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Resumo

SANTOS, Camila C. Otimização do desempenho de Redes Neurais do Tipo Funções de Base Radial
utilizando Vetores Bipolares Ortogonais, Uberlândia, Faculdade de Engenharia Elétrica - UFU, 2018.

Este trabalho propõe o uso de vetores bipolares ortogonais (VBO) como novos alvos para Redes
Neurais Artificiais (RNA), do tipo Funções de Base Radial (RBF). Tais vetores propiciam
a ampliação da distância entre os pontos do espaço de saída, também compreendidos como
alvos da RNA. A ampliação dessa distância reduz as chances de classificação incorreta de
padrões. A rede foi treinada e testada com três conjuntos de dados biométricos (íris humana,
dígitos manuscritos e sinais australianos). O objetivo do trabalho é verificar a performance da
rede com o uso dos vetores ortogonais e comparar os resultados obtidos com os apresentados
para as redes do tipo Multilayer Perceptron. Além disso, deseja-se comparar duas técnicas de
treinamento para redes do tipo RBF. Os conjuntos de dados utilizados nos experimentos foram
obtidos do CASIA Iris Image Database desenvolvido pela Chinese Academy of Sciences -
Institute of Automation, Semeion Handwritten Digit of Machine Learning Repository e UCI
- Machine Learning Repository. As redes foram modeladas utilizando como alvo os VBOs
e os vetores bipolares convencionais, para o propósito da comparação dos resultados. A
classificação dos padrões na camada de saída foi baseada na distância euclidiana. A partir dos
experimentos realizados, foi observado que o uso dos VBOs no processo de treinamento da
rede melhorou a taxa de acerto e reduziu a quantidade de ciclos necessários para a convergência.

Palavras-chave: Reconhecimento de padrões, redes neurais artificiais, multilayer percep-
tron, funções de base radial, vetores bipolares ortogonais.
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Abstract

SANTOS, Camila C. Optimization of the performance of Neural Networks of the Radial Basis Functions
type using Orthogonal Bipolar Vectors, Uberlândia, Faculty of Electric Engineering - UFU, 2018.

This work proposes the use of orthogonal bipolar vectors (VBO) as new targets for Artificial
Neural Networks (ANN) of the Radial Base Functions (RBF) type. Such vectors provide the
expansion of the distance between the points of the output space, also understood as targets of
RNA. The expansion of this distance reduces the chances of incorrect classification of patterns.
The network was trained and tested with three sets of biometric data (human iris, handwritten
digits and signs of the Australian sign language). The objective was to verify the network
performance with the use of OBVs and compare the results obtained with those presented for
the Multilayer Perceptron (MLP) networks. In addition, it is desired to compare two training
techniques for RBF-type networks. Datasets used in the experiments were obtained from the
CASIA Iris Image Database developed by the Chinese Academy of Sciences - Institute of
Automation, Semeion Handwritten Digit of Machine Learning Repository and UCI - Machine
Learning Repository. The networks were modeled using OBVs and conventional bipolar
vectors for the purpose of comparing the results and the classification of the patterns in the
output layer was based on the Euclidean distance. The results show that the use of OBVs in the
network training process improved the hit rate and reduced the amount of cycles required for
convergence.

Keywords: Pattern recognition, artificial neural networks, multilayer perceptron, radial
basis function, orthogonal bipolar vectors.
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Capítulo 1

Introdução

1.1 Considerações iniciais

A Inteligência Computacional (IC) é uma área da ciência que utilizando técnicas ins-

piradas na Natureza, busca o desenvolvimento de sistemas inteligentes que imitem aspectos do

comportamento humano, abrange Redes Neurais Artificiais (RNA), sistemas Fuzzy e computa-

ção evolutiva. É definida como uma metodologia que fornece a um sistema a capacidade para

aprender e/ou lidar com uma nova situação, de modo que o sistema é caracterizado por possuir

uma ou mais atribuições de raciocínio, como generalização, descoberta, associação e abstração.

Essas técnicas têm sido combinadas entre si e com abordagens mais tradicionais, como a análise

estatística, com o objetivo de resolver problemas extremamente desafiadores (Eberhart & Shi,

2007).

Muitas pesquisas são feitas nessa área e resultados promissores em problemas de re-

cuperação de imagem têm sido obtidos por meio da aplicação de Redes Neurais Convolucionais

(Wan et al., 2014). Utiliza-se a aprendizagem computacional baseada na inferência bayesiana

para a predição de informações relacionadas às proteínas e suas interações (Birlutiu, d’Alche

Buc, & Heskes, 2014). Outra aplicação recente é a separação de ruído e fala em sons de mi-

crofones (Healy, Yoho, Wang, & Wang, 2013). Também há importantes resultados de aplicação

da inteligência computacional na área forense (Muda, Choo, Abraham, & Srihari, 2014). Parte

13



desse conjunto de técnicas já foi usada com sucesso na detecção de pedestres aptos a atravessa-

rem ruas, com o objetivo de se evitarem acidentes (Xu et al., 2012).

Uma Rede Neural Artificial (RNA) é um paradigma de análise cuja modelagem é ins-

pirada na estrutura do cérebro. Pode ser caracterizada como um processador paralelamente

distribuído. Suas unidades de processamento possuem a função de armazenar e disponibilizar

conhecimento experimental. Assemelha-se com o cérebro humano pelo fato de adquirir conhe-

cimento através de processos de aprendizagem, além disso, trabalha com pesos sinápticos para

armazenar o conhecimento (Haykin, 2008).

São amplamente utilizadas pela sua habilidade de aprender e consequentemente, gene-

ralizar a informação demostrando seu poder computacional, podem ser utilizadas em problemas

de classificação de padrões, aproximação de funções, entre outros. Seu uso em tarefas de re-

conhecimento de padrões é bastante consolidado. Nesse contexto há várias aplicações de RNAs

relacionadas ao reconhecimento de padrões (Wan et al., 2014; Birlutiu et al., 2014; Muda et al.,

2014; Xu et al., 2012; Huang, Huang, Song, & You, 2015).

As redes neurais do tipo Função de Base Radial (RBF) são apenas um tipo dentre os

existentes. Uma RBF consiste em um modelo neural multicamadas, capaz de aprender padrões

complexos e resolver problemas não linearmente separáveis. Amplamente utilizadas em vá-

rias aplicações, como prognóstico de baterias de lítio (Sbarufatti, Corbetta, Giglio, & Candini,

2017), previsão de vendas (Kuo, Hu, & Chen, 2009), solução de sistemas de equações integrais

não lineares (Golbabai, Mammadov, & Seifollahi, 2019), predição de tráfego em rede ethernet

(Vieira, Lemos, & Ling, 2003), entre outras.

1.2 Motivação

As RNAs são muito utilizadas por serem um conjunto de ferramentas complexas para

resolução de problemas. Nos últimos anos, vários estudos foram realizados para melhorar o de-

sempenho delas. Esses estudos têm abordagens como a melhoria do algoritmo de treinamento,

a determinação de topologias ideais para cada problema, entre outros. Porém poucos estudos

14



foram feitos para melhorar o desempenho visando o espaço de saída.

Em 2004, o uso dos VBOs como vetores-alvo no treinamento de RNAs do tipo

Multilayer Perceptron (MLP) foi apresentado pelos pesquisadores Keiji Yamanaka e Shigueo

Nomura para a análise experimental no reconhecimento de padrões de placas de trânsito e dígi-

tos manuscritos. Os experimentos demostraram que estes vetores melhoraram a habilidade de

generalização da MLP e reduziram o número de ciclos necessários para a convergência da rede

(Nomura, Yamanaka, Katai, Kawakami, & Shiose, 2004, 2005).

Posteriormente, eles foram objeto de estudo nas pesquisas de mestrado e doutorado de

José Ricardo Gonçalves Manzan, sob orientação dos pesquisadoes Keiji Yamanaka e Shigueo

Nomura. A análise experimental em dados de imagens, sons e EGGs, em redes MLP, demons-

trou a mesma eficácia dos VBOs no reconhecimento destes padrões (Manzan, Yamanaka, &

Nomura, 2011; Nomura, Manzan, & Yamanaka, 2010; Manzan, Nomura, Yamanaka, Carneiro,

& Veiga, 2012; Manzan, Nomura, & Filho, 2014). Além disso, a pesquisa apresentou a com-

provação matemática da eficácia dos VBOs em MLPs (Manzan, Nomura, & Yamanaka, 2011;

Nomura, Manzan, & Yamanaka, 2011; Manzan, Nomura, & Yamanaka, 2012; Manzan, 2016).

A propriedade de ortogonalidade dos VBOs, onde a distância euclidiana obtida entre

os alvos e a resposta produzida pela rede é maior quando comparada aos vetores convencionais,

é o que proporciona a melhoria no desempenho da rede. Uma RBF é considerada um aproxi-

mador universal e uma alternativa popular à MLP, já que ela possui estrutura mais simples e

processo de treinamento mais rápido (Du & Swamy, 2013).

1.3 Objetivos da dissertação

Considerando o ganho de desempenho usando Vetores Bipolares Ortogonais (VBOs)

para redes de tipo MLP e o fato de que uma das utilizações da RBF é a classificação de padrões,

é desejado investigar se esses novos alvos melhoram o desempenho de uma RNA do tipo RBF

e se o uso de diferentes dimensões para os vetores de alvos altera a taxa de sucesso.
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1.4 Estrutura do trabalho

No Capítulo 2 são apresentados fundamentos teóricos de Reconhecimento de Pa-

drões (RP), RNA e os conceitos matemáticos envolvidos na pesquisa. O Capítulo 3 apresenta

os fundamentos teóricos de RNAs do tipo RBF e os processos e estratégias de aprendizagem

utilizados nos experimentos. Os Alvos Ortogonais e seus efeitos em redes RBF estão descritos

e analisados no Capítulo 4. O procedimento experimental é definido e discutido no Capítulo 5.

O Capítulo 6 apresenta a conclusão deste trabalho.
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Capítulo 2

Fundamentos teóricos

2.1 Reconhecimento de padrões

O Reconhecimento de Padrões (RP) é uma das habilidades mais naturais dos seres

vivos, e ao mesmo tempo é uma das mais extraordinárias. Ela é caracterizada pela capacidade

de classificar e/ou separar objetos e dados em categorias, tornando-os generalizados, facilitando

a tomada de decisão. A assimilação de escritas e consequentemente, a diferenciação de palavras

ou idiomas são exemplos de RP no dia a dia.

Dentro da ciência da computação, RP é uma área derivada da inteligência compu-

tacional que tem por objetivo fazer com que computadores reproduzam a habilidade humana

de separar/classificar dados em categorias específicas. O interesse na área de RP tem crescido

muito devido as aplicações que, além de serem desafiantes, são também computacionalmente

cada vez mais exigentes.

2.1.1 Conceitos de um sistema de reconhecimento de padrões

O RP é uma área de pesquisa que tem por objetivo a classificação de objetos (padrões)

em um conjunto de categorias ou classes (Theodoridis & Koutroumbas, 1999). Um padrão é

a descrição quantitativa ou qualitativa de um objeto ou de outra entidade de interesse em uma

imagem ou em um sinal (Gonzalez, 1992). Essa descrição pode ser feita por uma ou mais
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medidas que são denominadas atributos ou características do padrão. Um conjunto de padrões

com características semelhantes é denominado classe (Gonzalez, 1992).

Há duas maneiras de se reconhecer e/ou classificar um padrão (Connel & Jain, 2001):

(i) classificação supervisionada: o padrão é identificado como um membro de uma classe

pré-definida, ou seja, a classe é definida pelo projetista do sistema, ou (ii) classificação não-

supervisionada: o padrão é determinado por uma “fronteira” de classe desconhecida.

Um problema de RP consiste em uma tarefa de classificação ou categorização, onde

as classes são definidas pelo projetista do sistema (classificação supervisionada) ou são “apren-

didas” de acordo com a similaridade dos padrões (classificação não-supervisionada) (Bianchi,

2006).

As técnicas de RP têm por concepção a seleção de características dos conjuntos de

objetos e a separação dos objetos em suas devidas classes. De acordo com Duda et al. (2001),

essas técnicas permitem uma representação mais simples de uma coleção de dados por meio

das características que apresentam maior relevância, resultando na partição em classes. Essa

representação é geralmente dada pela reunião das características em um vetor.

Contudo as técnicas de reconhecimento de padrões nem sempre são simples. Em um

dado problema, simples ou complexo, busca-se sempre chegar a um separador com menor taxa

de erro. Em boa parte dos problemas de classificação, a determinação do separador desejado

exige muito esforço, tanto na determinação dos parâmetros da técnica utilizada, quanto no custo

computacional. Na prática, a determinação de um separador desejado é quase sempre inviável.

A Figura 2.1 representa um reconhecedor desejado capaz de separar amostras de duas classes

predefinidas com 100% de acerto. Alguns problemas toleram certo grau de erro. Dessa maneira,

é possível encontrar um separador com um esforço viável que consiga separar os elementos das

classes com um bom nível de acerto. A Figura 2.2 representa um reconhecedor próximo do

desejado, capaz de separar duas classes com alguns erros de separação.
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pois minimiza a probabilidade média de erro na classificação. Existem também a função de

discriminação e a regra Naive de Bayes.

A abordagem conexionista é composta por tipos de classificadores mais complexos,

capazes de se adaptarem a qualquer tipo de distribuição de dados. São baseados no funciona-

mento das estruturas neurais inteligentes que aprendem por meio de exemplos, como as RNAs.

Trabalhos destinados ao estudo do reconhecimento de padrões, tanto no que se refere

à descrição, quanto à classificação e desde 2001, têm ganhando grande destaque no campo da

computação (Duda et al., 2001). Atualmente, as RNAs têm se tornado uma técnica amplamente

utilizada em razão de resultados bastante satisfatórios e promissores.

2.2 Redes Neurais Artificiais

Redes Neurais Artificiais são modelos inspirados no sistema nervoso de seres vivos e

possuem capacidade de aquisição e manutenção do conhecimento. Elas são formadas por um

conjunto de neurônios artificiais, que consistem em unidades de processamento da rede, que

são interligadas por conexões, chamadas de pesos sinápticos.

Podem-se entender as RNAs como mecanismos capazes de receber o sinal de determi-

nado padrão na sua entrada, analisá-lo e então informar sobre a classe a qual ele pertence. Sua

metodologia de treinamento é inspirada no funcionamento dos neurônios biológicos, em que

aprendizagem ocorre por meio de exemplos, fazendo com que a tentativa e o erro desencadeiem

o processo de apropriação da habilidade de diferenciar padrões.

O primeiro registro do surgimento das RNAs aconteceu com a publicação de um artigo

de McCulloch e Pitts em 1943 (McCulloch & Pitts, 1943). De acordo com Silva et al. (2010),

essa nova área da computação tinha por concepção o funcionamento dos neurônios biológicos.

Em 1949, Donald Hebb apresentou o primeiro método de treinamento para RNAs (Hebb, 1968).

Entre 1957 e 1958, Frank Rosenblat desenvolveu o primeiro neurocomputador e, no período de

1958 a 1962, criou uma grande classe de RNAs denominada como Perceptrons (Fausett & Hall,

1994).
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A rede ADALINE (Adaptive Linear Element) foi desenvolvida em 1960 por Widrow

e Hoff, posteriormente, recebeu aperfeiçoamentos correspondentes à associação de múltiplas

redes Adaline, resultando no nome MADALINE (Fausett & Hall, 1994). Os resultados obti-

dos nessas pesquisas motivaram vários pesquisadores a estudarem as RNAs, até que, em 1969,

Minsky e Papert demonstraram matematicamente as limitações das redes constituídas de uma

única camada, como o Perceptron e o Adaline. No clássico livro Perceptrons - An Introduc-

tion to Computational Geometry, eles usam um simples problema de lógica denominado “ou

exclusivo” para mostrarem que essas redes eram incapazes de resolvê-lo (Fausett & Hall, 1994).

O trabalho de Minsk e Papert causou grande impacto entre os pesquisadores da neu-

rocomputação, fazendo com que o interesse pela área ficasse bastante reduzido. Isso, de certa

forma, ocasionou a ausência de novos resultados para a área por um longo período (Silva, Spatti,

& Flauzino, 2010). Nesse período de relativa turbulência das pesquisas envolvendo RNAs, foi

implementada a rede ART (Adaptive Ressonance Theory). Num trabalho de Grossberg, em

1980, foi realizada a formulação de mapas auto-organizáveis de Kohonen em 1982 e a proposta

de redes recorrentes de Hopfield em 1982. A partir do trabalho de Hopfield, a neurocomputação

voltou a receber a atenção dos pesquisadores.

Contudo a teoria das RNAs conseguiu realmente se estabelecer a partir da publicação

do livro de Rumelhart, Hinton e Williams, Parallel Distributed Processing, em 1986. Nele, os

autores mostraram um algoritmo capaz de treinar redes com múltiplas camadas e que, por sua

vez, eram capazes de resolver as limitações apresentadas por Minsk e Papert. Esses aconteci-

mentos se deram no momento em que estavam sendo desenvolvidos computadores com maior

capacidade de processamento (Silva et al., 2010). Mais recentemente, novas contribuições e

inúmeras aplicações práticas, em diferentes ramos do conhecimento têm permitido o desenvol-

vimento de estudos associados às RNAs.
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2.2.1 Neurônio biológico

A Figura 2.5, presente em (Silva et al., 2010), ilustra um neurônio biológico, o qual é

dividido em três partes principais: os dendritos, a soma ou corpo celular e o axônio.

Figura 2.5: Ilustração de um neurônio biológico
Fonte: (Silva et al., 2010)

Os dendritos são especializados em receber os estímulos vindos de outros neurônios

ou do meio externo que estão associados. O corpo celular processa a informação recebida,

criando um potencial de ativação que, posteriormente, poderá ou não ser enviado ao axônio

(Silva et al., 2010).

O axônio apresenta comprimento muito variável podendo medir de alguns milímetros

até metros e é especializado em gerar e conduzir o potencial de ação, que ocorre por meio de

substâncias neurotransmissoras. A porção terminal do axônio sofre várias ramificações para

formar de centenas a milhares de terminações sinápticas, no interior dos quais são armazenados

os neurotransmissores químicos usados no envio de informação das sinápses para os dendritos

de outros neurônios (Fausett & Hall, 1994).

O conjunto de bilhões dessas estruturas compõe a complexa estrutura denominada

cérebro humano, que é capaz de realizar inúmeras tarefas com alto grau de dificuldade.

2.2.2 Neurônio artificial

Um neurônio artificial é uma unidade de processamento da informação que é funda-

mental para a operação de uma rede neural. Eles recebem a informação, a processam de acordo

com seu papel dentro da rede e enviam uma nova informação para outros neurônios ou para a
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saída do sistema. A Figura 2.6 mostra o modelo de um neurônio básico, proposto por MucCul-

loch e Pitts para o projeto de redes neurais, a partir dela verifica-se que o neurônio é constituído

de 7 elementos básicos (Silva et al., 2010):

Figura 2.6: Ilustração de um neurônio artificial
Fonte: (Silva et al., 2010)

• Camada de entrada {x1, x2, ..., xn}: sinais vindos do meio externo;

• Pesos sinápticos {w1,w2, ...,wn}: valores para ponderar cada uma das variáveis de

entrada da rede;

• Combinador linear {Σ}: agregar os sinais de entrada após a ponderação;

• Limiar de ativação {θ}: é uma variável que especifica qual será o patamar apropri-

ado para que o resultado produzido pelo combinador linear possa gerar um valor de

disparo em direção à saída do neurônio;

• Potencial de ativação {u}: representa a diferença do valor produzido entre o com-

binador linear e o limiar de ativação;

• Função de ativação {g}: cujo objetivo é restringir a amplitude da saída;

• Camada de saída {y}: valor final produzido pelo neurônio

O modelo proposto por MucCulloch e Pitts tem em sua concepção de funcionamento

o processamento paralelo da informação com alta conectividade e é o modelo mais utilizado

nos modelos de RNAs. Em termos matemáticos, podemos descrever o neurônio pelo seguinte
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par de equações (Silva et al., 2010):

u = n∑
i=1

wi ⋅ xi − θ (2.1)

y = g(u) (2.2)

2.2.3 Tipos de Redes Neurais

Há vários tipos de RNAs, algumas possuem uma arquitetura mais simples, na qual há

apenas duas camadas, sendo uma de entrada e outra de saída. Por outro lado, existem arquite-

turas mais complexas, com a existência de três ou mais camadas. As camadas adicionais são

conceituadas como intermediárias ou ocultas.

Em redes multicamadas, a camada de entrada tem a função do recebimento dos sinais

advindos do ambiente externo. A associação das características, bem como a separação das

classes são feitas pelos neurônios da(s) camada(s) intermediárias(s). Fica a cargo da camada de

saída a apresentação dos resultados finais da rede.

Perceptron e Adaline são tipos de RNAs mais simples, nelas a camada de separação

das classes é a própria camada de saída. Esses tipos de redes são hábeis para problemas que têm

classes linearmente separáveis. Problemas que não são linearmente separáveis requerem redes

com mais de duas camadas, ou seja, pelo menos uma camada intermediária. Os exemplos mais

conhecidos são as redes MLP, RBF e Hopfield.

A rede RBF será descrita no Capítulo 3, já a MLP é uma rede multicamadas e, de

acordo com Haykin (2008), ela possui três características que a distinguem das outras:

1. Para cada neurônio da rede há uma função de ativação não linear, cuja curvatura é

suave.

2. A rede contém uma ou mais camadas ocultas, que são diferentes da camada de

entrada e saída

3. Existe um alto grau de conectividade entre os neurônios, isto é, um neurônio de

qualquer camada está conectado a todos os outros da camada anterior.
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2.2.4 Funções de ativação

As funções de ativação possuem o objetivo de processar e mapear toda somatória dos

estímulos, provenientes dos neurônios que as alimenta com informações e ponderados pelos

pesos. O resultado deste processamento faz com que o neurônio alcance um novo estado de ati-

vação que será propagado através de sua saída (Araújo, 2005). As funções de ativação também

são responsáveis por limitar o sinal da saída a um intervalo de interesse (Silva et al., 2010)

As funções mais utilizadas são expostas na Tabela 2.1.

2.2.5 Processos de Aprendizagem

O objetivo fundamental de uma rede neural é utilizar o processo de aprendizagem para

melhorar seu desempenho. O tempo e algumas medidas pré-estabelecidas é que vão determi-

nar o aperfeiçoamento do na taxa de acerto. Idealmente, após cada iteração do processo de

aprendizagem a rede se torna mais preparada sobre seu ambiente (Haykin, 2008).

A aprendizagem no contexto de redes neurais pode ser definida como um processo

que através de estímulos vindos do ambiente em que a rede está inserida adapta os parâmetros

livres desta rede (Haykin, 2008). A forma que os parâmetros são modificados é que determina

o tipo da aprendizagem.

Um algoritmo de aprendizagem é definido como um conjunto de regras bem-definidas

para a solução de um problema de aprendizagem. Para as redes neurais, como esperado, não há

um único algoritmo de aprendizagem (Haykin, 2008). Durante a execução desses algoritmos, a

rede será capaz de extrair as características discriminantes do sistema a ser mapeado a partir de

amostras que foram recebidas inicialmente vindas do ambiente ao qual ela está inserida (Silva

et al., 2010).
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Tabela 2.1: Principais funções de ativação adaptada da Tabela 3.1 de Araújo, 2005

Função Equação Representação Gráfica

Linear f (n) = n
1−1

1

−1

x

y

Rampa f (n) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 se n ≥ 1
n se ∣n∣ < 1−1 se n ≤ −1 1−1

1

−1

x

y

Degrau f (n) = {1 se n ≥ 0
0 se n < 0 1−1

1

−1

x

y

Tangente hiperbólica
(logística)

f (n) = 2
(1+e−2n)

− 1
1−1

1

−1

x

y

Sigmoide (logística) f (n) = 2
1+e−n − 1

1−1

1

−1

x

y

28







2.3.2 Ângulo e ortogonalidade entre vetores no espaço Rn

Considere-se ainda que os vetores
Ð→
Vi e
Ð→
Ui pertencem ao espaço Rn. A razão do produto

interno e o produto entre os módulos dos vetores são usados para calcular o cosseno do ângulo

formado entre
Ð→
Vi e
Ð→
Ui, representado pela equação

cos(θ) = Ð→Vi ●Ð→Ui

∥Ð→Vi∥∥Ð→Ui∥
(2.5)

O ângulo θ formado entre estes vetores pode ser determinado por meio da função arco-

cosseno, a inversa da função cosseno, representada pela Eq. 2.6. A Figura 2.5 ilustra o ângulo

entre dois vetores do espaço R3.

θ = arccos
⎛
⎝
Ð→
Vi ●Ð→Ui

∥Ð→Vi∥∥Ð→Ui∥
⎞
⎠ (2.6)

Figura 2.9: Ângulo entre vetores

Podem-se destacar, a partir do cálculo para determinação do ângulo entre vetores no

espaço Rn:

• A função arco-cosseno tem sua imagem restrita ao intervalo [0, π].
• O produto dos módulos dos vetores dado por ∥Ð→Vi∥∥Ð→Ui∥ é sempre positivo.

• O cosseno é positivo no intervalo de [0, π2[.
• O cosseno é nulo para o arco π2 .

• O cosseno é negativo no intervalo de ]π2 , π].
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A partir das afirmações anteriores, nota-se que ângulo entre os vetores
Ð→
Vi e
Ð→
Ui é agudo

sempre que o produto interno for positivo, e reto sempre que o produto interno for igual a zero

e é obtuso sempre que o produto interno for negativo.

Portanto dois vetores são ortogonais se o produto interno entre eles for igual a zero. A

Figura 2.10 representa dois vetores com essa característica.

Figura 2.10: Ilustração de vetores ortogonais

2.3.3 Teste Estatístico de Kolmogorov-Smirnov

Os métodos estatísticos dividem-se basicamente em duas categorias: paramétricos

e não paramétricos. Os testes paramétricos pressupõem que os dados se ajustam a uma dis-

tribuição normal, além disso, dependem de parâmetros como a média e a variância. Os não

paramétricos não dependem destes parâmetros nem do ajuste à normalidade pela distribuição

dos dados analisados.

Assim é importante saber se os dados a serem analisados se ajustam a distribuição

normal antes de decidir qual teste aplicar. O teste de Kolmogorov-Smirnov permite verificar

se uma amostra de dados se ajusta a alguma distribuição teórica, por exemplo, a distribuição

normal (Conover, 1999). Trata-se de um teste bastante utilizado e, nas análises estatísticas

deste trabalho, foi empregado para decisão sobre a utilização de um teste paramétrico ou não

paramétrico.

Para a realização do teste, os seguintes passos devem ser executados (Conover, 1999):

1. Ordenam-se os dados xi em ordem crescente.
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2. Para cada xi dado é atribuído o valor Fn (xi), denominado valor empírico, que é o

resultado da razão de i por n, em que n é o total de dados.

3. Para cada i, atribui-se o valor normal padronizado correspondente F (xi), denomi-

nado valor teórico, que é obtido pela Tabela de distribuição normal padrão e pela

fórmula representada pela equação

Zi = xi − x

σ
(2.7)

em que σ é o desvio-padrão da amostra de dados e x é a média dos dados.

4. Para cada i, calcula-se o módulo da diferença entre o valor teórico e o valor empí-

rico ∣F (xi) − Fn (xi)∣.
5. Para cada i, calcula-se o módulo da diferença entre o valor teórico e o valor empí-

rico anterior ∣F (xi) − Fn (xi−1)∣.
6. Calcula-se a somatória das diferenças entre o valor teórico e o valor empírico

Σ ∣F (xi) − Fn (xi)∣, denominada D+.

7. Calcula-se a somatória das diferenças entre o valor teórico e o valor empírico an-

terior Σ ∣F (xi) − Fn (xi−1)∣, denominada D−.

8. Obtém-se o máximo entre D+ e D−, denominado Dn.

9. Para um nível de significância α e a quantidade de amostras n, compara-se o va-

lor crítico V da Tabela com o valor de Dn. Se Dn ≤ V , os dados seguem uma

distribuição normal. Se Dn > V , os dados não seguem uma distribuição normal.

2.3.4 Teste Estatístico de Mann-Whitney

Os testes não paramétricos são utilizados quando a amostra dos dados não se ajusta

a uma distribuição normal. O Teste de Mann-Whitney (Martins & Fonseca, 2006) permite a

comparação de igualdade de médias sem a exigência de igualdade de variâncias em problemas

de comparação de médias em grupos independentes.

Para a realização do teste, deve-se seguir os passos:
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1. Considera-se n1 como o número de amostras do menor grupo e n2 como o número

de amostras do maior grupo.

2. Os dados dos dois grupos são reunidos e organizados em ordem crescente. O menor

dado recebe o número 1 e todos os outros são ordenados até o último dado, que

corresponde a N = n1 + n2.

3. Para as amostras iguais (empatadas), calcula-se a média entre seus postos, e cada

uma recebe o posto médio.

4. Calcula-se R1 = soma dos postos do grupo n1 e R2 = soma dos postos do grupo n2.

5. Escolhe-se a menor soma entre R1 e R2.

6. Calculam-se as estatísticas:

µ1 = n1 ⋅ n2 +
n1 (n1 + 1)

2
− R1 (2.8)

µ2 = n1 ⋅ n2 +
n2 (n2 + 1)

2
− R2 (2.9)

7. Hipóteses do teste:

H0: não há diferença entre os grupos.

H1: há diferença entre os grupos.

8. Definição do nível α de significância.

9. Com o auxílio da Tabela de distribuição de probabilidades normal padronizada,

definem-se as regiões de aceitação e de rejeição de H0 conforme ilustração da Fi-

gura 2.11.

10. Cálculo do valor variável Zcal:

Zcal = µ − µ(u)
σ(u) (2.10)
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Figura 2.11: Esboço da região de aceitação e de rejeição para o Teste de Mann-Whitney

em que

µ(u) = n1 ⋅ n2

2
(2.11)

σ(u) =
√

n1 ⋅ n2 (n1 + n2 + 1)
12

(2.12)

11. Conclusão:

Se −Z α2 ≤ Zcal ≤ Z α2 , aceita-se H0.

Se −Zcal > Z α2 ou Zcal < −Z α2 , rejeita-se H0, assumindo-se com risco α que os grupos

possuem diferença em relação às suas médias.
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Capítulo 3

Redes Neurais Artificiais do tipo Função

de Base Radial

As redes do tipo RBF (Radial Basis Function, em inglês), são RNAs que utilizam a

arquitetura feedforward, ou seja, os dados são propagados da camada de entrada, seguindo para

a camada oculta, até chegarem na camada de saída, sem retroalimentação da rede (Fausett &

Hall, 1994). Podem ser empregadas em quase todos os problemas tratados pela MLP incluindo

problemas de aproximação funcional e reconhecimento de padrões (Silva et al., 2010).

3.1 Arquitetura e características

A construção tradicional de uma RBF apresenta 3 camadas totalmente distintas, que

podem ser observadas na Figura 3.1. A camada de entrada é constituída por unidades sensoriais

que interligam a rede com o ambiente externo. A camada oculta faz transformações não lineares

no espaço de entrada, sendo caracterizada pela utilização de funções de base radial. E a camada

de saída é responsável pela resposta final da rede modelada (Haykin, 2008). Os pesos sinápticos

da camada intermediária, também chamados de centros, representam os centros dos subgrupos

de dados categorizados e são utilizados como centros das funções de bases radiais no processo

de treinamento.
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por φ, se existir um vetor w de dimensão m1 para o qual podemos escrever (Cover, 1965):

wTφ(x) > 0, x ∈ Ω1

wTφ(x) <= 0, x ∈ Ω2

(3.2)

O hiperplano que descreve a superfície de separação no espaço φ é definido pela Equa-

ção (3.3). A Figura 3.2 mostra três exemplos de dicotomias separáveis por φ de diferentes

conjuntos de cinco pontos em duas dimensões.

wTφ(x) = 0 (3.3)

Figura 3.2: Exemplos de dicotomias separáveis em 2 dimensões (a) dicoto-
mia linearmente separável; (b) dicotomia esfericamente separável; (c) dico-
tomia quadricamente separável
Fonte: (Haykin, 2008)

De acordo com Haykin (2008), o teorema do Cover sobre a separabilidade dos padrões

engloba dois ingredientes básicos:

1. A Formulação não-linear da função oculta definida por φi(x), onde x é o vetor de

entrada e i = 1,2, ...,m1.

2. A alta dimensionalidade do espaço oculto comparado com o espaço de entrada;

essa dimensionalidade é determinada pelo valor atribuído a m1.

3.3 Estratégias de Aprendizagem

No processo de treinamento de uma RBF, cada uma das entradas xi, vindas do ambi-

ente externo, serão propagadas pela camada intermediária em direção à camada de saída (Silva
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et al., 2010). Além disso, os pesos lineares associados com os neurônios da camada de saída

tendem a evoluir em uma “escala de tempo” diferente, comparada às funções de ativação da

camada oculta.

A evolução da camada oculta é lenta, de acordo com a estratégia de otimização não-

linear, já os pesos da camada de saída se ajustam mais rapidamente devido a sua otimização

linear. Com base nessas informações, é razoável separar o processo de otimização das camadas

utilizando técnicas diferentes (Haykin, 2008). Existem várias estratégias de aprendizagem que

podem ser aplicadas a uma rede RBF, essas estratégias variam dependendo de como os centros

são especificados.

3.3.1 Centros Fixos Selecionados ao Acaso

Esta é a abordagem mais simples, onde as funções de base radial são fixas e definem

as funções de ativação dos neurônios da camada oculta. Normalmente a localização dos centros

é escolhida aleatoriamente a partir do conjunto de dados de treinamento, mas isso só é possível

se os dados estiverem bem distribuídos (Haykin, 2008).

Nesse tipo de estratégia, é utilizada como função de base radial a função gaussiana

isotrópica, cujo desvio padrão é fixado de acordo com o espalhamento dos centros. Uma função

gaussiana cujo centro é ti pode ser definida como:

G(∥x − ti∥2) = exp(− m1
d2

max
∥x − ti∥2) i = 1,2, ...,m1 (3.4)

onde m1 é o número de centros e dmax é a distância máxima entre os centros escolhidos. O

desvio padrão de todas as funções de base radial gaussianas é fixo em

σ = dmax√
2m1

(3.5)

esta equação garante que as funções utilizadas não sejam pontiagudas demais ou planas demais,

condições que devem ser evitadas. Nesta abordagem, os únicos parâmetros que devem ser
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aprendidos são os pesos lineares na camada de saída (Haykin, 2008), essa fase do processo de

aprendizagem será descrita na Seção 3.4.2.

3.3.2 Seleção Auto-Organizada de Centros

De acordo com Haykin (2008), o maior problema do método de centros fixos, des-

critos na sessão anterior, é a necessidade de um conjunto de treinamento grande para que se

obtenha um nível de desempenho satisfatório. Um processo de aprendizagem híbrido é um ma-

neira de superar essa limitação. Esse processo é dividido em dois estágios (Chen, Mulgrew, &

McLaughlin, 1992):

• Estágio de aprendizagem auto-organizada, cujo objetivo é estimar a melhor locali-

zação dos centros na camada oculta;

• Estágio de aprendizagem supervisionada, que completa o treinamento estimando os

pesos lineares da camada de saída.

Para o processo de aprendizagem auto-organizada, é necessário um algoritmo de agru-

pamento, "clustering", que subdivida o conjunto fornecido em grupos, tão homogêneo quanto

possível.

3.3.3 Seleção Supervisionada de Centros

Nessa abordagem, os centros das funções como todos os outros parâmentros livres

são parte do processo de aprendizagem supervionada da rede, onde a RBF assume sua forma

mais generalizada. A abordagem mais utilizada é a aprendizagem por correção do erro (Haykin,

2008). O primeiro passo no desenvolvimento deste procedimento é definir o valor da função de

custo (Haykin, 2008)

E = 1
2

N∑
j=1

e2
j (3.6)
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onde N é o tamanho da amostra de treinamento e e j e o sinal de erro definido por

e j = d j − F ∗ (x j)
= d j − M∑

i=1

wiG(∥x j − ti∥ci
)

(3.7)

O objetivo é encontrar os parâmetros livres wi, ti e ∑−1
i que minimizem E.

3.4 Processo de Treinamento

Conforme mostrado na seção anterior, existem três abordagens que podem ser usadas

no processo de treinamento de uma RBF. Para este trabalho, foi escolhida a estratégia de

treinamento por seleção auto-organizada dos centros, apresentadas na seção 3.3.2.

Nesta abordagem, o primeiro estágio, associado com o ajuste dos centros e dos pesos

da camada intermediária, é feito através de um algoritmo não-supervisionado e é dependente

apenas das características dos dados de entrada. Já o segundo estágio, vinculado os pesos

sinápticos da camada de saída, utiliza um aprendizado supervisionado.

3.4.1 Primeiro Estágio de Treinamento

Essa primeira fase realiza o ajuste dos neurônios da camada intermediária. Estes

neurônios são constituídos de funções de ativação do tipo base radial, podem ser usadas as

funções representadas pelas Equações (3.8) a (3.12), mas a função gaussiana é a mais empre-

gada (Silva et al., 2010).
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φ(r) = e
−

r2

2σ2 , gaussiana (3.8)

φ(r) = r2ln(r), thin-plate spline (3.9)

φ(r) = 1

1 + e

r

σ2 − θ
, função logística (3.10)

φ(r) = (r2 +σ2)1/2, multiquádrica (3.11)

φ(r) = 1(r2 +σ2)1/2 , multiquádrica inversa (3.12)

Nessas equações, r denota a distância entre o valor recebido pela camada de entrada

x até o centro c e σ2 representa a variância das amostras, que indica o quão disperso estão os

pontos x em relação ao centro da função c.

Considerando a expressão fornecida na Equação (3.8), os parâmetros livres a serem

ajustados são o centro c e a variância σ2. O centro está diretamente associado aos seus próprios

pesos, de acordo com a configuração dos neurônios escondidos da rede. Consequentemente,

a saída de cada neurônio da camada intermediária, utilizando a função gaussiana, pode ser

expressa por (Silva et al., 2010):

φ(x) = e

−
∑n

i=1(xi −W
(1)
ji )2

2σ2
j (3.13)

O principal objetivo dos neurônios nessa camada é posicionar o centro de suas

funções de bases radiais da forma mais apropriada possível. Um dos métodos utilizados para

essa função é o algoritmo de k-means (Duda et al., 2001). O valor de k nesse algoritmo é

igual ao número de neurônios na camada intermediária, pois cada uma das funções de ativação

desses neurônios é uma função gaussiana, conforme a Equação (3.13) e os centros serão
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representados pelos seus pesos (Silva et al., 2010).

Algoritmo 1: Primeiro Estágio de Treinamento

1 início

2 Obter o conjunto de amostras de treinamento x(n)

3 Iniciar o vetor de pesos de cada neurônio da camada intermediária com os valores

das n1 primeiras amostras de treinamento;

4 repita

5 para todas as amostras de treinamento x(n) faça

6 Calcular as distâncias euclidianas entre x(n) e W
(1)
ji , considerando-se cada

j-ésimo neurônio por vez;

7 Selecionar o neurônio j, que contenha a menor distância, com o intuito de

agrupar a referida amostra junto ao centro mais próximo;

8 Atribuir a amostra x(n) ao grupo Ω( j);

9 fim

10 para todos W
(1)
ji , onde j = 1, ...,n1 faça

11 Ajustar W
(1)
ji de acordo com as amostras em Ω(1): W

(1)
ji = 1

m( j) ∑x(n)∈Ω( j) x(n)

{ m( j) é o número de amostras em Ω( j) }

12 fim

13 até não haja mudanças nos grupos ω( j) entre as iterações;

14 para todos os W
(1)
ji , onde j = 1, ...,n1 faça

15 Calcular a variância de cada uma das funções de ativação gaussiana pelo

critério da distância quadrática média: σ2
j = 1

m( j) ∑x(n)∈Ω( j)∑n
i=1(x(n)i −W

(1)
ji )2

16 fim

17 fim

O pseudocódigo, a seguir, foi proposto por Silva et. al (2010) e apresenta a sequência

de procedimentos computacionais que visam o treinamento deste primeiro estágio das redes

RBF utilizando o algoritmo de k-means.

Após finalizado esse estágio de treinamento, os pesos W(1) de cada um dos k neurônios

da camada intermediária foram ajustados para seus valores mais adequados para o conjunto

de amostras. Esses pesos representam os centros de cada um desses clusters, subgrupos de
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amostras, que serão usados no próximo estágio de treinamento da rede.

3.4.2 Segundo Estágio de Treinamento

O segundo estágio de treinamento é responsável pelo ajuste dos pesos da camada de

saída de uma rede RBF, este estágio é supervisionado e deve ser executado somente após a

finalização do primeiro estágio de treinamento (Silva et al., 2010).

Nos experimentos feitos neste trabalho, foram utilizadas duas abordagens diferentes

para esta fase. A primeira delas foi a técnica de otimização de pesos que foi baseada no método

de Galerkin proposta por Haykin (2008) e a segunda foi a utilização da Regra Delta Generali-

zada proposta por Silva et. al. (2010).

3.4.2.1 Otimização de Pesos - adaptação do método de Galerkin

Essa abordagem procura uma solução subótima em um espaço de menor dimensionali-

dade. De acordo com (Haykin, 2008) este procedimento foi baseado em uma técnica conhecida

como método de Galerkin. Para encontrar o vetor de pesos ótimos, entende-se que a solução

aproximada que será fornecida pela rede, pode ser generalizada pela equação:

ŷ(x) = m1∑
i=1

w(2)φi(x) (3.14)

onde {φi(x)∣i = 1,2, ...,m1} é um conjunto de funções de base radial e que w(2) constituem

o conjunto de pesos sinápticos da camada de saída. Considerando as funções de base radial

expressas nas Equações (3.8) a (3.12), temos:

φi(x) =G(∥x −W(1)∥), i = 1,2, ...,m1 (3.15)
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onde G representa uma dessas funções de base radial e ∥x −W(1)∥ a distância euclidiana entre

o padrão de entrada x e o peso W(1). Substituindo a Equação (3.15) na Equação (3.14), temos:

ŷ(x) = m1∑
i=1

w(2)G(∥x −W(1)∥) (3.16)

O objetivo dessa fase é determinar o novo conjunto de pesos ótimos w(2) que minimi-

zem o funcional de custo E(ŷ), definido por (Haykin, 2008) como

E(ŷ) = N∑
i=1

(di − m1∑
j=1

w(2)G(∥x −W(1)∥))2 + λ ∥Dŷ∥2 (3.17)

Segundo (Haykin, 2008) o primeiro termo no lado direito da Equação (3.17) pode ser

expresso como a norma euclidiana quadrada ∥d −Gw(2)∥2, em que

d = [d1,d2,⋯,dN]
T

(3.18)

G =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(x1,W
(1)
1 ) G(x1,W

(1)
2 ) ⋯ G(x1,W

(1)
m1 )

G(x2,W
(1)
1 ) G(x2,W

(1)
2 ) ⋯ G(x2,W

(1)
m1 )

⋮ ⋮ ⋮
G(xN ,W

(1)
1 ) G(xN ,W

(1)
2 ) ⋯ G(xN ,W

(1)
m1 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.19)

w(2) = [w(2)1 ,w
(2)
2 ,⋯,w(2)N

]T (3.20)

onde d é o vetor de resposta desejado, G é a matriz que contém o conjunto de funções de base

radiais (camada intermediária) e w(2) é o vetor de pesos sinápticos para a camada de saída.

Verificamos que a matriz G têm dimensões N-por-m1 e portanto não é simétrica.

A partir da Equação (3.16) notamos que a função aproximativa ŷ é uma combinação

linear das funções de Green 1 para o estabilizador D. Por isso, podemos expressar o segundo

1Uma Função de Green é um tipo de função utilizada para resolver equações diferenciais não-homogêneas
sujeitas a condições iniciais ou condições de contorno determinadas
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termo do lado direito da Equação (3.17) como:

∥Dŷ∥2 = (Dŷ,Dŷ)Ω
= [∑m1

i=1 w
(2)
i G(x,W(1)

i ), D̃D∑m1
i=1 w

(2)
i G(x,W(1)

i )]
Ω

= [∑m1
i=1 w

(2)
i G(x,W(1)

i ),∑m1
i=1 w

(2)
i δW

(1)
i
]
Ω

= m1∑
j=1

m1∑
i=1

w
(2)
j w

(2)
i G(W(1)

j ,W
(1)
i )

= wT G0w

(3.21)

Na segunda e terceira linha da demostração foi feito uso equação para diferenciação

parcial das funções de Green (Haykin, 2008). A matriz G0 é simétrica de dimensão m1-por-m1,

definida por:

G0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(W(1)
1 ,W

(1)
1 ) G(W(1)

1 ,W
(1)
2 ) ⋯ G(W(1)

1 ,W
(1)
m1 )

G(W(1)
2 ,W

(1)
1 ) G(W(1)

2 ,W
(1)
2 ) ⋯ G(W(1)

2 ,W
(1)
m1 )

⋮ ⋮ ⋮
G(W(1)

m1 ,W
(1)
1 ) G(W(1)

m1 ,W
(1)
2 ) ⋯ G(W(1)

m1 ,W
(1)
m1 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.22)

A minimização da Equação (3.17) em relação ao vetor de peso w pode ser representada

como:

(GT G + λG0)w = GT d (3.23)

resolvendo para w:

w = (GT G + λG0)−1GT d (3.24)

Se o parâmetro de regularização λ se aproxima de zero, o vetor e peso w converge

para a solução da pseudo-inversa do problema indeterminado de ajuste de dados por quadra-

dos mínimos para m1 < N, a matriz pseudo-inversa G+ da matriz G pode ser definida como

(Broomhead & Lowe, 1988):

G+ = (GT G)−1GT (3.25)
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Substituindo Equação (3.25) em Equação (3.24):

w = G+d, λ = 0 (3.26)

Com base na Equação (3.26) conclui-se que essa abordagem necessita somente de

uma iteração para definição dos pesos ótimos w que melhor irão se adaptar ao conjunto de

dados inseridos no treinamento.

O pseudocódigo abaixo apresenta a sequência de procedimentos computacionais que

visam o treinamento deste segundo estágio das redes RBF utilizando a técnica proposta por

(Haykin, 2008).

Algoritmo 2: Segundo Estágio de Treinamento - Otimização de Pesos

1 início

2 Obter o conjunto de amostras de treinamento {x}
3 Obter o conjunto de pesos {W(1)}
4 Obter o conjunto de saídas desejadas {d}
5 para todas as amostras de treinamento x faça

6 Calcular os valores da matriz G de acordo com Equação (3.19)

7 fim

8 Calcular vetor de peso ótimo: w = G+d

9 fim

3.4.2.2 Regra Delta Generalizada

A segunda abordagem, para o segundo estágio de treinamento, proposta por Silva et

al. (2010) utiliza a Regra Delta Generalizada e é portanto, supervisionada. De acordo com

a Figura 3.1, os dados são propagados pela rede saindo da camada de entrada, passando pela

camada intermediária, onde foi realizado o primeiro estágio de treinamento, e seguem para

camada de saída.

O conjunto de treinamento para os neurônios da camada de saída será constituído por

pares de entrada e saída, em que as entradas serão as respostas produzidas pelas funções de
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ativação de bases radiais, como as expressas nas Equações (3.8) a (3.12), dos neurônios da

camada intermediária e as saídas são as aquelas esperadas pela rede (Silva et al., 2010). Este

conjunto é representado pela equação

ŷ = n1∑
i=1

w
(2)
ji ⋅ φ(x,W(1)) − θ j,onde j = 1, ...,n2 (3.27)

onde w
(2)
ji representa o vetor de pesos sinápticos e θ o limiar, ambos da camada de saída, porém

a expressão φ(x,W(1)) representa os valores calculados pela função de ativação de base radial

utilizando os pesos obtidos no primeiro estágio de treinamento.

Por se tratar de um treinamento supervisionado, cada padrão de entrada tem uma uni-

dade de saída correspondente, representada pelo vetor-alvo. O erro proveniente da diferença

entre os valores encontrados pela rede e a saída correspondente é utilizado para a atualização

dos pesos w(2). A equação que representa esse erro é expressada por

E = 1
2
⋅∑

k

(dk − ŷk)2

(3.28)

A forma de ajuste do vetor de pesos w(2) para obtenção de seu valor ótimo pode ser

expressa pelas equações:

z = φ(x,W(1)) (3.29)

yin = z ⋅w(2) (3.30)

δk = (dk − ŷk) ⋅ f (yin) (3.31)

∆w(2) = α ⋅ δk ⋅ z (3.32)

em que:

• φ(x,W(1)) : valores calculados pela função de ativação de base radial no primeiro

estágio de treinamento;

• w(2) : pesos sinápticos da camada de saída
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• f : função de ativação dos neurônios da camada de saída.

• dk : saída desejada

• ŷ : resultado encontrado pela rede

• α : taxa de aprendizagem da rede

Em sua modelagem tradicional, a função de ativação utilizada pelos neurônios da

camada de saída é sempre linear. Nesse caso, os neurônios dessa camada somente irão realizar

uma combinação linear das funções de ativação de base radial produzidas na camada anterior

(Silva et al., 2010).

As instruções do pseudo-código proposta foram por (Silva et al., 2010) visando-se o

segundo estágio de treinamento, são explicitadas como segue:

Algoritmo 3: Segundo Estágio de Treinamento - Regra Delta Generalizada

1 início

2 Obter o conjunto de amostras de treinamento {x}
3 Obter o vetor de saídas desejadas {d} para cada amostra

4 Iniciar w
(2)
ji com valores aleatórios [−0.5,0.5]

5 Especificar a taxa de aprendizagem α e precisão requerida ǫ

6 para todas as amostras de treinamento x(k) faça

7 Calcular φ j(x,W(1)) de acordo com Equação (3.15)

8 Assumir z(k) = [φ1, φ2, ..., φn]T
9 fim

10 Iniciar o contador do número de épocas: epoca← 0;

11 repita

12 Eanterior ← E conforme Equação (3.28)

13 para todos os pares de treinamento {z(k),d(k)} faça

14 Ajustar w
(2)
ji conforme especificado nas Equações (3.29) a (3.32)

15 fim

16 Eatual ← E conforme Equação (3.28)

17 epoca ← epoca +1

18 até Eatual − Eanterior ≤ ǫ;
19 fim
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Capítulo 4

Alvos ortogonais em Redes de Funções

Bases Radiais

4.1 Definição de vetores-alvo

Convencionalmente, dois tipos de vetores-alvo são usados pelas RNAs em problemas

de reconhecimento de padrões, o Vetor Binário (VBN) e o Vetor Bipolar Convencional (VBC).

A proposta deste trabalho é a utilização de vetores-alvo que possuem a característica de serem

mutuamente ortogonais e dimensão sempre equivalente a uma potência de 2, definida dessa

forma. Por questões inerentes ao algoritmo de geração, determinado pela Seção 4.2.

Por isso, em aplicações, o Vetor Bipolar Ortogonal (VBO) pode apresentar dimensão

maior que os vetores convencionais. Para fins de comparação, também foi utilizado vetores

com a mesma característica dos vetores convencionais, tendo a mesma dimensão dos vetores

ortogonais, definidos no trabalho como Vetor Não Ortogonal (VNO). Os tipos de vetores-alvo

são definidos como:

• Vetores Binários (VBN): são vetores constituídos por n componentes, onde n cor-

responde à quantidade de padrões a serem classificados. Representados por uma

matriz, definida pela Equação (4.1), cada linha i desta matriz corresponde ao i-

ésimo VBN contendo o componente “1” para i = j e o componente “0” para os

51



outros elementos.

Ð→
Vi j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for i = j

0 for i ≠ j

(4.1)

• Vetores Bipolares Convencionais (VBC): são constituídos por n componentes e sua

dimensão depende da quantidade de padrões a serem classificados, de forma seme-

lhante aos VBN. Porém, na representação matricial, definida pela Equação (4.2),

contém os componentes “1” e “−1”.

Ð→
Vi j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for i = j

−1 for i ≠ j

(4.2)

• Vetores Bipolares Ortogonais (VBO): são caracterizados por serem mutuamente

ortogonais e por questões matemáticas inerentes ao algoritmo de geração, seu ta-

manho é sempre uma potência de 2. Para geração dos VBOs, é usado o teorema

apresentado na Seção 4.2.

• Vetores Não Ortogonais (VNO): possuem a mesma característica dos vetores do tipo

VBCs e a mesma dimensão dos VBOs. Eles foram utilizados neste trabalho apenas

com o objetivo de propiciar uma comparação justa de vetores. Para obter VNOs, os

VBCs são complementados com o termo “−1” de modo a atingir o mesmo tamanho

dos VBOs.

4.2 Algoritmo de geração de vetores bipolares ortogonais

O método de geração de VBO foi proposto por Fausett & Hall (1994), nesse algoritmo

um vetor, chamado vetor de sementes, é utilizado para gerar uma nova sequência de vetores até

a determinação final dos VBOs. O número de componentes de cada VBO depende do número

de vetores desejados e do número de componentes escolhido para o vetor de sementes. Essa

relação pode ser descrita pela fórmula

n = 2km (4.3)
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onde 2k é o número de vetores ortogonais entre si para k > 0 e m é o número de componentes

em um vetor de sementes. É interessante observar que o número de vetores será sempre uma

potência de base 2. Logicamente, o interessado constrói seu conjunto, observando esse detalhe,

e, após a obtenção dos vetores, seleciona somente a quantidade de que necessitar.

Assim sendo, um conjunto com 2k VBOs é construído com 2km componentes. O

pseudo-código que apresenta a sequência de passos que visam a geração dos vetores-alvos or-

togonais está descrita no Algoritmo 4.

Algoritmo 4: Geração de vetores bipolares ortogonais

1 início

2 Iniciar o valor de {m} {número de componentes do vetor de sementes}

3 Iniciar o valor de {k} {número vetores ortogonais a serem gerados}

4 Iniciar o vetor de sementes V de acordo com a equação V0
m =

m³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(1,1,⋯,1)T
5 Concatenar o vetor V para construção de novos vetores:

6 início

7 A função de concatenação é definida por:

8 f cc(U,W) = (u1,u2, ...,un,w1,w2, ...,wn)
9 São gerados os vetores: V1

2m = f cc (V0
m,V

0
m) e V2

2m = f cc (V0
m,−V0

m)
10 fim

11 Concatenar os vetores obtidos na linha 9 para construção de novos vetores:

12 início

13 Os vetores construídos são:

14 V1
4m = f cc (V1

2m,V
1
2m), V2

4m = f cc (V1
2m,−V1

2m),
15 V3

4m = f cc (V2
2m,V

2
2m) e V4

4m = f cc (V2
2m,−V2

2m)
16 fim

17 repita

18 Concatenar os vetores existentes para a construção de novos vetores.

19 até que exista 2k vetores ortogonais;

20 fim

Para fins ilustrativos, considere o exemplo em que se deseja construir 8 VBOs. O

vetor semente escolhido contém um componente { V0
m = (1) }, dessa forma, de acordo com a
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Equação (4.3) temos 8 componentes em cada vetor, conforme demonstrado

n = 2km = 8 ⋅ 1 = 8 (4.4)

O próximo passo do algoritmo é a concatenação do vetor de sementes para geração de

novos vetores, que são representados por:

V1
2m = f cc (V0

m,V
0
m) = (1,1) (4.5)

V1
2m = f cc (V0

m,−V0
m) = (1,−1) (4.6)

Em seguida, um novo conjunto de vetores é obtido pela execução da linha 11 do

algoritmo, esses vetores são definidos como:

V1
4m = f cc (V1

2m,V
1
2m) = (1,1,1,1) (4.7)

V2
4m = f cc (V1

2m,−V1
2m) = (1,1,−1,−1) (4.8)

V3
4m = f cc (V2

2m,V
2
2m) = (1,−1,1,−1) (4.9)

V4
4m = f cc (V2

2m,−V2
2m) = (1,−1,−1,1) (4.10)

Seguindo o algoritmo, em uma possível execução da linha 18, obtêm-se os vetores
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representados:

V1
8m = f cc (V1

4m,V
1
4m) = (1,1,1,1,1,1,1,1) (4.11)

V2
8m = f cc (V1

4m,−V1
4m) = (1,1,1,1,−1,−1,−1,−1) (4.12)

V3
8m = f cc (V2

4m,V
2
4m) = (1,1,−1,−1,1,1,−1,−1) (4.13)

V4
8m = f cc (V2

4m,−V2
4m) = (1,1,−1,−1,−1,−1,1,1) (4.14)

V5
8m = f cc (V3

4m,V
3
4m) = (1,−1,1,−1,1,−1,1,−1) (4.15)

V6
8m = f cc (V3

4m,−V3
4m) = (1,−1,1,−1,−1,1,−1,1) (4.16)

V7
8m = f cc (V4

4m,V
4
4m) = (1,−1,−1,1,1,−1,−1,1) (4.17)

V8
8m = f cc (V4

4m,−V4
4m) = (1,−1,−1,1,−1,1,1,−1) (4.18)

Se for realizado o produto interno tomando cada par de vetores, verificar-se-á que

serão iguais a zero. Dessa forma, são obtidos oito VBOs, e cada qual com oito componentes.

4.3 Observações sobre os vetores

A distância euclidiana entre dois VBCs é igual a 2
√

2 independente de sua dimensão,

porém a distância euclidiana entre dois VBOs aumenta à medida que a dimensão desses vetores

também aumenta. Por essa característica, para vetores de dimensão n, metade nas n diferenças

se anulará e a outra metade será igual a 22 = 4. Por isso, a Equação (2.4) pode ser reescrita

como:

dU,W = √n

2
⋅ 4 = √2n (4.19)

O gráfico da Figura 4.1 mostra a evolução da distância euclidiana baseado no aumento

da dimensão dos vetores-alvo. Com VBC e VNO, a distância vale sempre
√

2 e para VBO, a
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onde N é a quantidade de padrões e µ representa a média.

No processo de RP, as fronteiras delimitadoras das RBF são definidas por campos

receptivos hiperesféricos. Consequentemente, a classificação de padrões levará em conta a

distância radial em que os os padrões se encontram em relação aos centros das hiperesferas. Já

a MLP computa as fronteiras de delimitação por intermédio de uma combinação de hiperplanos,

conforme exemplificado pela Figura 4.5 (Silva et al., 2010).

Figura 4.3: Fronteira de separabilidade das redes MLP e RBF
Fonte: (Silva et al., 2010)

Com base nessas características, quando utilizado um VBO no processo de classifica-

ção, os alvos ficarão mais distantes, porém durante o cálculo da gaussiana para o processo de

clusterização, essa dispersão será refletida no valor da variância das amostras. Com os dados

dispersos, a variância das amostras será maior, aumentando o desvio padrão e consequente-

mente a amplitude da gaussiana também será maior para se ajustar aos dados pertencentes a

essa distribuição, o que não terá nenhum impacto no processo de clusterização.
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Figura 4.4: Clusterização de amostras com VNO

Figura 4.5: Clusterização de amostras com VBO

A segunda fase do treinamento nessa abordagem é linear, utilizando os valores ob-

tidos nos cálculos das gaussianas para se obter o vetor de pesos sinápticos otimizado para o

conjunto de dados treinado. Portanto, conclui-se que a utilização de outros vetores-alvo, nessa

abordagem, não altera o desempenho da rede.

4.4.2 Regra Delta Generalizada

O algoritmo da Regra Delta é deduzido por meio da função erro obtida pela diferença

entre a saída encontrada e a saída desejada (Fausett & Hall, 1994), Foi deduzido por Rumelhart

et al (1985) com o objetivo de se reduzir o valor do erro quadrático médio. Assim, a função erro
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é submetida a um algoritmo de gradiente descendente.

A comprovação matemática do uso dos VBOs no algoritmo da Regra Delta foi pro-

posta por Manzan (2016). Para uma discussão matemática apropriada, é necessário fornecer

algumas fórmulas.

Considere xi como o valor da i-ésima entrada, dk como o valor da k-ésima saída dese-

jada, z j como o j-ésimo valor que chega à camada oculta e yk como a k-ésima saída encontrada.

Considere W
(1)
i j como o peso sináptico entre a i-ésima entrada e o j-ésimo neurônio da camada

oculta, w
(2)
i j como o peso sináptico entre o j-ésimo neurônio da camada oculta e o k-ésimo neurô-

nio da camada de saída e w0i j como o peso sináptico do tipo bias correspondente ao k-ésimo

neurônio da camada de saída. A Equação (4.25) mostra o cálculo de z, nela φ representa a fun-

ção de base radial utilizada no primeiro estágio de treinamento e as Eq. 4.26 e 4.27 mostram o

cálculo de yk (Fausett & Hall, 1994).

z j = φ(xi,W
(1)) (4.25)

yink = ∑
j

z jw
(2)
jk (4.26)

yk = f (yink) (4.27)

A função erro é mostrada pela Equação (4.28), na qual dk é a saída desejada e yk é a

saída encontrada. As Equações (4.29) a (4.33) mostram o cálculo do gradiente descendente da

função erro em relação aos pesos da camada de saída. A Equação (4.34) mostra a fórmula de
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atualização dos pesos da camada de saída.

E = 1
2
∑

k

[dk − yk]2 (4.28)

∂E

∂w
(2)
jk

= ∂

∂w
(2)
jk

1
2
∑

k

[dk − yk]2 (4.29)

∂E

∂w
(2)
jk

= ∂

∂w
(2)
jk

1
2
[dk − f (yink)]2 (4.30)

∂E

∂w
(2)
jk

= − [dk − yk] ∂
∂w
(2)
jk

f (yink) (4.31)

∂E

∂w
(2)
jk

= − [dk − yk] f ′ (yink) ∂
∂w jk

(yink) (4.32)

∂E

∂w
(2)
jk

= − [dk − yk] f ′ (yink) z j (4.33)

δk = [dk − yk] f ′ (yink) (4.34)

É possível expressar matematicamente a função distância euclidiana em relação à fun-

ção erro. Se a distância euclidiana diminui, o erro também diminui. Se a distância euclidiana

aumenta, o erro também aumenta. A função distância euclidiana é mostrada pela Eq. 4.35.

D = (∑
k

[tk − yk]2)
1
2

(4.35)

Assim, a função distância euclidiana é a raiz quadrada do dobro da função erro D =√
2E. Aplicando o gradiente descendente para a função distância euclidiana, obtém-se

δk = [tk − yk] f ′ (yink)√∑k [tk − yk]2 (4.36)

δ j = ∑
j

δkw jk f ′ (zin j) (4.37)
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Assim, as fórmulas obtidas pela aplicação do gradiente descendente para a função

erro também estão relacionadas com as fórmulas obtidas pela aplicação do gradiente descen-

dente para a função da distância euclidiana. Pode-se deduzir que, se os pontos do espaço de

saída, intitulados “alvos” da rede, estão mais distantes uns dos outros, as chances de uma saída

obtida pela inserção de um determinado padrão se aproximar de alvos correspondentes a outros

padrões são menores.

Os pontos do espaço de saída são equidistantes para qualquer tipo de vetor no espaço

Rn, são considerados dois vetores-alvo distintos. Considere-se também a representação desses

pontos no plano. Ao longo do treinamento, cada saída obtida é projetada no espaço Rn. Nessa

ilustração, cada saída é projetada no plano. Com a evolução dos ciclos, as saídas projetadas

formam uma região de convergência em torno da saída desejada. A Figura 4.6 ilustra essa

discussão.

Figura 4.6: Ilustração de regiões de convergência
Fonte: (Manzan, 2016)

Nessa ilustração está clara a existência de uma grande quantidade de pontos perten-

centes às duas regiões de convergência. Esses pontos dentro da intersecção das regiões de

convergência estão mais propensos a estarem mais próximos de alvos correspondentes a outros

padrões, ou seja, mais próximos de alvos incorretos, fazendo com que a rede os classifique
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incorretamente.

Contudo, se os alvos estão mais distantes uns dos outros, a intersecção entre as regiões

de convergência é bem menor. Assim, a taxa de classificação é beneficiada, porque há menos

saídas propensas a erros de classificação. A Figura 4.7 ilustra dois alvos dispostos a uma maior

distância euclidiana.

Figura 4.7: Ilustração de regiões de convergência com alvos distantes
Fonte: (Manzan, 2016)

Isso explica por que as redes que utilizam essa metodologia treinadas com VBOs

têm melhor desempenho global. Também explica a superioridade de VBOs com poucos ciclos

de treinamento. A característica dos VBOs de possuírem maior distância euclidiana reduz a

interferência entre as regiões de convergência.
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Capítulo 5

Procedimentos Experimentais

5.1 Dados experimentais

Os experimentos realizados para treinamento e teste da RBF foram feitos com três

conjuntos de dados diferentes disponibilizados por repositório de dados públicos. Em cada um

dos conjuntos de dados, foram feitos testes com diferentes tipos de vetores-alvos e dimensões.

5.1.1 Íris humana

O conjunto de dados para os experimentos realizados com a íris humanas foi obtido na

Chinese Academy of Sciences - Institute of Automation database denominada CASIA (Casia,

2010). O conjunto de dados contém íris de 108 indivíduos e para 70 deles há um conjunto

completo de sete imagens. De acordo com o repositório CASIA, essas imagens foram obtidas

com o uso de luz infravermelha para obter melhor contraste e nitidez.

Cada imagem possui 18 círculos concêntricos, e o primeiro passo para o processa-

mento das imagens é a detecção das circunferências que foi feita utilizando a transformada de

Hough Circular (Pereira & Veiga, 2005). Em seguida, a região da íris, que tem formato de anel,

é normalizada de modo a ser representada como uma matriz retangular.

A extração das características da íris é realizada no próximo passo, neste trabalho,

foi realizada por convolução da imagem normalizada com o chamado filtro de Log Gabor. A
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filtragem resulta em coeficientes complexos, cujas fases são quantizadas para um dos quatro

quadrantes do plano complexo. Cada quadrante é referenciado por dois bits, e um modelo

binário é criado (Daugman, 1993; Negin et al., 2000; Manzan, Yamanaka, & Nomura, 2011).

Para cada imagem existem 8640 pixels dispostos em 18 círculos concêntricos, cada

um contendo 480 pixels. Porém, para reduzir a interferência dos cílios, foi utilizado somente as

cinco primeiras circunferências. Dessa forma, cada um dos padrões de treinamento corresponde

a um conjunto de 5 × 480 = 2400 pixels, que são dispostos em um vetor linha onde os pixels

brancos são representados por “−1”, e os pixels pretos, por “1”.

5.1.2 Dígitos manuscritos

O repositório internacional Semeion Handwritten Digit of Machine Learning Repo-

sitory (Lichman, 2013) disponibiliza o conjunto de dados com imagens escaneadas de dígitos

manuscritos. Segundo informações disponibilizadas pelo repositório, para obtenção desses da-

dos, cerca de 80 pessoas foram convidadas a escrever os números de 0 a 9 duas vezes:

1. Escrever os dígitos calmamente, primando pela perfeição;

2. Escrever os dígitos rapidamente, sem se preocupar com a legibilidade.

Cada figura foi escaneada em uma imagem contendo 256 pixels no formato de 16

linhas e 16 colunas, essa matriz foi transformada em um vetor linha de 256 componentes, sendo

que cada linha foi posicionada imediatamente à direita de sua linha superior na matriz (Lichman,

2013). Para cada pixel correspondente ao fundo da imagem foi atribuído o valor −1 e para cada

pixel correspondente à imagem foi atribuído o valor 1.

5.1.3 Signos da linguagem de sinais australiana

Finalmente, foram realizados experimentos com signos da linguagem de sinais austra-

liana (Australian linguagem gestual) obtidos no UCI Machine Learning Repository (Lichman,

2013). De acordo com o repositório, foram capturadas 27 amostras de cada um dos 95 signos

australianos usando-se rastreadores de posição de alta qualidade de indivíduos nativos.
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Os dados foram capturados utilizando-se luvas de quinta dimensão, rastreadores mag-

néticos, entre outros equipamentos de alta qualidade. Porém alguns dados obtidos não são

totalmente precisos. Foram registrados os seguintes dados:

• Posição x: posição relativa, medida em metros, em relação a um ponto ajustado

ligeiramente abaixo do queixo.

• Posição y: posição relativa, em metros, em relação a um ponto ajustado ligeira-

mente abaixo do queixo.

• Posição z: posição relativa, em metros, em relação a um ponto ajustado ligeiramente

abaixo do queixo.

• Roll [−0.5,0.5]: 0 sendo palma para baixo, valor positivo significa que a palma gira

no sentido horário a partir da perspectiva do pronunciador.

• Pitch [−0.5,0.5]: 0 sendo palma plana (horizontal), um valor positivo significa que

a palma está apontando para cima.

• Yaw [−1,1]: 0 corresponde a palma para a frente e o valor positivo significa movi-

mento no sentido horário ambos a partir da perspectiva acima do pronunciador.

• Medida da curva do polegar [0,1] : O valor 0 significa totalmente plana, e 1 signi-

fica totalmente dobrado.

• Medida da curva do dedo indicador [0,1]: 0 indica o dedo totalmente plano e 1

indica que o dedo está totalmente dobrado.

• Medida da curva do dedo médio [0,1]: 0 indica o dedo totalmente plano e o valor

1 indica o dedo totalmente dobrado.

• Medida da curva do dedo anelar [0,1]: 0 indica o dedo totalmente plano e o valor

1 indica o dedo totalmente dobrado.

• Medida da curva do dedo mindinho [0,1]: 0 indica o dedo totalmente plano, e o

valor 1 indica o dedo totalmente dobrado.
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5.2 Vetores-alvo

Para cada conjunto de dados testados, foram usados os 3 tipos de vetores-alvo

descritos na Seção 4.1, o tamanho utilizado para treinamento da rede em cada conjunto de

dados, está descrito da Tabela 5.1.

Tabela 5.1: Dimensão dos vetores-alvo utilizados

Conjunto de dados VBC VNO VBO

Íris Humana 70

128 128

256 256

512 512

1024 1024

2048 2048

Dígitos Manuscritos 10 16 16

Signos Australianos 95 128 128

5.3 Planejamento experimental

Os experimentos foram realizados com os três conjuntos de dados descritos na Seção

5.1 e para cada um desses conjuntos foram implementados dois modelos de RBF. O primeiro

modelo foi desenvolvido utilizando a abordagem proposta por Haylin (2008) de otimização de

pesos, descrita na Seção 3.4.2.1, no segundo estágio de seu treinamento, referenciado apenas

como MH a partir de agora.

Já o segundo modelo, em sua fase supervisionada utilizou a abordagem proposta por

Silva et al. (2010) e empregou a Regra Delta Generalizada para atualização dos pesos da camada

de saída, a partir desta seção, este modelo será referenciado apenas por MRD.

Para cada um dos conjuntos de dados, foram feitos experimentos com 10 valores dife-
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rentes de neurônios na camada intermediária (quantidade de subgrupos/clusters), além disso, as

dimensões especificadas na Seção 5.2 dos vetores-alvo, definidos na Seção 4.1, também foram

utilizadas. Todos os experimentos feitos com o emprego da Regra Delta Generalizada utilizou

taxa de aprendizagem adaptativa (Duffner & Garcia, 2007) com valor inicial em 0.05 e termo

momentum [0,0.9] definido como β = 0.9 (Silva et al., 2010).

Os experimentos foram repetidos 100 vezes para cada combinação desses valores,

com inicialização de pesos aleatórios nas duas fases do algoritmo de treinamento. Os pesos

sinápticos iniciais foram gerados aleatoriamente entre −0.5 e 0.5. Os resultados apresentados

neste trabalho representam a média das 100 execuções de cada um dos experimentos feitos.

Todos os modelos experimentais foram desenvolvidos e testados utilizando o sofw-

tare Matlab ®R2016a. Os testes estatísticos realizados durante o trabalho foram feitos com o

software de análises estatísticas R (R Core Team, 2014).

5.4 Parâmetros analisados

Cada conjunto de dados foi dividido em três subgrupos que representavam os dados

para treinamento, validação e teste. Nos experimentos feitos com a base de dados da íris hu-

mana, o conjunto de treinamento continha quatro amostras de cada indivíduo, totalizando 280

amostras.

Para o conjunto de 10 dígitos manuscritos foram utilizadas no total 450 amostras. Fi-

nalmente, foram utilizadas 9 amostras de cada um dos 95 tipos de sinais de signos australianos,

totalizando 855 amostras para cada um dos conjuntos (treinamento, validação e teste). Todos

os parâmetros de desempenho foram obtidos por meio dos conjuntos de teste.

O MH é executado em apenas um ciclo de treinamento e por isso, foi analisado apenas

o desempenho médio e o desempenho máximo para os experimentos. A título de comparação

das técnicas, a implementação de MRD também foi analisada seguindo os mesmos parâmetros.

Considerando que em (Manzan et al., 2016) estes conjuntos de dados foram utilizados

para experimentos em redes MLP, o modelo MRD foi analisado utilizando os mesmos parâ-

68



metros utilizados para a rede MLP para fins comparatórios. Os parâmetros analisados em cada

experimento foram:

1. Desempenho máximo global

2. Desempenho máximo em 50 ciclos

3. Desempenho após o primeiro ciclo

4. Desempenho médio dos cinco primeiros ciclos

5.5 Resultados Experimentais

A Tabela 5.2 mostra os resultados do teste de normalidade de Kolmogorov-Smirnov

(Conover, 1999) realizados com os resultados obtidos nos experimentos com dígitos manuscri-

tos. A estatística desse teste é representada pela letra D e usando nível de significância α = 0.05,

os dados não se ajustam à distribuição normal.

O mesmo fenômeno ocorre para os resultados obtidos nos experimentos com íris

humana e signos australianos, como pode ser visto nas Tabelas 5.3 e 5.4. Por essa razão, o

teste não paramétrico de Mann-Whitney (Conover, 1999) foi utilizado para comparação de

significância entre as amostras dos três tipos de conjuntos de dados.

Tabela 5.2: Teste de normalidade de Kolmogorov-Smirnov - Dígitos Manuscritos

Ciclo 1 5 10 15 20 25 30 35 40 45 50

D 0.170 0.130 0.119 0.112 0.168 0.214 0.210 0.208 0.192 0.153 0.168

Tabela 5.3: Teste de normalidade de Kolmogorov-Smirnov - Íris Humana

Ciclo 1 5 10 15 20 25 30 35 40 45 50

D 0.415 0.452 0.338 0.354 0.362 0.352 0.333 0.319 0.289 0.249 0.201
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Tabela 5.4: Teste de normalidade de Kolmogorov-Smirnov - Sinais Australianos

Ciclo 1 5 10 15 20 25 30 35 40 45 50

D 0.369 0.365 0.348 0.313 0.301 0.273 0.233 0.225 0.194 0.181 0.145

A Tabela 5.5 mostra os resultados do teste estatístico de Mann-Whitney de todas as

comparações com o uso de diferentes vetores-alvo nos experimentos com dígitos manuscritos.

A hipótese nula é que não existem diferenças significativas entre os vetores, e a hipótese alter-

nativa é que existem diferenças significativas entre os vetores. Para cada comparação é gerada

uma estatística do teste representada como “valor-p”.

Entende-se por “valor-p” sob a hipótese nula (considerada como verdadeira) a proba-

bilidade de obtenção de um valor igual ou mais extremo do que o valor obtido na amostra. De

modo análogo, as Tabelas 5.6 e 5.7 mostram, respectivamente, os resultados do teste estatístico

de Mann-Whitney referentes aos experimentos com íris humana e signos australianos.

As comparações com os demais vetores-alvo utilizados nos experimentos feitos

com a íris humana estão dispostos no Apêndice A. Os valores representados com asteris-

cos, nas tabelas posteriores, indicam que não existem diferenças ao nível de 1% de significância.

Tabela 5.5: Teste de Mann-Whitney - Dígitos Manuscritos

Ciclo
Comparação

VBC10 x VNO16 VBC10 x VBO16 VNO10 x VBO16

1 0.35112 * *
5 0.27479 * *
10 0.22780 * *
15 0.23129 * *
20 0.18167 * *
25 0.33009 * *
30 0.16136 * *
35 0.06641 * *
40 0.26642 * *
45 0.05782 * *
50 0.35112 * *
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Tabela 5.6: Teste de Mann-Whitney - Íris Humana

Ciclo
Comparação

VBC70 x VNO128 VBC70 x VBO128 VNO128 x VBO128

1 0.720 * *
5 0.123 * *
10 0.201 * *
15 0.923 * *
20 0.323 * *
25 0.452 * *
30 0.701 * *
35 0.359 * *
40 0.074 * *
45 0.468 * *
50 0.865 * *

Tabela 5.7: Teste de Mann-Whitney - Sinais Australianos

Ciclo
Comparação

VBC95 x VNO128 VBC95 x VBO128 VNO128 x VBO128

1 0.5857 * *
5 0.2570 * *
10 0.7572 * *
15 0.5047 * *
20 0.7759 * *
25 0.8969 * *
30 0.1486 * *
35 0.1469 * *
40 0.4853 * *
45 0.3775 * *
50 0.4639 * *
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A Tabela 5.8 mostra o valor médio dos resultados obtidos com implementação de

MH. Devido à sua forma de implementação, os pesos são ajustados em apenas um ciclo, por

isso, para fins comparatórios entre as duas implementações, a Tabela 5.9 apresenta o valor

médio dos desempenhos máximos de cada experimento na modelagem MRD.

Tabela 5.8: Desempenho obtido com a rede MH

Dados
Experimentais

Vetores-alvo
Desempenho
médio

Desempenho
máximo

Íris Humana

VBC70 87.69 93.57
VNO128 87.44 93.57
VNO256 87.46 93.78
VNO512 87.33 93.57
VNO1024 87.56 93.45
VNO2048 87.31 93.57
VBO128 87.31 93.78
VBO256 87.91 93.30
VBO512 87.55 92.14
VBO1024 87.12 93.45
VBO2048 87.56 93.57

Dígitos
Manuscritos

VBC10 87.51 89.38
VNO16 87.72 89.56
VBO16 87.73 89.51

Sinais
Australianos

VBC95 55.85 57.76
VNO128 54.02 55.90
VBO128 54.30 55.97

73



Tabela 5.9: Desempenho obtido com a rede MRD

Dados
Experimentais

Vetores-alvo
Desempenho
médio

Desempenho
máximo

Íris Humana

VBC70 79.08 87.14
VNO128 79.87 87.85
VNO256 91.19 94.28
VNO512 91.37 93.57
VNO1024 79.58 87.14
VNO2048 79.66 86.42
VBO128 90.75 91.42
VBO256 95.22 96.42
VBO512 95.12 96.42
VBO1024 90.89 91.42
VBO2048 90.82 91.42

Dígitos
Manuscritos

VBC10 83.33 90.86
VNO16 83.45 91.11
VBO16 81.89 90.12

Sinais
Australianos

VBC95 66.08 76.04
VNO128 66.16 77.07
VBO128 68.34 73.68

Os resultados obtidos por (Manzan et al., 2016) em seus experimentos com estes

conjuntos de dados utilizando redes do tipo MLP estão dispostos nas Tabelas 5.10, 5.11, 5.12.

De forma análoga, as Tabelas 5.13, 5.14, 5.15 mostram os resultados obtidos nos experimentos

feitos com a implementação MRD utilizando os parâmentros para fins comparatórios das duas

redes.

Tabela 5.10: Resultados MLP - Dígitos Manuscritos

Parâmetros analisados VBC10 VNO16 VBO16

Desempenho após o primeiro ciclo 56.13 50.79 69.59
Desempenho médio dos cinco primeiros ciclos 63.34 59.79 74.54
Desempenho médio em 50 ciclos 76.91 76.52 82.45
Desempenho máximo global 79.49 79.34 84.93
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Tabela 5.11: Resultados MLP - Íris Humana

Parâmetros analisados VBC70 VNO128 VBO128

Desempenho após o primeiro ciclo 7.01 5.16 77.13
Desempenho médio dos cinco primeiros ciclos 18.51 12.22 85.48
Desempenho médio em 50 ciclos 83.48 82.13 89.18
Desempenho máximo global 83.88 82.72 90.44

Tabela 5.12: Resultados MLP - Sinais Australianos

Parâmetros analisados VBC95 VNO128 VBO128

Desempenho após o primeiro ciclo 2.82 2.68 28.56
Desempenho médio dos cinco primeiros ciclos 2.88 2.79 47.06
Desempenho médio em 50 ciclos 62.77 60.06 78.84
Desempenho máximo global 76.39 75.26 82.63

O gráfico representado na Figura 5.2, representa os resultados obtidos na Tabela 5.13

e mostra uma comparação entre os três tipos de vetores-alvo apresentados neste trabalho. Os

valores apresentados, correspondem a média dos resultados dos 100 experimentos realizados

com 50 ciclos na fase de treinamento. Da mesma maneira, os gráficos das Figuras 5.3 e 5.4

representam os valores sintetizados nas Tabelas 5.14 e 5.15, respectivamente.

Tabela 5.13: Resultados RBF - MRD - Dígitos Manuscritos

Parâmetros analisados VBC10 VNO16 VBO16

Desempenho após o primeiro ciclo 24.45 23.96 50.75
Desempenho médio dos cinco primeiros ciclos 62.64 62.02 71.19
Desempenho médio em 50 ciclos 83.33 83.45 81.89
Desempenho máximo global 90.86 91.11 90.12
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foram todos menores que 2.2E-16, representando a diferença que existe entre os vetores com-

parados.

Os resultados obtidos pela modelagem MH na Tabela 5.8, quando comparados com os

obtidos pela modelagem MRD presentes pela Tabela 5.9, mostram que na utilização dos VNOs

as duas redes possuem desempenho equiparáveis, porém, quando os VBOs são utilizados como

vetores-alvo nas redes MRD, o desempenho delas passa a ser superior em todos os conjuntos

de dados experimentados nesta pesquisa.

De acordo com a Tabela 5.8, os dados treinados com a íris, utilizando VBO128, ob-

tiveram desempenho médio de 87.31%, enquanto que na modelagem MRD com os mesmos

vetores-alvo, o desempenho médio da rede chegou a 90.75%. Já com a utilização de VBO256

a diferença é ainda maior, a modelagem MH obteve desempenho médio de 87.91%, enquanto

que na modelagem MRD o desempenho médio da rede foi de 95.22%.

Com o conjunto de dados referente aos dígitos manuscritos, a melhora da performance

não foi significativa. Obteve-se com a RBF - MRD desempenho máximo de 90.12% e na

modelagem MH, o resultado foi de 89.51%. Na base de dados dos Signos Australianos, nota-se

novamente uma melhor performance utilizando a Regra Delta Generalizada. Os resultados do

desempenho médio da modelagem MH para os sinais australianos foram de 54.30% de acerto,

enquanto que com a rede MRD, obteve-se 68.34% de taxa de acerto.

As Figuras 5.2, 5.3 e 5.4 representam os resultados obtidos pela execução da rede

MRD e os gráficos demonstram a superioridade dos VBOs em relação aos demais vetores uti-

lizados, sendo notável nos 3 conjuntos de dados que nos 5 primeiros ciclos de treinamento os

VBOs conseguiram atingir uma taxa de acerto maior que os demais. As Tabelas 5.13, 5.14 e

5.15 também demonstram as mesmas características visualizadas nos gráficos.

Nos experimentos feitos com as imagens de íris, no 1o ciclo a rede apresentava 10.02%

de acerto com VBO128, enquanto usando VBC70 estava com apenas 3.43% de acerto e com

VNO128 com 3.37%. No 5o ciclo, a taxa de acerto com o VBO128 foi de 70.75%, com a utilização

do VBC70 a performance foi de 6.12% e com VNO128 a taxa de acerto foi de 6.27%. O melhor

desempenho dos VBOs continua nos ciclos posteriores, sendo que, no 10o ciclo a rede apresenta
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6.92% de acerto com os VBC70, 6.97% com os VNO128 e 84.30% utilizando-se VBO128.

Os resultados com os Sinais Australianos também apresentam a mesma característica.

No 5o ciclo a modelagem da rede que utiliza VBO128 como vetor-alvo possui 59.33% de acerto,

enquanto que com VBC95 a taxa de acerto é 11.61% e usando VNO128 a porcentagem de acerto

é de 12%. Nos dígitos manuscritos, logo no 1o ciclo a taxa de acerto da rede modelada com

VBO16 apresenta 50.75% de acerto, enquanto as modelagens que possuem VBC10 e VNO16

apresentam porcentagem de acerto em torno de 24%. Comprovando dessa forma, a eficácia dos

novos vetores para estes problemas de classificação de padrões, utilizando como abordagem de

treinamento a Regra Delta Generalizada, uma vez que o desempenho foi maior em um número

de ciclos reduzido.

Comparando os resultados apresentados nas Tabelas 5.10, 5.11 e 5.12, que apresenta

os valores obtidos com a rede MLP, com os apresentados pelas Tabelas 5.13, 5.14 e 5.15, res-

pectivamente, cujos valores são aqueles obtidos pela execução da rede com modelagem MRD,

nota-se que com o conjunto de dados da Íris Humana, a RBF apresentou uma taxa de acerto

bem próxima que a MLP, porém com base de dados dos Signos Australianos que a porcenta-

gem de acerto da MLP foi 5.95% maior que a da RBF. Já no conjunto de dados dos Dígitos

Manuscritos, a RBF acertou 5.19% mais padrões que a MLP.

Utilizando a base de dados das imagens da íris, o desempenho máximo obtido pela

MLP foi de 90.44%, utilizando-se os VBOs, já a taxa de acerto da RBF para o mesmo conjunto

de dados foi de 91.42%. Nos dígitos manuscritos, o desempenho da RBF foi de 90.12% en-

quanto que o apresentado para a MLP foi de 84.93%. Utilizando a base de dados dos Signos

Australianos, o desempenho da RBF foi de 76.68% e a MLP apresentou resultado de 82.63%.

Essa semelhança na média dos resultados das comparações, demonstra que as duas redes pos-

suem desempenho equivalente para os padrões testados. Além disso, nota-se que os VBOs

melhoram o desempenho dos dois tipos de RNAs.
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Capítulo 6

Conclusão

Este trabalho propôs a utilização de novos vetores-alvo em RNAs do tipo RBF. A

característica de ortogonalidade mútua desses vetores faz com que estejam geometricamente a

uma maior distância euclidiana. Essa maior distância entre os pontos do espaço de saída oferece

à rede maior capacidade de generalização, redução do esforço computacional e robustez.

Foi demonstrado que o distanciamento dos pontos, melhora o desempenho para a

modelagem realizada com o algoritmo da Regra Delta Generalizada, porque ao longo do treina-

mento, a saída obtida pela rede para cada amostra aproxima-se do seu alvo correspondente. Se

os alvos estão mais distantes uns dos outros, haverá menor probabilidade de as saídas geradas

pela rede em tempo de treinamento estarem mais próximas de alvos incorretos. Consequente-

mente, a tarefa de classificação dos padrões será facilitada.

Porém na modelagem utilizando o método de otimização de pesos proposto por Hay-

kin (2008), a utilização desses vetores não impacta o resultado da rede devido a sua forma de

ajuste de pesos. Esse comportamento acontece devido à forma de agrupamento/clusterização

realizada, onde os grupos se ajustam de acordo com os membros que pertecem a ele, conforme

explicado na Seção 4.4.1. Essa característica também foi demonstrada pelos experimentos re-

alizados durante o trabalho e sintetizados na tabela 5.8, onde a variação do desempenho das

redes com diferentes vetores-alvo não passou de 1%.

As duas modelagens propostas para redes RBF foram implementadas e experimental-
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mente analisadas para o reconhecimento de dígitos manuscritos, íris humana e signos austra-

lianos. A comparação feita entre as duas redes, analisando seu desempenho médio e máximo

demonstrou que, na utilização de vetores convencionais, ambas possuem desempenho equipa-

rável. Porém na utilização de VBO, objeto de pesquisa deste trabalho, a rede modelada com

a Regra Delta Generalizada apresentou melhores resultados para taxa de acerto dos padrões

experimentados.

Estes resultados também nos mostram que a modificação realizada na camada de

saída, alterando a função de ativação de linear para sigmoide melhorou o desempenho da rede

em cerca de 9% para os dígitos australianos e cerca de 3% nos demais conjuntos de dados testa-

dos. O aumento no desempenho ocorre porque essa alteração na camada de saída proporcionou

uma nova transformação nos dados onde antes havia apenas uma combinação linear.

Os dois tipos de redes neurais utilizados nesta pesquisa são tradicionalmente utiliza-

dos em aplicações para reconhecimento de padrões, aproximação funcional, entre outros. As

redes se diferenciam quanto características em sua arquitetura. A comparação das redes RBF

e MLP demostrou que, a RBF necessita de um conjunto de dados de entrada maior para rea-

lizar o treinamento e ajuste de pesos, enquanto a MLP consegue resultados semelhantes com

menos dados de entrada. Em contrapartida, o tempo de convergência da RBF é menor quando

comparado à MLP.

Os experimentos realizados para comparação das redes, consistiram na comparação

do desempenho em vários momentos do treinamento usando-se VBCs, VNOs e VBOs. Eles

demonstraram que, para o conjunto de padrões utilizados, as duas redes são equiparáveis na

tarefa de reconhecimento de padrões.

Outro aspecto importante que foi verificado, foi que as redes treinadas com VBOs têm

desempenho superior em todos esses momentos do treinamento. Foi verificado também que o

aumento da dimensão dos vetores convencionais não melhora o desempenho, em alguns casos,

o desempenho com vetores de dimensões maiores foi inferior. Essa mesma característica, foi

observada na utilização dos VBOs, onde os vetores com dimensões muito grandes, como 1024

e 2048, apresentaram menor desempenho que os demais.
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Destaca-se que, além do aumento do desempenho global do treinamento, o uso de

VBOs como alvos de RBFs permite inclusive que a rede alcance um nível satisfatório de de-

sempenho com pouco treinamento. Isso é especialmente importante pelo fato de reduzir o

esforço computacional.

Os experimentos também demostraram que o processo de clusterização feito na ca-

mada intermediária é de extrema importância para o bom desempenho na tarefa de classifi-

cação de padrões. Em trabalhos futuros, espera-se realizar experimentos com outros tipos de

algoritmos para clusterização dos dados na camada intermediária para analisar e comparar o

desempenho da rede com outras bases de dados.
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Apêndice A

Teste de Mann-Whitney

Vetores 1 5 10 15 20 25 30 35 40 45 50 

CBV70 x NOV128 0.512 0.914626 0.550437 0.917541 0.275391 0.12363 0.677306 0.427429 0.695998 0.489651 0.964828 

CBV70 X NOV256 0.08738 * * * * * * * * * * 

CBV70 x NOV512 0.003688 * * * * * * * * * * 

CBV70 x NOV1024 0.6808 0.262312 0.132572 0.312186 0.713009 0.518463 0.914952 0.250881 0.38246 0.295546 0.250846 

CBV70 X NOV2048 0.6713 0.289763 0.449735 0.999017 0.425711 0.826974 0.565621 0.369999 0.41511 0.524193 0.651508 

CBV70 X OBV128 0.9261 * * * * * * * * * * 

CBV70 X OBV256 * * * * * * * * * * * 

CBV70 X OBV512 * * * * * * * * * * * 

CBV70 X OBV1024 0.6296 * * * * * * * * * * 

CBV70 X OBV2048 8412 * * * * * * * * * * 

NOV128 X NOV256 0.02711 * * * * * * * * * * 

NOV128 X NOV512 * * * * * * * * * * * 

NOV128 X NOV1024 0.8445 0.342471 0.338783 0.232548 0.480911 0.02468 0.700863 0.780616 0.263475 0.090504 0.230253 

NOV128 X NOV2048 0.8002 0.320668 0.90695 0.855552 0.068396 0.17899 0.482815 0.849288 0.690534 0.151067 0.727144 

NOV128 X OBV128 0.7987 * * * * * * * * * * 

NOV128 X NOV256 * * * * * * * * * * * 

NOV128 X OBV512 * * * * * * * * * * * 

NOV128 X OBV1024 0.8118 * * * * * * * * * * 

NOV128 X OBV2048 0.9689 * * * * * * * * * * 

NOV256 X NOV512 0.2562 0.551231 0.188105 0.465768 0.765582 0.481723 0.367597 0.014044 0.189381 0.288308 0.639414 

NOV256 X NOV1024 0.04028 * * * * * * * * * * 

NOV256 X NOV2048 0.0438 * * * * * * * * * * 

NOV256 X OBV128 0.01634 * * * * * * * * * * 

NOV256 X OBV256 * * * * * * * * * * * 

NOV256 X OBV512 * * * * * * * * * * * 

NOV256 XOBV1024 * * * * * * * * * * * 

NOV256 X OBV2048 * * * * * * * * * * * 

NOV512 X NOV1024 * * * * * * * * * * * 

NOV512 X NOV2048 * * * * * * * * * * * 

NOV512 X OBV128 * * * * * * * * * * * 

NOV512 X OBV256 * * * * * * * * * * * 

NOV512 X OBV512 * * * * * * * * * * * 

NOV512 X OBV1024 * * * * * * * * * * * 

NOV512 X OBV2048 * * * * * * * * * * * 

NOV1024 X NOV2048 0.9714 0.975426 0.447827 0.357813 0.229267 0.398091 0.73948 0.924778 0.133925 0.705093 0.133882 

NOV1024 X OBV128 0.8948 * * * * * * * * * * 

NOV1024 X OBV256 * * * * * * * * * * * 

NOV1024 X OBV512 * * * * * * * * * * * 

NOV1024 X OBV1024 0.6012 * * * * * * * * * * 

NOV1024 X OBV2048 0.7535 * * * * * * * * * * 

NOV2048 X OBV128 0.669 * * * * * * * * * * 

NOV208 X OBV256 * * * * * * * * * * * 

NOV2048 X OBV512 * * * * * * * * * * * 

NOV2048 X OBV1024 0.8278 * * * * * * * * * * 

NOV2048 X OBV2048 0.6221 * * * * * * * * * * 

OBV128 X OBV256 * * * * * * * * * * * 

OBV128 X OBV512 * * * * * * * * * * * 

OBV128 X OBV1024 0.1338 * * 0.012977 * 0.568592 0.087761 0.721882 0.839393 * * 

OBV128 X OBV2048 0.249 * * 0.036136 * 0.92724 0.129083 0.890327 0.732381 * * 

OBV256 X OBV512 0.05484 0.000106 0.35547 0.086972 0.645765 0.20082 0.435129 0.003475 0.551962 0.514455 * 

OBV256 X OBV1024 * * * * * * * * * * * 

OBV256 X OBV2048 * * * * * * * * * * * 

OBV512 X OBV1024 * * * * * * * * * * * 

OBV512 X OBV2048 * * * * * * * * * * * 

OBV1024 X OBV2048 0.09817 0.679253 0.489327 0.553595 0.24638 0.612953 0.777025 0.682764 0.322174 * 0.084822 

 

 Os asteríscos indicam que não existem diferenças significativas ao nível de 1% de significância. 
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