UNIVERSIDADE FEDERAL DE UBERLÂNDIA – CAMPUS MONTE CARMELO ENGENHARIA DE AGRIMENSURA E CARTOGRÁFICA

PAULO CÉSAR DE ALMEIDA

ANÁLISE DO MÉTODO DE ESTAÇÃO LIVRE PARA LEVANTAMENTOS GEORREFERENCIADOS

MONTE CARMELO

PAULO CÉSAR DE ALMEIDA

ANÁLISE DO MÉTODO DE ESTAÇÃO LIVRE PARA LEVANTAMENTOS GEORREFERENCIADOS

Trabalho de Conclusão de Curso, apresentado como requisito parcial para a obtenção do título de Bacharel no Curso de Engenharia de Agrimensura e Cartográfica, junto à Universidade Federal de Uberlândia.

Orientador: Prof. Dr. Marcelo Tomio Matsuoka

A meus filhos pelo incentivo e netos, acalento dos meus dias.

AGRADECIMENTOS

Primeiramente a todos os docentes do curso de Engenharia de Agrimensura e Cartográfica pelos conhecimentos transmitidos, pela boa vontade no atendimento, às vezes fora do horário, e pela paciência com minhas inúmeras interrupções durante as aulas.

Agradeço, em especial, o Prof Dr Marcelo Tomio Matsuoka, meu orientador, por bem me orientar nas melhores condutas, pelo empréstimo de bibliografía não disponível na biblioteca da UFU e pela paciência, dedicação e boa vontade com que sempre me atendeu.

À Prof^a Dr^a Mirna Karla Amorim da Silva, meus agradecimentos pela ajuda na normalização do trabalho acadêmico de acordo com as normas da ABNT.

Meus agradecimentos ao Laboratório de Sensoriamento Remoto e Fotogrametria da Universidade Federal de Uberlândia - *Campus* Monte Carmelo, na figura do Prof. Dr. Ricardo Luis Barbosa e do Prof. Dr. Rodrigo Bezerra de Araujo Gallis, pela cessão da ortofoto da Unidade Araras, área de estudo deste trabalho acadêmico.

Aos técnicos Januario Chirieleison Fernandes e Valdiney Jose da Silva agradeço pelo bom atendimento no laboratório e ajuda no manuseio dos equipamentos e *softwares*.

Aos colegas discentes da VI Turma do Curso de Engenharia de Agrimensura e Cartográfica da Universidade Federal de Uberlândia – *Campus* Monte Carmelo, agradeço o salutar convívio e ajuda mútua.

RESUMO

Este trabalho acadêmico teve por objetivo executar o Método de Estação Livre e analisar sua viabilidade técnica e financeira em substituição ao Posicionamento por GNSS em situações que edificações e/ou vegetação dificultam o posicionamento por obstrução de sinal ou efeitos de multicaminho. Esperava-se uma precisão centimétrica ou abaixo. Na área de estudo foram implantados, com piquetes de madeira, seis pontos além de se utilizar quatro marcos já implantados no terreno e mediante poligonação por irradiamentos calculadas as coordenadas arbitrárias e suas precisões, dos marcos e pontos, em duas perspectivas, chamadas aqui de EL 1 e EL 2. Os marcos e pontos tiveram então suas coordenadas e precisões determinadas no Sistema Geodésico Brasileiro (SGB) pelo método do Posicionamento Relativo Estático e foi aplicado o Método de Estação Livre para, mediante transformação por similaridade com ajustamento paramétrico, transformar as coordenadas arbitrárias para coordenadas do SGB. A metodologia empregada se mostrou viável em substituir o Posicionamento por GNSS alcançando a precisão esperada, abaixo do centímetro, e acurácia média de 0,04m comparativamente às coordenadas obtidas com o método do Posicionamento Relativo Estático.

Palavras-chave: Estação Livre. Posicionamento por GNSS. Transformação por similaridade.

ABSTRACT

This academic work had as objective to execute the Free Station Method and to analyze its technical and financial feasibility in substitution for GNSS Positioning in situations that buildings and / or vegetation obstruct the positioning by signal obstruction or multipath effects. Centimeter accuracy or below was expected. In the study area, six points were implanted with wood pickets, and four landmarks were already implanted in the terrain and by irradiation polygon were calculated the arbitrary coordinates and their precisions, landmarks and points, in two perspectives, called EL and EL 2. The landmarks and points had their coordinates and precisions determined in the Brazilian Geodetic System (SGB) using the Static Relative Positioning method and the Free Station Method was applied to transform the arbitrary coordinates into the SGB coordinates through similarity transformation with parametric adjustment. The methodology used proved to be feasible in replacing the GNSS Positioning, reaching the expected precision, below the centimeter, and mean accuracy of 0.04m in comparison to the coordinates obtained with the Static Relative Positioning method.

Keywords: Free Station. GNSS Positioning. Similarity transformation.

LISTA DE FIGURAS

Figura 1 – Localização das estações RBMC e RBMC-IP	14
Figura 2 – Transporte de coordenadas no plano topográfico	15
Figura 3 – Princípio da medida de pseudodistância	18
Figura 4 – Área de estudo	21
Figura 5 – Estação Total Ruide	22
Figura 6 – Prisma refletor	23
Figura 7 – Tripé	23
Figura 8 – Bipé e bastão para prisma	24
Figura 9 – Receptor GNSS/GLONASS Promark 500	24
Figura 10 – Receptor GNSS/GLONASS Promark 200	25
Figura 11 – Configuração do GNSS Planning	25
Figura 12 – Informações da camada da ionosfera	26
Figura 13 – Número de satélites visíveis no período	26
Figura 14 – Mapa do TEC no período do posicionamento	27
Figura 15 – Distribuição dos pontos e marcos na área de estudo	28
Figura 16 – Sistemas bidimensionais	29
Figura 17 – Sistemas sobrepostos	30

LISTA DE TABELAS

Tabela 1 – Coordenadas arbitrárias e precisões EL 1	34
Tabela 2 – Coordenadas arbitrárias e precisões EL 2	34
Tabela 3 – Coordenadas e precisões no SGB.	35
Tabela 4 – Resultado do ajustamento paramétrico	35
Tabela 5 – Parâmetros ajustados e precisões para as EELL 1 e 2	36
Tabela 6 – Coordenadas no SGB dos pontos na perspectiva das EELL 1 e 2	36
Tabela 7 – Precisão dos pontos na perspectiva das EELL 1 e 2	37
Tabela 8 – Diferença entre as coordenadas conforme o método	37

LISTA DE SIGLAS

DOP Diluição da precisão

EDM Equipamento Medidor de Distância

EELL Estações Livres

EL Estação Livre

GNSS Global Navigation Satellite Systems

GLONASS Global Navigation Satellite Systems

GPS Global Positioning System

IBGE Instituto Brasileiro de Geografia e Estatística

INPE Instituto Nacional de Pesquisas Espaciais

MMQ Método dos Mínimos Quadrados

NTRIP Networked Transport of RTCM via internet Protocol

RTCM Radio Technical Commission For Maritime Services

SGR Sistema Geodésico de Referência

SIRGAS Sistema de Referência Geocêntrico para as Américas

RBMC Rede Brasileira de Monitoramento Contínuo

RBMC-IP RBMC via Internet Protocol

SGB Sistema Geodésico Brasileiro

TEC Conteúdo total de elétrons

UFU Universidade Federal de Uberlândia

UTM Universal Transversa de Mercatur

SUMÁRIO

1	INTRODUÇÃO		
1.1	OBJETIVOS		
1.2	JUSTIFICATIVA		
2	REVISÃO BIBLIOGRÁFICA		
2.1	SISTEMA GEODÉSICO DE REFERÊNCIA		
2.2	TRANSPORTE DE COORDENADAS NO PLANO TOPOGRÁFICO		
	LOCAL		
2.3	TRANSFORMAÇÃO DE COORDENADAS		
2.4	AJUSTAMENTO DE OBSERVAÇÕES		
2.4.1	Método paramétrico		
2.5	POSICIONAMENTO POR SATÉLITES		
2.5.1	Posicionamento por Ponto Simples		
2.5.2	Posicionamento por Ponto Preciso		
2.5.3	Posicionamento Relativo		
2.5.3.1	Posicionamento Relativo Estático		
3	MATERIAL E MÉTODOS		
3.1	ÁREA DE ESTUDO		
3.2	MATERIAL		
3.2.1	Estação Total		
3.2.2	Prisma Refletor		
3.2.3	Tripé		
3.2.4	Bipé		
3.2.5	Receptores GNSS de dupla frequência		
3.3	MÉTODOS		
3.3.1	Planejamento e estudo da situação		
3.3.2	Implantação dos pontos e realização das observações		
3.3.3	Realização do Posicionamento Relativo Estático		
3.3.4	Ajustamento das observações – Transformação por similaridade		
4	RESULTADOS E DISCUSSÕES		
4.1	COORDENADAS NO SISTEMA DE REFERÊNCIA ARBITRÁRIO		
4.2	COORDENADAS NO SGB – Posicionamento Relativo Estático		

4.3	AJUSTAMENTO PELO MÉTODO PARAMÉTRICO –		
	TRANSFORMAÇÃO POR SIMILARIDADE	35	
5	CONCLUSÕES	38	
	REFERÊNCIAS	40	
	APÊNDICE A – COMANDOS EM MATLAB	41	
	APÊNDICE B – RELATÓRIO DE SAÍDA GNSS SOLUTIONS	43	
	APÊNDICE C – RELATÓRIO DE SAÍDA DO PROGRID	53	
	APÊNDICE D – RELATÓRIO DE SAÍDA DO AJUSTAMENTO	54	
	APÊNDICE E – ÁREA DE ESTUDO	74	
	ANEXO A – RELATÓRIO DE ESTAÇÃO GEODÉSICA (PONTO		
	D)	75	
	ANEXO B – RELATÓRIO DE SAÍDA DA ESTAÇÃO TOTAL	76	
	ANEXO C – TABELA DO TESTE QUI-QUADRADO	79	

1 INTRODUÇÃO

Nas centenas ou milhares de atividades nas áreas das ciências cartográficas e geodésicas não raro há situações em que o uso das técnicas tradicionais de levantamento e/ou posicionamento enfrentam obstáculos de ordem diversas. Na maioria das obras de Engenharia Civil a constante movimentação de máquinas e equipamentos constituem fatores de destruição e movimentação de pontos de apoio e de marcações essenciais ao desenvolvimento das atividades construtivas, sendo necessário o constante monitoramento e reconstrução destes marcos pelas equipes de topografía. Nas minas a céu aberto ou subterrâneas o trabalho de aviventação de rumos e renovação de pontos de apoio, devido à movimentação de máquinas pesadas e abalos provocados por explosões, é trabalho cotidiano.

No posicionamento por GNSS (*Global Navigation Satellite Systems*) os efeitos de multicaminho e perdas do sinal, provocados por densas edificações prediais em algumas das maiores cidades, assim como a vegetação arbórea densa em áreas rurais, degradam o sinal afetando a precisão das medidas de tal forma que inviabilizam sua utilização nas atividades de levantamento que demandam maior precisão. Este trabalho pretende analisar a aplicação do Método de Estação Livre, como uma alternativa viável de substituição de outras técnicas, realizando o levantamento de coordenadas planimétricas de 6 (seis) pontos na área da Unidade Araras do Campus Monte Carmelo da Universidade Federal de Uberlândia (UFU).

Alternativamente ao posicionamento por GNSS tem-se o transporte de coordenadas por poligonação, no qual são necessários dois pontos com coordenadas conhecidas intervisíveis entre si, sendo que um dos pontos deve ser ocupado. Nesta situação as condições de acessibilidade ao ponto a ser ocupado são determinantes quanto à viabilidade do método.

A exequibilidade do Método de Estação Livre pressupõe a visibilidade de no mínimo três pontos com coordenadas e respectivas precisões conhecidas no sistema de referência para o qual se pretende obter as coordenadas e precisões dos demais pontos. O ponto de estação é livre, daí provavelmente o nome do método, o que pode ser um facilitador nos trabalhos de campo.

A materialização do ponto de estação inicial é opcional, no método de estação livre, o que vem a ser mais um ponto positivo a indicar o método como alternativa viável ao posicionamento por GNSS.

1.1 OBJETIVOS

O objetivo geral deste trabalho é aplicar e analisar a eficiência do Método de Estação Livre para calcular os parâmetros de transformação das coordenadas do Sistema Local Arbitrário para o Sistema Geodésico Brasileiro (SGB).

Para atingir o objetivo geral deste trabalho, são objetivos específicos:

- a) implantar e identificar, na área de estudo, os marcos e piquetes necessários para o levantamento das coordenadas arbitrárias dos marcos e pontos implantados;
- b) realizar as observações de campo pelo método do posicionamento relativo por GNSS dos marcos e pontos implantados;
- c) usando o método de poligonação por irradiamentos levantar as coordenadas arbitrárias, com origem no ponto denominado 1 (ou Estação Livre 1) e orientação no ponto denominado 2, dos marcos e pontos implantados;
- d) repetir o procedimento anterior com origem no ponto denominado 2 (ou Estação Livre 2) e orientação no ponto denominado 1);
- f) calcular as coordenadas e respectivas precisões dos marcos e pontos com as observações medidas conforme as alíneas b, c e d;
- g) calcular por ajustamento paramétrico a melhor solução dos parâmetros de transformação, e respectivas precisões, entre o sistema de referência adotado e o SGB;
- h) com os parâmetros ajustados na alínea g e as coordenadas arbitrárias calculadas conforme a alínea f calcular as coordenadas no SGB atingindo precisão centimétrica.

1.2 JUSTIFICATIVA

Com o desenvolvimento do posicionamento por satélites solucionou-se uma série de dificuldades nos levantamentos de campo, particularmente os relativos ao transporte de coordenadas nas regiões mais distantes da Rede Geodésica Planimétrica, tanto nos aspectos referente aos custos quanto à precisão dos pontos levantados.

Atualmente mais de uma centena de estações da Rede Brasileira de Monitoramento Contínuo (RBMC) e RBMC via *Internet Protocol* (RBMC-IP), Figura 1, permitem o levantamento planialtimétrico quase sempre com precisão milimétrica um dia após o posicionamento em campo e com o uso das RBMC-IP, uso do protocolo *Networked Transport*

of RTCM via internet Protocol (NTRIP), obtém-se as coordenadas do ponto com precisão milimétrica e em tempo real (disponível em www.ibge.gov.br).

Apesar de todas as facilidades que o posicionamento por satélite trouxe aos levantamentos de campo, em algumas situações o uso alternativo do Método de Estação Livre pode ser viável tanto no que se refere aos custos quanto à precisão. Orçamento solicitado a uma empresa de locação de equipamentos topográficos demonstra que o uso de estação total, em substituição aos receptores GNSS, pode representar economia de até 70% (setenta por cento) na locação dos aparelhos sendo tal economia também relativamente à compra dos mesmos.

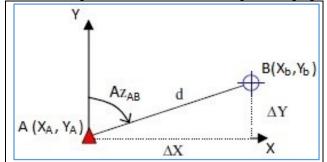
Concomitante aos custos, quesitos técnicos podem indicar a aplicação do Método de Estação Livre em detrimento ao posicionamento por satélite; dentre eles pode-se destacar os efeitos do multicaminho e perdas do sinal que, em áreas metropolitanas densamente edificadas tanto quanto em regiões florestadas, degradam as precisões das observáveis ou mesmo bloqueando os sinais reduzindo o número de satélites e demandando a ocupação dos pontos por um tempo maior novamente impactando nos custos dos trabalhos de campo.

2 REVISÃO BIBLIOGRÁFICA

2.1 SISTEMA GEODÉSICO DE REFERÊNCIA

Um sistema de referência permite a localização de um objeto ou conjunto de objetos em um espaço n-dimensional, já um Sistema Geodésico de Referência (SGR) permite a localização de objetos ou feições na superfície terrestre. Desde 2005 o Sistema de Referência Geocêntrico para as Américas (SIRGAS) é o Sistema de Referência para o SGB.

A definição do SIRGAS se fez pela RPR 1/2005 de 25 de fevereiro de 2005 da Fundação Instituto Brasileiro de Geografía e Estatística (FIBGE) e a materialização do *datum* pelas coordenadas cartesianas de 21 (vinte e uma) estações da RBMC referidas à época 2000,4 listadas na referida resolução. A íntegra desta da RPR 1/2005 encontra-se publicada em ftp://geoftp.ibge.gov.br/metodos_e_outros_documentos_de_referencia/normas/rpr_01_25fev2 005.pdf.


2.2 TRANSPORTE DE COORDENADAS NO PLANO TOPOGRÁFICO LOCAL

O transporte de coordenadas no plano topográfico local prevê a estação em um ponto com coordenadas locais conhecidas ou arbitradas, a distância do ponto estação ao ponto vante e o azimute local do ponto estação ao ponto vante (VEIGA; ZANETTI e FAGGION, 2012).

Assim as coordenadas do ponto B (Figura 2) serão calculadas pela equação 1:

$$\begin{bmatrix} X_B \\ Y_B \end{bmatrix} = \begin{bmatrix} X_A \\ Y_A \end{bmatrix} + d * \begin{bmatrix} sen(_{Az_{AB}}) \\ cos(_{Az_{AB}}) \end{bmatrix}$$
 (1)

Figura 2 – Transporte de coordenadas no plano topográfico

Fonte: Adaptado de Veiga, Zanetti e Faggion (2012)

2.3 TRANSFORMAÇÃO DE COORDENADAS

A transformação de coordenadas é uma atividade constante no meio cartográfico. Em diversas atuações são realizadas constantes transformações, com auxílio de software e meio

computacional, que o profissional envolvido sequer percebe. Sempre que dados geoespaciais são exibidos em monitor ou impressos há a correspondente transformação de coordenadas dos dados armazenados para o sistema de coordenadas do monitor ou do papel a receber a impressão.

No posicionamento por GNSS são várias as transformações necessárias, das coordenadas da posição do satélite no instante t^t da transmissão e t^r da recepção, para o cálculo do posicionamento (MONICO, 2008). A transformação com equações diferenciais simplificadas de Molodenski (GEMAEL, 1981 apud MONICO, 2008) realizam as transformações diretamente da superfície matemática de um elipsoide para outro.

A transformação generalizada de Helmert permite realizar o cálculo das coordenadas de um ponto P em um Sistema de Referência S₁ das coordenadas deste mesmo ponto P em outro Sistema de Referência S2 distinto em épocas distintas. Quando não há variação dos parâmetros com o tempo a Transformada de Helmert se torna a equação 2 com sete parâmetros (3D) ou quatro parâmetros (2D) (MONICO, 2008):

$$X = T_X + (1+s)(\varepsilon + I).x$$
 (2)

Onde:

X é o vetor com as coordenadas do ponto no Sistema de Referência S₁ (destino);

 T_X é o vetor com os parâmetros de translação;

s é fator de escala:

ε é a matriz de rotações;

I é a matriz identidade dimensionalmente idêntica à matriz ε;

x é o vetor com as coordenadas do ponto no Sistema de Referência S₀ (origem).

Devido à maior imprecisão das observações angulares verticais em comparação com as horizontais, características dos equipamentos óticos (teodolitos e estação total), a análise do método foi concentrada na transformação 2D, ou seja: planimétrica.

2.4 AJUSTAMENTO DE OBSERVAÇÕES

Inerente a todas as observações envolvendo medidas, as flutuações probabilísticas introduzem uma inconsistência matemática na qual ao se repetir "n" vezes a medição, por

exemplo: o perímetro de um polígono, os valores serão diferentes. A necessidade de se expressar a medida de uma grandeza com uma única solução foi resolvida por Gauss (1795) e Legendre (1805) quando de forma independente propuseram que as medidas deveriam ser expressas acrescidas de sua variabilidade.

Para que um sistema de equações tenha solução ou seja consistente é necessário que o seu número (de equações) seja igual ou maior que o número de incógnitas. Quando o número de observações, é superior ao número de equações, introduz-se inconsistência nas equações e o ajustamento pelo paramétrico possibilita uma única solução representada pelo valor cuja a soma do quadrado dos desvios seja o mínimo, conquanto o número de observações seja maior que o número de parâmetros, ou seja, o sistema de equações deve ser inconsistente com redundância no número de observações. "O ajustamento é um ramo da matemática aplicada que tem por objetivo a solução única para problemas onde o número de observações é superabundante e o sistema de equações lineares é inconsistente". (DALMOLIN, 2002, apud KLEIN, 2011 p. 273).

2.4.1 Método paramétrico

Também conhecido como ajustamento de observações indiretas, método dos parâmetros, ou das equações de observações caracterizam-se por serem as observações indiretas processadas sobre as grandezas procuradas vinculando-se matematicamente a outras que, por sua vez podem ser medidas diretamente (CAMARGO, 2000).

No método paramétrico cada observação gera uma equação (n). Cada equação explicita uma observação em função dos parâmetros (u). O número de equações, n, deve ser sempre maior que o número de parâmetros, u, sendo a diferença (n-u) chamada de graus de liberdade (gl) (CAMARGO, 2000).

2.5 POSICIONAMENTO POR SATÉLITES

Posicionar um objeto nada mais é do que lhe atribuir coordenadas (MONICO, 2008). O posicionamento por satélites surgiu de projetos militares americanos na década de 1960 tendo se desenvolvido ao longo do tempo, e em 27 de abril de 1985 o sistema GPS, abreviação de *Global Positioning System*, foi declarado operacional (MONICO, 2008). Posteriormente juntou-se outros sistemas desenvolvidos em outros países como Rússia (GLONASS, abreviação para *Global Navigation Satellite Systems*), União Europeia (Galileo) e China (Beidou/Compass); sendo comum a expressão posicionamento por GNSS englobar o

posicionamento por satélite independente da constelação de satélites envolvida nas observações (MONICO, 2008).

Os receptores de sinais de satélites permitem a determinação das coordenadas da posição ocupada conforme sua capacidade de coletar dois tipos de observáveis transmitidas pelos satélites (MONICO, 2008):

- a) pseudodistância derivada do código;
- b) diferença de fase da onda portadora.

A pseudodistância derivada do código é obtida pela correlação cruzada entre o código pseudoaleatório C/A transmitido pelo satélite e sua réplica gerada no receptor (MONICO, 2008). O retardo correlacionado dos códigos C/A transmitido e recebido representa a diferença de tempo Δt que o sinal demorou para percorrer a distância entre o satélite, no instante t₀, da transmissão e o instante t₁ da recepção conforme bem ilustra a Figura 3 (MONICO, 2008).

Tempo de transmissão $G^s(t) \text{ Tempo de transmissão}$ $G_r(t) \text{ Réplica gerada no receptor}$ $A t é obtido por correlação cruzada <math display="block">1/n \int_0^\pi G^s(t) G_r(t+j) dt$

Figura 3 – Princípio da medida de pseudodistância.

Fonte: Monico (2008).

Da multiplicação do tempo Δt pela velocidade da luz obtêm-se a pseudodistância, a qual após ajustamento para a modelagem dos efeitos de multicaminhamento, refração ionosférica e troposférica, entre outros, conforme a seguinte equação (MONICO, 2008):

$$PD_R^S = \rho_r^S + c[dt_r - dt^S] + I_r^S + T_r^S + dm_r^S + \varepsilon PD_r^S$$
(3)

Onde:

• PD_R^S é a pseudodistância entre o satélite no instante t_0 de transmissão e o receptor, em metros;

- ρ_r^s é distância geométrica entre o satélite no instante t_0 e o receptor, em metros;
- c é a velocidade da luz em m/s;
- dt^s é o erro do relógio do satélite em relação ao tempo GPS no instante t^s em segundos;
- dt_r é o erro do relógio do receptor em relação ao tempo GPS no instante t_r
 em segundos;
- I_r^s é o efeito da refração ionosférica, em metros;
- T_r^s é o efeito da refração troposférica, em metros;
- dm_r^s são os efeitos do multicaminho do sinal;
- εPD_r^s é a soma dos erros não modelados e aleatórios na medida da pseudodistância.

A fase da onda portadora, ou a fase de batimento, é uma observável mais precisa que a pseudodistância, sendo a principal observável utilizada na maioria das atividades geodésicas (MONICO, 2008). O receptor mede a parte fracionária da portadora e efetua a contagem dos ciclos que entram no receptor a partir da primeira recepção (MONICO, 2008). O receptor não é capaz de determinar a parte inteira de ciclos entre o satélite e o receptor, o que é chamado de ambiguidade, o qual é modelado e estimado, junto com demais parâmetros, no ajustamento. Segundo Monico (2008), citando (KING et al., 1988) a fase observada, em ciclos, é obtida por:

$$\phi_r^S(t) = \phi^S(t) - \phi_r(t) + N_r^S + \varepsilon \phi_r^S \tag{4}$$

Onde:

- t é o instante de recepção do sinal na estação r;
- $\phi^s(t)$ é a fase da portadora gerada no satélite s e recebida no receptor r no instante da recepção;
- $\phi_r(t)$ é a fase gerada no receptor no instante de recepção;
- N_r^s é a chamada ambiguidade da fase;
- $\varepsilon \phi_r^s$ é o erro da fase da onda portadora.

2.5.1 Posicionamento por Ponto Simples

Há diversas metodologias de posicionamentos, ou tipos. O posicionamento por ponto é o método de posicionamento em que se utiliza apenas um receptor, utilizando-se a peseudodistância derivada do código C/A, presente na portadora L1 dos satélites GNSS, de forma que até 02 de maio de 2000, quando o governo americano deixou de degradar o código

através da chamada disponibilidade seletiva (SA), a pseudodistância apresentava precisão até +/- 100 metros. Com a eliminação da SA a qualidade melhorou aproximadamente 10 (dez) vezes (MONICO, 2008).

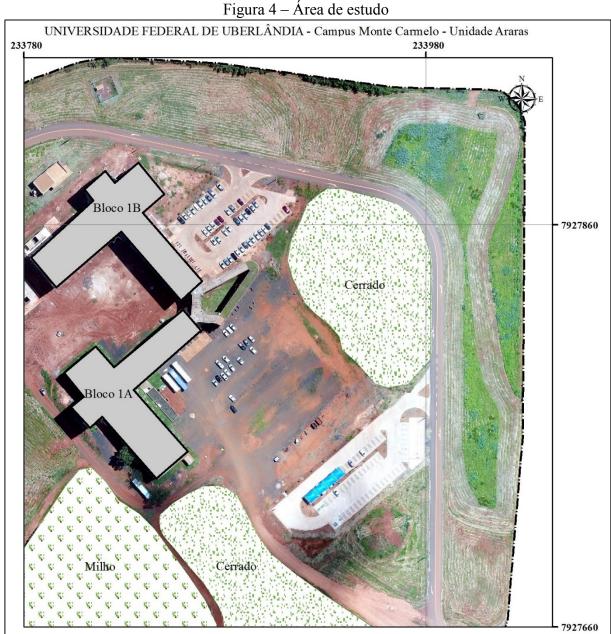
2.5.2 Posicionamento por Ponto Preciso

Assim como no posicionamento por ponto simples, no posicionamento por ponto preciso (PPP) utiliza-se apenas um receptor. Para melhorar a precisão, compatível com as necessidades das ciências geodésicas, "são utilizadas as observáveis pseudodistância ou a fase da onda portadora ou ambas, coletadas por receptores de simples ou dupla frequência, com efemérides precisas" (MONICO, 2008, p. 313).

2.5.3 Posicionamento Relativo

O posicionamento relativo ocorre quando se utilizam dois ou mais receptores, sendo um posicionado em uma estação de referência, cujas coordenadas e precisões são conhecidas, e o outro no ponto que se deseja obter as coordenadas. No contexto de posicionamento relativo, utilizam-se, em geral, as duplas diferenças (DD) como observáveis fundamentais. O conceito fundamental do posicionamento relativo é que os dois receptores envolvidos rastreiem, simultaneamente, pelo menos dois satélites comuns (MONICO, 2008). O posicionamento relativo pode ser: estático, estático rápido, semi-cinemático, cinemático, etc. Novas modalidades surgem constantemente em função de novas tecnologias. No contexto deste trabalho foi abordado apenas a modalidade estática.

2.5.3.1 Posicionamento Relativo Estático


No posicionamento relativo estático enquanto um dos receptores (base) permanece rastreando numa estação cujas coordenadas, em determinado Sistema de Referência (SR), são conhecidas outro, ou outros, receptor (rover) coleta dados na estação a ser levantada, rastreando por no mínimo 20 minutos (MONICO, 2008). Ressalte-se que neste método as coordenadas serão determinadas no mesmo SR da base.

O tempo de rastreamento simultâneo dos sinais está relacionado à solução das ambiguidades e depende de vários fatores como as atividades ionosféricas, equipamento utilizado, multicaminho, tipo de receptores, comprimento da linha de base, geometria dos satélites, etc (IBGE, 1993). Neste trabalho foi adotado o mínimo de uma hora de rastreio simultâneo.

3 MATERIAL E MÉTODOS

3.1 ÁREA DE ESTUDO

A área de estudo (APÊNDICE E e Figura 4) está circunscrita nos limites da Unidade Araras do *Campus* Monte Carmelo da Universidade Federal de Uberlândia, estado de Minas Gerais. Situada a oeste nos limites urbanos do município de Monte Carmelo-MG, ocupa uma área aproximada de 24 (vinte e quatro) hectares.

Fonte: o autor. Adaptado de MENDES(2016); Ortofoto cedida pelo Laboratório de Sensoriamento Remoto e Fotogrametria, UFU Monte Carmelo.

3.2 MATERIAL

3.2.1 Estação Total

A Estação Total Ruide (Figura 5) é instrumento eletrônico para a medida de ângulos e distâncias. Trata-se da junção de teodolito eletrônico com distanciômetro em um mesmo aparelho. Dispõe de memória interna e microprocessador com capacidade de armazenar as leituras e inclusive realizar alguns cálculos pré-determinados facilitando a tarefa do operador em diversas operações de campo. O usuário ainda dispõe da possibilidade de transferir os dados para um microcomputador para a realização dos cálculos, apresentação e/ou impressão. Normalmente alimentada com baterias de níquel-cádmio, de acordo com o modelo e estado das baterias suportam até 8(oito) horas de trabalho sem necessidade de recarga.

Figura 5 – Estação Total Ruide

Fonte: UFC1

3.2.2 Prisma refletor

Equipamento composto de superfícies espelhadas angularmente espaçadas, Figura 6, que permitem a reflexão de sinais de Equipamentos Medidores de Distância (EDM da sigla em inglês) na mesma direção e sentido oposto ao do recebimento do sinal. Pode ser utilizado isolado ou em série, situação em que aumenta o alcance do sinal permitindo a medição de maiores distâncias.

¹ Disponível em https://www.det.ufc.br/equipamentos-guias. Acesso em: 11 jun. 2018.



Figura 6 – Prisma refletor

Fonte: UEFS²

3.2.2 Tripé

Suporte de madeira ou alumínio, figura 7, para fixação e sustentação de EDM, Teodolito, Nível, Estação Total, etc. Composto de 3 (três) pés ajustáveis com pontas metálicas para fixação no terreno.

Fonte: PARANAGEO3

3.2.4 Bipé


Suporte de madeira ou alumínio para fixação e sustentação de prisma ou conjunto de prismas. Composto de 2 (dois) pés ajustáveis com pontas metálicas para fixação no terreno e

² Disponível em http://www2.uefs.br/geotec/topografia/apos tilas/topografia(6).htm. Acesso em: 11 jun. 2018.

³ Disponível em http://paranageo.com.br/produtos/acessoriosparatopografia/tripe-de-aluminio-com-trava-dupla. Acesso em: 11 jun. 2018.

um bastão adaptado para a fixação do conjunto prisma (Figura 8).

Figura 8 – Bipé e bastão para prisma

Fonte: FERROVICMAR⁴

3.2.5 Receptores GNSS de dupla frequência

Aparelho eletrônico de rádio recepção com antena, microprocessador(es), memória interna, rádio UHF, dupla frequência, com capacidade de gravação das observáveis, processamento e saída de dados para pós-processamento, comunicação via bluetooth, celular GSM/CDMA – Figuras 9 e 10.

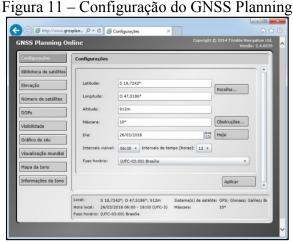
Figura 9 – Receptor GNSS/GLONASS Promark 500

Fonte: ALIBABA⁵

⁴ Disponível em http://www.ferrovicmar.com/herramientas-electricas.asp?producto=tripode-prismas-f0340563n4. Acesso em: 11 jun. 2018.

⁵ Disponível em https://portuguese.alibaba.com/f/promark-500.html. Acesso em: 11 jun. 2018.

Figura 10 – Receptor GNSS/GLONASS Promark 200


Fonte: ALLCOMP⁶

3.3 MÉTODOS

3.3.1 Planejamento e estudo da situação

Foi realizada a visita à área de estudo (Figura 4) e constatado que havia no terreno cultura de milho, em processo de finalização, aguardando colheita, além de áreas de vegetação arbustiva mista de cerrado e capim, as quais associadas à declividade não homogênea inviabilizaram a aplicação do método em toda a extensão do *campus*, limitando-se os trabalhos a uma área na parte nordeste da área de estudo.

Para o planejamento do posicionamento por GNSS foi utilizado a ferramenta *GNSS Planning online* (Figura11) onde é possível, após preenchimento de um formulário, obter diversas informações quanto à elevação dos satélites, diluição da precisão (DOP), visibilidade, além de informações sobre a camada da ionosfera através da contagem total de elétrons (TEC).

Fonte: Trimble⁷ (2018)

⁶ Disponível em http://www.allcomp.com.br/index.php?route=product/product&product_id=1375. Acesso em: 11 jun. 2018.

Na Figura 12 temos a previsão do TEC para o período de 06:00 às 18:00 h do dia 26/03/2018 onde é possível observar que o TEC permanece relativamente baixo durante todo o período, havendo uma leve elevação a partir das 14:00 h e chegando ao pico por volta das 16:00 h. Na Figura 13 pode-se observar que a disponibilidade de satélites permanecerá elevada durante todo o período do posicionamento.

— TEC

Figura 12 – Informações da camada da ionosfera

Fonte: Trimble⁷ (2018)

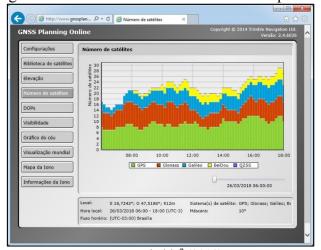


Figura 13 – Número de satélites visíveis no período

Fonte: Trimble⁷ (2018)

A previsão para o TEC, da Figura 14, é realizada com dados de estações espalhadas pelo planeta. Objetivando uma previsão mais acurada foi consultado, o mapa do TEC (Figura 14), elaborado pelo Instituto Nacional de Pesquisas Espaciais (INPE).

⁷ Disponível em https://www.gnssplanningonline.com. Acesso em: 24 mar. 2018.

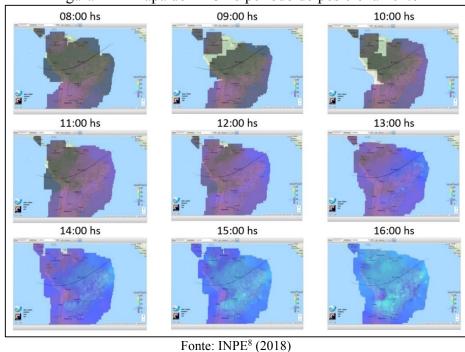


Figura 14 – Mapa do TEC no período do posicionamento

Decidiu-se então por realizar o Posicionamento Relativo-Estático utilizando o receptor GNSS Ashtec Promark 500, com no mínimo duas horas de ocupação, nos marcos A, B e C cujas coordenadas foram utilizadas como referência, ou vetor das observações no ajustamento, e o receptor Ashtec Promark 200, com no mínimo uma hora de ocupação, nos pontos 1 a 6 cujas coordenadas foram utilizadas para comparar as coordenadas ajustadas pelo método paramétrico.

3.3.2 Implantação dos pontos e realização das observações

Na área de estudo foram implantados seis piquetes de madeira bem espaçados e visíveis entre si e a quatro marcos, sendo um marco de concreto e três dos chamados corpos de prova, já implantados na área de estudo (Figura 15 e Apêndice E).

A Estação Total foi estacionada no ponto 1, com orientação no ponto 2, considerado a orientação do sistema arbitrário, e realizadas as medições dos ângulos e distâncias em relação a todos os pontos e marcos com leitura conjugada na posição direta (PD) e indireta (PI) da luneta. Ao término da operação a estação total foi retirada do ponto e estacionada novamente no mesmo ponto 1, repetindo-se toda a operação duas vezes. Em seguida o mesmo procedimento foi realizado estacionando a Estação Total no ponto 2 e orientação no ponto 1, doravante chamados de pontos de Estação Livre (EL), obtendo-se dois conjuntos de três leituras

⁸ Disponível em < http://www2.inpe.br/climaespacial/portal/tec-map-inicio/>. Acesso em: 24 mar. 2018.

conjugadas angulares e de distâncias.

Atribuindo-se coordenadas x = 1.000,000 m e y = 10.000,000 m ao ponto 1, foram calculadas e ajustadas as coordenadas de todos os pontos e marcos da área de estudo no sistema de referência arbitrário da EL 1. Procedimento análogo foi realizado para calcular e ajustar as coordenadas de todos os pontos e marcos no sistema de referência arbitrário da EL 2.

Tigura 13 – Distributção dos pontos e marcos na area de estudo

Figura 15 – Distribuição dos pontos e marcos na área de estudo

Fonte: o autor. Ortofoto cedida pelo LabSenso da UFU. Elaborada no software QGis® 2.18

Calculadas e ajustadas as coordenadas arbitrárias dos pontos e marcos foram, as coordenadas dos marcos, utilizadas no ajustamento por MMQ, método paramétrico, para encontrar a solução de 4 (quatro) parâmetros das equações de transformação por similaridade, os quais aplicados às coordenadas arbitrárias dos pontos resultaram nas coordenadas dos mesmos no sistema de referência SIRGAS2000.

3.3.3 Realização do Posicionamento Relativo Estático

Foram realizadas as observações por Posicionamento Relativo Estático, nos marcos A, B e C, com o receptor Ashtech ProMark 500 e nos pontos 1 a 6 com o receptor Ashtech ProMark 200. Nos marcos a campanha teve duração de no mínimo 120 minutos em cada marco e nos pontos 60 minutos em cada ponto. As ocupações iniciaram-se às 08:00 h e encerraram-se às 15:35h do dia 28 Mar 2018, hora de Brasília.

3.3.4 Ajustamento das observações – Transformação por similaridade

A definição do modelo funcional seguiu o desenvolvimento das equações para a transformação por similaridade das coordenadas que foi realizada em três passos (GHILANI; WOLF, 2006).

- Fator de escala: para que ambos os sistemas de referência tenham dimensões iguais; 1)
- 2) Rotação: para que os eixos ordenados de ambos os sistemas sejam paralelos; e
- 3) Translação: para que ambos os sistemas tenham a mesma origem.

A Figura 16 ilustra os dois sistemas bidimensionais independentes nos quais existem os pontos de controle (marcos com coordenadas SIRGAS2000) A, B e C, cujas coordenadas são conhecidas em ambos os sistemas. Os pontos de controle 1, 2, 3 e 4 tem coordenadas conhecidas apenas no sistema xy (Figura 16 b).

03 02 04

Figura 16 – Sistemas bidimensionais

Fonte: GHILANI; WOLF (2006)

1º passo: Fator de escala. Para que os eixos ordenados x e y tenham os mesmos comprimentos, ou comprimentos iguais, é necessário multiplicar as coordenadas no sistema xy por um fator de escala S (GHILANI; WOLF, 2006). Assim, as coordenadas x'y' são:

$$x' = S.x$$

$$y' = S.y$$
(5)

2º Passo: Rotação. Na Figura 17, o sistema de coordenadas XY foi corrigido com o fator de escala em relação ao sistema x'y'. O ângulo de rotação, θ, é mostrado entre os eixos y' e Y. Para analisar os efeitos desta rotação, um sistema X'Y' foi construído paralelo ao sistema XY e com a origem comum com o sistema x'y'. As equações que dão as coordenadas x'y' para qualquer ponto (como o ponto de controle 4) em termos de suas coordenadas no sistema x'y' são (GHILANI; WOLF, 2006):

$$X' = x' \cdot \cos\theta - y' \cdot \sin\theta$$

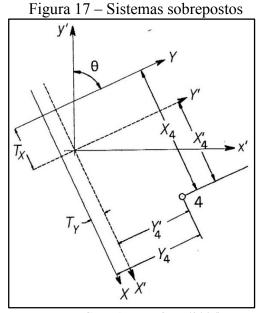
$$Y' = x' \cdot \sin\theta + y' \cdot \cos\theta$$
(6)

3º Passo: Translação. Finalmente para chegar às coordenadas XY para um ponto, é necessário a translação da origem do sistema X'Y' para a origem do sistema xy. Na Figura 16 pode-se ver que esta translação é realizada adicionando o fator de translação da seguinte forma (GHILANI; WOLF, 2006):

$$X = X' + T_X$$

$$Y = Y' + T_Y$$
(7)

A combinação das equações 5, 6 e 7 resulta nas equações que transformam as coordenadas dos pontos da Figura 16 (b) diretamente para o sistema da Figura 16 (a), assim :


$$X = (S.\cos\theta)x - (S.\sin\theta)y + T_X$$

$$Y = (S.\sin\theta)x + (S.\cos\theta)y + T_Y$$
(8)

Fazendo S. $\cos\theta$ = a, S. $\sin\theta$ = b, T_X = c e T_Y = d e adicionando resíduos para dar redundância tornando as equações consistentes, as equações resultantes podem ser escritas (GHILANI; WOLF, 2006):

$$X + v_x = ax - by + c$$

$$Y + v_y = bx + ay + d$$
(9)

Fonte: GHILANI; WOLF (2006).

As equações (9) representam a transformação de um sistema bidimensional com quatro parâmetros: a, b, c e d. Com apenas um ponto de controle tem-se duas equações e quatro parâmetros, o que significa que o sistema de equações não tem solução. Com um segundo ponto de controle tem-se então quatro equações e quatro parâmetros possibilitando uma única solução. Com um terceiro ponto tem-se seis equações e quatro parâmetros, com infinitas soluções, sendo a adotada a solução por MMQ, determinada pelo Método Paramétrico. Com os três pontos de controle A, B, e C, pode-se escrever as seguintes seis equações (GHILANI; WOLF, 2006):

$$E_{A} + v_{XA} = ax_{a} - by_{a} + c$$

$$N_{A} + v_{YA} = bx_{a} + ay_{a} + d$$

$$E_{B} + v_{XB} = ax_{b} - by_{b} + c$$

$$N_{B} + v_{YB} = bx_{b} + ay_{b} + d$$

$$E_{C} + v_{XC} = ax_{c} - by_{c} + c$$

$$N_{C} + v_{YC} = bx_{c} + ay_{c} + d$$
(10)

Expressando na forma matricial:

$$AX = L + V \tag{11}$$

Onde:

$$A = \begin{bmatrix} x_{a} & -y_{a} & 1 & 0 \\ y_{a} & x_{a} & 0 & 1 \\ x_{b} & -y_{b} & 1 & 0 \\ y_{b} & x_{b} & 0 & 1 \\ x_{c} & -y_{c} & 1 & 0 \\ y_{c} & x_{c} & 0 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad L = \begin{bmatrix} E_{A} \\ N_{A} \\ E_{B} \\ N_{B} \\ E_{C} \\ N_{C} \end{bmatrix} \qquad V = \begin{bmatrix} v_{X_{A}} \\ v_{Y_{A}} \\ v_{X_{B}} \\ v_{X_{C}} \\ v_{Y_{C}} \end{bmatrix}$$

A equação (11) pode ser reescrita como:

$$V = AX - L \tag{12}$$

O ajustamento por MMQ objetiva obter uma solução única onde V é o vetor dos resíduos cuja soma quadrática seja mínima (CAMARGO, 2000), ou seja:

$$\phi = V^{T}PV = \min \tag{13}$$

Onde P é a Matriz Peso. Substituindo a equação 12 em 13 e aplicando algumas propriedades envolvendo equações matriciais, pode-se desenvolver a equação 13 como se segue (CAMARGO, 2000):

$$\phi = (AX - L)^{T}P(AX - L) = \min$$
 (14)

$$\phi = (X^{T}A^{T} - L^{T})P(AX-L) = \min$$
 (15)

$$\phi = (X^{\mathsf{T}}A^{\mathsf{T}}P - L^{\mathsf{T}}P)(AX - L) = \min$$
 (16)

$$\phi = (X^{T}A^{T}PAX - X^{T}A^{T}PL^{T} - L^{T}PAX + L^{T}PL) = \min$$
(17)

Derivando em relação a X e igualando a zero, obtêm-se (CAMARGO, 2000):

$$\frac{\partial V}{\partial x} = 2A^{T}PAX - A^{T}PL - A^{T}PL = 0$$
 (18)

$$2A^{T}PAX - 2A^{T}PL = 0 (19)$$

$$A^{T}PAX - A^{T}PL = 0 (20)$$

$$X = (A^{T}PA)^{-1}A^{T}PL$$
 (21)

Após o ajustamento o fator de escala S e o ângulo de rotação θ foram obtidos pelas equações (GHILANI; WOLF, 2006):

$$\theta = \tan^{-1} \frac{b}{a}$$

$$S = \frac{a}{\cos \theta} \text{ ou } \frac{b}{\sin \theta}$$
(22)

O ajustamento para a determinação dos quatro parâmetros de transformação foi realizado com a ferramenta MatLab[®], disponível no Laboratório Sigeo da Unidade Araras do *campus* Monte Carmelo da UFU. No APÊNDICE A têm-se uma listagem padrão com os comandos para o processamento do ajuste. Foram adotados três marcos (A, B e C) cujas coordenadas e respectivas precisões, APÊNDICE B, foram levantadas por posicionamento relativo estático e um marco (D), pertencente ao Sistema Geodésico Brasileiro (SGB), cujas coordenadas e respectivas precisões foram obtidas junto ao Instituto Brasileiro de Geografia e Estatística (IBGE) (ANEXO A).

Foram determinados os parâmetros ajustados considerando cinco cenários diversos para cada EL conforme os marcos envolvidos no ajustamento, no APÊNDICE C estão as listagens de saída do processamento de cada cenário com os parâmetros ajustados e as coordenadas de todos os pontos transformados do sistema de referência arbitrário da Estação Livre para o SGB.

A análise da qualidade do ajustamento em cada cenário foi determinada pela aplicação do teste do Qui-quadrado, considerando as variâncias a *priori* (σ_0^2), adotada igual a um, e a *posteriori*, determinada segundo Camargo (2000) pela equação:

$$\hat{\sigma}_0^2 = \frac{V^T P V}{gl} \tag{23}$$

Onde:

 $\hat{\sigma}_0^2$ é a variância a *posteriori*;

V é o vetor dos resíduos;

V^T é o vetor dos resíduos transposto;

gl é o grau de liberdade = número de equações (n) - número de incógnitas (u).

Foi determinado o qui-quadrado calculado (χ_c^2) aplicando a fórmula (CAMARGO, 2000):

$$\chi_c^2 = \frac{\hat{\sigma}_0^2}{\sigma_0^2} \cdot gl \tag{24}$$

O valor do χ_c^2 foi então comparado com o valor do qui-quadrado esperado (χ_t^2) consultado na tabela, ANEXO C, e verificado as hipóteses:

$$H_0$$
: $\chi_c^2 \le \chi_{(gl,0.05)}^2$ contra H_1 : $\chi_c^2 > \chi_t^2$

Tais hipóteses descrevem que, na hipótese nula (H_0) as $\hat{\sigma}_0^2$ e σ_0^2 são estatisticamente iguais e na hipótese alternativa (H_1) a $\hat{\sigma}_0^2$ é maior que a σ_0^2 situação em que o ajustamento deve ser rejeitado, pois, pode-se afirmar que ao nível de significância adotado (5%) os valores ajustados não se enquadram em um distribuição qui-quadrado (CAMARGO, 2000).

Além desta análise de precisão os resultados foram comparados para verificar a acurácia das coordenadas determinadas pelo método da Estação Livre relativamente às coordenadas obtidas pelo posicionamento por GNSS.

4 RESULTADOS E DISCUSSÕES

4.1 COORDENADAS NO SISTEMA DE REFERÊNCIA ARBITRÁRIO

O ANEXO B contém as listagens, sem edição, com as leituras efetuadas na Estação Total tanto na EL 1 quanto na EL2. Durante as observações houve erro de identificação entre o ponto Pt5 e o marco PtA, erro este detectado durante os cálculos das observações de campo, portanto onde se lê Pt5, no ANEXO B, leia-se PtA e vice-versa.

Foram calculadas as coordenadas e respectivas precisões de todos os pontos e marcos no sistema de referência arbitrário da EL 1, sendo arbitradas as coordenadas X = 1.000,000 m e Y = 10.000,000 e os resultados os apresentados na Tabela 1.

Tabela 1 – Coordenadas arbitrárias e precisões EL 1

Ponto	X(m)	Y(m)	σX(m)	σY(m)
1	1.000,000	10.000,000	0,000	0,000
2	1.000,001	10.139,541	0,003	0,001
3	1.025,553	9.943,465	0,004	0,007
4	957,482	10.096,712	0,004	0,006
5	1.068,527	9.915,128	0,000	0,001
6	1.076,260	10.133,334	0,006	0,002
A	1.060,767	9.954,307	0,007	0,005
В	1.017,889	10.010,478	0,001	0,003
С	997,582	10.093,238	0,004	0,001
D	1.069,469	10.025,006	0,002	0,002

Fonte: o autor.

Assim como feito para a EL 1, foram calculadas as coordenadas e respectivas precisões de todos os pontos e marcos no sistema de referência arbitrário da EL 2, sendo arbitradas as coordenadas X = 1.000,000 m e Y = 10.000,000 e os resultados listados na Tabela 2.

Tabela 2 – Coordenadas arbitrárias e precisões EL 2

Ponto	X(m)	Y(m)	σX(m)	σY(m)
1	999,998	10.139,532	0,004	0,007
2	1.000,000	10.000,000	0,000	0,000
3	974,440	10.196,098	0,002	0,015
4	1.042,508	10.042,813	0,003	0,003
5	931,489	10.224,405	0,006	0,007
6	923,739	10.006,217	0,004	0,002
A	939,237	10.185,239	0,011	0,004
В	982,103	10.129,058	0,005	0,003
С	1.002,412	10.046,307	0,001	0,011
D	930,530	10.114,543	0,006	0,002

Fonte: o autor.

4.2 COORDENADAS NO SGB – Posicionamento Relativo Estático.

Foram processadas as observações do posicionamento relativo estático, utilizando o *software GNSS Solutions*, cuja listagem de saída encontra-se no APÊNDICE B. Em seguida com a utilização do software ProGriD as coordenadas geodésicas foram transformadas para a projeção *Universal Transversa de Mercatur* (UTM), APÊNDICE C e Tabela 3 a seguir:

Tabela 3 – Coordenadas e precisões no SGB

Ponto	E(m)	N(m)	σE(m)	σN(m)
1	233997,406	7927812,868	0,002	0,002
2	233966,294	7927676,767	0,002	0,002
3	233985,043	7927873,720	0,002	0,002
4	234017,335	7927709,065	0,002	0,002
5	233949,463	7927910,882	0,002	0,002
6	233893,340	7927699,786	0,002	0,002
A	233948,296	7927870,951	0,003	0,003
В	233977,603	7927806,624	0,002	0,003
C	233978,968	7927721,415	0,003	0,004
D	233924,040	7927803,945	0,003	0,003

Fonte: o autor.

4.3 AJUSTAMENTO PELO MÉTODO PARAMÉTRICO – TRANSFORMAÇÃO POR SIMILARIDADE

Foi realizado o ajustamento pelo método paramétrico considerando todos os cenários possíveis, cinco cenários para cada EL. O resultado de cada ajustamento está listado no APÊNDICE D. Os diversos cenários apresentaram o seguinte resultado (Tabela 4):

Tabela 4 – Resultado do ajustamento paramétrico – Transformação por similaridade

1 abela 4 – Resultado do ajustamento parametrico – Transformação por similaridade					
EL	Cenário	Marcos	GL	$\hat{\sigma}_0^2(m)$	
	ABCD	A,B,C,D	4	32,17	
	ABC	A,B,C	2	3,26	
1	ABD	A,B,D	2	12,88	
	ACD	A,C,D	2	13,40	
	BCD	B,C,D	2	64,17	
	ABCD	A,B,C,D	4	6,78	
	ABC	A,B,C	2	2,00	
2	ABD	A,B,D	2	10,35	
	ACD	A,C,D	2	4,22	
	BCD	B,C,D	2	12,27	

Fonte: o autor.

O valor teórico do $\chi^2_{(4,0.05)}$ é 9,49 e do $\chi^2_{(2,0.05)}$ é 5,99, resultando que o ajustamento de quatro dos cinco cenários da EL 1 têm a hipótese nula (H₀) rejeitada, sendo aceito apenas o ajustamento do cenário ABC. Nos cenários ABD e BCD da EL 2 rejeita-se H₀, e aceita-se o ajustamento dos cenários ABCD, ABC e ACD.

Observa-se que o cenário ABC obteve os melhores resultados tanto na perspectiva de EL 1 quanto na EL 2, portanto foi adotado este cenário em ambas as EL para definição dos parâmetros ajustados nas transformações das coordenadas arbitrárias para o SGB, conforme a Tabela 5, lembrando que S e θ são obtidos pela equação (20).

Tabela 5 – Parâmetros ajustados da Transformação por similaridade e precisões, EL 1 - 2 – Cenário ABC

	EL 1		EL2	
Parâmetro	Valor(m)	σ(m)	Valor(m)	σ(m)
a	-0,975	0,000028	0,975	0,000062
b	0,223	0,000041	-0,223	0,000045
c	237199,597	0,404026	230763,935	0,456290
d	7937340,128	0,301590	7918148,869	0,632579
S	1,000114	-	1,000181	-
θ	167°07'57,12"	-	347°07'58,59"	-

Fonte: o autor

Os parâmetros ajustados (a, b, c, d) foram então aplicados na transformação das coordenadas arbitrárias da EL 1 e EL 2, resultando nos valores listados na Tabela 6 abaixo:

Tabela 6 – Coordenadas transformadas para o SGB dos pontos 1 a 6. Perspectiva EL 1 - 2

	Coordena	adas EL 1	Coordena	adas EL2
Ponto	E(m)	N(m)	E(m)	N(m)
1	233997,378	7927812,860	233997,378	7927812,851
2	233966,298	7927676,808	233966,302	7927676,798
3	233985,056	7927873,673	233985,057	7927873,699
4	234017,293	7927709,096	234017,286	7927709,075
5	233949,467	7927910,873	233949,481	7927910,867
6	233893,328	7927699,845	233893,328	7927699,845

Fonte: o autor

Foi realizada a propagação dos erros e as coordenadas, listadas na Tabela 6, apresentaram as precisões conforme a Tabela 7. Foram calculadas também as diferenças entre as coordenadas no SGB obtidas pela metodologia do posicionamento por GNSS e as obtidas pelo método de estação livre nas perspectivas da EL 1 e EL 2, além da diferença entre ambas as EELL (Tabela 8).

Tabela 7 – Precisão dos pontos na perspectiva das EELL 1 e 2

	EL 1		EL2	
Ponto	σE(m)	σN(m)	σE(m)	σN(m)
1	0,000000	0,000000	0,004200	0,006883
2	0,002933	0,001182	0,000000	0,000000
3	0,004200	0,006883	0,003868	0,014633
4	0,004123	0,005917	0,003001	0,003001
5	0,001000	0,001000	0,006055	0,006955
6	0,005867	0,002364	0,003926	0,002144

Fonte: o autor

Tabela 8 – Diferença entre as coordenadas conforme o método

a) entre o método do Posicionamento por GNSS e a EL 1				
Ponto	$\Delta E(m)$	$\Delta N(m)$	$\Delta(m)$	
1	0,028	0,008	0,029	
2	-0,004	-0,041	0,041	
3	-0,013	0,047	0,049	
4	0,042	-0,031	0,052	
5	-0,004	0,009	0,010	
6	0,012	-0,059	0,060	
b)	entre o método do Posic	cionamento por GNSS e	a EL 2	
Ponto	$\Delta E(m)$	$\Delta N(m)$	$\Delta(m)$	
1	0,028	0,017	0,033	
2	-0,008	-0,031	0,032	
3	-0,014	0,021	0,025	
4	0,049	-0,010	0,050	
5	-0,018	0,015	0,024	
6	6 0,012		0,061	
	c) entre a perspec	ctiva da EL 1 e a EL 2		
Ponto	$\Delta E(m)$	$\Delta N(m)$	$\Delta(m)$	
1	0,000	0,009	0,009	
2	-0,004	0,011	0,011	
3	-0,001	-0,026	0,026	
4	0,007	0,021	0,022	
5	-0,014	0,006	0,015	
6	0,001	-0,001	0,001	

Fonte: o autor

Os resultados apresentados na poligonação por irradiamentos (Tabelas 1 e 2) mostram que as precisões na perspectiva da EL 1 foram ligeiramente melhores que na da EL 2, sendo que os valores de 0,000 m nas precisões do ponto 1 na EL 1 e do ponto 2 na EL 2 ocorreram devido ao fato de que suas coordenadas foram arbitradas.

O posicionamento por GNSS (Tabela 3), cujas coordenadas dos marcos A, B, C e D foram utilizadas no ajustamento paramétrico – transformação por similaridade e as coordenadas dos pontos 1 a 6 para aferição da acurácia do método, apresentou muito boa precisão (0,002m para os pontos e de 0,003m e 0,004m para os marcos). Curiosamente no posicionamento em campo os marcos foram ocupados por um período de tempo médio de duas horas enquanto os pontos foram ocupados por período menor, uma hora em média.

No ajustamento paramétrico – transformação por similaridade na perspectiva da EL 1 em quatro cenários foi rejeitada a hipótese nula. Em todos os cenários rejeitados há em comum a presença do marco D. Não foram investigadas, neste trabalho, as razões das rejeições. Já na perspectiva da EL 2 nos cenários ABD e BCD a hipótese nula foram rejeitadas e também não foram investigadas as razões.

Analisando os parâmetros ajustados da transformação por similaridade e respectivas precisões (Tabelas 7 e 8) observa-se que os valores dos parâmetros a e b na EL 1 são aproximadamente o oposto da EL 2. Assim também o ângulo de rotação de uma é aproximadamente o contra-azimute da outra. Tais resultados eram esperados já que na EL 1 teve orientação no ponto 2 (EL 2) e vice-versa.

As precisões do ajustamento foram determinadas pelo método de propagação dos erros (Tabela 7) e no geral ficaram abaixo de 0,01 m. Alternativamente foram comparados os resultados da EL 1 com a EL 2 (Tabela 8 c) e os valores se revelaram aproximadamente iguais, com precisão média de 0,014 m. Já quanto à acurácia, adotando-se as coordenadas levantadas pelo posicionamento por GNSS como referência, expressa na Tabela 8 (a e b) os valores indicaram um afastamento máximo de 0,061 m e mínimo de 0,01 m.

5 CONCLUSÕES

Os resultados alcançados estão estatisticamente dentro da região de não rejeição de uma distribuição qui-quadrado e nos permite afirmar, com 95% de confiança, que os parâmetros ajustados utilizados na transformação por similaridade, atendem a precisão alcançada.

Os pontos ajustados pelo Método de Estação Livre (Tabela 7) alcançaram precisão milimétrica e submilimétrica, sendo 0,006 m o maior erro. Comparando os métodos entre si (Tabela 8 c) a precisão dos pontos foi melhor que 0,027 m e a precisão da EL 1 foi de 0,009 m e da EL 2 foi de 0,011 m, dentro dos resultados esperados pelo projeto.

Quanto à acurácia, comparando-se os resultados do posicionamento por GNSS como referência, os pontos ajustados pela perspectiva da EL 1 houve um afastamento médio de 40 mm e pela perspectiva da EL 2 o desvio foi de 37mm.

As observações foram realizadas com apenas três iterações em cada EL, podendo melhorar a acurácia com séries maiores de observações. Portanto pode-se afirmar que o Método de Estação Livre constitui uma boa alternativa, tanto pelo aspecto técnico quanto financeiro, ao posicionamento por satélites em ambientes onde ocorrem significativas obstruções de sinal e efeitos de multicaminho.

REFERÊNCIAS

CAMARGO, P. O. Ajustamento de observações. UNESP: Presidente Prudente, 2000.

FUNDAÇÃO INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Especificações e Normas Gerais para Levantamentos GPS**: versão preliminar. 1993. Disponível em: <ftp://geoftp.ibge.gov.br/metodos_e_outros_documentos_de_referencia/norm as/legisla_normagps_d.pdf >. Acesso em: 23 mar. 2018.

______. Resolução do Presidente - Altera a caracterização do Sistema Geodésico Brasileiro. 2005. Disponível em: <ftp://geoftp.ibge.gov.br/metodos_e_outros_documentos_de_referencia/normas/rpr_01_25fev2005.pdf >. Acesso em: 22 nov. 2017.

. Recomendações para levantamentos relativos estáticos – GPS. [Rio de Janeiro].

2008. Disponível em <ftp://geoftp.ibge.gov.br/metodos_e_outros_documentos_de_referencia/normas/recom_gps_internet.pdf>. Acesso em 23 mar. 2018.

GHILANI, C. D.; WOLF, P. R. **Adjustment Computations**: Spatial Data Analysis. 4. ed. New York: John Wiley & Sons, 2006.

KLEIN, I.; MATSUOKA, M. T.; SOUZA, S. F.; VERONEZ, M. R. **Ajustamento de observações:** uma interpretação geométrica para o método dos mínimos quadrados. Boletim de Ciências Geodésicas, [S.l.], v. 17, n. 2, jul. 2011. ISSN 1982-2170. Disponível em: http://revistas.ufpr.br/bcg/article/view/21897>. Acesso em: 27 nov. 2017.

MENDES, T.R. Levantamento geodésico do Campus Monte Carmelo da Universidade Federal De Uberlândia. 2016. 70 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Agrimensura e Cartográfica) - Universidade Federal de Uberlândia, Monte Carmelo. 2016.

MONICO, J. F. G. **Posicionamento pelo GNSS**: Descrição, fundamentos e aplicações. 2. ed. São Paulo: Unesp, 2008.

VEIGA, L. A. K.; ZANETTI, M. A. Z.; FAGGION, P. L. **Fundamentos de Topografia**. Curitiba: Ed. UFPR, 2012. Disponível em: http://www.cartografica.ufpr.br/docs/topo2/apos topo.pdf>. Acesso em 22 nov 2017.

APÊNDICE A – COMANDOS EM MATLAB® DA FUNÇÃO DE AJUSTAMENTO

```
clear all
close all
format long g
% Coordenadas arbitrárias dos marcos A, B, C e D, e dos pontos 1 a 6
xx = [1060.767; 9954.307; 1017.889; 10010.478; 997.582; 10093.238; 1069.469; 10025.006;
1000.000; 10000.000;
  1000.001; 10139.541; 1025.553; 9943.465; 957.482; 10096.712; 1068.527; 9915.128;
1076.260; 10133.334];
% Coordenadas dos marcos A, B, C e D no SGB
EN = [233948.296; 7927870.951; 233977.603; 7927806.624; 233978.968; 7927721.415;
233924.040; 7927803.945];
% Precisão das coordenadas X (1) e Y (2) arbitrárias dos pontos 1 a 6 e dos marcos A, B, C e
0.003^2; 0.001^2; 0.004^2; 0.007^2; 0.004^2; 0.006^2; 0.001^2; 0.001^2; 0.006^2; 0.002^2];
Lb = [xx(1); xx(2); xx(3); xx(4); xx(5); xx(6)]; % Cenário determinado = ABC
MVCdeLb = [mvcxx(1) \ 0 \ 0 \ 0 \ 0; \ 0 \ mvcxx(2) \ 0 \ 0 \ 0; \ 0 \ 0 \ mvcxx(3) \ 0 \ 0; \ 0 \ 0 \ mvcxx(4) \ 0]
0; 0 0 0 0 \text{ mvexx}(5) 0; 0 0 0 0 0 \text{ mvexx}(6)];
P = inv(MVCdeLb);
L = [EN(1); EN(2); EN(3); EN(4); EN(5); EN(6)];
A = [xx(1) - xx(2) \ 1 \ 0; \ xx(2) \ xx(1) \ 0 \ 1; \ xx(3) - xx(4) \ 1 \ 0; \ xx(4) \ xx(3) \ 0 \ 1; \ xx(5) - xx(6) \ 1 \ 0;
xx(6) xx(5) 0 1;
ATPA = A'*P*A;
ATPL = A'*P*L;
X = ATPA ATPL
V = A*X - L;
% Análise do ajustamento: se VarAPosteriori < 5.99: ajustamento aceito.
VarAPosteriori = V'*P*V/2;
 % Matriz Variância-covariância dos parâmetros ajustados
MVCdeX = inv(ATPA)
ENa = zeros(10, 2);
for k = 1 : 2 : 19 % Cálculo do modelo ajustado
  ENa(k) = X(1)*xx(k)-X(2)*xx(k+1)+X(3);
  ENa(k+1) = X(1)*xx(k+1)+X(2)*xx(k)+X(4);
end
```

% Análise das diferenças entre as coordenadas modeladas e observadas

```
DifE1 = ENa(1) - L(1);
DifN1 = ENa(2) - L(2);
DifE2 = ENa(3) - L(3);
DifN2 = ENa(4) - L(4);
DifE3 = ENa(5) - L(5);
DifN3 = ENa(6) - L(6);
mvcxxP2 = zeros(2, 2);
MVCabcdxy = zeros(12, 1);
% Cálculo da Matriz Variância-covariância das coordenadas modeladas
for k = 1 : 2 : 11
  mvcxxP2(1,1) = mvcxx(k+8);
  mvexxP2(2,2) = mvexx(k+9);
  mvc = D'*mvcxxP2*D;
  MVCabcdxy(k) = mvc(5,5);
  MVCabcdxy(k+1) = mvc(6,6);
End
% Geração do arquivo de saída
fid = fopen('SaidaP2abc.txt','wt');
fprintf(fid, '\n Relatório do ajustamento da Estação Livre P2, cenário ABC');
fprintf(fid, '\n\n Vetor dos parâmetros ajustados:\n\n');
fprintf(fid, \frac{1}{n}, X);
fprintf(fid,'\n\n Vetor dos resíduos: \n\n');
fprintf(fid, \frac{1}{n}, V);
fprintf(fid, '\n\n Variância à posteriori: %f', VarAPosteriori);
fprintf(fid, '\n\n MVC dos parâmetros ajustados: \n\n');
fprintf(fid,'%f\n',MVCdeX);
fprintf(fid,'\n\n Diferenças Ajustado - Observado: Dif E Dif N\n\n');
fprintf(fid,'%f %f\n',DifE1,DifN1);
fprintf(fid,'%f %f\n',DifE2,DifN2);
fprintf(fid,'%f %f\n',DifE3,DifN3);
fprintf(fid,'\n\n Coordenadas calculadas para a estação P2\n\n');
fprintf(fid,'%f\n',ENa);
fprintf(fid, '\n\n Vetor das variâncias de EN de P1 ajustados: \n\n');
fprintf(fid,'%f\n',MVCabcdxy);
fclose(fid);
```

APÊNDICE B – RELATÓRIO DE SAÍDA GNSS SOLUTIONS

Land Survey Overview

GNSS Solutions

(C) 2012 Trimble Navigation Limited. All rights reserved. Spectra Precision is a Division of Trimble Navigation Limited.

28/03/2018 09:56:03

www.spectraprecision.com

Project Name: Project98_PC

Spatial Reference System: SIRGAS_LAT_LONG

Time Zone: (UTC-03:00) Brasília

Linear Units: Meters

Coordinate System Summary

Coordinate system

Name:SIRGAS_LAT_LONG

Type: Geographic

Unit name: Radians

Radians per unit: 1

Vertical datum : Ellipsoid

Vertical unit: Meters

Meters per unit:

Datum

Name:SIRGAS 2000=ITRF00,2000.4,SOAM

Ellipsoid Name: GRS 1980

Semi-major Axis: 6378137.000 m

Inverse Flattening: 298.257222101

DX to WGS84: 0.0000 m

DY to WGS84: 0.0000 m

DY to WGS84: 0.0000 m

RX to WGS84 : -0.0000000 "

RY to WGS84 : -0.0000000 "

RZ to WGS84: -0.000000 "

ppm to WGS84: 0.000000000000

Control Points : 1

Reference Points : 0

Logged Points : 9

Target Points : 0

Intermediate Points: 0

Control Points

95%

Name Components Error Status Control Error

MGMT Long 47° 31' 25.66202"W 0.001 FIXED

Lat 18° 43' 26.77271"S 0.001 FIXED

Ellips height 912.469 0.003 FIXED

Description MGMT

Logged Points

95% Name Components Error Status Long 47° 31' 21.22671"W 0.002 pt1 Adjusted Lat 18° 43' 26.96683"S 0.002 Adjusted Ellips height 0.003 Adjusted 896.484 pt2 Long 47° 31' 22.35376"W 0.002 Adjusted Lat 18° 43' 31.37648"S Adjusted 0.002 Ellips height Adjusted 895.076 0.003 Long 47° 31' 21.61911"W 0.002Adjusted pt3 Lat 18° 43' 24.98315"S 0.002 Adjusted Ellips height 896.004 0.002 Adjusted Long 47° 31' 20.59688"W 0.002 Adjusted pt4

Lat 18° 43' 30.35011"S 0.002 Adjusted

Ellips height 896.284 0.003 Adjusted

pt5 Long 47° 31' 22.81499"W 0.002 Adjusted

Lat 18° 43' 23.75886"S 0.002 Adjusted

Ellips height 895.943 0.003 Adjusted

pt6 Long 47° 31' 24.83152"W 0.002 Adjusted

Lat 18° 43' 30.59470"S 0.002 Adjusted

Ellips height 894.417 0.003 Adjusted

pta Long 47° 31' 22.87406"W 0.003 Adjusted

Lat 18° 43' 25.05626"S 0.003 Adjusted

Ellips height 895.603 0.006 Adjusted

Description

ptb Long 47° 31' 21.90529"W 0.002 Adjusted

Lat 18° 43' 27.16068"S 0.003 Adjusted

Ellips height 895.989 0.006 Adjusted

Description

ptc Long 47° 31' 21.89983"W 0.003 Adjusted

Lat 18° 43' 29.93101"S 0.004 Adjusted

Ellips height 895.209 0.005 Adjusted

Description

Files

Name	Start Time Sampling	Epo	ochs Size	e (Kb)	Type
GptaXA18.085	18/03/26 08:00:00	5	1485	2653	L1/L2 GPS/GLONASS
GptbXB18.085	18/03/26 10:11:10	5	2150	3753	L1/L2 GPS/GLONASS
Gptc1C18.085	18/03/26 13:34:20	5	1578	2719	L1/L2 GPS/GLONASS
G0373A18.085	18/03/26 08:08:15	5	747	1306	L1/L2 GPS/WAAS
G0373B18.085	18/03/26 09:17:30	5	736	1370	L1/L2 GPS/WAAS
G0373C18.085	18/03/26 10:34:50	5	728	1356	L1/L2 GPS/WAAS
G0373D18.085	18/03/26 11:43:10	5	750	1387	L1/L2 GPS/WAAS
G0373E18.085	18/03/26 13:17:55	5	766	1477	L1/L2 GPS/WAAS
G0373F18.085	18/03/26 14:30:50	5	743	1464	L1/L2 GPS/WAAS
mgmt0851.18o	18/03/25 21:00:00	15	5760	8431	L1/L2 GPS/GLONASS

Occupations

Site	Start Time Time	span Type	File
pta	26 março 2018 08:00:00.00	02:01:55.00 Static	GptaXA18.085
ptb	26 março 2018 10:11:10.00	02:59:05.00 Static	GptbXB18.085
ptc	26 março 2018 13:34:20.00	02:11:10.00 Static	Gptc1C18.085
pt3	26 março 2018 08:08:15.00	01:00:40.00 Static	G0373A18.085

MGMT	25 março 2018 21:00:00.0	00 23:59:45.00 Static	mgmt0851.180
pt6	26 março 2018 14:30:50.00	01:01:50.00 Static	G0373F18.085
pt2	26 março 2018 13:17:55.00	01:03:45.00 Static	G0373E18.085
pt4	26 março 2018 11:43:10.00	01:02:25.00 Static	G0373D18.085
pt1	26 março 2018 10:34:50.00	01:00:35.00 Static	G0373C18.085
pt5	26 março 2018 09:17:30.00	01:01:15.00 Static	G0373B18.085

Processes

Reference	Reference File	Rover	Rover File	Mode	Num
MGMT	mgmt0851.180	pt1	G0373C18.085	Static	1
MGMT	mgmt0851.180	pta	GptaXA18.085	Static	2
MGMT	mgmt0851.180	ptb	GptbXB18.085	Static	3
MGMT	mgmt0851.180	ptc1	Gptc1C18.085	Static	4
MGMT	mgmt0851.180	pt3	G0373A18.085	Static	5
MGMT	mgmt0851.180	pt5	G0373B18.085	Static	6
MGMT	mgmt0851.180	pt4	G0373D18.085	Static	7
MGMT	mgmt0851.180	pt2	G0373E18.085	Static	8
MGMT	mgmt0851.18o	pt6	G0373F18.085	Static	9

Processed vectors

Vector 95% Vector 95%

Vector Identifier	Length	Error Components Error SV PDOP QA Solution
MGMT - pt6	121.373	0.001 X -19.076 0.001 11 1.3 Fixed
18/03/26 14:30:50.00)	Y 56.869 0.001
+01:01:50.00		Z -105.515 0.001
MGMT - pt2	172.455	0.002 X 29.678 0.001 11 1.4 Fixed
18/03/26 13:17:55.00)	Y 111.126 0.001
+01:03:45.00		Z -128.495 0.001
MGMT - pt4	185.442	0.002 X 75.258 0.001 10 1.8 Fixed
18/03/26 11:43:10.00)	Y 137.571 0.001
+01:02:25.00		Z -98.991 0.000
MGMT - pt5	125.782	0.001 X 71.046 0.001 10 1.4 Fixed
18/03/26 09:17:30.00)	Y 45.933 0.001
+01:01:15.00		Z 93.080 0.000
MGMT - pt3	131.649	0.001 X 88.767 0.001 9 1.6 Fixed
18/03/26 08:08:15.00)	Y 78.464 0.001
+01:00:40.00		Z 57.404 0.000

MGMT - ptc1 147.924 0.010 X 49.208 0.004 19 1.1 Fixed

18/03/26 13:34:20.00 Y 109.490 0.004

+02:11:10.00 Z -86.440 0.004

MGMT - ptb 111.936 0.010 X 68.057 0.004 18 1.2 Fixed

18/03/26 10:11:10.00 Y 88.667 0.004

+02:59:05.00 Z -6.009 0.004

MGMT - pta 98.708 0.010 X 60.904 0.004 17 1.1 Fixed

18/03/26 08:00:00.00 Y 54.447 0.004

+02:01:55.00 Z 55.404 0.004

MGMT - pt1 131.069 0.002 X 84.330 0.001 10 1.6 Fixed

18/03/26 10:34:50.00 Y 100.336 0.001

+01:00:35.00 Z -0.522 0.001

Adjusted vectors

Vector Length Vector Tau

Vector Identifier Length Resid. Components Resid. Test QA

MGMT - pt6 121.373 0.000 X -19.076 0.000

18/03/26 14:30:50.00 Y 56.869 0.000

Z -105.515 0.000

MGMT - pt2 172.455 0.000 X 29.678 0.000

18/03/26 13:17:55.00 Y 111.126 0.000

Z -128.495 0.000

MGMT - pt4 185.442 0.000 X 75.258 0.000

18/03/26 11:43:10.00 Y 137.571 0.000

Z -98.991 0.000

MGMT - pt5 125.782 0.000 X 71.046 0.000

18/03/26 09:17:30.00 Y 45.933 0.000

Z 93.080 0.000

MGMT - pt3 131.649 0.000 X 88.767 0.000

18/03/26 08:08:15.00 Y 78.464 0.000

Z 57.404 0.000

MGMT - ptc1 147.924 0.000 X 49.208 0.000

18/03/26 13:34:20.00 Y 109.490 0.000

Z -86.440 0.000

MGMT - ptb 111.936 0.000 X 68.057 0.000

18/03/26 10:11:10.00 Y 88.667 0.000

Z -6.009 0.000

MGMT - pta 98.708 0.000 X 60.904 0.000

18/03/26 08:00:00.00 Y 54.447 0.000

Z 55.404 0.000

MGMT - pt1 131.069 0.000 X 84.330 0.000

18/03/26 10:34:50.00 Y 100.336 0.000

Z -0.522 0.000

APÊNDICE C – RELATÓRIO DE SAÍDA DO PROGRID

APÊNDICE D - RELATÓRIO DE SAÍDA DO AJUSTAMENTO

Cenário ABCD - EL 1

Relatório do ajustamento da Estação Livre P1, cenário ABCD

Vetor dos parâmetros ajustados:

-0.975105 0.222646 237198.937602 7937341.276303

Vetor dos resíduos:

-0.000947

0.002272

-0.003607

0.010029

0.006706

-0.001956

0.028863

0.006760

Variância à posteriori: 32.171062

MVC dos parâmetros ajustados:

0.000000	0.000000	0.000004	-0.000007
0.000000	0.000000	0.000011	-0.000006
0.000004	0.000011	0.109633	-0.049908
-0.000007	-0.000006	-0.049908	0.078817

Diferenças Ajustado - Observado: Dif E Dif N

-0.000947	0.002272
-0.003607	0.010029
0.006706	-0.001956
0.028863	0.006760

233948.295053	7927870.953272
233977.599393	7927806.634029
233978.974706	7927721.413044

233924.068863	7927803.951760
233997.375934	7927812.868275
233966.306765	7927676.801320
233985.046337	7927873.685121
234017.302960	7927709.097438
233949.451269	7927910.884655
233893.328166	7927699.832532

Vetor das precisões de EN de P1 ajustados:

0.000000

0.000000

0.002934

0.001182

0.004200

0.006884

0.004123

0.005918

0.001000

0.001000

0.005868

0.002364

Cenário ABC – EL 1

Relatório do ajustamento da Estação Livre P1, cenário ABC

Vetor dos parâmetros ajustados:

-0.974999 0.222722 237199.597341 7937340.127905

Vetor dos resíduos:

0.011191 -0.005985 -0.000323 0.004473 0.001507 -0.000258

Variância à posteriori: 3.261965

MVC dos parâmetros ajustados:

0.000000	0.000000	0.000003	-0.000008
0.000000	0.000000	0.000017	-0.000006
0.000003	0.000017	0.163237	-0.047900
-0.000008	-0.000006	-0.047900	0.090957

Diferenças Ajustado - Observado: Dif E Dif N

0.011191 -0.005985 -0.000323 0.004473 0.001507 -0.000258

233948.307191	7927870.945015
233977.602677	7927806.628473
233978.969507	7927721.414742
233924.076525	7927803.951690
233997.378115	7927812.860238
233966.298286	7927676.808130
233985.055556	7927873.673021
234017.293229	7927709.096443
233949.467225	7927910.872823

233893.328275 7927699.844507

Vetor das precisões de EN de P1 ajustados:

0.000000

0.000000

0.002933

0.001182

0.004200

0.006883

0.004123

0.005917

0.003717

0.001000

0.005867

0.002364

Cenário ABD – EL 1

Relatório do ajustamento da Estação Livre P1, cenário ABD

Vetor dos parâmetros ajustados:

-0.975494 0.222851 237201.395018 7937344.944565

Vetor dos resíduos:

-0.003338 0.018690 -0.000882 -0.004210 0.008547 -0.002518

Variância à posteriori: 12.883743

MVC dos parâmetros ajustados:

0.000000	0.000000	0.000000	-0.000023
0.000000	0.000000	0.000041	-0.000007
0.000000	0.000041	0.408473	-0.044006
-0.000023	-0.000007	-0.044006	0.237361

Diferenças Ajustado - Observado: Dif E Dif N

233948.292662	7927870.969690
233977.602118	7927806.619790
233978.968304	7927721.362453
233924.048547	7927803.942482
233997.387769	7927812.854431
233966.289899	7927676.733225
233985.059866	7927873.698512
234017.311433	7927709.037249
233949.453918	7927910.917901
233893.282929	7927699.782535

Vetor das precisões de EN de P1 ajustados:

0.000000

0.000000

0.002935

0.001183

0.004202

0.006886

0.004125

0.005920

0.001001

0.001001

0.005870

0.002365

Cenário ACD – EL 1

Relatório do ajustamento da Estação Livre P1, cenário ACD

Vetor dos parâmetros ajustados:

-0.975136 0.222535 237197.844689 7937341.693001

Vetor dos resíduos:

-0.029391 0.001141 -0.004524 -0.000327 0.007943 0.002533

Variância à posteriori: 13.395651

MVC dos parâmetros ajustados:

0.000000	0.000000	0.000004	-0.000010
0.000000	0.000000	0.000013	-0.000007
0.000004	0.000013	0.121492	-0.056341
-0.000010	-0.000007	-0.056341	0 109299

Diferenças Ajustado - Observado: Dif E Dif N

-0.029391 0.001141 -0.004524 -0.000327 0.007943 0.002533

233948.266609	7927870.952141
233977.578433	7927806.635923
233978.963476	7927721.414673
233924.047943	7927803.947533
233997.354360	7927812.872457
233966.300563	7927676.801282
233985.017763	7927873.688197
234017.293325	7927709.103379
233949.418274	7927910.883854
233893.318975	7927699.824282

Vetor das precisões de EN de P1 ajustados:

0.000000

0.000000

0.002934

0.001182

0.004200

0.006884

0.004123

0.005918

0.001000

0.001000

0.005868

0.002364

Cenário BCD – EL 1

Relatório do ajustamento da Estação Livre P1, cenário BCD

Vetor dos parâmetros ajustados:

-0.975115 0.222644 237198.932340 7937341.374316

Vetor dos resíduos:

-0.003596 0.010746 0.007035 -0.002001 0.028402 0.007260

Variância à posteriori: 64.171130

MVC dos parâmetros ajustados:

0.000000	0.000000	0.000005	-0.000010
0.000000	0.000000	0.000013	-0.000007
0.000005	0.000013	0.127517	-0.059110
-0.000010	-0.000007	-0.059110	0.110248

Diferenças Ajustado - Observado: Dif E Dif N

 -0.003596
 0.010746

 0.007035
 -0.002001

 0.028402
 0.007260

233948.294570	7927870.954461
233977.599404	7927806.634746
233978.975035	7927721.412999
233924.068402	7927803.952260
233997.376101	7927812.869119
233966 307141	7927676 800829

233985.046175	7927873.686467
234017.303678	7927709.097420
233949.450652	7927910.886208
233893 327803	7927699 831986

Vetor das precisões de EN de P1 ajustados:

0.000000 0.000000 0.002934 0.001182 0.004200 0.006884 0.004123 0.005918 0.001000 0.001000

 $\begin{array}{c} 0.005868 \\ 0.002364 \end{array}$

Cenário ABCD – EL 2

Relatório do ajustamento da Estação Livre P2, cenário ABCD

Vetor dos parâmetros ajustados:

0.975245 -0.222639 230764.667312 7918146.964148

Vetor dos resíduos:

-0.007089 0.002992 -0.017352 -0.003895 0.000260 -0.018958 0.017739

0.017739

Variância à posteriori: 6.782637

MVC dos parâmetros ajustados:

0.000000	-0.000000	-0.000011	-0.000024
-0.000000	0.000000	0.000017	0.000007
-0.000011	0.000017	0.179143	0.092066
-0.000024	0.000007	0.092066	0.238996

Diferenças Ajustado - Observado: Dif E Dif N

-0.007089	0.002992
-0.017352	-0.003895
0.000260	-0.018958
0.017739	0.001610

233948.288911	7927870.953992
233977.585648	7927806.620105
233978.968260	7927721.396042
233924.057739	7927803.946610
233997.369578	7927812.850686
233966.306206	7927676.772389

233985.038094	7927873.706600
234017.293772	7927709.061587
233949.452610	7927910.875439
233893.317214	7927699.814190

Vetor das precisões de EN de P2 ajustadas:

0.004201

0.006885

0.000000

0.000000

0.003867

0.014635

0.003001

0.003001

0.006055

0.000055

0.006956

0.003926

0.002144

Cenário ABC – EL 2

Relatório do ajustamento da Estação Livre P2, cenário ABC

Vetor dos parâmetros ajustados:

0,975066 -0,222730 230763,935478 7918148,869202

Vetor dos resíduos:

0,016669 0,000570 -0,006358 -0,000153 0,000117 -0,002253

Variância à posteriori: 1,995783

MVC dos parâmetros ajustados:

0,000000	-0,000000	-0,000005	-0,000039
-0,000000	0,000000	0,000020	-0,000001
-0,000005	0,000020	0,208201	0,026750
-0,000039	-0,000001	0,026750	0,400157

Desvio-padrão dos parâmetros ajustados:

0,000062 0,000045 0,456290 0,632579

Diferenças Ajustado - Observado: Dif E Dif N

0,016669 0,000570 -0,006358 -0,000153 0,000117 -0,002253

Coordenadas calculadas para a estação P2

233948,312669	7927870,951570
233977,596642	7927806,623847
233978,968117	7927721,412747
233924,076644	7927803,957625
233997,378321	7927812,850932
233966,302295	7927676,797598
233985,056539	7927873,699042
234017,286138	7927709,075281
233949,481306	7927910,866712
233893,327511	7927699,845202

Vetor das precisões de EN de P1 ajustados:

0,004200

0,006883

0,000000

0,000000

0,003868

0,014633

0,003001

0,003001

0,006055

0,006955

0,003926

0,002144

Cenário ABD – EL 2

Relatório do ajustamento da Estação Livre P2, cenário ABD

Vetor dos parâmetros ajustados:

0.975322 -0.222596 230765.039273 7918146.138390

Vetor dos resíduos:

-0.007591 0.006726 -0.012080 -0.002637 0.019653 -0.000510

Variância à posteriori: 10.353388

MVC dos parâmetros ajustados:

0.000000	-0.000000	-0.000008	-0.000034
-0.000000	0.000000	0.000043	0.000000
-0.000008	0.000043	0.445902	0.036041
-0.000034	0.000000	0.036041	0.345469

Diferenças Ajustado - Observado: Dif E Dif N

 -0.007591
 0.006726

 -0.012080
 -0.002637

 0.019653
 -0.000510

233948 288409	7927870 957726
200 :0.200 :09	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
233977.590920	7927806.621363
233978.978721	7927721.391782
233924.059653	7927803.944490
233997.375778	7927812.853538
233966.318505	7927676.764439
233985.039843	7927873.712713
234017.307490	7927709.058809

233949.449796 7927910.881866 233893.323338 7927699.803388

Vetor das precisões de EN de P1 ajustadas:

0.004201

0.006885

0.000000

0.000000

0.003867

0.014637

0.003001

0.003001

0.006056

0.006957

0.003927

0.002144

Cenário ACD – EL 2

Relatório do ajustamento da Estação Livre P2, cenário ACD

Vetor dos parâmetros ajustados:

0.975222 -0.222519 230765.899615 7918147.085449

Vetor dos resíduos:

-0.022720 0.000902 -0.000113 -0.010218 0.010820 0.000112

Variância à posteriori: 4.224018

MVC dos parâmetros ajustados:

0.000000	-0.000000	-0.000018	-0.000026
-0.000000	0.000000	0.000042	0.000012
-0.000018	0.000042	0.436783	0.147241
-0.000026	0.000012	0.147241	0.252405

Diferenças Ajustado - Observado: Dif E Dif N

233948.273280	7927870.951902
233977.575785	7927806.624479
233978.967887	7927721.404782
233924.050820	7927803.945112
233997.358039	7927812.856972
233966.311464	7927676.781913
233985.020338	7927873.708495
234017.292889	7927709.075235

233949.432443 7927910.871506 233893.323494 7927699.814390

Vetor das precisões de EN de P1 ajustadas:

0.004200

0.006884

0.000000

0.000000

0.003866

0.014635

0.003001

0.003001

0.006055

0.006956

0.003926

0.002144

Cenário BCD – EL 2

Relatório do ajustamento da Estação Livre P2, cenário BCD

Vetor dos parâmetros ajustados:

0.975348 -0.222665 230764.302103 7918145.945585

Vetor dos resíduos:

-0.017201 -0.003082 0.000349 -0.027212 0.012191 0.002269

Variância à posteriori: 12.273904

MVC dos parâmetros ajustados:

0.000000	-0.000000	-0.000033	-0.000072
-0.000000	0.000000	0.000028	0.000024
-0.000033	0.000028	0.318315	0.311642
-0.000072	0.000024	0.311642	0.705832

Diferenças Ajustado - Observado: Dif E Dif N

-0.017201	-0.003082
0.000349	-0.027212
0.012191	0.002269

233948.286104	7927870.961718
233977.585799	7927806.620918
233978.968349	7927721.387788
233924.052191	7927803.947269
233997.371849	7927812.852113
233966.304840	7927676.759420
233985.039202	7927873.714529
234017.297907	7927709.051927
233949.450025	7927910.887408

233893.308142 7927699.803851

Vetor das precisões de EN de P1 ajustados:

0.004201

0.006885

0.031637

0.031637

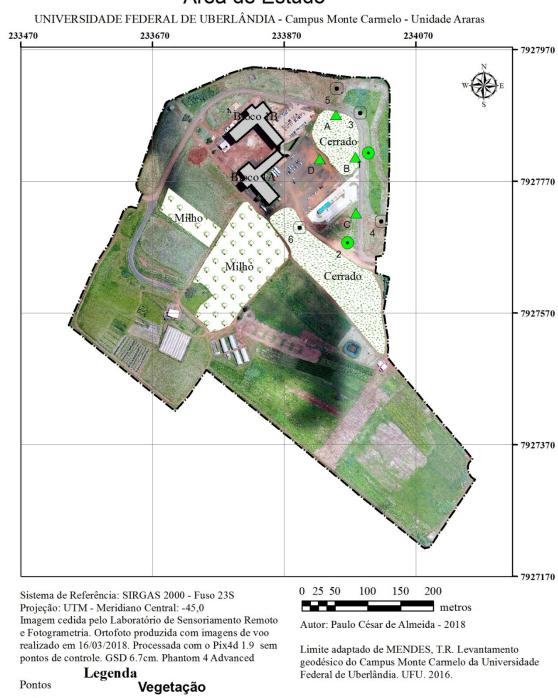
0.003868

0.014637

0.003001

0.003001

0.006056


0.006957

0.003927

0.002144

APÊNDICE E - ÁREA DE ESTUDO

Área de Estudo

ANEXO A – RELATÓRIO DE ESTAÇÃO GEODÉSICA (PONTO D)

SPIBGE

Relatório de Estação Geodésica

ANEXO B – RELATÓRIOS DE SAÍDA DA ESTAÇÃO TOTAL

Estação em Pt1 – 1ª iteração

P1	P1				
RE	RE	0.0000	0,000 0,000	90.3007 1,500	1,000
P2	P2	0.0005	0,000 139,541	90.3009	1,500 1,000
P3	P3	155.4049	0,000 62,049	90.1616	1,500 1,000
PTA	PTA	126.5620	0,000 76,036	90.3239	1,500 1,000
PTB	PTB	59.3805	0,000 20,733	90.5211	1,500 1,000
PTD	PTD	70.1224	0,000 73,848	91.1400	1,500 1,000
PTC	PTC	358.3048	0,000 93,273	90.4040	1,500 1,000
P2	P2	179.5956	0,000 139,542	269.3014	1,500 1,000
PTC	PTC	178.3040	0,000 93,272	269.1935	1,500 1,000
PTB	PTB	239.3752	0,000 20,733	269.0805	1,500 1,000
PTD	PTD	250.1214	0,000 73,847	268.4612	1,500 1,000
PTA	PTA	306.5614	0,000 76,036	269.2732	1,500 1,000
P3	Р3	335.4041	0,000 62,049	269.4349	1,500 1,000
P5	P5	321.0455	0,000 109,084	269.4840	1,500 1,000
P4	P4	156.1604	0,000 105,645	270.0017	1,500 1,000
P6	P6	209.4602	0,000 153,604	269.1751	1,500 1,000
P4	P4	336.1600	0,000 105,646	89.5957	1,500 1,000
P5	P5	141.0459	0,000 109,084	90.1140	1,500 1,000
P6	Р6	29.4606	0,000 153,603	90.4230	1,500 1,000
	RE P2 P3 PTA PTB PTC P2 PTC PTB PTD PTA P3 P5 P4 P6 P4 P5	RE RE P2 P2 P3 P3 PTA PTA PTB PTD PTC PTC P2 P2 PTC PTC PTB PTB PTD PTD PTA PTA P3 P3 P5 P4 P4 P4 P5 P5 P4 P4 P5 P5	RE RE 0.0000 P2 P2 0.0005 P3 P3 155.4049 PTA PTA 126.5620 PTB PTB 59.3805 PTD PTD 70.1224 PTC PTC 358.3048 P2 P2 179.5956 PTC PTC 178.3040 PTB PTB 239.3752 PTD PTD 250.1214 PTA PTA 306.5614 P3 P3 335.4041 P5 P5 321.0455 P4 P4 156.1604 P6 P6 209.4602 P4 P4 336.1600 P5 P5 141.0459	RE RE 0.0000 0,000 0,000 P2 P2 0.0005 0,000 139,541 P3 P3 155.4049 0,000 62,049 PTA PTA 126.5620 0,000 76,036 PTB PTB 59.3805 0,000 20,733 PTD PTD 70.1224 0,000 73,848 PTC PTC 358.3048 0,000 93,273 P2 P2 179.5956 0,000 139,542 PTC PTC 178.3040 0,000 93,272 PTB PTB 239.3752 0,000 20,733 PTD PTD 250.1214 0,000 73,847 PTA PTA 306.5614 0,000 76,036 P3 P3 335.4041 0,000 76,036 P4 P4 156.1604 0,000 109,084 P4 P4 156.1604 0,000 105,645 P6 P6	RE RE 0.0000 0,000 0,000 90.3007 1,500 P2 P2 0.0005 0,000 139,541 90.3009 P3 P3 155.4049 0,000 62,049 90.1616 PTA PTA 126.5620 0,000 76,036 90.3239 PTB PTB 59.3805 0,000 20,733 90.5211 PTD PTD 70.1224 0,000 73,848 91.1400 PTC PTC 358.3048 0,000 93,273 90.4040 P2 P2 179.5956 0,000 139,542 269.3014 PTC PTC 178.3040 0,000 93,272 269.1935 PTB PTB 239.3752 0,000 20,733 269.0805 PTD PTD 250.1214 0,000 73,847 268.4612 PTA PTA 336.5614 0,000 76,036 269.2732 P3 P3 335.4041 0,000 76,036

Estação em Pt1 – 2ª iteração

	P1			EST		
P1	RE	120.0000	90.3019	0,000 0,000		
P1	P2	120.0000	90.3019	139,542	0,000	VANTE
P1	P4	96.1557	90.0003	105,646	0,000	VANTE
P1	P5	261.0454	90.1135	109,084	0,000	VANTE
P1	P6	149.4604	90.4230	153,604	0,000	VANTE
P1	P2	299.5954	269.3008	139,541	0,000	VANTE
P1	P4	276.1557	270.0020	105,646	0,000	VANTE
P1	P5	81.0456	269.4831	109,083	0,000	VANTE
P1	P6	329.4544	269.1746	153,604	0,000	VANTE
P1	RE	120.0000	90.3015	0,000 0,000		
P1	Р3	275.4037	90.1607	62 , 050	0,000	VANTE
P1	P4	96.1603	90.0016	105,649	0,000	VANTE
P1	PTC	118.3056	90.4049	93,271	0,000	VANTE
P1	PTB	179.3813	90.5148	20,732	0,000	VANTE
P1	PTD	190.1205	91.1329	73,847	0,000	VANTE
P1	PTA	246.5617	90.3142	76 , 028	0,000	VANTE
P1	PTA	66.5610	269.2825	76 , 027	0,000	VANTE
P1	PTD	10.1209	268.4647	73,846	0,000	VANTE
P1	PTB	359.3854	269.0838	20,733	0,000	VANTE
P1	PTC	298.3039	269.1916	93,271	0,000	VANTE
P1	P3	95.4018	269.4410	62,037	0,000	VANTE

Estação em Pt1 – 3ª iteração

	P1					EST
P1	RE	240.0000	90.3032	0,000	0,000	
P1	P2	240.0006	90.3032	139,542	0,000	VANTE
P1	Р3	35.4051	90.1601	62,037	0,000	VANTE
P1	P4	216.1618	90.0028	105,650	0,000	VANTE
P1	P5	21.0510	90.1049	109,083	0,000	VANTE
P1	P6	269.4611	90.4228	153,611	0,000	VANTE
P1	PTA	6.5651	90.3154	76,028	0,000	VANTE
P1	PTB	299.3858	90.5139	20,733	0,000	VANTE
P1	PTC	238.3112	90.4059	93,271	0,000	VANTE
P1	P2	60.0004	269.2946	139,541	0,000	VANTE
P1	Р3	215.4038	269.4400	62,030	0,000	VANTE
P1	P4	36.1618	269.5949	105,649	0,000	VANTE
P1	P5	201.0457	269.4924	109,083	0,000	VANTE
P1	P6	89.4602	269.1752	153,610	0,000	VANTE
P1	PTA	186.5643	269.2816	76,028	0,000	VANTE
P1	PTB	119.3858	269.0824	20,732	0,000	VANTE
P1	PTC	58.3108	269.1908	93,271	0,000	VANTE
P1	PTD	130.1235	268.4645	73,848	0,000	VANTE
P1	PTD	310.1241	91.1338	73,849	0,000	VANTE

Estação em Pt2 – 1ª iteração

	P2					EST
Р2	RE	0.0000	89.2045	0,000	0,000	
P2	P1	0.0003	89.2045	139,542	0,000	EST
P2	P3	352.3430	89.4057	197,750	0,000	VANTE
P2	P1	0.0005	89.2049	139,542	0,000	VANTE
P2	P4	44.4752	88.3949	60,359	0,000	VANTE
P2	P5	341.5017	89.4745	194,950	0,000	VANTE
P2	P6	274.3937	90.2055	76 , 520	0,000	VANTE
P2	PTA	343.0123	89.4441	234,651	0,000	VANTE
P2	PTB	352.0621	89.3110	130,298	0,000	VANTE
Р2	PTC	2.5906	89.3702	46,360	0,000	VANTE
Р2	PTD	328.4555	90.0401	133,961	0,000	VANTE
Р2	PTD	148.4553	269.5616	133,960	0,000	VANTE
P2	PTC	182.5900	270.2341	46,360	0,000	VANTE
Р2	PTB	172.0628	270.2913	130,298	0,000	VANTE
Р2	PTA	163.0118	270.1535	234,650	0,000	VANTE
P2	P6	94.3935	269.3915	76,521	0,000	VANTE
P2	P5	161.4958	270.1226	194,952	0,000	VANTE
Р2	P4	224.4728	271.2030	60,360	0,000	VANTE
P2	PЗ	172.3421	270.1929	197,750	0,000	VANTE
P2	P1	179.5942	270.3928	139,542	0,000	VANTE

Estação em Pt2 – 2ª iteração

	P2					EST
P2	RE	0.0000	89.2045	0,000	0,000	
P2	P1	0.0003	89.2045	139,542	0,000	EST
P2	P3	352.3430	89.4057	197,750	0,000	VANTE
P2	P1	0.0005	89.2049	139,542	0,000	VANTE
P2	P4	44.4752	88.3949	60,359	0,000	VANTE
P2	P5	341.5017	89.4745	194,950	0,000	VANTE
P2	P6	274.3937	90.2055	76 , 520	0,000	VANTE
P2	PTA	343.0123	89.4441	234,651	0,000	VANTE
P2	PTB	352.0621	89.3110	130,298	0,000	VANTE
P2	PTC	2.5906	89.3702	46,360	0,000	VANTE
P2	PTD	328.4555	90.0401	133,961	0,000	VANTE
P2	PTD	148.4553	269.5616	133,960	0,000	VANTE
P2	PTC	182.5900	270.2341	46,360	0,000	VANTE
P2	PTB	172.0628	270.2913	130,298	0,000	VANTE
P2	PTA	163.0118	270.1535	234,650	0,000	VANTE
P2	P6	94.3935	269.3915	76,521	0,000	VANTE
P2	P5	161.4958	270.1226	194,952	0,000	VANTE
P2	P4	224.4728	271.2030	60,360	0,000	VANTE
P2	P3	172.3421	270.1929	197,750	0,000	VANTE
P2	P1	179.5942	270.3928	139,542	0,000	VANTE

Estação em Pt2 – 3ª iteração

	P2					EST
Р2	RE	240.0000	89.1645	0,000	0,000	
P2	P1	240.0005	89.1647	139,556	0,000	VANTE
P2	Р3	232.3435	89.2954	197,779	0,000	VANTE
P2	P4	284.4751	88.4159	60,353	0,000	VANTE
P2	P5	221.5032	89.4012	194,953	0,000	VANTE
P2	P6	154.3951	90.2214	76,513	0,000	VANTE
P2	PTA	223.0133	89.3624	234,641	0,000	VANTE
P2	PTB	232.0625	89.3216	130,304	0,000	VANTE
P2	PTC	242.5907	89.3933	46,378	0,000	VANTE
P2	PTD	208.4553	90.0523	133,965	0,000	VANTE
P2	P1	59.5958	270.4337	139,555	0,000	VANTE
P2	P3	52.3433	270.3029	197,778	0,000	VANTE
P2	P4	104.4740	271.1810	60,352	0,000	VANTE
P2	P5	41.5034	270.2009	194,954	0,000	VANTE
P2	P6	334.3937	269.3808	76,513	0,000	VANTE
P2	PTA	43.0120	270.2400	234,642	0,000	VANTE
P2	PTB	52.0613	270.2806	130,304	0,000	VANTE
P2	PTC	62.5845	270.2055	46,378	0,000	VANTE
P2	PTD	28.4548	269.5449	133,965	0.000	VANTE

ANEXO C – TABELA DO TESTE QUI-QUADRADO

TABLE D.2 Critical Values for the χ^2 Distribution

TABLE D.2 Critical Values for the χ^2 Distribution													
$\alpha \rightarrow$	0.999	0.995	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010	0.005	0.001
vl \													
1	0.000002	0.000039	0.000157	0.000982	0.004	0.016	0.455	2.705	3.841	5.023	6.634	7.877	10.81
2	0.002	0.01	0.02	0.05	0.10	0.21	1.39	4.61	5.99	7.38	9.21	10.60	13.81
3	0.02	0.07	0.12	0.22	0.35	0.58	2.37	6.25	7.82	9.35	11.34	12.84	16.26
4	0.09	0.21	0.30	0.48	0.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86	18.47
5	0.21	0.41	0.55	0.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75	20.51
6	0.38	0.68	0.87	1.24	1.64	2.20	5.35	10.64	12.59	14.45	16.81	18.55	22.46
7	0.60	0.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28	24.32
8	0.86	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96	26.12
9	1.15	1.74	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59	27.88
10	1.48	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19	29.59
11	1.83	2.60	3.05	3.82	4.58	5.58	10.34	17.28	19.68	21.92	24.72	26.76	31.26
12	2.21	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30	32.91
13	2.62	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82	34.53
14	3.04	4.08	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32	36.12
15	3.48	4.60	5.23	626	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80	37.70
16	3.94	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27	39.25
17	4.42	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72	40.79
18	4.91	6.27	7.02	823	9.39	10.86	17.34	25.99	28.87	31.53	34.81	37.16	42.31
19	5.41	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58	43.82
20	5.92	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00	45.31
21	6.45	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40	46.80
22	6.98	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80	48.27
23	7.53	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18	49.73
24	8.09	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56	51.18
25	8.65	10.52	11.52	13.12	14.61	16.47	24.34	34.38	37.65	40.65	44.31	46.93	52.62
26	9.22	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29	54.05
27	9.80	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.64	55.48
28	10.39	12.46	13.56	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99	56.89
29	10.99	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34	58.30
30	11.59	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67	59.7 0
35	14.69	17.19	18.51	20.57	22.47	24.80	34.34	46.06	49.80	53.20	57.34	60.27	66.62
40	17.92	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77	73.40
50	24.67	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49	86.66
60	31.74	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95	99.61
120	77.76	83.85	86.92	91.57	95.70	100.62	119.33	140.23	146.57	152.21	158.95	163.65	173.6

Fonte: GHILANI; WOLF (2006)