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Resumo

SANTOS, Camila C. Otimizagcdo do desempenho de Redes Neurais do Tipo Fungdes de Base Radial
utilizando Vetores Bipolares Ortogonais, Uberlandia, Faculdade de Engenharia Elétrica - UFU, 2018.

Este trabalho propde o uso de vetores bipolares ortogonais (VBO) como novos alvos para Redes
Neurais Artificiais (RNA), do tipo Funcdes de Base Radial (RBF). Tais vetores propiciam
a ampliacdo da distancia entre os pontos do espago de saida, também compreendidos como
alvos da RNA. A ampliacdo dessa distancia reduz as chances de classificacdo incorreta de
padrdes. A rede foi treinada e testada com trés conjuntos de dados biométricos (iris humana,
digitos manuscritos e sinais australianos). O objetivo do trabalho € verificar a performance da
rede com o uso dos vetores ortogonais e comparar os resultados obtidos com os apresentados
para as redes do tipo Multilayer Perceptron. Além disso, deseja-se comparar duas técnicas de
treinamento para redes do tipo RBF. Os conjuntos de dados utilizados nos experimentos foram
obtidos do CASIA Iris Image Database desenvolvido pela Chinese Academy of Sciences -
Institute of Automation, Semeion Handwritten Digit of Machine Learning Repository e UCI
- Machine Learning Repository. As redes foram modeladas utilizando como alvo os VBOs
e os vetores bipolares convencionais, para o propdsito da comparacdo dos resultados. A
classificacao dos padrdes na camada de saida foi baseada na distancia euclidiana. A partir dos
experimentos realizados, foi observado que o uso dos VBOs no processo de treinamento da
rede melhorou a taxa de acerto e reduziu a quantidade de ciclos necessdrios para a convergéncia.

Palavras-chave: Reconhecimento de padrdes, redes neurais artificiais, multilayer percep-
tron, funcdes de base radial, vetores bipolares ortogonais.



Abstract

SANTOS, Camila C. Optimization of the performance of Neural Networks of the Radial Basis Functions
type using Orthogonal Bipolar Vectors, Uberlandia, Faculty of Electric Engineering - UFU, 2018.

This work proposes the use of orthogonal bipolar vectors (VBO) as new targets for Artificial
Neural Networks (ANN) of the Radial Base Functions (RBF) type. Such vectors provide the
expansion of the distance between the points of the output space, also understood as targets of
RNA. The expansion of this distance reduces the chances of incorrect classification of patterns.
The network was trained and tested with three sets of biometric data (human iris, handwritten
digits and signs of the Australian sign language). The objective was to verify the network
performance with the use of OBVs and compare the results obtained with those presented for
the Multilayer Perceptron (MLP) networks. In addition, it is desired to compare two training
techniques for RBF-type networks. Datasets used in the experiments were obtained from the
CASIA TIris Image Database developed by the Chinese Academy of Sciences - Institute of
Automation, Semeion Handwritten Digit of Machine Learning Repository and UCI - Machine
Learning Repository. The networks were modeled using OBVs and conventional bipolar
vectors for the purpose of comparing the results and the classification of the patterns in the
output layer was based on the Euclidean distance. The results show that the use of OBVs in the
network training process improved the hit rate and reduced the amount of cycles required for
convergence.

Keywords: Pattern recognition, artificial neural networks, multilayer perceptron, radial
basis function, orthogonal bipolar vectors.
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Capitulo 1

Introducao

1.1 Consideracoes iniciais

A Inteligéncia Computacional (IC) € uma drea da ciéncia que utilizando técnicas ins-
piradas na Natureza, busca o desenvolvimento de sistemas inteligentes que imitem aspectos do
comportamento humano, abrange Redes Neurais Artificiais (RNA), sistemas Fuzzy e computa-
¢do evolutiva. E definida como uma metodologia que fornece a um sistema a capacidade para
aprender e/ou lidar com uma nova situagdo, de modo que o sistema é caracterizado por possuir
uma ou mais atribuicdes de raciocinio, como generalizag¢do, descoberta, associa¢ao e abstragao.
Essas técnicas tém sido combinadas entre si e com abordagens mais tradicionais, como a anélise
estatistica, com o objetivo de resolver problemas extremamente desafiadores (Eberhart & Shi,
2007).

Muitas pesquisas sdo feitas nessa drea e resultados promissores em problemas de re-
cuperagao de imagem tém sido obtidos por meio da aplicacdo de Redes Neurais Convolucionais
(Wan et al., 2014). Utiliza-se a aprendizagem computacional baseada na inferéncia bayesiana
para a predicdo de informacdes relacionadas as proteinas e suas interacdes (Birlutiu, d’ Alche
Buc, & Heskes, 2014). Outra aplicacdo recente € a separac¢do de ruido e fala em sons de mi-
crofones (Healy, Yoho, Wang, & Wang, 2013). Também ha importantes resultados de aplicagcdo

da inteligéncia computacional na drea forense (Muda, Choo, Abraham, & Srihari, 2014). Parte
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desse conjunto de técnicas ja foi usada com sucesso na detec¢ao de pedestres aptos a atravessa-
rem ruas, com o objetivo de se evitarem acidentes (Xu et al., 2012).

Uma Rede Neural Artificial (RNA) € um paradigma de anélise cuja modelagem € ins-
pirada na estrutura do cérebro. Pode ser caracterizada como um processador paralelamente
distribuido. Suas unidades de processamento possuem a func¢do de armazenar e disponibilizar
conhecimento experimental. Assemelha-se com o cérebro humano pelo fato de adquirir conhe-
cimento através de processos de aprendizagem, além disso, trabalha com pesos sindpticos para
armazenar o conhecimento (Haykin, 2008).

Sao amplamente utilizadas pela sua habilidade de aprender e consequentemente, gene-
ralizar a informagdo demostrando seu poder computacional, podem ser utilizadas em problemas
de classificagdo de padrdes, aproximacdo de fungdes, entre outros. Seu uso em tarefas de re-
conhecimento de padrdes é bastante consolidado. Nesse contexto hd vérias aplicagdes de RNAs
relacionadas ao reconhecimento de padrdes (Wan et al., 2014; Birlutiu et al., 2014; Muda et al.,
2014; Xu et al., 2012; Huang, Huang, Song, & You, 2015).

As redes neurais do tipo Fun¢do de Base Radial (RBF) sdo apenas um tipo dentre os
existentes. Uma RBF consiste em um modelo neural multicamadas, capaz de aprender padrdes
complexos e resolver problemas ndo linearmente separdveis. Amplamente utilizadas em vé-
rias aplicagdes, como progndstico de baterias de litio (Sbarufatti, Corbetta, Giglio, & Candini,
2017), previsao de vendas (Kuo, Hu, & Chen, 2009), solucado de sistemas de equagdes integrais
nao lineares (Golbabai, Mammadov, & Seifollahi, 2019), predi¢ao de trafego em rede ethernet

(Vieira, Lemos, & Ling, 2003), entre outras.

1.2 Motivacao

As RNAs sdo muito utilizadas por serem um conjunto de ferramentas complexas para
resolugdo de problemas. Nos tltimos anos, vérios estudos foram realizados para melhorar o de-
sempenho delas. Esses estudos tém abordagens como a melhoria do algoritmo de treinamento,

a determinacdo de topologias ideais para cada problema, entre outros. Porém poucos estudos
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foram feitos para melhorar o desempenho visando o espago de saida.

Em 2004, o uso dos VBOs como vetores-alvo no treinamento de RNAs do tipo
Multilayer Perceptron (MLP) foi apresentado pelos pesquisadores Keiji Yamanaka e Shigueo
Nomura para a anélise experimental no reconhecimento de padrdes de placas de transito e digi-
tos manuscritos. Os experimentos demostraram que estes vetores melhoraram a habilidade de
generalizagdo da MLP e reduziram o nimero de ciclos necessarios para a convergéncia da rede
(Nomura, Yamanaka, Katai, Kawakami, & Shiose, 2004, 2005).

Posteriormente, eles foram objeto de estudo nas pesquisas de mestrado e doutorado de
José Ricardo Gongalves Manzan, sob orientacao dos pesquisadoes Keiji Yamanaka e Shigueo
Nomura. A anélise experimental em dados de imagens, sons e EGGs, em redes MLP, demons-
trou a mesma eficidcia dos VBOs no reconhecimento destes padroes (Manzan, Yamanaka, &
Nomura, 2011; Nomura, Manzan, & Yamanaka, 2010; Manzan, Nomura, Yamanaka, Carneiro,
& Veiga, 2012; Manzan, Nomura, & Filho, 2014). Além disso, a pesquisa apresentou a com-
provacao matematica da eficicia dos VBOs em MLPs (Manzan, Nomura, & Yamanaka, 2011;
Nomura, Manzan, & Yamanaka, 2011; Manzan, Nomura, & Yamanaka, 2012; Manzan, 2016).

A propriedade de ortogonalidade dos VBOs, onde a distancia euclidiana obtida entre
os alvos e a resposta produzida pela rede é maior quando comparada aos vetores convencionais,
¢ o que proporciona a melhoria no desempenho da rede. Uma RBF € considerada um aproxi-
mador universal e uma alternativa popular a MLP, ja que ela possui estrutura mais simples e

processo de treinamento mais rapido (Du & Swamy, 2013).

1.3 Objetivos da dissertacao

Considerando o ganho de desempenho usando Vetores Bipolares Ortogonais (VBOs)
para redes de tipo MLP e o fato de que uma das utilizacdes da RBF € a classificacdo de padroes,
¢ desejado investigar se esses novos alvos melhoram o desempenho de uma RNA do tipo RBF

e se o uso de diferentes dimensdes para os vetores de alvos altera a taxa de sucesso.
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1.4 Estrutura do trabalho

No Capitulo 2 s@o apresentados fundamentos teéricos de Reconhecimento de Pa-
droes (RP), RNA e os conceitos mateméticos envolvidos na pesquisa. O Capitulo 3 apresenta
os fundamentos tedricos de RNAs do tipo RBF e os processos e estratégias de aprendizagem
utilizados nos experimentos. Os Alvos Ortogonais e seus efeitos em redes RBF estdao descritos
e analisados no Capitulo 4. O procedimento experimental é definido e discutido no Capitulo 5.

O Capitulo 6 apresenta a conclusao deste trabalho.
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Capitulo 2

Fundamentos teoricos

2.1 Reconhecimento de padroes

O Reconhecimento de Padrées (RP) é uma das habilidades mais naturais dos seres
vivos, € a0 mesmo tempo € uma das mais extraordindrias. Ela € caracterizada pela capacidade
de classificar e/ou separar objetos e dados em categorias, tornando-os generalizados, facilitando
a tomada de decisdo. A assimilacdo de escritas e consequentemente, a diferenciacio de palavras
ou idiomas sdo exemplos de RP no dia a dia.

Dentro da ciéncia da computacdo, RP € uma area derivada da inteligéncia compu-
tacional que tem por objetivo fazer com que computadores reproduzam a habilidade humana
de separar/classificar dados em categorias especificas. O interesse na drea de RP tem crescido
muito devido as aplicagdes que, além de serem desafiantes, sdo também computacionalmente

cada vez mais exigentes.

2.1.1 Conceitos de um sistema de reconhecimento de padroes

O RP ¢ uma 4rea de pesquisa que tem por objetivo a classificacdo de objetos (padrdes)
em um conjunto de categorias ou classes (Theodoridis & Koutroumbas, 1999). Um padrao é
a descricdo quantitativa ou qualitativa de um objeto ou de outra entidade de interesse em uma

imagem ou em um sinal (Gonzalez, 1992). Essa descricdo pode ser feita por uma ou mais
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medidas que sdo denominadas atributos ou caracteristicas do padrao. Um conjunto de padrdes
com caracteristicas semelhantes ¢ denominado classe (Gonzalez, 1992).

H4 duas maneiras de se reconhecer e/ou classificar um padrao (Connel & Jain, 2001):
(i) classificagdo supervisionada: o padrao é identificado como um membro de uma classe
pré-definida, ou seja, a classe € definida pelo projetista do sistema, ou (ii) classificagdo ndo-
supervisionada: o padrdo é determinado por uma “fronteira” de classe desconhecida.

Um problema de RP consiste em uma tarefa de classificagdo ou categorizagdo, onde
as classes sdo definidas pelo projetista do sistema (classificagdo supervisionada) ou sdo “apren-
didas” de acordo com a similaridade dos padrdes (classificacdo ndo-supervisionada) (Bianchi,
2000).

As técnicas de RP t€m por concepcdo a selecao de caracteristicas dos conjuntos de
objetos e a separacdo dos objetos em suas devidas classes. De acordo com Duda et al. (2001),
essas técnicas permitem uma representacdo mais simples de uma cole¢do de dados por meio
das caracteristicas que apresentam maior relevancia, resultando na particdo em classes. Essa
representacdo € geralmente dada pela reunido das caracteristicas em um vetor.

Contudo as técnicas de reconhecimento de padroes nem sempre sdo simples. Em um
dado problema, simples ou complexo, busca-se sempre chegar a um separador com menor taxa
de erro. Em boa parte dos problemas de classificacdo, a determinacdo do separador desejado
exige muito esforco, tanto na determinacao dos parametros da técnica utilizada, quanto no custo
computacional. Na prética, a determinacdo de um separador desejado é quase sempre invidvel.
A Figura 2.1 representa um reconhecedor desejado capaz de separar amostras de duas classes
predefinidas com 100% de acerto. Alguns problemas toleram certo grau de erro. Dessa maneira,
¢ possivel encontrar um separador com um esfor¢o vidvel que consiga separar os elementos das
classes com um bom nivel de acerto. A Figura 2.2 representa um reconhecedor préximo do

desejado, capaz de separar duas classes com alguns erros de separacgao.

18



Caracteristica 2

Categoria 2

224 Categoria 1
21 .t
- -
x
20 « e
. -
19 *
- =
. -
18} .
17 ) T . =
16 .
15
14
2 4 [ 8 10

Caracteristica 1

Figura 2.1: Exemplo de separador de classes desejado
Fonte: (Duda, Hart, & Stork, 2001)
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Figura 2.2: Exemplo de separador de classes proximo do desejado
Fonte: (Duda et al., 2001)

2.1.2 Etapas de um sistema de reconhecimento de padroes

Em um sistema de reconhecimento de padroes, algumas etapas bem definidas sdo
necessdrias. Duda et al. (2001) sugere uma divisdo e ordem para realizag@o desta tarefa, a pri-
meira parte € a modelagem do sistema, mostrada na Figura 2.3. Para isso, precisamos conhecer
o conjunto de dados que serd utilizado e garantir que existem diferengas entre a populagdo. O
objetivo e a abordagem abrangentes na classificacdo dos padrdes sdo hipotetizar a classe desses
modelos, processar os dados detectados para eliminar o ruido (ndo devido aos modelos) e, para

qualquer padrao detectado, escolher o modelo que melhor corresponda.
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Figura 2.3: Prot6tipo de um sistema de reconhecimento de padrdes
Fonte: (Duda et al., 2001)

Em seguida, faz-se o pré-processamento, onde os dados sdo capturados do ambiente
externo e os sinais pré-processados para simplificar as operacdes subsequentes sem perder infor-
magoes. A informagdo de um tnico dado € enviada para um extrator de recursos, cujo objetivo
€ reduzir os dados analisando algumas caracteristicas ou propriedades. Os valores dos recursos
obtidos sdo passados para um classificador que avalia as evidéncias apresentadas e toma uma
decisdo final quanto a classe do padrdo inserido.

Ainda de acordo com Duda et al. (2001), as caracteristicas que sdo escolhidas afetam
diretamente no processo de classificagdo. Uma caracteristica que ndo € muito bem definida,
pode deixar muitos pontos de intersec¢@o no grifico, fazendo com que o classificador ndo saiba
qual classe o padrdo pertence, como pode ser observado na Figura 2.4 (a). Porém quando se
escolhe uma caracteristica que apresenta valores distintos para as categorias utilizadas, a chance
do sistema classificar um padrdo de maneira incorreta ¢ muito menor, conforme apresentado no

exemplo da Figura 2.4 (b).
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Figura 2.4: Exemplo de histograma utilizando (a) uma caracteristica ruim
para classificacdo de 2 categorias (b) uma caracteristica boa para classifica-
¢do de 2 categorias

Fonte: (Duda et al., 2001)

2.1.3 Técnicas para classificacio de padroes

Dentre as técnicas de reconhecimento de padrdes mais utilizadas, destacam-se a abor-
dagem estatistica (paramétrica e ndo paramétrica) ¢ a abordagem conexionista, que utiliza
RNAs. No caso da abordagem estatistica, o conjunto de dados de treinamento serve para reali-
zar a estimag¢do de pardmetros estatisticos de cada classe. Dessa maneira, cada classe terd uma
distribuigdo especifica, formando assim, o classificador estatistico (Duda et al., 2001).

A abordagem estatistica ndo paramétrica € subdividida em vdrias técnicas. Algumas
delas se ddo com a utiliza¢do de uma funcdo de distdncia do objeto a ser mapeado em relagdo
as classes disponiveis no espago de caracteristicas, direcionando padrdes desconhecidos aquela
classe que detém a menor distincia com ele. As principais representantes das técnicas de dis-
tancia sdo a distancia euclidiana e a distincia de Mahalanobis. A distancia de Mahalanobis
apresenta a vantagem de considerar a matriz de covariincia de todas as classes além da média
aritmética. Assim, problemas que contenham classes com diferentes variancias serdo melhor
classificados com a distdncia de Mahalanobis. Dentro das técnicas ndo paramétricas, existem
ainda as fung¢des de Kernel, os K-vizinhos mais proximos, entre outros (Duda et al., 2001).

Na abordagem estatistica paramétrica, destaca-se o classificador de Bayes, que con-
sidera a probabilidade de um objeto desconhecido pertencer a uma determinada classe. De

acordo com Duda et al. (2001), este também ¢ considerado um tipo 6timo de classificador,
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pois minimiza a probabilidade média de erro na classificacdo. Existem também a funcio de
discriminacgdo e a regra Naive de Bayes.

A abordagem conexionista € composta por tipos de classificadores mais complexos,
capazes de se adaptarem a qualquer tipo de distribui¢do de dados. Sao baseados no funciona-
mento das estruturas neurais inteligentes que aprendem por meio de exemplos, como as RNAs.

Trabalhos destinados ao estudo do reconhecimento de padrdes, tanto no que se refere
a descricdo, quanto a classificacdo e desde 2001, tém ganhando grande destaque no campo da
computacdo (Duda et al., 2001). Atualmente, as RNAs tém se tornado uma técnica amplamente

utilizada em razao de resultados bastante satisfatérios e promissores.

2.2 Redes Neurais Artificiais

Redes Neurais Artificiais sdo modelos inspirados no sistema nervoso de seres vivos e
possuem capacidade de aquisi¢do e manutencdo do conhecimento. Elas sdo formadas por um
conjunto de neurdnios artificiais, que consistem em unidades de processamento da rede, que
sdo interligadas por conexdes, chamadas de pesos sindpticos.

Podem-se entender as RNAs como mecanismos capazes de receber o sinal de determi-
nado padrdo na sua entrada, analisd-lo e entdo informar sobre a classe a qual ele pertence. Sua
metodologia de treinamento € inspirada no funcionamento dos neurdnios bioldgicos, em que
aprendizagem ocorre por meio de exemplos, fazendo com que a tentativa e o erro desencadeiem
o processo de apropriacao da habilidade de diferenciar padrdes.

O primeiro registro do surgimento das RNAs aconteceu com a publica¢do de um artigo
de McCulloch e Pitts em 1943 (McCulloch & Pitts, 1943). De acordo com Silva et al. (2010),
essa nova area da computagao tinha por concepg¢ao o funcionamento dos neurdnios biolégicos.
Em 1949, Donald Hebb apresentou o primeiro método de treinamento para RNAs (Hebb, 1968).
Entre 1957 e 1958, Frank Rosenblat desenvolveu o primeiro neurocomputador e, no periodo de
1958 a 1962, criou uma grande classe de RNAs denominada como Perceptrons (Fausett & Hall,

1994).

22



A rede ADALINE (Adaptive Linear Element) foi desenvolvida em 1960 por Widrow
e Hofl, posteriormente, recebeu aperfeicoamentos correspondentes a associacdo de multiplas
redes Adaline, resultando no nome MADALINE (Fausett & Hall, 1994). Os resultados obti-
dos nessas pesquisas motivaram varios pesquisadores a estudarem as RNAs, até que, em 1969,
Minsky e Papert demonstraram matematicamente as limitagdes das redes constituidas de uma
unica camada, como o Perceptron e o Adaline. No cldssico livro Perceptrons - An Introduc-
tion to Computational Geometry, eles usam um simples problema de 16gica denominado “ou
exclusivo” para mostrarem que essas redes eram incapazes de resolvé-lo (Fausett & Hall, 1994).

O trabalho de Minsk e Papert causou grande impacto entre os pesquisadores da neu-
rocomputagdo, fazendo com que o interesse pela area ficasse bastante reduzido. Isso, de certa
forma, ocasionou a auséncia de novos resultados para a drea por um longo periodo (Silva, Spatti,
& Flauzino, 2010). Nesse periodo de relativa turbuléncia das pesquisas envolvendo RNAs, foi
implementada a rede ART (Adaptive Ressonance Theory). Num trabalho de Grossberg, em
1980, foi realizada a formulag@o de mapas auto-organizaveis de Kohonen em 1982 e a proposta
de redes recorrentes de Hopfield em 1982. A partir do trabalho de Hopfield, a neurocomputacdo
voltou a receber a atencdo dos pesquisadores.

Contudo a teoria das RNAs conseguiu realmente se estabelecer a partir da publicacao
do livro de Rumelhart, Hinton e Williams, Parallel Distributed Processing, em 1986. Nele, os
autores mostraram um algoritmo capaz de treinar redes com multiplas camadas e que, por sua
vez, eram capazes de resolver as limitagdes apresentadas por Minsk e Papert. Esses aconteci-
mentos se deram no momento em que estavam sendo desenvolvidos computadores com maior
capacidade de processamento (Silva et al., 2010). Mais recentemente, novas contribuicoes e
indimeras aplicacdes praticas, em diferentes ramos do conhecimento t€ém permitido o desenvol-

vimento de estudos associados as RNAs.
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2.2.1 Neuronio biologico

A Figura 2.5, presente em (Silva et al., 2010), ilustra um neurdnio biolégico, o qual é

dividido em trés partes principais: os dendritos, a soma ou corpo celular e o axdnio.

Membrana celular

Nucleo celular

Citoplasma
Terminagdes sinapticas

Dendritos

Figura 2.5: Ilustragdo de um neur6nio bioldgico
Fonte: (Silva et al., 2010)

Os dendritos sdo especializados em receber os estimulos vindos de outros neurdnios
ou do meio externo que estdo associados. O corpo celular processa a informacdo recebida,
criando um potencial de ativacdo que, posteriormente, poderd ou ndo ser enviado ao axdnio
(Silva et al., 2010).

O axo6nio apresenta comprimento muito varidvel podendo medir de alguns milimetros
até metros e € especializado em gerar e conduzir o potencial de acdo, que ocorre por meio de
substancias neurotransmissoras. A porcao terminal do axdnio sofre varias ramificagdes para
formar de centenas a milhares de terminacdes sindpticas, no interior dos quais sao armazenados
os neurotransmissores quimicos usados no envio de informacao das sindpses para os dendritos
de outros neur6nios (Fausett & Hall, 1994).

O conjunto de bilhdes dessas estruturas compde a complexa estrutura denominada

cérebro humano, que é capaz de realizar inimeras tarefas com alto grau de dificuldade.

2.2.2 Neuronio artificial

Um neurdnio artificial € uma unidade de processamento da informacdo que é funda-
mental para a operagdo de uma rede neural. Eles recebem a informacao, a processam de acordo

com seu papel dentro da rede e enviam uma nova informacao para outros neurénios ou para a
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saida do sistema. A Figura 2.6 mostra o modelo de um neurdnio basico, proposto por MucCul-
loch e Pitts para o projeto de redes neurais, a partir dela verifica-se que o neur6nio é constituido

de 7 elementos basicos (Silva et al., 2010):

Xy = w,

X, o= w, Y g() >y

X, 0—— w

n

Figura 2.6: Ilustracdo de um neur6nio artificial
Fonte: (Silva et al., 2010)

e Camada de entrada {xi, xa, ..., X, }: sinais vindos do meio externo;

e Pesos sindpticos {wy, wy, ..., w, }: valores para ponderar cada uma das varidveis de
entrada da rede;

e Combinador linear {X}: agregar os sinais de entrada ap6s a ponderagio;

e Limiar de ativagdo {6}: é uma varidvel que especifica qual serd o patamar apropri-
ado para que o resultado produzido pelo combinador linear possa gerar um valor de
disparo em direcdo a saida do neurdnio;

e Potencial de ativagdo {u}: representa a diferenca do valor produzido entre o com-
binador linear e o limiar de ativacao;

e Funcio de ativacdo {g}: cujo objetivo € restringir a amplitude da saida;

e Camada de saida {y}: valor final produzido pelo neur6nio

O modelo proposto por MucCulloch e Pitts tem em sua concep¢ao de funcionamento

o processamento paralelo da informacdo com alta conectividade e ¢ o modelo mais utilizado

nos modelos de RNAs. Em termos matematicos, podemos descrever o neuronio pelo seguinte
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par de equacdes (Silva et al., 2010):

u=zn:wi~xi—9 2.1)

Il
—

y=g(u) (2.2)

2.2.3 Tipos de Redes Neurais

H4 varios tipos de RNAs, algumas possuem uma arquitetura mais simples, na qual ha
apenas duas camadas, sendo uma de entrada e outra de saida. Por outro lado, existem arquite-
turas mais complexas, com a existéncia de trés ou mais camadas. As camadas adicionais sdo
conceituadas como intermedidrias ou ocultas.

Em redes multicamadas, a camada de entrada tem a fun¢@o do recebimento dos sinais
advindos do ambiente externo. A associacdo das caracteristicas, bem como a separacdo das
classes sao feitas pelos neurdnios da(s) camada(s) intermedidrias(s). Fica a cargo da camada de
saida a apresentacdo dos resultados finais da rede.

Perceptron e Adaline sdo tipos de RNAs mais simples, nelas a camada de separacao
das classes € a propria camada de saida. Esses tipos de redes sdo hédbeis para problemas que t€ém
classes linearmente separdveis. Problemas que ndo sdo linearmente separdveis requerem redes
com mais de duas camadas, ou seja, pelo menos uma camada intermedidria. Os exemplos mais
conhecidos sdo as redes MLP, RBF e Hopfield.

A rede RBF sera descrita no Capitulo 3, j4 a MLP € uma rede multicamadas e, de

acordo com Haykin (2008), ela possui trés caracteristicas que a distinguem das outras:

1. Para cada neurdnio da rede hd uma fungdo de ativacdo ndo linear, cuja curvatura é
suave.

2. A rede contém uma ou mais camadas ocultas, que sdo diferentes da camada de
entrada e saida

3. Existe um alto grau de conectividade entre os neur6nios, isto €, um neurdnio de

qualquer camada esta conectado a todos os outros da camada anterior.
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2.2.4 Funcoes de ativacao

As funcgdes de ativagdo possuem o objetivo de processar e mapear toda somatodria dos
estimulos, provenientes dos neurdnios que as alimenta com informacdes e ponderados pelos
pesos. O resultado deste processamento faz com que o neurdnio alcance um novo estado de ati-
vacdo que serd propagado através de sua saida (Araudjo, 2005). As fungdes de ativacdo também
s@o responsaveis por limitar o sinal da saida a um intervalo de interesse (Silva et al., 2010)

As funcdes mais utilizadas sdo expostas na Tabela 2.1.

2.2.5 Processos de Aprendizagem

O objetivo fundamental de uma rede neural € utilizar o processo de aprendizagem para
melhorar seu desempenho. O tempo e algumas medidas pré-estabelecidas é que vao determi-
nar o aperfeicoamento do na taxa de acerto. Idealmente, apds cada iteracdo do processo de
aprendizagem a rede se torna mais preparada sobre seu ambiente (Haykin, 2008).

A aprendizagem no contexto de redes neurais pode ser definida como um processo
que através de estimulos vindos do ambiente em que a rede esté inserida adapta os parametros
livres desta rede (Haykin, 2008). A forma que os parametros sdo modificados € que determina
o tipo da aprendizagem.

Um algoritmo de aprendizagem € definido como um conjunto de regras bem-definidas
para a solucao de um problema de aprendizagem. Para as redes neurais, como esperado, ndo ha
um unico algoritmo de aprendizagem (Haykin, 2008). Durante a execugao desses algoritmos, a
rede serd capaz de extrair as caracteristicas discriminantes do sistema a ser mapeado a partir de
amostras que foram recebidas inicialmente vindas do ambiente ao qual ela esté inserida (Silva

et al., 2010).
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Tabela 2.1: Principais funcdes de ativacdo adaptada da Tabela 3.1 de Araujo, 2005

Funcdo Equacao Representacao Grafica
y
1
Linear f(n)=n
-1 1
-1
y
1 PR
1 se n>1
Rampa f(n)=4n se |n<1
-1 se n<-1 -1 1
-1
y
1
1 se n>0
Degrau f(n) = {O @ n<0 — 1
- 1+
y
1
Tangente hiperbdlica 2
=2 1
(logistica) fm) (T+e™) -1 1
-1
y
1
Sigmoide (logistica) f(n)=>25-1
-1 1
-1
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2.2.5.1 Aprendizagem Supervisionada

A aprendizagem supervisionada, também chamada de aprendizagem com um profes-
sor, € uma estratégia de treinamento que necessita ter disponivel as saidas desejadas para cada
amostra inserida. A Figura 2.7 representa um diagrama de blocos que ilustra esta forma de
aprendizagem.

Podemos considerar que o professor, que representa as saidas desejadas, possui o
conhecimento do ambiente, porém a rede ndo o conhece. O professor fornece para a rede a
resposta desejada e os parametros sdo ajustados de acordo com o sinal do erro informado pelo
professor, que € a diferenca da resposta desejada com a apresentada pela rede. Este ajuste dos
pardmetros € realizado vdrias vezes, até a rede conseguir emular o professor, dizemos entdo que

o conhecimento do professor foi transferido para a rede. (Haykin, 2008)

Vetor descrevendo
o estado do
ambiente

Ambiente : > Professor

Resposta
desejada

/ Resposta +
Sistema de real )
—> aprendizagem i

(

Figura 2.7: Diagrama de blocos da aprendizagem supervisionada
Fonte: (Haykin, 2008)

Sinal de erro

2.2.5.2 Aprendizagem Nao-supervisionada

Neste algoritmo, ndo existem as saidas desejadas, diferentemente do processo de
aprendizagem supervisionada. A propria rede precisa identificar os subconjuntos que conte-

nham similaridade entre as amostras e se auto-organizar a partir dessas particularidades. Os
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pesos sindpticos e os limiares dos neurdnios da rede sdo entdo ajustados de forma a refletir as
particularidades internamente dentro da prépria rede (Silva et al., 2010).

A quantidade mdxima desses possiveis subconjuntos pode ser determinada pelo pro-
jetista, levando em conta seu conhecimento a respeito do problema, ou pela prépria rede (Silva

et al., 2010). A Figura 2.8 mostra um diagrama de blocos com essa forma de aprendizagem.

Vetor
descrevendo
o estado do
ambiente

Ambiente :D Sistema de
aprendizagem

Figura 2.8: Diagrama de blocos da aprendizagem ndo-supervisionada
Fonte: (Haykin, 2008)

2.3 Conceitos matematicos envolvidos

Os conceitos matemadticos apresentados nas se¢des seguintes, serdo utilizados na jus-

tificativa do uso do VBOs e na comparagdo entre os vetores VBO, VNO e VBC.

2.3.1 Produto interno e distancia euclidiana de vetores no espaco R”

Considere-se que VZ = (V. VsV € Ul = (uy,ua, ..., 1, ) sejam dois vetores do espaco
R". O produto interno desses vetores, representado pela Eq. 2.3 € uma das opera¢des que podem
ser realizadas entre vetores pertencentes a espagos de qualquer dimensao.

— =
ViOUizvl'M1+V2'M2+-"+Vn'l/tn (23)

Outra operagdo que serd realizada independente da dimensdo do espago R, € a distan-

e
cia euclidiana. A Eq. 2.4 representa essa distancia calculada entre V; e U,.

dyy = \/(u1 1)+ (=) e+ (1= V) (2.4)
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2.3.2 Angulo e ortogonalidade entre vetores no espaco R"

- —

Considere-se ainda que os vetores V; e U; pertencem ao espago R". A razdo do produto

interno e o produto entre os modulos dos vetores sao usados para calcular o cosseno do dngulo

- — ~
formado entre V; e U,, representado pela equacao

Ve U,

cos(0) = ———— (2.5)
Vil U;

O angulo 6 formado entre estes vetores pode ser determinado por meio da funcao arco-

cosseno, a inversa da fungdo cosseno, representada pela Eq. 2.6. A Figura 2.5 ilustra o angulo

entre dois vetores do espaco R3.

U,
0 = arccos (—_ﬁ) (2.6)
Uil

X

Figura 2.9: Angulo entre vetores

Podem-se destacar, a partir do célculo para determinacao do dngulo entre vetores no

espago R":

A fungéo arco-cosseno tem sua imagem restrita ao intervalo [0, 7].

O produto dos médulos dos vetores dado por H‘_/:H Hﬁ,H ¢ sempre positivo.

e O cosseno ¢ positivo no intervalo de [0, 5[.
e O cosseno € nulo para o arco 7.

e O cosseno ¢ negativo no intervalo de |3, 7].

31



A partir das afirmacdes anteriores, nota-se que angulo entre os vetores \_/: e Ut € agudo
sempre que o produto interno for positivo, e reto sempre que o produto interno for igual a zero
e € obtuso sempre que o produto interno for negativo.

Portanto dois vetores sdo ortogonais se o produto interno entre eles for igual a zero. A

Figura 2.10 representa dois vetores com essa caracteristica.

z

X

Figura 2.10: Tlustracdo de vetores ortogonais

2.3.3 Teste Estatistico de Kolmogorov-Smirnov

Os métodos estatisticos dividem-se basicamente em duas categorias: paramétricos
e ndo paramétricos. Os testes paramétricos pressupdem que os dados se ajustam a uma dis-
tribui¢do normal, além disso, dependem de pardmetros como a média e a varidncia. Os nao
paramétricos ndo dependem destes parametros nem do ajuste a normalidade pela distribui¢dao
dos dados analisados.

Assim € importante saber se os dados a serem analisados se ajustam a distribui¢ao
normal antes de decidir qual teste aplicar. O teste de Kolmogorov-Smirnov permite verificar
se uma amostra de dados se ajusta a alguma distribuic@o tedrica, por exemplo, a distribuicao
normal (Conover, 1999). Trata-se de um teste bastante utilizado e, nas andlises estatisticas
deste trabalho, foi empregado para decisdo sobre a utilizagdo de um teste paramétrico ou nao
paramétrico.

Para a realizag@o do teste, os seguintes passos devem ser executados (Conover, 1999):

1. Ordenam-se os dados x; em ordem crescente.
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2. Para cada x; dado é atribuido o valor F), (x;), denominado valor empirico, que é o
resultado da razdo de i por n, em que n € o total de dados.

3. Para cada i, atribui-se o valor normal padronizado correspondente F (x;), denomi-
nado valor tedrico, que € obtido pela Tabela de distribuicao normal padrdo e pela

férmula representada pela equagao

Z- 2.7)

em que o € o desvio-padrao da amostra de dados e x € a média dos dados.

4. Para cada i, calcula-se o mddulo da diferenca entre o valor tedrico e o valor empi-
rico |F (x;) = F,, (x:)]-

5. Para cada i, calcula-se o0 mddulo da diferenca entre o valor tedrico e o valor empi-
rico anterior |F (x;) — F,, (xi-1)]-

6. Calcula-se a somatéria das diferencas entre o valor tedrico e o valor empirico

L|F (x;) = Fu (%)

, denominada D™.

7. Calcula-se a somatdria das diferencas entre o valor tedrico e o valor empirico an-
terior X |F (x;) — F, (x;_1)|, denominada D-.

8. Obtém-se o maximo entre D' e D~, denominado D,,.

9. Para um nivel de significancia @ e a quantidade de amostras n, compara-se o va-
lor critico V da Tabela com o valor de D,. Se D, < V, os dados seguem uma

distribui¢do normal. Se D, > V, os dados ndo seguem uma distribuicao normal.

2.3.4 Teste Estatistico de Mann-Whitney

Os testes ndo paramétricos sao utilizados quando a amostra dos dados ndo se ajusta
a uma distribuicdo normal. O Teste de Mann-Whitney (Martins & Fonseca, 2006) permite a
comparacao de igualdade de médias sem a exigéncia de igualdade de variancias em problemas
de comparagao de médias em grupos independentes.

Para a realizacdo do teste, deve-se seguir os passos:
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10.

. Considera-se n; como o nimero de amostras do menor grupo € n, como 0 nimero

de amostras do maior grupo.
Os dados dos dois grupos sdo reunidos e organizados em ordem crescente. O menor
dado recebe o nimero 1 e todos os outros sdo ordenados até o ultimo dado, que

corresponde a N = n; + n,.

. Para as amostras iguais (empatadas), calcula-se a média entre seus postos, e cada

uma recebe o posto médio.

Calcula-se R, = soma dos postos do grupo n; € R, = soma dos postos do grupo n,.

. Escolhe-se a menor soma entre R, € R,.

Calculam-se as estatisticas:

1

Nl:nl.nz_’.%_Rl (2_8)
1

mznl.nH%_Rz (2.9)

Hipoteses do teste:
Hy: ndo ha diferenca entre os grupos.

H,: ha diferenca entre os grupos.

. Definicdo do nivel a de significancia.

. Com o auxilio da Tabela de distribuicdo de probabilidades normal padronizada,

definem-se as regides de aceitacdo e de rejeicdo de H, conforme ilustragdo da Fi-
gura 2.11.

Calculo do valor variavel Z,,;:

(2.10)
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Aceita-se H, Aceita-se H,

a2 af2
X
Rejeita-se H, Rejeita-se H,
'ZDL,"Z ZchZ

Figura 2.11: Esbogo da regido de aceitacdo e de rejei¢ao para o Teste de Mann-Whitney
em que

) = =7 2.11)

O'(u) _ \/l’ll %) (n112+ np + 1) (212)

11. Conclusao:
Se 25 < Z.q < Z7, aceita-se H,.
Se ~Z.u > Z5 ouZy < =25, rejeita-se Hp, assumindo-se com risco a que 0s grupos

possuem diferenca em relacdo as suas médias.
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Capitulo 3

Redes Neurais Artificiais do tipo Funcao

de Base Radial

As redes do tipo RBF (Radial Basis Function, em inglés), sio RNAs que utilizam a
arquitetura feedforward, ou seja, os dados sdo propagados da camada de entrada, seguindo para
a camada oculta, até chegarem na camada de saida, sem retroalimentaciao da rede (Fausett &
Hall, 1994). Podem ser empregadas em quase todos os problemas tratados pela MLP incluindo

problemas de aproximacao funcional e reconhecimento de padrdes (Silva et al., 2010).

3.1 Arquitetura e caracteristicas

A construcdo tradicional de uma RBF apresenta 3 camadas totalmente distintas, que
podem ser observadas na Figura 3.1. A camada de entrada € constituida por unidades sensoriais
que interligam a rede com o ambiente externo. A camada oculta faz transformagdes ndo lineares
no espaco de entrada, sendo caracterizada pela utilizacao de fun¢des de base radial. E a camada
de saida € responsdvel pela resposta final da rede modelada (Haykin, 2008). Os pesos sindpticos
da camada intermediéria, também chamados de centros, representam os centros dos subgrupos
de dados categorizados e sdo utilizados como centros das funcdes de bases radiais no processo

de treinamento.
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de saida

Camada neural
intermediaria

Figura 3.1: Arquitetura tipica de uma RBF
Fonte: (Silva et al., 2010)

3.2 Teoria da Separabilidade dos Padroes

Quando uma tarefa complexa de classificacido de padrdes serd realizada por uma rede
RBF, o problema € resolvido pela sua transformagdo para um espaco de alta dimensionalidade,
de uma forma néo-linear. Esse processo foi justificado por Cover (1965) em seu teorema sobre
a separabilidade dos padrdes.

Considere que £ represente um conjunto de N padrdes divididos em duas classes. A
particdo bindria (dicotomia) dos pontos pode ser feita se existir uma superficie que separe os
pontos da classe € da classe €, (Haykin, 2008). Para cada padrdo x € Q , € definido um vetor

constituido de um conjunto de fungdes, como mostra a Equagdo (3.1)

¢(x) = [¢1(x), $2 (%), Pt (x) ] (3.1)

Considerando que o padrdo x representa um vetor de entrada em um espago de di-
mensdo myp, 0 vetor ¢(x) mapeia os pontos desse padrdo de entrada para um novo espago de

dimensdo my, onde m; > my (Haykin, 2008). Uma dicotomia {€;,€,} de Q é dita ser separdvel
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por ¢, se existir um vetor w de dimensdo m; para o qual podemos escrever (Cover, 1965):

wlg(x) >0, xely 32)

wig(x) <=0, xey
O hiperplano que descreve a superficie de separacdo no espago ¢ € definido pela Equa-
cdo (3.3). A Figura 3.2 mostra trés exemplos de dicotomias separaveis por ¢ de diferentes

conjuntos de cinco pontos em duas dimensdes.

wip(x) =0 (3.3)

(a) (b) ()
Figura 3.2: Exemplos de dicotomias separdveis em 2 dimensdes (a) dicoto-
mia linearmente separdvel; (b) dicotomia esfericamente separavel; (c) dico-
tomia quadricamente separdvel
Fonte: (Haykin, 2008)
De acordo com Haykin (2008), o teorema do Cover sobre a separabilidade dos padroes
engloba dois ingredientes bésicos:
1. A Formulag@o ndo-linear da fung@o oculta definida por ¢;(x), onde x é o vetor de
entradaei=1,2,...,m.
2. A alta dimensionalidade do espago oculto comparado com o espago de entrada;

essa dimensionalidade é determinada pelo valor atribuido a m;.

3.3 Estratégias de Aprendizagem

No processo de treinamento de uma RBF, cada uma das entradas x;, vindas do ambi-

ente externo, serdo propagadas pela camada intermedidria em direcdo a camada de saida (Silva

38



et al., 2010). Além disso, os pesos lineares associados com os neurdnios da camada de saida
tendem a evoluir em uma “escala de tempo” diferente, comparada as fun¢des de ativacdo da
camada oculta.

A evolucdo da camada oculta € lenta, de acordo com a estratégia de otimizag¢do nao-
linear, j4 os pesos da camada de saida se ajustam mais rapidamente devido a sua otimizagao
linear. Com base nessas informacdes, € razodvel separar o processo de otimiza¢ao das camadas
utilizando técnicas diferentes (Haykin, 2008). Existem vdrias estratégias de aprendizagem que
podem ser aplicadas a uma rede RBF, essas estratégias variam dependendo de como os centros

sdo especificados.

3.3.1 Centros Fixos Selecionados ao Acaso

Esta € a abordagem mais simples, onde as fun¢des de base radial sdo fixas e definem
as funcdes de ativac@o dos neurdnios da camada oculta. Normalmente a localiza¢do dos centros
€ escolhida aleatoriamente a partir do conjunto de dados de treinamento, mas isso s6 € possivel
se os dados estiverem bem distribuidos (Haykin, 2008).

Nesse tipo de estratégia, € utilizada como fun¢do de base radial a funcdo gaussiana
1sotrépica, cujo desvio padrao € fixado de acordo com o espalhamento dos centros. Uma fun¢do

gaussiana cujo centro € ¢; pode ser definida como:

G(|x-t]*) = exp(—2- |x—t*) i=1,2,.om (3.4)

onde m; € o nimero de centros € d,,,, € a distincia maxima entre os centros escolhidos. O

desvio padrao de todas as fun¢des de base radial gaussianas € fixo em

o=— (3.5)

esta equacgdo garante que as funcdes utilizadas nio sejam pontiagudas demais ou planas demais,

condicdes que devem ser evitadas. Nesta abordagem, os tnicos parametros que devem ser
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aprendidos sdo os pesos lineares na camada de saida (Haykin, 2008), essa fase do processo de

aprendizagem serd descrita na Secdo 3.4.2.

3.3.2 Selecao Auto-Organizada de Centros

De acordo com Haykin (2008), o maior problema do método de centros fixos, des-
critos na sessdo anterior, € a necessidade de um conjunto de treinamento grande para que se
obtenha um nivel de desempenho satisfatério. Um processo de aprendizagem hibrido é um ma-
neira de superar essa limitacdo. Esse processo € dividido em dois estdgios (Chen, Mulgrew, &
McLaughlin, 1992):

e Estdgio de aprendizagem auto-organizada, cujo objetivo € estimar a melhor locali-

zacdo dos centros na camada oculta;

e Estigio de aprendizagem supervisionada, que completa o treinamento estimando os

pesos lineares da camada de saida.

Para o processo de aprendizagem auto-organizada, é necessdrio um algoritmo de agru-
pamento, "clustering", que subdivida o conjunto fornecido em grupos, tdo homogéneo quanto

possivel.

3.3.3 Selecao Supervisionada de Centros

Nessa abordagem, os centros das funcdes como todos os outros pardmentros livres
sdo parte do processo de aprendizagem supervionada da rede, onde a RBF assume sua forma
mais generalizada. A abordagem mais utilizada € a aprendizagem por correcao do erro (Haykin,
2008). O primeiro passo no desenvolvimento deste procedimento € definir o valor da fungdo de
custo (Haykin, 2008)

N
E=->¢ (3.6)

J=1

0| =
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onde N € o tamanho da amostra de treinamento € e; € o sinal de erro definido por

ej=d;-Fx(x))
M 3.7
=d;- > wiG(|x;-1],,)

i=1

O objetivo é encontrar os pardmetros livres w;, ; ¢ ¥;' que minimizem E.

3.4 Processo de Treinamento

Conforme mostrado na se¢@o anterior, existem trés abordagens que podem ser usadas
no processo de treinamento de uma RBF. Para este trabalho, foi escolhida a estratégia de
treinamento por selecao auto-organizada dos centros, apresentadas na secao 3.3.2.

Nesta abordagem, o primeiro estdgio, associado com o ajuste dos centros e dos pesos
da camada intermedidria, € feito através de um algoritmo ndo-supervisionado e € dependente
apenas das caracteristicas dos dados de entrada. Ja o segundo estdgio, vinculado os pesos

sindpticos da camada de saida, utiliza um aprendizado supervisionado.

3.4.1 Primeiro Estagio de Treinamento

Essa primeira fase realiza o ajuste dos neurdnios da camada intermedidria. Estes
neurdnios sdo constituidos de funcdes de ativacdo do tipo base radial, podem ser usadas as
funcgdes representadas pelas Equacdes (3.8) a (3.12), mas a fun¢do gaussiana é a mais empre-

gada (Silva et al., 2010).
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72

é(r) = ¢ 2072, gaussiana (3.8)
o(r) = rzln(r), thin-plate spline 3.9
1 - L.
$(r) = ————, fungdo logistica (3.10)
l+e0? -0
o(r) = (”» + 02)12, multiquddrica (3.11)
1

#(r) = m, multiquddrica inversa (3.12)

Nessas equacdes, r denota a distancia entre o valor recebido pela camada de entrada
x até o centro ¢ e o2 representa a variancia das amostras, que indica o quio disperso estdo os
pontos x em relacdo ao centro da fungao c.

Considerando a expressao fornecida na Equacgado (3.8), os parametros livres a serem
ajustados sdo o centro ¢ e a varidncia 0. O centro esté diretamente associado aos seus proprios
pesos, de acordo com a configuragdo dos neuronios escondidos da rede. Consequentemente,
a saida de cada neurdnio da camada intermedidria, utilizando a funcdo gaussiana, pode ser

expressa por (Silva et al., 2010):

n 1
Y (i = W](‘i ))2

- 2
3(x) = e 207 (3.13)
O principal objetivo dos neurdnios nessa camada é posicionar o centro de suas
fungdes de bases radiais da forma mais apropriada possivel. Um dos métodos utilizados para
essa funcdo € o algoritmo de k-means (Duda et al., 2001). O valor de k nesse algoritmo &
igual ao nimero de neurdnios na camada intermedidria, pois cada uma das funcdes de ativagao

desses neurdnios € uma funcdo gaussiana, conforme a Equacdo (3.13) e os centros serdao

42



representados pelos seus pesos (Silva et al., 2010).

Algoritmo 1: PrRiMEIRO EsTAGIO DE TREINAMENTO

1 inicio

2

3

10

11

12

13

14

15

16

17 fim

Obter o conjunto de amostras de treinamento x(")

Iniciar o vetor de pesos de cada neurdnio da camada intermedidria com os valores
das n; primeiras amostras de treinamento;

repita

para todas as amostras de treinamento x( faca

Calcular as distancias euclidianas entre x(") e W](il), considerando-se cada
J-€ésimo neurdnio por vez;

Selecionar o neurdnio j, que contenha a menor distancia, com o intuito de
agrupar a referida amostra junto ao centro mais proximo;

Atribuir a amostra x(") ao grupo Q();

fim
para todos W](.il), onde j=1,...,n, faca
Ajustar W;l.l) de acordo com as amostras em Q(1: W](il) = ﬁ > el XM
{ m) é o nimero de amostras em Q) }
fim

até ndo haja mudangas nos grupos w) entre as iteragées;
(1 P 1
para todos os Wﬁ ,onde j=1,..,n' faca

Calcular a variancia de cada uma das fungdes de ativagc@o gaussiana pelo

o oA . o 1
critério da distancia quadratica média: o7 = o) > eal) Sy (xf") — W](‘il))2

fim

de procedimentos computacionais que visam o treinamento deste primeiro estdgio das redes

O pseudocddigo, a seguir, foi proposto por Silva et. al (2010) e apresenta a sequéncia

RBF utilizando o algoritmo de k-means.

da camada intermedidria foram ajustados para seus valores mais adequados para o conjunto

de amostras. Esses pesos representam os centros de cada um desses clusters, subgrupos de

Ap6s finalizado esse estdgio de treinamento, os pesos W(1) de cada um dos k neurdnios

43



amostras, que serdao usados no préximo estdgio de treinamento da rede.

3.4.2 Segundo Estagio de Treinamento

O segundo estdgio de treinamento € responsédvel pelo ajuste dos pesos da camada de
saida de uma rede RBF, este estdgio é supervisionado e deve ser executado somente apds a
finalizacdo do primeiro estagio de treinamento (Silva et al., 2010).

Nos experimentos feitos neste trabalho, foram utilizadas duas abordagens diferentes
para esta fase. A primeira delas foi a técnica de otimizacao de pesos que foi baseada no método
de Galerkin proposta por Haykin (2008) e a segunda foi a utilizacdo da Regra Delta Generali-

zada proposta por Silva et. al. (2010).

3.4.2.1 Otimizacao de Pesos - adaptaciao do método de Galerkin

Essa abordagem procura uma solu¢do sub6tima em um espago de menor dimensionali-
dade. De acordo com (Haykin, 2008) este procedimento foi baseado em uma técnica conhecida
como método de Galerkin. Para encontrar o vetor de pesos 6timos, entende-se que a solugdo

aproximada que serd fornecida pela rede, pode ser generalizada pela equagao:

$(x) = %w%(x) (3.14)
i=1

onde {¢;(x)|i = 1,2,...,m;} é um conjunto de fun¢des de base radial e que w(?) constituem
o conjunto de pesos sindpticos da camada de saida. Considerando as funcdes de base radial

expressas nas Equacgdes (3.8) a (3.12), temos:

¢i(x) =G(|x-wO|),i=1,2,....,m (3.15)
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onde G representa uma dessas fungdes de base radial e |x — W | a distancia euclidiana entre

o padrdo de entrada x e o peso W1, Substituindo a Equacdo (3.15) na Equacio (3.14), temos:
$(x) =Y wPG(|x-wh|) (3.16)
i=1

O objetivo dessa fase é determinar o novo conjunto de pesos 6timos w(2) que minimi-

zem o funcional de custo E(¥), definido por (Haykin, 2008) como

N my
E®$) =Y (di- Y. wPG(|x-wO|))?+ 2 |D3|? (3.17)
=1

i j=1

Segundo (Haykin, 2008) o primeiro termo no lado direito da Equacao (3.17) pode ser

- 2
expresso como a norma euclidiana quadrada |d — Gw(®)|", em que

r T
d= dl,dz,---,dN] (3.18)

Glx, WY G, WD) o G(x, W)Y

(1) (1) (1
G(x, W G(x, W o G, W,
G- ( 2, ¥ ) ( 2, V¥ ) ( 2 1) (3.19)

ml

G W) Gy WSV) o Glaw. W)

_ T
W = [, o W;}m] (3.20)

onde d € o vetor de resposta desejado, G € a matriz que contém o conjunto de funcdes de base
radiais (camada intermedidria) e w(®) € o vetor de pesos sindpticos para a camada de saida.
Verificamos que a matriz G t€m dimensdes N-por-m; e portanto ndo € simétrica.

A partir da Equagdo (3.16) notamos que a fun¢@o aproximativa y € uma combinagao

linear das fungdes de Green ! para o estabilizador D. Por isso, podemos expressar o segundo

'Uma Fungdo de Green é um tipo de funcio utilizada para resolver equacdes diferenciais nio-homogéneas
sujeitas a condicdes iniciais ou condigdes de contorno determinadas
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termo do lado direito da Equacao (3.17) como:

|D$|* = (D9, D$)a

- [ w6, W), DD T wPG(x, Wf”)]
Q

= [ w6 (x, W), $m wf”dW,-“)L 3.21)

Na segunda e terceira linha da demostracdo foi feito uso equacio para diferenciacao
parcial das fun¢des de Green (Haykin, 2008). A matriz G, € simétrica de dimensdo m;,-por-m,

definida por:

[ 1 1 1 1 1 N
Gw. wy cwV. wih) - Gw W)

M w M wh (1 wd
GW,’, W GW, ", W - G(W, 7, Wy,
Gy = ( 1) Gl ) ( R (3.22)

1 1 1 1 1 1
G W) Gl wiP) G i) |

A minimizac¢do da Equacao (3.17) em relacdo ao vetor de peso w pode ser representada

como:

(G"G +1Gy)w=G"d (3.23)

resolvendo para w:

w=(G'G+1G,)"'G"d (3.24)

Se o parametro de regularizacdo A se aproxima de zero, o vetor € peso w converge
para a solucao da pseudo-inversa do problema indeterminado de ajuste de dados por quadra-
dos minimos para m; < N, a matriz pseudo-inversa G* da matriz G pode ser definida como
(Broomhead & Lowe, 1988):

G'=(G'G)'G" (3.25)

46



Substituindo Equacgao (3.25) em Equacgao (3.24):

w=G"d,1=0 (3.26)

Com base na Equacgdo (3.26) conclui-se que essa abordagem necessita somente de
uma iteracdo para definicdo dos pesos 6timos w que melhor irdo se adaptar ao conjunto de
dados inseridos no treinamento.

O pseudocddigo abaixo apresenta a sequéncia de procedimentos computacionais que
visam o treinamento deste segundo estdgio das redes RBF utilizando a técnica proposta por

(Haykin, 2008).

Algoritmo 2: SEGUNDO EsTAGIO DE TREINAMENTO - OTIMIZAGAO DE PESos

1 inicio
2 Obter o conjunto de amostras de treinamento {x}
3 | Obter o conjunto de pesos {W(1)}

4 | Obter o conjunto de saidas desejadas {d}

5 para fodas as amostras de treinamento x faca

6 Calcular os valores da matriz G de acordo com Equagao (3.19)
7 fim

8 Calcular vetor de peso 6timo: w = G*d

9 fim

3.4.2.2 Regra Delta Generalizada

A segunda abordagem, para o segundo estdgio de treinamento, proposta por Silva et
al. (2010) utiliza a Regra Delta Generalizada e € portanto, supervisionada. De acordo com
a Figura 3.1, os dados sdo propagados pela rede saindo da camada de entrada, passando pela
camada intermedidria, onde foi realizado o primeiro estdgio de treinamento, € seguem para
camada de saida.

O conjunto de treinamento para os neuroénios da camada de saida serd constituido por

pares de entrada e saida, em que as entradas serdo as respostas produzidas pelas fungdes de
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ativacdo de bases radiais, como as expressas nas Equacdes (3.8) a (3.12), dos neur6nios da
camada intermedidria e as saidas s@o as aquelas esperadas pela rede (Silva et al., 2010). Este

conjunto € representado pela equacao
n )
5= WP o, W) -6, 0ndej=1,...n (3.27)
i=1

2)

onde w;” representa o vetor de pesos sindpticos e ¢ o limiar, ambos da camada de saida, porém
a expressdo ¢(x, WD) representa os valores calculados pela fungdo de ativa¢io de base radial
utilizando os pesos obtidos no primeiro estigio de treinamento.

Por se tratar de um treinamento supervisionado, cada padrao de entrada tem uma uni-
dade de saida correspondente, representada pelo vetor-alvo. O erro proveniente da diferenca
entre os valores encontrados pela rede e a saida correspondente € utilizado para a atualizagcdo

dos pesos w(?). A equagio que representa esse erro € expressada por

=3 (dk _yk)z (3.28)

| =

A forma de ajuste do vetor de pesos w(?) para obtencdo de seu valor 6timo pode ser

expressa pelas equagdes:

z=¢(x, W) (3.29)

yin =z-w® (3.30)
Or = (di = 1) - f(yin) (3.31)
Aw® =@ -6 -z (3.32)

em que:
e ¢(x, W) : valores calculados pela fungdo de ativagio de base radial no primeiro
estagio de treinamento;

e w® : pesos sindpticos da camada de saida
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e f: funcdo de ativagao dos neurdnios da camada de saida.

e d, : saida desejada

e J : resultado encontrado pela rede

e « : taxa de aprendizagem da rede

Em sua modelagem tradicional, a fun¢do de ativacdo utilizada pelos neurdnios da
camada de saida é sempre linear. Nesse caso, os neurdnios dessa camada somente irdo realizar
uma combinacdo linear das fun¢des de ativacdo de base radial produzidas na camada anterior
(Silva et al., 2010).

As instrug¢des do pseudo-codigo proposta foram por (Silva et al., 2010) visando-se o

segundo estdgio de treinamento, sdo explicitadas como segue:

Algoritmo 3: SEcunpo EsTAGI0 DE TREINAMENTO - REGRA DELTA GENERALIZADA

1 inicio
2 Obter o conjunto de amostras de treinamento {x}
3 Obter o vetor de saidas desejadas {d} para cada amostra
4 | Iniciar wﬁ.iz) com valores aleatérios [-0.5,0.5]
5 Especificar a taxa de aprendizagem a e precisao requerida €
6 para todas as amostras de treinamento x*) faga
7 Calcular ¢;(x, WD) de acordo com Equagdo (3.15)
8 Assumir z(K) = [¢y, ¢s, ..., $, T
9 fim
10 Iniciar o contador do niimero de épocas: epoca « 0;
1 repita
12 E uterior < E conforme Equacao (3.28)
13 para fodos os pares de treinamento {z(¥),d©)} faca
14 Ajustar wg.,.z) conforme especificado nas Equacdes (3.29) a (3.32)
15 fim
16 E i < E conforme Equacao (3.28)
17 epoca <« epoca +1
18 | até Euuq — Eanerior < €

19 fim
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3.4.2.3 Modificacdo na camada de saida

A partir da implementagdo baseada na Regra Delta Generalizada, foi feita uma mo-
dificacdo no neurdnio da camada de saida da rede. Tradicionalmente, este neurdnios possuem
uma funcdo de ativacgdo linear e ela foi substituida por uma funcio sigmoide, como a tangente
hiperbdlica e a logistica bipolar, descritas na Tabela 2.1. A Figura 3.3 demostra a arquitetura da

rede ap6s a modificagdo realizada.

gaussiana

/\ 6
M ! sigmolde

(2) | 5(2)
X4 gaussiana A 9- 1

1 21/ -6
X5 Wj(i ) ug) gg) Wj(i f g sigmoide
X, gaussian Uﬁz) Q,(i) ynz
Camada de
entrada

Camada neural
u,(711) g,(711) de saida

Camada neural
intermediaria

Figura 3.3: Arquitetura de uma rede do tipo RBF modificada
Fonte: (Silva et al., 2010) - modificada

O processo de treinamento realizado nesse modelo foi igual ao apresentado na Se¢do
3.4.2.2, sendo realizadas apenas as modifica¢Oes referentes a func¢io de ativacdo. Essa altera¢do
na camada de saida, proporcionou uma nova transformag¢do nesses dados, onde antes havia
apenas uma combinacdo linear.

Os resultados experimentais demostraram que essa alteragdo aumentou o desempe-
nho da rede em cerca de 9% para os digitos australianos e cerca de 3% nos demais conjuntos
de dados testados. Todos os experimentos realizados utilizando a Regra Delta Generalizada,

apresentados no Capitulo 5, foram feitos com a rede ja modificada.
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Capitulo 4

Alvos ortogonais em Redes de Funcoes

Bases Radiais

4.1 Definicao de vetores-alvo

Convencionalmente, dois tipos de vetores-alvo sao usados pelas RNAs em problemas
de reconhecimento de padrdes, o Vetor Bindrio (VBN) e o Vetor Bipolar Convencional (VBC).
A proposta deste trabalho € a utilizacdo de vetores-alvo que possuem a caracteristica de serem
mutuamente ortogonais e dimensao sempre equivalente a uma poténcia de 2, definida dessa
forma. Por questdes inerentes ao algoritmo de gera¢do, determinado pela Secdo 4.2.

Por isso, em aplicac¢des, o Vetor Bipolar Ortogonal (VBO) pode apresentar dimensao
maior que os vetores convencionais. Para fins de comparagdo, também foi utilizado vetores
com a mesma caracteristica dos vetores convencionais, tendo a mesma dimensao dos vetores
ortogonais, definidos no trabalho como Vetor Nao Ortogonal (VNO). Os tipos de vetores-alvo
sdo definidos como:

e Vetores Bindrios (VBN): sdo vetores constituidos por n componentes, onde n cor-

responde a quantidade de padrdes a serem classificados. Representados por uma
matriz, definida pela Equacdo (4.1), cada linha i desta matriz corresponde ao i-

ésimo contendo o componente “ ara i = j € 0 componente ara os
VBN tend te “1” j te “0”
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outros elementos.

— 1 for i=j
Vij = (41)
0 for i#j

Vetores Bipolares Convencionais (VBC): sdo constituidos por n componentes e sua
dimensdo depende da quantidade de padrdes a serem classificados, de forma seme-
lhante aos VBN. Porém, na representacdo matricial, definida pela Equacgao (4.2),
contém os componentes “1” e “-17.

N 1 for i=j
Vij = (42)

-1 for i#]

Vetores Bipolares Ortogonais (VBO): sao caracterizados por serem mutuamente
ortogonais e por questdes matematicas inerentes ao algoritmo de geracdo, seu ta-
manho é sempre uma poténcia de 2. Para geracdo dos VBOs, € usado o teorema
apresentado na Secdo 4.2.

Vetores Nao Ortogonais (VNO): possuem a mesma caracteristica dos vetores do tipo
VBCs e a mesma dimensdo dos VBOs. Eles foram utilizados neste trabalho apenas
com o objetivo de propiciar uma comparacao justa de vetores. Para obter VNOs, os

VBCs sao complementados com o termo “—1" de modo a atingir o mesmo tamanho

dos VBOs.

4.2 Algoritmo de geracao de vetores bipolares ortogonais

O método de geracao de VBO foi proposto por Fausett & Hall (1994), nesse algoritmo

um vetor, chamado vetor de sementes, € utilizado para gerar uma nova sequéncia de vetores até

a determinacdo final dos VBOs. O nimero de componentes de cada VBO depende do niimero

de vetores desejados e do niimero de componentes escolhido para o vetor de sementes. Essa

relac@o pode ser descrita pela férmula

n=2m 4.3)
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onde 2% é o nimero de vetores ortogonais entre si para k > 0 € m é o nlimero de componentes
em um vetor de sementes. E interessante observar que o niimero de vetores serd sempre uma
poténcia de base 2. Logicamente, o interessado constrdi seu conjunto, observando esse detalhe,
e, apos a obtencdo dos vetores, seleciona somente a quantidade de que necessitar.

Assim sendo, um conjunto com 2¥ VBOs é construido com 2*m componentes. O
pseudo-codigo que apresenta a sequéncia de passos que visam a geragao dos vetores-alvos or-

togonais estd descrita no Algoritmo 4.

Algoritmo 4: GERAGAO DE VETORES BIPOLARES ORTOGONAIS

1 inicio
2 Iniciar o valor de {m} {nimero de componentes do vetor de sementes }
3 Iniciar o valor de {k} {ndmero vetores ortogonais a serem gerados}
—_—
4 Iniciar o vetor de sementes V de acordo com a equagdo V9 = (1,1, -, l)T
5 Concatenar o vetor V para constru¢do de novos vetores:
6 inicio
7 A funcao de concatenagdo € definida por:
8 fec(U,W) = (uy, Uy ooy Uy W1, Way ey W)
9 Sdo gerados os vetores: V) = fcc(V9,V9) e Vi = fee(V9,-V9)
10 fim
11 Concatenar os vetores obtidos na linha 9 para constru¢do de novos vetores:
12 inicio
13 Os vetores construidos sdo:
14 Vi =fec (V) Vs ), Vi =fec(Vy ,=V1),
15 Vi =fec(V3 V3 )eVs =fec(V3 ,-V3)
16 fim
17 repita
18 Concatenar os vetores existentes para a construcdo de novos vetores.
19 até que exista 2 vetores ortogonais;,

20 fim

Para fins ilustrativos, considere o exemplo em que se deseja construir 8 VBOs. O

vetor semente escolhido contém um componente { V0 = (1) }, dessa forma, de acordo com a
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Equacao (4.3) temos 8 componentes em cada vetor, conforme demonstrado

n=2m=8-1=8 4.4)

O préximo passo do algoritmo € a concatenacao do vetor de sementes para geragao de

novos vetores, que sao representados por:

Vi = fec(VO,V0) = (1,1) (4.5)
Vi = fee (Vi =Vi) = (1,-1) (4.6)

Em seguida, um novo conjunto de vetores € obtido pela execucdo da linha 11 do

algoritmo, esses vetores sdao definidos como:

Vi = fec(V3,,V3,) =(1,1,1,1) 4.7
Vi, = fec (Vi - v2m) (1,1,-1,-1) (4.8)
Vi, = fee(V3,,V3,) = (1,-1,1,-1) (4.9)
Vi, = fee(V3,,-V3,) = (1,-1,-1,1) (4.10)

Seguindo o algoritmo, em uma possivel execu¢do da linha 18, obtém-se os vetores
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representados:

Viw = fec (Vi Vi) = (L1 11,1, 1,1, 1) (4.11)
V3, =fec(Viw-Vi,) = (1,1, 1,1,-1,-1,-1,-1) (4.12)
Vau = fec(V3,,V3,) =(1,1,-1,-1,1,1,-1,-1) (4.13)

fee (Vi -Vi,) = (1,1,-1,-1,-1,-1,1,1) (4.14)
Vi, =fee (Vi Vi) = (1,-1,1,-1,1,-1,1,-1) (4.15)
Ve, = fee (Vi -Vi,) = (1,-1,1,-1,-1,1,-1,1) (4.16)
Vaw = fec (Vi Vi) = (1,-1,-1,1,1,-1,-1,1) (4.17)
VS, = fec (Vi -Vi,) = (1,-1,-1,1,-1,1,1,-1) (4.18)

Se for realizado o produto interno tomando cada par de vetores, verificar-se-4 que

serdo iguais a zero. Dessa forma, sdo obtidos oito VBOs, e cada qual com oito componentes.

4.3 Observacoes sobre os vetores

A distancia euclidiana entre dois VBCs € igual a 2 \/§ independente de sua dimensao,
porém a distancia euclidiana entre dois VBOs aumenta a medida que a dimensao desses vetores
também aumenta. Por essa caracteristica, para vetores de dimensao n, metade nas n diferencas
se anulard e a outra metade serd igual a 2> = 4. Por isso, a Equacédo (2.4) pode ser reescrita

como:

dyw = ,/g-4= V2n (4.19)

O gréfico da Figura 4.1 mostra a evolucao da distancia euclidiana baseado no aumento

da dimensao dos vetores-alvo. Com VBC e VNO, a distancia vale sempre V2e para VBO, a
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distancia € sempre crescente. Conforme demostrado pelas Equagdes (4.20) a (4.23).

lim V2n = lim V2 - /n (4.20)

X—>00 X— 00

lim v2n = V2 lim /i 4.21)

X—>00 X—>00

lim V21 = V2 o0 (4.22)
lim V2n = (4.23)

X—>00

Evolucio da distincia euclidiana
12

m M
8 MM
—+—\BO
el NG
4 M

4

Distancia Euclidiana
o

[

1 11 21 31 41
Dimenszio do vetor

Figura 4.1: Distincia Euclidiana de vetores-alvo

4.4 Efeito dos alvos ortogonais no processo de treinamento

Conforme visto nas se¢des anteriores, os VBOs alteram o espaco de saida da rede,
deixando-o mais disperso pois aumenta a distancia entre um alvo e outro. Porém, sua eficd-
cia em melhorar o desempenho de uma rede, depende da técnica utilizada para realizagdo dos

estagios de treinamento.
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4.4.1 Técnica de Otimizacao dos pesos

Conforme descrito na Secdo 3.4.2.1, nessa abordagem a camada de saida da rede
¢ linear e calculada através do uso da matriz pseudo-inversa dos resultados das fungdes de
base radial utilizadas no primeiro estigio de treinamento. Este trabalho utilizou como fungao
de base radial, as fun¢des gaussianas, definidas apds vdrios experimentos, pois foram as que
apresentaram as melhores taxas de reconhecimento dos padroes.

A funcdo gaussiana € definida pela Equacdo (3.8) e € representada graficamente pela
Figura 4.2. Nela a varidvel o representa o valor do desvio padrdo das amostras, de cada sub-
grupo, essa ¢ uma medida de dispersdo que indica a regularidade de um conjunto de dados em
funcdo da média. Nas gaussianas, ela define a amplitude da fun¢do, conforme mostrado na

Figura 4.2.

g(u) A

oV2m

Figura 4.2: Fung¢do de base radial do tipo gaussiana
Fonte: (Silva et al., 2010)

A varidncia o também é uma medida de dispersdo e indica “o quédo longe” os valores
se encontram do valor esperado, a Equacio (4.24) define uma varidncia da populagdo de um
conjunto de dados. O desvio padrdo € obtido através do cdlculo da raiz quadrada positiva da
variancia.

0'22

(xi—p)? (4.24)

M=

1
N

—_



onde N € a quantidade de padrdes e u representa a média.

No processo de RP, as fronteiras delimitadoras das RBF sao definidas por campos
receptivos hiperesféricos. Consequentemente, a classificacdo de padrdes levard em conta a
distancia radial em que os os padrdes se encontram em relagdo aos centros das hiperesferas. Ja
a MLP computa as fronteiras de delimitacio por intermédio de uma combinacdo de hiperplanos,

conforme exemplificado pela Figura 4.5 (Silva et al., 2010).

X, / X,

=
—->

(a) MLP X4 (b) RBF X4

Figura 4.3: Fronteira de separabilidade das redes MLP e RBF
Fonte: (Silva et al., 2010)

Com base nessas caracteristicas, quando utilizado um VBO no processo de classifica-
cdo, os alvos ficardo mais distantes, porém durante o cdlculo da gaussiana para o processo de
clusterizagdo, essa dispersao sera refletida no valor da variancia das amostras. Com os dados
dispersos, a variancia das amostras serd maior, aumentando o desvio padrdo e consequente-
mente a amplitude da gaussiana também serd maior para se ajustar aos dados pertencentes a

essa distribuicdo, o que ndo terd nenhum impacto no processo de clusterizacao.
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Figura 4.5: Clusterizacdo de amostras com VBO

A segunda fase do treinamento nessa abordagem € linear, utilizando os valores ob-
tidos nos cdlculos das gaussianas para se obter o vetor de pesos sindpticos otimizado para o
conjunto de dados treinado. Portanto, conclui-se que a utilizacdo de outros vetores-alvo, nessa

abordagem, ndo altera o desempenho da rede.

4.4.2 Regra Delta Generalizada

O algoritmo da Regra Delta é deduzido por meio da funcdo erro obtida pela diferenca
entre a saida encontrada e a saida desejada (Fausett & Hall, 1994), Foi deduzido por Rumelhart

et al (1985) com o objetivo de se reduzir o valor do erro quadratico médio. Assim, a funcdo erro
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¢ submetida a um algoritmo de gradiente descendente.

A comprova¢do matemdtica do uso dos VBOs no algoritmo da Regra Delta foi pro-
posta por Manzan (2016). Para uma discussdo matematica apropriada, € necessdrio fornecer
algumas férmulas.

Considere x; como o valor da i-ésima entrada, d;, como o valor da k-ésima saida dese-
jada, z; como o j-€simo valor que chega a camada oculta e y, como a k-ésima saida encontrada.

. 1 e, . . o, . .o, . A .
Considere W,.(j ) como o peso sindptico entre a i-ésima entrada e o j-ésimo neurdnio da camada

oculta, wl.(jz) como o peso sindptico entre o j-€simo neurdnio da camada oculta e o k-ésimo neuro-
nio da camada de saida e w(;; como o peso sindptico do tipo bias correspondente ao k-€simo
neuronio da camada de saida. A Equacgdo (4.25) mostra o célculo de z, nela ¢ representa a fun-
cdo de base radial utilizada no primeiro estdgio de treinamento e as Eq. 4.26 e 4.27 mostram o

calculo de y, (Fausett & Hall, 1994).

zj = ¢(x, W) (4.25)

yin = szwﬁ,f) (4.26)
J

v = f (ying) (4.27)

A funcdo erro é mostrada pela Equacio (4.28), na qual d; € a saida desejada e y; € a
saida encontrada. As Equacdes (4.29) a (4.33) mostram o cdlculo do gradiente descendente da

func¢do erro em relacio aos pesos da camada de saida. A Equacdo (4.34) mostra a férmula de
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atualizac@o dos pesos da camada de saida.

1
=3 > [di ~ ]’ (4.28)
k
OE 1
~ S di-w) (4.29)
Gwﬁ.,f) 6w§i) 2%
OE a1 )
— = = [di - f (yiny)] (4.30)
2 2
awﬁk) 8w§k) 2
OE 9 .
—&y = ~ e~ 5./ (vime) (4.31)
aij 3W1k
OE .
- [di — i) f (ving) —— (ying) (4.32)
(9wjk ow ji
OF .
o =~ L=y S (vin) 2 (4.33)
Owjk
8k = [di = yie] f' (ying) (4.34)

E possivel expressar matematicamente a fun¢ao distancia euclidiana em relacao a fun-
cdo erro. Se a distancia euclidiana diminui, o erro também diminui. Se a distincia euclidiana

aumenta, o erro também aumenta. A funcao distancia euclidiana é mostrada pela Eq. 4.35.

D= (Z [tk_yk]z)z (4.35)

3
Assim, a funcdo distancia euclidiana € a raiz quadrada do dobro da fun¢do erro D =

V2E. Aplicando o gradiente descendente para a funcio distincia euclidiana, obtém-se

S = [tk - )’k] Vi (yink) (4.36)
Silte -yl
6;= L Sowie" (zin;) (4.37)
J
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Assim, as férmulas obtidas pela aplicacdo do gradiente descendente para a fungdo
erro também estdo relacionadas com as formulas obtidas pela aplicacdo do gradiente descen-
dente para a funcao da distancia euclidiana. Pode-se deduzir que, se os pontos do espaco de
saida, intitulados “alvos” da rede, estdo mais distantes uns dos outros, as chances de uma saida
obtida pela inser¢do de um determinado padrdo se aproximar de alvos correspondentes a outros
padrdes sao menores.

Os pontos do espacgo de saida sdao equidistantes para qualquer tipo de vetor no espago
R", sdo considerados dois vetores-alvo distintos. Considere-se também a representacdo desses
pontos no plano. Ao longo do treinamento, cada saida obtida é projetada no espagco R". Nessa
ilustragcdo, cada saida € projetada no plano. Com a evolugdo dos ciclos, as saidas projetadas
formam uma regido de convergéncia em torno da saida desejada. A Figura 4.6 ilustra essa
discussao.

Regido de convergéncia Saida
encontrada

Figura 4.6: Ilustracdo de regides de convergéncia
Fonte: (Manzan, 2016)

Nessa ilustracdo estd clara a existéncia de uma grande quantidade de pontos perten-
centes as duas regides de convergéncia. Esses pontos dentro da interseccao das regides de
convergéncia estao mais propensos a estarem mais préximos de alvos correspondentes a outros

padrdes, ou seja, mais proximos de alvos incorretos, fazendo com que a rede os classifique

62



incorretamente.

Contudo, se os alvos estdo mais distantes uns dos outros, a intersec¢ao entre as regioes
de convergéncia é bem menor. Assim, a taxa de classificacio é beneficiada, porque ha menos
saidas propensas a erros de classificacdo. A Figura 4.7 ilustra dois alvos dispostos a uma maior

distancia euclidiana.

Saida
Regido de convergéncia encontrada

Alvo 1 Alvo 2

Figura 4.7: Tlustracdo de regides de convergéncia com alvos distantes
Fonte: (Manzan, 2016)

Isso explica por que as redes que utilizam essa metodologia treinadas com VBOs
tém melhor desempenho global. Também explica a superioridade de VBOs com poucos ciclos
de treinamento. A caracteristica dos VBOs de possuirem maior distancia euclidiana reduz a

interferéncia entre as regidoes de convergéncia.
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Capitulo 5

Procedimentos Experimentais

5.1 Dados experimentais

Os experimentos realizados para treinamento e teste da RBF foram feitos com trés
conjuntos de dados diferentes disponibilizados por repositério de dados publicos. Em cada um

dos conjuntos de dados, foram feitos testes com diferentes tipos de vetores-alvos e dimensdes.

5.1.1 Iris humana

O conjunto de dados para os experimentos realizados com a iris humanas foi obtido na
Chinese Academy of Sciences - Institute of Automation database denominada CASIA (Casia,
2010). O conjunto de dados contém firis de 108 individuos e para 70 deles ha um conjunto
completo de sete imagens. De acordo com o repositorio CASIA, essas imagens foram obtidas
com o uso de luz infravermelha para obter melhor contraste e nitidez.

Cada imagem possui 18 circulos concéntricos, € 0 primeiro passo para O processa-
mento das imagens é a detec¢do das circunferéncias que foi feita utilizando a transformada de
Hough Circular (Pereira & Veiga, 2005). Em seguida, a regido da iris, que tem formato de anel,
€ normalizada de modo a ser representada como uma matriz retangular.

A extracdo das caracteristicas da iris € realizada no pr6ximo passo, neste trabalho,

foi realizada por convolugdo da imagem normalizada com o chamado filtro de Log Gabor. A
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filtragem resulta em coeficientes complexos, cujas fases sao quantizadas para um dos quatro
quadrantes do plano complexo. Cada quadrante é referenciado por dois bits, € um modelo
bindrio € criado (Daugman, 1993; Negin et al., 2000; Manzan, Yamanaka, & Nomura, 2011).
Para cada imagem existem 8640 pixels dispostos em 18 circulos concéntricos, cada
um contendo 480 pixels. Porém, para reduzir a interferéncia dos cilios, foi utilizado somente as
cinco primeiras circunferéncias. Dessa forma, cada um dos padrdes de treinamento corresponde
a um conjunto de 5 x 480 = 2400 pixels, que sdo dispostos em um vetor linha onde os pixels

brancos sdo representados por “—1”, e os pixels pretos, por “1”.

5.1.2 Digitos manuscritos

O repositorio internacional Semeion Handwritten Digit of Machine Learning Repo-
sitory (Lichman, 2013) disponibiliza o conjunto de dados com imagens escaneadas de digitos
manuscritos. Segundo informagdes disponibilizadas pelo repositério, para obtengdo desses da-

dos, cerca de 80 pessoas foram convidadas a escrever os nimeros de 0 a 9 duas vezes:

1. Escrever os digitos calmamente, primando pela perfei¢do;

2. Escrever os digitos rapidamente, sem se preocupar com a legibilidade.

Cada figura foi escaneada em uma imagem contendo 256 pixels no formato de 16
linhas e 16 colunas, essa matriz foi transformada em um vetor linha de 256 componentes, sendo
que cada linha foi posicionada imediatamente a direita de sua linha superior na matriz (Lichman,
2013). Para cada pixel correspondente ao fundo da imagem foi atribuido o valor —1 e para cada

pixel correspondente a imagem foi atribuido o valor 1.

5.1.3 Signos da linguagem de sinais australiana

Finalmente, foram realizados experimentos com signos da linguagem de sinais austra-
liana (Australian linguagem gestual) obtidos no UCI Machine Learning Repository (Lichman,
2013). De acordo com o repositério, foram capturadas 27 amostras de cada um dos 95 signos

australianos usando-se rastreadores de posi¢cdo de alta qualidade de individuos nativos.
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Os dados foram capturados utilizando-se luvas de quinta dimensao, rastreadores mag-
néticos, entre outros equipamentos de alta qualidade. Porém alguns dados obtidos ndo sdo

totalmente precisos. Foram registrados os seguintes dados:

e Posicdo x: posigao relativa, medida em metros, em relacdo a um ponto ajustado
ligeiramente abaixo do queixo.

e Posicdo y: posicdo relativa, em metros, em relacdo a um ponto ajustado ligeira-
mente abaixo do queixo.

e Posicdo z: posigdo relativa, em metros, em relagdo a um ponto ajustado ligeiramente
abaixo do queixo.

e Roll [-0.5,0.5]: 0 sendo palma para baixo, valor positivo significa que a palma gira
no sentido hordrio a partir da perspectiva do pronunciador.

e Pitch [-0.5,0.5]: 0 sendo palma plana (horizontal), um valor positivo significa que
a palma estd apontando para cima.

e Yaw [-1,1]: 0 corresponde a palma para a frente e o valor positivo significa movi-
mento no sentido hordrio ambos a partir da perspectiva acima do pronunciador.

e Medida da curva do polegar [0, 1] : O valor 0 significa totalmente plana, e 1 signi-
fica totalmente dobrado.

e Medida da curva do dedo indicador [0,1]: 0 indica o dedo totalmente plano e 1
indica que o dedo estd totalmente dobrado.

e Medida da curva do dedo médio [0,1]: 0 indica o dedo totalmente plano e o valor
1 indica o dedo totalmente dobrado.

e Medida da curva do dedo anelar [0,1]: 0 indica o dedo totalmente plano e o valor
1 indica o dedo totalmente dobrado.

e Medida da curva do dedo mindinho [0,1]: 0 indica o dedo totalmente plano, e o

valor 1 indica o dedo totalmente dobrado.
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5.2 Vetores-alvo

Para cada conjunto de dados testados, foram usados os 3 tipos de vetores-alvo
descritos na Secdo 4.1, o tamanho utilizado para treinamento da rede em cada conjunto de

dados, esta descrito da Tabela 5.1.

Tabela 5.1: Dimensao dos vetores-alvo utilizados

Conjunto de dados VBC VNO VBO
128 128
256 256
Iris Humana 70 512 512
1024 1024
2048 2048
Digitos Manuscritos 10 16 16
Signos Australianos 95 128 128

5.3 Planejamento experimental

Os experimentos foram realizados com os trés conjuntos de dados descritos na Se¢ao
5.1 e para cada um desses conjuntos foram implementados dois modelos de RBF. O primeiro
modelo foi desenvolvido utilizando a abordagem proposta por Haylin (2008) de otimizacao de
pesos, descrita na Secdo 3.4.2.1, no segundo estdgio de seu treinamento, referenciado apenas
como MH a partir de agora.

J4 o segundo modelo, em sua fase supervisionada utilizou a abordagem proposta por
Silvaet al. (2010) e empregou a Regra Delta Generalizada para atualizagao dos pesos da camada
de saida, a partir desta secdo, este modelo serd referenciado apenas por MRD.

Para cada um dos conjuntos de dados, foram feitos experimentos com 10 valores dife-
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rentes de neur6nios na camada intermedidria (quantidade de subgrupos/clusters), além disso, as
dimensdes especificadas na Secdo 5.2 dos vetores-alvo, definidos na Secdo 4.1, também foram
utilizadas. Todos os experimentos feitos com o emprego da Regra Delta Generalizada utilizou
taxa de aprendizagem adaptativa (Duffner & Garcia, 2007) com valor inicial em 0.05 e termo
momentum [0,0.9] definido como B = 0.9 (Silva et al., 2010).

Os experimentos foram repetidos 100 vezes para cada combinagdo desses valores,
com inicializa¢do de pesos aleatdrios nas duas fases do algoritmo de treinamento. Os pesos
sindpticos iniciais foram gerados aleatoriamente entre —0.5 e 0.5. Os resultados apresentados
neste trabalho representam a média das 100 execucdes de cada um dos experimentos feitos.

Todos os modelos experimentais foram desenvolvidos e testados utilizando o sofw-
tare Matlab ®R2016a. Os testes estatisticos realizados durante o trabalho foram feitos com o

software de andlises estatisticas R (R Core Team, 2014).

5.4 Parametros analisados

Cada conjunto de dados foi dividido em trés subgrupos que representavam os dados
para treinamento, validacdo e teste. Nos experimentos feitos com a base de dados da iris hu-
mana, o conjunto de treinamento continha quatro amostras de cada individuo, totalizando 280
amostras.

Para o conjunto de 10 digitos manuscritos foram utilizadas no total 450 amostras. Fi-
nalmente, foram utilizadas 9 amostras de cada um dos 95 tipos de sinais de signos australianos,
totalizando 855 amostras para cada um dos conjuntos (treinamento, validagdo e teste). Todos
os parametros de desempenho foram obtidos por meio dos conjuntos de teste.

O MH € executado em apenas um ciclo de treinamento e por isso, foi analisado apenas
o desempenho médio e o desempenho méximo para os experimentos. A titulo de comparagdo
das técnicas, a implementacdo de MRD também foi analisada seguindo os mesmos parametros.

Considerando que em (Manzan et al., 2016) estes conjuntos de dados foram utilizados

para experimentos em redes MLP, o modelo MRD foi analisado utilizando os mesmos para-
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metros utilizados para a rede MLP para fins comparatoérios. Os parametros analisados em cada

experimento foram:

1. Desempenho maximo global
2. Desempenho maximo em 50 ciclos
3. Desempenho apds o primeiro ciclo

4. Desempenho médio dos cinco primeiros ciclos

5.5 Resultados Experimentais

A Tabela 5.2 mostra os resultados do teste de normalidade de Kolmogorov-Smirnov
(Conover, 1999) realizados com os resultados obtidos nos experimentos com digitos manuscri-
tos. A estatistica desse teste € representada pela letra D e usando nivel de significancia a = 0.05,
os dados ndo se ajustam a distribui¢do normal.

O mesmo fendmeno ocorre para os resultados obtidos nos experimentos com {ris
humana e signos australianos, como pode ser visto nas Tabelas 5.3 e 5.4. Por essa razdo, o
teste ndo paramétrico de Mann-Whitney (Conover, 1999) foi utilizado para comparacio de

significancia entre as amostras dos trés tipos de conjuntos de dados.

Tabela 5.2: Teste de normalidade de Kolmogorov-Smirnov - Digitos Manuscritos

Ciclo 1 5 10 15 20 25 30 35 40 45 50

D 0.170 0.130 0.119 0.112 0.168 0.214 0.210 0.208 0.192 0.153 0.168

Tabela 5.3: Teste de normalidade de Kolmogorov-Smirnov - fris Humana

Ciclo 1 5 10 15 20 25 30 35 40 45 50

D 0.415 0.452 0.338 0.354 0.362 0.352 0.333 0.319 0.289 0.249 0.201
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Tabela 5.4: Teste de normalidade de Kolmogorov-Smirnov - Sinais Australianos

Ciclo 1 5 10 15 20 25 30 35 40 45 50

D 0.369 0.365 0.348 0.313 0.301 0.273 0.233 0.225 0.194 0.181 0.145

A Tabela 5.5 mostra os resultados do teste estatistico de Mann-Whitney de todas as
comparagdes com o uso de diferentes vetores-alvo nos experimentos com digitos manuscritos.
A hipdétese nula é que ndo existem diferencas significativas entre os vetores, e a hipotese alter-
nativa € que existem diferencas significativas entre os vetores. Para cada comparagdo € gerada
uma estatistica do teste representada como “valor-p”.

Entende-se por “valor-p” sob a hipétese nula (considerada como verdadeira) a proba-
bilidade de obten¢do de um valor igual ou mais extremo do que o valor obtido na amostra. De
modo andlogo, as Tabelas 5.6 e 5.7 mostram, respectivamente, os resultados do teste estatistico
de Mann-Whitney referentes aos experimentos com iris humana e signos australianos.

As comparagdes com os demais vetores-alvo utilizados nos experimentos feitos
com a iris humana estdo dispostos no Apéndice A. Os valores representados com asteris-

cos, nas tabelas posteriores, indicam que ndo existem diferencas ao nivel de 1% de significancia.

Tabela 5.5: Teste de Mann-Whitney - Digitos Manuscritos

Ciclo Comparacao
VBCy x VNOq¢ VBCiy x VBOs VNO;y x VBOs

1 0.35112 * *
5 0.27479 * *
10 0.22780 * *
15 0.23129 * *
20 0.18167 * *
25 0.33009 * *
30 0.16136 * *
35 0.06641 * *
40 0.26642 * *
45 0.05782 * *
50 0.35112 * *
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Tabela 5.6: Teste de Mann-Whitney - Iris Humana

Ciclo Comparacao
VBC79 x VNO23 VBC7y x VBO) 3 VNOi28 x VBO12

1 0.720 * *
5 0.123 * *
10 0.201 * *
15 0.923 * *
20 0.323 * o
25 0.452 * *
30 0.701 * *
35 0.359 * *
40 0.074 * *
45 0.468 * *
50 0.865 * *

Tabela 5.7: Teste de Mann-Whitney - Sinais Australianos

Ciclo Comparacao
VBCys x VNO23 VBCys X VBO 3 VNO3 X VBO12s

1 0.5857 * *
5 0.2570 * *
10 0.7572 * *
15 0.5047 * *
20 0.7759 * g
25 0.8969 * *
30 0.1486 * *
35 0.1469 * *
40 0.4853 * *
45 0.3775 * g
50 0.4639 * *
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Em sua camada intermedidria, redes RBF utilizam fun¢des de ativagcdo do tipo base
radial, como as expressas nas Equacdes (3.8) a (3.12), a Figura 5.1 mostra uma comparag¢io do
desempenho obtido no treinamento realizado com a base de dados da fris Humana utilizando
trés das principais fungdes. A partir dos resultados apresentados, pode-se concluir que o de-
sempenho da funcdo gaussiana foi superior aos demais em todos os ciclos do treinamento e por

iss0, nos demais experimentos ela foi utilizada.

Comparac2o de resultados apos a utilizagdo de diferentes
funcoes de base radial
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Figura 5.1: Comparacao de resultados ap6s a utilizacdo de diferentes fungdes
de base radial

Durante a escolha da estratégia de aprendizagem a ser utilizada, foram feitos expe-
rimentos utilizando a abordagem de Centros Fixos Selecionados ao Acaso, descritos na Secio
3.3.1, e por Selecdo Auto-organizada de Centros, apresentada na Se¢do 3.3.2.

Os resultados encontrados nesses dois experimentos demostraram que a abordagem de
treinamento hibrido da rede, utilizando a sele¢do auto-organizada de centros, apresentou média
de desempenho superior a outra estratégia em cerca de 20%. Isso acontece porque na sele¢do

auto-organizada, os clusters e os centros de cada um deles sdo ajustados com maior precisdo.
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A Tabela 5.8 mostra o valor médio dos resultados obtidos com implementacido de
MH. Devido a sua forma de implementacdo, os pesos sdo ajustados em apenas um ciclo, por
isso, para fins comparatorios entre as duas implementagdes, a Tabela 5.9 apresenta o valor

médio dos desempenhos méaximos de cada experimento na modelagem MRD.

Tabela 5.8: Desempenho obtido com a rede MH

Dados Desempenho Desempenho
. . Vetores-alvo i L, .
Experimentais médio maximo
VBCy 87.69 93.57
VNO»5 87.44 93.57
VNO,s6 87.46 93.78
VNOs» 87.33 93.57
VNO 4 87.56 93.45
fris Humana VNO)4s 87.31 93.57
VBO, g 87.31 93.78
VBO»s 87.91 93.30
VBOs, 87.55 92.14
VBO g4 87.12 93.45
VBO,4s 87.56 93.57
Digitos VBCij 87.51 89.38
Manuscritos VNO4 87.72 89.56
VBOy4 87.73 89.51
Sinais VBCoys 55.85 57.76
Australianos VNO 54.02 55.90
VBO, g 54.30 55.97
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Tabela 5.9: Desempenho obtido com a rede MRD

Dados Desempenho Desempenho
. . Vetores-alvo P L .
Experimentais médio maximo
VBCy 79.08 87.14
VNO, 4 79.87 87.85
VNOys6 91.19 94.28
VNOs;, 91.37 93.57
VNO 4 79.58 87.14
Iris Humana VNO,45 79.66 86.42
VBOs 90.75 91.42
VBO;s6 95.22 96.42
VBOs; 95.12 96.42
VBO 24 90.89 91.42
VBOsg4s 90.82 91.42
Digitos VBCy 83.33 90.86
Manuscritos VNO¢ 83.45 91.11
VBOy4 81.89 90.12
Sinais VBCos 66.08 76.04
Australianos VNO 5 66.16 77.07
VBO, 3 68.34 73.68

Os resultados obtidos por (Manzan et al., 2016) em seus experimentos com estes
conjuntos de dados utilizando redes do tipo MLP estao dispostos nas Tabelas 5.10, 5.11, 5.12.
De forma andloga, as Tabelas 5.13, 5.14, 5.15 mostram os resultados obtidos nos experimentos
feitos com a implementacdo MRD utilizando os pardmentros para fins comparatérios das duas

redes.

Tabela 5.10: Resultados MLP - Digitos Manuscritos

Parametros analisados VBCy VNOy¢ VBOy4
Desempenho apds o primeiro ciclo 56.13 50.79 69.59
Desempenho médio dos cinco primeiros ciclos  63.34 59.79 74.54
Desempenho médio em 50 ciclos 76.91 76.52 82.45
Desempenho méximo global 79.49 79.34 84.93
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Tabela 5.11: Resultados MLP - fris Humana

Parametros analisados VBCqg VNOijs  VBOjog
Desempenho apds o primeiro ciclo 7.01 5.16 77.13
Desempenho médio dos cinco primeiros ciclos  18.51 12.22 85.48
Desempenho médio em 50 ciclos 83.48 82.13 89.18
Desempenho maximo global 83.88 82.72 90.44

Tabela 5.12: Resultados MLP - Sinais Australianos

Parametros analisados VBCy;s VNO»5 VBO 55
Desempenho apds o primeiro ciclo 2.82 2.68 28.56
Desempenho médio dos cinco primeiros ciclos  2.88 2.79 47.06
Desempenho médio em 50 ciclos 62.77 60.06 78.84
Desempenho médximo global 76.39 75.26 82.63

O grafico representado na Figura 5.2, representa os resultados obtidos na Tabela 5.13
€ mostra uma comparagdo entre os trés tipos de vetores-alvo apresentados neste trabalho. Os
valores apresentados, correspondem a média dos resultados dos 100 experimentos realizados
com 50 ciclos na fase de treinamento. Da mesma maneira, os graficos das Figuras 5.3 ¢ 5.4

representam os valores sintetizados nas Tabelas 5.14 e 5.15, respectivamente.

Tabela 5.13: Resultados RBF - MRD - Digitos Manuscritos

Parametros analisados VBCio VNO;4 VBOq
Desempenho ap6s o primeiro ciclo 24.45 23.96 50.75
Desempenho médio dos cinco primeiros ciclos  62.64 62.02 71.19
Desempenho médio em 50 ciclos 83.33 83.45 81.89
Desempenho médximo global 90.86 91.11 90.12
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Comparacao de desempenho RBF - MRD

Digitos Manuscritos
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Figura 5.2: Gréfico para comparagdo de desempenho de diferentes vetores
alvo em RBF - MRD: Digitos Manuscritos

Tabela 5.14: Resultados RBF - MRD - Iris Humana

Parametros analisados VBCr VNOi»3 VBOag
Desempenho apds o primeiro ciclo 3.43 3.37 10.02
Desempenho médio dos cinco primeiros ciclos  6.12 6.27 70.75
Desempenho médio em 50 ciclos 63.47 63.55 88.2
Desempenho médximo global 87.17 87.85 91.42

Comparacao de desempenho RBF - MRD
Iris Humana
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Figura 5.3: Gréfico para compara¢do de desempenho de diferentes vetores
alvo em RBF - MRD: fris Humana
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Tabela 5.15: Resultados RBF - MRD - Sinais Australianos

Parametros analisados VBCys VNO;25 VBO 5
Desempenho apés o primeiro ciclo 4.44 4.57 41.55
Desempenho médio dos cinco primeiros ciclos  11.61 12.00 59.33
Desempenho médio em 50 ciclos 66.08 66.16 68.34
Desempenho médximo global 76.07 77.07 76.68

Comparacao de desempenho RBF -MRD
Signos Australianos
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Figura 5.4: Gréfico para compara¢do de desempenho de diferentes vetores
alvo em RBF - MRD: Sinais Australianos

5.6 Discussao

A andlise estatistica do trabalho foi feita utilizando o teste de Mann-Whitney. Neste
teste, o valor de “p” obtido como resultado das comparagdes, indica se existem diferengas ou
ndo entre os dados. Se os valores forem abaixo de 0.05, demostram que ndo existem diferencas
considerdveis entre as amostras. Porém, valores maiores indicam que o resultado da compara-
¢do de dados com diferencas significantes.

Os resultados do teste de Mann-Whitney demonstram que ndo existem diferengas sig-
nificativas entre os VBCs e os VNOs em nenhum dos conjuntos de testes. Porém, na compa-

[IP%L)

racdo entre os VNOs com os VBOs e dos VBCs com os VBOs os valores de “p” encontrados
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foram todos menores que 2.2E-16, representando a diferenca que existe entre os vetores com-
parados.

Os resultados obtidos pela modelagem MH na Tabela 5.8, quando comparados com os
obtidos pela modelagem MRD presentes pela Tabela 5.9, mostram que na utilizacdo dos VNOs
as duas redes possuem desempenho equipardveis, porém, quando os VBOs sdo utilizados como
vetores-alvo nas redes MRD, o desempenho delas passa a ser superior em todos os conjuntos
de dados experimentados nesta pesquisa.

De acordo com a Tabela 5.8, os dados treinados com a iris, utilizando VBOj,g, ob-
tiveram desempenho médio de 87.31%, enquanto que na modelagem MRD com os mesmos
vetores-alvo, o desempenho médio da rede chegou a 90.75%. Ja com a utilizagdo de VBO,s
a diferencga € ainda maior, a modelagem MH obteve desempenho médio de 87.91%, enquanto
que na modelagem MRD o desempenho médio da rede foi de 95.22%.

Com o conjunto de dados referente aos digitos manuscritos, a melhora da performance
ndo foi significativa. Obteve-se com a RBF - MRD desempenho maximo de 90.12% e na
modelagem MH, o resultado foi de 89.51%. Na base de dados dos Signos Australianos, nota-se
novamente uma melhor performance utilizando a Regra Delta Generalizada. Os resultados do
desempenho médio da modelagem MH para os sinais australianos foram de 54.30% de acerto,
enquanto que com a rede MRD, obteve-se 68.34% de taxa de acerto.

As Figuras 5.2, 5.3 e 5.4 representam os resultados obtidos pela execu¢do da rede
MRD e os graficos demonstram a superioridade dos VBOs em relacdo aos demais vetores uti-
lizados, sendo notavel nos 3 conjuntos de dados que nos 5 primeiros ciclos de treinamento os
VBOs conseguiram atingir uma taxa de acerto maior que os demais. As Tabelas 5.13, 5.14 ¢
5.15 também demonstram as mesmas caracteristicas visualizadas nos gréficos.

Nos experimentos feitos com as imagens de iris, no 1¢ ciclo a rede apresentava 10.02%
de acerto com VBO,,3, enquanto usando VBC;, estava com apenas 3.43% de acerto e com
VNO 5 com 3.37%. No 5° ciclo, a taxa de acerto com o VBO,5 foi de 70.75%, com a utilizagao
do VBC5 a performance foi de 6.12% e com VNO,,4 a taxa de acerto foi de 6.27%. O melhor

desempenho dos VBOs continua nos ciclos posteriores, sendo que, no 10° ciclo a rede apresenta
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6.92% de acerto com os VBC5g, 6.97% com os VNO,5 e 84.30% utilizando-se VBO .

Os resultados com os Sinais Australianos também apresentam a mesma caracteristica.
No 5 ciclo a modelagem da rede que utiliza VBO;,5 como vetor-alvo possui 59.33% de acerto,
enquanto que com VBCys a taxa de acerto € 11.61% e usando VNO,3 a porcentagem de acerto
¢ de 12%. Nos digitos manuscritos, logo no 1° ciclo a taxa de acerto da rede modelada com
VBO¢ apresenta 50.75% de acerto, enquanto as modelagens que possuem VBCjy e VNO;
apresentam porcentagem de acerto em torno de 24%. Comprovando dessa forma, a eficicia dos
novos vetores para estes problemas de classificagdo de padroes, utilizando como abordagem de
treinamento a Regra Delta Generalizada, uma vez que o desempenho foi maior em um nimero
de ciclos reduzido.

Comparando os resultados apresentados nas Tabelas 5.10, 5.11 e 5.12, que apresenta
os valores obtidos com a rede MLP, com os apresentados pelas Tabelas 5.13, 5.14 e 5.15, res-
pectivamente, cujos valores sdo aqueles obtidos pela execucdo da rede com modelagem MRD,
nota-se que com o conjunto de dados da Iris Humana, a RBF apresentou uma taxa de acerto
bem préxima que a MLP, porém com base de dados dos Signos Australianos que a porcenta-
gem de acerto da MLP foi 5.95% maior que a da RBF. Ja no conjunto de dados dos Digitos
Manuscritos, a RBF acertou 5.19% mais padrdes que a MLP.

Utilizando a base de dados das imagens da iris, o desempenho maximo obtido pela
MLP foi de 90.44%, utilizando-se os VBOs, jd a taxa de acerto da RBF para o mesmo conjunto
de dados foi de 91.42%. Nos digitos manuscritos, o desempenho da RBF foi de 90.12% en-
quanto que o apresentado para a MLP foi de 84.93%. Utilizando a base de dados dos Signos
Australianos, o desempenho da RBF foi de 76.68% e a MLP apresentou resultado de 82.63%.
Essa semelhanca na média dos resultados das comparagdes, demonstra que as duas redes pos-
suem desempenho equivalente para os padrdes testados. Além disso, nota-se que os VBOs

melhoram o desempenho dos dois tipos de RNAs.
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Capitulo 6

Conclusao

Este trabalho prop0s a utilizacdo de novos vetores-alvo em RNAs do tipo RBF. A
caracteristica de ortogonalidade miutua desses vetores faz com que estejam geometricamente a
uma maior distancia euclidiana. Essa maior distancia entre os pontos do espacgo de saida oferece
a rede maior capacidade de generalizacdo, redu¢do do esfor¢co computacional e robustez.

Foi demonstrado que o distanciamento dos pontos, melhora o desempenho para a
modelagem realizada com o algoritmo da Regra Delta Generalizada, porque ao longo do treina-
mento, a saida obtida pela rede para cada amostra aproxima-se do seu alvo correspondente. Se
os alvos estdo mais distantes uns dos outros, haverd menor probabilidade de as saidas geradas
pela rede em tempo de treinamento estarem mais proximas de alvos incorretos. Consequente-
mente, a tarefa de classificacdo dos padroes sera facilitada.

Porém na modelagem utilizando o método de otimizagdo de pesos proposto por Hay-
kin (2008), a utilizacdo desses vetores ndo impacta o resultado da rede devido a sua forma de
ajuste de pesos. Esse comportamento acontece devido a forma de agrupamento/clusterizacao
realizada, onde os grupos se ajustam de acordo com os membros que pertecem a ele, conforme
explicado na Secdo 4.4.1. Essa caracteristica também foi demonstrada pelos experimentos re-
alizados durante o trabalho e sintetizados na tabela 5.8, onde a variacdo do desempenho das
redes com diferentes vetores-alvo ndo passou de 1%.

As duas modelagens propostas para redes RBF foram implementadas e experimental-
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mente analisadas para o reconhecimento de digitos manuscritos, iris humana e signos austra-
lianos. A comparacgdo feita entre as duas redes, analisando seu desempenho médio e maximo
demonstrou que, na utilizacdo de vetores convencionais, ambas possuem desempenho equipa-
ravel. Porém na utilizacdo de VBO, objeto de pesquisa deste trabalho, a rede modelada com
a Regra Delta Generalizada apresentou melhores resultados para taxa de acerto dos padroes
experimentados.

Estes resultados também nos mostram que a modificacdo realizada na camada de
saida, alterando a func¢do de ativag@o de linear para sigmoide melhorou o desempenho da rede
em cerca de 9% para os digitos australianos e cerca de 3% nos demais conjuntos de dados testa-
dos. O aumento no desempenho ocorre porque essa alteracdo na camada de saida proporcionou
uma nova transformacdo nos dados onde antes havia apenas uma combinacdo linear.

Os dois tipos de redes neurais utilizados nesta pesquisa sdo tradicionalmente utiliza-
dos em aplicagdes para reconhecimento de padrdes, aproximacdo funcional, entre outros. As
redes se diferenciam quanto caracteristicas em sua arquitetura. A comparacdo das redes RBF
e MLP demostrou que, a RBF necessita de um conjunto de dados de entrada maior para rea-
lizar o treinamento e ajuste de pesos, enquanto a MLP consegue resultados semelhantes com
menos dados de entrada. Em contrapartida, o tempo de convergéncia da RBF é menor quando
comparado a MLP.

Os experimentos realizados para comparacao das redes, consistiram na comparagao
do desempenho em varios momentos do treinamento usando-se VBCs, VNOs e VBOs. Eles
demonstraram que, para o conjunto de padrdes utilizados, as duas redes sdo equipardveis na
tarefa de reconhecimento de padrdes.

Outro aspecto importante que foi verificado, foi que as redes treinadas com VBOs tém
desempenho superior em todos esses momentos do treinamento. Foi verificado também que o
aumento da dimensao dos vetores convencionais nao melhora o desempenho, em alguns casos,
o desempenho com vetores de dimensdes maiores foi inferior. Essa mesma caracteristica, foi
observada na utilizacdo dos VBOs, onde os vetores com dimensdes muito grandes, como 1024

e 2048, apresentaram menor desempenho que os demais.
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Destaca-se que, além do aumento do desempenho global do treinamento, o uso de
VBOs como alvos de RBFs permite inclusive que a rede alcance um nivel satisfatério de de-
sempenho com pouco treinamento. Isso é especialmente importante pelo fato de reduzir o
esfor¢co computacional.

Os experimentos também demostraram que o processo de clusterizagdo feito na ca-
mada intermedidria € de extrema importancia para o bom desempenho na tarefa de classifi-
cacdo de padrdes. Em trabalhos futuros, espera-se realizar experimentos com outros tipos de
algoritmos para clusterizacdo dos dados na camada intermedidria para analisar e comparar o

desempenho da rede com outras bases de dados.
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Apéndice A
Teste de Mann-Whitney

Vetores 1 5 10 15 20 25 30 35 40 45 50

CBV70 x NOV128 0.512 | 0.914626 | 0.550437 | 0917541 | 0.275391 | 0.12363 | 0.677306 | 0.427429 | 0.695998 | 0.489651 | 0.964828
CBV70 X NOV256 0.08738 * * * * * * * * * 5
CBV70 x NOV512 0.003688 * * # * #* * * * * *
CBV70 x NOV1024 0.6808 | 0.262312 | 0.132572 | 0.312186 | 0.713009 | 0.518463 | 0.914952 | 0.250881 | 0.38246 | 0.295546 | 0.250846
CBV70 X NOV2048 0.6713 | 0.289763 | 0.449735 | 0.999017 | 0.425711 | 0.826974 | 0.565621 | 0.369999 | 0.41511 | 0.524193 | 0.651508
CBV70 X OBV128 0.9261 * * * * * * * * * 5
CBV70 X OBV256 * * * * * * * * * P i
CBV70 X OBV512 * * * * * * % * 5 5 *
CBV70 X OBV1024 0.6296 * * * * * * * * * 5
CBV70 X OBV2048 8412 # * * #* #* * * * 4 *
NOV128 X NOV256 0.02711 * * * * * * * * * #
NOV128 X NOV512 * * * * #* * * * * * s
NOV128 X NOV1024 0.8445 | 0.342471 | 0.338783 | 0.232548 | 0.480911 | 0.02468 | 0.700863 | 0.780616 | 0.263475 | 0.090504 | 0.230253
NOV128 X NOV2048 0.8002 | 0.320668 | 0.90695 | 0.855552 | 0.068396 | 0.17899 | 0.482815 | 0.849288 | 0.690534 | 0.151067 | 0.727144
NOV128 X OBV128 0.7987 * * * * * ® * * * #
NOV128 X NOV256 #* * * * * * * * * B *
NOV128 X OBVS512 * * * * * * ® * * * 5
NOV128 X OBV1024 0.8118 # * * #* #* * * * s *
NOV128 X OBV2048 0.9689 * * * * * * * 4 i
NOV256 X NOV512 0.2562 | 0.551231 | 0.188105 | 0.465768 | 0.765582 | 0.481723 | 0.367597 | 0.014044 | 0.189381 | 0.288308 | 0.639414
NOV256 X NOV1024 0.04028 * * * * #* ® * * * 5
NOV256 X NOV2048 0.0438 # * * #* #* * * # 4 *
NOV256 X OBV128 0.01634 * * * * #* ® * * * 5
NOV256 X OBV256 * * * * * * B % * * ¥
NOV256 X OBV512 * * * * * * ® * * * 5
NOV256 XOBV1024 * # * * * * * * % s *
NOV256 X OBV2048 * * * * * * ® * * * 5
NOV512 X NOV1024 * * #* * #* * ® * * ¢ #
NOV512 X NOV2048 * * * * #* * ® * * * 5
NOV512 X OBVI128 * # * * * * * * % s *
NOV512 X OBV256 * * * * * * ® * * * 5
NOV512 X OBV512 * * * * * * * % * * ¥
NOV512 X OBV1024 * * * * #* * ® * * * 5
NOV512 X OBV2048 * * # * #* * * * # 4 5
NOV1024 X NOV2048 0.9714 | 0975426 | 0.447827 | 0.357813 | 0.229267 | 0.398091 | 0.73948 | 0.924778 | 0.133925 | 0.705093 | 0.133882
NOV1024 X OBV128 0.8948 * * * * * * * * * 5
NOV1024 X OBV256 * * * * #* * ® * * * s
NOV1024 X OBV512 * # * * * * * * # 4 *
NOV1024 X OBV1024 0.6012 * * * * * ® * * * 5
NOV1024 X OBV2048 0.7535 * * * * * * * * * *
NOV2048 X OBV128 0.669 * * * * * ® * * * *
NOV208 X OBV256 * * * * #* * * * # 4 *
NOV2048 X OBV512 * * * * * * ® * * * 5
NOV2048 X OBV1024 0.8278 # * * #* #* * * * * *
NOV2048 X OBV2048 0.6221 * * * * * ® * #* ® *
OBV128 X OBV256 * * * * #* * * * # 4 *
OBV128 X OBV512 * * * * * * ® * * * 5
OBV128 X OBV1024 0.1338 * *1.0.012977 *1 0568592 | 0.087761 | 0.721882 | 0.839393 * *
OBV128 X OBV2048 0.249 * *1 0.036136 * | 0.92724 | 0.129083 | 0.890327 | 0.732381 * *
OBV256 X OBV512 0.05484 | 0.000106 | 0.35547 | 0.086972 | 0.645765| 0.20082 | 0.435129 | 0.003475 | 0.551962 | 0.514455 *
OBV256 X OBV1024 * * * * * * ® * * * 5
OBV256 X OBV2048 * * #* * #* * * * * * 5
OBV512 X OBV1024 * * * * * * ® * * * s
OBV512 X OBV2048 * * * * * * * * * * 5
OBV1024 X OBV2048 0.09817 | 0.679253 | 0.489327 | 0.553595| 0.24638 | 0.612953 | 0.777025 | 0.682764 | 0.322174 * 1 0.084822

Os asteriscos indicam que nao existem diferencas significativas ao nivel de 1% de significancia.
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