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RESUMO

Este trabalho objetiva o estudo, implementacçãao numóerica e simulacçãao computacional de 
escoamentos multifóasicos, com o móetodo euleriano VOF, e estudo do contato fluódo-lóquido- 
sóolido, conhecido como ponto de contato triplo, em um cóodigo com refinamento por malha 
adaptativa estruturada (AMR3D). O trabalho foca no desenvolvimento de modelos matemóati- 
cos, tóecnicas computacionais e validaçcãao destas, para modelar eficientemente e com acuidade 
a dinaâmica do contato fluido-lóquido-sóolido. O principal objetivo do trabalho óe o de de­
senvolver um modelo para a captura da dinaâmica de escoamentos multifóasicos no contato 
fluido-lóquido-soólido. Estes modelos devem ser: (i) precisos, (ii) robustos e (iii) mais genóeri- 
cos possóveis. As prediçcãoes obtidas do modelo sãao validadas com resultados de experimentos 
ou da literatura. Sãao realizados desenvolvimentos sobre um coódigo tridimensional para a 
simulaçcaão de escoamentos multifóasicos, com malha de refinamento adaptativo e um modelo 
para o ponto de contato entre as fases fluóda e sóolida, genóerico e robusto o suficiente para 
simular paredes que naão sejam planas, impostas atravóes do móetodo da Fronteira Imersa, e 
que seja capaz de representar a fósica do problema. Um melhor entendimento da dinâamica 
de gotas em contato com as paredes óe obtido, com o estudo dos paraâmetros relevantes que 
afetam a fósica da linha de contato.

Palavras-chave: Escoamentos Multifasicos, método VOF, Angulo de Contato, Ponto de con­
tato, Força de Tensão Superficial, método da Fronteira Immersa
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ABSTRACT

The objective of this work is to study, implement and numerical simulate the VOF multi­
phase flow model and to study the contact between the fluid-liquid-solid, know as the triple 
point region, in a structured adaptative mesh refinement code (AMR3D). The work focus 
on developing mathematical models, computational techniques and validation of these, to 
efficiently and accurately model the fluid-liquid-solid contact dynamics. The main objective 
of the project is to construct a model capturing the fluid-liquid-solids contact dynamics in 
multiphase flows. This model should be: (i) accurate, (ii) robust and (iii) as generic as 
possible. It is also aimed to validate the predictions of the model with results obtained from 
experiments or from the literature. Developments are made in a three-dimensional compu­
tational code for the simulation of multiphase flows, with adaptative mesh refinement and 
a model for the contact point between the fluid phases and the solid that is general and 
robust enough to simulate walls other than flat surfaces, imposed through the Immersed 
Boundary Method, and that is capable of representing the physics of the problem. A better 
understanding of the dynamic of droplets at walls is obtained, with the study of the relevant 
parameters that affects the physics of the contact line.

Keywords: Multiphase Flows, VOF method, Contact Angle, Contact Point, Surface Ten­

sion force, Immersed Boundary method
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CHAPTER I

INTRODUCTION

1.1 Ob jectives

In this thesis the author aims to analyze the dynamics of gas-liquid-solid contacts oc­
curring in two-phase flows. The project focus on developing and validating of computational 
techniques to model accurately and efficiently the gas-liquid-solid contact dynamics.

The mathematical framework is developed in the 3D computer code previously and 
jointly developed at FEMEC-UFU and at IME-USP (AMR3D). This code employs a for­
mulation based on the primitive variables modeling a flow (velocity, pressure, and phase 
indicator function) whose spatial discretization is constructed on block-structured Carte­
sian meshes including adaptive refinement. The developed modeling framework is aimed at 
efficiently capturing the physics and should be applicable in any numerical framework.

The main objective of the project is to develop a model capturing the gas-liquid-solids 
contact dynamics in multiphase flows. This model should be: (i) accurate, (ii) robust, (iii) 
as generic as possible . It is also aimed to validate, where possible, the predictions of the 
model with results obtained from experiments or from the literature.

The project is divided in the following steps:

A) Check the“state of the art” through a literature review, focusing on recent publications 
involving Front-Tracking (FT), Volume of Fluid(VOF), Front-Capturing (FC), and 
other potentially new developments and applications.

B) Inventorize existing frameworks of mathematical models approximating the normals, 
curvature and surface tension force with application to the gas-liquid interface and 
triple-wall interactions in fluid-fluid.

C) To implement and validate a model describing the dynamics of the contact point at 
the gas-liquid-solid interface, with the following steps:

[1] Implement interface reconstruction model
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[2] Implement models to determine the normals and the curvature of the interface

[3] Implement a model for calculating the interfacial surface tension

[4] Implement a model for calculating the surface force associated with the gas- 
liquid-solid contact point.

[5] Couple the gas-liquicl-solid contact point model with the Immersed Boundary
(IB) method.

D) To validate the above model with:

• numerical experiments

• data and test-cases from the literature

E) To study cases which are relevant to the context of contact point problems, including 
the coupling with the Immersed Boundary method and compare, where possible, with 
experimental results and other available literature.

1.2 Justification

Annular two-phase flow problems are very common in industry, for instance in the area 
of extraction and transport of oil mixtures. Figures 1.1 and 1.2 illustrates the most common 
and known flow regimes of gas-liquid two-phase flows, which are classified either as separated 
or dispersed flows. The flow regime obtained in a two-phase flow generally depends on the 
properties, the velocity of the fluids, the volume fraction of the phases, and the inclination 
and the diameter of the pipe (LOILIER, 2006).

pattern features (from left to right): bubbly; spherical cap; stable slug; unstable slug; semi 
annular; annular. Source: Rosa, Flora and Souza (2012)

Of particular industrial interest are the stratified annular flow regimes as illustrated in 
Figs. 1.1 and 1.2. This regime is commonly found, for example, in the process of injecting
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(d) WAVY (h) SPRAY

Figure 1.2: Flow patterns in a horizontal pipe. Source: Loilier (2006)

water into the transport of heavy oils, known as Core-Flow process. If the fluid near the wall 
has a low viscosity, the pressure drop of the total flow is less than if there were only a core of 
fluid. Literature data shows that the reduction in pressure drop can be orders of magnitude. 
When using this mechanism for reducing the viscous friction the pumping power associated 
with moving the fluid can be drastically reduced (CHARLES; GOVIER; LIODGSON, 1961; 
RUSSELL; CHARLES, 1959)

Until a specific flow velocity, the flow remains stable. If the velocity is increased 
sufficiently, the difference in velocity between the two phases increases and the flow mixture 
becomes unstable, as shown in Fig. 1.1. When the instability grows sufficiently, the annular 
flow regime becomes highly unstable and the pressure drop increases dramatically.

Instabilities may occur via two mechanisms. The first is the Rayleigh-Taylor instability, 
arising clue to the combined effect of interfacial tension and/or density gradients in both 
fluids. The second mechanism is the Kelvin-Helmholtz instability, arising clue to the action 
of another surrounding liquid (OOMS, 1972).

Thus, the detailed study of the formation and transport of these instabilities is of fun­
damental importance for understanding these phenomena, to reduce the loss of pressure and 
thereby the power required for pumping. Due to the great difficulty of experimentally study­
ing the details of these phenomena, the approach of mathematical modelling and numerical 
simulation has great potential for the detailed analysis of these physical phenomena.

1.3 International cooperation

The project was carried out at UFU. However, due to the experience and expertise in 
the area, Dr. Berencl van Wachem from Imperial College London is involved in this project. 
Dr Berencl van Wachem acted as co-supervisor, remaining in close contact with Rodrigo 
Lisita Ribera and Prof. Aristeu, advising and steering the project and providing supervision 
and knowledge where applicable.

During his PhD study the student spent 6 months at Imperial College London, under
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Berend van Wachem supervision and CAPES scholarship. In this period, discussions about 
normal and curvature computation methods, an analysis of some of the methods presented 
on literature and their comparison with a proposed Least Squares method was performed, 
as well as discussions about the implementation of the contact point model.

1.4 Thesis organization

The work developed is presented in the following chapters:

• Chapter 2 presents a review of the “state of the art” about the two-phase flow and the 
VOF method. The surface tension, contact angle and moving contact point are also 
presented.

• Chapter 3 presents the mathematical modeling, the surface tension force model, a study 
of several methods to compute the normal and curvature, the VOF PLIC Interface 
reconstruction method and the surface force associated with the gas-liquid-solid contact 
point.

• Chapter 4 presents the verification of the models implemented and applications to con­
tact point simulations. Results for the interface reconstruction and advection, normal 
and curvature computation, pressure jump, parasitic current analysis and simulations 
of a rising bubble in different flow regimes, with analysis of its terminal Re and shape 
are performed, as well as the study of contact point problems and its couple with the 
Immersed Boundary method.

• Chapter 5 presents the conclusion and future developments.



CHAPTER II

Background

2.1 Review of two-phase flows and the VOF method

The presence of liquid interphases plays a fundamental role in a large variety of phe­
nomena, both in nature, such as cellular phagocytosis and insect flotation on pool water 
and in industrial processes, such as soldering and steam condensation (NAVASCUES, 1979). 
Processes such as extraction, chemical reaction, mass-transfer, separation, etc., also involve 
interfacial flows (GOPALA; WACHEM, 2008): gas-liquid bubble columns, frequently em­
ployed in the chemical, petrochemical, and wastewater industries (WACHEM; SCHOUTEN, 
2002) and droplet clouds for combustion problems with liquid and gas reagents (??) are 
some examples.

The numerical simulation of interfacial problems dates back to the arrival of large 
computers on the research groups in the 1950s (HARLOW, 2004). Pasta and Ulam (apud 
HARLOW, 1963) showed that many features of the dynamics of fluids could be represented 
by a calculation of the trajectories of interacting particles, each representing a macroscopic 
fluid element.

This leads to a series of particle-based methods, one of the first ones being the Particle- 
in-Cell (PIC) method. Harlow (1988) describes the PIC method as an hybrid one, combining 
an Eulerian mesh of computational cells with a Lagrangian mesh of marker particles. He 
also presents a review about the method and a good list of references about its development 
and applications.

The method itself was presented by Harlow (1956) in one-dimensional form, with the 
aim of treating boundaries between materials, especially with large slips or distortions. The 
fluid dynamics is represented by a system of discrete particles with equal mass for each 
material. The particles in each cell have the same velocity u, even if they are of different 
materials. He presented result for a steady-state shock for one material, shock reflection and 
transmission for particles of two different masses, and a fractured diaphragm problem in one
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and in two dimensions.
One year later Harlow and Evans (1957) coined the name Particle-in-Cell (PIC). They 

also presented an explanation of the solution procedure, the use of several materials, the ex­
tension of the method for two-dimensional problems in cartesian and cylindrical coordinates 
and results for one and two-dimensional simulations, with explanations of two codes aimed 
to solve two-dimensional problems, the SUNBEAM code and the KAREN code.

Harlow et al. (1959) considers that, “as applied to two-dimensional calculations, the 
method was incomplete and should be modified somewhat”. They present a more detailed 
explanation of the method in two-dimensions and results for: 1) Shock-Wave refraction 
at a gaseous interface, 2) Shock passage through a discontinuously enlarged channel, 3) 
Interaction of a shock with a deformable object, 4) Hypersonic shear flow with perturbed 
interface, 5) Taylor instability and 6) Viscous-Flow calculations.

According to Brackbill (2002), PIC was “the first method to model high-speed and 
free-surface flow in two dimensions, and the first to model collisionless plasmas in two space 
dimensions”. In its latest versions the method is called Material Point Method (MPM) 
(ZHANG et al., 2008).

Departed from PIC and based on the work of Pasta and Ulam (1959), Harlow and 
Meixner (1961), Harlow (1963), Daly et al. (1964) presents the Particle and Force (PAF) 
method, a particle method with no Eulerian mesh. “It is based on a representation of the 
fluid by a set of mass points which are accelerated by mutual forces and whose consequent 
motions represent that of a fluid”. The purpose is to solve multidimensional compressible- 
fluid dynamics problems (HARLOW; MEIXNER, 1961).

The “technique was moderately successful in applications to some two-dimensional test 
problems, but suffered from fluctuations that especially manifested themselves in ragged 
behavior of material interfaces” (HARLOW, 1988). Harlow (1963) considered the PAF much 
more likely the original procedure of Pasta and Ulam (1959), while the PIC resembles the 
Eulerian method more closely than any other particle method.

The Arbitrary-Lagrangian-Eulerian (ALE) method (HIRT; AMSDEN; COOK, 1974) 
also departs from the PIC method. Accordingly to Harlow (2004), one way of viewing the 
Particle in Cell method is to consider the mesh of cells as Lagrangian, so that the first part 
of the calculation advances all the variables, and the second part maps the mesh back into 
its original configuration. In the ALE method, only a partial mapping is performed in the 
mesh in each cycle.

Zhang, Vanderheyden and Zou (2007) couples the ALE method with the Material Point 
method (MPM), with the aim of simulating, among other things, multiphase flows, interfacial 
flows and free surface flows. A numerical method for the computation of compressible multi­
material flow problems, with the aim of modeling underwater explosions, is developed by 
Luo, Baum and Lohner (2004).

Following the particle-based concept, Harlow, Shannon and Welch (1965) develop a 
method to study waves and other phenomena associated with the motion of an incompressible
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fluid with free surface. They use a finite-difference approximation to the full, nonlinear, 
Navier-Stokes equation for a viscous, incompressible fluid, related to an Eulerian mesh. 
Harlow and Welch (1965) designated it as the Marker and Cell (MAC) method (Fig. 2.1).

Figure 2.1: The MAC method. Particles are used to identify full cells and interface cells. 
Source: Harlow and Welch (1965)

fication only for fluid 1; (c) classification only for fluid 2. Source: McKee et al. (2008)

Figure 2.3: Steps required to perform surface merging. Source: McKee et al. (2008)

Figure 2.4: Steps required to perform surface splitting. Source: McKee et al. (2008)

On the MAC method, the only purpose of the particles is to indicate fluid configuration, 
showing which cells contain fluid and which lie along the free surface. Unlike the previous
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methods, the particles do not participate on the computation of the flow. “A cell with no 
marker particles is considered to contain no fluid. A cell with marker particles, lying adjacent 
to an empty cell, is called a surface cell. All other cells with particles are considered to be 
filled with fluid” (HARLOW; WELCH, 1965). Fig. 2.2 illustrates this marking process, Fig. 
2.3 illustrates the process of Merging and 2.4 the process of Splitting.

A complete description of the MAC method, from its developers, can be found at 
Welch et al. (1966). Free surface motions is studied by Harlow and Welch (1965), and the 
splash of liquid drops by Harlow and Shannon (1967). Later, Amsden and Harlow (1970) 
develop a simplified MAC method (SMAC) and Hirt, Nichols and Romero (1975) develops 
a simplified MAC code, SOLA, with no marker particles. The SOLA family of codes were 
the first ideas distributed internationally (MCKEE et al., 2008).

A review of recent developments of the method, and numerical simulations of a three­
dimensional cylindrical and planar jet buckling, the splash of a liquid drop, circular hydraulic 
jump, filling process of a trapezoidal container, Newtonian and Viscoelastic jet impinging 
onto a rigid plate and the extrudate swell are presented by McKee et al. (2008).

The MAC method is also used by Daly (1969) but at each cycle of calculation the 
interface particles are connected to form an interface line, through the application of a 
spline fit interpolation scheme. This is done in order to obtain the orientation of the fluid 
interface, which allows to determine the surface tension contribution to the fluid acceleration. 
Accordingly to Prosperetti and Tryggvason (2007), this was the first use of connected marker 
points to identify a boundary between two fluids governed by the full Navier-Stokes equation, 
with further progress made by Peskin (1977), but the first use of (connected) marker points 
to capture immiscible fluid interfaces in a flow governed by the full Navier-Stokes equations 
is due to Unverdi and Tryggvason (1992), who compute the flow field in a stationary grid 
and represents the interface, which is explicitly tracked, by a separate, unstructured grid.

This approach is referred as Front Tracking (FT) method. Advances on it and ap­
plications to homogeneous bubbly flows, atomization, flows with variable surface tension, 
solidification and boiling are presented by Tryggvason et al. (2001).

Instead of a direct representation of the free boundaries, the Volume of Fluid method 
(VOF) (HIRT; NICHOLS, 1981) (NICHOLS; HIRT; HOTCHKISS, 1980), is an Eulerian 
method that follows regions of fluid. They are among the most used ones for the simulation 
of interfacial multiphase flows. Its basic concept is to perform a mass balance of a scalar 
F within a control volume, which represents the volume fraction of one phase inside a 
computational cell (Fig. 2.5 (a) and (b)). For a cell completely full of one phase F = 1, 
for a cell completely empty, F = 0, and for a cell with an interface, 0 < F < 1. This 
semi-discontinuous aspect of the color function facilitates the calculation of the properties of 
each of the phases and makes it possible to present an accurate numerical scheme for solving 
the color transport equation (WACHEM; SCHOUTEN, 2002).

VOF methods possess superior mass conservation properties, but the discrete, abruptly- 
varying volume fractions representation of the interface poses challenges for the accurate
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Figure 2.5: VOF representation of an interface. The information from a known geometry 
(a) should be transformed in a scalar in each eulerian computational cell (b), which is later 
reconstructed by a numerical scheme (c-d). Source: Pilliod and Puckett (2004)

estimation of interfacial curvature (CUMMINS; FRANCOIS; KOTHE, 2005). This poor 
curvature estimation may produce unphysical velocities (spurious or parasitic currents) at
fluid interface, as well as erroneous pressure drop over the interface, affecting the accuracy
of the simulations (LÓPEZ et al., 2009; RAESSI; MOSTAGHIMI; BUSSMANN, 2007).

Another important aspect is the approximation used for the interface normal n. The 
solution quality of the VOF and the Continuum Surface Force (CSF) methods are sensitive 
to any error in it. Its accurate estimation often dictates overall accuracy and performance 
in these methods (KOTHE et al., 1996).

One of the main alternatives for the volume-of-fluid method for the direct advection of a 
marker function is the Level-Set (LS) method (PROSPERETTI; TRYGGVASON, 2007). Its 
development for computing the motion of incompressible two-phase flows is due to Sussman, 
Smereka and Osher (1994), who points some main advantages of the method: the elimination 
of the problem of adding/subtracting points to a moving grid, the automatically merging 
and breaking of the interface and its easy of extension to three-dimensional problems.

The interface is described by the LS function (defined as a signed distance function). 
Its continuous and smooth aspect make the calculation of normal and curvature very easy 
(WANGetal.,2009). Some of its drawbacks is the lack of mass conservation, its considerable 
degrade when interfaces possess high curvature relative to the mesh spacing and the expensive 
reinitialization scheme needed for maintaining solution quality (KOTHE; RIDER, 1995).

An attempt to explore the advantages of both the VOF method (mass conservation) 
and the Level Set (easy estimation of geometric properties) is the Coupled Level Set and 
Volume of Fluid method (CLSVOF) (SUSSMAN; PUCKETT, 2000), where the interface is
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reconstructed and advected with the VOF method, and the level set function is re-distanced 
based on the reconstructed interface.

Despite its advantages, it introduces two different representations of the same interface 
with the associated complexity, efficiency and consistency issues (POPINET, 2009). Simu­
lations of gas bubble rising in a viscous liquid, water drop impact onto a deep water pool, 
wave breaking of a steep Stokes wave and punging wave breaking over a submerged bump 
are presented by (WANG et al., 2009). Droplet impact on a dry surface with a dynamic 
contact angle model is study by (YOKOI et al., 2009).

Due to the property of excellent mass conservation, the VOF method is chosen in this 
work for the numerical two-phase flow simulations. Also, several studies about the contact 
between the two fluid phases and a solid (the triple line/point) have been carried out with 
the VOF methods. Some examples are Afkhami and Bussmann (2004), who studies surface 
tension driven flows, Nichita, Zun and Thome (2010), who study the dynamic wetting and 
Fang et al. (2008) who performs a 3D numerical simulation of contact angle hysteresis for 
micro-scale two-phase flows.

2.2 Surface tension

“The water, while in surface, acts in a different way to what it does inside”. It behaves 
as if the surface were an elastic skin. If the weight of the drop or the force pulling it could be 
prevented from acting, the drop would only feel the effect of this elastic skin, which would 
try to pull it into such a form as to make the surface as small as possible. It would rapidly 
become a perfectly round ball (BOYS, 1920).

By attempting to determine theoretically the form of the surface of a drop of water 
resting on a horizontal plane, Johann Andreas von Segner introduced the concept of the 
surface tension of liquids in 1751. On the hypothesis of the attraction of the parts of a 
fluid for each other, he admitted the tenacity of fluids, due to the action of an attractive 
forces resident in their constituent molecules, whose sphere of activity of each particle is 
of insensible magnitude. The shape which the drop assumes refers to the action of the 
superficial particles and their tenacity, which counteract the tendency of the drop to spread 
due to gravity (VARIOUS, 1911; MAXWELL, 1890).

Ideally, the shape of a liquid droplet is determined by the surface tension of the liquid 
(Fig. 2.6). In a pure liquid, each molecule in the bulk is pulled equally in every direction by 
neighboring liquid molecules, resulting in a net force of zero. The molecules exposed at the 
surface do not have neighboring molecules in all directions to provide a balanced net force. 
Instead, they are pulled inward by the neighboring molecules, creating an internal pressure 
(Fig. 2.7) (YUAN; LEE, 2013).
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Figure 2.6: Surface-tension is an intermolec- 
ular force which contract the surface, being 
responsible for the shape of liquid droplets. 
Source: www.butane,chem.uiuc.edu

Figure 2.7: The molecules exposed at the 
surface are pulled inward, as they do not 
have neighboring molecules in all directions 
to provide a balanced net force. Source: 
www. fusedglass.org

The higher pressure is in the fluid medium on the concave side of the interface, since 
surface tension results in a net normal force directed towards the center of curvature of the 
interface (BBACKBILL: KOTIIE: ZEMACH, 1992).

“Whenever there is a curved or angular surface,, it may be found by collecting the 
actions of the different particles, that the cohesion must necessarily prevail over the repulsion, 
and must urge the superficial parts inward with a force proportionate to the curvature, and 
thus produce, the effect of a uniform tension of the surface” (YOUNG, 1805).

The relation between the total force acting on the interface and the curvature is given 
by the well known Laplace equation (NAVASCUES, 1979):

P2 - Pi = Ap = a III + ÍÍ2? (2.1)

where: a is the surface tension coefficient and R[ and R-2 are the principal radii of curvature.

Since the principal curvatures of the surface are = l/fifi and and the
mean curvature H of the surface is defined as:

+ ^2H =
2

—2H — sq -j- /í2 (2-2)

The Laplace equation can be written in terms of the mean curvature of the surface;

P2 — Pi = -R1 = 2a H (2-3)

An alternate definition often used in fluid mechanics to avoid factors of two is simply

chem.uiuc.edu
fusedglass.org
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express Eq.(2.1) and (2.3) in terms of a curvature k :

P2 - Pi = Ap = aK (2.4)

From the macroscopic point of view, surface tension can be defined in two different 
contexts: in a mechanical way where it is related to a tension parallel to the surface, and 
in a thermodynamic way in which a is associated with the work necessary to create a new 
surface (NAVASCUES, 1979).

2.3 Wetting, contact angle and contact point

The interface where solid, liquid, and vapor co-exist is referred to as the three-phase 

contact line (YUAN; LEE, 2013). It is encountered frequently in everyday experience and 
is of concern to many areas of science (DURBIN, 1988). Oil recovery, lubrication, liquid 
coating, printing, and spray quenching are areas where wetting plays an important role; su­
perhydrophobic surfaces have potential applications in self-cleaning, nanofluidics, and elec­
trowetting (YUAN; LEE, 2013).

The earliest direct recognition of wetting phenomena was probably given by Galileo, 
in 1612, who noticed that the top of a denser solid floating on a liquid was below the surface 
of the liquid, in what is known today as capillary depression. However, the treatment of the 
floating-dense-solid phenomenon, which explicitly includes contact angles, was only given in 
1920, by Sulman (apud GOOD, 1992).

As shown in Fig. 2.8, three different wetting states are possible: partially wet, com­
pletely wet or completely dry (BONN et al., 2009).

Figure 2.8: Three different possible wetting states. Source: Bonn et al. (2009)

Wetting phenomena are an area where chemistry, physics, and engineering intersect. 
On the short-ranged interactions, surface chemistry, or chemical interactions, act over the 
scale of molecules, and is of key importance in determining wetting behavior. In addition, 
surface forces such as van der Waals or electrostatic forces are paramount for determining
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whether or not a fluid will wet a given surface. These forces are called long ranged, as they 
can still be important over distances of few tens of molecules (BONN et al., 2009).

Usually, the primary data in wettability studies is the contact angle (0) (YUAN; LEE, 
2013). It is the angle measured from the liquid side of the contact line (DUSSAN, 1979), 
and indicates the degree of wetting when a solid and liquid interact. Small contact angles 
(0 < 900) correspond to high wettability, while large contact angles (0 > 900) correspond 
to low wettability (YUAN; LEE, 2013). As shown in Fig. 2.9, its measurement is easily 
performed by establishing the tangent (angle) of a liquid drop with a solid surface at the 
base (KWOK; NEUMANN, 1999).

Figure 2.9: Illustration of contact angles formed by sessile liquid drops on a smooth homo­
geneous solid surface. Source: www.biolinscientific.com

The static contact angle (0S) is a direct consequence of the molecular interactions 
among the three materials at the contact line (DUSSAN, 1979). Its value is directly related 
to the relative strength of the cohesive and adhesive forces (Fig. 2.10). Cohesive forces are 
attractive forces between molecules of the same type. They cause the surface of a liquid to 
contract to the smallest possible surface area. This general effect is called surface tension 
(Macroscopic effect). Adhesive forces are attractive forces between molecules of different 
types.

The larger the strength of the cohesive force relative to the adhesive force, the larger 0 
is, and the more the liquid tends to form a droplet. The smaller 0 is, the smaller the relative 
strength, so that the adhesive force is able to flatten the drop. When the cohesion and 
adhesion forces are in equilibrium, the matching contact angle is static (MOURIK, 2002). 
Theoretically, the contact angle is expected to be characteristic for a given solid-liquid system 
in a specific environment (YUAN; LEE, 2013).

http://www.biolinscientific.com
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Wetting

Solid
— Work of Cohesion (L/L)

— Work of Adhesion (S/L)

Figure 2.10: The degree to which wetting occurs (i.e., wettability) is determined by the
cohesive forces of the liquid molecules among themselves and the adhesive forces that result
from the molecular interactions between the liquid and the solid as illustrated in the figure. 
(In real life, the molecules are not so neatly organized). Source: www.ramehart.com

An expression of the static contact angle dS was first derived by Young (1805). As­
suming that each of the three material boundaries possess a constant surface tension, he 
reasoned that for the static equilibrium of the system, the horizontal components of the 
surface tension must sum to zero at the contact line - Eq.(2.5) and Fig. 2.11.

YLV-cos(ds) = YSV - Ysl (2.5)

where the subscripts LV stands for the liquid-vapor interface, V S for the vapor-solid inter­

face and LS for the liquid-solid interface.

Figure 2.11: The equilibrium between the solid, liquid and vapor phase interfaces is expressed 
by the Young equation. Source: Burris (1999)

It has been implicitly supposed that Young's equation is applicable to a flat smooth 
solid surface, but in real life most solid surfaces show some degree of roughness or hetero­
geneity (NAVASCUES, 1979; QUéRé, 2002).

One well-known example of departure from ideality is when the solid is rough (GOOD, 
1992), as illustrated in Fig. 2.12a. Young's equation should then be modified by a roughness 
factor r (the actual contact area divided by the projected area of surface that the droplet 
contacts) (GAO; MCCARTHY, 2007). The relation between the apparent contact angle 0* 

and that 0 corresponding to a smooth surface was presented by Wenzel (1936):

http://www.ramehart.com
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cosO*
r =-------

cos0
(2.6)

Since no surface is completely smooth at the molecular level (every surface have some 
sort of roughness), it can be assumed that r > 1. Thus, a roughened surface magnifies 
the wetting properties of the solid: a wetting surfaces will become more hydrophilic, and 
a non-wetting surfaces will be more hydrophobic (WENZEL, 1936; CASSIE, 1948). This 
agreement is only qualitative, as a simple linear relation is not observed (QUÓeRÓe, 2002).

Also, in Eq.(2.6), the roughness factor can be made arbitrarily large, which seems to 
imply that complete wetting (cosO* > 1) or complete drying (cosO* < -1) should be induced 
by large roughness (r >> 1), which is not observed (QUÓeRÓe, 2008). The effect of surface 
roughness can be described by the so-called Wenzel equation if the roughness is significantly 
below the wavelength of light (??). In other words, “drops should be much larger than the 
defects to use such an averaged model” (QUÓeRÓe, 2008).

For a porous solid surface, Cassie and Baxter (1944) presents the following expression 
for the apparent contact angle O*:

cosO* = A1cosQ — A2 (2.7)

where Q corresponds to the angle in a smooth surface, A1 is the total area of solid-liquid 

interface and A2 is the total area of liquid-air interface.
Since the total area A bellow the droplet is A = A1 +A2 = 1, Eq.(2.7) can be rewritten 

as:

cosO* = ^s(cos0 + 1) — 1 (2.8)

where ^s = A1/A is the fraction of the solid/liquid interface below the drop.

Equation(2.7/2.8) is based on the assumption that the water droplet sits in top of air 
bubbles, as illustrated in Fig. 2.12b. “If there is only air, it predicts a 'contact' angle of 
180o (i.e., no contact). Any deviation from this value tells us the proportion of solid actually 
contacting the liquid” (QUÓeRÓe, 2008).

“In order for the Cassie-Baxter state to be observed, there should be an energy bar­
rier which slows the transition from this metastable state” (MURAKAMI; JINNAI; TAKA- 
HARA, 2000). “When the surface is rough but not porous, A2 is zero, and Eq.(2.7) reduces 
to Wenzel's equation for the apparent contact angle of a rough surface with roughness factor 
A1” (CASSIE; BAXTER, 1944).

For heterogeneous surfaces, Cassie (1948) presents an equation for the apparent contact 
angle O*, which reduces to Eq.(2.7) when applied to a porous surface:
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cosd* = Aicosdi + A2cos92 (2-9)

where 9± and 0-2 are the Young contact angles for the smooth flat solid surfaces 1 and 2, and 

Ai and A2 are the ratios in the actual solid surface of the surfaces 1 and 2 to the total area.

(c) Cassie-Baxter to Wenzel transition (d) hemi-whicking

Figure 2.12: Wetting states defined by: a) Wenzel model; b) Cassie-Baxter
model; c) transition from Cassie-Baxter to Wenzel; and cl) hemi-whicking. Source: 
www.commons. wikimeclia.Org/wiki/User:Spinal83

The two states, i.e. Wenzel and Cassie-Baxter states, illustrated in Fig. 2.12a and 
Fig. 2.12b, respectively, exhibit clear differences in drop mobility. Drops are extremely 
mobile when they are supported by composite solicl-liquicl-air interfaces (Cassie-Baxter state) 
and immobile when they fully wet the textured surfaces (Wenzel state). “For a variety of 
applications (e.g. fluid motion control in microfluiclics), it is therefore of great interest that 
reversible transitions between these states can be induced at will” (BENTLEY, 2009).

Superhyclrophobic properties are desired for applications such as self-cleaning or drag 
reduction, while for applications that require good wetting, mixing, or transport in between 
the structures, such as wafer cleaning in micro- and nanoelectronics fabrication processes, 
superhydrophobicity should be avoided (XU et ah, 2014). The active control of the wet­
ting properties may be induced in a number of ways, for example, by electrowetting, light 
irradiation, or a change in temperature or pH (BENTLEY, 2009).

http://www.commons
wikimeclia.Org/wiki/User:Spinal83
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The transition from the metastable Cassie-Baxter state to the stable Wenzel state, 
where the droplet partially penetrates between the pillars (Fig. 2.12c), has been studied 
extensively in recent years (LEE et al., 2010; MURAKAMI; JINNAI; TAKAHARA, 2000; 
GIACOMELLO et al., 2013). A reversible transition from Wenzel to Cassie-Baxter states, 
however, is normally very complicated to achieve, due to the existence of (Gibbs) energy 
barriers between the states (BENTLEY, 2009).

The dynamics of this transition (Cassie-Baxter to Wenzel) is very quick and follows a 
zipping mechanism: one row of cavities gets filled before jumping to the next row (QUéeRée, 
2008). Air pockets should be metastable for Young contact angles between n/2 and the 
threshold value given by Eq.(2.10), which relates the Wenzel and the Cassie-Baxter contact 
angles (BICO; THIELE; QUéeRée, 2002):

cos0 < ——— (2.10)
r - —s

where 0 is the Young contact angle, —s = A1/A is the fraction of the solid/liquid interface 

below the drop and r is the surface roughness.
In the hydrophilic case, a second phenomenon can occur, which is intermediate between 

spreading and imbibition. It is called hemi-wicking and is illustrated in Fig. 2.12d. For a 
partial wetting, liquid film invades the texture of the solid, but the top of the spikes remains 
dry as the imbibition front advances. The Young contact angle 0 should be smaller than a 
critical contact angle (0 < 0c), intermediate between 0 and n/2, for this condition to occur 
(BICO; THIELE; QUéeRée, 2002):

cos0c = 1 - —s

r - —s
(2.11)

The Wenzel model is valid between 0c and n/2. If the contact angle is less than 0c, 
the penetration front spreads beyond the drop and a liquid film forms over the surface. 
The film smoothes the surface roughness and the Wenzel model no longer applies (ISHINO; 
OKUMURA, 2008).

Both the Wenzel and Cassie equations reinforce the concept that the area of contact 
between the liquid and solid should affect the contact angle. Although the theories behind 
them are consistent with observed data for many surfaces, many examples where they are 
inconsistent have also been reported. Extrand (2003) showed that the three-phase structure 
at the contact line, not the liquid-solid interface beneath the droplet, controls the contact 
angle. Contact angle and hysteresis are a function of contact line structure and the kinetics 
of droplet movement, rather than thermodynamics, dictate wettability (GAO; MCCARTHY, 
2007).

If the velocity of the contact line is positive (UCL > 0), it is considered that the



18

contact line is advancing. The extrapolated value of the (static) contact angle 3S in the limit 
as UCL 0 is called the static advancing contact angle, 3A,S• In the same manner, the 
static receding contact angle, $R;S, is the extrapolated value in the limit as UCL 0, with 
UCL < 0.

For many materials, there exists an interval [0R,S < 3S < 3A,S], with the property 
that if 3 lies within this interval, then the contact line does not appear to move. If a 
droplet on a surface is allowed to evaporate in a low humidity environment or if water is 
carefully withdrawn from the droplet with a syringe (Fig. 2.13 - left), the droplet decreases 
in volume and contact angle, maintaining the same contact area with the surface until it 
begins to recede, with a constant contact angle 3R, characteristic of the surface chemistry 
and topography. If the surface is cooled to below the dew point and water condenses on the 
droplet or if water is carefully added to the droplet with a syringe (Fig. 2.13 - right), the 
droplet volume and contact angle increase, and again, the same contact area is maintained 
until the droplet begins to advance, at a constant advancing contact angle, 3A, which is also 
characteristic of the surface chemistry and topography (GAO; MCCARTHY, 2006).

This non-uniqueness in the (static) contact angle is often referred to as contact-angle 

hysteresis. It is common to find hysteresis, on practical surfaces, in the range of 100 or 
larger and 500 or more of hysteresis can easily be observed in some cases (GOOD, 1992). 
An experimentally verified cause of this phenomenon is roughness of the surface of the solid. 
This difference can also depend on time interval between movement and measurement, on 
contamination, and on many aspects of the state of the solid surface, as heterogeneity and 
content of liquid dissolved or “penetrated” in it (HUH; SCRIVEN, 1971).

u u

Figure 2.13: If water is carefully added to the droplet with a syringe, the droplet volume and 
contact angle increase, and the same contact area is maintained until the droplet begins to 
advance, at a constant advancing contact angle (left); if water is carefully withdrawn from 
the droplet with a syringe, the droplet decreases in volume and contact angle, maintaining 
the same contact area with the surface until it begins to recede, with a constant contact 
angle 3R (right). Source: www.ramehart.com

http://www.ramehart.com
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2.4 Moving Contact Line (MCL)

In all processes in which a liquid is coated onto a solid, the liquid must dynamically wet 
the solid surface. However, the precise mechanism by which a liquid front advances across 
a solid surface remains only partially understood (BLAKE, 2006). Accordingly to Huh and 
Scriven (1971), studying resistance to motion of an isolated mercury index in an otherwise 
air-filled capillary tube, West (1911) appears to have been the first to pay attention to flow 
near a moving contact line.

Dynamic wetting operates on a scale that extends from macroscopic to the molecular 
level (BLAKE, 2006); understanding the multi-scale nature of the flow and how this gives 
rise to dynamical transitions is the main progress achieved in recent years in the fields of 
fluid mechanics, chemistry and engineering (SNOEIJER; ANDREOTTI, 2013). “Even for an 
infinitesimal velocity, the six decades separating the molecular size (nanometer scale) from 
the capillary length (millimeter scale) are the locus of a force absent from the static problem: 
viscosity.” (SNOEIJER; ANDREOTTI, 2013).

On the macroscopic scale of the capillary length lx, the shape of the meniscus is gov­
erned by the balance of gravity and surface tension; at smaller scales one encounters a visco­
capillary regime, characterized by the capillary number Ca. The capillary number describes 
the visco-capillary balance, being a key parameter for moving contact lines (SNOEIJER; 
ANDREOTTI, 2013). Wetting speed, viscosity, surface tension, and contact angle are all 
macroscopic quantities. The relative velocity at which the liquid moves across the solid 
(the contact-line velocity) and the (dynamic) contact angle are the main parameters used to 
quantify the dynamics of wetting (BLAKE, 2006).

“In many flow situations, the apparent contact angle completely describes the dynam­
ics. Examples are drop spreading (HOCKING, 1983), drops sliding down a window at low 
velocites (AMAR; CUMMINGS; POMEAU, 2003; RIO et al., 2005), or the relaxation of 
contact line perturbations (GOLESTANIAN; RAPHAeL, 2001; NIKOLAYEV; BEYSENS, 
2003; SNOEIJER et al., 2007)”(SNOEIJER; ANDREOTTI, 2013).

Similar to the static contact angle, there exists an advancing and a receding dynamic 
contact angles, for the cases with UCL > 0 and UCL < 0, respectively, as illustrated in Fig. 
2.14.

Figure 2.14: Advancing and receding contact angles captured by tilting base method. Source: 
www .ramehart .com
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In forced wetting, the contact line is made to move by application of an external force.
In such cases, a relationship is expected between 3D and UCL for a given system under a 
given set of conditions (BLAKE, 2006). Out of equilibrium, the liquid near the solid tends 
to move towards its equilibrium state, with the velocity of the contact line (UCL) depending 
monotonically on the deviation of the time-dependent (dynamic) contact angle (3D) with 
the static contact angle (3S) (MOURIK, 2002). It is generally observed that advancing 
angles increase while receding angles decrease with increasing rates of steady contact-line 
displacement (BLAKE, 2006). Accordingly to Gutoff and Kendrick (1982), Deryagin and 
Levi (1964) were the first to note that with increasing velocities the dynamic contact angle 
increases to 1800.

Figure 2.15: Schematic representation of the velocity dependence of the contact angle. 
source: Blake (2006)

“An interesting situation arises when a liquid is forced to flow over a surface that it does 
not spontaneously wet in thermodynamic equilibrium. In such partial wetting conditions, 
it is energetically favorable for the liquid to stick together as much as possible and to leave 
most of the surface dry. However, an external driving of the flow can push the system 
sufficiently far from equilibrium such that it undergoes a dynamical wetting transition. In 
practical terms, this means that the contact line motion cannot exceed a maximum speed: 
enforcing larger velocities leads e.g. to deposition of liquid films, break-up of liquid drops or 
entrainment air bubbles” (SNOEIJER; ANDREOTTI, 2013).

The dynamic contact angle plays an important role especially when surface tension 
forces are dominant (low capillary number - Ca) and gravitational forces are not (low Bond 
number - Bo).

Ca = UP = viscous forces
a surface tension forces

Bo = PgR2
gravitational forces

a surface tension forces

where: p, a, U, p and R denote the density,

characteristic length.

(2.12)

(2.13)

surface tension, viscosity, velocity and a
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An important conclusion reached in nano-fluidics is that the Navier-Stokes equations 
remain valid for liquid layers down to nanometer scale for simple fluids like water, under 
normal conditions (BOCQUET; CHARLAIX, 2010). This means that in between ~ 10 
nm from the contact line up to macroscopic scales, the shape of a moving interface can be 
described by continuum hydrodynamics (SNOEIJER; ANDREOTTI, 2013)

From the viewpoint of fluid mechanics there is a fundamental issue of how fluid dis­
placement at a solid surface is to be understood. Whereas the ultimate resolution must rest 
on molecular consideration of non-equilibrium kinetics, the problem can be approached and 
delineated through kinematics and dynamics of fluids (BLAKE, 2006). About the kinetics 
of the dynamic contact angle, no satisfying theory has been found yet.

The classical hydrodynamic approach describing flow near a moving contact line does 
not result in a physically acceptable solution. Due the conflict between a moving contact line 
and the conventional no-slip boundary condition between a liquid and a solid, stresses are 
unbounded near the wetting line, and the force exerted by the liquid on the solid becomes 
infinite (BLAKE, 2006). The hydrodynamics is in essence described by a corner flow, which 
has no intrinsic length scale (HUH; SCRIVEN, 1971). One can, thus, only define a local 
Reynolds number based on the distance to the contact line r, which can becomes arbitrarily 
small. Thus, the Reynolds number is typically very small and inertia can often be neglected. 
Also, the viscous stress near the contact line scales as vUCL/r. Hence, the shear stress 
diverges upon approaching r = 0 (SNOEIJER; ANDREOTTI, 2013). The no-slip boundary 
condition of viscous flow gives rise to a non-integrable singularity in the surface shear stress. 
As Huh and Scriven (apud DURBIN, 1988) describe it, “not even Herakles could sink a 
solid if the physical model were correct, which it is not“. There is an obvious contradiction 
between the use of a no-slip boundary condition and the motion of the liquid front (WANG; 
PENG; DUAN, 2007).

The moving contact-line singularity arises when equations derived for continuous mo­
tion are applyed to situation in which the continuum motion is discontinuous. This leads 
to the conclusion that a fundamental modification of these laws must be made (DURBIN, 
1988).

On a nanoscale, when having a moving contact line, you will always get slip (DAVIS, 
2014). Recently controlled experiments, with typical dimensions of microns or smaller, have 
demonstrated an apparent violation of the no-slip boundary condition for the flow of New­
tonian liquid near a solid surface (LAUGA; BRENNER; STONE, 2005).

One way to incorporate this discontinuous motion is by allowing slip of the fluid relative 
to the solid boundary, which is described as a relation between slip velocity and surface shear 
stress (DURBIN, 1988).

A linear boundary condition was introduced by Navier (1823) and it is still the standard 
characterization of slip (LAUGA; BRENNER; STONE, 2005). The Navier-slip condition is 
a widely accepted boundary condition to relieve the singularity at the moving contact line 
(GANESAN; TOBISKA, 2009), and gives essentially the same macroscopic flow, except
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if you look close to the contact line (DAVIS, 2014). The component of the fluid velocity 
tangential to the surface u||, is proportional to the rate of strain (or shear rate) at the 
surface:

u|| = An.(Vu + (Vu)T(1 - nn)) (2.14)

where n denotes the normal to the surface, directed onto the liquid, and A is the slip length, 

and can be interpreted, for a pure shear flow, as the fictitious distance below the surface 
where the no-slip boundary condition would be satisfied (LAUGA; BRENNER; STONE, 
2005).

Figure 2.16: Interpretation of slip length. Source: Lauga, Brenner and Stone (2005)

The Navier slip boundary condition is a popular treatment to remove the moving 
contact line singularity: it is well-established experimentally and theoretically, and it is 
easily incorporated into a continuum description (SNOEIJER; ANDREOTTI, 2013). The 
advantage of the Navier slip model is that it specifies a slip length instead of relying on 
the mesh-dependent effective slip of the numerical discretization (AFKHAMI; ZALESKI; 
BUSSMANN, 2009). Two conditions are prescribed: 1) no penetration boundary condition 
(normal component of the velocity is zero); 2) the slip with friction boundary condition, in 
which the tangential velocities of the fluids are proportional to their corresponding tangential 
stress (GANESAN; TOBISKA, 2009).

The surface stress is imagined to increase as the contact line is approached, until 
a critical level is reached at which the liquid begins to slip, in a behavior that is loosely 
analogous to the phenomenon of yields in metals. The location at which the liquid begins 
to slip is not prescribed, it is simply the location where the surface stress reaches its critical 
level, which is a property of the fluid flow (DURBIN, 1988).

However, the method has some limitations. The main problem is that the slip condition 
introduces only a length scale, but not an energy scale that expresses the interaction with 
the solid wall. In practice this means that the hydrodynamic equations still lack a boundary 
condition for the microscopic contact angle, which is necessary to close the problem. Second, 
the introduction of slip regularizes the divergence of shear stress and energy dissipation, but it 
still leads to a logarithmically divergent pressure p ~ (nU/s)ln(h/s) (BERTOZZI; SHEARER; 
BUCKINGHAM, 2003 apud SNOEIJER; ANDREOTTI, 2013).
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Another model is Huh and Mason (apud DURBIN, 1988) free-slip condition, in which, 
at a given distance of the contact line the liquid slips freely over the solid, so that the shear 
rate equals zero, and a no-slip condition is applied elsewhere.

Both the no-slip and the free-slip can be seen as the extreme conditions of the Navier- 
Condition, in which the slip length parameter (0 < A < x), allows for a slip velocity 
tangential to the wall. The three different boundary condition can be achieved, depending 
on the choice of A, as illustrated by Fig. 2.16: a)Noslip(A=0);b)partialslip0<A<x; 
c) Free slip A = x .

The no-slip and the Navier-slip boundary conditions are studied by Afkhami, Zaleski 
and Bussmann (2009). Accordingly to the authors, the numerical model introduces an 
effective slip which is on the scale of mesh size. They choose a slip lenght A = 0.001, that 
is approximately twice smaller than the finest mesh size they used on the simulations. The 
results obtained when the Navier-slip condition is applied underestimate actual values of 
contact line height and maximum shear rate, unless a very small slip lenght is employed.

2.5 Dynamic contact angle - empirical models

The most widespread working relation describing the contact angle is given by the 
so-called Hoffman-Voinov-Tanner law for capillary-dominated situations (low Ca number) 
(SIKALO; TROPEA; GANIC, 2005):

Ca = k(3D - 3s)3, Ca = ^Ucl 
7

(2.15)

For inertia-dominated situations (high Ca number) the constant angles maximum ad­
vancing 3mda and minimum receding 3mdr are used instead. This leads to:

3D = min[3S +
Ca
~k

1/3
, 3mda] , if UCL >= 0 (2.16)

3D = max[3S +
Ca
~k

1/3
, 3mdr ] , if UCL < 0 (2.17)

Other correlations are:

• Kistler (1993):

3D = fHoff[Ca + fHoff|-13S] (2.18)
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with:

r - 0.706
fHof f = arcos 1 - 2tanh 5.16 1 + 1.31x0.99

(2.19)

• Jiang, Oh and Slattery (1979):

cos(3S) - cos(3D)
cos(3s) + 1

tanh(4.96Ca0.706) (2.20)

• Bracke, De Voeght and Joos (1989)

cos(3S) - cos(3D) 
cos(3s) + 1

2Ca0.5 (2.21)

• Seebergh and Berg (1992)

cos(3s) - D> = KiCaK2
cos(3S) + 1 1

Ca>10-3: K1 = 2.24, K2 = 0.54;

Ca < 10-3: Ki = 4.47, K2 = 0.42

(2.22>

2.6 Dynamic contact angle: mathematical model

A different approach, named Interface Formation Model (IFM>, is proposed by Shikhmurzaev 
(1993, 1994>, Sprittles and Shikhmurzaev (2012>, that criticises the “conventional” approach 
of using correlation relating the contact angle 3 to the velocity of the contact line. Another 
criticism is that these models should have a slip-condition at the contact point. Billingham 
(2008> evaluates how the IFM affects the predictions for the gravity-driven flow of a thin 
film down an inclined plane, Sibley, Savva and Kalliadasis (2012> study the spreading of a 
thin two-dimensional droplet on a planar substrate, and Griebel and Klitz (2013> simulates 
droplet impact on a dry flat surface.

A key element of the IFM is the fact that as a liquid advances across a solid surface, 
liquid at the liquid/gas interface becomes transferred to the solid/liquid interface; there is
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a material flux through the contact line, which is missing from the conventional models 
(BLAKE, 2006).

In this method, a microscopic layer is considered between each phase. In the continuum 
limit, these layers becomes a mathematical surface of zero thickness. The main aspect of the 
method is that, although with negligible thickness, the layer have properties, such as, surface 
density (ps), surface velocity (vs) and surface tension as. Accordingly to Shikhmurzaev 
(1994), Sprittles and Shikhmurzaev (2012), Billingham (2006), the main advantages of the 
IFM are:

1. Considers the interface as a thermodynamic system with mass, momentum and energy 
exchange with the bulk.

2. Contact angle determined by the flow field

Two interrelated mechanisms are paramount to the formulation of the IFM:

• Surface layers: liquid molecules near the surface being in an unfavorable energy state

• Surface tension relaxation

With the interface surfaces, it is possible to consider different conditions in each side 
of the layers. Thus, the no-slip condition is satisfied for fluid particles next to the solid.

The surface tension relaxation is related to the horizontal force balance from Young 
equation: a12cos0s + a1s = a2s. The dynamic contact angle varies from its static value, 
causing either a12, a1s, a2s or a combination to also deviate from their static value. Fluid 
particle are transfered from the gas interface (associated to a12) to the solid interface (asso­
ciated to a1s). This relaxation of the surface tension to the equilibrium existing far from the 
contact line happens in a finite time t, rather than instantaneously. The developments and a 
detailed explanation of the method can be found at Shikhmurzaev (1993, 1994), Billingham 
(2006), Sibley, Savva and Kalliadasis (2012).

Griebel and Klitz (2013) works with a reduced version of the Interface Formation model 
at small capillary and Reynolds number; the dynamic contact angle and a dimensionless 
contact-line velocity V are related by:

cos(0s) - cos(0d)
2V[cos(0s) - asg + (1 + pg) 1(1 + pGu(12)(0d, M)]

V + [V2 + 1 + (cos(0s) - asg)(1 - pG)] /2
(2.23)

pG 1- asg - asl
Acosid 2-

where 0s is the static contact angle, is the gas-to-liquid viscosity ratio, asg and asl denote 

the surface tension of the gas-solid and liquid-solid interface, respectively, A is a material
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parameter and u(12) (3d, km) is a radial velocity derived from the solution of the outer region, 
being:

u(1,2)(3d, 0)
sin3d - 3dcos3d 

sin 3dcos3d - 3d
(2.25)

or, if the viscosity of the gas phase is taken into account:

U(1,2)(3d, k^)
(sin3d - 3dCos3d)K(32) - ^(sinfa - 32Cos32)K(3d) 

(sin3dcos3d - 3d) + K^(sin32cos32 - 32)K(3d)
(2.26)

with 32 = n - 3d and K(3) = 32 - sin23.
In Eq.(2.23) u12(3s,km) can be replaced by a numerically computed far field velocity 

sufficiently close to the contact line.
The dimensionless velocity is:

V = uci = "-■//' Sc (2.27)
U7

with:

U=
YpS(1 + 4aP)

(2.28)

Sc =
72T/3

^2YPo (1 + 4aft)
(2.29)

where 7 is the equilibrium surface tension, a and ft are phenomenological constants de­

pending on the “state of the interface”, 7 is a phenomenological constant describing the 
compressibility of the fluid, t is the surface tension relaxation time and pS is the surface 
density for zero surface tension, both of which can be treated as material constants, and 
Sc can be chosen to fit the numerical results to the experimental data (GRIEBEL; KLITZ, 
2013).

Table (2.1) presents the physical parameters estimated by Sibley, Savva and Kalliadasis
(2012) for water at room temperature for the Interface Formation Model:

Table 2.1: Physical parameters estimated for water at room temperature for the Interface 
Formation Model (SIBLEY; SAVVA; KALLIADASIS, 2012)

y=2.106[m2/s2] t=10-8[s]
p = 1000[Kg/m3] psse = psge = 10-7[Kg/m2]

= 10-3[Kg/m.s] ft = 107[Kg/m2.s]
aft = 12 [dimensionless] 7gse = 7.10-2[N/m]



CHAPTER III

METHODOLOGY

The mathematical modeling and the spatial and temporal discretization used in the 
AMR3D code are presented. Their implementation and validation are described by Villar 
(2007) and Nós (2007).

For the VOF method, several steps are necessary. The implemented initialization pro­
cess is explained in Section 3.6. The normal and curvature computation, the color function 
reconstruction (a step in which the interface geometry is approximated from the color func­
tion and its gradients) and the VOF advection (the step where this information is updated 
due the velocity flow field) are explained in Sections 3.7, 3.8 and 3.9, respectively.

The numerical procedure to apply the contact angle is explained in Section 3.10.

(WHITE, 2006):

3.1 Mathematical Modeling

3.1.1 Eulerian formulation

The one-fluid formulation of the Navier-Stokes equation is used. A two-phase flow 
without phase change is modeled as a single phase flow with variable density and viscosity. 
The fluid is also considered to be incompressible. This formulation allows to treat the multi­
phase flow in a similar fashion than a homogeneous fluid and any standard algorithm based 
on fixed-grids can, in principle, be used to integrate the discrete Navier-Stokes equations in 
time (PROSPERETTI; TRYGGVASON, 2007).

The Navier-Stokes equation for isotherm incompressible flow, in its vectorial form are

V)u] = V • [p(Vu + VuT)] - Vp + pg + fó + f, (3.1a)

V • u = 0. (3.1b)

du
p[ ã+(u

27
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where u is the fluid velocity field, p is the fluid specific mass, p is the fluid dynamic viscosity, 
p is the pressure, including the fluid-static part, g is the gravity, f is the interface tension 
force and f represents other forcing terms, such as the one to account for the Immersed 
Boundary.

The behavior of the fluid-fluid interface is modeled including a source term for the 
interface tension force. In the front-tracking method of Tryggvason, this force field is calcu­
lated on a separate framework with a Lagrangian reference frame, which explicitly represents 
the position of the interface (UNVERDI; TRYGGVASON, 1992). In the VOF method, the 
volume fraction (F ) is used for associating each cell in the Eulerian domain to the respective 
fluid phase.

The surface tension is interpreted as a continuous, three-dimensional effect across an 
interface. In the absence of mass transfer, there is no need of establishing any additional jump 
conditions at the fluid interface as they are implicitly taken into account by this formulation. 
The coupling of the two fluids is provided by variable material properties p and p (BOGER; 
SCHLOTTKE; MUNZ, 2010). They are computed as:

= F • + (1 - F) • (M (3.2)

where ^1 is the scalar property of fluid 1, r>2 is the scalar property of fluid 2 and F is the 

color function at the computational cell.
The forcing term f allows for the communication between the Navier-Stokes equation 

and the Immersed Boundary. It has value only at the interface and must be zero elsewhere.

3.1.2 Eulerian - Lagrangian coupling

The Immersed Boundary is discretized in a Lagrangian mesh, independent of the 
Eulerian mesh used to solve the Navier-Stokes equations. The Dirac delta function 5 is used 
to communicate between the Eulerian and the Lagrangian domains, being approximated by 
a distribution function with Gaussian properties. The 3D distribution is approximated by 
the product of three 1D functions, accordingly to Eq(3.3):

D(x-X)
1

AxAyAz
x-X

Ax
y-Y

Ay
(3.3)W W W

z -
.\ J ’

where

W(r)
4(1 + cos(nr», r< 2, 

0, r > 2,
(3.4)

and
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x - X y - Y z - Z 
Ax ’ Ay ’ Az

(3.5)

It is responsible for distributing the Lagrangian interface force to the Eulerian points 
[Eq.(3.6)] and for interpolating the Eulerian velocities to the Lagrangian points of the inter­
face [Eq.(3.7)]. These operations are called spreading and interpolation, respectively, and its 
mathematical formulation are

f(x, t) = F(X,t)D(X - x)dX, (3.6)

where t is the time, X represents the position in the Lagrangian framework, F represents 

the interface tension force field in the Lagrangian framework, x represents the position in 
the Eulerian framework and f is the interface tension force field in the Eulerian framework.

U(X,t) = u(x, t)D(x - X)dx (3.7)

where U represents the velocity field in the Lagrangian framework and u is the velocity 

field in the Eulerian framework.
Numerically, the integrals (3.6) and (3.7) are replaced by a discrete summation over a 

four cells-thick zone around the interface.

3.2 Numerical method: temporal discretization

A semi-implicit temporal discretization method is used in the AMR3D code, based 
on the second order Implicit-Explicit Schemes (IMEX), as described by Ascher, Ruuth and 
Wetton (1995). The diffusive term is treated implicitly and the advective term explicitly 
(VILLAR, 2007).

Through the IMEX schemes, a family of temporal discretization is obtained. The 
second-order temporal discretization of the Navier-Stokes through the semi-implicit scheme 
is (VILLAR, 2007; PIVELLO, 2012):

pn+1(—)
At

(a2un+1 + aiun + aoun-i) = ft f (un) + ftf(un-1) + (3.8a)

A 02V2un+1 + 01V2un + 00V2un-1 - Vpn + pn+1(—)g

V • un+1 = 0, (3.8b)

where the superscripts (n + 1), (n) and (n - 1) are relative to next, the current and the
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previous time steps, respectively; — is an indicator function for the fluid, being 0 for the 
continuous phase and 1 for the disperse phase; A = ||^||^ and f (u) depends on the diffusive, 
advective and forcing terms:

- u • Vu + (',f (u) = -AV2u + V- ^(Vu + VuT) (3.9)

and the parameters a0, ai, a2, p0, pi, 0O, 0i and 02 from Eq. 3.8a are:

ao

ai

a2

(2y - 1 )w2 

1 + w ’
(1 - 27)w - 1, 
1 + 2yw

1 + w ’
pi =
pO =

0O =

-yw,
1+y, 
c 
2 ’

(3.10)

0i = 1 - y- 1 +
c

02 = Y + 2w’

1
w

c
2 ’

where w = Atn+i/Atn is the ratio between two consecutive time steps, and the two param­

eters y and c allows to choose the method from the IMEX scheme: (ASCHER; RUUTH; 
WETTON, 1995; PIVELLO, 2012)

• Crank-Nicholson Adams-Bashforth (CNAB): (y, c) = (0.5, 0.0);

• Modified Crank-Nicholson Adams-Bashforth (MCNAB): (y, c) = (0.5, 0.125);

• Crank-Nicholson Leap Frog (CNLF): (y, c) = (0.0, 1.0);

• Semi-Backward Difference (SBDF): (y, c) = (1.0, 0.0).

With this discretization two time steps are required. To allow its applicability, the 
Navier-Stokes equations are solved with an Euler temporal discretization for the first time 
step of the simulation.

The time step is calculated following stability criteria for explicit schemes, taking into 
account the advective, diffusive and capillary terms, as defined by Eq.(3.11):
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1
Atadv = u II ro 

Ax
+

w
Az

ro

At

At

diff

cap

= a1 h,

Pc + PD 

2
h3

na

At = min(b1Atadv ^Atf ^Atcap)

(3.11a)

(3.11b)

(3.11c)

(3.11d)

1

where Atadv, Atdiff and Atcap are the maximum time step allowed by the advective term, 
the diffusive term and the interface force, respectively. ||u||ro, ||v||ro are ||w||ro values of 
the infinite-norm for the u, v and w components of the velocity; h = min(Ax, Ay, Az) is 
the characteristic length of the grid and Ax, Ay and Az are the grid spacing in the x-, 
y- and z- directions. 0 <a1 < 1,0 < b1 < 1,0 < b2 < 1 and 0 < b3 < 1 are safety 
coefficients. Equation (3.11b) requires that a1 must have dimensions of time per length, that 
is: [a1] = TL-1.

According to Tryggvason et al. (2001), the constraint for second order schemes for the 
diffusive term is:

At <
ph2

6p
(3.12)

ph2
Making At1 = a1h and At2 = ----  yields the following relation:

6p

At2 , p—— = h------
At1 6a1p

(3.13)

Since a1 < 1 and, in the context of gas-liquid flows p » 1 and p < 1, Eq.(3.13) shows 
that the constraint adopted in this work is stricter than Eq.(3.12). The same can be stated 
about the capillary constraint since, in the present work, the mean density is adopted.

In the present work both the SBDF, CNAB and MCNAB temporal time discretization 
are used in the simulated cases with a variable time step.

3.3 Numerical method: spatial discretization

The Navier-Stokes equations are solved in a computational domain Q = [A1,B1] x 
[A2,B2] x [A3,B3] locally refined. Initially the domain is discretized with a regular mesh
containing [Nx x Ny x Nz] computational cells with dimensions Ax = B1-A1

Nx
Ay _  B2—A2

= Ny
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and Az = By'" (VILLAR, 2007).
Space is discretized using a Structured Adaptative Mesh Refinement (SAMR) frame­

work, which is based on the version of the Immersed Boundary (IB) method introduced by 
Roma, Peskin and Berger (1999), and in the hierarchical grid structure proposed by Berger 
and Colella (1989). A block-structured local refinement assures that regions ofinterest, such 
as the transition between the two phases, are on the spacial mesh with bigger resolution, as 
illustrated in Fig. 3.1

(a) Mesh from the finner level (b) Adaptive refinement

Figure 3.1: Example of mesh refinement in a two-phase flow. source: Nos (2007)

The dimension of the computational cell in each refinement level is:

Axil
Axii+i = - (3.14)

r

where i = 1, 2, 3 corresponds to each coordinate axis, l identifies the level of refinement, 

from lbase (the coarse mesh resolution) to ltop (the most refined level) and r = 2 is the ratio 
of refinement between two successive levels.

The center of each computational cell is defined as:

xi,j,k = (xi, yj, zk) = [A1 + (i - 1/2)Ax, A2 + (j - 1/2)Ay, A3 + (k - 1/2)Az] (3.15)

for 1 < i < Nx, 1 < j < Ny , 1 < k < Nz

A staggered composite grid is used, i.e., pressure and other scalar variables are com­
puted at the centers of the computational cells and vector variables are located at the cell 
faces (Fig. 3.2).
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ABC D

Figure 3.2: Computational cell; A) position of the scalar variables; B) position of the vector 
variables in the x direction; C) position of the vector variables in the y direction; D) position 
of the vector variables in the z direction. source: Nós (2007)

To account for the boundary condition, ghost cells are added around the domain, as 
illustrated in Fig. 3.3

Figure 3.3: Computational mesh with ghost cells represented by the dashed lines and stag­
gered variables represented by the arrows at the cell faces. source: Villar (2007)

The spatial discretization of the Navier-Stokes equation requires the discretization of 
the operators Gradient, Divergent and Laplacian. This is performed on the staggered grid 
with a second order central difference scheme. On the Eulerian cell (i, j, k), a scalar variable 
is denoted by —(i,j,k) and a vector variable, such as the velocity u is defined as:

ui,j,k ui-2 ,j,k ,vi,j-1 ,k ,wi,j,k-1 (3.16)

The Gradient operator is defined as:

V—i,j,k = (Vx—i-1 ,j,k’ Vy — i,j-1 ,k’ VZ — i,j,k-1 (3.17)



34

where:

V - 1 ,j,k

Vy $i,j-1 ,k

Vz $i,j,k-1

$i,j,k &i-1,j,k
Ax

$i,j,k $i,j-1,k

Ay

$i,j,k $i,j,k-1
Az

(3.18)

(3.19)

(3.20)

The divergent operator is:

w1 - ■1
(V • u)i,j,k Ui+ 2 ,j,k

Ax
ui-2 ,j,k Vi,j+2, - vi,j-1,

Ay Az
(3.21)+

k k
+

And the Laplacian is:

(V2^)i,j,k _ V • V<fa,j,k _
^i+1,j,k 2$i,j,k + $i-1,j,k

Ax2

^i,j+1,k 2$i,j,k + &i,j-1,k

Ay2

^i,j,k+1 2$i,j,k + $i,j,k-1
Az2

(3.22)

(3.23)

(3.24)

3.3.1 Structured Adaptive Mesh Refinement

In the Structured Adaptative Mesh Refinement approach, regions of the flow with 
special interest are covered by block-structured grids, defined as a hierarchical sequence 
of nested, progressively finer levels (composite grids). Each level is formed by a set of 
disjoint rectangular grids and the refinement ratio between two successive refinement levels 
are constant and equal to two. Ghost cells are employed around each grid, for all the levels, 
and underneath fine grid patches to formally prevent the finite difference operators from 
being redefined at grid borders and at interior regions which are covered by finer levels. 
Values defined in these cells are obtained from interpolation schemes, usually with second or 
third order accuracy, and not from solving the equations of the problem (ROMA, 1996).

Although a variable can be defined or initialized in any level, in the current work the 
Lagrangian or VOF interface must to be completely covered by the finest level, ensuring that 
the most important physical phenomena are being captured.

Within the grid hierarchy, the levels are nested so that the coarsest level covers the 
entire computational domain and each finer level covers a part of the interior of the previous
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coarse level. In each level, the grid is composed by the union of logically rectangular regions 
called patches or blocks, which do not intersect each other. All grid blocks in a given refine­
ment level share the same grid spacing (BERGER; OLIGER, 1984) (BERGER; COLELLA, 
1989).

The refinement ratio (r) is defined as the quotient between the grid spacing of two 
consecutively refined levels and is constant for all levels. In the present work, r = 2 is used. 
Also, the grid hierarchy must obey two conditions in order to be properly nested:

1. The corners of a block in a given level of refinement must match the corners of cells 
located at the next coarser level.

2. A grid block in a given level must not touch the boundary of a block belonging to 
a coarser level of refinement, except when these blocks lie at the boundaries of the 
computational domain.

Figure 3.4 shows the case of a properly nested grid hierarchy with three levels of 
refinement and Fig. 3.5 shows two grids violating these conditions: grid (a) violates condition 
1 and grid (b) violates condition 2.

Figure 3.4: An example of block structured adaptive mesh refinement properly nested. 
Source: Villar (2007).

Grid adaption involves selecting cells to be refined at a given level, using some error 
estimator or refinement criterion, and then grouping the cells into blocks in that region. 
These blocks are used for creating the next refinement level in the hierarchy. When the 
remeshing criteria are based on the magnitude of a particular variable, ranges of this variable 
are defined so that each refinement level covers a different range of values of that variable. 
In this work, the following approach was followed: let the remeshing criterion be based on
the magnitude of some variable $ G [$min; $max]. This variable is mapped onto the interval
[0; 1], which is further divided into as many intervals as the number of refinement levels,
so that the finer refinement levels are applied on the top of the interval. Determining the 
range for each refinement level may depend on the kind of problem being solved. In the 
present work, the following rule is adopted: the finest level covers the interval [0.1; 1.0] and 
the complement of the domain is equally divided between the remaining refinement levels.
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Figure 3.5: An example of block structured adaptive mesh refinement violating the nesting 
rules: the fine block in grid (a) does not lie on vertices of the coarse level block and the block 
in the finest level in grid (b) touches the boundary of a block in the next coarse level which 
is not part of the domain boundary. Source: Villar (2007).

Figure 3.6 shows an example of SAMR grid taken from a case simulating a bubble rising 
in the wobbling regime. The bubble creates a von Karman wake and the mesh refinement is 
placed over the bubble and over the bubble wake.

Figure 3.6: Example of adaptive mesh refinement based on the vorticity magnitude. Source: 
Pivello (2012)

3.3.2 Ghost cells

The ghost cells store the values for the boundary conditions, and are defined in order 
to avoid a redefinition of the differential operator at the borders of the mesh. This allows the 
use of the same computational stencil inside the domain and at its borders. The number of



37

ghost cells depends on the stencil size. For a second order discretization the stencil for the 
Laplacian has five cells. The boundary condition for the ghost cells are of three types. The 
first involves an interpolation procedure from the coarse to the finner mesh to determine the 
values on the ghost cells that are in any mesh of the same level. On the second, known as 
injection, the values are taken from values already determined by sister cells. Finally, the 
third procedure consist in replacing the values from the ghost cells at the borders of the 
domain by the proper boundary condition.

For cell centered variables, quadratic polynomials are chosen for the interpolation 
procedure between the finner/coarse interface. This in illustrated schematically in Fig. 3.7a. 
The value of the ghost cell for the finner level (◦) is obtained from an extrapolation of cells 
from the same finner level (*), followed by an interpolation from the coarse cells (•). The 
final result is from an interpolation between the extrapolated value (△), the value at the 
finner cell (*) and the value interpolated from the coarse level (□).

The procedure for staggered variables is similar to the one for centered variables. The 
main difference is in the computational mesh. Figure 3.7b illustrates the procedure for the 
west (left) and south (right) borders.

(a) Interpolation stencil for the ghost cells for a centered variable.

Figure 3.7: Interpolation stencil. * value at the finner level, • value at the coarse level, △ 
extrapolated value from the finner level, □ interpolated value from the coarse level, ◦ final 
value at the ghost cell. source: Villar (2007)
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3.4 Fractional step method

After the temporal and spacial discretization of Eq.(3.8a) and (3.8b) a fractional step 
method (KIM; MOIN, 1985) is used to allow for the couple between velocity and pressure. 
First, an auxiliary velocity field u* is advanced using pressure from the previous time step; 
later, the requirement that the new velocity satisfy the continuity equation leads to a Poisson 
equation for the new pressure. Upon solution of the pressure equation, the new velocity field 
is obtained, which satisfy the continuity and the momentum equations. The procedure is:

1. From Eq. (3.8a), compute the auxiliary velocity field:

p(^)n+1

At
(a2u* + a1un + aoun )_ ^1/(un) + ^of (un ) + (3.25)

32V2u* + 31V2un + 3oV2un-1] - Vpn + pn+1(^)gA

2. The requirement that the new velocity satisfy the continuity equation leads to a Poisson 
equation for the pressure correction q:

V
1

pn+1 Vqn+1 a Vu*
At

(3.26)

3. Correct the velocity field:

un+1 _ u* AtVqn+1 

a2pn + 1
(3.27)

4. Correct the pressure:

pn+1 _ pn + qn+1 (3.28)

5. Assure that the continuity equation, with the new velocity field un+1 is satisfied:

Vun+1 _ 0 (3.29)
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3.5 Surface tension force

In the one-fluid formulation, a single set of equations for the whole flow domain is used, 
and the coupling of the fluids at the interface is taken into account by the use of variable 
density and viscosity and the surface tension, considered as a body force (PROSPERETTI; 
TRYGGVASON, 2007). The change in material properties has to happen in a smooth 
regularized way, in order to prevent numerically induced oscillations in the vicinity of the 
interface. The corresponding force F on the right-hand side of the equation is only present 
at the interface while it vanishes in grid cells away from it. In principle (for steady state) 
one could use directly the Laplace equation in order to derive the volume force FCT (BOGER; 
SCHLOTTKE; MUNZ, 2010)

AP = 7k, (3.30a)

Fct = 7Kn (3.30b)

where n is the interface unit vector.
“Though, as we are dealing with a diffuse interface formulation, we are in need of 

some numerical smoothing operations near the interface. Therefore, surface tension has to 
be calculated based on a numerical model” (BOGER; SCHLOTTKE; MUNZ, 2010).

The evaluation of the surface tension force (Fa) on the momentum equation is one of 
the most difficult tasks in the VOF framework (POPINET, 2009). Implementing Eq.(3.30a) 
in a numerical scheme involves a twofold task: the curvature k needs to be determined, 
and the resulting pressure jump Ap must be applied appropriately to the fluids (MEIER; 
YADIGAROGLU; SMITH, 2002).

Numerically, this condition is extremely difficult to apply and two paths to its eval­
uation are common in the literature: 1) the capillary forces are applied as a boundary 
condition along the free surface, considered as a discontinuity separating the two fluids. The 
equations are solved separately for each phase and coupled through the boundary condi­
tion (KANG; FEDKIW; LIU, 2000); 2) in a second approach, proposed by Brackbill, Kothe 
and Zemach (1992), since the interface location is not know a priori, the surface tension 
force is interpreted as a body force applied to a small number of cells. Following this idea, 
the most common approach applied in the VOF methods are the Continuum Surface Force 

(CSF) (BRACKBILL; KOTHE; ZEMACH, 1992) and the Continuum Surface Stress (CSS) 
(LAFAURIE et al., 1994).

The CSF interprets surface tension as a continuous, three-dimensional effect across an 
interface, rather than as a boundary value condition on the interface. The interface where 
the fluid changes from fluid 1 to fluid 2 discontinuously is replaced by a continuous (smooth) 
transition. Thus, instead of considering the fluidic interface as a sharp discontinuity, the
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interface is considered to have a finite thickness of O(h), corresponding to the smallest 
length scale resolvable by the computational mesh. Consequently, surface tension is also 
considered to be of continuous nature and it acts everywhere within the transition region. 
The equivalent body force (Fa) is (BRACKBILL; KOTHE; ZEMACH, 1992):

Fct _ aK5n (3.31)

where a is the surface tension coefficient, k is the interface curvature, 5 is a delta function 

indicating the surface of an interface r and n is the interface unit vector.
The literature presents some option for 5, as shown in Table (3.1), where F is the 

volume fraction.

Table 3.1: Some 5 approximations presented in the literature

Reference 5 function
Brackbill, Kothe and Zemach (1992) |VF |
Williams, Kothe and Puckett (1998) 4F (1 - F)
Meier, Yadigaroglu and Smith (2002) Vp(x) 2p(x) 

pl—pg pl+pg

Annaland, Deen and Kuipers (2005) 2F |VF |

Since the normal can be approximated by n _ |VFFi, and approximating 5 by |VF |, 
the surface tension force is approximated by:

Fct _ aK|VF|
VF 
|VF |

_ akVF (3.32)

This corresponds to a dispersion of the surface tension across the transition region, 
using the gradient of the volume fraction variable F to weight the dispersed volume force 
from Eq.(3.30b). In implementing this approach in a CFD code, one has to consider the: 1) 
estimation of curvature k, in order to prevent parasitic currents; 2) spatial discretization of 
Eq.(3.32) (BOGER; SCHLOTTKE; MUNZ, 2010).

The difficulty associated with volume of fluid (VOF) methods to accurately estimate 
the interface curvature from an abruptly varying volume fraction distribution, F, is well 
known. In a large number of two-phase flow applications, the lack of accuracy in the es­
timation of curvature may produce unphysical velocities (commonly known as spurious or 
parasitic currents) at fluid interfaces, which may harm the simulation results (LoóPEZ et al., 
2009).

As stated by Francois et al. (2006), the Continuum Surface Force has the propensity to 
generate unphysical flow (parasitic currents) near the interface when surface tension forces 
are dominant, that are best illustrated in the limiting case of an inviscid static drop in
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equilibrium without gravity, where Laplace's formula applies. These artifacts are a serious 
problem for the capability of the volume-of-fluid approach, since it is a restriction of the 
approach rather than a numerical inaccuracy. Under some circumstances, it may result in 
strong vortices at the interface despite the absence of external forcing, which may lead to 
catastrophic instability of the interface or even to break-up (GERLACH et al., 2006).

For high density ratio flows, a density scaling of the CSF is said to improve the method's 
performance (KOTHE et al., 1996):

VF
|VF |

Fct = 7k|VF | 7kV F
[p]

where p is the local density, computed as p =

(3.33)

P2 + F(pi - P2) and [p] = P2+P1.

Concerning the spatial discretization of Eq.(3.32), the variables are stored on a stag­
gered grid arrangement. The scalar variables (F,p, p, k) (and also the interface normal 
vector n) are stored at the cell centers, while the velocities and surface tension force are 
stored at the centers of the cell faces. In order to guarantee an accurate, balanced-force 
discretization, the surface tension terms have to be calculated at the center of the cell faces. 
To avoid parasitic currents a local approach, that only uses two cell faces to disperse the 
jump in pressure, was found to be preferable over bigger stencils (BOGER; SCHLOTTKE; 
MUNZ, 2010).

The gradient evaluation of F only takes into account direct neighbors of the cell faces, 
which leads, for the cell face (i-1/2, j,k), to:

VFi-2 ,j,k
F(i,j,k) F(i-1,j,k)

Ax
(3.34)

The curvature k is interpolated from the cell centers to the cell faces as a weighted 
average; the procedure for the cell face (i-1/2, j,k) is (RENARDY; RENARDY, 2002):

Ki-2 ,j,k
& 1 K(i-1 ,j,k) + W2K(i,j,k) (3.35)

&1 + &2

where: w = Fj x [1 - Fj and &i = Fi-j) x [1 - F^-j)}.
On the CSS method, the volumetric force from the CSF is transformed in tension. The

capillary force term is presented as a tension tensor T, tangential to the interface:

T = -7(1 - n®n)ó (3.36)
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where I is the Kronecker tensor and 5 is the dirac delta function. The capillary force is:

F_-V.T (3.37)

The equivalent volumetric force is presented by Lafaurie et al. (1994):

Fct _ aV |VF|I- VF® VF 
|VF |

(3.38)

Accordingly to Rudman (1997), both the CSF and CSS leads to parasitic currents, 
predominantly on the transition region between the fluids, which tends to grow with time. 
In problems in which the surface tension effects are predominant over the viscous tension, the 
spurius currents can cause oscilations along the interface and eventually destroy or completely 
deform the interface.

In this work the Continuum Surface Force method from Brackbill, Kothe and Zemach 
(1992) is used to compute the surface tension force.

3.6 Color function initialization

One of the first steps of the VOF method is the initialization of the color function (F). 
For a desired surface that we aim to analyze, we must transform it in fractional volumes for 
each Eulerian computational cell, in a way that 0 < F < 1. A poor initialization of the color 
function will lead to a poor analysis of the curvature and also to spurious currents.

Especially for the analysis of the normal and curvature computation, it is desirable to 
initialize F with complex geometries, as the sphere shape can hide possible weakness of the 
methods that are being used.

3.6.1 Initialization with implicit functions

An implicit equation (0) of a surface is an equation of the form 0(x, y, z) _ 0. One of 
the properties of the implicit surface is that it has an efficient check for whether a point is 
inside or outside the surface (FUNKHOUSER, 2002). For a given position x _ (x, y, z), it 
is easy to check whether this position is inside (0 < 0), outside (0 > 0), or at the interface 

(0 _ 0).
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3.6.1.1 The López et al. (2009) initialization method

The basic idea proposed by López et al. (2009) is to compute the signed distance (^) 
of the function and the division of the interfacial cell in nsc3 sub-cells to determine which 
sub-cell is full or empty of fluid.

First, they compute the signed distance from every cell vertex xip = (xip’ yip’ zip) to 
a given interface. If all the vertices of the cell have positive values (outside the fluid) or 
negative values (inside the fluid), the volume fraction F in the cell is initialized with 0 or 1, 
respectively. If the cell contains an interface, it is uniformly divided in nsc3 sub-cells, and the 
same procedure to define which sub-cell is empty or full is applied. For the interfacial sub­
cells (not all vertices have the same sign of the distance function), a volume of a truncated 
polyhedron is computed. For the shape of a sphere, they show that this method is second- 
order accurate.

3.6.1.2 Initialization method with points inside the computational cell

There is one simple way to initialize the color function with the implicit equation. For 
the computational cells that are completely inside or outside one of the phases, the procedure 
is the same as the method proposed by Lóopez et al. (2009), that is, compute the distance 
from the implicit equation to all the vertices of the computational cell and verify whether 
this cell is completely full, empty, or has an interface. For the cells that contain an interface, 
one can populate it with a number of points (Np3), with known coordinates xi = (xpi’ ypi’ zpi), 
and compute the distance (^) of each of these points to the surface. Currently, the cell is 
populated with equidistant points. The fractional volume in each cell is the sum of the points 
inside the surface (npi), divided by the number of points inside the cell (Np3).

F=
Enpi

Np3p
(3.39)

Once the implicit function is provided, the initialization of a complex shape is straight­
forward. To improve computational performance, each computational cell is also divided in 
nsc3 sub-cells. The vertices of each sub-cell are first checked to identify if it is completely 
full or empty. For the sub-cells that contain an interface, they are populated with a number 
of points (—)3.nsc

3.7 Normal and curvature estimation

The most widely used technique to calculate the normal and subsequently the curvature 
is through the use of the spatial derivatives of the scalar function (RAESSI; MOSTAGHIMI; 
BUSSMANN, 2007). Hence, the interface normal vector n is computed as the gradient of
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the color function F:

n_-
VF 
|VF |

(3.40)

The curvature is computed by taking the divergence of the interface unit normal vector 
(the second derivative of the VOF function) (RAESSI; MOSTAGHIMI; BUSSMANN, 2007).

To overcome the problem of inaccuracies due to the numerical differentiation of a 
discontinuous function, a smoothed color function F is suggested for the computational of 
the unit normal to the interface (BRACKBILL; KOTHE; ZEMACH, 1992), (ANNALAND; 
DEEN; KUIPERS, 2005).

In the present work, the methods implemented for the normal vector estimation are:
1) the Parker and Young's method; 2) the 125 Cells discretization; and 3) the Least Squares 
method.

For the curvature estimation the methods compared are: 1) the 27 Cells discretization;
2) the 125 Cells discretization; 3) the Paraboloid method; 4) the Least Squares method; 5) 
the Height function method.

Each of these methods is explained in the next sections and references to more detailed 
information are provided.

3.7.1 Parker and Young's method

This method, commonly referred to as Young's method, was proposed by Parker and 
Youngs (1992). It is one of the most cited methods concerning the normal computation on 
the VOF method, using a 9-point stencil in 2-D, and 27-point in 3-D (KOTHE; RIDER, 
1994).

The implementation in the present work follows Aulisa et al. (2007), which is an ex­
tension to three-dimensions of the two-dimensional implementation presented in Scardovelli 
and Zaleski (2003). The gradient is computed with a finite difference method. The normal is 
first evaluated at the eight corners of the central cell (i, j, k). Following Aulisa et al. (2007), 
the normal components nx, ny, nz in the vertex of coordinates xi+1/2, yj+1/2, zk+1/2 are:

nx (Fi Fi+1); ny (Fj Fj+1); nz (Fk Fk+1);sx sy sz
(3.41)

where Fji _ (Fi,j,k+Fi,j+1,k+Fi,j,k+1+Fi,j+1,k+1)/4). The same scheme is applied in the other 

vertices of the eulerian cell, and the cell-centered normal vector is obtained by averaging the 
eight cell-corner values.

Pilliod and Puckett (2004), Kothe et al. (1996) show that this method is at best first-
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order accurate. However, due to its simple implementation and low computational cost, it 
is generally used at least for a first estimate of the direction of the normals, as is required,
for example, in the Height function method.

3.7.2 27 Cells discretization

Figure 3.8: A 3D cube (left) and the right upper front octant (right) used for the 27 Cell 
discretization method. Source: Lam (2009)

This method, presented by Lam (2009), consist of a finite difference discretization of 
n = ||F| and k = V.n, as the Young's method, but evaluates the normals in quadrants, for 
two-dimensions, and octants, for three-dimensions (illustrated by the broken lines in the left 
part of Fig. 3.8), instead of determining the normals at the corners of the computational 
cell.

The octants are {left,right} x {down,up}, {back,front}. For each one of them a di­
rection component (i,j, k) of VF is determined by averaging the “arrows” of Fig. 3.8 - 
right.

The discretization of octant {right, up, front} follows bellow. The subscript uf stands 
for “upper front”, ub for “upper back”, df for “down front” and db for “down back”. In i- 
direction, the arrows are calculated as:

F(i +1’j + 1’k + 1) - F(i’j + 1’k + 1)
VFuf =---------------------------------- AX--------------------------

VF„b
F(i + 1’j’k + 1) - F(i’j’k + 1) 

Ax

(3.42)

(3.43)

VFdf
F(i + 1’j + 1’k) - F(i’j + 1’k)

Ax (3.44)
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VFdb = F(i + 1,j,k) - F(i,j,k)
Ax

The average of the arrows are taken to obtain the average value of VF in i

VFx = (VFuf + VFub + VFdf + VFdb)/4

In j -direction:

VFr
F(i + 1,j + 1,k + 1) - F(i + 1,j,k + 1) 

Ay

VFiiu =
F(i,j + 1,k + 1) - F(i,j,k + 1) 

Ay

VFrrd
F(i + 1,j + 1,k) - F(i + 1,j,k) 

Ay

VFiid = F(i,j + 1,k) - F(i,j,k)
Ay

VFy = (VFru + VFiu + VFrd + VFid)/4

In k-direction:

VFrf =
F(i + 1, j + 1,k + 1) - F(i + 1, j + 1,k) 

Az

VFif =
F(i,j + 1,k + 1) - F(i,j + 1,k) 

Az

VFrb =
F(i + 1,j,k + 1) - F(i + 1,j,k) 

Az

VFib = F(i,j,k + 1) - F(i,j,k)
Az

VFz = (VFrf + VFif + VFrb + VFib)/4

(3.45)

direction:

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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With Eq.(3.46,3.51 and 3.56), the gradient at the {right,upper,front} octant is:

VFrruf (VF,, VF„, VFz) |VF„, | _ ^(VF,)'2 + (VF„)2 + (VFz)2 (3.57)

The unit normal in this octant ({right ,upper,front}) is then:

nruf _
V F, V Fy V Fz

|VFraf |f |VFruf|f |VFruf | (3.58)

The direction of the normals for the other 7 octants are obtained in the same way, 
which leads to a normal component in i, j and k direction for every octant. The average of 
these (the big arrows in Fig. 3.9) leads to:

k_ nf - nb nr - nl nu - nd+ +
Ax Ay Az

(3.59)

Figure 3.9: The 8 normal components in i- direction, where the big arrows are the average 
of 4 corresponding small ones. Source: Lam (2009)
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3.7.3 125 Cell discretization based on Shirani, Ashgriz and Mostaghimi (2005)

(a)

Figure 3.10: 125 Cells discretization in a) i,j -planes and b) i, k - planes. Source: Lam 
(2009)

The method is also presented by Lam (2009); the author claims it is an extension to 
three-dimensions of Shirani's unit normal discretization, presented in Shirani, Ashgriz and 
Mostaghimi (2005), which computed the gradient of F at each point using the values of F 
in its immediate nine neighboring points for 2D. In the present work the method is called 
Shirani's method to follow Lam (2009), although Shirani, Ashgriz and Mostaghimi (2005) 
does not present it.

Following Lam (2009), first VF is approximated in a number of sequential planes. For 
the i- direction, for example, the planes ij and ik are used (Fig. 3.10). VFij, is the sum of 
the values computed in 3 sequential planes, k -1 (Eq. 3.60), k (Eq. 3.61) and k + 1 (Eq. 
3.62) (Fig. 3.10 a). In the same manner, VFik is the sum between the values computed in 
the planes j - 1, j and j + 1 (Fig. 3.10 b).

For every plane in Fig. 3.10a, VF is approximated as:

VFij1 _

VFij2

VFij3 _

F(i+1,j-1,k-1) - F(i-1,j-1,k-1) + 2(F(i+1,j,k-1) - F(i-1,j,k-1)) + F(i+1,j+1,k-1) - F(i-1,j+1,k-1)
Ax

(3.60)

F(i+1,j—1,k) F(í—1,j—1,k) + 2(F(í+1,j,k) F(i— 1,j,k)) + F(i+1,j + 1,k) F(i— 1,j + 1,k)
Ax

(3.61)

F(i+1,j—1,k+1) F(i—1,j—1,k+1) + 2(F(i+1,j,k+1) F(i—1,j,k+1)) + F(i+1,j+1,k+1) F(i—1,j+1,k+1)
Ax

(3.62)

The mean is:
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VFij = VFij1 + VFij2 + VFij3 (3.63)

The same procedure is applied for the planes in Fig. 3.10b, and VF is approximated 
as:

VFik1
F(i+1,j-1,k-1) - F(i-1,j-1,k-1) + 2(F(i+1,j-1,k) - F(i-1,j-1,k-1)) + F(i+1,j-1,k+1) - F(i-1,j-1,k+1)

Ax
(3.64)

VFik2
F(i+1,j,k-1) F(i- 1,j,k-1) + 2(F(i+1,j,k) F(i-1 ,j,k)) + F(i+1,j,k+1) F(i-1,j,k+1)

Ax
(3.65)

VFik3 =
F(i+1,j+1,k-1) - F(i-1,j+1,k-1) + 2(F(i+1,j+1,k) - F(i-1,j+1,k)) + F(i+1,j+1,k+1) - F(i-1,j+1,k+1)

Ax
(3.66)

And the mean is:

VFik = VFik1 + VFik2 + VFik3 (3.67)

Finally, VFi is computed:

VFi = VFij + VFik (3.68)

The same procedure is applied for VFj and VFk. The normals are then determined 
by applying Eq.(3.40) using the averaged gradients.

The curvature k is determined by the divergence of the unit normal n using the com­
puted normals directly. Details of the implementations can be seen in Lam (2009), who 
concludes that, for 2D simulations, this method produces smaller spurious velocities than 
the height function method till a certain time, when the spurious velocities suddenly in­
creases, and for 3D simulations, the method is symmetric, and for some cases presented
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better results than the height function.

3.7.4 The Height function method

To fully understand the height function method, the concept of a Monge Patch is used. 
A Monge patch is a local surface where x : U R3 of the form x(U’V) = (U’V’h(U’v)), 
where U is an open set in R2 and h is a function that is differentiable in R. Applying the 
Monge Patch to the first and the second fundamental forms, the mean curvature H can be 
defined to be (WEISSTEIN, 2012):

H = (1 + h2v)huu 2 hu hv huv + (1 + h2u)hvv (3.69)
“ 2(1 + hu + hv)2 r J

where hi is the first derivative of h in the ith direction, and hij is derivative of hi in the jth 

direction.
The height function method was first proposed by Torrey et. al. (POPINET, 2009). 

It is a geometrical technique where a local height is defined as the summation of volume 
fractions in a direction most normal to an interface (AFKHAMI; BUSSMANN, 2004). Figure 
3.11 illustrates the 2-dimensional stencil used to compute the fluid heights.

j+is

hi,j = fi,jAyi (3.70)
j- ii

Figure 3.11: The 7x3 fluid stencil used to calculate fluid height. Source: Afkhami and 
Bussmann (2007)

The curvature of the interface cell (i’ j’ k) is determined from the derivatives of these
heights, as (LóoPEZ et al., 2009; FRANCOIS et al., 2006):
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ki,j,k
hxx + hyy + hxxhy + hyy hx 2hxy hxhy

3

(1 + hx + h2) 2
(3.71)

where the partial derivatives of h are generally discretized using standard second-order 

finite-difference scheme.

hx
h x +1 ,y - 2 h x,y + h x - 1 ,y 

Axi2
(3.72)

hx
hi+1,j hi-1,j

Ax2
(3.73)

Comparing Eqs.(3.71) and (3.69),

H = 2 Ki,j,k (3.74)

Hence, the interface curvature from the Height function is twice the mean curvature 
from the Monge patch.

For the height function integration volume a 7 x 3 stencil in 2D and 7x3x3 stencil in 
3D were first employed (FRANCOIS et al., 2006). However, when the radius of curvature 
of the interface becomes comparable to the mesh size, consistent interface heights cannot be 
achieved. For these under resolved regions, a smaller stencil, proportional to the radius of 
curvature should be used instead (POPINET, 2009; FRANCOIS et al., 2006).

López et al. (2009) proposed a smoothing on the first and second partial derivatives of 
h in order to improve the accuracy in the interface curvature computation which is applied 
when the angle formed between the height function direction and the interface normal vector 
reaches a certain critical value. However, in the present work the method proposed by Popinet 
(2009) is used instead, both for the identification of consistent/inconsistent heights and for 
the computation of the size of the variable stencil.

The standard method can lead to configurations where consistent heights cannot be 
formed; these inconsistent heights is an important aspect of the Height function method, 
stated by Popinet (2009); thus, the method is used in conjunction with another curvature 
computation method.
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3.7.5 The Paraboloid method

A general equation for a paraboloid, with the z coordinate axis coincident with the 
normal at a point (p) of interest, is given by:

f(ai’ x’ y) = aOx + aix2 + a2xy + a3y + a4y2 + a5

The mean curvature H is:

H = 4aia4 - a22

(3.75)

(3.76)

For a given position on the surface, a paraboloid that represents a surface around this 
point p of interest is obtained trough the minimization of:

F(ai) z - f
1<j<n

(3.77)

The procedure for the paraboloid fitting method in the present work follows what 
was proposed by Popinet (2009), for a PLIC reconstruction scheme in a cartesian mesh. 
The points to be fitted can be determined from local height or from the barycenter of the 
reconstructed surface. Although Popinet (2009) uses both approaches, in the present work 
only the barycenter is used.

The procedure can be summarized as follows: 
for each point P

• Compute np, the normal at point P

• Search the neighbours of P (the coordinates of the center of mass xg)

• Define a coordinate system in which the z coordinate is coincident with npz = (0’ 0’ 1)

• Compute the coordinates of the neighbours of P in this new coordinate system

• Fit the paraboloid to the neighbours points of P

• Compute the curvature with equation (3.76)

The local coordinates of the barycenter xg can be determined by (AULISA et al.,
2007):
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xg
M123 a2x0

3
^2(F2(a - niSi)xi - F2(a - ama, + niSi)x3+i 

i=1
(3.78)

with:

A

A _ M123

33
a2 - F2(a - nisi) + F2(a - ama, + nisi)

i=1 i=1
(3.79)

where si are the dimensions of the eulerian cell,

and

F2(x)
x2, if x > 0 

0, otherwise
(3.80)

M123 _
y/nf + n2 + n2 

2n1n2n3

In Eq.(3.78), the coordinates xi are determined as:

xi _ g(x1 + X2 + X3) (3.81)

x1 , x2 and x3 are the coordinates of the vertices of each of the triangles generated from 
the reconstruction method and are summarized in Tab. 3.2.

3.7.6 Least Squares method

Consider writing out a Taylor series approximation from point P to all neighboring 
cell center nodes, called F, up to second order (DENNER; WACHEM, 2014):
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Table 3.2: Coordinates of the vertices of the triangles from the PLIC reconstruction method

- vertice 1 vertice 2 vertice 3
Triangle x y z x y z x y z

0 a/n1 0 0 0 a/n2 0 0 0 a/n3
1 a/n1 0 0 S1 a—n±si

no. 0 S1 0 a—n-ysi
n3

2 a—no so
ni s2 0 0 a/n2 0 0 S2 a—noso

n3
3 a—n3S3

ni 0 S3 0 a—n3S3
no. S3 0 0 a/n3

4 a—noso — n3S3 s2 S3 0 a—n3S3 S3 0 S2 a—noso
ni no n3

5 a—n3S3 0 S3 S1 a—nisi —n3S3 S3 S1 0 a—n-ysi
ni no n3

6 a—noso s2 0 S1 a—nisi 0 S1 S2 a—nisi —no so
ni no n3

x(f ) = x(p) + dx |p (xf - xp ) + dy |p (yF- yp) + dz |p (zf - zp)

+
d 2X | 

dxdx
(xF - xP) d2X | (yF - yp)2 

dydy P 2
d 2x 

dzdz
(zf - zp)2 

22

2
+ +

d2X d2X
+(xf - xp)(yF - yp)+(xf - xp) (zf - zp) 

+dydz |p (yF- yp) (zf - zp )+°<Ax. a'3 ’ a3 ) (3.82)

where all the unknown terms have an underbrace and should be determined. There are 9 
unknowns, so ideally 9 points around the mesh cell P should be used. However, it is also 
important to have a symmetric stencil of points around cell P. In practice, matching both 
of these is not possible, and an overdetermined system of equations is obtained.

For each neighbor point F, the distance is determined as:

AxF = (xF - xp)
AyF = (yF - yp)
AzF = (zF - zp) (3.83)

and

AX = (Xf - Xp) (3.84)

Defining the matrix:
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/Ax1 Ay1 Az1 1
2

Ax1 2 (Ay1)2 1
2 Az1 Ax1Ay1 Ax1Az1 Ay1Az1

A= Axi Ayi Azi 1
2

(Axf i (Ayi)2 1
2

(Azi)2 AxiAyi AxiAzi AyiAzi

\AxN AyN AzN 1 dxN )2 2(AyN)2 i (AzN )2 AxNAyN AxNAzN AyNAzN

(3.85)

Then, Eq.(3.82) can be rewritten in the form of:

A •

^“lP
dxd0 I
dy|p
d0. 
d2z P 

d2 0 .
Ipdxdx 

d 2 0
dydy 
d2 0

dzdz 
d2 0

dxdy 
d 2 0

dxdz 
d 2 0

\dydz|P )

A0i

A0i

A0N

(3.86)I
I
P

P

P

P

Only if N = 9 this system can be solvable exactly. In practice, however, more neighbors 
should be used to determine the derivatives and a method which does an approximate solution 
needs to be used. For instance, a least squares fit or a method involving calculating the 
eigenvalues first can determine an approximate solution.

The normal vector components are obtained from the solution of Eq.(3.86), as:

= d0.nx = .Pdx

d0.
ny = dy|p

(3.87)

(3.88)
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(3.89)d01
nz _ T-|p dz

For the curvature computation, once the normal vector have been determined from 
the solution of Eq.(3.86), a Taylor series approximation from point P to all neighboring cell 
center nodes, up to second order, lead to:

d n dn d n
n(F) _ n(P) + — (xf - xp) + — |p (yF - yp) + |p (zf - zp)

d2n (xf - xp)2 d2n (yF - yp)2 d2n (zf - zp)2
- . „ | p-------- ---------+ n » | p------ - -------- + n n | pdxdx dydy dzdz2 2 2

d2n d2n
+ ãíãí|p (xF - xp) (yF - yp) + ãíãz|p (xF - xp) (zF - zp)

d2

+ dydz (yF - yp) (zF - zp) + 0(A*’ Ay, Az) (3.90)
n

Again, all the unknown terms have an underbrace and should be determined. For each 
neighbor point F, the distance from the point P of interest is determined with Eq.(3.83) 
and:

AnF = nF - np (3.91)

which leads to:

AnxF = (nxF - nxp)

AnyF = (nyF - nyp)

AnzF = (nzF - nzp)

(3.92)

And 3 set of linear systems Ax = B need to be solved (one for each normal coordinate). 
These systems are represented in Eq.(3.93), with each column in the right hand side related 
to one of the coordinate systems.
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A •

/ d01 \
^_|p
d0|
dy p

d0| 
dd20p

d2 0 i
An1,, Any1, Anz1

dxdx 
d 2 0

dydy 
d2 0

dzodz 
d 2 0

dxdy 
d 2 0

dxdz 
d 2 0

\dydz |p7

Ani,, Aniy, Aniz

An,N , AnyN , AnzN

(3.93)|
|
p

p

p

p

The curvature is computed as:

k _ d0 |x + d0 |y + d0 |z
dx p dy p dz p

(3.94)

where the upper indice indicates the system for which the normal was solved (the column 

in the right hand side).
A geometrical weighting factor (g), determined as:

g _ dn (3.95)

with n >_ 1 and d _ ^/(xi - xp)2 can be applied to the coefficient terms in the matrix 

A and in the right hand side vector, both for the computation of the normal vector and 
the curvature. With this geometrical weighting factor, the method is usually referred as 
Weighted Least Squares (WLS).

3.8 VOF PLIC method

The VOF methods consists of two steps: reconstruction of the interface and advection 
of the interface. In the Piecewise Linear Interface Calculation (PLIC) reconstruction step, the 
objective is to find a plane equation that satisfies volume conservation inside each eulerian 
cell. In the advection step, the volume inside each cell, represented by the intersection 
between the eulerian computational cell and the plane, is advected to determine the new
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volumes in every eulerian cell (WACHEM; SCHOUTEN, 2002).

3.8.1 Reconstruction Step of the VOF PLIC method

The equation of a plane in 3D space is defined with normal vector (perpendicular to 
the plane) and a known point on the plane. Let the normal vector of a plane be n and a 
known point on the plane, Pi. Also, let any point on this plane be P . We can define a vector 
connecting from Pi to P , which is lying on the plane.

(p - pi) = (x - x1’ y - y1’ z - z1) (3.96)

Figure 3.12: A general plane

Since the vector P - Pi = 0 and the normal n are perpendicular to each other, the 
dot product of two vectors should be 0:

n.(p - pi) = 0 (3.97)

This dot product of the normal vector and a vector on the plane becomes the equation 
of the plane. By calculating the dot product, we get:

(a’ b’ c).(x - xi’ y - yi’ z - zi) = 0

a(x - xi) + b(y - yi) + c(z - zi) = 0

ax + by + cz - (axi + byi + czi) = 0 (3.98)
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If we substitute the constant terms of Eq.(3.98) by d = ax1 + by1 + cz1 , the plane 
equation becomes:

ax + by + cz = d (3.99)

If the normal vector is normalized (unit length), then the constant term of Eq.(3.99), 
d, becomes the distance from the origin (of the reference computational cell). Therefore, we 
can find the distance from the origin by dividing the standard plane equation by the length
(norm) of the normal vector (normalizing the plane equation). We use the L2 norm, which 
is the euclidean norm:

norm a2 + b2 + c2 (3.100)

Substituting Eq.(3.100) on Eq.(3.99):

abcd
------- x +---------- y +---------- z =--------
norm norm norm norm

mxx + my y + mz z = a (3.101)

3.8.2 The interface reconstruction in the VOF/PLIC method

The volume fraction F is the relation between the volume of interest and the volume 
of the cell:

Fijk =
Vi

VCell
(3.102)

So, the volume of phase 1 inside the cell is given by:

V1 = Fijk Vcell (3.103)
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In VOF/PLIC methods, the problem is to determine the constants mx,my,mz,a of 
Eq.(3.101) so that the cut volume V under the plane is equal to the volume of phase 1 in 
the cell (i,j,k) (WACHEM; SCHOUTEN, 2002; AULISA et al., 2007).

We consider the following:

1. The volume fraction, the cell volume and the volume of phase 1 inside the cell is known 
at the beginning;

2. The normal vector, with components nx, ny, nz, are known at the beginning;

Since the normal vector n and the volume of phase 1 are known, the value of a 
is computed by enforcing volume conservation. Geometrically this constraint is applied 
by moving the interface plane along the normal direction, changing in this way the free 
parameter a, until the volume under the plane is equal to the volume of phase 1 inside the 
cell (AULISA et al., 2007).

3.8.3 The volume equation

Considering a computational cell with dimensions s = (s1, s2, s3) and normal vector 
components n, the volume of fluid inside any computational cell can be calculated by the 
following algorithm:

Arrange n, so: n1 < n2 < n3, e ~ 0
if( n1 > e ) then must perform a three-dimensional analysis

V 6------------ '[a3 +6.n1.n2.n3

-H(a - n1.s1).(a - n1.s1)3 +

-H(a - n2.s2).(a - n2.s2)3 +

-H(a - n3.s3).(a - n3.s3)3 +

+H(a - n1.s1 - n2.s2).(a - n1.s1 - n2.s2)3 + 

+H(a - n1.s1 - n3.s3).(a - n1.s1 - n3.s3)3 + 

+H(a - n2.s2 - n3.s3).(a - n2.s2 - n3.s3)3

(3.104)

else if( n2 > e) then ( must perform a two-dimensional analysis)

V = ——— .[a2 - H(a - n2.S2).(a - n2.S2)2 - H(a - n3.S3).(a - n3.S3)2] (3.105)
2.n2.n3
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else (must perform a one-dimensional analysis)

a
V = si .S2. (3.106)n3

endif

1 , if x > 0
H(x) = (3.107)

0, otherwise

Hence, with Eqs.(3.104) to (3.106), the volume inside a computational cell is:

Volume = V(a, n, s) (3.108)

OnEq.(3.104), the first term represents the total volume under the plane, as illustrated 
by Fig. 3.13:

(a) General plane cutting the Eulerian cell (b) Volume under the general plane 

Figure 3.13: Volume under a general plane cutting an Eulerian cell

The subtracting terms on Eq.(3.104) represents the volumes under the plane that are 
outside the Eulerian computational cell, as illustrated by Fig. (3.14):



62

Figure 3.14: Volumes that should be subtracted (yellow) in Eq.(3.104), as they are outside 
the Eulerian cell

And the adding terms on Eq.(3.104) represents the volumes that should be added back 
if they were subtracted twice, as illustrated by Fig. (3.15):

Figure 3.15: Volumes that should be added back (blue) in Eq.(3.104), if they are subtracted 
twice

Similarly, in Eq.(3.105), the subtracting term represents the volumes under the plane 
but outside the Eulerian cell, for the case where one of the normal component is zero, as 
illustrated in Fig. (3.16):
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Figure 3.16: Volumes that should be subtracted (gray) in Eq.(3.105), as they are outside the 
Eulerian cell

Finally, the volume in Eq.(3.106), where only one normal component is different than 
zero, is illustrated in Fig. 3.17

?

3. r
■ ’X

■4--------------------- sl --------------------------------------------------►

Figure 3.17: Volume represented by Eq.(3.106), considering the normal component at x - 
direction different than zero

3.8.4 The reconstruction step

For each time step, the Volume (V0) inside the computational cell is considered to be 
known. The objective is to determine the parameters (n, a) that represents the plane inside 
that cell. In the previous section an equation relating the volume with these parameters was 
presented. Hence, the problem is to determine the zero of the equation:

f = V ( a, n , s ) - V 0 = 0 (3.109)

As both the normal vector and the size of the cell is known, the only unknown is the 
a parameter. For its determination, the Newton-Raphson method to find the zero of f is 
used.
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3.9 Lagrangian Propagation of the interface (VOF advection)

The second step of the VOF algorithm is propagation. Once the interface has been re­
constructed, its motion by the underlying flow field must be modeled by a suitable advection 
algorithm (GUEYFFIER et al., 1999). The method described here is presented by Wachem 
and Schouten (2002) and consist of a Lagrangian Propagation of the Interface.

According to Wachem and Schouten (2002), the Lagrangian propagation of the in­
terface can be best described by how the equation for describing the interface (Eq. 3.101) 
changes due to the movement of the flow. This change has two possible contributions:

1. The values of a and ni change due to the fluid flow and lead to a movement of the 
interface within the computational cell.

2. Due to the movement of the rectangular sides of the volume, the values of si may 
change and the origin to the interface may shift.

3.9.1 First Contribution for the change in the interface equation - movement of the flow

The first contribution is found by updating Eq.(3.101) with new values for ni and a. 
These new values are found by integration of the local fluid velocity over the interface. In 
one direction, this local velocity can be written as:

Ui(Xi) = Ul.(1 - -) + ■'
si si

4

ui (xi) = UL + ——— xi = Ax + B (3.110)si

where:

A = (UR- UL)/si, B = UL

In Eq.(3.110), UL is the fluid velocity where the interface cuts the left face of the 
computational cell, UR is the fluid velocity where the interface cuts the right face of the 
computational cell, xi is the coordinate into the computational cell, being zero at the left
edge and si at the right (WACHEM; SCHOUTEN, 2002).

According to Wang et al. (2009) the ith coordinate of each point on the interface can
be updated to time t + At with a second-order Runge-Kutta method:
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x(*) = [1 + AAt + A2At2]x(n) + ABAt2 + BAt

4

(3.111)

x(n) = x(*) - [ABAt2 + BAt] 
[1 + AAt + A2 At2]

(3.112)

After substituting Eq.(3.112) into Eq.(3.101), new values for a and ni can be found. 
the equation of the advected interface is given by:

nX*)x(*) + ny*)y(*) + n(*)z(*) (*) (3.113)a

where, for the ith direction:

,(*) ni

1 + AAt + A2At2

a

(3.114)

(*) = a+
ni [ABAt2 + BAt] 
1 + AAt + A2 At2

a + ni*)[ABAt2 + B At] (3.115)

In Eq.(3.113), superscript (*) is used rather than (n + 1) to denote a fractional step, 
since the interface is just propagated in one direction at this stage (WANG et al., 2009).

This fractional step or operator split method, updates the volume fraction - F - by 
advecting the interface along one spatial direction at a time. Intermediate F values are
calculated during this process, and the final F field is obtained only after advection of the 
interface along all coordinate directions. Also, the procedure can be made second-order 
accurate by alternating the advection directions at each time step (GUEYFFIER et al.,
1999).

To illustrate this contribution in the change of volume, consider that at the ith direction 
(i = 1), the component of the normal has increased. This leads to a change in the inclination 
of the interface, as illustrated by Fig. 3.18. As the inclination changes, the parameter a also 
changes, accordingly to Eq.(3.115).
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(a)

Sl
(b)

Figure 3.18: (a) Change in the normal component clue to the velocity flow field: > n^
(b) Due to the advection of the normal component, the interface changes its inclination, and 
consequently the volume fraction inside the Eulerian cell.

3.9.2 Second Contribution for the change in the interface equation - movement of the rect­
angular sides of the volume

The second contribution occurs both on the left- and right- hand sides of each direction 
clue to protrusion of the interface into neighboring cells. At the left face of the computational 
cell, the interface protrudes into the left-hand side cell if Ul < 0. The interface protrudes 
into the right-hand side cell if Ur > 0 and ff > s,/, as the interface has to intersect with the 
right face of the computational cell (WACHEM; SCHOUTEN, 2002).

For each of these volumes, a local alpha and a local /?„; are calculated, and the volumes 
are obtained with Eq.(3.108), with parameters computed by Eq.(3.116):

Volume = V(«, n, s) (3.116)

3.9.2.1 Left face analysis

Consider a computational cell with dimensions Si,S2,s.3, and a movement in the x 
direction, as illustrated by Fig. 3.19a. In a time change dt, the left face of the volume will 
translate, according to Eq.(3.117):
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dL = \UL.dt\ (3.117)

Figure 3.19: left face analysis (a) before movement (b) after movement to right (c) after 
movement to left

If Ul > 0, no volume is transferee! to the left neighbor cell, and the volume that 
remains in the cell is the grey one at Fig. 3.19b.

In this case, it can be noted that the origin of the volume has changed, resulting in a 
local value of a —> that can be easily determined, conforming Eq.(3.118):

aLOC . zi--------- h dL —-------> ®loc — ct — n-i.-dL
II, II,

(3.118)

In the case illustrated at Fig. 3.19, = ni. Also, the local side (siloc), is given by
Eq.(3.119):



SlLOC — Si — d,L (3.119)

If Ul < 0, the volume that stays in the cell do not change, remaining the grey one at 
Fig. 3.19a. The volume moved to the left neighbor cell is the grey one at Fig. 3.19c. For 
this volume, the origin of the volume also change, resulting in a local value of a —> ayoc? 
determined by Eq.(3.120):

Q'loc

ni
-----h dL —> cíloc — a + n,i.dLn,i

(3.120)

The local side (siloc)j is given by Eq.(3.121), and is illustrated by Fig. 3.20.

Siloc — dL (3.121)

The grey area in Fig. 3.20a is the cell that must be considered, and in Fig. 3.20b the 
volume transferee! to the left.

Figure 3.20: (a) Volume of the cell (b) Volume transferee! to left

3.9.2.2 Right face analysis

Similar to the left face analysis, in a time change dt, the right face of the volume 
translate, according to Eq.(3.122):

dn = \Uf .dt | (3.122)
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Figure 3.21 illustrates the influence of Ur in the volume protruded to the right cell 
and that remains in the cell.

Figure 3.21: Right face analysis (a) before movement (b) after movement to right (c) after 
movement to left

If Ur > 0, the volume that stays in the cell do not change, and is represented by the 
grey area at Fig. 3.21a. The volume moved to the right neighbor cell is the grey one at Fig. 
3.21b, but only if a/n-i > 0, otherwise no volume is transferee! to the right cell, as can be 
seen in Fig. 3.22.

Figure 3.22: Ur > 0, but no volume is transferee! to right

For the volume moved to right, the side of the computational cell in direction i = 1 is 
given by Eq.(3.123):
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s1LOC = dR (3.123)

The local a is determined by Eq.(3.124):

aLOc _ a _--------- + si — — —— aLOC — a — ni.si (3.124)
n1 n1

If UR < 0, a does not change, so:

aLOC — a (3.125)

The local side of the computational cell, siLOC, is given by Eq.(3.126):

siLOC — si — dR (3.126)

3.9.2.3 A combination of the left and right face movement's: UL > 0 and UR > 0

If both velocities are positive, there would be only volume protruded to the right neigh­
bor cell, as shown by Fig. 3.23.

For the volume to right - Fig. 3.23b

From Eq.(3.124): aLOC — a — ni.si

From Eq.(3.123): siLOC — dR

For the volume that remains in the cel l - Fig. 3.23c

From Eq.(3.118): aLOC — a — ni.dL

From Eq.(3.119): siLOC — si — dL
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Figure 3.23: Ul > 0 and Ur > 0 (a) Initial Volume (b) Volume to right (c) Volume that 
remains in the cell

3.9.24 A combination of the left and right face movement’s: Ul < 0 and Ur < 0

If both velocities are negative, there would be only volume protruded to the left neigh­
bor cell, as shown by Fig. 3.24.

For the volume to left - Fig. 3.24b

From Eq.(3.120): (Tloc = a + ni.d.L

From Eq.(3.121): s1LOc = dL

For the volume that remains in the cell - Fig. 3.24c

From Eq.(3.125): ciloc = a

From Eq.(3.126): Siloc = si — d.R
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Figure 3.24: Ul < 0 and Ur < 0 (a)Initial Volume (b)Volume to left (c)Volume that remains 
in the cell

3.9.2.5 A combination of the left and right face movement’s: Ul> 0 and Ur < 0

In this case, there would be no volume protruded to the left neighbor cell, nor to the 
right, as shown by Fig. 3.25.

For the volume that remains in the cell - Fig. 3.25b

From Eq.(3.118): aroc = « — ni.d.L

From Fig. 3.25b: Siloc = si _ dR — dL

3.9.3 Performing the lagrangian propagation of the interface

To perform the propagation of the interface, the steps to be followed are:

For each ith direction:

• update Hi with Eq.(3.114)
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(b)

Figure 3.25: Ul > 0 and Ur < 0 (a)Initial Volume (b)Volume that remains in the cell

• update a with Eq.(3.115)

• For each volume (volume to left, to right, and that stays in the cell), conforming Ul 
and Ur\

Obtain c^loc 

Obtain siLOc

Calculate the volumes moved to the left, to the right and that remains in the cell, 

conforming Eq.(3.116) -> V(aLOc, n, sLoc)

• Update F

3.10 Numerical procedure to apply the contact angle

Although it is widely recognized that the dynamic contact angle can deviate signifi­
cantly from its static value, its influence on the fluid dynamics is not necessarily dominant, 
for example when gravitational or momentum forces on the liquid are large. When the influ­
ence of the dynamic contact angle is negligible a static contact angle is numerically imposed 
at the contact point at all times (MOURIK, 2002). This model is referred as the static 
model, and is used in the present work.

Fukai et al. (1995) include the contact angle into the model through the curvature 
approximation at the contact point. In the Volume-of-fluid approach, Renarcly, Renarcly 
and Li (2001) incorporate the contact angle while determining the normal to the interface
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at the solid surface. Sikalo, Tropea and Ganic (2005) and Sikalo et al. (2005) include it as a 
local force in the Volume-of-fluid approach. Spelt (2005), in a Level Set approach, impose it 
in the re-distance step of the level set function after solving the flow equations.

With the use of the correlations presented to compute the contact angle, Afkhami and 
Bussmann (2009) propose the use of the Height Function method to account for its influence. 
First, the Eulerian cells that contains a contact point or are neighbors of a cell with a contact 
point are identified - Fig. 3.26 - and then the height function in these cells and the ghost 
ones are computed, with the use of an extrapolation to compute on ghosts - Figs. 3.27 and 
3.28.

Figure 3.26: A contact point cell (cicle) and an adjacent cell (squares): a) 0 < 90o and b) 
theta > 90o Identification of contact point, contact cells and adjacent ones. Source: Afkhami 
and Bussmann (2009)

The local contact angle at which fluid interface meets solid is, strictly, the angle be­
tween the normals n1 and n2 to the two surfaces at a given common point (HUH; SCRIVEN, 
1971). As the mean curvature (H) is directly related to the normal vector of the interface, 
a change in the contact angle will, ultimately, change the mean curvature of the interface at 
the contact point (CP); in the present work, this idea is used to account for the influence of 
the contact angle on the model.

Numerically, there is a current position, with the actual (current) contact angle 0c, 
mean curvature Hcurrent and surface tension force fCT-current = f (Hcurrent) and a desired 
condition, with the desired contact angle 0desired, mean curvature Hdesired and surface ten­
sion force fa-desired = f (Hdesired). At the contact point, the surface tension force is, thus, 
determined by:
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Figure 3.27: The ghost cells heights hi,j -1,0 , hi,j,0 and hi,j +1,0 are determined so that the 
interface orientation at the contact point corresponds to the contact point normal. Source: 
Afkhami and Bussmann (2009)

Figure 3.28: The height hj =0 in the ghost cell is determined so that the interface orientation 
at the contact point corresponds to ncl . Source: Afkhami and Bussmann (2009)

fr fr-current + ^(ír ) (3.127)

where ^(^7) f (Hdesired Hcurrent) fr-desired fr-current and ^(fr) 0 as Hcurrent

Hdesired.

This formulation is the same as directly imposing the surface tension force obtained
from the desired curvature at the contact point (with known contact angle), fr = f(Hdesired),
since, from Eq.(3.127):
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fa fa—current + (fa—desired fa—current) fa fa—a—desired (3.128)

The formulation from Eq.(3.127) allows for the coupling between the contact point 
model and the Immersed Boundary, as explained in the next section. It also allows to analyze 
if it is possible to speed up the process of the interface achieving its equilibrium condition 
(where Hcurrent = Hdesired), by applying a over relaxation factor (y > 1) on Eq.(3.127).

3.11 Applying the contact angle in the AMR3D Code

The contact angle is imposed through the adjustment of the normal vector n at the 
contact point, with both the normal and the curvature at the contact point being computed 
with the Least Squares approach. With a known contact angle (0), the objective is to transfer 
this information to the normal vector at the contact point. As the curvature is obtained from 
its divergent, this change in the normal vector should lead to a change in the curvature and, 
consequently, in the surface tension force.

A generic plane, with normal ns = (0,0, 1) is considered, as in Fig. 3.29. At this 
generic plane, the adjustment of the normal vector is performed with Eq.(3.129):

nz
Vn2 + n2

tg(0)
(3.129)

Figure 3.29: ncl—xy is the projection of the contact point normal ncl onto the x - y plane, 
defined by an outward normal ns. Source: Afkhami and Bussmann (2009)

To make this step generic to any wall of the domain, with known normal vector nw, 
a rotation matrix [RM] and a generic plane with normal ns is considered. With the use of 
the rotation matrix [RM], a rotated vector nr is obtained. Equation (3.129) is then applied 
to this rotated vector, and then the reverse matrix (RMT ) is applied to nr to obtain the 
desired normal vector n.
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This procedure, detailed below, allows for the use of Eq.(3.129) to adjust the normal 
vector at the contact point for any wall with normal direction nw .

• Define a generic plane with normal vector ns = (0,0, 1);

• With the known wall normal (nw ) and the generic plane, build a rotation matrix [RM] 
at the point:

y = acos[nw(3)] (3.130)

ra = nw A ns (3.131)

c = cos(y) (3.132)

c1 = 1 - c (3.133)

s = sin(y) (3.134)

RM
ra(1)2.c1 + c 

ra(2) .ra(1) .c1 + ra(3) .s 
ra(3) .ra(1) .c1 - ra(2) .s

ra(1) .ra(2) .c1 - ra(3) .s 
ra(2)2.c1 + c 

ra(3) .ra(2) .c1 + ra(2) .s

ra(1).ra(3).c1 + ra(2).s
ra(2) .ra(3) .c1 - ra(1) .s 

ra(3)2.c1 + c

(3.135)

• Compute the rotated normal nr = [RM ].n

• Apply the desired contact angle (O) to the rotated normal vector: nrz =

• Return the rotated vector to the original coordinate axis: n = [RM]T .nr

V(nrX +nry)
tan(ff)

3.11.1 Determining the direction of displacement of the interface

A necessary step in obtaining the dynamic contact angle is to determine if the interface 
is advancing or receding. The following procedure is used for this:

*

*

Assembly the rotation matrix [RM] (3x3), with the vector ns = (0, 0, 1) and the normal 
wall vector (nw) at the point.

Rotate the normal and velocity vector:

rn = [RM ]n

rU = [RM ]u

• Compute the angle between the rotated normal and velocity vectors: y = acos [ |
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• If y > 90 the interface in advancing (the velocity and the normal vectors are in opposite 
direction), otherwise the interface is receding.

• At this rotated axis system, the velocity of the contact point is computed as: Ucl = 
^rUX + rUy2

• The dynamic contact angle 3D is then computed at this rotated coordinate axis system.

3.12 Changes in the Least Squares system to account for the contact point

Two changes are proposed in the solution of the Least Squares system at the contact
point:

• since the normals at the wall are known, its values can be used directly in the solution 
of the system for the normal vector and the curvature;

• use only values inside the domain (do not use values from ghost cells).

3.12.1 Proposed change 1 - Use the values of the known normals at the walls

For the normal vector, considering a Taylor series around point P of interest and a 
neighbor point w1:

y(P) = y(w1) + d° |wi(xp - xwi) + dy |wi(yp - ywi) + 
dx dy

1 d2^ , t ,2 , 1 d2y

(3.136)

2 dxdx Ui(xp — xwi) + - Ui(yp — ywi) +

1 d2y
2 dxdy

2 dydy 

| wi(xP - xwi)(yP - ywi)

Isolating w1:

y(w1) = y(P) - ddx|wi(xp - xwi) - dy lwi(yp - ywi) - 

1 d2y , t ,2 1 d2y

(3.137)

2 dxdx ^wi(xP xwi) .) -i -i Ui(yP ywi)
 2 dydy

1 d2y
2 dxdy

|wi(xP - xwi)(yP - ywi)

Disconsidering the higher order terms:

y(w1) = y(P) - nwxwi(xP - xwi) - nwywi(yP - ywi) (3.138)
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Now, considering a Taylor Series around the desired point P:

^(w1) = ^(P) + g|p(Xwi - xp) + ddy |p(y„i - yp) + 

1 d^ I ( )2 , 1 d2° ( )2 ,•|p (Xwi — xp) + - |p (y„i — yp) +
2 dxdx

1 d2^
2 dxdy

2 dydy 

|p(xw1 - xp)(yw1 - yp)

(3.139)

The RHS is then:

ç(P) + dx |p (xwi — xp) + dy |p (y„i — yp) + 

1 „ ,2 , 1 ,2

(3.140)

2 dxdx
|p (x„i — xp )2 |p (y„i — yp )2 +

2 dydy

2 dxdy |p (xw1 — xp )(yw1 — yp ) =
0(P) — nwxwi(xp — x„i) — nwywi (yp — y„i)

1 d2<£

This leads to:

|p(x„i — xp) + g|p(ywi — yp) + ... = — nwxwi(xp — .x„inwy„i(yp ywi )

For the curvature:

dn
nFx = npx + — |P (xf — xp) dx

dnnWx = nPx + |P (xW — xP)dx
(3.141)

dn
t—|P (xw — xp) = nwx — npx dx

(3.142)

3.12.2 Proposed change 2 - Use only internal cells information

The second proposed change consist in using only computational cells inside the domain 
to evaluate the normal vector and the curvature. That is, no information from ghost cells
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(considered here as outside cells), are used. For this procedure, a loop over the current 
Eulerian cell and its neighbors is performed and the computational cells are marked either 
as: (0) inside cells; (1) wall cells; (2) outside cells.

This procedure is particularly important when coupling the contact-angle model with 
the Immersed Boundary method. The Eulerian cells that contains a Lagrangian point are 
marked as wall cells, and its correspondent normal vectors are determined as an average of 
all the Lagrangian normal vectors from points inside the Eulerian cell over analysis. A loop 
over the neighbors of the “Eulerian wall cells” is performed, and they are marked as “inside” 
or “outside” cells. This is due only to computational costs, since both the normal vector 
and the curvature computations are local computations that required information of a small 
region (for the Least Squares a stencil of 2 neighbors for the normal and one neighbor for 
the curvature). The procedure is, then:

1. Loop over all Lagrangian points and mark the correspondent Eulerian cell as an inter­
face cell;

2. For each Eulerian cell marked as an interface cell, loop over its neighbors;

3. For each neighbor, find the closest Lagrangian point from its center, and obtain the 
vectors which connects its vertices to this closest Lagrangian point (V2P);

4. Compute the dot product between V2P and the normal of the Lagrangian point (nL).
The signal of the dot product shows in which side the vertice is relative to the La- 
grangian point. If all signals are positive, the cell is considered to be “inside” the 
domain. If all signals are negative, the cell is considered to be “outside”, which indi­
cates no information of this particular cell will be used to compute the normal vector 
and the curvature.

3.13 A direct forcing based scheme to account for the contact point force

From Eq.(3.127), the contact point force is divided in two terms, one that accounts 
for the current interface position (fa—current) , and the second that is responsible to move the 
interface to the desired position (f2 = A(fa)).

In the AMR3D code the first force term enters the right-hand-side of the Navier-Stokes 
momentum equations as any source term to solve for the velocity field. For the second force 
term, a direct forcing based scheme is used instead. The velocity at the contact point is 
adjusted with Eq.(3.143):

u = u+
At f2

a2
(3.143)

where a2 is obtained from the temporal discretization, as indicated by Eq.(3.10).
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This formulation is specially useful if one wants to couple the contact point model with 
the Immersed Boundary Method.

The Immersed Boundary method consists in obtaining a force term fi at each La- 
grangian point, and spread it to the Eulerian domain to assure no-slip at the wall, which 
makes it numerical incompatible with a moving contact point. Also, if the resulting surface 
tension force is computed accounting for both the current curvature of the interface and its 
desired final position (the two terms on Eq.(3.127)), the force term which comes from the 
Immersed Boundary method will always be a term that guarantees no-slip at the wall. The 
contact point will not move.

To assure that the interface will actually move at the contact point, the second term 
from Eq.(3.127) enters the solution system after the force term from the immersed boundary 
method and in a similar fashion (correcting the velocity at the contact point). To guarantees 
the no-penetration condition, only the force terms parallel to the wall should be considered.

The couple between the contact point and the immersed boundary methods in the 
code is performed as follows:

• Compute the two terms of the surface tension force

• First term goes to RHS of the Navier-Stokes momentum equation, to solve for the 
velocity field.

• If there is Immersed Boundary, compute its force and adjust the velocity with the 
direct forcing scheme.

• Adjust the velocity at the contact point with the second term of the surface tension 
force and the direct forcing scheme, guaranteeing also no-penetration on the wall.

• Loop to solve for the pressure.
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CHAPTER IV

RESULTS

The results presented are divided in two parts: part 1 is related to verification tests, 
which aims to verify the correctness of the code implementation and comparison with lit­
erature data; part 2 is related to applications of the implemented code to contact point 
simulations. They are presented in the following sections:

• Part 1: verification tests:

— An analysis of the initialization method is presented in section 4.1.1.

— An analysis of the reconstruction and advection step of the VOF method is pre­
sented in section 4.1.2.

— The normal and curvature computation are presented in sections 4.1.3 and 4.1.4.

— Simulations for a 3D static drop in equilibrium and an analysis on the pressure 
jump error is presented in section 4.1.5.

— Analysis of the parasitic currents with different curvature computation methods 
is presented in section 4.1.6.

— Comparison of two-phase flow simulations with both VOF and Front-Tracking, 
and with different curvature computation method, is presented in section 4.1.7.

• Part 2: contact point analysis and simulation

— Contact point study with physical property ratios equals to 1 is presented in 
section 4.2.1.

— Contact line-driven drop spreading is presented in section 4.2.2

— Contact point study with physical property ratios equals to 1, coupled with the 
Immersed Boundary method is presented in section 4.2.3.
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4.1 Verification

4.1.1 Analysis of the initialization methods

An analysis of the convergence error and the computational time is performed for the 
Lopez et al. (2009) and the Points initialization methods. In the equation that follows, 
(x,y, z) = (xp - xc, yp - yc,zp - zc), which is the position of a point p (xp,yp, zp) minus the 
center of the surface (xc, yc, zc).

The implicit equation, in Cartesian coordinates, for an ellipsoid with semi-principal 
axes of length a, b and c is

x2 y2 z 2
^(x,y,z) = - + b2 + c. - 1 = 0 (4.1)

with exact volume Vexact = 4nabc.
Equation (4.1) degenerate to the equation of a sphere when all the semi-principal axes 

are equal to the radius r = a = b = c.
A torus radially symmetric about the z-axis is given by

^(x, y, z) = R — (x2 + y2) + z2 — r2 = 0 (4.2)

where R is the distance from the center of the tube to the center of the torus, r is the radius 

of the tube and its exact volume is: Vexact = 2n2Rr2.
To analyze the quality of the initialization method, the exact volume of the implicit 

surface is compared with the volume from the color function of the computational cells, 
computed with Eq.(4.3)

Viinitialized = S(Fi x Vi) (4.3)

where Fi is the color function at the cell i and Vi is the volume of the cell i. 

The error of the initialization method is computed with Eq.(4.4)

e Viinitialized Veexact

Veexact
(4.4)

All the tests are performed in one processor, with uniform mesh nx = ny = nz ranging 
from 4 to 128, which result in a mesh with maximum resolution A = 2, 1, 1/2, 1/4, 1/8, 1/16.

For the López et al. (2009) method, the interface cell is uniformly divided in nsc3

sub-cells. For the Points method the interface cell is also uniformly divided in nsc3 sub-cell,
and in each sub-cell the number of points used is np3. Table 4.1 presents the parameters for
each test case.
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Table 4.1: Input parameters for the initialization analysis of a sphere with radius r = 2[m] 
and r = 0.25[m], an ellipsoid with semi-principal axes of length a = 2.5[m], b = 1.5[m] and 
c = 1.0[m] and a = 0.30[m], b = 0.25[m] and c = 0.20[m] and a torus with R = 2.0 and 
r = 1.0, all centered in a domain of size Q = 8.03[m3]

Sphere and Ellipsoid
Test Method nsc np

1 López et al. (2009) 43 -
2 Lopez et al. (2009) 83 -
3 Points 13 1003

4 Points 103 5003

Torus

Test Method nsc np
1 López et al. (2009) 43 -
2 López et al. (2009) 83 -
3 Points 13 1003

4 Points 103 503

4.1.1.1 Test initialization for a sphere with radius r = 2.0[m] centered in a domain of size
Q = 83[m3]

A drop (sphere) with radius r = 2.0 (mean curvature H = 0.50), centered in a domain 
of size Q = [8]3[m3] is first analyzed. This setup is presented by Lopez et al. (2009) and 
is also used in Section 4.1.5 for a series of properties analyses proposed by Francois et al. 
(2006). The input parameters for each initialization method are presented in Table 4.1. The 
volume fraction initialization error as a function of the mesh resolution is presented in Fig. 
4.1 and the computational time for each method is presented in Fig. 4.2. The convergence 
ratio is presented in Tab. 4.2.

The Lopez et al. (2009) method presents order 4 when nsc = 43. For nsc = 83 it starts 
with order 4, increase to order 6 and for the more refined mesh it drops the order to 0. 5. The 
reason for this is that, as presented by López et al. (2009), if the volume fraction F is lower 
than e or higher than 1.0 - e, with e = 10-i4, F is initialized with 0.0 or 1.0, respectively.

The Points method starts with order 3 and 6, for tests 3 and 4 ofTable 4.1, respectively. 
For the more refined mesh the order also decreases, but less than the Lóopez et al. (2009) 
method, being 2.5 and 3.8 for tests 3 and 4, respectively.

The time for the initialization of the color function also increase with order 4 for both 
methods, as presented in Fig. 4.2.
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Figure 4.1: Volume fraction initialization errors as a function of grid resolution for a sphere 
of radius r = 2, centered in a domain of size Q = 83[m3]. Comparison between the results 
obtained using the Lopez et al. (2009) method with nsc = 43 and nsc = 83 and the Points 
method with nsc = 13 np = 1003 and nsc = 103 np = 5003.
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Figure 4.2: Initialization time as a function of grid resolution for a sphere of radius r = 2, 
centered in a domain of size Q = 83[m3]. Comparison between the results obtained using 
the Lóopez et al. (2009) method with nsc = 43 and nsc = 83 and the Points method with 
nsc = 13 np = 1003 and nsc = 103 np = 5003.

Table 4.2: Convergence ratio for the error in the color function initialization of a sphere with 
radius r = 2.0[m], centered in a domain of size Q = 83[m3]

Lo pez Points
A nsc = 43 nsc = 83 nsc = 13 np = 1003 nsc = 103 np = 5003

2/i - - - -

1/i 3.91 4.09 3.06 6.12

1/2 4.02 4.40 4.03 2.28

1/4 4.01 6.63 6.48 2.38

1/8 4.02 2.46 2.52 3.83

1/16 4.09 0.54 2.78 1.92

Figure 4.3 presents the color function for the sphere interface initialized with the Points 
method for each mesh resolution tested.
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X-Axis X-Axis

(a) A = 2

(c) A = i/2

(b) A = 1

(d) A = i/4

X-Axis X-Axis

(e) A = i/8 (f) A = i/i6

Figure 4.3: Color function for the sphere with radius r = 2[m], centered in a domain of 
size Q = 83 [m3 ], initialized in the AMR3D code with the Lóopez et al. (2009) method, for
maximum mesh resolution ranging from A = 2 to A = i/i6
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4.1.1.2 Test initialization for a sphere with radius r = 0.25[m] centered in a domain of size 
Q = 1.03[m3]

A drop (sphere) with radius r = 0.25 (mean curvature H = 4.0), centered in a domain 
of size Q = [1]3[m3] is initialized. This setup is used in Section 4.1.3 for an analysis of the 
normal and curvature computation with different methods. The input parameters for each 
initialization method are presented in Table 4.1.

The volume fraction initialization error as a function of the mesh resolution is presented 
in Fig. 4.4. The convergence ratio for the initialization error is presented in Tab. 4.3.

The computational time increase with order 4, as presented in Fig. 4.5.
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A
Figure 4.4: Volume fraction initialization errors as a function of grid resolution for a sphere 
of radius r = 0.25[m], centered in a domain of size Q = 13[m3]. Comparison between the 
results obtained using the Lopez et al. (2009) method with nsc = 43 and nsc = 83 and the 
Points method with nsc = 13 np = 1003 and nsc = 103 np = 5003.



90

______________________________________
10—2 10—1

A

104

103

102

101
-t-i

100

10—1

10—2

Figure 4.5: Initialization time as a function of grid resolution for a sphere of radius r = 
0.25[m], centered in a domain of size Q = 13[m3]. Comparison between the results obtained 
using the Loópez et al. (2009) method with nsc = 43 and nsc = 83 and the Points method 
withnsc=13np=1003andnsc=103np=5003.

Table 4.3: Convergence ratio for the error in the color function initialization of a sphere with 
radius r = 0.25[m], centered in a domain of size Q = 13[m3]

Lo pez Points
A nsc = 43 nsc = 83 nsc = 13 np = 1003 nsc = 103 np = 5003

2/i - - - -

1/i 3.91 4.09 3.06 6.12

1/2 4.02 4.40 4.03 2.28

1/4 4.01 6.63 6.48 2.38
1/8 4.02 2.46 2.52 3.83

1/16 4.09 0.54 2.78 1.92
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4.1.1.3 Test initialization for an ellipsoid with semi-principal axes of lenght a = 2.5[m], 
b = 1.5[m] and c = 1.0[m], centered in a domain of size Q = 8.03[m3]

Based on the test case for the drop (sphere) with radius r = 2.0[m] an ellipsoid 
with semi-principal axes of lenght a = 2.5[m], b = 1.5[m] and c = 1.0[m] is used for the 
initialization analysis. The input parameters are presented in Table 4.1. The volume fraction 
initialization error as a function of the mesh resolution is presented in Fig. 4.6 and the 
computational time for each method is presented in Fig. 4.7. The convergence ratio is 
presented in Tab. 4.4.

As for the sphere initialization, the López et al. (2009) method presents order 4 when 
nsc = 43. For nsc = 83 it starts with order 4, has an increase for A = I/8 and decrease the 
order to 0.2 when A = i/16. The Points method starts with order 4 for tests 3 and 4 of Table 
4.1, respectively. For test case 3, the order decreases for intermediate Delta values, and goes 
to order 4 for A < i/8. For test case 4 the order decreases to 2 for A < i/8.

The time for the initialization of the color function also increase with order 4 for both 
methods, as presented in Fig. 4.7.
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Figure 4.6: Volume fraction initialization errors as a function of grid resolution for an ellipsoid 
of semi-principal axes of lenght a = 2.5[m], b = 1.5[m] and c = 1.0[m], centered in a domain 
of size Q = 83[m3]. Comparison between the results obtained using the Lóopez et al. (2009) 
method with nsc = 43 and nsc = 83 and the Points method with nsc = 13 np = 1003 and 
nsc = 103 np = 5003.
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Figure4.7: Initialization time as a function of grid resolution for an ellipsoid of semi-principal 
axes of lenght a = 2.5[m], b = 1.5[m] and c = 1.0, centered in a domain of size Q = 83[m3]. 
Comparison between the results obtained using the Lóopez et al. (2009) method with nsc = 43 

and nsc=83 and the Points method with nsc=13 np=1003 and nsc=103 np=5003.

Table 4.4: Convergence ratio for the error in the color function initialization of an ellipsoid 
with semi-principal axes of lenght a = 2.5[m], b = 1.5[m] and c = 1.0[m], centered in a 
domain of size Q = 83[m3]

A
Lopez Points

nsc = 4 nsc = 8 nsc =1 np = 1003 nsc =10 np = 5003

2/i - - - -

1/i 4.02 4.04 4.10 4.39
1/2 3.99 4.17 3.91 3.48

1/4 4.00 4.84 2.56 4.57
1/8 4.02 24.61 4.56 2.33

1/16 4.04 0.20 4.89 2.17

Figure fig: initialization ellipsoid amr3d presents the color function for the ellipsoid 
interface initialized with the Points method for each mesh resolution tested.
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Figure 4.8: Color function of the ellipsoid with semi-axes a = 2.5[m], b = 1.5[m] and 
c = 1.0[m], centered in a domain of size Q = 83[m3], initialized in the AMR3D code with 
the Points method, for maximum mesh resolution ranging from A = 2 to A = i/i6
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4.1.1.4 Test initialization for an ellipsoid with semi-principal axes of lenght a = 0.3[m], 
b = 0.25[m] and c = 0.20[m], centered in a domain of size Q = 1.03[m3]

Based on the test case for the drop (sphere) with radius r = 0.20[m] an ellipsoid 
with semi-principal axes of length a = 0.3[m], b = 1.5[m] and c = 1.0[m] is used for the 
initialization analysis. This setup is used in Section 4.1.3 for the normal and curvature 
analysis.

The input parameters are presented in Table 4.1. The volume fraction initialization 
error as a function of the mesh resolution is presented in Fig. 4.9. For this interface, the 
convergence ratio is between order 3 and 4 for both methods, but the magnitude of the error 
is smaller with the Points method. The convergence ratio is presented in Tab. 4.5.

The computational time increase with order 4, as presented in Fig. 4.10.
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Figure4.9: Volume fraction initialization errors as a function of grid resolution for an ellipsoid 
of semi-principal axes of lenght a = 0.3[m], b = 0.25[m] andc= 0.20[m], centeredinadomain 
of size Q = 1.03[m3]. Comparison between the results obtained using the Lóopez et al. (2009) 
method with nsc = 43 and nsc = 83 and the Points method with nsc = 13 np = 1003 and 
nsc = 103 np = 5003.
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Figure 4.10: Initialization time as a function of grid resolution for an ellipsoid of semi­
principal axes of lenght a = 0.3[m], b = 0.25[m] and c = 0.20[m], centered in a domain of 
size Q = 13[m3]. Comparison between the results obtained using the Loópez et al. (2009) 
method with nsc = 43 and nsc = 83 and the Points method with nsc = 13 np = 1003 and 
nsc = 103 np = 5003.

Table 4.5: Convergence ratio for the error in the color function initialization of an ellipsoid 
with semi-principal axes of lenght a = 0.3[m], b = 0.25[m] and c = 0.20[m], centered in a 
domain of size Q = 1.03[m3]

A
Lopez Points

nsc = 4 nsc = 8 nsc =1 np = 1003 nsc =10 np = 5003

1/4 - - - -

1/8 3.00 3.20 3.09 4.00

1/16 5.67 2.84 3.82 3.94

1/32 3.00 2.60 3.90 4.03

1/ 64 3.08 3.78 4.05 3.99

1/128 4.52 4.26 3.84 4.02
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4.1.1.5 Test initialization for a Torus with parameters R = 2.0[m] and r = 1.0[m], centered 

in a domain of size Q = [8]3[m3]

A Torus with parameters R = 2.0[m] and r = 1.0[m], centered in a domain of size 
Q = [8] 3[m3] is analyzed. The input parameters for each initialization method are presented 
in Table 4.1. The volume fraction initialization error as a function of the mesh resolution 
is presented in Fig. 4.11 and the computational time for each method is presented in Fig. 
4.12. The convergence ratio is presented in Tab. 4.6.

The Lopez et al. (2009) method presents order & 1 up to A = i, both for nsc = 43 

and nsc = 83. For A < i it presents order 3. The Points method present order ~ 3 for all 
mesh resolution tested. Both method present order 4 for the initialization time, as presented 
in Fig. 4.12
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Figure 4.11: Volume fraction initialization errors as a function of grid resolution for a Torus 
of parameters R = 2[m], r = 1.0[m], centered in a domain of size Q = 83[m3]. Comparison 
between the results obtained using the Lóopez et al. (2009) method with nsc = 43 and 
nsc = 83 and the Points method with nsc = 13 np = 1003 and nsc = 103 np = 503.
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Figure 4.12: Initialization time as a function of grid resolution for a Torus of parameters 
R = 2[m] and r = 1.0[m], centered in a domain of size Q = 83[m3]. Comparison between the 
results obtained using the Loópez et al. (2009) method with nsc = 43 and nsc = 83 and the 
Points method with nsc = 13 np = 1003 and nsc = 103 np = 503.

Table 4.6: Convergence ratio for the error in the color function initialization Torus with 
parameters R = 2.0[m] and r = 1.0[m], centered in a domain of size Q = [8]3[m3]

Lo pez Points
A nsc = 43 nsc = 83 nsc = 13 np = 1003 nsc = 103 np = 503

2/i - - - -

1/i 0.73 1.00 3.05 3.00

1/2 1.29 1.36 2.77 3.07
1/4 4.44 4.43 2.92 2.77

1/8 2.95 2.97 2.80 2.92

1/16 3.01 3.03 2.81 2.80

Figure fig: initialization Torus amr3d presents the color function for the Torus interface 
initialized with the Points method for each mesh resolution tested.
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Figure 4.13: Color function of the Torus with parameters R = 2[m] and r = 1.0[m], centered 
in a domain of size Q = 83[m], initialized in the AMR3D code with the Points method, for 
maximum mesh resolution ranging from A = 2 to A = i/i6
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4.1.2 Analysis of the reconstruction and advection step

To analyze the VOF reconstruction and advection, a common test is the so called Shear
Flow, proposed by LeVeque (1996). After the initialization of a sphere, a three-dimensional 
velocity field, given by Eq.(4.5), is imposed in order to perform its movement.

u = 2sin2 (nx)sin(2ny)sin(2nz )cos t 

í nt
v = —sin(2nx)sin2 (ny)sin(2nz )cos t 

í nt
w = —sin(2nx)sin(2ny)sin2 (nz )cos t (4.5)

where T = 3[s] is the time necessary for a complete cycle from the beginning to the return 

of the starting position.
A sphere with r = 0.15[m] in a unit domain, at the starting position xc = yc = zc = 

0.35[m], and a uniform mesh of nx = ny = nz = 150 is used. The mass loss is compared with 
literature data and is presented in Tab. 4.7. The result obtained with the AMR3D code is 
presented in Fig. 4.14.

Table 4.7: Mass loss for the VOF method in a 3D Shear Flow test. T = 3.0[s] and At = [s]

Mesh [1503] Mass loss
Current work 0.0163 %

Menard, Tanguy and Berlemont (2007) < 0.0300 %
Aulisa et al. (2007) 3.5050 %

(b) t = 0.5[s](a) t = 0.0[s] (c) t = 1.0[s]

(d) t = 1.5[s] (e) t = 2.0[s] (f) t = 3.0[s]

Figure 4.14: Three dimensional Shear flow test performed with the AMR3D code
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4.1.3 Normal and Curvature computation - Simulation set-up

An overview of the methods to compute the normal vector and the curvature in the 
context of the VOF method were presented. In this section the simulation set-up used to 
evaluate the results are explained.

For all simulations performed the smoothed color function is computed accordingly to 
Annaland, Deen and Kuipers (2005)

F((x,y,z) D(x — xm)D(y — ym)xD(z — zm)F(xm,ym,zm) (4.6)

with the smoothing function D as:

D(x)=2h 0+cos(n^) 7

where h = 2 is the width of the computational stencil used for smoothing and A is the 

Eulerian grid size.
To compute the exact normal vector of the surface symmetric about its center, a vector 

r is defined as:

r=x—x0 (4.8)

where x0 is the center of the surface, and x is the center of the cell which contains the 

interface.
The “theoretical” normal vector nt is defined as:

nt =
r

|ri
(4.9)

With the “theoretical” normal (nt) and the computed normal (n) the error (err) is 
defined as:

err = n — nt (4.10)

The L2 and L x norms are used to evaluate the errors, both for the normal vector and
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the curvature. These norms are defined as:

L2(u)
N

52 k ii2
n=1

(4.11)

Mu) = ||u||max = max(||u||) (4.12)

4.1.4 Normal and Curvature simulation results

An analysis of the Least Squares method for the normal and curvature computation is 
performed, which allows to choose a proper configuration of the method. The analytic solu­
tion for the normal vector is then compared with the results obtained from the Young's, the 
Shirani's based discretization and the Least Squares methods, and the influence of smoothing 
the color function is evaluated.

Later, the methods to compute the curvature are also compared with the analytic 
solution. They are: the Shirani's method, the 27 Cells discretization, the Paraboloid, the 
Least Squares, the Height Function coupled with the Paraboloid, Height Function coupled 
with the Shirani and Height Function coupled with the 27 Cells discretization.

For the following analysis, two interfaces are tested, a sphere with radius r = 0.25[m] 
and an ellipsoid with parameters a = 0.3[m], b = 0.25[m] and c = 0.20[m], both centered 
in a unit cubic domain. They are initialized with the Points method, with nsc = 103 and 
np = 5003, as presented in Sections 4.1.1.2 and 4.1.1.4.

The L2 and L^ norms of the errors are computed, both for the normal and curvature, 
and the mean curvature is also presented for the sphere, as it is a constant value inversely 
proportional to its radius (H = 1).

4.1.4.1 Normal analysis: sphere. Least Squares Method

For the normal computation with the Least Squares method, the number of neighbors, 
the geometrical weighting factor g and the use or not of the smoothed color function are 
parameters that can be adjusted. A stencil of size s means the number of points used in 
each coordinate direction. This results in s2 - 1 neighbor points in 2D and s3 - 1 neighbor 
points in 3D, since the point itself is not used.

The nomenclature adopted is: LS si gj, where the subscript i means the stencil size, 
as explained, and the subscript j means which geometrical weighting factor is used.

Figures 4.15 to 4.18 presents the influence of the stencil size, the geometrical weighting
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factor and the smoothening of the color function on the results from the normal computed 
with the Least Squares method.

The use of the smoothed color function reduces the magnitude of the error, but for the 
same stencil size and geometrical weighting factor, it does not alter the convergence ratio, 
presented in Tab. 4.8, with the exception being the cases with s < 5 and A = 1/32.

Concerning the geometrical weighing factor, it also decreases the magnitude of the 
error. For the L2 error (for both the non-smoothed and the smoothed color function), the 
convergence ratio, presented in Tab. 4.8, is not influenced by g = 1. With g = 2 the 
convergence ratio is bigger than with g = 1 for A = 1/32, and is less influenced for A < 1/64.

For A = 1/128, the convergence ratio has order 1.4 for the non-smoothed color function, 
with the exception being the case with s = 7, g = 0 and g = 1, with order 1.26. For the 
smoothed color function the L2 convergence ratio is approximately 1.3, and for s = 7 and 
g=2theorderis1.2.

For the L^ error, the geometrical weighting factor has no influence on the convergence 
error, which is of order 1 for A = 1/128.

With these results, the Least Square method with stencil size s = 5 and geometrical 
weighting factor g = 2 is chosen for the comparison with the other normal computation 
methods: Young and Shirani.
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(c) g = 2

Figure 4.15: L-z error norm as a function 
of the mesh refinement, the stencil size 
and the geometrical weighting factor, for 
the normal vector of a sphere with r = 
0.25[/n] computed with the Least Squares 
method.

(a) g = 0
0.016,--------------------------------------

LS s3 gl (smoothed)
0 0 LS s5 gl (smoothed) 

OO LS s7 gl (smoothed)

t ’ $ t
°°9f?00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

dx (ml

(c) g = 2

Figure 4.16: L-z error norm as a function 
of the mesh refinement, the stencil size 
and the geometrical weighting factor, for 
the normal vector of a sphere with r = 
0.25 [m] computed with the Least Squares 
method and the smoothed color function.
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(a) g = 0 (a) g = 0

(b) g = 1 (b) g = 1

Figure 4.17: error norm as a function
of the mesh refinement, the stencil size 
and the geometrical weighting factor, for 
the normal vector of a sphere with r = 
0.25[/n] computed with the Least Squares 
method.

Figure 4.18: error norm as a function
of the mesh refinement, the stencil size 
and the geometrical weighting factor, for 
the normal vector of a sphere with r = 
0.25[m] computed with the Least Squares 
method and the smoothed color function.
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Table 4.8: Convergence ratio for normal vector of a sphere with radius r = 0.25[m], computed 
with the Least Squares method.

s3 s5 s7 s3g1 s5g1 s7g1 s3g2 s5g2 s7g2

A L2

1/32 1.22 0.73 1.67 1.00 0.78 1.77 1.54 1.77 2.07

1/ 64 1.38 1.17 0.86 1.34 1.15 0.84 1.37 1.38 1.39

1/128 1.41 1.36 1.26 1.41 1.35 1.26 1.41 1.41 1.40

L2 Smoothed color function

1/32 0.74 0.57 1.73 0.74 0.66 1.74 2.37 2.75 4.36

1/ 64 1.24 1.09 0.80 1.20 1.06 0.79 1.53 0.99 0.78

1/128 1.37 1.33 1.25 1.36 1.33 1.25 1.38 1.29 1.20

L^

1/ 32 0.86 0.48 0.84 0.72 0.44 0.79 1.02 1.35 1.49

1/ 64 0.93 1.00 0.76 1.06 1.05 0.77 0.69 0.67 0.74

1/128 0.97 1.00 1.00 1.07 1.07 1.06 1.00 0.99 0.98

L^ Smoothed color function

1/ 32 0.41 0.33 0.82 0.35 0.38 0.79 1.25 1.02 1.67

1/ 64 1.02 0.93 0.74 0.96 0.94 0.74 0.58 0.67 0.56

1/128 0.99 0.97 0.98 1.06 1.00 1.01 0.95 1.02 1.05

4.1.4.2 Normal analysis: sphere. Comparison between the Least Squares, the Young and 

the Shirani methods

Figures 4.19 and 4.20 present the L2 and L x error norms, respectively, as a function of 
the mesh refinement for the sphere (r = 0.25[m]) with the Young, Shirani and Least Squares 
methods. The L2 error norm decreases with the mesh refinement, but the L^ error norm 
remains almost unchanged on the finer meshes.

The use of the smoothed color function improves the accuracy of the normal computa­
tion in all methods; both the L2 and L^ error norms presents smaller values when compared 
with the non-smoothed results.

The convergence ration is presented in Tab. 4.9. For the L2 and L^ error norms 
and A = 1/32, the Young method has the lower order and the Least Squares the bigger; for 
A = 1/128 and non-smoothed color function, all method presents order 1.4 for the L2 error 
and order 1.0 for the L^ error. For the smoothed color function the L2 error is of order 1.35 
for the Young and Shirani and 1.29 for the Least Squares, and order 1.0 for the L^.
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(b) L<2 error norm with the smoothed color function.

Figure 4.19: L> error norm as a function of the mesh refinement for the normal vector of 
a sphere with r = 0.25[m\, computed with the Least Squares, the Young and the Shirani 
methods.
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(a) Lqc error norm with the non-smoothed color function.

(b) Lqc error norm with the smoothed color function.

Figure 4.20: error norm as a function of the mesh refinement for the normal vector of
a sphere with r = 0.25[/n], computed with the Least Squares, the Young and the Shirani 
methods.
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Table 4.9: Convergence ratio for the normal vector of a sphere computed with the Least 
Squares, the Young and the Shirani methods.

L2 L^

A Young Shirani LS Young Shirani LS

i/32 1.02 1.40 1.77 0.77 0.83 1.35

i/64 1.32 1.44 1.38 0.94 1.00 0.67

i/i28 1.40 1.40 1.41 1.05 0.99 0.99

Smoothed color function

i/32 0.87 0.88 2.75 0.40 0.48 1.02

i/64 1.19 1.30 0.99 0.91 0.99 0.67

i/i28 1.35 1.35 1.29 1.03 1.09 1.02

4.1.4.3 Normal analysis: el lipsoid. Comparison between the Least Squares, the Young and 

the Shirani methods.

For the ellipsoid, Fig. 4.21 and 4.22 shows that smoothing the color function also 
decreases the L2 and the L x error norms for the three methods tested, but with much less 
impact than in the case of the sphere. Figures 4.23 and 4.24 compares the L2 and L x error 
norms, respectively, between the three methods tested.

The convergence ratio is presented in Tab. 4.10, being of order 1.4 for the L2 error 
norm and A = i/i28 and order 1 for the L^ error norm, both for the non-smoothed and the 
smoothed color function.

Table 4.10: Convergence ratio for normal vector of an ellipsoid, computed with the Least 
Squares, the Young and the Shirani methods.

L2 L^

A Young Shirani LS Young Shirani LS

i/32 1.34 1.34 1.30 0.93 0.90 0.89

i/64 1.40 1.40 1.38 1.05 1.01 1.02

i/i28 1.41 1.41 1.40 1.03 1.01 1.02
Smoothed color function

i/32 1.27 1.27 1.22 0.87 0.85 0.83

i/64 1.38 1.38 1.37 1.03 1.03 1.01

i/i28 1.40 1.40 1.40 1.01 1.00 1.00
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Figure 4.21: error norm as a function of the mesh refinement for the normal vector
computation of an ellipsoid with parameters a = 0.3, b = 0.25 and c = 0.20, initialized in 
a domain of size Q = [l]3 [/n3]. Comparison between the non-smoothed and the smoothed 
color function.



no

0.50

0.40

0.30

0.20

0.10

0.

◄ ◄

Shirani
<1 <1 Shirani (smoothed)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
dx iml

Figure 4.22: error norm as a function of the mesh refinement for the normal vector
computation of an ellipsoid with parameters a = 0.3, b = 0.25 and c = 0.20, initialized in 
a domain of size Q = [l]3 [/n3]. Comparison between the non-smoothed and the smoothed 
color function.
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(b) Smoothed color function.

Figure 4.23: L-z error norm as a function of the mesh refinement for the normal vector 
computation of an ellipsoid with parameters a = 0.3, b = 0.25 and c = 0.20, initialized in 
a domain of size Q = [l]3 [/n3]. Comparison between the Young, Shirani and Least Squares 
methods.
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(b) Smoothed color function.

Figure 4.24: error norm as a function of the mesh refinement for the normal vector
computation of an ellipsoid with parameters a = 0.3, b = 0.25 and c = 0.20, initialized in 
a domain of size Q = [l]3 [/n3]. Comparison between the Young, Shirani and Least Squares 
methods.

4-1-4-4 Curvature analysis: sphere. Least Squares Method

For the curvature computation with the Least Squares method, both the stencil size 
for the normal and the curvature can be adjusted, as well as the geometrical weighting factor 
and the use or not of the smoothed color function. The nomenclature adopted to indicate 
each test case is as follows: LS sK sn, where the subscript n refers to the stencil size used for 
the curvature and the subscript n the stencil size for the normal.

The first analysis is to relate the stencil size for the normal computation and the 
stencil size for the curvature computation. These test cases are tabulated in Tab. 4.11 and
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the results are presented in Fig. 4.25; from the results, the stencil for the normal should 
be equal or bigger than the stencil for the curvature. All cases where the stencil for the
curvature is bigger than the stencil for the normal presents bigger L2 error norms. The cases
that satisfies the criteria sK < sn in Fig. 4.25 are compared in Fig. 4.26.

Table 4.11: Test cases relating the stencil size for the normal and for the curvature, for the 
curvature computation of a sphere with r = 0.25[m] with the Least Squares method.

Normal
Curvature
s3 s5 s7

s3 Fig. 4.25a
s5 Fig. 4.25b
s7 Fig. 4.25c
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(b)

Figure 4.25: L2 error norm as a function of the mesh refinement for the curvature of a 
sphere with r = 0.25[m], computed with the Least Squares method. Analysis of the relation 
between the stencil sizes of the normal and the curvature.
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Figure 4.26: L-z error norm as a function of the mesh refinement for the curvature of a sphere 
with r = 0.25[m] computed with the Least Squares method for the cases: LS s3 s5, LS s5 s5, 
LS s3 s7 and LS s5 s7.

An analysis of the geometrical weighting factor is performed for LS s3 s5. The cases 
are presented in Tab. 4.12 and Fig. 4.27. From Fig. 4.27a, the geometrical weighting 
factor in the normal computation reduces the Lz error norm. For the normal with g = 1, 
the geometrical weighting factor applied to the curvature computation does not affect the 
results, as presented in Fig. 4.27b. For the normal with g = 2 the Lz error norm increase 
for the more refined meshes, as presented in Fig. 4.27c. From the results, the normal with 
geometrical weighting factor g = 1 reduces the Lz error norm, and with g = 2 on the normal 
computation, g = 1 on the curvature computation leads to a smaller L2 error norm.

Table 4.12: Test cases for Least Squares curvature computation of a sphere with radius 
r = 0.25[/u], with stencil size 5 for the normal and 3 for the curvature, with and without 
geometrical weighting factor.

Normal
Curvature

s3 s3gl s3g2

s5 Fig. 4.27a X X

s5gl Fig. 4.27a/Fig. 4.27b Fig. 4.27b Fig. 4.27b
s5g2 Fig. 4.27a and Fig. 4.27c Fig. 4.27c Fig. 4.27c
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(b)

Figure 4.27: L2 error norm as a function of the mesh refinement for the curvature of a sphere 
with r = 0.25[m], computed with the Least Squares method. Analysis of the use of the 
geometrical weighting factor on the case LS s3 s5.
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For the case LS s3 s5gl, the results with the use or not of the smoothed color function 
on the normal is presented in Fig. 4.28. It shows that with the smoothed color function the 
L2 and the error norms are smaller.

(b) hoc

Figure 4.28: error norm as a function of the mesh refinement for the curvature of a sphere 
with r = 0.25[m] computed with the Least Squares method. Analysis of the use of the 
smoothed color function on the case LS s3 s5gl.

An analysis for the case LS s5 s7 is also performed. The cases are presented in Tab. 
4.13 and Fig. 4.29. From Fig. 4.29a, for the normal computation with gn = 1 the L2 error 
norm is smaller than without the geometrical weighting factor, but smoothing the color 
function has no effect. For gn = 2 the L2 error norm is lower than with gn = 1, and again 
smoothening the color function does not affect the error.

For the cases where the curvature is computed with g,; = 1, presented in Fig. 4.29b, 
and the normal is computed with gn = 1, the smoothed color function does not change the 
error norm. For normal computed with gn = 2 (gn > gK} the error norm is smaller but



118

does not change with geometrical weighting factor on the curvature nor with the use of the 
smoothed color function.

Table 4.13: Test cases for Least Squares curvature computation of a sphere with radius 
r = 0 . 25[ m ], with stencil size 7 for the normal and 5 for the curvature, with and without 
geometrical weighting factor.

Normal
Curvature

s5 s5g1 s5g2

s7 Fig. 4.29a X X

s7g1 Fig. 4.29a Fig. 4.29b X

s7g1 smoothed Fig. 4.29a Fig. 4.29b X

s7g2 Fig. 4.29a Fig. 4.29b Fig. 4.29c
s7g2 smoothed Fig. 4.29a Fig. 4.29b X
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Figure 4.29: L2 error norm as a function of the mesh refinement for the curvature of a sphere 
with r = 0.25[m] computed with the Least Squares method, computational stencil size s = 7 
for the normal and s = 5 for the curvature, and geometrical weighting factor 0 < g < 2.

Figure 4.30 presents the X and the error norms for selected cases Ls s5 s7 (the 
cases with lower X error norms from Fig. 4.29). It shows that the cases with gK < gn have 
lower errors. For this stencil size, smoothening the color function does not affect the error.
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Figure 4.30: error norm as a function of the mesh refinement for the curvature of a sphere 
with r = 0.25 [m] computed with the Least Squares method and cases LS s5 s7.

Some of the cases with lower L2 error norm for LS s3;s5 and LS s5;s7 are compared 
in Fig. 4.31 and the convergence ratio is presented in Tab. 4.14. For the L2 error norm the 
convergence ratio has order bigger than 2 for the coarse meshes. For LS s3;s5 the order drops 
to 1.5 for the more refined mesh, and stay bigger than 2 for LS s5;s7. For the Lx again the 
convergence ratio order drops with mesh refinement, being 0.92 for LS s3;s5 and A = 7128, 

1.24 for LS s5;s7g2 and 1.6 for LS s5gl;s7g2 smoothed.
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(b) A»

Figure 4.31: error norm as a function of the mesh refinement for the curvature of a sphere 
with r = 0.25 [m] computed with the Least Squares method. Comparison between cases LS 
s3;s5 gl (smoothed), LS s5;s7g2 and LS s5gl;s7 g2 (smoothed).
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Table 4.14: Convergence ratio for the L2 and the Lo error norms for the curvature of a 
sphere with radius r = 0.25, computed with the Least Squares method and stencil sizes LS 
s3;s5 and LS s5;s7

s3s5g1c s5s7g2 s5g1s7g2c

A L2

1/32 2.35 2.71 2.69

1/ 64 1.80 2.92 2.74

1/128 1.48 2.13 2.29

Lo

1/ 32 1.24 1.82 1.82

1/ 64 1.55 1.59 1.54

1/128 0.92 1.24 1.60

4.1.4.5 Curvature analysis: sphere. Paraboloid method

For the Paraboloid method, three computational stencil sizes are analyzed, s = 3, 
s = 5 and s = 7, and the use of the smoothed color function is evaluated for the stencil of 
size s = 5. Figure 4.32 presents the results of the L2 and Lo error norms and the mean 
curvature. It shows that the use of the smoothed color function harms the results, and there 
is no significant difference concerning the stencil size for the more refined meshes.

The L2 convergence ratio, presented in Tab. 4.15, has order 1.4, 4.2 and 5.6 for 
A = 1/128 and stencil sizes 3, 5 and 7, respectively; for the Lo the convergence ratio, for 
A = 1/128, has order 0.9, 1.6 and 2.9 for stencil sizes 3, 5 and 7, respectively. The convergence 
ratio is smaller than 1 for the case with the smoothed color function.

Table 4.15: Convergence ratio for the L2 and the Lo error norms for the curvature of a 
sphere with radius r = 0.25, computed with the Paraboloid method and stencil sizes 3, 5 
and 7.

S3 s5 s7 s5 F S3 s5 s7 s5 F

A L2 L O

1/32 3.59 6.38 6.74 0.80 1.80 5.50 6.55 0.58

1/64 2.06 5.69 5.91 0.77 1.24 3.25 4.17 0.62

1/128 1.42 4.21 5.63 0.72 0.92 1.62 2.96 0.51
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(c)H

Figure 4.32: L2 and error norms and mean curvature H as a function of the mesh 
refinement for the curvature of a sphere with r = 0.25[m] computed with the Paraboloid 
method, computational stencil sizes 3, 5 and 7, and smoothed color function for the stencil 
size 5.
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4.1.4.6 Curvature analysis: sphere. Shirani and 27 Cel ls

For the Shirani based discretization and the 27 Cells discretization, the comparison 
between the use or not of the smoothed color function is presented in Fig. 4.33. For both 
methods the smaller errors are with the use of the smoothed color function.

The L2 and L0 convergence errors are presented in Tab. 4.16. For A = 1/128, the 
Shirani method with the smoothed color function has L2 convergence order bigger than 1 
and smaller than 1 for the L0, and the 27 Cells method has order smaller than 1.

Table 4.16: Convergence ratio for the L2 and the L0 error norms for the curvature of a 
sphere with radius r = 0.25, computed with the Shirani and the 27 Cells methods with and 
without the smoothed color function

Shirani 27 Cells Shirani 27 Cells

A L2 Lo

1/ 32 1.32 0.86 0.53 0.34

1/ 64 0.93 0.85 0.36 0.40

1/128 0.72 0.67 0.43 0.45
Smoothed color function

1/32 2.37 2.14 1.64 1.50

1/ 64 1.96 1.38 1.40 0.70

1/128 1.18 0.81 0.43 0.44
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Figure 4.33: L2 and Ly_ error norms and mean curvature H as a function of the mesh 
refinement for the curvature of a sphere with r = 0.25[m] computed with the Shirani and 27 
Cells methods with and without the smoothed color function.
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4.1.4.7 Curvature analysis: sphere. Height function method

The Height Function method is coupled with the Shirani, the Paraboloid and the 27 
Cells curvature computation methods, with the results presented in Fig. 4.34. The couple 
with the Paraboloid method leads to smaller errors for the finer meshes. The convergence 
error is presented in Tab. 4.18.

The quantity of inconsistent points on the Height Function method (the points that 
requires an auxiliary method) for each mesh resolution are presented on Tab 4.17. For the 
coarse mesh used most of the points are inconsistent.

Table 4.17: Quantity of inconsistent points in relation to the mesh size for the Height Func­
tion method in a sphere with r = 0.25[m]

A 1/16 1/32 1/64 1/128
n [%] 72 17 11 10

Table 4.18: Convergence ratio for the L2 and the L^ error norms for the curvature of a 
sphere with radius r = 0.25, computed with the Height Function method coupled with the 
Shirani, the Paraboloid and the 27 Cells methods.

%
A

HF Shirani HF Paraboloid HF 27 Cells

L2

1/32 17 
1/64 11

1/128 10

4.24 12.54 4.19
2.73 6.17 2.96
2.33 4.72 2.55

1/32 17 
1/64 11

1/128 10

L^

1.61 5.35 1.50
1.76 3.33 1.79
1.33 2.42 1.32
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Figure 4.34: L2 and error norms and mean curvature II as a function of the mesh 
refinement for the curvature of a sphere with r = 0.25[m] computed with the Height Function 
method.
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4-1-4-8 Curvature analysis: sphere. Comparison between different curvature computation 
methods

After the separate analysis of the curvature computation methods and the selection 
of a proper configuration for each one of them, they are compared between each other. The 
results are presented in Fig. 4.35 to 4.37.

For the C2 error norm, the 27 Cells discretization (smoothed) presents bigger errors 
and starts to diverge with the hirer mesh and the Paraboloid method presents smaller errors 
for the more refined meshes. For the C-^. the error with the Shirani method increase for 
A = V128? and the Heigh Function coupled with the Shirani presents the bigger errors. 
The Height Function method suffers from the influence of the method it is coupled with, 
particularly in the error norm.
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Figure 4.35: L2 error norm as a function of the mesh refinement for the curvature of a sphere
with r = 0.25 [m]. Comparison between different curvature computation methods.
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Figure 4.36: error norm as a function of the mesh refinement for the curvature of a
sphere with r = 0.25[m]. Comparison between different curvature computation methods.

dx [ml

Figure 4.37: Mean curvature II as a function of the mesh refinement for the curvature of a 
sphere with r = 0.25[m]. Comparison between different curvature computation methods.
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4-1.4-9 Curvature analysis: ellipsoid

An analysis of the Height function method coupled with the other methods is per­
formed, with the results presented in Fig. 4.38. The Height Function coupled with the 
Paraboloid presents smaller errors. The number of inconsistent points with the mesh re­
finement is presented in Tab. 4.19. Its behavior is similar to the sphere test case but, 
interestingly, the number of inconsistent point is smaller for the refined meshes used.

Figure 4.38: a) C2 error norm x mesh refinement and b) error norm x mesh refinement of 
the curvature for an ellipsoid with parameters a = 0.30, b = 0.25 and c = 0.20. Comparison 
between the Height Function coupled with different methods
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Table 4.19: Quantity of inconsistent points as a function of the mesh refinement for the 
Height Function method. Curvature computation on an ellipsoid

A 1/16 1/32 1/64 1/128
n [%] 72 17 10 8

From the previous analysis on the sphere, the tests with the ellipsoid are performed 
with the following configurations for each method. For the Paraboloid method, it is chosen 
the stencil of size 53 and non-smoothed color function. The Shirani and the 27 Cells dis­
cretization are tested with the smoothed color function. The Least Squares is tested with a 
stencil of size s = 5 for the normal and smoothed color function and s = 3 for the curvature.

Figure 4.39 and 4.40 presents the results and Tab. 4.20 the convergence error. The 
27 Cells discretization alone presents bigger errors for the curvature computation on the 
ellipsoid, as in the case for the sphere, but the couple with the Height Function method 
leads to erros similar to the other methods. The Shirani and the Least Squares performed 
very similar, and presents an increase of the error for the finner mesh. The Paraboloid 
and the Height Function coupled with the Paraboloid, as for the sphere, presents the smaller 
errors for the more refined mesh.

dx [m]

Figure 4.39: L-z error norm as a function of the mesh refinement for the curvature computa­
tion of an ellipsoid with parameters a = 0.30, b = 0.25 and c = 0.20. Comparison between 
different curvature computation methods
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Figure 4.40: error norm as a function of the mesh refinement for the curvature compu­
tation of an ellipsoid with parameters a = 0.30, b = 0.25 and c = 0.20. Comparison between 
different curvature computation methods

Table 4.20: Convergence ratio for the and the error norms for the curvature of an 
ellipsoid with parameters a = 0.30, b = 0.25 and c = 0.20.

Paraboloid LS Shirani 27 Cells
HF+

Shirani
HF+

Paraboloid
HF+
LS

HF+
27 Cells

A L2

7.32 5.52 2.58 1.71 2.44 3.41 5.88 3.37 3.37
7e4 3.25 2.57 1.11 1.75 2.67 2.62 2.72 2.72
7l28 2.87 2.00 0.80 0.99 2.59 2.61 2.75 2.72

-^OO
732 2.84 1.51 1.12 1.80 1.47 2.54 1.47 1.55
7e4 1.86 1.77 0.37 1.02 1.73 1.72 1.75 1.88
7l28 1.91 0.86 0.47 0.65 1.42 1.93 1.73 1.67

4-1.5 Analysis of a 3D static drop in equilibrium

Following Francois et al. (2006), a series of tests for a 3D inviscicl static drop in 
equilibrium without gravity are performed. The setup is a drop of radius r = 2[m] centered 
in a domain Q = [8]3[?n3]; velocity boundary conditions are free-slip (normal component of 
velocity is zero) and the mesh resolution is R/h = 10.

Francois et al. (2006) presents the results with the convolution technique and the 
Height function method for curvatures, and compares with results of Williams, Kothe and
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Puckett (1998): BKZ method (wich represents the results of the original CSF paper of 
Brackbill, Kothe and Zemach (1992) with a smooth volume fraction); Method I (results 
with convolved curvatures and step delta function); Method II (results with finite-difference 
normals and parabolic delta function).

In the AMR3D code, for the Height Function coupled with the Shirani method, the 
number of inconsistent points is 17.44%.

The exact jump in pressure across the drop is given by:

APexact — aK (4.13)

with k — 2/R in 3D.

The numerical jump in pressure is evaluated as:

APm PPmax - min (4.14)

The relative pressure jump error is evaluated as:

_ |APmax APexact\ r\E (AP )max — AP (4-15)APexact

Table 4.21 compares the error in maximum velocity |u|max and relative pressure jump 
E(AP)max for a 3D inviscid static drop in equilibrium without gravity after one and 50 
time steps with different methods to evaluate the curvature. The setup is a drop of radius 
R — 2[m] centered in a domain Q — [8]3[m3], with density ratio 10, surface tension coefficient 
a — 73[N/m] and time step constant and equal to 10-3[s]. The exact pressure difference for 
this case is 73.

The smaller parasitic velocity presented by Francois et al. (2006) for the first time 
step is with the Height Function method (|u|max — 4.02E - 3) and with the AMR3D code 
the smaller parasitic velocity is with the Paraboloid method (|u|max — 1.49E - 3). The 
Least Squares, the Heigh Function coupled with the Shirani, the Shirani and the Paraboloid 
curvature computation methods presents parasitic velocities on the same order of magnitude 
as the Height Function and the Convolution methods presented by Francois et al. (2006) for 
the first time step. For 50 time steps only the Heigh Function and the Least Squares are 
on the same order as the Height Function from Francois et al. (2006). For the errors in the 
relative pressure jump, the Least Squares method presents smaller errors for this case.

With the density scaling, | u| max is bigger than without the density scaling, but the
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relative pressure jump error E(AP)max is smaller. It is interesting to note that the density 
scaling affect significantly the result for the exact curvature.

Table 4.21: Error in maximum velocity |u|max and relative pressure jump E(AP)max after 
one and 50 time steps for a 3D inviscid static drop in equilibrium with different curvature 
estimates.(Uniform mesh)

Curvature Method
| u | max E (AP )max

(t — At) (t — 50At) (t — At) (t — 50At)
Francois et al. (2006)

Convolution 4.87E - 03 1.63E - 01 - -
Heigh Function 4.0E - 03 4.02E - 02 - -

Williams, Kothe and Puckett (apud FRANCOIS et al. 2006)
BKZ 3.49E - 01 2.55 - -

Method I 1.03E - 01 8.46E - 01 - -

Method II 8.55E - 02 3.86E - 01 - -
AMR3D code with density scaling

Least Squares 1 .89E - 03 7.86E - 02 4.12E - 03 3.60E - 03
HFS 1.50E - 03 6.53E - 02 2.43E - 02 2.28E - 02

Shirani 8.24E - 03 2.95E - 01 6.86E - 02 2.54E - 02
27 Cells 2.25E - 02 4.57E - 01 2.98E - 01 6.50E - 02

Paraboloid 1 .49E - 03 4.57E - 01 1.96E - 02 6.50E - 02
Exact 1.46E - 03 7.16E - 02 9.72E - 03 9.67E - 03

AMR3D code without density scaling
Least Squares 1 .69E - 03 6.92E - 02 1.51E - 02 1.32E - 02

HFS 1 .34E - 03 5.55E - 02 3.16E - 02 2.95E - 02
Shirani 8.43E - 03 2.98E - 01 1.08E - 01 3.61E - 02
27 Cells 2.35E - 02 4.62E - 01 3.42E - 01 7.07E - 02

Paraboloid 2.61E - 04 1.18E - 02 3.02E - 02 3.02E - 02
Exact 1.35E - 06 1.12E - 06 5.55E - 05 3.25E - 10

4.1.5.1 Effect of fluid properties and integration time step

Table 4.22 presents the effect of the viscosity ratio with and without the density scaling 
method. Similar to Francois et al. (2006), there is no influence of the viscosity ratio neither 
in the parasitic currents nor in the relative pressure jump error. For all results with the 
computed curvature, the density scaling method leads to worse results for |u|max and better 
for E(AP)max.

The parasitic current increases after 100 time steps for the computed curvature meth­
ods with and without the density scaling and for the exact curvature with the density scaling. 
There is no significant difference between the values obtained with the Least Squares and the
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Heigh Function + Shirani. For the error in pressure, the density scaling improves the results 
for the cases with the computed curvature and no effect is observed between the first and 
the last time step. The density scaling harms the result for the exact curvature considerably; 
again no difference is observed for the pressure error between the two curvature computation 
methods used.

Table 4.22: Effect of the viscosity ratio on the error of the maximum velocity |u|max and
relative pressure jump E(AP)max after 1 and 100 time steps for the viscous drop in equilib­
rium. The fluid density ration is 103, with density inside (p1 = 1[kg/m3]) and density outside 
(p2 = 10-3[kg/m3]) and a = 73.0[N/m]. The drop has radius R = 2[m] and is centered in 
a domain Q = [8]3[m3] with mesh 403 (R/h = 10). The time step is constant and equal to 
10-6[s]. The fluid viscosity inside the drop (^1 = 10-2[Pa.s]) and outside the viscosity is 
allowed to vary. (Uniform mesh)

Curvature Method
HFS LS Exact

Ml/M2 (ts=1) (ts=100) (ts=1) (ts=100) (ts=1) (ts=100)
|u|max (With density scaling)

1 2.29E - 05 2.27E - 03 2.28E-05 2.25E - 03 2.20E - 05 2.18E - 03
10 2.29E - 05 2.27E - 03 2.28E-05 2.25E - 03 2.20E - 05 2.18E - 03

100 2.28E - 05 2.27E - 03 2.28E-05 2.25E - 03 2.20E - 05 2.18E - 03

|u|max (Without density scaling)
1 1.46E - 05 1.44E - 03 1.89E-05 1.87E - 03 3.60E - 09 1.86E - 09

10 1.46E - 05 1.44E - 03 1.89E-05 1.87E - 03 3.60E - 09 1.86E - 09
100 1.46E - 05 1.44E - 03 1.89E-05 1.87E - 03 3.60E - 09 1.86E - 09

E(AP)max (With density scaling)
1 2.08E - 02 2.08E - 02 2.21E-03 2.21E - 03 1.43E - 02 1.43E - 02

10 2.08E - 02 2.08E - 02 2.21E-03 2.21E - 03 1.43E - 02 1.43E - 02
100 2.08E - 02 2.08E - 02 2.21E-03 2.21E - 03 1.43E - 02 1.43E - 02

E(AP)max (Without density scaling)
1 3.13E - 02 3.13E - 02 1.35E-02 1.35E - 03 2.44E - 07 2.09E - 12

10 3.13E - 02 3.13E - 02 1.35E-02 1.35E - 03 2.44E - 07 2.09E - 12
100 3.13E - 02 3.13E - 02 1.35E-02 1.35E - 03 2.44E - 07 2.09E - 12

The effect of the surface tension coefficient is presented in Tab. 4.23 and illustrated in 
Fig. 4.41. The effect of the time step is presented in Tab. 4.24 and illustrated in Fig. 4.42. 
Parasitic velocities are directly proportional to the surface tension coefficient and the time 
step, but the pressure jump error suffers no influence. The Height Function method and 
the Least Squares presents similar results for the parasitic currents; for the relative pressure 
jump, the Least Squares method presents erros that are one order lower. Again the density 
scaling method lead to worse results for |u|max and better for E(AP)max.
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Table 4.23: Effect of the surface tension coefficient on the error of the maximum velocity 
|u|max and relative pressure jump E(AP)max after 1 time step for the viscous drop in equi­
librium. The fluid density ration is 103, with density inside (p1 — 1[kg/m3]) and density 
outside (p2 — 10-3[kg/m3]). The drop has radius R — 2[m] and is centered in a domain 
Q — [8]3[m3] with mesh 403 (R/h — 10). The time step is constant and equal to 10-6[s]. 
The viscosity ratio is 10, with pi — 10-2[Pa.s] and p2 — 10-3[Pa.s]. (Uniform mesh)

Curvature Method
HFS LS Exact

a | u | max E (AP )max \u \ max E(AP)max \u \ max E (AP )max

With density scaling
0.73 2.29E - 07 2.09E - 02 2.28E - 07 2.21E - 03 2.20E - 07 1.43E - 02
7.3 2.29E - 06 2.08E - 02 2.28E - 06 2.21E - 03 2.20E - 06 1.43E - 02

73.0 2.29E - 05 2.08E - 02 2.28E - 05 2.21E - 03 2.20E - 05 1.43E - 02
730.0 2.29E - 04 2.08E - 02 2.28E - 04 2.21E - 03 2.20E - 04 1.43E - 02

Without density scaling
0.73 1.46E - 07 3.13E - 02 1.89E - 07 1.35E - 02 5.29E - 09 2.32E - 05
7.3 1.46E - 06 3.13E - 02 1.89E - 06 1.35E - 02 4.06E - 09 2.33E - 06

73.0 1.46E - 05 3.13E - 02 1.89E - 05 1.35E - 02 3.60E - 09 2.44E - 07
730.0 1.46E - 04 3.13E - 02 1.89E - 04 1.35E - 02 1.38E - 08 2.61E - 08

Table 4.24: Effect of the time step magnitude on the error of the maximum velocity |u|max 

and relative pressure jump E(AP)max after 1 time step for the viscous drop in equilibrium. 
The fluid density ration is 103, with density inside (p1 — 1[kg/m3]) and density outside (p2 — 
10-3[kg/m3]). The drop has radius R — 2[m] and is centered in a domain Q — [8]3[m3] with 
mesh 403 (R/h — 10). The viscosity ratio is 10, with — 10-2[Pa.s] and p2 — 10-3[Pa.s] 
and a — 730.0[N/m]. (Uniform mesh)

Curvature Method
HFS LS Exact

At \u \ max E(AP)max \u \ max E (AP )max \ u \ max E (AP )max

With density scaling
10-3 1.07E - 01 2.07E - 02 1.06E - 01 2.06E - 03 1.03E - 01 1.44E - 02
10-4 2.29E - 02 2.08E - 02 2.28E - 02 2.17E - 03 2.20E - 02 1.43E - 02
10-5 2.29E - 03 2.08E - 02 2.28E - 03 2.20E - 03 2.20E - 03 1.43E - 02
10-6 2.29E - 04 2.08E - 02 2.28E - 04 2.21E - 03 2.20E - 04 1.43E - 02

Without density scaling
10-3 6.81E - 02 3.12E - 02 8.85E - 02 1.33E - 02 2.48E - 03 2.26E - 06
10-4 1.46E - 02 3.12E - 02 1.89E - 02 1.35E - 02 1.26E - 04 5.51E - 07
10-5 1.46E - 03 3.13E - 02 1.89E - 03 1.35E - 02 1.40E - 06 6.65E - 08
10-6 1.46E - 04 3.13E - 02 1.89E - 04 1.35E - 02 1.38E - 08 2.61E - 08
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Figure 4.41: Effect of the surface tension coefficient on the error of the maximum veloc­
ity |u|max and relative pressure jump E(AP)max after 1 time step for the viscous drop in 
equilibrium. Data from Tab. 4.23
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4.1.6 Parasitic current analysis

A parasitic current analysis, proposed by Popinet (2009), is performed with the follow­
ing curvature computation methods: i) Paraboloid (stencil s — 5), ii) Least Squares (stencil 
s — 5 for the normal and s — 3 for the curvature, with smoothed color function to compute 
the normal vector), iii) Height Function coupled with the Shirani (smoothed) and iv) Height 
Function coupled with the Paraboloid (stencil s — 5).

A circular interface centred on the top-left-south corner of a unit cubic domain is 
considered. Symmetry conditions are applied on the top, left and south boundaries so that 
only a quarter of the droplet is simulated on a 32 x 32 x 32 grid. The diameter of the droplet 
is d — 0.8[m]. The velocity scale for the inviscid problem is (POPINET, 2009)

(4.16)

with p the constant density. For a viscous fluid the timescale is defined as

d2T
II. (4.17)

with m the kinematic viscosity.

The parameters of the simulation are:

• g — 0[m/s2].

• pc — pd — 1.0[kg/m3].

where: pc— density at continuous phase; pd—density at disperse phase

• Mc — Md — 1.0[kg/m.s]

where: Mc— viscosity at continuous phase; Md—viscosity at disperse phase

• La — "pdI2

Three tests are performed:

1. La — 120 (a — 150[N/m])

2. La — 1200 (a — 1500[N/m])

3. La — 12000 (a — 15000[N/m], dt — 1.0E-6[s])

Figures 4.43 to 4.45 illustrates the evolution of the root-mean-square (RMS) velocity 
with time for the range of Laplace number indicated in the legend. Time and velocity are 
made non-dimensional using TP and U„ as reference scales, respectively.
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(c)

Figure 4.43: Evolution of the RMS velocity around a circular droplet in theoretical equi­
librium for La — 120. a) Result comparison with different curvature computation methods 
b) Result comparison excluding the Paraboloid method c) Result comparison between the 
Height function coupled with the Shirani and coupled with the Paraboloid method. Time
and velocity are made non-dimensional using and Ua as reference scales, respectively.
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Figure 4.44: Evolution of the RMS velocity around a circular droplet in theoretical equilib­
rium for La = 1200. a) Result comparison with different curvature computation methods 
b) Result comparison excluding the Paraboloid method c) Result comparison between the 
Height function coupled with the Shirani and coupled with the Paraboloid method. Time
and velocity are made non-dimensional using TM and Ua as reference scales, respectively.
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Figure 4.45: Evolution of the RMS velocity around a circular droplet in theoretical equilib­
rium for La = 12000. a) Result comparison with different curvature computation methods 
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Height function coupled with the Shirani and coupled with the Paraboloid method. Time
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The results shows that with the use of the paraboloid method alone to compute the
curvature, the method becomes very unstable, with parasitic velocity, that should be close to 
zero, oscillating considerably. Interesting, when coupled with the Height Function method, 
the results convergences, similar to what is observed with the Height Function coupled with 
the Shirani method. Comparing the Least Squares and the Height Function coupled with 
the Shirani/Paraboloid methods, the Least Squares presents bigger parasitic velocities for 
this test case.
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4.1.7 Ascending bubble

The rising of a bubble in quiescent viscous liquid is simulated by Hua and Lou (2007), 
and the numerical predicted terminal bubble shape and Reynolds number are compared with 
experimental results of Bhaga and Weber (1981), for different conditions according to various 
Reynolds (Re), Eotvos (Eo) and Morton (M) numbers.

Some of the bubble regimes presented by Hua and Lou (2007), ranging from low Re - 
low Eo spherical bubbles to moderate Re - moderate Eo skirted bubbles, are compared with 
the AMR3D code using the Front-Tracking advection scheme from Pivello (2012) (AMR3D- 
FT), and the VOF method (varying the method to compute the curvature). The curvature 
is computed by the Height Function coupled with the Shirani method (AMR3D-HFS) and 
by the Least Squares method (AMR3D-LS), with stencil size of 53 for the normal and 33 for 
the curvature.

The cases simulated, illustrated in Fig. 4.46, are for the following bubble regimes: 
a) Case A2: spherical; b) Case A3: oblate ellipsoidal (disk); c) Case A4: oblate

ellipsoidal (cap); d) Case A5: spherical cap (closed wake); e) Case A7: skirted (smooth); 
f) Case A8: skirted (wavy).

(b) Case A3 - Oblate ellip- (c) Case A4 - Oblate ellip-
(a) Case A2 - Spherical soidal disk soidal cap

(d) Case A5 - Spherical cap (e) Case A7 - Skirted smooth (f ) Case A8 - Skirted wavy

Figure 4.46: Observed bubble terminal shapes for the rising bubble experiment. Source: 
Hua and Lou (2007)
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Table 4.25 and Fig. 4.47 presents the comparison results between the terminal bubble 
shape and the final Reynolds number, and the time evolution of the Reynolds number, 
respectively, computed with the Front-Tracking scheme from Pivello (2012), the VOF method 
with the curvature computed by the Least Squares and the Height Function coupled with 
the Shirani methods, and the reference works of Bhaga and Weber (1981) and Hua and Lou 
(2007).

On the work of Hua and Lou (2007) and Pivello (2012), the maximum error for the 
terminal Reynolds number occurred for the creeping flow regime (case A2). In the AMR3D- 
VOF method the bigger error is in case A5. For this case, fragmentation of the bubble occurs 
in the VOF method. The terminal shape is thus very dependent on the time step chosen to 
extract the values. This is clearly observed in Fig. 4.47d, with oscillation in the Re number 
along time occurring in the VOF methods. The Front-tracking method does not suffer this 
oscillation as it does not have a fragmentation model.

In the present work the terminal shape is in good agreement with the reference 
works; concerning the terminal Re number, the AMR3D-LS presents smaller errors than 
the AMR3D-HFS (with the exception being case A7), and in agreement with the results 
obtained by the AMR3D-FT.
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Table 4.25: Comparison of terminal shapes and Reynolds number reported by Hua and Lou 
(2007), Pivello (2012) and the present work.

Bhaga and Weber (1981) Hua and Lou (2007) Pivello (2012) AMR3D-HFS AMR3D-LS

Re=0.232 Re = 0.211
e = 9.05%

Re = 0.212
e=8.62%

Re = 0.189 
e=18.57%

Re = 0.194 
e=16.46%

Case A3: Eo=32.2; M=8.2e-4

Re=55.3 Re = 52.9
e=4.23%

Re = 53.2
e=3.80%

Re = 53.2
e=3.79%

Re = 53.5 
e=3.25%

Case A4: Eo = 243; M=266

Re=7.77 Re = 7.61
e=2.06%

Re = 8.4
e=8.07%

Re = 7.62
e=1.93%

Re = 7.68
e=1.15%

Case A5: Eo = 115; M=4.63e-3

Re=94.0 Re = 88.70
e=5.64%

Re = 90.05
e=4.20%

Re = 73.45
e=21.86%

Re = 75.78
e=19.38%

Case A7: Eo = 339; M=43.1

Re=18.3 Re = 17.91
e=2.13%

Re = 17.06
e=6.77%

Re = 17.19
e=6.06%

Re = 17.11
e=6.50%

Case A8: Eo = 641; M=43.1

Re=30.3 Re = 28.54
e=1.22%

Re = 31.47 
e=3.86%

Re = 27.31 
e=9.86%

Re = 28.86 
e=4.75%
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(e) Case A7 (f) Case A8

Figure 4.47: Time evolution of the Reynolds number for simulations with the Front-Tracking 
scheme from Pivello (2012) and with the VOF method with the Height Function and the 
Least Squares curvature computation methods.

4.1.8 Analysis of normal, curvature and surface tension force at the contact point

An analysis of the normal, curvature and surface tension force computation is per­
formed at the contact point for the first time step and a comparison between the conven­
tional wall and the Immersed Boundary wall is evaluated. The geometrical parameters of 
this analysis are:
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• Domain Q = {3, 3, 2}[m3];

• nx = ny = 24, nz = 16 and l = 4 levels of refinement;

• Mesh resolution at the top level is A = gj

• r = 0.5[m] ke = 4.0

• Half droplet initialized

for the conventional wall: xc = 1.5[m], yc = 1.5[m]; zc = 0.0[m] 

for the immersed boundary wall: xc = 1.5[m], yc = 1.5[m]; zc = 1.0[m]

The initialization of the color function is performed with the Points method, using 100 
points (np) and 10 sub-domains (nsc). This means that each Eulerian computational cell is 
subdivided in nsc sub-cells. For these, the implicit function is evaluated at its vertices's to 
identify if the sub-cell is completely inside or outside of the implicit equation, which means 
that they are full or empty, respectively. For each sub-cells that has vertices inside and 
outside, the volume fraction is computed with np points. The error in the initialized vof 
volume is evol = 2.34E — 4 for both cases. The volume fraction initialized, the mesh used 
and the Immersed Boundary are presented in Fig. 4.48

4.1.8.1 Color function

(a) Conventional wall. x — z slice at y =
1.5[m]

Figure 4.48: Color function.

(b) IB wall. x — z slice at y = 1.5[m] 

x — z slice at y = 1.5[m]

In the conventional wall, Newman boundary condition is applied to the color function. 
A boundary at the conventional wall is represented by Dirichlet boundary condition to the 
velocity normal to it, to ensure no-penetration, and by Navier-Slip to the velocities parallel to 
it. At the Immersed Boundary, the presence of the wall is represented by a source term at the 
right hand side of the momentum equation; This difference in how the boundary condition is 
applied in the conventional and in the Immersed boundary wall leads to a slightly different 
values obtained, as explained in the following sections.
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4.1.8.2 Normal component parallel to the wall

The normal x component is presented in Fig. 4.49. A comparison between the values
obtained for the normal component in x-direction at the conventional and the Immersed 
Boundary wall is presented in Fig. 4.50. In the Least Squares system, only values of cells 
considered inside the domain are used. Values from cells considered outside are not used nor 
computed.

(a) Conventional wall. (b) IB wall.

Figure 4.49: Normal x component. x-z slice at y = 1.5[m]

Figure4.50: Normalx. Data extracted over a line crossing the computational cell adjacent to 
the wall, with coordinates 0 < x < 3; y = 1.5; Dashed line: Conventional wall; Continuous 
line: IB wall

4.1.8.3 Normal component perpendicular to the wall

For the normal perpendicular to the wall (at zth direction), in the case being analyzed, 
the difference of treatment of the color function at the wall is representative. For the conven­
tional wall, with Newman boundary condition being applied, the normal component inside 
the bubble, and in contact with the wall, vanishes. This can be seen in Fig. 4.51a. For the



149

Immersed Boundary, since only values inside the bubble are considered, there is a gradient 
of the color function trough the droplet, which leads to the resultant normal illustrated in 
Fig. 4.51b. A comparison between the results is presented in Fig. 4.52.

0.5 1.0 l.B 2.0 2.5 0.5 1.0 1.5 2.0 2.5
X-Axis X-Axis

(a) Conventional wall. (b) IB wall.

Figure 4.51: Normal z. x - z slice at y = 1.5[m]

Figure 4.52: Normal z. Data extracted over a line crossing the computational cell adjacent to 
the wall, with coordinates 0 < x < 3; y = 1.5; Dashed line: Conventional wall; Continuous 
line: IB wall

4.1.8.4 Curvature

The curvature is similar along the droplet, with the case with the Immersed Boundary 
wall presenting a constant value different than zero at its bottom, as illustrated in Fig. 4.54. 
This is due to the normal-z component. The results for both cases are compared in Fig. 4.55. 
The value at the contact point is similar, and the main difference between the conventional 
and the Immersed Boundary wall is inside the droplet. It vanishes inside the droplet at the 
region in contact with the conventional wall, since the normal z component is absent and 
Newman boundary condition is applied to the color function. For the Immersed Boundary,
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due to the value of the normal z component and the gradient of the color function along the 
Immersed Boundary, it presents a constant value.

Figure 4.53: Curvature. Conventional
wall. x - z slice at y = 1.5[m]

0.5 1.0 1.5 2.0 2.5
X-Axis

Figure 4.54: Curvature. IB wall. x — z
slice at y = 1.5[m]
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Figure 4.55: Curvature. Data extracted over a line crossing the computational cell adjacent 
to the wall, with coordinates 0 < x < 3; y = 1.5; Dashed line: Conventional wall; Continuous 
line: IB wall

4.1.8.5 Force components

The force parallel to the wall (x component) is presented in Fig. 4.58 and compared 
in Fig. 4.59. Since the values of the normal vector and the curvature are similar, the force 
component is also similar. As for the force perpendicular to the wall (zth component), due 
to the difference in normal and curvature, at the contact point there is a peak force for the 
Immersed Boundary wall which is not present in the conventional wall. This is illustrated 
in Fig. 4.62 and Fig. 4.63.
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Figure 4.58: Force x. x - z slice at y = 1.5[m]

Figure 4.59: Force x. Data extracted over a line crossing the computational cell adjacent to

Figure 4.62: Force z. x - z slice at y = 1.5[m]
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Figure 4.63: Force z. Data extracted over a line crossing the computational cell adjacent 
to the wall, with coordinates 0 < x < 3; y = 1.5[m]; Dashed line: Conventional wall; 
Continuous line: IB wall

The difference in the force at z-component, normal to the wall, should be considered. 
Either a Newman boundary condition should be applied at the Immersed Boundary, or the 
method must compute a source term that accounts for this force to avoid no-penetration 
through the wall (which is currently done in the AMR3D code).

4.2 Applications

4.2.1 3D contact point study with density ratio pl/ pg = 1.0 and viscosity ratio pl/pg = 1.0, 

based on the 2D work of Lai, Tseng and Huang (2010)

Based on the 2D work of Lai, Tseng and Huang (2010), 3D numerical experiments
with hydrophilic and hydrophobic cases are performed. A drop on a solid surface initially at
equilibrium is suddenly imposed to a different contact angle; the drop fluid should accelerate
toward a steady state defined by the new value of 0E. The force at the contact point should 
vanish as the equilibrium contact angle is approximated.

The setup consists of an initially hemispherical drop (0 = 90o) at t = 0[s], of radius 
r = 0.5[m], placed at the bottom of a domain Q = [3]3[m3]. The density ratio is pi/pg = 1, 
the viscosity ratio is pl/pg = 1, surface tension is a = 1[N/m]. Both free-slip and no-slip 
boundary conditions are used on the bottom of the domain (Lai, Tseng and Huang (2010) 
used a slip condition A = A/4, where A is the smallest mesh size), and an open boundary 
condition is specified elsewhere. The gravity is not considered. For this particular case, the 
only force responsible for the movement of the interface is the contact point force.

The computations are performed in 4 processors, with an adaptive mesh of base [12
x 12 x 12] and 2 to 6 levels of refinement (maximum grid resolution of A = 1/8, 1/16,
1/32, 1/64 and 1/128, respectively). The Semi-Backward Difference is used for the temporal



153

discretization, and the Central Difference Scheme (CDS) for the advection model.
The time step is calculated following stability criteria for explicit schemes, taking into

account the advective, diffusive and capillary terms, as defined by Eq.(3.11), with safety 
coefficients a1 = b1 = b2 = b3 = 0.5.

At = min(0.5Atadv, 0.5Atdi//, 0.5Atcap). (4.18a)

The error in volume conservation evol is defined by Eq.(4.19)

evol — |Vcur Vprev1 (4.19)

where: Vcur and Vprev are the vof volume at the current and previous time steps, respectively. 

The error between the achieved angle and the desired one, eg, is computed by Eq.(4.20):

eg = »!.I x ioo[%]
PE

(4.20)

where: PE is the equilibrium contact angle; PN is the numerical contact angle, computed with:

1) the free open-source multi-platform Java image-processing program ImageJ (SCHNEI­
DER; RASBAND; ELICEIRI, 2012); 2) with the DropSnake plugin for ImageJ, a method 
based on B-spline snakes (active contours) for measuring high-accuracy contact angles (STALDER 
et al., 2006). dN is the average between three measures from ImageJ (0IJ) and the left (0DSL) 
and right (PDSR) measured contact angles from the DropSnake plugin.
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4.2.1.1 Hydrophilic case: 3 = 60o, base mesh [12 x 12 x 4] and 2 to 6 levels of refinement. 
No-Slip boundary condition.

A convergence analysis is performed, with maximum grid resolution varying from A = 
1 to A = 128• The time step is determined by the capillarity restriction, and is presented in 
Tab. 4.26 for each mesh resolution tested, as well as the error in the initialized vof volume 
e, the error in the numerically measured contact angle ee%, and the ratio of convergence of 
the numerically measured contact angle from the current to the previous mesh resolution R.

Table 4.26: Mesh resolution, time step, error in the initialized vof volume and contact angle 
error for 3 = 60o and 1/8 < A < 1/128• (No-Slip boundary condition.)

A At[s] e ee % R

1/8 1.76E - 2 1.93E-3 19.56 -
Vl6 6.23E - 3 9.70E-4 11.89 1.64
V 32 2.20E - 3 4.87E-4 4.7 2.53
V 64 7.79E - 4 2.43E-4 0.56 8.4
V128 2.75E - 4 1.21E-4 0.67 0.83

Figures 4.64 and 4.65 present the interface (x - z plane view and x - y plane view,
respectively) at the final time step, and the Eulerian mesh used. The interface advances to
the desired angle and the code was able to maintain the interface symmetry even for the
coarse meshes tested.
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(b) A = '/i6

(c) A = 1/32

0.5 1.0 1.5 2.0 2.5
X-Axis

(d) A = X/64

(e) A = 1/128

Figure 4.64: x-z plane view (y — 1.5[m]) of the final position of the simulated initial hemi­
spherical drop of radius R — 0.5[m], placed at the bottom of a domain Q — [3]3[m3] exposed 
to a sudden change in 3 — 60o, for mesh with maximum resolution: a) A — 8; b) A — 16; c) 
A — 32; d) A — 64; e) A — 128 •
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2.0 2.5

(b) A = 1/= /16

2.0 2.5

(a) A = 1/8

(c) A = 1/32
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2.0 2.5

(d) A = 1/= / 64

(e) A = 1/128

Figure 4.65: x-z plane view (y = 1.5[m]) of the final position of the simulated initial hemi­
spherical drop of radius R = 0.5[m], placed at the bottom of a domain Q = [3]3[m3] exposed
to a sudden change in 3 = 60o, for mesh with maximum resolution: a) A = 8; b) A = ih; c)
A = —; d) A = —; e) A = —A 32 ; d) A 64 ; e) A 128 .



157

The volume conservation is presented in Fig. 4.66, being on machine error order for 
all simulation.

(a) A = 7s (b) A = 7ie

Figure 4.66: log of the error in volume conservation vs time.

4-2.1.2 Hydrophilic case: 6 = 60°, base mesh [12 x 12 x 4/ and 6 levels of refinement. 
Comparison between Free-Slip and No-Slip boundary conditions

The previous section presented results with only the No-Slip boundary condition. In 
this section the results with the Free-Slip boundary condition are also presented and com­
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pared with the No-Slip boundary condition.
From the convergence analysis performed, the maximum grid resolution of A = yjg is 

chosen for the comparison between the two boundary conditions. The time step is determined 
by the capillarity restriction, and is equal to Aí = 2.75E — 4[s]. The error in the initialized 
vof volume is e = 1.21E — 4.

The volume conservation is presented in Fig. 4.67, being on machine error order for 
both simulations.

Figures 4.68 and 4.69 present the time evolution of the interface (x — z slice) and 
the Eulerian mesh used, for the No-Slip and the Free-Slip cases, respectively. The interface 
advances to the desired angle, and no deformation on the interface is observed at the end of 
the simulation. From the top view, presented in Fig. 4.71, the interface spherical shape is 
maintained at the bottom, as well as its symmetry.

Figure 4.67: log of the error in volume conservation (e,„o/) vs time for mesh with maximum 
resolution A =

A comparison between the two boundary conditions can be seen at Fig. 4.70 (side 
view) and 4.71 (Top view). It can be observed that, for this mesh resolution, the final 
position achieved is the same, but with the Free-Slip the interface advances faster to its final 
position.

For the No-Slip boundary condition, contact point slip is achieved implicitly, as the 
advection scheme used to advect volume fractions utilizes face-centered velocities, so that 
the nearest velocity to the contact point is one half cell width above a solid boundary.
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(a) Interface at t = At[s] (a) Interface at t = At[s]

(b) Interface at t = 0.1[s] (b) Interface at t = 0.1[s]

(c) Interface at t = 0.5[s] (c) Interface at t = 0.5[s]

(d) Interface at t = 1.0[s] (d) Interface at t = 1.0[s]

(e) Interface at t = 5.0[s]

Figure 4.68: x-z plane view (y — 1.5[m]) of 
the time evolution of the simulated initial 
hemispherical drop of radius R — 0.5[m], 
placed at the bottom of a domain Q — 
[3]3 [m3 ] exposed to a sudden change in 3 — 
60o , for mesh with maximum resolution A —
118. No-slip boundary condition.

(e) Interface at t = 5.0[s]

Figure 4.69: x-z plane view (y — 1.5[m]) of 
the time evolution of the simulated initial 
hemispherical drop of radius R — 0.5[m], 
placed at the bottom of a domain Q —
[3]3[m3] exposed to a sudden change in 3 — 
60o, for mesh with maximum resolution A — 
118. Free-slip boundary condition.
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(e) Interface at t = 5.0[s]

Figure 4.70: Side View of the time evolution of the interface with No-Slip and Free-Slip 
boundary conditions
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Figure 4.71: Top view of the time evolution of the interface with No-Slip and Free-Slip 
boundary conditions
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(a) t = At[s] (a) t = At[s]

(b) t = 0.1[s] (b) t = 0.1[s]

(c) t = 0.5[s] (c) t = 0.5[s]

Vector 
Van velocity 
^—-0.600

-0,I
(d) t = 1.0[s] (d) t = 1.0[s]
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r—«r 0.600

-0,

I
(e) t = 5.0[s]

Figure 4.73: x-z plane view (y — 1 .5[m]) of 
the time evolution of the velocity vector field 
for the simulated initial hemispherical drop 
of radius R — 0.5[m], placed at the bottom 
of a domain Q — [3]3[m3] exposed to a sud­
den change in 3 — 60o, for mesh with max­
imum resolution A — —|g. Free-Slip bound­
ary condition.

(e) t = 5.0[s]

Figure 4.72: x-z plane view (y — 1.5[m]) of 
the time evolution of the velocity vector field 
for the simulated initial hemispherical drop 
of radius R — 0.5[m], placed at the bottom 
of a domain Q — [3]3[m3] exposed to a sud­
den change in 3 — 60o, for mesh with maxi­
mum resolution A — -jig. No-Slip boundary
condition.

The velocity field, presented in Figs. 4.72 (No-Slip B.C) and 4.73 (Free-Slip B.C), 
acts in the expected direction, to spread the droplet over the surface, being very similar 
to the previously coarse mesh case (A — 1/64); at time T — 1.0[s] no recirculation at the 
contact point is observed. The values obtained with the Free-Slip are two (t — At[s]) to
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three (t = 0.1[s]) times bigger than with the No-Slip, and explains why the interface moves
quicker to the desired position. This can be explained by the tangential velocity values at 
the wall in the Free-Slip case, which is not zero, as it is in the No-Slip case.

The numerically measured contact angles are presented in Figs. 4.74 and 4.75 and are 
equal to 6N = 60.4o for the No-Slip boundary condition and 6N = 60.3o for the Free-Slip 
boundary condition. The error between the numerical and the equilibrium angles are equal 
to eg = 0.67% and eg = 0.50% (No-Slip and Free-Slip boundary condition, respectively). 
This error is on the same order of magnitude of the value observed at the previous coarse 
mesh resolution A = 1/64 (eg = 0.56%).

(a) ImageJ averaged measured contact angle (b) ImageJ averaged measured contact angle
Oij = 60.2o for the No-Slip B.C. Oij = 60.2o for the Free-Slip B.C.

Figure 4.74: contact angle measured at the end of the simulation for 6E = 60o and mesh 
with maximum resolution A = jig.

(a) DropSnake measurement: 3dsl = 60.6o, 
Qdsr = 60.5o for the No-Slip B.C.

(b) DropSnake measurement: 3dsl = 59.9o, 
@dsr = 60.7o for the Free-Slip B.C.

Figure 4.75: contact angle measured at the end of the simulation for 6E = 60o and mesh 
with maximum resolution A = 128 (DropSnake measurement).

4.2.1.3 Hydrophilic case: 6 = 45o, base mesh [12 x 12 x 4] and 5 levels of refinement. 
Comparison between Free-Slip and No-Slip boundary conditions.

For the test cases with 6 = 45o, the maximum grid resolution was chosen to be A = gL. 
From the analysis of the cases with 6 = 60o, resumed on Tab. 4.26, the errors between the 
numerical and the equilibrium angles are on the same order of magnitude for the simulations 
with 5 and 6 levels of refinement. The time step is determined by the capillarity restriction, 
and is equal to At = 7.79E - 4[s]. The error in the initialized vof volume is e = 2.43E - 4.

The results for both the Free-Slip and No-Slip boundary condition are presented and 
compared. The volume conservation is presented in Fig. 4.76, being on machine error order
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for both simulations.

Figure 4.76: log of the error in volume conservation (e,„o/) vs time for mesh with maximum 
resolution A = A

Figures 4.77 and 4.78 present the time evolution of the interface (t — z slice) and 
the Eulerian mesh used, for the No-Slip and the Free-Slip cases, respectively. The interface 
advances to the desired angle, and no irregularities are observed at the end of the simulation. 
From the top view, presented in Fig. 4.80, it can be seen that the interface spherical shape 
is maintained at the bottom, as well as its symmetry.

A comparison between the interface evolution for the two boundary conditions can be 
seen in Fig. 4.79 (side view) and 4.80 (Top view). With the Free-Slip boundary condition 
the interface advances faster to the final position, but as presented in Figs. 4.83 and 4.84 
the numerical angle observed at the end of the simulation are the same for both conditions.
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(a) Interface at t = At[s] (a) Interface at t = At[s]

(b) Interface at t = 0.1[s] (b) Interface at t = 0.1[s]

X-Axis

(c) Interface at t = 0.5[s](c) Interface at t = 0.5[s]

O.S 1.0 1.5 2.0 2.5
X-Axis

(d) Interface at t = 1.0[s](d) Interface at t = 1.0[s]

(e) Interface at t = 5.0[s]

Figure 4.77: x-z plane view (y = 1.5[m]) of
the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m],
placed at the bottom of a domain Q = 
[3]3[m3] exposed to a sudden change in 0 = 
45o, for mesh with maximum resolution A = 
64. No-slip boundary condition.

(e) Interface at t = 5.0[s]

Figure 4.78: x-z plane view (y = 1.5[m]) of 
the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m], 
placed at the bottom of a domain Q = 
[3] 3[m3] exposed to a sudden change in 0 = 
45o, for mesh with maximum resolution A = 
64. Free-slip boundary condition.
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Figure 4.79: Side View of the time evolution of the interface with No-Slip and Free-Slip 
boundary conditions
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Figure 4.80: Top view of the time evolution of the interface with No-Slip and Free-Slip 
boundary conditions
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■-o.i

(d) t = 1.0[s]

Vector 
Van velocity 
r—«r 0.600

-0,
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Figure 4.81: x-z plane view (y = 1.5[m]) of
the time evolution of the velocity vector field 
for the simulated initial hemispherical drop
of radius R = 0.5[m], placed at the bottom
of a domain Q = [3]3[m3] exposed to a sud­
den change in d = 45o, for mesh with max­
imum resolution A = 64 . No-Slip boundary 
condition.

(a) t = At[s]

(b) t = 0.1[s]

(c) t = 0.5[s]

(d) t = 1.0[s]

(e) t = 5.0[s]

Figure 4.82: x-z plane view (y = 1.5[m]) of 
the time evolution of the velocity vector field 
for the simulated initial hemispherical drop 
of radius R = 0.5[m], placed at the bottom 
of a domain Q = [3]3[m3] exposed to a sud­
den change in d = 45o, for mesh with maxi­
mum resolution A = 64 • Free-Slip boundary 
condition.

The velocity field, presented in Figs. 4.81 and 4.82, acts in the expected direction, to 
spread the droplet over the surface. No recirculation at the contact line is observed. The 
values obtained with the Free-Slip are, in general, three (t = At[s]) to two (t = 0.1[s]) times 
bigger than with the No-Slip, and explains why the interface moves quicker to the desired



169

position.
The numerically measured contact angles are presented in Figs. 4.83 and 4.84, and 

are equal to 0N = 47.0o for the No-Slip boundary condition and 0N = 46.9o for the Free-Slip 
boundary condition. The error between the numerical and the equilibrium angles are equal 
to = 4.5% and = 4.3% (No-Slip and Free-Slip boundary condition, respectively).

(a) ImageJ averaged measured contact angle 
Õj = 46.8o for the No-Slip B.C.

(b) ImageJ averaged measured contact angle 
dij = 47.0o for the Free-Slip B.C.

Figure 4.83: contact angle measured at the end of the simulation for 0E 

with maximum resolution A = 1.
= 450 and mesh

(a) DropSnake measurement: 3dsl = 46.9o, 
Qdsr = 47.4o for the No-Slip B.C.

(b) DropSnake measurement: 3dsl = 47.2o, 
0dsr = 46.6o for the Free-Slip B.C.

Figure 4.84: contact angle measured at the end of the simulation for 0E = 45o and mesh 
with maximum resolution A = 64 (DropSnake measurement).

4.2.1.4 Hydrophobic case: 0 = 148o, base mesh [12 x 12 x 4] and 5 levels of refinement. 

Comparison between Free-Slip and No-Slip boundary conditions.

For the test cases with 0 = 148o, similar to the test cases with 0 = 45o, the maximum 
grid resolution was chosen to be A = 64 • From the analysis of the cases with 0 = 60o, 
resumed on Tab. 4.26, the errors between the numerical and the equilibrium angles are on 
the same order of magnitude for the simulations with 5 and 6 levels of refinement. The time 
step is determined by the capillarity restriction, and is equal to At = 7.79E -4[s]. The error 
in the initialized vof volume is e = 2.43E - 4.

The volume conservation is presented in Fig. 4.67, being on machine error order for 
both simulations.
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Figure 4.85: log of the error in volume conservation (e,„o/) vs time for mesh with maximum 
resolution A = A

Figures 4.86 and 4.87 present the time evolution of the interface (t — z slice) and 
the Eulerian mesh used, for the No-Slip and the Free-Slip cases, respectively. The interface 
advances to the desired angle, and no irregularities are observed at the end of the simulation. 
From the top view, presented in Fig. 4.89, it can be seen that the interface spherical shape 
is maintained at the bottom, as well as its symmetry.

A comparison between the interface evolution for the two boundary conditions can 
be seen in Figs. 4.88 (side view) and 4.89 (Top view). It can be observed that the final 
position achieved is the same, but with the Free-Slip the interface advances faster to the 
final position.
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(a) Interface at t = At[s] (a) Interface at t = At[s]

(b) Interface at t = 0.1[s] (b) Interface at t = 0.1[s]

(c) Interface at t = 0.5[s] (c) Interface at t = 0.5[s]
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(d) Interface at t = 1.0[s](d) Interface at t = 1.0[s]

(e) Interface at t = 5.0[s]

Figure 4.86: x-z plane view (y = 1 .5[m]) of 
the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m], 
placed at the bottom of a domain Q =
[3]3[m3] exposed to a sudden change in 0 =
148o , for mesh with maximum resolution
A = 64. No-slip boundary condition.

(e) Interface at t = 5.0[s]

Figure 4.87: x-z plane view (y = 1.5[m]) of
the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m], 
placed at the bottom of a domain Q = 
[3] 3[m3] exposed to a sudden change in 0 = 
148o, for mesh with maximum resolution 
A = 64. Free-slip boundary condition.
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Figure 4.88: Side view of the time evolution of the interface with No-Slip and Free-Slip 
boundary conditions
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Figure 4.91: x-z plane view (y = 1.5[m]) of 
the time evolution of the velocity vector field 
for the simulated initial hemispherical drop 
of radius R = 0.5[m], placed at the bottom 
of a domain Q = [3]3[m3] exposed to a sud­
den change in d = 148o, for mesh with maxi­
mum resolution A = 64 • Free-Slip boundary 
condition.
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Figure 4.90: x-z plane view (y = 1.5[m]) of
the time evolution of the velocity vector field 
for the simulated initial hemispherical drop
of radius R = 0.5[m], placed at the bottom
of a domain Q = [3]3[m3] exposed to a sud­
den change in d = 60o, for mesh with max­
imum resolution A = 64 . No-Slip boundary 
condition.

The velocity field, presented in Figs. 4.90 and 4.91, acts in the expected direction, to 
reduce the contact area of the droplet on the surface. No recirculation at the contact line is 
observed. The values obtained with the Free-Slip are, in general two times bigger than with 
the No-Slip, and explains why the interface moves quicker to the desired position.
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The numerically measured contact angles are presented in Figs. 4.92 and 4.93, and 
are equal to 0N = 146.8o for both the No-Slip and the Free-Slip boundary conditions, with 
the error between the numerical and the equilibrium angles being equal to = 0.8%.

(a) ImageJ averaged measured contact angle 
Qij = 145.7o for the No-Slip B.C.

(b) ImageJ averaged measured contact angle 
Qij = 145.2o for the Free-Slip B.C.

Figure 4.92: contact angle measured at the end of the simulation for 0E = 148o and mesh 
with maximum resolution A = 1.

(a) DropSnake measurement: Qdsl = 147.3o, 
dDsR = 147.3o for the No-Slip B.C.

(b) DropSnake measurement: Qdsl = 147.7o, 
dDsR = 147.7o for the Free-Slip B.C.

Figure 4.93: contact angle measured at the end of the simulation for 0E = 148o and mesh 
with maximum resolution A = 64 (DropSnake measurement).
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4-2.2 3D contact point study with density ratio pi/pg = 800 and viscosity ratio pi/pg = 100, 

based on the 2D work of Afkhami and Bussmann (2009).

A series of tests for surface tension-driven flow, with 300 < 0 < 1500 is presented by
Afkhami and Bussmann (2009). A drop on a solid surface initially at equilibrium is suddenly
imposed to a different contact angle; the drop fluid should accelerate toward a steady state 
defined by the new value of 0.

The setup consists of an initially hemispherical drop (0 = 900) at t = 0[s], of radius 
R = 0.2[m], placed at the bottom of a domain Q = [1]3[m3]. The density ratio is pi/pg = 800, 
the viscosity ratio is pi/pg = 100, surface tension is a = 0.1[N/m], and Oh = 1.33x10-2. 
No-slip boundary condition is specified at the bottom of the domain and an open boundary 
condition is specified elsewhere.

Accordingly to the authors, contact line slip is achieved implicitly, as the advection 
scheme used to advect volume fractions utilizes face-centered velocities, so that the nearest 
velocity to the contact line is one half cell width above a solid boundary.

The computations are performed in 4 processors with an adaptative mesh of base [16 
x 16 x 16] and 3 levels of refinement (maximum grid resolution of A = 1/64) . The Crank- 
Nicholson Adams-Bashforth (CNAB) is used for the temporal discretization, and the Cubista 
for the advection model.

The time step is constant and equal to At = 1.5E - 4[s]. The error in the initialized 
vof volume is e = 6.12E — 4.

4.2.2.1 Hydrophilic case: 0 = 30o, base mesh [16 x 16 x 16] and 3 levels of refinement, 
At = 1.5E — 4[s]. No-Slip boundary condition.

Figures 4.94 and 4.95 present the time evolution of the interface (x — z slice and top 
view, respectively), and the Eulerian mesh used. The results obtained with the amr3d code 
are smoother than the ones presented by Afkhami and Bussmann (2009), where the contact 
point quickly advances to the desired angle and the middle of the droplet advances later (see 
Fig. 12 from the authors). From the top view it can be seen that the interface symmetry is 
maintained.
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Figure 4.94: x-z plane view (y = 0.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.2[m], placed at the bottom of a domain Q = [1]3[m3] 
exposed to a sudden change in 0 = 30o

(g) Interface at t = 8.0[s] (h) Interface at t = 10.0[s]
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line)

The velocity field, presented in Fig. 4.96, acts in the expected direction, to spread the 
droplet over the surface. From time t = 5.0[s] a small recirculation is observed at the contact 
point. The contact point force should vanish as the equilibrium state is approximated, but 
the velocity field will still act in the direction of the spreading. At this instant the droplet 
should achieve a instantaneous contact angle smaller than the equilibrium one and a force 
at the contact point should appears in the opposing direction of this movement. This is the 
cause of the recirculation that appears (observed at time t = 8.0[s]).
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(g) t = 8.0[s] (h) t = 10.0[s]

Figure 4.96: x-z plane view (y = 0.5[m]) of the time evolution of the velocity vector field
for the simulated initial hemispherical drop of radius R = 0.2[m], placed at the bottom of a
domain Q = [1]3[m3] exposed to a sudden change in d = 30o.

The numerically measured contact angle is presented in Fig. 4.97 being equal to dN = 
32.0o. The error between the numerical and the equilibrium angles is equal to ee = 6.7%.
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(b) DropSnake measurement: Gdsl = 31.9°, OdsR — 31.7°

Figure 4.97: 0\- = 32.0° measured at t = 10.00 [s] for 0^ = 30° and mesh with maximum 
resolution A = A

The volume conservation is presented in Fig. 4.98 and is at machine error for all 
simulation.

t [s]
Figure 4.98: log of the error in volume conservation (e,„o/) vs time for 6 = 30°
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4-2.2.2 Hydrophilic case: 3 = 45o, base mesh [16 x 16 x 16] and 3 levels of refinement, 
At = 1.5E — 4[s]. No-Slip boundary condition.

Figures 4.99 and 4.100 present the time evolution of the interface (x - z slice and 
top view, respectively), and the Eulerian mesh used. Similar to the case with 3 = 30o, the
results obtained with the amr3d code are smoother than the ones presented by Afkhami and 
Bussmann (2009), where the contact point quickly advances to the desired angle and the 
middle of the droplet advances later (see Fig. 12 from the authors). From the top view it 
can be seen that the interface symmetry is maintained.

(g) Interface at t = 8.0[s] (h) Interface at t = 10.0[s]

Figure 4.99: x-z plane view (y = 0.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.2[m], placed at the bottom of a domain Q = [1]3[m3] 
exposed to a sudden change in 3 = 45o
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(dashed line)

The velocity field, presented in Fig. 4.101, acts in the expected direction, to spread 
the droplet over the surface. Similar to the 3 = 30o case, from time t = 5.0[s] a small 
recirculation is observed at the contact point. Since the difference between the initial and 
the desired contact angles are smaller in this case, the equilibrium position is achieved faster, 
and so the velocity recirculation is smaller.
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(g) t = 8.0[s] (h) t = 10.0[s]

Figure 4.101: x-z plane view (y = 0.5[m]) of the time evolution of the velocity vector field
for the simulated initial hemispherical drop of radius R = 0.2[m], placed at the bottom of a
domain Q = [1]3[m3] exposed to a sudden change in d = 45o.

The numerically measured contact angle is presented in Fig. 4.102 being equal to dN = 
49.6o. The error between the numerical and the equilibrium angles is equal to ee = 10.3%.



184

(b) DropSnake measurement: OpsL = 49.6°, Qdsr = 49.6°

Figure 4.102: 0^ = 49.6° measured at t = 10.00[s] for ()f:; = 45° and mesh with maximum 
resolution A =

The volume conservation is presented in Fig. 4.103, being at machine error for all 
simulation.

t [s]
Figure 4.103: log of the error in volume conservation (e^/) vs time for 9 = 45°
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4-2.2.S Hydrophilic case: 3 = 60o, base mesh [16 x 16 x 16] and 3 levels of refinement, 
At = 1.5E — 4[s]. No-Slip boundary condition.

Figures 4.104 and 4.105 present the time evolution of the interface (x - z slice and 
top view, respectively), and the Eulerian mesh used. Similar to the cases with 3 = 30o and
3 = 45o, the results obtained with the amr3d code are smoother than the ones presented 
by Afkhami and Bussmann (2009), where the contact point quickly advances to the desired 
angle and the middle of the droplet advances later (see Fig. 12 from the authors). From the 
top view it can be seen that the interface symmetry is maintained.

(g) Interface at t = 8.0[s] (h) Interface at t = 10.0[s]

Figure 4.104: x-z plane view (y = 0.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.2[m], placed at the bottom of a domain Q = [1 ]3 [m3] 
exposed to a sudden change in 3 = 60o
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(dashed line)

The velocity field, presented in Fig. 4.106, acts in the expected direction, to spread
the droplet over the surface. Its magnitude is smaller than the 0 = 45° case, and almost no
recirculation is observed at the contact point.
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Figure 4.106: x-z plane view (y = 0.5[m]) of the time evolution of the velocity vector field 
for the simulated initial hemispherical drop of radius R = 0.2[m], placed at the bottom of a
domain Q = [1]3[m3] exposed to a sudden change in 0 = 60°.

(g) t = 8.0[s] (h) t = 10.0[s]

The numerically measured contact angle is presented in Fig. 4.107 being equal to 0N =
61.6°. The error between the numerical and the equilibrium angles is equal to ee = 2.6%.
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(b) DropSnake nieasui’ement: dj^sL = 61.2°, dj^sR — 61.6°

Figure 4.107: 9\; = 61.6° measured at: t = 10.00[s] for 9^ = 60° and mesh with maximum 
resolution A = 77

The volume conservation is presented in Fig. 4.108, being at machine error for all 
simulation.

-30.00

-32.00

301------------ 1------------ 1------------ 1------------ 1------------
0.00 1.00 2.00 3.00 4.00 5.00its]

Figure 4.108: log of the error in volume conservation (e^/) vs time for 9 = 60°
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4-2.2.4 Hydrophobic case: 3 = 120o, base mesh [16 x 16 x 16] and 3 levels of refinement, 
At = 1.5E — 4[s]. No-Slip boundary condition.

Figures 4.109 and 4.110 present the time evolution of the interface (x - z slice and 
top view, respectively), and the Eulerian mesh used. Similar to the hydrophilic cases, the
results obtained with the amr3d code are smoother than the ones presented by Afkhami and 
Bussmann (2009), where the contact point quickly advances to the desired angle and the 
middle of the droplet advances later (see Fig. 13 from the authors). From the top view it 
can be seen that the interface symmetry is maintained.

(g) Interface at t = 8.0[s] (h) Interface at t = 10.0[s]

Figure 4.109: x-z plane view (y = 0.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.2[m], placed at the bottom of a domain Q = [1 ]3 [m3] 
exposed to a sudden change in 3 = 120o
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(dashed line)

The velocity field, presented in Fig. 4.111, acts in the expected direction, to reduce 
the area of the droplet over the surface.
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(g) t = 8.0[s] (h) t = 10.0[s]

Figure 4.111: x-z plane view (y = 0.5[m]) of the time evolution of the velocity vector field 
for the simulated initial hemispherical drop of radius R = 0.2[m], placed at the bottom of a 
domain Q = [1]3[m3] exposed to a sudden change in 3 = 120o.
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The numerically measured contact angle is presented in Fig. 4.112 being equal to 9^ = 
121.1°. The error between the numerical and the equilibrium angles is equal to eg = 0.92%.

(b) DropSnake measurement: 9dsl = 121.6°, 9dsR = 121.4°

Figure 4.112: 9N = 121.1° measured at t = 10.00[s] for 9E = 120° and mesh with maximum 
resolution A = %

The volume conservation is presented in Fig. 4.113, being at machine error for all 
simulation.

t [s]
Figure 4.113: log of the error in volume conservation vs time for 6 = 120°
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4.2.2.5 Hydrophobic case: 0 = 135° , base mesh [16 x 16 x 16] and 3 levels of refinement,
At = 1.5E — 4[s]. No-Slip boundary condition.

Figures 4.114 and 4.115 present the time evolution of the interface (x - z slice and top
view, respectively), and the Eulerian mesh used. Different to what was observed by Afkhami 
and Bussmann (2009) (see Fig. 13 from the authors), in the amr3d code, for 0 > 120°, the 
drop does not jump off the surface.

(g) Interface at t = 8.0[s] (h) Interface at t = 10.0[s]

Figure 4.114: x-z plane view (y = 0.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.2[m], placed at the bottom of a domain Q = [1]3[m3] 
exposed to a sudden change in 0 = 135°
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(dashed line)

The velocity field, presented in Fig. 4.116, acts in the expected direction, to reduce
the area of the droplet over the surface. As expected, its magnitude is bigger than with
0 = 120°, especially at the beginning of the simulation.
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Figure 4.116: x-z plane view (y = 0.5[m]) of the time evolution of the velocity vector field 
for the simulated initial hemispherical drop of radius R = 0.2[m], placed at the bottom of a 
domain Q = [1]3[m3] exposed to a sudden change in 0 = 135°.

rr

The numerically measured contact angle is presented in Fig. 4.117 being equal to 0N = 
133.5°. The error between the numerical and the equilibrium angles is equal to ee = 1.1%.
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(b) DropSnake measurement: 9dsl = 136.3°, Odsr — 135.6°

Figure 4.117: = 133.5° measured at t = 10.00[s] for 9e = 135° and mesh with maximum
resolution â = Â

The volume conservation is presented in Fig. 4.118, being at machine error for all 
simulation.

t [s]
Figure 4.118: log of the error in volume conservation vs time for 6 = 135°
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4.2.2.6 Hydrophobic case: 3 = 150o, base mesh [16 x 16 x 16] and 3 levels of refinement, 
At = 1.5E — 4[s]. No-Slip boundary condition.

Figures 4.119 and 4.120 present the time evolution of the interface (x — z slice and 
top view, respectively), and the Eulerian mesh used. As already obtained for 3 = 1350, and 
different to what was observed by Afkhami and Bussmann (2009), in the amr3d code, for 
3 > 120o, the drop does not jump off the surface.

(g) Interface at t = 8.0[s] (h) Interface at t = 10.0[s]

Figure 4.119: x-z plane view (y = 0.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.2[m], placed at the bottom of a domain Q = [1 ]3 [m3] 
exposed to a sudden change in 3 = 150o
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(dashed line)

The velocity field, presented in Fig. 4.121, acts in the expected direction, to reduce the
area of the droplet over the surface. As expected, its magnitude is bigger than with 0 = 120o

and 0 = 135o, especially at the beginning of the simulation. A small spurius current and
recirculation is also observed.
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Figure 4.121: x-z plane view (y = 0.5[m]) of the time evolution of the velocity vector field 
for the simulated initial hemispherical drop of radius R = 0.2[m], placed at the bottom of a
domain Q = [1]3[m3] exposed to a sudden change in 0 = 150o.

(g) t = 8.0[s] (h) t = 10.0[s]

The numerically measured contact angle is presented in Fig. 4.122 being equal to 0N =
149.4o. The error between the numerical and the equilibrium angles is equal to ee = 0.4%.
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(b) DropSnake measurement: 9dsl = 150.6°, &dsr = 150.8°

Figure 4.122: 0N = 149.4° measured at t = 10.00[.s] for ()/,; = 150° and mesh with maximum 
resolution A = o4

The volume conservation is presented in Fig. 4.123, being at machine error for all 
simulation.

its]

Figure 4.123: log of the error in volume conservation (e.^) vs time for 6 = 150°
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4-2.3 3D contact point study with density ratio pl/ pg = 1.0 and viscosity ratio pl/ pg = 1.0. 
Couple with the Immersed boundary method

Numerical experiments for the contact point model coupled with the Immersed bound­
ary method are performed for some of the hydrophilic and hydrophobic cases presented on 
Section 4.2.1, which were based on the work of Lai, Tseng and Huang (2010).

A drop on a solid surface initially at equilibrium is suddenly imposed to a different 
contact angle; the drop fluid should accelerate toward a steady state defined by the new 
value of 0E. The force at the contact point should vanish as the equilibrium contact angle is 
approximated.

The setup consists of an initially hemispherical drop (0 = 90°) at t = 0[s], of radius 
R = 0.5[m], placed at z = 1.0 of a domain Q = [3, 3, 2] [m3]. The immersed boundary consists 
of a parallelepiped with a coordinate base x1 = y1 = 0.5, x2 = y2 = 2.5, z1 = 0.6 and h = 0.4 
(z2=1.0).

The density ratio is pi/pg = 1, the viscosity ratio is pl/ pg = 1, surface tension is a = 
1[N/m]. The gravity is not considered. For this particular case, the only force responsible 
for the movement of the interface is the contact point force.

The computations are performed in 4 processors, with an adaptative mesh of base [24 
x 24 x 16] and 4 levels of refinement for 0 = 300 and [48 x 48 x 32] and 3 levels of refinement 
for 0 = 600 and 0 = 1350 (maximum grid resolution of A = 1/64). The Semi-Backward 
Difference is used for the temporal discretization, and the Central Difference Scheme (CDS) 
for the advection model.

The time step is determined by the capillarity restriction, and is equal to At = 7.79E — 
4[s]. The error in the initialized vof volume is e = 1.17E — 4.

0.5 1.0 1.5 2.0 2.5
X-Axis

Figure 4.124: Eulerian domain with the mesh used for the simulation, the immersed boundary 
and the tag of the Eulerian cells: 0 = inside cells; 1 = interface cells; 2 = outside cells.

Figure 4.124 presents a x — z slice view at y = 1.5[m] (half of the domain) of the
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Eulerian domain, the adaptative mesh, the interface and the immersed boundary at time 
t= 0[s]. The Eulerian computational cells are tagged as cells inside (blue color; tag=0), 
at the interface (green color; tag=1) and outside (red color; tag=2). This indicates the 
Eulerian cells that might or not be used by the Least Squares system for both the normal 
and curvature computation, as well as where the contact point model is applied.

4.2.3.1 0 = 30°

Figures 4.125 and 4.126 presents the time evolution of the interface (x — z slice and 
top view, respectively), and the Eulerian mesh used.

Figure 4.125: x-z plane view (y = 1.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m], placed at the bottom of a domain Q = [3]3[m3] 
exposed to a sudden change in 0 = 30°, for mesh with maximum resolution A = 64•

(e) Interface at t = 1.0[s] (f) Interface at t = 5.0[s]
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(a) Interface at t = 0.0[s] (b) Interface at t = 5.0[s]

Figure 4.126: x-y plane view (z = 1.0[m]) of the time evolution of the simulated initial
hemispherical drop of radius R = 0.5[m], exposed to a sudden change in 0 = 30o, for mesh
with maximum resolution A = 1.64

There is no observed penetration of the interface in the Immersed Boundary, and 
symmetry is maintained during the simulation.

The velocity field, presented in Fig. 4.127, acts in the expected direction, to spread 
the droplet over the surface. Similar to the case with no Immersed Boundary (although for 
0=600)andthesamemeshresolution, attimet=1.0[s] no recirculation at the contact 
point is observed. The velocities are also on the same order of magnitude for the cases with 
and without Immersed Boundary.
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(a) Interface at t = 0.0[s] (b) Interface at t = At[s]

(c) Interface at t = 0.1[s] (d) Interface at t = 0.5[s]

2.5-................... i i i i i i i . ....................... 5_

(e) Interface at t = 1.0[s] (f) Interface at t = 5.0[s]

Figure 4.127: x-z plane view (y = 1.5[m]) of the time evolution of the velocity vector field for 
the simulated initial hemispherical drop of radius R = 0.5[m], exposed to a sudden change
in 0 = 30o, for mesh with maximum resolution A = 1.64

The numerically measured contact angle is presented in Fig. 4.128 being equal to 0N = 
32.6o. The error between the numerical and the equilibrium angles is equal to ee = 8.7%.
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(a) ImageJ averaged measured contact angle djj = 32.3°

0. 5-

...........  ' I.......... I | I I I . I I . , . | . I , I I . | I I ! I I . I I . | . I I........
0.5 1.0 1.5 2.0 2.5

X-Axis

(b) DropSnake measurenient: Odsl := 33.0°, Qdsr — 32.5°

Figure 4.128: 9^ = 32.6° measured at t = 5.00[s] for mesh with maximum resolution A =

The volume conservation is presented in Fig. 4.129, being on the order of O(E — 13) 
during the simulation.

Figure 4.129: log of the error in volume conservation (e,„o/) vs time for mesh with maximum 
resolution A =
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4.2.3.2 0 = 60o

Figures 4.130 and 4.131 presents the time evolution of the interface (x - z slice and
top view, respectively), and the Eulerian mesh used.

O.S 1.0 l.S 2.0 2.S
X-Axis

O.S 1.0 l.S 2.0 2.5
X-Axis

(a) Interface at t = 0.0[s] (b) Interface at t = At[s]

0.5 1.0 l.S 2.0 2.5
X-Axis

(c) Interface at t = 0.1[s]

(e) Interface at t = 1.0[s]

(d) Interface at t = 0.5[s]

O.S 1.0 l.S 2.0 2.S
X-Axis

(f) Interface at t = 5.0[s]

Figure 4.130: x-z plane view (y = 1.5[m]) of the time evolution of the simulated initial
hemispherical drop of radius R = 0.5[m], placed at the bottom of a domain Q = [3]3 [m3 ]
exposed to a sudden change in 0 = 60o, for mesh with maximum resolution A = 64•
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Figure 4.131: x-y plane view (z = 1.0[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m], exposed to a sudden change in 0 = 60°, for mesh 
with maximum resolution A = 1.64

(a) Interface at t = 0.0[s] (b) Interface at t = 5.0[s]

Again, there is no observed penetration of the interface in the Immersed Boundary, 
and its symmetry is maintained during the simulation, although with some oscillations at 
the final time.

The velocity field, presented in Fig. 4.132, acts in the expected direction, to spread the 
droplet over the surface. At time t = 1.0[s] no recirculation at the contact point is observed.
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(a) Interface at t = 0.0[s] (b) Interface at t = At[s]

(c) Interface at t = 0.1[s] (d) Interface at t = 0.5[s]

(e) Interface at t = 1.0[s] (f) Interface at t = 5.0[s]

Figure 4.132: x-z plane view (y = 1.5[m]) of the time evolution of the velocity vector field for 
the simulated initial hemispherical drop of radius R = 0.5[m], exposed to a sudden change
in 0 = 60°, for mesh with maximum resolution A = 1.64

The numerically measured contact angle is presented in Fig. 4.133 being equal to 0N = 
61.7°. The error between the numerical and the equilibrium angles is equal to = 2.9%.
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(a) ImageJ averaged measured contact angle djj = 61.3°
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(b) DropSnake ineasui'ement: Onsi. = 63.5°, 9dsr — 60.5°

Figure 4.133: 9^ = 60.3° measured at t = 5.00[.s] for mesh with maximum resolution A =

The volume conservation is presented in Fig. 4.134, being on the order of O(E — 14) 
during the simulation.

Figure 4.134: log of the error in volume conservation (e,„o/) vs time for mesh with maximum 
resolution A =
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4.2.3.3 0 = 135o

Figures 4.135 and 4.136 presents the time evolution of the interface (x - z slice and 
top view, respectively), and the Eulerian mesh used. No penetration of the interface in the 
Immersed Boundary is observed.

X-Axis

(c) Interface at t = 0.1[s]

O.S 1.0 l.S 2.0 2.5
X-Axis

(b) Interface at t = At[s]

O.S 1.0 l.S 2.0 2.5
X-Axis

(d) Interface at t = 0.5[s]

O.S 1.0 l.S 2.0 2.5
X-Axis

(e) Interface at t = 1.0[s]

0.5 1.0 1.5 2.0 2.5
X-Axis

(f) Interface at t = 5.0[s]

Figure 4.135: x-z plane view (y = 1.5[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m], placed at the bottom of a domain Q = [3]3[m3] 
exposed to a sudden change in 0 = 135o, for mesh with maximum resolution A = 64.
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(a) Interface at t = 0.0[s] (b) Interface at t = 5.0[s]

Figure 4.136: x-y plane view (z = 1.0[m]) of the time evolution of the simulated initial 
hemispherical drop of radius R = 0.5[m], exposed to a sudden change in 0 = 135°, for mesh 
with maximum resolution A = 1.

The velocity field, presented in Fig. 4.137, acts in the expected direction, to reduce the 
area of the droplet over the surface. Its magnitude is on the same order than with 0 = 30° 

and 0 = 60°, and also for the case with no Immersed Boundary and same mesh resolution.
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^™-o.

(a) Interface at t = 0.0[s] (b) Interface at t = At[s]

-0.450

0.300 £ 1. 

^^-0.150  ̂

^■-0.00

(c) Interface at t = 0.1[s] (d) Interface at t = 0.5[s]

(e) Interface at t = 1.0[s] (f) Interface at t = 5.0[s]

Figure 4.137: x-z plane view (y = 1.5[m]) of the time evolution of the velocity vector field for 
the simulated initial hemispherical drop of radius R = 0.5[m], exposed to a sudden change 
in 0 = 135°, for mesh with maximum resolution A = 64.

The numerically measured contact angle is presented in Fig. 4.138 being equal to 0N = 
135.7°. The error between the numerical and the equilibrium angles is equal to eg = 0.5%.
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(a) ImageJ averaged measured contact angle Gjj = 135.7°

0.5 1.0 1.5 2.0 2.5
X-Axis

(b) DropSnake measurement: Gdsl — 135.5°, Gdsr —
135.9°

Figure 4.138: GN = 60.3° measured at t = 5.00[s] for mesh with maximum resolution A =

The volume conservation is presented in Fig. 4.139, being on machine error order 
during the simulation.

Figure 4.139: log of the error in volume conservation vs time for mesh with maximum 
resolution A =
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CHAPTER V

CONCLUSIONS

In this thesis the author aimed to analyze the dynamics of gas-liquid-solid contacts 
occurring in two-phase flows. The work focused on developing and validation of computa­
tional techniques to efficiently and accurately model the gas-liquid-solid contact dynamics. 
The mathematical framework was developed in the 3D computer code previously and jointly 
developed at FEMEC-UFU and at IME-USP (AMR3D), which employ a formulation based 
on the primitive variables modeling a flow (velocity, pressure, and phase indicator function) 
whose spatial discretization is constructed on block-structured Cartesian meshes containing 
adaptive refinement. However, the developed modeling framework is aimed at efficiently 
capturing the physics and should be applicable in any numerical framework.

The main objective of the thesis was to develop a model capturing the gas-liquid-solids 
contact dynamics in multiphase flows, which is: (i) accurate, (ii) robust, (iii) as generic as 
possible.

The PLIC-VOF method was implemented in the AMR3D code, and comparison with 
the Front-Tracking method implemented by Pivello (2012) and literature results was per­
formed.

Several normal and curvature computation schemes from literature were evaluated and 
a novel Least Squares method was implemented for both normal and curvature computations, 
with results comparable to the most common used schemes, including the Height Function 
method with variable stencil size. However, the Least-Squares method is not restricted to 
cartesian meshes, being directly applicable to non-structured meshes as well.

The surface tension force computation is performed with the classical method from 
Brackbill, Kothe and Zemach (1992). At the solid-liquid-gas interface (the triple point) the 
adjustment of the surface tension force is performed with a novel approach based on the 
Least Squares method, which allows for the same procedure to be applied in all boundaries, 
including the Immersed Boundary.

The same direct-force based scheme from the Immersed Boundary method is used for
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the Eulerian velocity adjustment at the contact point to account for the contact angle. This 
scheme is used to account for the contact angle in both the conventional and the Immersed 
boundary wall.

The normal, curvature and surface tension force computation at the contact point 
proved to be robust and generic, with no distinction being made as whether it is a conven­

tional or an Immersed Boundary wall.
At the contact point the no-slip and the free-slip boundary conditions were evaluated. 

It is known that the no-slip boundary condition of viscous flow gives rise to a non-integrable 
singularity in the surface shear stress. In the AMR3D code, contact point slip is achieved 
implicitly, as the advection scheme used to advect volume fractions utilizes face-centered 
velocities, so that the nearest velocity to the contact point is one half cell width above a 
solid boundary.

5.1 Future developments

An analysis of slip models and its ability to properly predict the interface movement at 
the contact point is one point of future study. Concerning the contact angle, only its static 
value was used for the simulation. The computation of the dynamic contact angle with 
different models and the correspondent interface evolution is also worth of future analysis. 
Concerning the coupling of the contact point model with the Immersed Boundary method, 
simulations with inclined and curved boundaries is a topic to be further evaluated.
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