (5.7)

ρe(~x, t) = 1.2{[a1 + a2(sin(a1πx+ a2πy + a3πz + a4t)]
2}, (5.8)

µe(~x, t) = 1.3{[cos(a1πx+ a2πy + a3πz + a4t)]
2}, (5.9)
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Cpe(~x, t) = 1.4{[cos(a1πx+ a2πy + a3πz + a4t)]
2}, (5.10)

ke(~x, t) = 1.5{[cos(a1πx+ a2πy + a3πz + a4t)]
2}, (5.11)

where a1, a2 and a3 are 1 and a4 is 2.

The verification was performed with structured non-uniform grids with two physical levels

and the bottom level presented the configuration of 8×8×8, 16×16×16, 32×32×32, 64×64×64,

128 × 128 × 128 cells. For each mesh configuration, the error between the numerical and the

exact solution was calculated in all time-steps. In this study, the error was estimated by the L2

norm, which was calculated using the following expression for a generic variable x:

L2(x) =

√√√√ 1

NxNyNz

Nz∑
k=1

Ny∑
j=1

Nx∑
i=1

(xn − xe)2
ijk. (5.12)

where Nx, Ny and Nz are the number of cells used in spatial discretization, xn is the numerical

solution and xe is the exact solution for a generic variable x.

The error estimation according to L2 norm and the convergence ratio between a fine grid

and a coarse grid were then calculated and analyzed at the simulation final time (10s). As the

grids configurations were sucessively refined by ratio of 2 and the temperature uses a second order

scheme, it was expected to have convergence ratio of approximately 4 and order of convergence

of 2.

The table 5.1 presents the grid configuration at the bottom physical level, the error between

numerical and exact solution, the convergence ratio and the order of convergence.

According to the table 5.1, the error is sucessively reduced as the mesh becomes more

refined and the order of convergence was approximately 2 for all the tests performed, indicating

that the thermal energy equation was correctly coded in the MFSim code. Therefore, the MFSim

code has been verified and one can conclude that it solves correctly the implemented thermal
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Table 5.1: Grid configuration, error, refinement ratio, convergence ratio and order of con-
vergence for temperature.

Grid Error Refinement ratio Convergence ratio Order of convergence
8× 8× 8 2.0513E-002 - - -
16× 16× 16 4.9221E-003 2 4.16 2.08
32× 32× 32 1.2228E-003 2 4.03 2.02
64× 64× 64 3.0598E-004 2 4.01 2.01
128× 128× 128 7.6630E-005 2 4.00 2.00

energy equation since it presents the expected order of convergence from the numerical method

used.

5.2 Validation of the thermal energy equation in the MFSim code

In this section, four validation cases will be presented. First, the OB and NOB approaches

were validated. The second case presents the simulation of natural convection in the classic

(Differentially heated cavity) DHC problem. Then the third validation case shows the results

from the simulation of natural convection with a bubble inside the cavity. Finally, the fourth

validation case presents the performance of a simulation of the Rayleigh-Taylor instability in

non-isothermal flow.

5.2.1 Validation case 1: OB and NOB models

Natural convection simulations in a cubic cavity assuming a Rayleigh number of 1.89×105

were performed using OB and NOB for validation purposes. Temperature profiles were plotted

and then compared with the results of Krane and Jessee’s experimental study (KRANE; JESSEE,

1983) and the numerical results of Padilla, Lourenco e Silveira-Neto (2013).

OB and NOB models were proposed for incompressible flows; therefore, the continuity

equation represents irrelevant specific mass variations, as previously seen in Markatos e Pericleous

(1984) and in Montiel-Gonzalez et al. (2015). During the computational simulation process, the

velocity divergence was constantly evaluated in order to preserve the divergence-free velocity

condition and it was never higher than 10−11 s−1.

A uniform temperature field was imposed on the east (Thigh) and west (Tlow) walls. The

south and north walls were considered adiabatic, and a linear temperature field, given by the
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Figure 5.2: Dimesionless temperature along the line T ∗(x, L/2, L/2) and T ∗(L/2, y, L/2),
respectively, for Ra = 1.89× 105 with OB

expression T (x, y, 0) = T (x, y, L) = Thigh − (Thigh − Tlow) x
L

, was imposed on the bottom and

top walls.

Two dimensionless temperature lines from inside the domain were extracted from the nu-

merical results, namely, T ∗(x, L/2, L/2) and T ∗(L/2, y, L/2). Figures 5.2-a and 5.3-a present the

dimensionless temperature along the line T ∗(x, L/2, L/2) for OB and NOB, respectively. Like-

wise, Figs 5.2-b and 5.3-b present the dimensionless temperature along the line T ∗(L/2, y, L/2)

for OB and NOB, respectively. In order to demonstrate the agreement of the results with the liter-

ature, Figs. 5.2 and 5.3 present the numerical results from three different meshes. The expression

for the dimensionless temperature is given by

T ∗(dimensionless) =
T

Teast − Twest
, (5.13)

where Teast represents the temperature at the east wall and Twest represents the temperature at

the west wall.

The simulations using OB demonstrated good agreement with the experimental data of

Krane e Jessee (1983) and with the numerical data of Padilla, Lourenco e Silveira-Neto (2013),

as observed in Fig.5.2. The numerical results from the present paper are slightly closer to those

reported in the numerical work of Padilla, Lourenco e Silveira-Neto (2013) than those from the

experimental work of Krane e Jessee (1983). The NOB results also presented good agreement

with Krane e Jessee (1983) and Padilla, Lourenco e Silveira-Neto (2013), as shown in Fig.5.3.

The average relative difference (ε) between the experimental data and the computed values
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Figure 5.3: Dimensionless temperature along the line T ∗(x, L/2, L/2) and T ∗(L/2, y, L/2),
respectively, for Ra = 1.89× 105 with NOB

Table 5.2: Average relative difference (ε) between OB and NOB from experimental data of
Krane e Jessee (1983)

Mesh configuration ε (%) using NOB ε (%) using OB
8× 8× 8 6.3 6.5
16× 16× 16 5.1 5.1
32× 32× 32 4.9 4.9

from the present work are shown in Table 5.2. According to the results seen in Table 5.2, OB and

NOB provide numerical results with low deviation from the experimental data of Krane e Jessee

(1983). In addition, the maximum difference between the experimental data and NOB was 7.3%,

and 7.3% between OB and Krane e Jessee (1983) for the most fine grid.

In order to present a grid quality analysis, the dimensionless temperatures obtained for

the three different meshes were compared. The temperature from the line T ∗(x, L/2, L/2) was

chosen for the comparison between the different meshes. Tables 5.3 and 5.4 show the data for

x/L = 0.2, x/L = 0.5 and x/L = 0.8 using NOB and OB, respectively. The relative difference

between two sucessive grid configurations (ψ) is also presented in tables 5.3 and 5.4.

Since the temperature field is solved using a second-order scheme, it is expected that the

error found for a grid with size ζ is four times lower than the error obtanied for a grid with size 2

ζ. When the relative difference between the error obtanied for two grids is significantly low and

its values are close to the reference, it is assumed that this grid present good quality. As seen in

table 5.3 and 5.4, the grid configuration of 32× 32× 32 present a great quality since its values
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Table 5.3: Dimensionless temperature for NOB for x/L = 0.2, x/L = 0.5 and x/L = 0.8
from the line T ∗(x, L/2, L/2)

Mesh configuration x/L = 0.2 ψ(%) x/L = 0.5 ψ(%) x/L = 0.8 ψ(%)
8× 8× 8 0.52 - 0.50 - 0.48 -
16× 16× 16 0.47 10.63 0.50 0 0.52 7.69
32× 32× 32 0.46 2.17 0.50 0 0.53 1.88

Table 5.4: Dimensionless temperature for OB for x/L = 0.2, x/L = 0.5 and x/L = 0.8 from
the line T ∗(x, L/2, L/2)

Mesh configuration x/L = 0.2 ψ(%) x/L = 0.5 ψ(%) x/L = 0.8 ψ(%)
8× 8× 8 0.51 - 0.50 - 0.49 -
16× 16× 16 0.47 8.51 0.50 0 0.53 7.54
32× 32× 32 0.46 2.17 0.50 0 0.53 0

are very close to the experimental data from the literature (seen in table 5.2), as well as, the

relative difference between the error with the courser grid is not relevant compared to the grid of

32 × 32 × 32. Therefore, based on the numerical results obtained in the simulations presented

in this section, it can be concluded that both formulations are in accordance with the literature,

assuring the accuracy of the numerical methods employed.

Finally, the mean Nusselt number at the east wall was computed in order to compare it

with the data in the literature. Although Krane e Jessee (1983) and Padilla, Lourenco e Silveira-

Neto (2013) did not calculate the Nusselt number for Ra = 1.89 × 105, Leong, Hollands e

Brunger (1999) presented an experimental Nusselt number value for Ra = 1.0×105 using similar

conditions. The Nusselt number found by Leong, Hollands e Brunger (1999) was 3.10 and, in

the present paper, was 3.17 for OB and NOB. Hence, the mean Nusselt number is close to the

expected value despite the small difference in the Rayleigh number between the literature and

the present paper.

5.2.2 Validation case 2: Simulations of natural convection in single-phase flows

Natural convection in single-phase flow was examined using the Oberbeck-Boussinesq ap-

proximation. The simulations were performed considering Prandtl number of 0.71 and a range of
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Rayleigh numbers from Ra = 1.0× 103 to Ra = 1.0× 106.

Null velocities and null pressure gradient were imposed to all the domain faces. The east

and west walls have, respectively, a uniform high and low temperature. The south, north, bottom

and top walls are adiabatic.

Isotherms were analyzed in the central xz-plane in the figure 5.4 and compared qualitatively

to Wan, Patnaik e Wei (2001) in the figure 5.5.

(a) (b) (c) (d)

Figure 5.4: Isotherms of the present study at central xz-plane for Pr = 0.71 and: (a)
Ra=1.0× 103; (b) Ra=1.0× 104; (c) Ra=1.0× 105 and (d) Ra=1.0× 106.

(a) (b) (c) (d)

Figure 5.5: Isotherms of the Wan, Patnaik e Wei (2001) at central xz-plane for Pr = 0.71
and: (a) Ra=1.0× 103; (b) Ra=1.0× 104; (c) Ra=1.0× 105 and (d) Ra=1.0× 106.

The isotherms from the present work (figure 5.4) were very similar from those found by

Wan, Patnaik e Wei (2001) (figure 5.5). As reported by Padilla, Lourenco e Silveira-Neto (2013),

it was observed that the isotherms topology became more complex as Rayleigh number increases.

The spatial mean Nusselt number at the east wall was calculated and a good agreement

was found between the present work and the literature previous works, as shown at the table 5.5.

Since the Prandtl number was considered 0.71 in all the simulations and the Rayleigh num-

ber is the product of the Grashof and Prandtl numbers, the variations of the Rayleigh number

refered to the augmentation of Grashof number. Therefore, the increasement of the Grashof
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Table 5.5: Spatial mean Nusselt number at the east wall for a range of Rayleigh numbers.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Padilha et al. 1.072 2.068 4.427 8.865
Tric et al. 1.070 2.054 4.337 8.641
Fusegi et al. 1.085 2.100 4.361 8.770
Present work 1.072 2.090 4.390 8.901

number has increased the local thermal transfer rate, as the spatial mean Nusselt number mea-

surements have shown.

The results of the calculation of the spatial mean Nusselt number at the heated wall

from the table 5.5 were in good agreement with other 3d works from the literature. The figure

5.6 shows the 3d view of the domain simulated with the isotherms in the central plane. The

(a) (b)

(c) (d)

Figure 5.6: Isotherms from the present work with the isotherms at the central xz-plane for
Pr = 0.71 and: (a) Ra=1.0×103; (b) Ra=1.0×104; (c) Ra=1.0×105 and (d) Ra=1.0×106.

visualization of the isotherms from the figure 5.6 confirmed the severe influence of the Grashof
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number variations in the isotherms pattern.

The second validation case presented in this subsection showed a good quantitative and

qualitative comparison with previous literature works. Next, a validation case considering two-

phase flows is reported.

5.2.3 Validation case 3: Simulations of natural convection in two-phase flows

Natural convection in two-phase flow was simulated and validated by the calculation of the

spatial mean Nusselt number at the east wall. Qiu, Wang e Jiang (2014) presented this numerical

experiment of natural convection with two-phase flow using Oberbeck-Boussinesq approximation

(since the specific mass was the same for the two fluids, and the other fluid properties were

different).

Null velocities and null pressure gradient were imposed to all the domain faces. The east

and west walls have, respectively, a uniform high (Th) and low temperature (Tl). The south,

north, bottom and top walls are adiabatic. The fluid is at rest in initial conditions and the

temperature field is uniform and igual to Tl.

The Prandtl number was set as 0.71 and Rayleigh number was 103 for the dispersed phase

and 104 for continuos phase. The dispersed phase consisted of a bubble in the center of the

cavity. Two values of initial bubble radius were tested, namely: 0.15L and 0.31L. The wall-to-

fluid thermal transfer rate was examined by means of the spatial mean Nusselt number calculation.

A computational grid with one level of refinement was employed and the base level presented

64× 64× 64 cells.

The figure 5.7 shows the isotherms in the cases of a bubble initial radius of 0.15L and

0.31L, respectively.

The presence of the bubble changed significantly the thermal transfer pattern inside the

cavity as shown in the figure 5.7. As seen in the figure 5.7, the isotherms tend to be more vertical

inside the bubble, as found by Qiu, Wang e Jiang (2014). The figure 5.8 shows the clockwise

movement described by the bubble inside the cavity due to thermal bouyancy effects, as previously

reported by Qiu, Wang e Jiang (2014).

A 3D visualization of the interface contour is shown in the figure 5.9

The spatial mean Nusselt number presented good agreement with Qiu, Wang e Jiang
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(a) (b)

Figure 5.7: Isotherms at central xz-plane for r = 0.15L (a) and r = 0.31L (b). Interface is
represented by a contour line.

(a) (b)

Figure 5.8: Velocity field at the central xz-plane considering r = 0.15L (a) and r = 0.31L
(b). The interface is represented by a contour line.

(a) (b)

Figure 5.9: Temperature and isotherms visualization for r = 0.15L (a) and r = 0.31L (b).
The interface is represented by a contour line.

(2014) for the two different initial radius tested. The table 5.6 shows the spatial mean Nusselt

number found in the present paper and the ones found from the literature.

The introduction of a bubble with a larger radius caused the reduction of the spatial mean
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Table 5.6: Spatial mean Nusselt number at the east wall for two values of bubble’s initial
radius.

Bubble radius of 0.15L Bubble radius of 0.31L
Qiu, Wang e Jiang (2014) 2.13 2.08
Present work 2.03 2.00

Nussselt number at the heated wall, similarly to the results found by Qiu, Wang e Jiang (2014).

Therefore, the influence of the Grashof number in the local thermal transfer was significantly

visible in the previous table, since the overall Grashof number was lowered by the introduction of

a dispersed phase.

5.2.4 Validation case 4: Numerical simulations of a Rayleigh-Taylor instability

This validation case consisted of modelling a Rayleigh-Taylor instability simulated in non-

isothermal two-phase flow in a three-dimensional cavity with height aspect ratio of one. Null

velocities and null pressure gradient were imposed to all the domain faces. The bottom and top

walls have, respectively, a uniform high and low temperature. The south, north, west and east

walls were considered adiabatic.

In order to simulate the Rayleigh-Taylor instability, a numerical pertubation must be applied

to the physical model to promote the development of this flow instability. Then, the interface

was initialized with trigonometric functions in order to create an initial pertubation, as proposed

by Akhtar e Kleis (2013). The interface was initialized with a function that combines a reference

height (Yr) with trigonometric functions, given by the following expression:

Y = Yr − A
[
cos

(
2πx

L

)
+ sin

(πx
L

)
+ cos

(
2πy

L

)
+ sin

(πy
L

)]
, (5.14)

where A is the amplitude and L is the characteristic length of the problem.

As mentioned by Akhtar e Kleis (2013), the critical wavelength (λc) of this pertubation is

given by the following expression:

λc = 2π

√
σ

g(ρh − ρl)
, (5.15)

where: λc is the critical wavelength of a given pertubation, σ is the interfacial tension coefficient,
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ρh is the specif mass of the heavier fluid and ρl is the specif mass of the lighter fluid.

Any pertubation that has wavelength smaller than the critical one for the given problem

will be dumped (SHARP, 1984). On the other hand, any pertubation that has the same or larger

wavelength than the critical one will be amplified and then Rayleigh-Taylor instability will develop.

In the present work, a test case was simulated where the wavelength of the initial pertubation

(0.99m) was slightly smaller than the critical one (1.00m). As expected, the pertubation was

dumped and the interface returned to the equilibrium position. According to Sharp (1984), the

surface tension stabilizes pertubations with wavelength smaller than the critical one.

The two most relevant parameters that characterize Rayleigh-Taylor instabilities are the

Atwood and Weber number (SHARP, 1984; TRYGGVASON, 1988), which are given respectively

by the following expressions:

A =
ρh − ρl
ρh + ρl

, (5.16)

We =
2σ

g(ρh − ρl)λ2
, (5.17)

where λ is the wavelength of the given pertubation.

The simulation performed presented A = 0.65 and We = 0.0053. The relation between

lighter (l) and heavier (h) fluid properties were the same as Akhtar e Kleis (2013) employed. The

data used in the simulation was presented at the table 5.7.

Table 5.7: Data used in the simulations of modelling a Rayleigh-Taylor instability in non-
isothermal flows.

Parameter Value
Domain size (m) 1.12 × 1.12 × 1.12
Amplitude of initial perturbation (m) 0.018
ρh/ρl 4.780
µh/ µl 2.590
kh/ kl 3.560
Cph/ Cpl 0.660
Gr number 17.93
Gravity acceleration (N/m2) 9.810
Mesh size in the most refined level (m) 1.604 10−2
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Adaptive mesh refinement was employed in order to reduce the computational costs. The

refinement criteria was the presence of the interface, since the interest here was the instability

which develops at the interface. Four mesh levels were used and the bottom level presented

16×16×16 cells. The figures 5.10,5.11,5.12 illustrate the evolution of the interface in time with

the adaptive mesh refinement employed.

(a) (b)

Figure 5.10: Frontal view of the central xz-plane with interface evolution using adaptive
mesh at times 2.25s (a), 4.49s (b).

(a) (b)

Figure 5.11: Frontal view of the central xz-plane with interface evolution using adaptive
mesh at times 6.74s (a), 8.99s (b).

Adaptive mesh refinement promote great reduction of computational costs, because as the

figures 5.10,5.11,5.12 shows, the regions away from the interface have a course grid, which helps

the simulation to run faster than with a uniform grid. Since the interface is the region where the

phenomena is developed, the other regions of the domain can be solved with a relatively course
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(a) (b)

Figure 5.12: Frontal view of the central xz-plane with interface evolution using adaptive
mesh at times 11.24s (a) and 13.48s (b).

grid. The region of course grid represents more than half of the domain total volume, specially

at the beginning of the simulation, until 8.99s. If a uniform grid was employed using the most

refined level in adaptive mesh simulation, the total number of cells would be 2,097,152. On the

other hand, using adaptive mesh refinement, the total number of cells is 365,600 at 8.99s and

599,960 cells at 13.48s. Therefore, at the beginning of the simulation, the number of cells needed

in simulation with adaptive mesh refinement is more than 5 times lower than simulations using a

uniform grid and, at the end, is more than 3 times lower.

The Rayleigh-Taylor instability is developed more slowly at the beginning of the simula-

tion. The instability is developed in a faster mode when the velocity vectors, that promotes the

baroclinic torque at the interface, increases in module. This behaviour was previously reported

by Tryggvason (1988). The mushroom-shapped bubble became more evident at the final stage

of the simulation.

In order to understand the thermal transfer and the fluid dynamics in this simulation,

the isotherms and velocity vectors were analyzed. The figure 5.13 presents the frontal view of

the central xz-plane with, respectively, isotherms (colored by temperature) and velocity vectors

(colored by velocity vector magnitude).

The isotherms in the figure 5.13 presented a visible thermal stratification and are slightly

curved at the interface. The velocity vectors at the figure 5.13 presents the rotational charac-

teristic of this flow, where the effects of the baroclinic torque, previously mentioned, is evident.
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(a) (b)

Figure 5.13: Isotherms (a), velocity vectors (b) at time 13.48s.

The vapor mass that emerges from the bottom of the cavity has the higher velocity module of

the domain.

According to the figure 5.13, at time 13.48s, vapor jet is well developed with mushroom

shape and bubble break off does not occur as described by Akhtar e Kleis (2013). At this stage,

the spatial mean Nusselt number at the bottom wall becomes almost constant. The spatial mean

Nusselt number found by Akhtar e Kleis (2013) was 1.70 and in the present work it was found

the value of 1.64. The spatial mean Nusselt number presents very good agreement with Akhtar

e Kleis (2013), even though mass transfer was not taken into account in the present task. Since

Jakob number is very low at this case (0.071), the effects of phase change are very low and

thermal transfer was not strongly affected by mass transfer.

A three-dimensional view of the Rayleigh-Taylor instability at 13.48s is shown in the figure

5.14. In the figure 5.14 the two coherent structures that compose Rayleigh-Taylor instability are

evident of identification. Firstly, there are four noticeable spikes (fluid structure of heavy fluid

growing into light fluid) and, secondly, one mushroom-shaped bubble (fluid structure of light fluid

growing into heavy fluid).

In order to verify how Atwood number would affect thermal transfer and flow pattern, a

simulation with a lower Atwood number was performed. The properties were all the same used in

the previous simulations, except the relation between specific mass of the lighter and heavier fluid,

which were defined as ρh/ρl = 2. Then, the Atwood number employed in the next simulation

was 0.33.

The figures 5.15,5.16 and 5.17 show the evolution of the interface with the adaptive mesh
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Figure 5.14: Rayleigh-Taylor instability at 13.48s.

refinement employed for A = 0.33 and We = 0.0053.

(a) (b)

Figure 5.15: Interface evolution with adaptive mesh at times 9.05s (a), 18.09s (b) for A =
0.33.

As described by Andrews e Dalziel (2010), a smaller Atwood number implicates that the

Rayleigh-Taylor instability takes more time to develop. The Rayleigh-Taylor instability took 54.29s

to develop for A = 0.33 and 13.48s for A = 0.65, which represents approximately 4 times more.

As the previous simulation with higher Atwood number, adaptive mesh refinement presented

a very significant reduction of computational costs. The more refined regions consist of small

portions of the domain, specially at the beginning of the simulation.

The figure 5.18 presents the isotherms (colored by the temperature) and velocity vectors
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(a) (b)

Figure 5.16: Interface evolution with adaptive mesh at times 27.14s (a), 36.19s (b) for
A = 0.33.

(a) (b)

Figure 5.17: Interface evolution with adaptive mesh at times 45.24s (a) and 54.29s (b) for
A = 0.33.

(colored by velocity vector magnitude). According to the figure 5.18, the isotherms and the

velocity vectors presented similar characteristics of the previous simulation with higher Atwood

number. Nevertheless, a less pronounced mushroom shape is observed in the simulation of lower

Atwood number. Andrews e Dalziel (2010) corroborate this result mentioning that lower specific

mass differences between the two fluids reduces this mushroom aspect.

The spatial mean Nusselt number calculated at the bottom wall also presented a constant

value after vapor jet is developed and no bubble break-off was observed. The spatial mean Nusselt

number found at this stage was 1.51, which is about 8% smaller than the previous simulation

with higher Atwood number. As the specific mass differences are the main force in this type of
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(a) (b)

Figure 5.18: Isotherms (a), velocity vectors (b) at time 54.29s.

flow, if specific mass gradient is less pronounced, it should be expected that thermal transfer may

be less significant by the reduction of flow advection. Therefore, the result found corroborates

the physical behavior expected.

The figure 5.19 shows the Rayleigh-Taylor instability with Atwood number of 0.33. The

Figure 5.19: Rayleigh-Taylor instability at 54.29s considering Atwood number of 0.33.

figure 5.19 shows the coherent structures that compose Rayleigh-Taylor instability for Atwood

number of 0.33. As the previous simulation with higher Atwood, there are four noticeable spikes

and one bubble that evolves in a mushroom shape.

This fourth validation case reported good agreement in the thermal transfer rate measure-

ments considering two-phase flows.
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The computational model was subjected to a rigourous validation procedure and, according

to the results found in these last four validation cases, the thermal energy equation from the

MFSim code provides the possibility to model accurately non-isothemal flows for even complex

cases, in laminar or turbulent regime and in single-phase and two-phse flows.

5.3 Benchmark between Oberbeck-Boussinesq approximation (OB) and a new temperature-

dependent specific mass approach (NOB)

In this subsection, the results of the traditional Oberbeck-Boussinesq approximation (OB)

and the new temperature-dependent specific mass approach (NOB) proposed by the present

work were analyzed. A benchmark between OB and NOB is conducted and the qualitative and

quantitative results are presented.

In the present work, the results of natural convection simulations for single-phase flows

were presented for a large range of Rayleigh numbers, namely, from the laminar to the turbulent

regime, and the numerical results are quantitatively and qualitatively analyzed. The flow pattern

is illustrated using velocity, vorticity and temperature fields even for high Rayleigh numbers (up

to Ra = 1010), which is notably scarce in the literature.

Natural convection simulations in a cubic cavity for Rayleigh numbers from 104 up to 1010

were performed in order to evaluate NOB. Simulations using OB were also performed in order to

examine the differences between the results of OB and NOB.

A uniform temperature field was imposed on the east (Thigh) and west (Tlow) walls. A

linear temperature profile given by T (x, y, 0) = T (x, y, L) = T (x, 0, z) = T (x, L, z) = Thigh −

(Thigh − Tlow) x
L

was imposed on the bottom, top, south and north walls for simulations with

Rayleigh numbers up to 108. The simulation with Ra = 1010 was performed using a different

thermal boundary condition, in which the bottom, top, south and north walls were considered

adiabatic. The velocity, vorticity, and isotherm fields were analyzed in the central xz-plane.

All the simulations were performed with the same mesh resolution. Since the simulation

of Ra = 1010 represents the condition where the mesh resolution is the most critical, a grid

quality study was performed in order to define the mesh configuration most suitable for all the

simulations. The mean thermal transfer rate at the east wall from the simulations with Ra = 1010
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Table 5.8: Mean Nusselt number (Nu), differences between different mesh configurations (ψ)
and between the computed values using NOB and the experimental correlation of Cowan,
Lovegrove e Quarini (1982) (ε) for Ra = 1010.

Mesh configuration Nu ψ(%) ε(%)
32× 32× 32 79.15 - 14.57
64× 64× 64 88.97 11.03 3.96
128× 128× 128 92.21 3.51 0.47

Figure 5.20: Velocity in central xz-plane for Ra = 104 with OB (left) and NOB (right)

were compared with an experimental correlation available in Cowan, Lovegrove e Quarini (1982).

According to Cowan, Lovegrove e Quarini (1982), the mean Nusselt number at the east wall

can be found to be N̄u = 0.043Ra
1
3 . Table 5.8 presents the difference between the computed

values using NOB and the experimental correlation of Cowan, Lovegrove e Quarini (1982) for

Ra = 1010 using the mesh configurations of 323, 643, 1283 cells. The relative difference between

two sucessive grid configurations (ψ) is also presented in the table 5.8. According to the numerical

results in Table 5.8, the mesh configuration of 128 × 128 × 128 cells provided results with low

enough differences from the literature. In order to guarantee the numerical accuracy of the

results from the present paper, all the simulations were performed using the mesh configuration

of 128× 128× 128 cells, since this mesh resolution was considered adequate for even the most

demanding flow condition.

Figure 5.20 shows the instantaneous velocity magnitude in grayscale and the velocity vectors

using OB and NOB for the Rayleigh number of 104.

No qualitative differences between OB and NOB related to the velocity field were noticed in
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Figure 5.21: Vorticity in central xz-plane for Ra = 104 with OB (left) and NOB (right)

Fig. 5.20. The magnitudes of the velocities for both approaches were similar, and the maximum

and minimum values were visibly the same in the central xz-plane. The velocity vectors presented

in Fig. 5.20 show the rotational characteristics of this flow, represented by a large clockwise

recirculation. Both approaches present lower velocity regions (brighter areas) in the corners and

at the center of the cavity as well as higher velocity regions (darker areas) alongside the walls. A

high mixture potential for the Ra = 104 simulations is observed, since the flow is greatly boosted

by the velocity field in a large area of the domain.

Figure 5.21 illustrates the instantaneous magnitude of the vorticity in grayscale and the

vorticity isovalue lines for Ra = 104 using OB and NOB. No qualitative differences between

OB and NOB were noticed related to the vorticity in Fig. 5.21. The magnitude of the vorticity

presented identical maximum and minimum values for OB and NOB. There are high values of

the magnitude of the vorticity (darker areas) close to the walls and medium values (middle areas)

in the center of Fig. 5.21. The corners and other regions have low values of vorticity (brighter

areas). A large magnitude of the vorticity is expected at the walls due to the high values of

the shear stresses. Vorticity is mainly produced where high velocity magnitude areas are close to

low velocity regions (near walls), as previously shown in Fig. 5.21. The vorticity has a clockwise

rotation, as pointed out by Markatos e Pericleous (1984).

Figure 5.22 shows the instantaneous temperature field for OB and NOB simulations con-

sidering Ra = 104. No qualitative differences between OB and NOB were noticed related to the

temperature in Fig. 5.22. The isotherms seen in Fig. 5.22 have the same behavior for OB and

NOB, as well as the temperature field in grayscale.
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Figure 5.22: Temperature in central xz-plane for Ra = 104 with OB (left) and NOB (right)

Figure 5.23: Velocity in central xz-plane for Ra = 106 with OB (left) and NOB (right)

Based on the previous numerical results presented considering Ra = 104, the simulations

using OB and NOB were qualitatively very similar. Therefore, no differences were observed in

the results from OB and NOB for the laminar regime. Transition to turbulent flow takes place

at approximately Ra = 106 (MARKATOS; PERICLEOUS, 1984); therefore, when increasing the

Rayleigh number to 106, the flow is no longer laminar and three dimensional effects become

significant. The instantaneous velocity magnitude in grayscale and the velocity vectors are shown

in Fig. 5.23 using OB and NOB for Ra = 106 simulations.

Small differences between OB and NOB were noticed in the velocity field in Fig. 5.23.

The maximum velocity from the simulation using OB was a somewhat lower than the simulation

using NOB. The velocity vectors from OB and NOB presented similar directions and magnitudes.

Figure 5.23 shows the magnitude of the velocity tending to become comparatively small (brighter

areas) away from the walls, and virtually zero over the cavity center. Areas with mixture potential

are now less pronounced than for Ra = 104, since they are confined to the areas close to the
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Figure 5.24: Vorticity in central xz-plane for Ra = 106 with OB (left) and NOB (right)

walls. The flow is severely concentrated near the walls (darker areas) and, clearly, the velocity

component in the z-direction is higher than the x-component. Velocity vectors close to walls

have a clockwise circulation, although there is no preferential direction in the cavity center.

Figure 5.24 illustrates the instantaneous magnitude of the vorticity in grayscale and the

vorticity isovalue lines for Ra = 106 using OB and NOB. A slight difference between OB and

NOB was noticed in the vorticity field in Fig. 5.24. The maximum value of the vorticity was

higher for the simulation using NOB than for OB. The occurrence of higher velocities in the NOB

simulations may have promoted higher velocity gradients, enhancing the vorticity. Figure 5.24

exhibits higher magnitudes of the vorticity next to the walls than in the cavity center, especially

close to the west and east walls. The shear stresses next to the top and bottom walls are less

significant than those next to the west and east walls, due to the high velocities in the z-direction,

as shown in Fig. 5.24. The vorticity is negligible at the center of the cavity.

Figure 5.25 shows the instantaneous temperature in grayscale and the isotherms for Ra =

106 with OB and NOB. According to Fig. 5.25, no qualitative differences between OB and

NOB were noticed in the temperature field or the isotherms. Figure 5.25 illustrates that the

heat transfer is mainly by advection in the moving fluid near the walls. The thermal boundary

layer become thinner when compared to Ra = 104 (shown in Fig. 5.22). On the other hand,

away from the walls, the fluid remains almost isothermic because the diffusion process is less

effective due to the lack of turbulence in regions far from the walls. In the central region,

thermal stratification prevents any vertical motion, as described by Markatos e Pericleous (1984).

Turbulent mixing is reduced in stable stratification because buoyancy enhances turbulence only
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Figure 5.25: Temperature in central xz-plane for Ra = 106 with OB (left) and NOB (right)

Figure 5.26: Velocity in central xz-plane for Ra = 108 with OB (left) and NOB (right)

in unstable stratification. Therefore, one may observe that the influence of the temperature on

the flow characteristics is remarkable in this particular condition.

Increasing the Rayleigh number to 108, the turbulent regime is developed. Three-dimensional

effects become evident and the flow is now completely non-uniform; therefore, it is expected that

differences between OB and NOB become more evident since the variations of specific mass are

more intensified than in the previous simulations with lower Rayleigh numbers. Figure 5.26 shows

the instantaneous velocity magnitude in grayscale and velocity vectors for Ra = 108 using OB

and NOB.

Small differences between OB and NOB in the velocity field are noticeable in Fig. 5.26.

The maximum velocity from the simulations using OB were higher than NOB. The differences

between the velocity field shown in Fig. 5.26 represents evidence that the flow evolution in time

for each formulation was different. Figure 5.26 presents high velocity magnitude alongside the

walls, particularly in the west and top walls’ corners as well as in the east and bottom walls’ corner
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Figure 5.27: Vorticity in central xz-plane for Ra = 108 with OB (left) and NOB (right)

for the Ra = 108 simulations. The viscous boundary layer is thinner than it was for Ra = 106

and the velocity vectors at the cavity center do not follow a preferential direction. As the Rayleigh

number increases, the temperature and velocity boundary layers become thinner, as previously

seen in Wang, Zhang e Guo (2017). It is possible to identify a counterclockwise vortex close to

the cavity center in Fig. 5.26.

Figure 5.27 shows the instantaneous vorticity magnitude in grayscale and vorticity isovalue

lines for Ra = 108 using OB and NOB. Small differences between OB and NOB can be seen in

the vorticity field in Fig. 5.27. The maximum value of the vorticity for the simulation using NOB

was higher than OB. In addition, the lines of vorticity isovalues for OB and NOB presented small

differences next to the walls in the central xz-plane. The magnitude of the vorticity was higher

for the simulation with NOB due to the existence of higher velocity gradients close to the east

and west walls. Figure 5.27 illustrates that the vorticity is even more concentrated at the walls

than it was for Ra = 106 (shown in Fig. 5.24). The maximum values of the vorticity (darker

areas) were next to the west and east walls. In addition, the regions close to the top and bottom

walls presented medium values of vorticity. Other regions showed no significant vorticity.

Figure 5.28 exhibits the instantaneous temperature in grayscale and the isotherms for

Ra = 108 using OB and NOB. Small differences between OB and NOB can be observed in the

temperature field seen in Fig. 5.28. The evolution of the temperature field in time is clearly

different in OB than in NOB, since the velocity field also changes differently in time for OB

than for NOB. The isotherms of OB and NOB are qualitatively similar, however temporal effects

specific to each approach are seen in Fig. 5.28. Figure 5.28 indicates that the thermal boundary
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Figure 5.28: Temperature in central xz-plane for Ra = 108 with OB (left) and NOB (right)

Figure 5.29: Velocity in central xz-plane for Ra = 1010 with OB (left) and NOB (right)

layer is even thinner than it was for Ra = 106, as shown in Fig. 5.25. The cavity center presents

thermal stratification, but not so evident as it was for Ra = 106 (shown in Fig. 5.25).

Increasing the Rayleigh number to Ra = 1010, Fig. 5.29 shows the instantaneous velocity

magnitude in grayscale and the velocity vectors for Ra = 1010 using OB and NOB. The velocity

fields for OB and NOB seen in Fig. 5.29 have the same behavior as the flow field and velocity

vectors. No differences were seen in the velocity field between the simulations using OB and NOB

for Ra = 1010. In addition, the maximum values of the velocity for OB and NOB were identical.

According to Fig. 5.29, the velocity field had its maximum values (darker areas) alongside the

west and east walls. At the other regions, the velocity magnitude was irrelevant (brighter areas).

The velocity vectors had a preferential direction and presented a rotational behavior. In addition,

mixture was restricted to a small area close to the walls due to the concentrated velocity.

Figure 5.30 shows the instantaneous vorticity magnitude in grayscale and the vorticity

isovalues lines for Ra = 1010 using OB and NOB. No qualitative differences between OB and
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Figure 5.30: Vorticity in central xz-plane for Ra = 1010 with OB (left) and NOB (right)

Figure 5.31: Temperature in central xz-plane for Ra = 1010 with OB (left) and NOB (right)

NOB are to be seen in Fig. 5.30 for the vorticity field. The maximum values of the vorticity are

very similar, and the lines of vorticity isovalues have the same behavior. According to Fig. 5.30,

the vorticity was restricted to the proximities of the east and west walls. No significant vorticity

(brighter areas) was expected at the cavity center, since the majority of shear stresses are located

at the walls.

Figure 5.31 presents the instantaneous temperature in grayscale and the isotherms for

Ra = 1010 using OB and NOB. No qualitative differences between OB and NOB are seen in the

temperature field in Fig. 5.31. In addition, the isotherms of OB and NOB are quite similar. It can

be seen that the thermal boundary layer is now thinner than it was for Ra = 108 and temperature

is completely stratified in the domain, except at the walls. Again, thermal stratification prevented

any vertical motion, as described by Markatos e Pericleous (1984). The behavior of the isotherms

was similar to that found by Wang, Zhang e Guo (2017), where thermal stratification reduced

the areas with mixture potential.
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Figure 5.32: Tollmien–Schlichting instabilities (left) and hairpin instabilities (right)

Although the study of high Rayleigh numbers is usually limited to 2D configurations in the

literature (WANG; ZHANG; GUO, 2017), there is a need to model three-dimensional effects of the

flows, since turbulence only occurs in 3D configurations. In the research presented here, turbulent

coherent structures were identified close to the walls using vorticity isovalues for Ra = 1010. First,

fine filaments developed close to the east and west walls. These filaments are shown in Fig. 5.32

(left) and may be identified as Tollmien–Schlichting waves. Later, hairpin structures appeared

next to these filaments, which are also visible in Fig. 5.32 (right).

Tollmien–Schlichting waves are typically found in boundary layer flow transitions. In initial

stage of the transition, small disturbances transform a stable laminar flow into an unstable, but

still laminar flow which takes the form of a two-dimensional Tollmien–Schlichting wave. These

waves may be slowly amplified and they may eventually grow nonlinearly until the flow transitions

to the turbulent regime. These waves were originally identified by Tollmien and Schlichting,

for whom the phenomenon is named. At the walls, the initial instability that may occur is the

two-dimensional Tollmien–Schlichting waves, travelling in the mean flow direction. Tollmien–

Schlichting waves undergo linear amplification and non-linear interactions, which eventually lead

to turbulence (MANUILOVICH, 1994; LESIEUR, 2008). Wang, Zhang e Guo (2017) studied

the natural convection flow in a differentially heated cubical cavity in 3D simulations considering

Ra = 1010. However, they have not reported the visualization of Tollmien–Schlichting waves.

In order to present a quantitative analysis for the range of Rayleigh numbers tested, the

mean Nusselt number was evaluated at the east wall. Experimental data available in the literature
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Table 5.9: Mean Nusselt number at the east wall and difference between the computed values
and literature.

Ra = 104 Ra = 106 Ra = 108 Ra = 1010

Nu diff. (%) Nu diff. (%) Nu diff. (%) Nu diff. (%)
Experimental data 1.521 - 6.389 - 26.830 - 92.641 -
Present work - OB 1.555 2.24 6.559 2.66 25.411 -5.29 88.850 -4.09
Present work - NOB 1.554 2.24 6.505 1.82 26.342 -1.82 92.210 -0.47

and the mean Nusselt number computed at the east wall are presented in Table 5.9. Numerical

results for Rayleigh numbers up to Ra = 108 were compared to the experimental data available in

Leong, Hollands e Brunger (1999), and results for Ra = 1010 were compared to an experimental

correlation available in Cowan, Lovegrove e Quarini (1982). The difference between the numerical

results and the literature were calculated and are also presented in Table 5.9 for NOB and OB.

NOB and OB accurately predicted the heat transfer from the laminar to turbulent regime,

as shown in Table 5.9. Nonetheless, as the Rayleigh number increases, OB presented larger

differences than the NOB from the literature. NOB predicted an adequate thermal transfer rate

compared to the experimental results for all the cases simulated, confirming the NOB’s potential

to model flows with variable specific mass due to temperature field variations.

The mean Nusselt numbers computed in the simulations using OB and NOB were similar for

Ra = 104 and Ra = 106. On the other hand, the mean Nusselt number computed with NOB was

approximately 4.0% higher than that obtained with OB for Ra = 108 and Ra = 1010. Montiel-

Gonzalez et al. (2015) also found numerical results using an approach with variable properties

with approximately 4% of error lower than OB, however their work investigated natural convection

in the laminar regime. In addition, Wang, Zhang e Guo (2017), who used OB, found a mean

thermal transfer rate similar to that from the OB results of the present paper for the simulation

with Ra = 1010. Therefore, simulations using NOB provided more accurate results for the heat

transfer rate compared to OB. The consequences of modeling variable specific mass in all the

terms of the momentum and energy equations revealed numerical results with higher accuracy

with NOB in comparison to OB, where only the combined gravity–buoyancy term accounted for

the effects of specific mass variations due to the temperature field.

The velocity field was investigated in OB and NOB simulations in order to evaluate quan-

titatively its differences. The minimum and maximum velocity components from the simulations
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Table 5.10: Minimum and maximum u, v and w velocity components.

Ra = 104 Ra = 106 Ra = 108 Ra = 1010

OB NOB OB NOB OB NOB OB NOB
umin -0.0453 -0.0453 -0.4482 -0.4697 -0.5132 -0.4914 -0.0367 -0.0417
umax 0.0453 0.0452 0.4482 0.4294 0.4665 0.4078 0.0746 0.0686
vmin -0.0071 -0.0071 -0.1733 -0.1903 -0.2952 -0.3106 -0.0424 -0.0419
vmax 0.0071 0.0071 0.1733 0.1903 0.3727 0.3148 0.0485 0.0609
wmin -0.0478 -0.0478 -0.6584 -0.6446 -0.8017 -0.8154 -0.1456 -0.1509
wmax 0.0478 0.0478 0.6584 0.6446 0.7835 0.7719 0.1768 0.1800

using NOB and OB are presented in Table 5.10.

The u, v and w velocity components in Table 5.10 are, in general, similar for the simulations

using OB and NOB. However, a few significant differences can be observed, especially for high

Rayleigh numbers, when the differences in the velocity components of OB and NOB varied by

up to 20%. The data from Table 5.10 shows no significant velocity variations in the simulation

in the laminar regime (Ra = 104) between OB and NOB, although small differences can be

observed in the simulations in the turbulent regime (Ra = 106 to Ra = 1010). The differences

between OB and NOB in the velocity field in the turbulent regime are evidence of the noticeable

contrast between the two approaches in terms of the evolution of the flow over time. In addition,

the differences between OB and NOB in their velocity fields were progressively higher as the

Rayleigh number increased, since the turbulence was enhanced and the effects of a variable specific

mass were intensified. The proposed NOB method shows that some significant flow effects are

captured when specific mass variations are considered in all the terms of the momentum and

energy equations than they are in the OB method, where only the combined gravity–buoyancy

term models the specific mass variations.

Finally, three velocity profiles were investigated in the simulations using OB and NOB

in order to examine the local variations of each velocity component for the range of Rayleigh

numbers tested. The instantaneous u, v and w velocity components were investigated along

the line segments AB, CD and EF, respectively, which are shown in Fig. 5.33. The u velocity

component was evaluated along the line segment AB, the v velocity component along the line

segment CD, and EF was used for the assesment of the w velocity component.

Figure 5.34 shows the instantaneous u velocity component along the line segment AB for

the entire range of Rayleigh numbers tested. According to Fig. 5.34, the u velocity component
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Figure 5.33: Line segments used to evaluate the u, v and w velocity components

Figure 5.34: u velocity component for the line segment AB in the central xz-plane with OB
and NOB for Ra = 104 (upper left), Ra = 106 (upper right), Ra = 108 (lower left) and
Ra = 1010 (lower right).
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Figure 5.35: v velocity component along the line segment CD in the central xz-plane with
OB and NOB for Ra = 104 (upper left), Ra = 106 (upper right), Ra = 108 (lower left) and
Ra = 1010 (lower right).

was not significantly different for the OB and NOB simulations. Differences in the u velocity

component were more pronounced for the Rayleigh numbers of 108 and 1010 since the effects of

the specific mass variations increased as the Rayleigh number increased.

Figure 5.35 shows the instantaneous v velocity component along the line segment CD for

the entire range of Rayleigh numbers tested. According to Fig. 5.35, the differences between

OB and NOB are appreciable for the v velocity component. The three-dimensional effects of the

flow were more pronounced for high Rayleigh numbers since the magnitude from the v velocity

component was only visibly observed for Ra = 108 and Ra = 1010.

Figure 5.36 shows the instantaneous w velocity component along the line segment EF for

the entire range of Rayleigh numbers tested. Figure 5.36 shows the small differences between OB

and NOB in the w velocity component for the simulations using high Rayleigh numbers. Only

the simulations with Rayleigh numbers of 108 and 1010 present visible variations in the w velocity

component for OB and NOB. In addition, the w velocity component exhibited the same profile
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Figure 5.36: w velocity component along the line segment EF in the central xz-plane with
OB and NOB for Ra = 104 (upper left), Ra = 106 (upper right), Ra = 108 (lower left) and
Ra = 1010 (lower right).
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for both approaches in the simulations of Ra = 104 and Ra = 106.

According to Figs. 5.34, 5.35 and 5.36, each velocity component presented small variations

for the Rayleigh numbers of 108 and 1010, which were the simulations where the differences

in heat transfer rates computed from NOB were more accurate than those obtained from OB

(seen in Table 5.9). In addition, the velocity field variations between OB and NOB, observed

in Table 5.10, also revealed significant differences in the velocity fields for the simulations with

the Rayleigh numbers of 108 and 1010. Enhancing the ability to capture the changes of the

specific mass variations in the flows, NOB provided relevant effects in the velocity fields; for

that reason, NOB presents an extension of OB allowing tackling a wider range of incompressible

problems with higher gradients of specific mass in the domain than does OB. Therefore, the

mathematical formulation proposed in the NOB method improves the quality of the calculations

of the thermal transfer rate compared to OB by increasing the effects of a variable specific mass

in the momentum and energy equations, and is suggested for application to single-phase. In

addition, NOB is preferable since it removes the uncertainty of constant fluid properties imposed

by OB (KANG; IACCARINO; HAM, 2009).

5.4 Influence of dimensionless parameters on non-isothermal single-phase flows with-

out phase change

In natural convection problems, the most relevant dimensionless parameters are the Grashof

and Prandtl numbers, which combined results in the Rayleigh number. In the next subsections,

the influence of the Grashof and Prandtl numbers are evaluated qualitatively according to the

isotherms pattern and quantified using the Nusselt number calculation for single-phase flows.

5.4.1 Influence of the Grashof number on single-phase flows

Simulations were conducted considering the Prandtl number of 0.71 and a range of the

Grashof number from 1.4× 103 to 1.4× 106.

Natural convection in single-phase flow was examined using the Oberbeck-Boussinesq ap-

proximation. Null velocities and null pressure gradient were imposed to all the domain faces. The

east and west walls have, respectively, a uniform high and low temperature. The south, north,
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bottom and top walls are adiabatic.

The figure 5.37 shows the isotherms from the present paper considering the Prandtl number

of 0.71 and the Grashof number range from 1.4× 103 to 1.4× 106.

(a) (b) (c) (d)

Figure 5.37: Isotherms at central xz-plane from the present paper for Pr = 0.71 and Gr=1.4×
103 (a), Gr=1.4× 104 (b), Gr=1.4× 105(c), Gr=1.4× 106 (d)

According to the figure 5.37, the isotherms topology became more complex as the Grashof

number increased, as previously reported by Padilla, Lourenco e Silveira-Neto (2013). The tem-

perature field becomes more stratified in the cavity center and the rotational characteristic of

flow is progressively more evident as the Grashof number increases, as previously described by

Wang, Zhang e Guo (2017). In addition, the spatial mean Nusselt number computed at the east

wall was progressively higher as the Grashof number increased.

Therefore, according to the results obtanied, the augmentation of the Grashof number

causes the increasement of the thermal transfer rate in single-phase flows.

5.4.2 Influence of the Prandtl number on single-phase flows

Simulations were conducted considering the Grashof number of 1.4 × 103 and two values

of the Prandtl number were tested, namely Pr = 0.71 and Pr = 7.10.

Natural convection in single-phase flow was examined using the Oberbeck-Boussinesq ap-

proximation. Null velocities and null pressure gradient were imposed to all the domain faces. The

east and west walls have, respectively, a uniform high and low temperature. The south, north,

bottom and top walls are adiabatic.

The figure 5.38 shows the temperature field and the isotherms configuration for the simu-

lations with Grashof number and different Prandtl number.

As previously seen for the Grashof number, the Prandtl number affects the thermal transfer
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(a) (b)

Figure 5.38: Temperature field and isotherms for Gr = 1.4× 103 and Pr = 0.71 (a) as well
as for Pr = 7.1 (b).

rate intensity. The highest thermal transfer rate was associated to the highest value of Prandtl

number. The isotherms pattern was deeply modified as the Prandtl number changed from 0.71

to 7.1 since the isovalues of temperature became more horizontal compared to the bottom and

top walls. In addition the spatial mean Nusselt number computed at the east wall were also

increased as the Prandtl number increased.

Therefore, the Prandtl number is also responsable for afectting the thermal transfer rate

as well as the isotherms pattern in single phase flows.

5.5 Influence of the Prandtl number on non-isothermal two-phase flows without phase

change

In this section, analysis about the influence of the Prandtl number were performed for

two-phase flows simulations. The following investigations were conducted:

1. The Prandtl number from the dispersed phase was higher than the Prandtl number from

the continuos phase

2. The Prandtl number from the dispersed phase was lower than the Prandtl number from

the continuos phase

3. The Prandtl number from the dispersed phase was equal to the Prandtl number from the

continuos phase
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The next subsections describe in details the results obtained from the computational sim-

ulations performed. The isotherms and the thermal transfer rate were considered the main

parameters to the investigations conducted.

5.5.1 Simulations where the Prandtl number from the dispersed phase was higher than the

Prandtl number from the continuos phase

In this section, two-phase flows are investigated in the situation where the Prandtl number

from the dispersed phase was higher than the Prandtl number from the continuos phase. Three

different analysis were performed in this section, namely:

� Prdis > Prcon and the effects of the overall Prandtl number variation was computed

� Prdis > Prcon and the effects of the bubble size variation was evaluated

� Prdis > Prcon and the effects of the bubble size and overall Prandtl number variation were

simultaneously analyzed

In the subsection 5.5.1.1, two-phase flow simulations were performed with an initial bubble

radius of 0.31L and the overall Prandtl numbers analyzed were 1.06 and 1.51. In the subsection

5.5.1.2, two-phase flows simulations were performed with overall Prandtl number of 1.06 and

two bubble radius were tested, namely: r = 0.31L and r = 0.40L. Finally, in the subsection

5.5.1.3, two-phase flow simulations were performed with overall Prandtl number of 1.51 and 2.30

considering a bubble with r = 0.31L and r = 0.39L, respectively.

5.5.1.1 Prdis > Prcon and the effects of the overall Prandtl number variation was computed

Two-phase flows simulations were performed with a dispersed phase with a bubble radius

of 0.31L. The Grashof number was considered equal to Gr=1.4 × 103 and the continuos phase

presented Prandtl number of 0.71.

First, the Prandtl number from the dispersed phase was 5 times higher than the continuos

phase (Prdis = 3.55 and Prcon = 0.71, leading to an overall Prandtl number of 1.06). Then, a

simulation was performed considering a dispersed phase with the Prandtl number 10 times higher

than the continuos phase (Prdis = 7.10 and Prcon = 0.71, leading to an overall Prandtl number

of 1.51).
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Table 5.11: Summary of the thermal transfer rate results to compute the effects of the overall
Prandtl number variation.

N̄umean N̄umin N̄umax
Single-phase flow with Pr = 0.71 1.07 1.07 1.07
Two-phase flow with Prove = 1.06 1.16 0.97 1.44
Two-phase flow with Prove = 1.51 1.23 0.95 1.67

The figure 5.39 shows the temperature field and the isotherms configuration in the single

phase flow with Gr=1.4 × 103 and Pr = 0.71 (a) and two-phase flow cases with Gr=1.4 × 103

and Prove = 1.06 (b) and Prove = 1.51 (c).

(a) (b) (c)

Figure 5.39: Temperature field and isotherms at central xz-plane considering Gr=1.4× 103

and Pr = 0.71 (a), Prove = 1.06 (b) and Prove = 1.51 (c). The isotherms are represented in
20 thin isovalue contours, the thick contour represents the interface position and temperature
field is presented in grayscale.

According to the figure 5.39, the isotherms configuration was deeply modified in comparison

to the isotherms from the single-phase case. The isotherms in the figure 5.39 were not primarily

vertical since the isotherms were more horizontal inside the dispersed phase.

Figure 5.40 shows the spatial mean Nusselt number evolution in time for the single-phase

case (Pr = 0.71), the two-phase flow case with Prove = 1.06 and the two-phase case with

Prove = 1.51. The figure 5.40 indicates the severe influence of the overall Prandtl number on

the spatial mean thermal transfer rate. As the overall Prandtl number increases, the spatial

mean Nusselt number increases. In comparison to the single-phase case, the two-phase cases

demonstrated a relevant increasement on the mean thermal transfer rate due to the variation of

the overall Prandtl number.

Table 5.11 summarizes the data related to the simulations performed in this subsection.

According to the table 5.11, the spatial mean Nusselt number increased as the overall
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Figure 5.40: Spatial mean Nusselt number evolution in time for the single-phase case (Pr =
0.71) and two-phase flows cases with Prove = 1.06 and Prove = 1.51.

Prandtl number was increased. The minimum values of the thermal transfer rate (N̄umin seen

in the table 5.11) were associated to the moment when the dispersed phase was the farest from

the east wall. In addition, the maximum values of the thermal transfer rate (N̄umax seen in the

table 5.11) were related to the moment when the dispersed phase was the nearest from the east

wall. Therefore, the proximity of the dispersed phase from the east wall was a relevant factor

impacting on the Nusselt number calculations in the situation where Prdis > Prcon; however,

none influence was observed in the situation of Prdis > Prcon (seen in the section 6).

5.5.1.2 Prdis > Prcon and the effects of the bubble size variation was evaluated

Two-phase flows simulations were performed with a dispersed phase with a bubble radius of

0.31L and 0.40L. The Grashof number was considered equal to Gr=1.4× 103 and the continuos

phase presented Prandtl number of 0.71. The overall Prandtl number was 1.06 for both the

simulations (r = 0.31L and r = 0.40L).

The figure 5.41 shows the temperature field and the isotherms configuration in the single-

phase case with Gr=1.4×103 and Pr = 0.71 (a) and the two-phase flow cases with Gr=1.4×103

and Prove = 1.06 with r = 0.31L (b) and r = 0.4L (c).
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(a) (b) (c)

Figure 5.41: Temperature field and isotherms at central xz-plane considering the single-phase
case with Gr=1.4× 103 and Pr = 0.71 (a) and the two-phase flow cases with Gr=1.4× 103

and Prove = 1.06 with r = 0.31L (b) and r = 0.4L (c) The isotherms are represented in 20
thin isovalue contours, the thick contour represents the interface position and temperature
field is presented in grayscale.

The figure 5.42 shows the spatial mean Nusselt number evolution in time for the single-

phase case (Pr = 0.71), two-phase flow with r = 0.31L (Prove = 1.06) and two-phase flow with

r = 0.39L (Prove = 1.06).

Figure 5.42: Spatial mean Nusselt number evolution for the single-phase case (Pr = 0.71),
two-phase flow with r = 0.31L (Prove = 1.06) and two-phase flow with r = 0.40L (Prove =
1.06)

According to the figure 5.42, the spatial mean Nusselt number varied in time for both

cases (r = 0.31L and r = 0.40L). The variations of the spatial mean Nusselt number were more
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Table 5.12: Summary of the thermal transfer rate results to compute the effects of the bubble
size variation.

N̄umean N̄umin N̄umax
Two-phase flow with r = 0.31L 1.16 0.97 1.44
Two-phase flow with r = 0.40L 1.12 1.07 1.18

proeminent in the case for the bubble radius of 0.31L compared to the case with r = 0.40L.

The table 5.12 summarizes the data related to the simulations performed in this subsection.

According to the table 5.12, the bubble radius directly affected the thermal transfer rate in

time. The smaller bubble radius was associated to the higher maximum and mean value of thermal

transfer rate compared to the case with larger bubble radius. According to visual observations

during the simulation time, the proximity between the wall and the bubbles was higher for the

case with r = 0.31L in comparison to r = 0.40L. Therefore, the size of the bubble radius

brought consequences to the bubble moviment inside the cavity and probably the distance effect

may promoted the difference in the Nusselt number calculations.

5.5.1.3 Prdis > Prcon and the effects of the bubble size and overall Prandtl number variation

were simultaneously analyzed

Two-phase flows simulations were performed with a dispersed phase with a bubble radius

of 0.31L and 0.39L and an overall Prandtl number of 1.51 and 2.30, respectively. Here, the

effect of the bubble radius size were taken into account as well as the influence of the overall

Prandtl number variations.

Simulations of natural convection were performed considering Gr = 1.4×103 and Pr = 7.1

for the dispersed phase and Pr = 0.71 for the continuos phase. The simulations were performed

for two different initial bubble radius, namely r = 0.31L and r = 0.39L. The overall Prandtl

number was 0.71 for the single-phase flow, 1.51 for the two-phase flow with dispersed phase with

radius of 0.31L and 2.30 for the simulation of two-phase flow with an spherical dispersed phase

with radius of 0.39L.

The figure 5.43 shows the temperature field and the isotherms configuration in the single-

phase case with Gr=1.4×103 and Pr = 0.71(a) and the two-phase flow cases with Gr=1.4×103
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and Prove = 1.51 (b) and Prove = 2.30 (c).

(a) (b) (c)

Figure 5.43: Temperature field and isotherms at central xz-plane for the single-phase case
with Gr=1.4 × 103 and Pr = 0.71(a) and the two-phase flow cases with Gr=1.4 × 103

and Prove = 1.51 (b) and Prove = 2.30 (c). The isotherms are represented in 20 thin
isovalue contours, the thick contour represents the interface position and temperature field
is presented in grayscale.

The figure 5.43 illustrated the consequences of the overall Prandtl number variation on the

temperature field since the isotherms behavior was modified compared to the single-phase case.

As seen in the figure 5.43, inside the dispersed phase, the isotherms exhibited a deeply modified

aspect since the isotherms were mainly horizontal inside the dispersed phase. In addition, the

larger size of the dispersed phase in the figure 5.43(b) compared to the figure 5.43(a) intensified

the impact of the Prandtl number on the temperature field. In general, the closer the dispersed

phase was from the east wall, higher was the spatial mean Nusselt number at the east wall.

The figure 5.44 shows the spatial mean Nusselt number evolution in time for the single-

phase case (Pr = 0.71), two-phase flow with r = 0.31L (Prove = 1.51) and two-phase flow with

r = 0.39L (Prove = 2.30). According to the figure 5.44, the spatial mean Nusselt number was

intensified as the overall Prandtl number increased. Since the enlargement of the bubble radius

increases the overall Prandtl number indirectly, it was expected that the simulation with the larger

bubble would yield a larger thermal transfer rate compared to the simulation with the smaller

radius. According to the figure 5.44, the mean Nusselt number from the two-phase flows cases

were severely altered from about −10.0% to almost +60.0% compared to the single-phase case.

The thermal transfer rate was more enhanced in the simulation with radius of 0.39L compared

to the simulation performed with radius of 0.31L.

The table 5.13 summarizes the data related to the simulations performed in this subsection.
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Figure 5.44: Spatial mean Nusselt number evolution for the single-phase case (Pr = 0.71),
two-phase flow with r = 0.31L (Prove = 1.51) and two-phase flow with r = 0.39L (Prove =
2.30).

Table 5.13: Summary of the thermal transfer rate results to compute the effects of the overall
Prandtl number and bubble radius variation.

N̄umean N̄umin N̄umax
Single-phase flow with Pr = 0.71 1.07 1.07 1.07

Two-phase flow with Prove = 1.51 and r = 0.31L 1.23 0.95 1.67
Two-phase flow with Prove = 2.30 and r = 0.39L 1.39 1.11 1.68

The table 5.13 presented a quantitative confirmation of the influence of the Prandtl number

on the thermal transfer rate according to the calculated spatial mean Nusselt number. The spatial

mean Nusselt number increased almost 30 % and 15 % by the addition of the dispersed phase

with an initial radius of 0.39L and 0.31L, respectively. Therefore, the table 5.13 confirms that the

thermal transfer rate was enhanced as the overall Prandtl number of the flow mixture increased.

The influence of the overall Prandtl number may explain the reason why the literature have

been reporting the increasement of the thermal transfer rate at surfaces by the introduction of

bubbles. Dabiri e Tryggvason (2015) found that the bubbles’s presence rised the Nusselt number

at the heated wall, specially in the case with higher Prandtl number. The present paper is in

acordance with Dabiri e Tryggvason (2015) since the Prandtl number presented a great impact
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in the thermal transfer mechanisms.

In the present work, the closer the dispersed phase was from the heated wall, higher was

the spatial mean Nusselt number compared to the single-phase flow case. Similarly, the spatial

mean Nusselt number increased in the simulations in which the distance between bubbles and the

wall were lower in Dabiri e Tryggvason (2015).

Finally, as found by Dabiri e Tryggvason (2015), when the dispersed phase was in the

vinicity of the heated wall, the void fraction stir up the viscous layer and reduced the size of

the conduction region near the wall improving the thermal transfer rate. In addition, when the

dispersed phase was far from the heated wall, its influence was not relevant and no improvement

in the thermal transfer rate was observed.

5.5.2 The Prandtl number from the dispersed phase was lower than the Prandtl number

from the continuos phase

Two-phase flows were investigated in the situation where the Prandtl number from the

dispersed phase was lower than the Prandtl number from the continuos phase. Three different

analysis were performed in this section, namely:

� Prdis < Prcon and the effects of the overall Prandtl number variation was computed

� Prdis < Prcon and the effects of the bubble size variation was evaluated

� Prdis < Prcon and the effects of the bubble size and overall Prandtl number variation were

simultaneously analyzed

In the subsection 5.5.2.1, two-phase flow simulations were performed with an initial bubble

radius of 0.31L and the overall Prandtl numbers analyzed were 6.3 and 6.22. in the subsection

5.5.2.2, two-phase flows simulations were performed with an overall Prandtl number of 6.22 and

two bubble radius were tested, namely: 0.31L and 0.40L. in the subsection 5.5.2.3, two-phase

flows simulations were performed with an overall Prandtl number of 6.3 and 5.5 considering an

initial bubble radius of 0.31L and 0.39L, respectively.
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5.5.2.1 Prdis < Prcon and the effects of the overall Prandtl number variation was computed

Two-phase flow simulations were performed with an initial bubble radius of 0.31L. The

Grashof number was considered equal to Gr=1.4 × 104 and the continuos phase presented the

Prandtl number of 7.10. First, the Prandtl number from the dispersed phase was 10 times lower

than the continuos phase (Prdis = 0.71 and Prcon = 7.10 leading to an overal Prandtl number

of 6.30). Then, a simulation was performed considering a dispersed phase with Prandtl number

100 times lower than the continuos phase (Prdis = 0.071 and Prcon = 7.10 leading to an overal

Prandtl number of 6.22).

The figure 5.45 shows the temperature field and the isotherms configuration for the single-

phase case with Gr=1.4 × 104 and Pr = 7.10 (a) and for the two-phase flow cases with

Gr=1.4× 104 and Prove = 6.30 (b) and Prove = 6.22 (c). The figure 5.45 shows the isotherms

(a) (b) (c)

Figure 5.45: Temperature field and isotherms at central xz-plane for the single-phase case
with Gr=1.4 × 104 and Pr = 7.10 (a) and for the two-phase flow cases with Gr=1.4 × 104

and Prove = 6.30 (b) and Prove = 6.22 (c). The isotherms are represented in 20 thin
isovalue contours, the thick contour represents the interface position and temperature field
is presented in grayscale.

configuration modified inside the dispersed phase. The isotherms inside the dispersed phase were

more vertical than the isotherms seen in the figure for the single-phase case with Pr = 7.1 . The

tendency of the isotherms more vertical were acentuaded in the case with lower overall Prandtl

number.

Figure 5.46 shows the spatial mean Nusselt number evolution in time for the single-phase

case (Pr = 7.1), the two-phase flow cases with Prove = 6.3 and Prove = 6.22. According to the

figure 5.46, the mean thermal transfer rate was reduced by the introduction of a bubble with lower

Prandtl than the continuos phase. The case with higher overall Prandtl number was associated
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Figure 5.46: Spatial mean Nusselt number evolution for the single-phase case (Pr = 7.1)
and two-phase flows cases with Prove = 6.3 and Prove = 6.22.

Table 5.14: Summary of the thermal transfer rate results to compute the effects of the overall
Prandtl number variation.

N̄umean N̄umin N̄umax
Single-phase flow with Pr = 7.1 2.09 2.09 2.09
Two-phase flow with Prove = 6.3 2.03 1.89 2.12
Two-phase flow with Prove = 6.22 2.03 1.98 2.09

to higher peaks of spatial mean Nusselt number in comparison to the case with a lower overall

Prandtl number.

Table 5.14 summarizes the results obtanied in the present subsection.

According to the table 5.14, the reduction of the thermal transfer rate was accompannied

by the reduction of the overall Prandtl number. Since the overall Prandtl numbers from the two-

phase flow cases were very similar, the thermal transfer rates between them were not significantly

different. However, between the single-phase and two-phase cases, the influence of the overall

Prandtl number is evident on the thermal transfer rate calculated.
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Table 5.15: Summary of the thermal transfer rate results to compute the effects of the bubble
size variation.

N̄umean N̄umin N̄umax
Two-phase flow with r = 0.31L 2.03 1.98 2.09
Two-phase flow with r = 0.40L 1.96 1.84 2.01

5.5.2.2 Prdis < Prcon and the effects of the bubble size variation was evaluated

Two-phase flow simulations were performed with an initial bubble radius of 0.31L and

0.40L. The Grashof number was considered equal to Gr=1.4 × 104 and the continuos phase

presented Prandtl number of 7.10. The overall Prandtl number was 6.22.

The figure 5.47 shows the temperature field and the configuration for the single-phase case

with Gr=1.4× 104 and Pr = 7.10 (a) and for the two-phase flow cases with Gr=1.4× 104 and

Prove = 6.22 with r = 0.31L (b) and Prove = 6.22 with r = 0.40L (c).

(a) (b) (c)

Figure 5.47: Temperature field and isothers at central xz-plane for the single-phase case with
Gr=1.4 × 104 and Pr = 7.10 (a) and for the two-phase flow cases with Gr=1.4 × 104 and
Prove = 6.22 with r = 0.31L (b) and Prove = 6.22 with r = 0.40L (c). The isotherms are
represented in 20 thin isovalue contours, the thick contour represents the interface position
and temperature field is presented in grayscale.

Figure 5.48 shows the spatial mean Nusselt number evolution in time for the single-phase

case (Pr = 7.1), the two-phase flow cases with r = 0.31L and r = 0.40L.

According to the figure 5.48, the spatial mean Nusselt number varied in time for both cases

(r = 0.31L and r = 0.40L). The simulation with the bubble radius of 0.40L presented a more

visible reducement of the thermal transfer rate compared to the case with a smaller bubble radius

(r = 0.31L).

Table 5.15 shows the main results found in this subsection.

According to the table 5.15, the bubble radius influenced the thermal transfer rate. The
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Figure 5.48: Spatial mean Nusselt number evolution for the single-phase case (Pr = 7.1)
and two-phase flows cases with Prove = 6.22 considering r = 0.31L and r = 0.40L.

larger bubble radius presented the lower mean, minimum and maximum thermal transfer rates

in time. In the visual observations during the simulations, it was confirmed that, in general, the

distance between the dispersed phase and the wall was lower, affecting the Nusselt calculation,

similarly seen in the previous section. therefore, the influence of the bubble radius was related to

the proximity of the bubble to the wall during the bubble movimentation inside the domain.

5.5.2.3 Prdis < Prcon and the effects of the bubble size and overall Prandtl number variation

were simultaneously analyzed

Two-phase flow simulations of natural convection were performed considering Gr = 1.4×

104 and a bubble initial radius of 0.31L and 0.39L. The dispersed phase presented Prdis = 0.71

and the continuos phase Prcon = 7.1. In addition, a simulation of single-phase flow was performed

considering Pr = 7.1.

The overall Prandtl number of the two-phase flow simulation using an initial bubble radius

of r = 0.31L was 6.3 and the overall Prandtl number for the case with r = 0.39L was 5.5.

Figure 5.49 shows the temperature field and the isotherms configuration for the single-phase

case with Gr=1.4× 104 and Pr = 7.10 (a) and for the two-phase flow cases with Gr=1.4× 104
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and Prove = 6.3 with r = 0.31L (b) and Prove = 5.5 with r = 0.39L (c).

(a) (b) (c)

Figure 5.49: Temperature field and isotherms at central xz-plane for the single-phase case
with Gr=1.4 × 104 and Pr = 7.10 (a) and for the two-phase flow cases with Gr=1.4 × 104

and Prove = 6.3 with r = 0.31L (b) and Prove = 5.5 with r = 0.39L (c). The isotherms are
represented in 20 thin isovalue contours, the thick contour represents the interface position
and temperature field is presented in grayscale.

According to the figure 5.49, the isotherms presented a different pattern inside the dispersed

phase compared to the single-phase flow. The isotherms inside the dispersed phase in the figure

5.49 were less horizontal than the isotherms in the single-phase case, indicating the severe impact

on the temperature field by the presence of the dispersed phase. The isotherms behavior inside the

dispersed phase of the present paper were in accordance to Qiu, Wang e Jiang (2014) results, in

which the isotherms inside the dispersed phase tended to be more vertical rather than horizontal.

The figure 5.49(c) illustrated the intensified effect previously seen in figure 5.49(b) due to

the larger radius of the dispersed phase. The effect of the radius size on the thermal transfer

variation was also reported by Qiu, Wang e Jiang (2014) which indicated the reduction of the

mean Nusselt number as the radius of the dispersed phase was increased. Therefore, the thermal

transfer rate and the overall Prandtl number of flow mixture presented a straight connection, as

demonstrated in the former sections.

Figure 5.50 shows the spatial mean Nusselt number evolution in time for the single-phase

case (Pr = 7.1), the two-phase case with Prove = 6.3 and the two-phase case with Prove = 5.5.

According to the figure 5.50, the spatial mean Nusselt number was directly affected by the overall

Prandtl number variation. The increasement of the bubble radius have intensified the importance

of the Prandtl number from the dispersed phase, reducing even more the spatial mean Nusselt

number.

According to the figure 5.50, the spatial mean Nusselt number at the east wall presented
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Figure 5.50: Spatial mean Nusselt number evolution for the single-phase case (Pr = 7.1)
and two-phase flows cases with a dispersed phase with radius of 0.31L (Prove = 6.3) and
0.39L (Prove = 5.5).

values from about +2% to almost −12% compared to the single-phase case. The results reported

in the figure 5.50 demonstrated the spatial mean Nusselt number decreasement when the dispersed

phase was in the vinicity of the heated wall and the thermal transfer rate augmentation when the

dispersed phase moved far away the heated wall. The maximum value of the Nusselt number was

approximately the value from the single-phase case, since the dispersed phase has low influence

on the thermal transfer rate when it was away from the heated wall.

The figure 5.50 exibited an example of the case where the addition of a dispersed phase

did not enhanced thermal transfer rate at a surface in contact to the two-phase flow. In fact,

the results presented in the figure 5.50 showed the severe reduction of the spatial mean Nusselt

number in the two-phase flow cases compared to the single-phase case. In addition, the figure

5.50 illustrated the intensification of the overall Prandtl number influence in the thermal transfer

rate in the case where the radius of the dispersed phase was larger. Therefore, the overall Prandtl

number of the flow mixture and the bubble radius controled the reduction of the thermal transfer

rate in the figure ?? since the tendency observed for the case with the bubble initial radius of

0.31L was more evident for the case where the initial bubble radius was 0.39L.
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Table 5.16: Summary of the thermal transfer rate results to compute the effects of the overall
Prandtl number and the bubble radius variation.

N̄u N̄umin N̄umax
Single-phase flow with Pr = 7.1 2.09 2.09 2.09

Two-phase flow with Prove = 6.3 and r = 0.31L 2.03 1.89 2.12
Two-phase flow with Prove = 5.5 and r = 0.39L 1.94 1.93 1.95

The table 5.16 presents the influence of the overall Prandtl number and the bubble radius

on the thermal transfer rate using the spatial mean Nusselt number at the east wall.

The table 5.16 exibited the implications of the overall Prandtl number of the flow mixture

on the spatial mean Nusselt number calculated at the heated wall. As the overall Prandtl number

of the flow mixture reduced, the mean Nusselt number decreased. In accordance to a similar

simulation performed, Qiu, Wang e Jiang (2014) found the reduction of the thermal transfer

rate as the bubble radius increased. The spatial mean Nusselt number variation compared to the

single-phase flow case presented in the table 5.16 drops the general accepted hypothesis of the

Nusselt number increasement by the introduction of bubbles in single-phase flows.

Based on the results from Dabiri e Tryggvason (2015), the authors of the present papper

believe in the intensification of the reduction of Nusselt number presented in the table 5.16 if the

distance between the walls and the dispersed phase was lower. Finally, this last section provided

several results refuting the argument generally seen in the literature that the introduction of

bubbles necessarly increases the wall-to-fluid thermal transfer rate. Future works are neeeded to

be conducted next in order to analyze new factors related to the topic, such as the influence of

the bubble shape on the thermal transfer rates.

5.5.3 Simulations where the Prandtl number from the dispersed phase was the same from

the continuos phase

In this section, simulations were performed to evaluate the thermal transfer rate in the

situation where there the Prandtl number from the continuos phase was equal to the Prandtl

number from the dispersed phase. Although the Prandtl number between the continuos and

dispersed phases were similar, the Eckert and Brinkman numbers were different between the

dispersed and continuos phases. The initial bubble radius was 0.31L and Gr=1.4× 103.
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The figure 5.51 shows the temperature and the isotherms for the two-phase flow cases with

Gr=1.4 × 103 and Pr=0.71 with Ecdis = 5Eccon and Brdis = 5Brcon (a) and Eccon = 2Ecdis

and Brcon = 2Brdis (b).

(a) (b)

Figure 5.51: Temperature field and isotherms at central xz-plane considering Gr=1.4× 103

and Pr=0.71 for the two-phase flow cases with Gr=1.4×103 and Pr=0.71 with Ecdis = 5Eccon
and Brdis = 5Brcon (a) and Eccon = 2Ecdis and Brcon = 2Brdis (b). The isotherms are
represented in 20 thin isovalue contours, the thick contour represents the interface position
and temperature field is presented in grayscale.

The influence of the Eckert number and Brinkman numbers difference between the phases

are shown in the figure 5.51 According to the figure 5.51, not only the Prandtl number is relevant

to the thermal transfer rates variations in two-phase flows. But, also the Eckert and Brinkman

numbers.

The figure 5.52 shows the spatial mean Nusselt number evolution in time for the cases

with similar Prandtl and Grashof numbers.

According to the figure 5.52, the spatial mean Nusselt number did present visible variations

in time between the single-phase and two-phase cases with similar Prandtls between the phases

but different Eckert and Brinkman numbers. Next, the influence of the Eckert and Brinkman

numbers are separately investigated.

5.5.3.1 Influence of the Brinkman number in two-phase flows without phase-change

Simulations of two-phase flows with different Brinkman number between the phases al-

though considering similar Prandtl numbers between the continuos and dispersed phases were

performed. Three simulations were perfomed: a single-phase flow simulation and two two-phase
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Figure 5.52: Temporal spatial mean Nusselt number variation for the cases with similar
Prandtl and Grashof numbers.

flows simulations. All them were conducted considering for Gr=1.4×103, Prove = 0.71. However,

the two-phase flows simulations were performed considering the dispersed phase with Brinkman

number 2 times lower or higher compared to the continuos phase.

The figure 5.53 shows the temperature and the isotherms configuration for the cases with

Gr=1.4× 103 and Pr=0.71 with Brdis = 5Brcon (a) and Brcon = 2Brdis (b).

The figure 5.54 shows the temporal evolution of the spatial mean Nusselt number for the

two-phase flows cases and for the single-phase flows.

5.5.3.2 Influence of the Eckert number in two-phase flows without phase change

Two-phase flows simulations with different Eckert number were performed. The Eckert

number was modified according to the diference with the specific thermal energy between the

dispersed and continuos phase.

Three simulations were perfomed: a single-phase flow simulation and two two-phase flows

simulations. All them were conducted considering for Gr=1.4 × 103, Prove = 0.71. However,
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(a) (b)

Figure 5.53: Temperature and isotherms at central xz-plane for the cases with Gr=1.4 ×
103 and Pr=0.71 with Brdis = 5Brcon (a) and Brcon = 2Brdis (b). The isotherms are
represented in 20 thin isovalue contours, the thick contour represents the interface position
and temperature field is presented in grayscale.

Figure 5.54: Spatial mean Nusselt number evolution for the single-phase case (Pr = 0.71)
and two-phase flows cases with Gr=1.4× 103, Prove = 0.71.

the two-phase flows simulations were performed considering different Eckert number between the

phases.

The figure 5.55 shows the temperature field and the isotherms configuration for the cases

with Gr=1.4× 103 and Pr=0.71 with Ecdis = 5Eccon (a) and Eccon = 5Ecdis (b).
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(a) (b)

Figure 5.55: Temperature field and isotherms at central xz-plane for the cases with Gr=1.4×
103 and Pr=0.71 with Ecdis = 2Eccon (a) and Eccon = 5Ecdis (b). The isotherms are
represented in 20 thin isovalue contours, the thick contour represents the interface position
and temperature field is presented in grayscale.

The figure 5.56 shows the spatial mean Nusselt number for the single-phase flow case and

for the other two-phase flows.

Figure 5.56: Spatial mean Nusselt number evolution for the single-phase case (Pr = 0.71)
and two-phase flows cases with for Gr=1.4× 103, Prove = 0.71.
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5.6 Validation of the phase change model in the MFSim code

In this section, four validation cases will be presented using the phase change model em-

ployed in the MFSim code. First, the subsection 1 will show the validation case of a vapor bubble

inside a superheated liquid subjected to a constant rate of boiling. Then, the subsection 2 will

show the case of boiling of superheated liquid where a vapor bubble is subjected to a variable rate

of growth. Then, the subsection 3 will show the case of a film boiling where a Rayleigh-Taylor

instability is developed. Finally, the subsection 4 will show a condensation case of an ascending

vapor bubble in a subcooled environment.

5.6.1 Validation case 1: Boiling with a constant mass density flux

Simulations of bubble growth by phase change were performed imposing a constant and

uniform mass flux across the interface. The initial bubble radius was equal to 0.01 m and a

spatially uniform and temporally constant mass density flux of 0.10 kg/(m2s) was imposed. The

bubble grew until its radius was twice the initial radius. Then, the difference between the exact

and the numerical radius was computed. The results obtained in the present work were compared

to Tanguy et al. (2014), and with the exact solution from Eq. 18.

The boiling simulations at constant rate were performed using the following physical prop-

erties: ρliq = 1000 kg/m3, ρvap = 1 kg/m3, σ = 0.07 N/m, µliq = 0.001 kg/(ms), and

µvap = 1.78 × 10−5 kg/(ms). Since the mass density flux was assumed constant, the flow was

considered isothermal. An outflow boundary condition was imposed on all the domain faces

and the flow was not subjected to gravity. The mesh consisted of a structured uniform three-

dimensional Cartesian grid with configurations of 32×32×32, 64×64×64, and 128×128×128

cells.

The figure 5.57 shows the interface contour at the simulation using the Delta and GFM

methods, respectively.

It can be shown that the bubble radius will evolve linearly with time according to the

following expression:

Rexa(t) = R0 +

[
1

ρ

]
ṁ′′t, (5.18)
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(a) (b)

Figure 5.57: Interface contour in the simulations using the Delta and GFM methods, respec-
tively, at time t=0.5s, considering ṁ′′ = 0.10 kg/(m2s).

where Rexa(t) represents the exact bubble radius, R0 is the bubble’s initial radius, and t is the

time.

Fig. 5.58 shows the evolution in time of the bubble radius using the Delta and GFM

methods. The error was obtained as the difference between the numerical bubble radius (Rnum)

(a) (b)

Figure 5.58: Bubble radius evolution for ṁ′′ = 0.10 kg/(m2s) using the Delta (a) and GFM
(b) methods.

and its exact value (Rexa), which is given by the following expression:

ε(%) =
|Rnum −Rexa|

Rexa

× 100. (5.19)
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Table 5.17: Bubble radius error ε (%) for ṁ′′ = 0.10 kg/(m2s) .

323 643 1283

Tanguy et al. (2014) - GFM 0.51 0.22 0.11
Present work - GFM 1.50 0.50 0.05

Tanguy et al. (2014) - Delta 22.5 23.7 24.3
Present work - Delta 1.51 0.52 0.05

The bubble radius error at the simulation’s final time is presented in Table 5.17 using three

different mesh configurations for the Delta and GFM methods. The computed bubble radius in

the present work exhibited low deviation compared to the exact solution, which can be easily

seen in Table 5.17. Using the GFM method, Tanguy et al. (2014) and the present work exhibited

no significant error compared to the exact solution. On the other hand, only the present work

presents results from the Delta simulations with low deviation compared to the literature, since

the error found by Tanguy et al. (2014) was higher than 20% for all the meshes tested.

The differences between the exact and the computated radii using the GFM and Delta

methods were lower than 2.0% for all the simulations in the present work. In addition, the error

from the Delta simulations was very similar to the error obtained from the GFM simulations for

all mesh configurations. Therefore, according to the behavior of the interface evolution in time,

both approaches of jump conditions demonstrated accurate results compared to the expected

solution.

AMR simulations were also performed for this validation case in order to quantify the

AMR efficiency compared to the uniform grid simulations considering a mass density flux of

0.1kg/(m2s). The AMR simulations were performed using the properties and the physical model

previously described and the Delta method for pressure interface treatment was employed in these

simulations. The AMR simulations were performed with two, three and then four refinement mesh

levels with the most refined level of 128× 128× 128 cells.

In order to present a quantitative analysis of the AMR efficiency, the rate of efficiency was

calculated using an expression from Akhtar e Kleis (2013) which uses the time and number of

cells employed in the simulations. The expression of AMR efficiency is given by the following

equation (AKHTAR; KLEIS, 2013):

η (%) =
tuninada
tadanuni

100 (5.20)
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Table 5.18: Assessment of mesh configuration in the simulations with ṁ′′ = 0.1kg/(m2s).

Time (s) Number of cells ε (%) η(%)
Uniform grid 1,440 884,736 0.05 -

AMR - two levels 480 157,248 0.06 53.3
AMR - three levels 300 74,304 0.07 40.3
AMR - four levels 240 66,304 0.09 45.0

where: tuni is the simulation time using uniform grid, nuni is the number of cells in the simulation

using uniform grid, tada is the simulation time using AMR and nada is the number of cells in the

simulation using AMR.

The table 5.18 presents the computational time spent in simulations, the number of cells

employed, the error of the bubble radius prediction (ε ) and the AMR efficiency (η). It was

observed that the course grid regions represented more than half of the domain total volume,

specially in the beggining of the simulation. In addition, the course grid away from the interface

implied a relevant reduction of the computational cells number. Therefore, AMR is a numerical

tool which can reduce computational costs for two-phase flows problems with phase change and

allows more efficient simulations.

Two main advantages of using AMR instead of uniform grids was the reduction in the

number of cells employed and computational time simulated. According to the results shown in

table 5.18, uniform grid employed almost 900,000 cells while AMR used close to 160,000 cells with

two levels and almost 75,000 cells with 3 levels. Therefore, AMR utilization reduced the number

of cells in more than 10 times compared to uniform grid simulations. Moreover, computational

time needed to finish the simulation was almost 5 times lower using an adaptive mesh with 3

levels compared to uniform grid. Finally, it can be noticed similar error between uniform grid and

AMR simulations since error from bubble radius prediction was always bellow 1%. Therefore,

according to table 5.18, AMR yielded accurate results with lower computational costs compared

to uniform grids and reveled a great potential to be adopted in phase change simulations.

Concerning the AMR efficiency, the present work efficiencies were approximately 50%. On

the other hand, Akhtar e Kleis (2013) found an efficiency close to 70% for similar simulations

of boiling. Probably the AMR efficiency from the present work was lower than Akhtar e Kleis

(2013) since the latter work used octree grids which uses a simplified algorithm, reducing time

required to solve all the equations in each computational cell.
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The figure 5.59 shows the mesh configuration at the simulation using AMR and the Delta

method at time t=0s and t=0.05s.

(a) (b)

Figure 5.59: Interface contour in the simulations using delta and GFM, respectively, at time
t=0.5s, considering ṁ′′ = 0.10 kg/(m2s).

According to the figure 5.59, adaptive mesh refinement promoted great computational

power spared, since a large region of the domain remained solved with a course grid.

5.6.2 Validation case 2: Boiling simulations with a variable mass density flux

Numerical simulations of a vapor bubble growth in a superheated liquid domain were con-

ducted using the Delta and GFM methods to take into account the interface jump condition of

pressure. The phase change simulations were performed using a Jakob number of 2.0. The Jakob

number (Ja) is defined according to the following equation (TANGUY et al., 2014):

Ja =
ρliqCpliq(T∞ − Tsat)

ρvapL
. (5.21)

The following physical properties were adopted in the phase change simulations with a variable

mass density flux: ρl = 100 kg/m3, ρv = 1 kg/m3, σ = 0.01 N/m, µl = 0.00062 kg/(ms),

µv = 0.000012 kg/(ms), kl = 0.10 W/(mK), kv = 0.01 W/(mK), Cpliq = 20 J/(kg K),

Cpvap = 10 J/(kg K), and a latent energy of 1000 J/kg . An outflow boundary condition

was imposed on all domain faces, and the flow was not subjected to gravity. AMR simulations
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were performed with three or four mesh levels and the base level presented the configuration of

16× 16× 16 cells.

The numerical model validation was conducted according to the error of the bubble radius

in comparison with an analytical solution available in Scriven (1959). The analytical solution de-

scribes the evolution of the bubble radius in time according to the following expression (SCRIVEN,

1959):

r(t) = 2β
√
αt. (5.22)

The parameter β is found by solving a transcendental equation in Scriven (1959), which is

derived from the energy and continuity equations in spherical coordinates (TANGUY et al., 2014).

Simplified equations were proposed and presented in Scriven (1959) and the following expression

was adopted to calculate β (SCRIVEN, 1959):

β =

√
3

π

 ∆T(
ρg
ρl

) [
L
Cpl

+
(
Cpl−Cpg
Cpl

)
∆T
]
 . (5.23)

The initial radius of the bubble was 0.0287 m and the temperature difference between the sat-

uration condition and the superheated liquid was 1.0 K. The figure 5.60 shows the temperature

field and the mesh configuration at the simulation time t=3.5s.

Figure 5.60: Interface, temperature field and mesh configuration at time 3.5 s at the central
xz-plane.
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As figure 5.60 shows, the temperature field is almost completely uniform outside the bubble

(where the liquid is superheated), and next to the interface, there is a small region where the

temperature gradients exist (about 3 cells of length).

Fig. 5.61 shows the interface contour using the Delta method at the initial condition and

at 3.0s.

(a) (b)

Figure 5.61: Interface contour with the Delta method at initial time (a) and at 3.0s (b).

Fig. 5.62 shows the interface contour using the GFM method at the initial condition and

at 3.0s.

Fig. 5.63 shows the evolution of the bubble radius in time in comparison to the analytical

solution from Scriven (1959). The grid configuration with three mesh levels was sufficiently

fine to provide accurate results, similarly to the mesh with four levels. Good agreement was

obtained between the computed bubble radius and the bubble radius from the analytical solution.

According to Fig. 5.63, the simulations using the Delta and the GFM methods for pressure only

deviated slightly from the analytical solution. The evolution of the bubble radius was close to the

expected solution provided by Scriven (1959) from the beginning until the end of the simulation

time.

Fig. 5.64 illustrates the mesh configuration for the Delta methods at time t=0s (a) and

t=3.6s (b).

According to the figure 5.64, the AMR promoted great reducement of the computational
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(a) (b)

Figure 5.62: Interface contour with the GFM method at initial time (a) and at 3.0s (b).

(a) (b)

Figure 5.63: Bubble radius evolution using the Delta method (a), and the GFM method (b).

power required since a large region of the domain was solved using a course grid. Next, another

case of phase change is presented where AMR was employed.

5.6.3 Validation case 3: Simulation of film boiling with Rayleigh–Taylor instability

Pool boiling systems are widely encountered on the ground and in outer space applications

(YANG; PAN; XU, 2014). Film boiling is an important phase change phenomenon since it is

present in several applications in the engineering field (SHARP, 1984). In addition, film boiling is

one of more ideal pool boiling regimes to validate a method, due to its lesser complexity (LEE; R.;

AUTE, 2017). A particular case of film boiling is the development of Rayleigh–Taylor instability,
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(a) (b)

Figure 5.64: Slice of the central xz-plane showing the interface and the mesh configuration
for the Delta methods at time t=0s (a) and t=3.6s (b) , considering a variable mass density
flux with Ja = 2.0.

which is widely reported in the phase change literature.

Rayleigh–Taylor instability is the result of a baroclinic torque created by the misalign-

ment of the pressure and specific mass gradients at an interface (S.; CANDLER; DIMOTAKIS.,

1991). Rayleigh–Taylor instability occurs when a heavy fluid initially lies above a lighter one in

a gravitational field (SHARP, 1984), promoting a baroclinic torque. The baroclinic torque is

mathematically represented in the transport equation of vorticity (ω), which can be obtained by

taking the curl of the momentum equation, and is given by the following equation:

D~ω

Dt
= −(~ω.~∇)~v +

(~∇ρ× ~∇p)
ρ2

+ (~ω.~∇)~v +
1

Re
(~∇2~ω) (5.24)

The baroclinic contribution is represented by the term (~∇ρ×~∇p)
ρ2

and is always perpendicular to the

specific mass gradient. If the specific mass and pressure gradients are aligned, this term is zero.

This instability has a particularly important application in inertial confinement fusion

(ROBERTS; JACOBS, 2016). Although Rayleigh–Taylor instability is rarely observed in its au-

thentic form, it plays an important role in various natural and technological processes. The

formation of bubbles from a vapor film beneath a liquid in film boiling is a classic example of

a relatively authentic Rayleigh–Taylor instability (TRYGGVASON, 1988). Sharp (1984) enumer-
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Table 5.19: Assessment of mesh configuration in the simulations of film boiling.

ρl/ρv µl/µv kl/kv Cpl/Cpv
4.78 2.59 3.56 0.66

ated some examples of Rayleigh–Taylor instabilities in nature and in technological fields, such as

the overturn of the outer portion of the collapsed core of a massive star, the formation of high

luminosity twin-exhaust jets in rotating gas clouds in an external gravitational potential, Laser

implosion of deuterium–tritium fusion targets, electromagnetic implosion of a metal liner, and

several others.

The simulations were performed using AMR and uniform grids. The Delta method was

employed to model the interface treatment of pressure. The thermal transfer rate will be compared

to an experimental correlation from Berenson (1961), which predicts the thermal transfer rate at a

heated wall where pool boiling occurrs. Berenson’s (BERENSON, 1961) experimental correlation

defines the mean Nusselt number at the heated wall according to the following expression:

Nu = 0.425

(
GrPr

Ja

)1/4

, (5.25)

where the Prandtl number is 1.0, the Jakob number is 1.0, and the Grashof number is 304.3.

The thermo-physical properties of the fluid used in the simulations has the same ratio

between the liquid and vapor phase as that in Akhtar e Kleis (2013), as given in Table 5.19.

In the simulation of film boiling, a vapor film completely covers the heated surface. During

the entire simulation, the denser liquid above the vapor film falls, due to the action of gravity,

and at the same time the interface between the liquid and vapor rises away from the heated wall.

As the liquid moves closer to the heated wall, evaporation at the liquid–vapor interface prevents

the liquid from getting into contact with the wall. Since the intensity of the baroclinic torque

increases with time, an interface peak at the center of the domain emerges.

The physical model in the simulations consists of a three-dimensional domain subjected to

gravity. The lateral boundaries are symmetric and an outflow boundary condition is used at the

top surface. Moreover, a constant temperature is imposed at the bottom wall:

Twall = Tsat + ∆T. (5.26)
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The bottom wall was kept at a fixed temperature, higher than the temperature of the top

and lateral walls, similarly to the procedure adopted by Akhtar e Kleis (2013). The computational

domain was subjected to a grid independence study and a validation was performed using the

mean Nusselt number at the bottom wall. Fig. 5.65 illustrates a slice from the central xz-plane

with the interface position for three grid configurations: 32 × 32 × 64, 64 × 64 × 128 and

128× 128× 256 cells.

Figure 5.65: Interface at time 12.0 s where the dotted line represents the mesh of 32×32×64
cells, the dashed line is the mesh configuration of 64× 64× 128 cells, and the continuos line
shows the grid with 128× 128× 256 cells.

Fig. 5.65 shows that the two highest mesh resolutions closely match each other (dashed

and dotted lines). On the other hand, the coarsest grid presented a very different profile from

the other grid configurations, due to the insufficient mesh quality. Therefore, the mesh with the

configuration of 64× 64× 128 cells was considered adequate to model film boiling.

In order to validate the Nusselt number at the bottom wall using an experimental correlation

from the literature, a simulation using a uniform grid was perfomed using the configuration of

64 × 64 × 128 cells and an AMR simulation was performed with three mesh levels. The most

refined level in the AMR simulation presented the same mesh width as the uniform grid simulation.

Fig. 5.66 shows two moments in the simulation of film boiling, namely the beginning and

the end of the simulation time. The two coherent structures composing the Rayleigh–Taylor

instability are evident in Fig. 5.66 at the final time of the simulation. There are four noticeable
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(a) (b)

Figure 5.66: Interface at the initial time of the simulation (a) and at the final time (b).

spikes (fluid structure of heavy fluid growing into light fluid) and one mushroom-shaped bubble

(fluid structure of light fluid growing into heavy fluid). As Figure 5.66 shows, the stem does not

pinch off.

Fig. 5.67 shows the interface contour and the grid configuration employed at the initial time

of the simulation and at the final time. Adaptive mesh refinement promoted a great reduction of

(a) (b)

Figure 5.67: Interface and mesh configuration (a) at the initial time of the simulation and
(b) at the final time.

the computational costs. As Fig. 5.67 shows, the regions away from the interface used a coarse

grid, which helped the simulation to run faster than with a uniform grid. Since the interface was
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Table 5.20: Assessment of mesh configuration in the simulations of film boiling.

Time (s) Number of cells Mean Nusselt number difference (%)
AMR 57600 172000 2.5

Uniform grid 82800 524288 2.3

the region where the phenomenon was developed, the other regions of the domain were solved

with a relatively coarse grid.

Table 5.20 shows the time necessary to run the simulation using AMR and uniform grids, as

well as the mean number of cells used in each simulation. According to Table 5.20, AMR promoted

a reduction of approximately 30% of CPU time compared to the simulation using uniform grids.

As expected, the number of cells employed in the AMR simulation was significantly lower than

the uniform grid simulation. The reduction of nearly 67% from the total number of cells sharply

reduced the computational power required. Thus, AMR simulations have again achieved accurate

results while saving computational power and the time necessary to run the simulations.

According to expression 21, the AMR efficiency was approximately 47%, representing a

great improvement of efficiency. Akhtar e Kleis (2013) evaluated the AMR efficiency using that

expression and found approximately 52% at a simulation time of 1.0 s, which corroborates the

efficiency obtained in the present work.

The experimental correlation of Berenson (1961) will now be used for the minimum thermal

flux, which is the condition where there is a stable vapor film over the heating surface. The

spatial mean Nusselt number can be computed at the bottom wall and is presented in Fig. 5.68

in comparison to the solution from Berenson (1961).

As previously seen in Akhtar e Kleis (2013), the mean Nusselt number remains approxi-

mately constant after some time, according to Fig. 5.68. A good agreement was found between

the computational results obtained in the present work and the experimental correlation from

Berenson (1961). Therefore, the computational results in this subsection confirmed the accuracy

of the model for complex phase change problems using a diffuse interface treatment with accuracy

and physical consistency.

According to the results from the simulations of film boiling with the development of

Rayleigh–Taylor instability, the diffuse interface treatment for pressure demonstrated good accu-

racy, which was confirmed by the validation of the local thermal transfer rate and the physical
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Figure 5.68: Evolution in time of the spatial mean Nusselt number in the film boiling simu-
lation.

Table 5.21: Fluid properties employed in the simulations of a single water vapor bubble
condensation.

Fluid properties Vapor Liquid
Specific mass (kg/m3) 1.5 953.0

Dynamic viscosity (Pas) 0.000013 0.0021
Thermal conductivity (W/mK) 0.02 0.68

Specific thermal energy (J/kgK) 2110.0 4224.0

behavior expected from the theory of stability analysis according to the visualization of the baro-

clinic torque action in the simulations.

5.6.4 Validation case 4: An ascending condensing water vapor bubble in a subcooled water

liquid

In order to validate the model used to study the case of the condensing vapor jet in the

present thesis, simulations of a single water vapor bubble in condensation were performed and the

results obtanied were compared to the previous experimental results from Kamei e Hirata (1990).

In this problem, a single water vapor bubble at saturation is subjected to a quiescient

subcooled environment of liquid water at atmospheric pressure. The vapor bubble ascension

occurs at the same time as the condensation process occurs. The simulation duration is 3ms

and the adopted time step was 0.000001s. The fluid properties employed in the simulations are

displayed at the table 5.21.
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In addition to the properties shown at the table 5.21, the latent heat was 2237 KJ/kg

and the surface tension coefficient was 0.057 N/m. The Jakob number was 30.

The figure 5.69 shows the temperature field and the mesh configuration at the simulation

time t=30 ms.

Figure 5.69: Interface, temperature field and mesh configuration at time 3.0 ms at the central
xz-plane.

The figure 5.70 shows the vapor bubble at the initial (a) and final time (b), respectively,

of the simulation. The vapor bubble reduced approxitemaly 5 times its initial size in 3ms in the

(a) (b)

Figure 5.70: Central xz-plane with the interface contour at the beggining (a) and at the end
(b) of the simulations of a single water vapor bubble condensation.

simulations performed, as shown in the figure below. The experimental data from Kamei e Hirata

(1990) indicates that the bubble completely vanishes in 3ms, confirming the results obtanied in
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the computational simulations.

The figure 5.71 illustrates the time history of the bubble radius from the present work and

the experimental data from Kamei e Hirata (1990). The numerical results from Samkhaniani e

Ansari (2016) are also presented in the figure 5.71, although its error was excessively high.

Figure 5.71: Time history of the water vapor bubble diameter from the simulations from the
present paper and the results from the literature.

The vapor bubble condenses progressively faster as the volume vapor bubble is reduced

in time, as previously seen in Kamei e Hirata (1990). According to the figure 5.71, the present

model was considered validated since it provided accurate results for modelling phase change

phenomenon.

Figure 5.72 shows the mesh configuration of the bubble condensation case at the initial

time. According to the figure 5.72, the adaptive mesh refinement simulation reduced greatly the

computational power required compared to the uniform grid simulation. The number of cells

in the uniform grid simulation was 884,736; on the other hand, the mean number of cells in

the adaptive mesh refinement simulation was 35,776, which represents a reduction of almost 25

times in the number of cells used in the simulation. The time necessary to run the adaptive mesh

refinement simulation was also significantly reduced compared to the uniform grid simulation.

The adaptive mesh refinement simulation required only 1800s to accomplish the physical time of

3ms; on the other hand, the uniform grid required approxitemaly 10800s. Therefore, the adaptive

mesh refinement simulation was approxitemaly 6 times faster in comparison to the uniform grid
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Figure 5.72: Central xz-plane with the interface contour and mesh configuration at the time
0.00005s of the simulation of a single water vapor bubble condensation.

simulation.

5.7 Evaluation of the spurious currents in phase change problems

In order to evaluate the spurious currents, phase change simulations were performed with

a growing bubble with three different constant and uniform mass density fluxes.

The boiling simulations at constant rate were performed using the following physical prop-

erties: ρliq = 1000 kg/m3, ρvap = 1 kg/m3, σ = 0.07 N/m, µliq = 0.001 kg/(ms), and

µvap = 1.78 × 10−5 kg/(ms). Since the mass density flux was assumed constant, the flow was

considered isothermal. The bubble’s initial radius was 0.01 m and the spatially uniform and

temporally constant mass density fluxes of 0.1 kg/(m2s), 1.0 kg/(m2s), and 10 kg/(m2s) were

imposed.

The mass density flux of 0.1 kg/(m2s) represents a moderate intensity of phase change,

which is found in several numerical investigations in the literature, such as Tanguy et al. (2014).

This phase change rate is also similar to that found in experimental cases, such as water bubble

condensation at atmospheric pressure from Kamei e Hirata (1990). Next, the mass density

flux of 1.0 kg/(m2s) represents a strong phase change rate, which may refer to an extremely

severe thermodynamic condition for phase change. Finally, the mass density flux of 10 kg/(m2s)
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represents an extreme rate of phase change intensity which may be considered even impossible

to model on small scales due to the fast speed of the volume change in time. The purpose of

evaluating the spurious currents using this high phase change intensity is to drawn conclusions

about the two methods in the most severe conditions possible.

The time step was set as 1.0 × 10−5 s and the evaluation of the spurious currents was

carried out at 0.001 s. Numerical simulations using AMR were conducted with two mesh levels

and the base level presented the configuration of 32× 32× 32 cells. The interface presence was

considered the refinement criterion.

Fig. 5.73 shows the velocity fields using the Delta and GFM methods for a mass density

flux of 0.1 kg/(m2s) at 0.001 s. The maximum velocity observed in the simulations using the

(a) (b)

Figure 5.73: Spurious currents for ṁ′′ = 0.1 kg/(m2s) at 0.001 s, (a) with Delta and (b) with
GFM.

Delta and GFM methods in Fig. 5.73 was close to 0.0002 m/s. Inside the dispersed phase, both

approaches produced some spurious currents, which exhibited similar magnitudes. The mass

density flux of 0.1 kg/(m2s), in the simulation using Delta, produced a visible velocity field at the

interface region, which extended to the domain limits. The simulation using GFM presented a

velocity field with low influence of spurious currents outside the bubble. The present paper found

spurious currents one order of magnitude lower than Tanguy et al. (2014), who obtained spurious

currents close to 0.05 m/s using the Delta method and 0.01 m/s using the GFM approach.

Fig. 5.74 shows the interface contour using the Delta and GFM methods for a mass density

flux of 0.1 kg/(m2s) at 0.001 s.



117

(a) (b)

Figure 5.74: Interface contour for ṁ′′ = 0.1 kg/(m2s) at 0.001 s, (a) with Delta and (b) with
GFM at simulation’s final time.

Fig. 5.75 shows the velocity fields using the Delta and GFM methods for a mass density

flux of 1.0 kg/(m2s) at 0.001 s.

(a) (b)

Figure 5.75: Spurious currents for ṁ′′ = 1.0 kg/(m2s) at 0.001 s, (a) with Delta and (b) with
GFM.

The velocity field obtained from the simulation using the GFM method presented smaller

spurious currents compared to the Delta method. The simulation using the GFM method has

only small velocities inside the dispersed phase; outside the bubble, there are no spurious currents.

The magnitude of the spurious currents in the simulation using the Delta method was twice that
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of the the velocities obtained in the GFM method.

Fig. 5.76 shows the interface contour using the Delta and GFM methods for a mass density

flux of 0.1 kg/(m2s) at 0.001 s.

(a) (b)

Figure 5.76: Interface contour for ṁ′′ = 0.1 kg/(m2s) at 0.001 s, (a) with Delta and (b) with
GFM at simulation’s final time.

Fig. 5.77 shows the velocity fields using the Delta and GFM methods for a mass density

flux of 10.0 kg/(m2s) at 0.001 s. The simulation considering a mass density flux of 10.0 kg/(m2s)

(a) (b)

Figure 5.77: Spurious currents for ṁ′′ = 10.0 kg/(m2s) at 0.001 s, (a) with Delta and (b)
with GFM.

produced a spurious velocity field with significant magnitudes with the Delta method compared
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to the GFM method. The maximum velocities were observed in the proximities of the interface

and the spurious currents extended to the limits of the domain. The simulation using the GFM

method presented smaller spurious currents than the Delta method, and they were two orders of

magnitude lower than for Delta.

Fig. 5.78 shows the interface contour using the Delta and GFM methods for a mass density

flux of 0.1 kg/(m2s) at 0.001 s.

(a) (b)

Figure 5.78: Interface contour for ṁ′′ = 0.1 kg/(m2s) at 0.001 s, (a) with Delta and (b) with
GFM at simulation’s final time.

The numerical results of the magnitudes of the spurious currents in the simulations were

expected, since the GFM method treats the interface as sharp by defining ghost cells, preserving

a behavior that is more physically consistent with an interface. As described by Tanguy et al.

(2014), preserving the sharpness of the velocity field allows transporting the interface with an

adequate velocity, which is zero in the present case, since the bubble is stationary. Therefore,

the GFM method minimized the numerical diffusion across the interface, which is particularly

important in phase change problems.

According to the velocity fields obtained from the simulations using the Delta method, a

mass density flux of 0.1 kg/(m2s) did not produce noticeable spurious currents compared to the

velocity fields from the GFM approach. On the other hand, a mass density flux of 1.0 kg/(m2s)

or higher did increase excessively the spurious currents in the simulations using the Delta method,

in comparison to the GFM approach. Therefore, the magnitude of the mass density flux directly
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Table 5.22: Spurious currents using different ṁ′′ for Delta and GFM methods at 0.001 s.

Mass density flux kg/(m2s) Delta (m/s) GFM (m/s)
0.1 0.0002 0.0001
1.0 0.0018 0.0005
10.0 0.0330 0.0002

Table 5.23: Simulation time for Delta and GFM methods.

Method Delta (m/s) GFM (m/s)
Time (s) 340.5 456.0

Mean number of iterations per time step 5 7

affected the intensity of the spurious currents obtained in the simulations with the Delta method.

Table 5.22 summarizes the magnitudes of the spurious currents found at the end of the

simulation, using the Delta and GFM approaches, with mass density fluxes of 0.1 kg/(m2s), 1.0

kg/(m2s), and 10.0 kg/(m2s).

It’s important to mention in the present work the difference between simulations computa-

tional time between Delta and GFM methods. The Delta method is about 20 % faster than the

GFM method, since the numerical condition in the GFM method takes the interface descontinuity

more severely. In addition, smaller time steps were registred using GFM method compared to

Delta, in order to avoid the non-convergence.

Table 5.23 summarizes the time necessary of the simulation, using the Delta and GFM

approaches with mass density fluxes of 0.5 kg/(m2s). Therefore, the GFM method has presented

higher computational costs compared to the Delta method. The user of the code may choose

which method would be better for the situation and the conditions offered.

5.8 Evaluation of particular forces in phase change problems

In this section, two forces related to phase change problems are described. The first

force investigated is the recoil force, which is employed in some literature works, although is not

modelled in all the works found due to its small magnnitude. The second force studied in the

present thesis is an additional force discovered from the authors of the present work. This force

has not being described yet by the phase change literature using CFD, however, the present thesis

has quantified and analyzed its importance to phase change problems.
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Table 5.24: Fluid properties of saturated water at near critical pressure.

Phase ρ [kg/m3] µ[µPa.s] Cp [J/kg.K] k [W/mK]
Vapor 242.7 32.38 3520 0.538
Liquid 402.4 46.7 2128 0.545

5.8.1 Analysis of the recoil force in momentum equation

According to Nikolayev et al. (2016), the importance of the recoil force increases in the

vinicity of the critical point of a substance since the magnitude of the surface tension force

becomes closer to the magnitude of the recoil force. Therefore, numerical simulations of bubble

growth by phase change were performed near the critical point. Numerical simulations of water

vapor condensation near critical pressure were performed using the fluid properties presented in

Table 5.24.

This simulation was previously conducted by Lee, R. e Aute (2017) using the recoil force

term in the mathematical model. The diffuse interface treatment was applied to the pressure in

the phase change simulations. In addition, the latent energy was 276.4 kJ/kg, the surface tension

coefficient was 7.0×10−5 N/m, and the temperature difference between the vapor and the liquid

was 1 K. Numerical simulations using AMR were conducted with three mesh levels and the base

level presented the configuration of 24 × 24 × 24 cells. The interface presence was considered

the refinement criterion.

Since the specific mass difference between the phases is small due to the thermodyamic

condition (near critical point), the effects of phase change would be deeply small. In order to test

a more challenging situation, the specific mass jump between the phases was considered equal to

1; then, the effects of recoil force have been magnified to the tests performed here.

As previously seen in the last subsection, the bubble radius evolves linearly with time

according to expression 18. Fig. 5.79 presents the bubble radius evolution in time from the

simulations, both including and excluding the term that models the effects of the recoil force in

the momentum equation. Fig. 5.79 shows good agreement between the exact solution and the

results presented here for the simulation with a constant mass density flux of 0.01 kg/m2s. As

expected, the evolution of the bubble radius was linear in time since the mass density flux was

taken to be constant.

Fig. 5.80 shows the magnitude of the surface tension force effects compared to the magni-
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Figure 5.79: Bubble radius evolution in phase change simulations with and without the recoil
force effects using the Delta method.

tude of the recoil force term. According to the data collected during the simulation, the magnitude

Figure 5.80: Magnitude of the effects from the surface tension force compared to the recoil
force using the Delta method.
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of the recoil force was approximately five orders of magnitude lower than the surface tension force.

Since the inertial and surface forces were bigger than the recoil force in the momentum equation

in the case investigated, the addition or not of the recoil force had only insignificant effects on the

bubble rate movement. Raghupathi e Kandlikar (2016) also found only an insignificant influence

of the recoil force term in similar simulations of phase change.

Until the present moment, the only numerical investigation found in the literature that

revealed a significant influence of the recoil force has been Raghupathi e Kandlikar (2016) for

simulations where two different regions of the interface were subjected to strong temperature

differences, there occuring a visible interface motion due to the recoil force. Therefore, more

studies are necessary to understand the influence of the recoil force in phase change problems,

especially for engineering applications. In addition, the way the recoil force is being modeled in

the literature should be better investigated since alternative approaches could provide a more

realistic influence of the recoil force than the expression proposed by Nikolayev et al. (2016).

5.8.2 Analysis of the additional force in momentum equation

In order to quantify the influence of modeling the additional force due to phase change,

which appears in the non-divergent form of the momentum equation, simulations were performed

with and without the extra source term in momentum equation. A constant mass density flux was

imposed at the interface and the effects of this force due to phase change on the time evolution

of the interface were evaluated. Simulations of boiling were performed for a intense value of mass

density flux and the influence of the extra force term was evaluated.

Simulations of bubble growth by phase change were performed by imposing a constant and

uniform mass transfer rate across the interface. This case was previously investigated by Tanguy

et al. (2014), where the bubble initial radius was equal to 0.01 m and a spatially uniform and

temporally constant mass density flux of 0.1 kg/(m2s) was imposed. The bubble grew until its

radius was twice the initial radius; then, the difference between the exact and the computational

radius was computed. The interface evolution was compared to the exact solution provided from

Eq. 18.

The simulations were performed using the following physical properties: ρliq = 1000 kg/m3,

ρvap = 1 kg/m3, σ = 0.07 N/m, µliq = 0.001 kg/(ms) and µvap = 1.78 × 10−5 kg/(ms).
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Since the mass density flux was constant, the flow was considered isothermal. The outflow

boundary condition was imposed on all the domain faces and the flow was not subjected to

gravity. Numerical simulations using AMR were conducted with three mesh levels and the base

level presented the configuration of 16 × 16 × 16 cells. The interface presence was considered

the refinement criterion.

As previously seen, the bubble radius evolves linearly with time according to expression

18. Fig. 5.81 shows the evolution in time of the bubble radius for the non-divergent form of the

momentum equation, both with and without the additional source term.

Figure 5.81: Bubble radius evolution in the phase change simulations using delta for the
non-divergent form with and without the extra force term.

The interface evolution was not damaged even with a high mass density flux imposed at

the interface. Then, according to the numerical results seen in Fig. 5.81, the influence of the

force due to the phase change at the interface is of little importance for the interface’s behavior

over time.

The extra force in the momentum equation was about three orders of magnitude lower

than the surface tension force effects. The quantification of the additional force demonstrated

that its insignificance in the numerical results are a consequence of its magnitude’s being smaller

than the inertial and interfacial forces. Fig. 5.82 shows the magnitude of the surface tension force
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effects compared to the magnitude of the additional force term.

Figure 5.82: Magnitude of the effects of the surface tension force compared to the additional
force using the Delta method, for ṁ′′ = 0.1.

The negligible influence of this force term in the non-divergent form of the momentum

equation in the simulations performed corroborates previous results in the literature, which pre-

senting accurate validation cases while not employing this force term, namely Welch e Wilson

(2000), Lee, R. e Aute (2017) and Tanguy et al. (2014). Therefore, the influence of this term

may be considered of little importance in phase change problems when using the non-divergent

form of the momentum equation, although being mathematically inconsistent.

In order to confirm the low influence of this additional term in the mathematical model,

simulations using a mass density flux of 10.0 kg/(m2s) were performed. The value of this mass

density flux is so high that it may be considered even physicaly impossible. However, the intention

is to determine whether this additional term may interfere with the numerical results for extremely

high intensities of phase change. The bubble initial radius was 0.1 m and the simulation final

time was 0.01 s, when the bubble radius was twice the initial radius.

According to the numerical results obtained, the bubble radius prediction was accurate even

for a high mass density flux. The difference between the exact solution and the computed bubble

radius at the simulation’s final time was lower than 1.0%. Fig. 5.83 shows the magnitude of the
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effects of the surface tension force compared to the magnitude of the additional force term from

the simulation considering ṁ′′ = 10.0.

Figure 5.83: Magnitude of the effects from the surface tension force compared to the addi-
tional force using the Delta method considering ṁ′′ = 10.0.

The magnitude of the effects from the additional term is about two orders of magnitude

lower than the surface tension force effects. Therefore, as seen in Fig. 5.83, the additional force

term here discussed may be considered irrelevant to phase change problems.

5.9 Case study of two-phase flow with phase change: Direct contact condensation

jet with cross-flow

The present work models a turbulent saturated water vapor jet injected normal to a cross-

flow of water liquid. This case is inherently complex due to the production of several types

of turbulent and vortical structures distributed at several regions in the flow field. The case

becomes even more complex due to condensation occuring at the interface since the phase change

phenomenon leads to a significant change of the flow field (XU et al., 2016).

Previous works on DCC of a vapor jet in liquid reported in the literature were mainly

focused on jet penetration length and condensation regime diagram; on the other hand, there is
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a lack of several flow field information, such as detailed velocity charcateristics of the turbulent

jet (XU et al., 2016).

Computational simulations were performed to investigate the flow field characteristics of

the turbulent jet induced by direct contact condensation of steam jet in cross-flow of water in a

vertical channel. The present work focuses on the velocity and temperature field investigation as

well as the study of the jet centerline trajectory.

5.9.1 Physical model

A vertical channel was used to model the case of vapor condensing jet in cross-flow with

liquid water. The physical model employed to perform the simulations of the jet in cross-flow

consisted of a vertical channel with inner square cross-section of 30.0m and 60.0m long. The

steam is injected through an spherical hole with diameter of 2.0m.

Small injection Reynolds number requires lower requirement of spatial and temporal reso-

lution compared to high injection Reynolds number (CLERX et al., 2011), then the present work

uses a relatively low mass flux and low injection number as the previous experimental work of

Clerx et al. (2011), Clerx, Geld e Kuerten (2013).

A saturated water vapor jet subjected to a subcooled liquid water cross-flow in a vertical

channel was modelled using the mathematical and numerical model previously described. The

computational simulations were performed using non-structured grids and a time step of 0.001s.

The steam jet velocity was 29,0 m/s and the liquid cross-flow velocity was 0.29m/s. The

steam mass flux G, was defined as 44kg/m2s and the momentum ratio J was fixed as 15.

Reynolds number of the steam was approxitemaly 6200 and the Raynolds number of the water

cross-flow was 10000. The Jakob number was 220.

The physical problem modelled here represents a complex phenomenon where the termo-

physical properties are subjected to strong variations between the vapour and liquid phases. The

physical properties ratio between the phases are given by the following expressions:

� ρliq/ρvap=700

� µliq/µvap=165

� Cpliq/Cpvap=2.1
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� kliq/kvap=25

5.9.2 Data and statistical analysis

In order to validate the jet condensing simulation, the jet’s trajectory was compared to

the experimental results from Clerx et al. (2011). The literature presents mainly two ways to

define the jet centerline trajectory, namely, the temperature and velocity fields (XU et al., 2016).

Since Clerx et al. (2011) employed the temperature field to obtain the jet centerline, the present

work was focused on validate the simulation using the jet temperature center lines as Clerx et al.

(2011).

The temperature center line is defined by the location of the local highest temperature,

since the vapor presents the highest values of temperature, the position of the temperature center

line is related to the jet location in the domain.

In order to collect the information of velocity and temperature from the computational

domain, 1800 probes were positioned at the center xz-plane which computed the local and instan-

taneous temperatures and velocities. The temperature field varied significantly in time according

to the flow dynamics, therefore a temporal mean temperature was extracted from each probe.

In order to compute an accurate temporal mean temperature, the simulation duration was

based on the stabilization of temperature field at a probe located at the channel’s top (at the

end of the computational domain).

The figure 5.84 shows the variations of the temperature at a probe located near the chan-

nel’s top.

According to the figure 5.84, after 10 seconds, the temperature variation follows a regular

pattern. Then, the data used for validation purpose was considered after 10 seconds.

5.9.3 Computational results

When steam is injected into cross-flow, steam rapidly start the condensation process near

the steam injection point. Then, the jet becomes a single-phase turbulent jet. The jet never

impinges the wall opposite to the injection point. The penetration is relatively low due to the

small value of momentum ratio.

The figure 5.85 shows a three-dimensional view from the condensing jet interface at the
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Figure 5.84: Dimensionless temperature at the probe near the computational domain exit
at the channel’s top.

computational domain at time 45s.

Steam is injected at a relatively low mass flux through a small hole in a lateral wall of the

channel. The steam condenses intermittently in a small area close to the inlet. As expected, a

high-temperature zone occurs near the center of the velocity jet which was previously reported

by Clerx et al. (2011). As previously reported by Clerx et al. (2011), the steam penetration is

intermittent.

As previously reported by the literature, the interface shape and trajectory is complex and

intermittent. There is a great number of vapour pockets and bubbles in the computational

domain moving in high speed. Three-dimensional effects are proeminent according to the figure

5.85, illustrating the need of modelling this complex physical problem using a 3D computational

plataform. The figure 5.86 shows the interface contour at the beggining of the simulation time.

The three-dimensional effects are evident, as previously reported by Clerx et al. (2011).

The topology of the steam-liquid interface during the direct contact condensation is not smooth

beacuse of the waves and interface instabilities which causes an apparent interface roughening

(CLERX et al., 2011).

The adaptive mesh refinement (AMR) saved great computational time since it reduced the
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Figure 5.85: Interface of the condensing jet at simulation time of 45s.

need of a fine mesh in some regions of the computational domain. The AMR was particularly

important at the simulation beggining when only a small region of the domain required a fine

mesh. The figure 5.87 shows the mesh configuration at different times near the simulation

beggining.

According to Clerx, Geld e Kuerten (2013), the area close to the steam injection point

presents large velocity fluctuations, where the information about temperature and velocity may

be innaccurate. Clerx, Geld e Kuerten (2013) named this unstable region as ’steam pocket’,

where the velocity collected were submitted to a special statistical treatment due to the large

temporal variations.

According to Xu et al. (2016), for high jet Reynolds number, the jet penetration is relatively

long and even hits the opposite wall. On the other hand, for relative low jet Reynolds number,

the jet penetration is relatively shorter.

Clerx et al. (2011) presented a correlation to predict the temperature center line for a given
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(a) (b)

(c) (d)

Figure 5.86: Interface contour of the jet at t=0s (a), t=0.005s (b), t=0.010s (c), t=0.015s
(d).

coordinate:

x/rd = 1.3 (y/rd)0.3 (5.27)

The figure 5.88 shows the jet trajectory from the present work and from the experimental results

from Clerx et al. (2011). where the value rd is given by the following expression:

rd = 2r
√
J (5.28)
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(a) (b)

(c) (d)

Figure 5.87: Mesh configuration and interface contour of the jet at t=0s (a), t=0.005s (b),
t=0.010s (c), t=0.015s (d).

where J is the momentum ratio given by the expression:

J =
ρv~v

2
v

ρl~v2
l

(5.29)

According to the figure 5.88, the computational results from the jet trajectory are in good

agreement with the experimental results from Clerx et al. (2011). The difference between the

results obtanied from the present work and the literature were evaluated using the L2 norm and

it was found the error of 1.5%.
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Figure 5.88: Jet centerline trajectory according to the results from the present work and
from Clerx et al.

The AMR promoted great reduction at the simuation time required, especially at the

beggining of the physical phenomenon. Even near at the simulation time end, AMR reduced the

computational power required as figure 5.89 shows.

The figure 5.89 shows the interface and the mesh configuration at the simulation time of

45s.

The case study presented in this section llustrates the potential of the MFSim code to

perform complex simulations with phase change. Therefore, the present thesis has achieved its

main goals and this case study represents the beggining of new investigations to the MFLab

laboratory in the research line of phase change using CFD. Future works on new analysis with

this case of cross-flow are proposed later.
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Figure 5.89: Interface of the condensing jet and the mesh configuration at the simulation
time of 45s.



CHAPTER VI

CONCLUSIONS

In the present thesis, the authors have developed the first work, from the MFLab research

group, focused on the study of non-isothermal two-phase flows. The main goals of this work

was the study of a mathematical, numerical and computational model of two-phase flows in non-

isothermal flows with and without phase change. The thesis achieved all the main and specific

objetives proposed in the thesis plan proposed at the beggining of the graduation.

The main objective of the present thesis was accomplished and now the MFSim code has

a phase change model for pure substances with a methodology which was validated and compu-

tationally verified. All the specific objetives were also achieved and several original contributions

were obtained from the present work.

The first conclusion from the present work is the recommendation of using the non-

divergent form of energy equation for two-phase flows as suggested by the literature. The

divergent form of energy equation may be numerically inconsistent to model different materi-

als close one to each other when subjected to the same temperature, which corroborates with

literature previous works. The use of the non-divergent form of energy equation provided exce-

lent results without numerical difficulties of convergence. The divergent form of energy equation

provided also excelent results, however as the physical properties ratio between the two phases

increases, the convergence becomes more challenging.

The investigation about the influence of Prandlt number on thermal transfer rate have
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presented several numerical results demonstrating that the overall Prandlt number affects directly

the local thermal transfer rate in the problems studied. Therefore, refuting some literature

premisses, the inclusion of a dispersed phase itself does not increase local thermal transfer rate,

as seen in some numerical results from the present work.

The OB and NOB provided adequate thermal transfer rate results; however, the differences

between the literature and OB were higher than for NOB. Therefore, NOB is presented as a use-

ful mathematical formulation for modeling incompressible flows with a temperature-dependent

specific mass approach in single-phase or multiphase problems instead of solving the full com-

pressible mathematical formulation. In addition, the differences between the literature and OB

results increased as the Rayleigh number was raised, especially in the turbulent regime. The

results of the NOB were closer to the literature than were those of the OB for the entire range of

Rayleigh numbers tested. Therefore, the numerical results confirmed the higher accuracy of NOB

compared to OB despite the NOB’s still being an approximate model. Lastly, flow visualization

allowed the identification of coherent turbulent structures near the cavity walls in the simula-

tion with Rayleigh number 1010. The presence of hairpin and Tollmien–Schlichting instabilities

revealed the importance of modeling the three-dimensional effects of natural convection in the

turbulent regime.

The evaluation of spurious currents in phase change problems using a diffuse interface

treatment for pressure showed the presence of important spurious currents for mass density fluxes

higher than 0.1 kg/m2s. Since the latter ratio is considered a moderate phase change intensity,

the diffuse interface treatment may be considered a good numerical method.

The evaluation of the influence of the recoil force in phase change problems demonstrated

none relevant influence in the interface behavior. More studies should be conducted in order to

quantify this force as well as to propose new ways of modelling the recoil effect.

The additional term discovered in the present thesis from the non-divergent form of mo-

mentum equation in phase change problems was considered not important in the mathematical

model.

The adaptive mesh refinement (AMR) strategy is an interesting numerical tool allowing

the reduction of time and computational power required in phase change problems. The AMR

efficiency computed in several cases simulated demonstrated the importance of using AMR instead
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of uniform grids without affecting the accuracy of the results found.

Finally, the case study of a water condensing vapour jet in cross-flow with liquid water

demonstrated the high potential of the model developed in the present thesis to investigate

complex flows with phase change.



CHAPTER VII

FUTURE WORKS

The implemented phase change model in MFSim code could be extended to model mul-

ticomponent flows, allowing the performance of some engineering applications where a mixture

of substances simultaneously are subjected to phase change. In order to make progress in the

extension of the phase change model, it would be necessary to follow the next steps:

� The transport of multiple scalars would be coupled with the phase change model;

� Different source terms would be included in the mathemacal model to account the effect

of multiple substances simultaneously boiling;

� The input data would allow the user to include the information about the substances to be

investigated in the phenomenon or a external bibliotec as Cantera would be called.

The eulerian phase change model studied in the present thesis could be coupled with a

lagrangin phase change model which has being developed in MFSim code recently. The combi-

nation of both methods would allow the performance of simulations of phase change which has

a great industrial interest.

Since the variations of the Grashof and the Prandlt numbers presented an important impact

on the thermal transfer rate in non-isothermal flows; the authors suggest the performance of

similar simulations, however using smaller physical domains. In addition, it would be interesting

to model the influence of these dimensionless numbers considering multiple bubbles.
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From the study between the traditional Oberbeck-Boussinesq approximation and the new

approach of a temperature-dependent specific mass approach, we recommend the performance of

simulations for even higher Rayleigh number, e. g. Ra > 1010. It is expected that OB would fail

to model excessively turbulent flows while the proposed NOB approach would produce accurate

results.

The performance of more complex simulations are recommended to evaluate the influence

of the recoil force in phase change problems, especially in problems where large temperature

gradients at the interface are not uniform.



BIBLIOGRAPHYC REFERENCES

AKHTAR, M.; KLEIS, S. Boiling flow simulations on adaptive octree grids. International jour-
nal of multiphase flow, v. 53, p. 88–99, 2013. Dispońıvel em: <http://dx.doi.org/10.1016/j.
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org/10.1016/j.ijheatmasstransfer.2015.12.056>.

DECKWER, W. D. On the mechanism of heat transfer in bubble column reactor. Chemical
Engineering Science, v. 92, p. :1341–1346, 1980. Dispońıvel em: <http://dx.doi.org/10.1016/
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s40430-013-0033-y>.

PAN, Z.; WEIBEL, J.; GARIMELLA, S. V. A saturated-interface-volume phase changemodel for
simulating flow boiling. International journal of heat and mass transfer, v. 93, p. 945–956, 2016.
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