
SERVIÇO PÚBLICO FEDERAL 
MINISTÉRIO DA EDUCAÇÃO 

UNIVERSIDADE FEDERAL DE UBERLÂNDIA 
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA VEGETAL

&B»GVC$

Variações anatômicas, estruturais e plasticidade fenotípica em duas regiões foliares ao 

longo da roseta de Aechmea distichantha Lem. (Bromeliaceae)

Mestranda: Manoela Bordignon Hermes

Orientador: Prof. Dr. Denis Coelho de Oliveira 

Co-orientadora : Profa. Dra. Neuza Maria de Castro

Uberlândia -  MG

2017



SERVIÇO PÚBLICO FEDERAL 
MINISTÉRIO DA EDUCAÇÃO 

UNIVERSIDADE FEDERAL DE UBERLÂNDIA 
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA VEGETAL

&B»GVC$

Variações anatômicas, estruturais e plasticidade fenotípica em duas regiões foliares ao 

longo da roseta de Aechmea distichantha Lem. (Bromeliaceae)

Dissertação apresentada à Universidade 

Federal de Uberlândia como parte dos 

requisitos para a obtenção do título de Mestre 

em Biologia Vegetal.

Mestranda: Manoela Bordignon Hermes

Orientador: Prof. Dr. Denis Coelho de Oliveira 

Co-orientadora: Profa. Dra. Neuza Maria de Castro

Uberlândia -  MG

2017



H553v
2017

Dados Internacionais de Catalogação na Publicação (CIP) 
Sistema de Bibliotecas da UFU, MG, Brasil.

Hermes, Manoela Bordignon, 1988
Variações anatômicas, estruturais e plasticidade fenotípica em duas 

regiões foliares ao longo da roseta de Aechmea distichantha Lem. 
(Bromeliaceae) / Manoela Bordignon Hermes. - 2017.

63 f. : il.

Orientador: Denis Coelho de Oliveira.
Coorientadora: Neuza Maria de Castro.
Dissertação (mestrado) - Universidade Federal de Uberlândia, 

Programa de Pós-Graduação em Biologia Vegetal.
Inclui bibliografia.

1. Biologia vegetal - Teses. 2. Bromélia - Teses. 3. Parede celular 
vegetal - Teses. 4. Plasticidade fenotípica - Teses. I. Oliveira, Denis 
Coelho de. II. Castro, Neuza Maria de. III. Universidade Federal de 
Uberlândia. Programa de Pós-Graduação em Biologia Vegetal. IV. 
Título.

CDU: 581



SERVIÇO PÚBLICO FEDERAL 
MINISTÉRIO DA EDUCAÇÃO 

UNIVERSIDADE FEDERAL DE UBERLÂNDIA 
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA VEGETAL

4LB»GVC$

Variações anatômicas, estruturais e plasticidade fenotípica em duas regiões foliares ao 

longo da roseta de Aechmea distichantha Lem. (Bromeliaceae)

Manoela Bordignon Hermes

COMISSÃO EXAMINADORA

Presidente 7
(Orientador)_______  jr  /  y —

V / Prof. Dr. Denis Coelho de Oliveira 
, /  Universidade Federal de Uberlândia - UFU

L ; ) /
Examinadores:____________

Profa. Dra. Maria das Graças Sajo
Universidade Estadual Paulista "Julio de Mesquita Filho” - Campus de Rio Claro

- Profa. Dra. Ana Silvia FFranco Pinheiro Moreira 
Universidade Federal de Uberlândia - UFU

Dissertação aprovada em 23/02/2017

Uberlândia -  MG

2017



1

À minha família, minha fortaleza.



ii

Agradecimentos

Agradeço à Universidade Federal de Uberlândia, por toda a infraestrutura, 

financiamento e apoio ao longo de toda a minha formação acadêmica.

Agradeço à CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) 

pela concessão da bolsa para financiar meus estudos e aperfeiçoamento profissional durante 

estes dois anos.

Agradeço ao professor Dr. Denis Coelho de Oliveira pela oportunidade de ser sua 

orientada, pelo aprendizado, experiência, conhecimento e desafios ao longo dos últimos três 

anos.

Agradeço à professora Dra. Neuza Maria de Castro, por ter me aceitado há seis anos 

para ser sua estagiária. Foram seis anos de aprendizado e admiração constante. Obrigada pela 

oportunidade de conviver com a senhora esse tempo, por todos os ensinamentos, experiência, 

carinho, amizade e respeito mútuo.

Agradeço à Deus, por todas as graças alcançadas ao longo da minha jornada nesta vida, 

por todas as conquistas, dificuldades, superações, aprendizados e evolução.

Agradeço à minha família, minha fortaleza e meu apoio incondicional, por acreditarem 

na minha capacidade e competência quando nem eu mesma acreditava. Obrigada pelo amor e 

carinho de vocês, amo vocês. Aos meus pais, por toda dedicação, esforço e abdicação que 

fizeram em prol da minha formação pessoal e profissional. Aos meus irmãos, pelo exemplo que 

me deram desde que nasci, por todos os ensinamentos ao longo de todos estes anos e por 

compreenderem a escolha do caminho que eu quis trilhar até aqui.

Agradeço ao meu namorado, Danilo, pelo amor, paciência, apoio, palavras de conforto, 

parceria e compreensão pela minha ausência em vários momentos ao longo destes anos.

Agradeço os meus amigos, Alessandra, Ana Luisa, Ana Luiza, Andressa, Caroline, 

Cínthia, Douglas, Fernanda, Grabriela, Ianna, Iara, Lílian, Márcia, Pamella, Paulo César e



Thais, obrigada pelo carinho, pela amizade, pela lealdade, pela compreensão e por todos os 

momentos compartilhados.

Agradeço às professoras Dra. Maria das Graças Sajo e Dra. Ana Silvia Franco Pinheiro 

Moreira em participarem da banca de mestrado.

Agradeço aos colegas do Laboratório de Desenvolvimento Vegetal e Interações e do 

Laboratório de Fisiologia Vegetal pela convivência, amizade, troca de experiências e parceria 

ao longo destes dois anos.

Agradeço à Nívia Mara Silva Rodrigues, secretária do Programa de Pós-Graduação em 

Biologia Vegetal, por todo suporte, apoio, paciência e amizade.

E, por fim, agradeço à todos os professores que fizeram parte da minha formação 

profissional e pessoal. Com certeza guardarei com muito carinho todos os ensinamentos e 

experiências compartilhadas.

iii



Sumário

Resumo Geral.........................................................................................................................................1

Abstract.................................................................................................................................................. 2

Introdução Geral.................................................................................................................................... 3

Referências Bibliográficas...................................................................................................................6

Variações anatômicas, estruturais e plasticidade fenotípica em duas regiões foliares ao longo 
da roseta de Aechmea distichantha Lem. (Bromeliaceae).............................................................. 9

Resum o............................................................................................................................................. 10

Abstract............................................................................................................................................. 11

Introdução.........................................................................................................................................12

Material e M étodos......................................................................................................................... 15

Sistema de estudo........................................................................................................................ 15

Análise Anatômica ..................................................................................................................... 16

Microscopia Eletrônica de Varredura..................................................................................... 16

Análises Histométricas e Índice de Plasticidade (RDPI)......................................................17

Imunocitoquímica....................................................................................................................... 18

Análise estatística....................................................................................................................... 18

Resultados.........................................................................................................................................18

Características Gerais................................................................................................................18

Índice de Plasticidade (RDPI).................................................................................................. 20

Análise de Imunocitoquímica...................................................................................................  22

Discussão......................................................................................................................................... 24

Índices de Plasticidade Fenotípica dos tecidos foliares baseado em Distância Relativa 
(RDPI).......................................................................................................................................... 26

Imunocitoquímica da parede celular....................................................................................... 27

Conclusão........................................................................................................................................ 30

Referência Bibliográfica ...............................................................................................................  30

Tabelas..............................................................................................................................................37

Figuras..............................................................................................................................................43

Normas da Revista: Acta Botanica B rasilica..................................................................................51

iv



1

Resumo Geral

Espécies de bromélia tanque-dependente geralmente apresentam sistema radicular reduzido e 

assim, além da atividade fotossintética, as folhas absorvem água e nutrientes que se acumulam 

no tanque. Espera-se que variações estruturais nos tecidos foliares, em decorrência de diferentes 

posições na roseta, estejam relacionadas à capacidade de absorver e armazenar água, e auxiliem 

na caracterização fisiológica de Aechmea distichantha Lem., espécie de estudo deste trabalho. 

Análises anatômicas foram realizadas em amostras do ápice e da base de folhas ocupando 

diferentes posições ao longo da roseta de A. distichantha. A análise de plasticidade fenotípica 

para avaliar a amplitude das variações estruturais foi feita usando dados de histometria. A 

estrutura da parede celular foi avaliada através de testes de imunocitoquímica usando anticorpos 

monoclonais. A partir das análises realizadas foi possível constatar que as folhas de A. 

distichantha apresentam variações estruturais da parede celular e plasticidade fenotípica de 

acordo com a região foliar analisada e com a posição da folha na roseta, sendo o parênquima 

aquífero o tecido mais plástico. A região basal das folhas, principalmente das internas, apresenta 

maior quantidade de parênquima aquífero e pectina com alta metil-esterificação da parede que 

facilita a absorção de água nos estágios iniciais de desenvolvimento. A região apical das folhas 

externas na roseta é mais especializada para a atividade fotossintética, e apresenta menor 

quantidade de parênquima aquífero e paredes celulares mais rígidas. Assim, a partir deste 

trabalho, nota-se que A. distichantha apresenta gradiente estrutural e funcional tanto nas 

diferentes regiões da folha, como em folhas ocupando diferentes posições na roseta.

Palavras-chave: bromélia tanque-dependente, parênquima aquífero, parede celular, 

plasticidade fenotípica.
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Abstract

Species of tank-dependent bromeliad usually have a reduced root system and thus, in addition 

to the photosynthetic activity, the leaves absorb water and nutrients that accumulate in the tank. 

It is expected that structural variations in the foliar tissues, due to different positions in the 

rosette, are related to the capacity to absorb and store water, and help in the physiological 

characterization of Aechmea distichantha Lem. Anatomical analyzes were performed on apex 

and leaf base samples occupying different positions along the rosette of A. distichantha. The 

analysis of phenotypic plasticity to evaluate the amplitude of the structural variations was done 

using histometry data. The cell wall structure was evaluated by immunocytochemistry assays 

using monoclonal antibodies. From the analyzes carried out, it was possible to verify that the 

leaves of A. distichantha present structural variations of the cell wall and phenotypic plasticity 

according to the analyzed leaf region and the position of the leaf in the rosette, the aquifer 

parenchyma being the most plastic tissue. The basal region of the leaves, mainly of the internal 

ones, presents / displays greater amount of parenchyma aquifer and pectin with high methyl 

esterification of the wall that facilitates the absorption of water in the initial stages of 

development. The apical region of the outer leaves in the rosette is more specialized for the 

photosynthetic activity, and presents less amount of aquifer parenchyma and more rigid cellular 

walls. Thus, from this work, it is noted that A. distichantha presents a structural and functional 

gradient both in the different regions of the leaf, and in leaves occupying different positions in 

the rosette.

Key words: tank-dependent bromeliad, parenchyma aquifer, cell wall, phenotypic plasticity.
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Introdução Geral 1

Campo rupestre é uma fitofisionomia presente no Cerrado e na Caatinga, caracterizado 

por uma vegetação associada ao substrato de quartzito-arenito em locais de altitude elevada 

(RAPINI et al., 2008). A vegetação é composta principalmente por ervas e arbustos distribuídos 

em mosaico, geralmente incluindo as comunidades rupícolas dos afloramentos rochosos 

(ALVEZ; KOLBEK, 1994; CONCEIÇÃO; GIULIETTI, 2002; GIULIETTI et al., 1987; 

GIULIETTI; PIRANI; HARLEY, 1997; HARLEY, 1997). Os campos rupestres apresentam 

características ambientais muito peculiares como solos oligotróficos e ácidos, oscilações diárias 

de temperaturas, exposição ao vento e severas restrições hídricas. Desta forma, apresentam 

vegetação tipicamente xeromórfica, com adaptações estruturais típicas de ambientes xéricos, 

ou seja, ambientes com baixa disponibilidade hídrica (GIULIETTI; PIRANI; HARLEY, 1997; 

HARLEY, 1997).

Ambientes xéricos apresentam grupos marcantes de espécies vegetais, especialmente 

entre as monocotiledôneas: Poaceae, Eriocaulaceae, Xyridaceae e Bromeliaceae, entre outras 

(RAPINI et al., 2008). Dentre as adaptações morfológicas, podemos mencionar a elevada 

capacidade de fixação ao substrato, tolerância à dessecação ou resistência ao estresse hídrico e 

folhas geralmente coriáceas e/ou fibrosas (RAPINI et al., 2008). Ou ainda, alterações mais 

extremas, como a formação de espinhos nos cactos e a formação de tanques. Estes ocorrem em 

muitas espécies de bromélias rupícolas, formados pela sobreposição da base das folhas 

dispostas em roseta, que acumula água e detritos orgânicos (GIVNISH et al., 2014; RAPINI et 

al., 2008; TAKAHASHI; MERCIER, 2011).

Além de adaptações na morfologia externa, ocorrem adaptações anatômicas como: 

redução no tamanho das células epidérmicas e decréscimo no tamanho dos espaços celulares, 

aumento no espessamento das paredes celulares e da cutícula, a clorofila geralmente não está

1 Introdução Geral segue as normas da ABNT
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presente em células paliçádicas típicas, que estão ausentes em um certo número de espécies, 

pode ou não ter parênquima esponjoso, presença de parênquima aquífero com grandes células 

de paredes delgadas e sistema vascular com grande quantidade de esclerênquima (BENZING, 

2000; SMITH; DOWNS, 1979). Nas bromélias, além das características mencionadas acima, 

são observados tricomas tectores e escamas peltadas com função na absorção de água através 

das folhas (BENZING, 2000; MENEZES; SILVA; PINNA, 2006), visto que, geralmente, estas 

espécies apresentam redução estrutural e funcional do sistema radicular (BENZING, 2000; 

TOMLINSON, 1969).

As folhas de bromélias tanque-dependentes apresentam diferenças anatômicas e 

fisiológicas entre as regiões apical e basal, sendo a região apical especializada para a 

fotossíntese e a basal para a absorção de água (FRESCHI et al. 2010; SCHIMITD; ZOTZ, 

2001). A bainha foliar, em contato direto com a água acumulada, permite que a planta sobreviva 

em ambientes xéricos (GIVNISH et al., 2014; PITTENDRIGH, 1948), como os campos 

rupestres. Entretanto, a água limita a capacidade dessa região de realizar as trocar gasosas com 

a atmosfera (BENZING, 2000). Porém, são poucos os trabalhos que discutem esse gradiente 

anatômico e fisiológico (FRESCHI et al., 2010) em bromélias tanque-dependentes.

A estrutura das células, tecidos e órgãos é dependente das alterações na composição da 

parede celular durante o desenvolvimento vegetal, especialmente dos componentes: pectinas, 

hemiceluloses, celuloses e proteínas estruturais (ALBERSHEIM et al., 2011; COSGROVE, 

2005; DOLAN; LINSTEAD; ROBERTS, 1997; PALIN; GEITMANN, 2012; SOMERVILLE 

et al., 2004). Essas variações na composição e estrutura da parede celular dependem do estágio 

de desenvolvimento, tipo e função do tecido, e das condições ambientais (ALBERSHEIN et al., 

2011; BECK, 2005; CAFFALL; MOHNEN, 2009; EVERT, 2006; POPPER, 2008; OVODOV, 

2009;). Assim, espera-se que existam variações estruturais nas folhas em diferentes posições na 

roseta nas espécies de bromélias tanque-dependentes e que estas variações estejam relacionadas
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às características funcionais adaptativas deste grupo. Ainda, pela primeira vez a variação na 

composição da parede celular de A. distichantha será avaliada e relacionada à funcionalidade 

dos tecidos e adaptação desta espécie tanque-dependente. Adaptações estruturais, morfológicas 

e anatômicas presentes nas espécies de campos rupestres geralmente têm como função aumentar 

a eficiência no uso da água e o metabolismo fotossintético (RAPINI et al., 2008; TAIZ; 

ZEIGER, 2006).

O gênero Aechmea Ruiz & Pav. (Bromelioideae) é caracterizado morfologicamente por 

ser acaulescente, frequentemente se propagando por rizomas, folhas simples claramente 

dividida em bainha e lâmina, geralmente formando tanque, de textura coriácea e com algumas 

nervuras proeminentes (SMITH; TILL, 1998). O escape é bem desenvolvido, inflorescência 

composta ou simples, flores dísticas ou polissítico, séssil, perfeita, sépalas livres ou conadas e 

fortemente assimétricas, pétalas livres, tendo aproximadamente 2 apêndices adnatos, estames 

menores do que as pétalas, livres ou a segunda séria adnata às pétalas e anteras dorsifixas 

(SMITH; TILL, 1998). A bainha é mais espessa que a lâmina, com formato oval e geralmente 

apresenta ápice agudo ou obtuso (SMITH; TILL, 1998). As folhas de Aechmea são 

hipoestomáticas, revestidas por células epidérmicas de paredes sinuosas, portadoras de corpos 

silicosos e com escamas peltadas nas duas superfícies (PROENÇA; SAJO, 2004). O mesofilo 

é formado pela hipoderme mecânica, parênquima aquífero e parênquima clorofiliano que 

apresenta canais de aeração interrompidos por diafragmas formados por células braciformes 

(PROENÇA; SAJO, 2004). A anatomia foliar de algumas espécies do gênero já  foram 

estudadas, tanto para fins descritivos (ARRUDA; COSTA, 2003; PROENÇA; SAJO, 2004; 

SCATENA; SEGECIN, 2005) e taxonômicos (VERSIEUX et al., 2010), como ecológicos, com 

o objetivo de compreender a variabilidade adaptativa das espécies à diferentes ambientes 

(CAVALLERO; LÓPEZ; BARBERIS, 2009; PRADO et al., 2014; SCARANO et al., 2002;

VOLTOLINI; SANTOS, 2011; ZOTZ; REICHLING; VALLADARES, 2002; ZOTZ et al.,
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2004). Entretanto, este estudo busca explicar o gradiente estrutural e funcional dentro da roseta 

de uma espécie de bromélia tanque-dependente - Aechmea distichantha - e consequentemente 

compreender os mecanismos de adaptação ao ambiente xérico.
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Resumo

Espécies de bromélia tem ampla capacidade de adaptação a diversos ambientes com variação 

da disponibilidade hídrica e luminosa. Estas características ambientais determinam a 

morfologia de diferentes populações de bromélias, especialmente aquelas que formam tanque. 

Entretanto, a despeito da variação entre populações, podem ocorrer variações em um mesmo 

indivíduo, com base na posição da folha na roseta. Assim, folhas em diferentes posições na 

roseta de Aechmea distichantha Lem. (bromélia tanque) foram avaliadas com o intuito de 

detectar e quantificar quais seriam essas variações estruturais. O material foi coletado na Serra 

da Canastra (Minas Gerais - Brasil), seguindo os protocolos convencionais tanto para as análises 

anatômicas, histométrica e de plasticidade fenotípica (RDPI), quanto para a caracterização 

estrutural da parede celular. O parênquima aquífero foi o tecido que apresentou maior 

plasticidade fenotípica entre as folhas da roseta, enquanto que o mesofilo, parênquima 

clorofiliano e regiões dos feixes vasculares apresentaram os menores valores de plasticidade. A 

análise da parede celular demonstrou maior quantidade de epitopos de alta metil-esterificação 

em praticamente todos os tecidos no ápice e na base da folha interna, na base das folhas 

intermediária e externa. Os epitopos com baixa metil-esterificação foram marcados na maioria 

dos tecidos, exceto no parênquima aquífero, no ápice das folhas intermediária e externa. As 

proteínas estruturais apresentaram maiores marcações nos epitopos das folhas internas e 

menores marcações nas folhas externas. Não houve marcações no parênquima aquífero para 

epitopos de proteínas estruturais arabinogalactanos (AGPs). De fato, as variações estruturais 

presentes ao longo da roseta de A. distichantha representam adaptações funcionais, com a 

região apical especializada para a fotossíntese e a região basal para a absorção de água.

Palavras-chave: bromélia tanque-dependente, parênquima aquífero, plasticidade fenotípica, 

parede celular e pectinas.
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Abstract:

Bromeliad species have ample adaptability to various environments with varying water and 

light availability. These environmental characteristics determine the morphology of different 

populations of bromeliads, especially those that form a tank. However, in spite of the variation 

between populations, variations can occur in the same individual, based on the position of the 

leaf in the rosette. Thus, leaves in different positions in the rosette of Aechmea distichantha 

Lem. (bromeliad tank) were evaluated in order to detect and quantify what these structural 

variations would be. The material was collected in Serra da Canastra (Minas Gerais - Brazil), 

following the conventional protocols for anatomical, histometric and phenotypic plasticity 

analysis (IPDL), as well as for the structural characterization of the cell wall. The aquifer 

parenchyma was the tissue that presented greater phenotypic plasticity between the rosette 

leaves, while the mesophyll, chlorophyllic parenchyma and vascular bundle regions had the 

lowest values of plasticity. Cell wall analysis demonstrated higher amounts of high methyl 

esterification epitopes in virtually all tissues at the apex and at the base of the inner leaf at the 

base of the intermediate and outer leaves. The epitopes with low methyl esterification were 

marked in most tissues, except in the aquifer parenchyma, at the apex of the intermediate and 

external leaves. The structural proteins showed greater markings on the epitopes of the inner 

leaf and smaller markings on the outer leaf. There were no markings on the aquifer parenchyma 

for structural proteins arabinogalactans epitopes (AGP). In fact, the structural variations present 

along the rosette of A. distichantha represent functional adaptations, with the apical region 

specialized for photosynthesis and the basal region for water absorption.

Key words: tank-dependent bromeliad, parenchyma aquifer, phenotypic plasticity, cell wall, 

pectin.
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Introdução

Dentre as formações vegetais brasileiras os campos rupestres se destacam pela grande 

diversidade de espécies e notável heterogeneidade de habitats (Conceição & Giulietti 2002; 

Conceição et al. 2007, Jacobi et al. 2007). Nos campos rupestres os afloramentos rochosos são 

comuns e podem ser definidos como inselbergs, que detém grande diversidade de espécies 

xeromórficas (Porembski 2007). Dentre estas espécies destacam-se as Bromeliaceae que 

formam tanque pela sobreposição da base das folhas dispostas em roseta (Rapini et al. 2008, 

Givnish et al. 2014; Takahashi & Mercier 2011). Nestas espécies, a água proveniente da chuva 

e os detritos orgânicos são armazenados e posteriormente absorvidos pelas escamas da 

superfície foliar (Pittendrigh 1948; Benzing 1976; 1990; 2000; Schmidt & Zotz 2001; Givnish 

et al. 2014). Essas escamas constituem a característica mais notável das Bromeliaceae e 

substituem a função estrutural e funcional do sistema radicular (Tomlinson 1969; Braga 1977). 

A absorção de água e o seu armazenamento no parênquima aquífero, permitem a sobrevivência 

das bromélias que crescem em ambientes rochosos, com baixa disponibilidade de nutrientes e 

déficit hídrico (Benzing 1976; 2000; Schmidt & Zotz 2001; Takahashi & Mercier 2011). Resta 

saber se existem variações anatômicas desse parênquima aquífero, nas folhas em diferentes 

posições na roseta.

Com a redução do sistema radicular, as folhas das bromélias tanque-dependente 

tornaram-se o principal órgão responsável pela manutenção da sobrevivência destas plantas 

(Benzing 1990; 2000; Popp et al. 2003), e podem apresentar diferenças anatômicas e funcionais 

ao longo das regiões apical e basal (Freschi et al. 2010). Em geral, a região apical investe em 

tecidos fotossintetizantes, enquanto a região basal, em estruturas para a absorção de água e 

nutrientes (Schimitd & Zotz 2001; Freschi et al. 2010). Porém, são poucos os trabalhos que 

quantificam estas variações ou mesmo discutem o gradiente anatômico do ápice e da base de 

folhas em diferentes posições na roseta, como visto por Freschi et al. (2010) em Guzmania
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monostachia (L.) Rusby ex Mez var. monostachia. A análise desse gradiente anatômico nos 

permitiria, também, avaliar a estrutura e a variação dos componentes da parede celular, uma 

vez que esta é constantemente montada, desmontada e deformada (Palin & Geitmann, 2012) 

durante os estágios de desenvolvimento dos órgãos vegetais e das diferentes condições 

ambientais (Caffall & Mohnen 2009).

Dentre os componentes da parede celular, destacam-se pela abundância: a celulose, as 

hemiceluloses e as pectinas, além das proteínas associadas, água e íons (Dolan et al. 1997; 

Somerville et al. 2004; Cosgrove 2005; Albersheim et al. 2011; Palin & Geitmann 2012). As 

propriedades, funções e proporções relativas entre esses componentes, variam de acordo com o 

tipo e função da célula e do grupo vegetal (Beck 2005; Evert 2006; Popper 2008; Ovodov 2009; 

Albershein et al. 2011), determinando o desenvolvimento das células e órgãos, bem como, o 

comportamento mecânico dos tecidos (Cosgrove 2005). Desta forma, espera-se que os tecidos 

de revestimento, de sustentação, clorofiliano e especialmente o parênquima aquífero, das 

bromélias tanque-dependentes, apresentem uma variação dos componentes da parede celular, 

em folhas que ocupam diferentes posições na roseta.

A pectina é um dos componentes mais abundante da matriz da parede celular, 

constituindo até 35% de paredes primárias de monocotiledôneas não gramíneas (Jones et al. 

1997; Mohen 2008). É o polissacarídeo estrutural e funcionalmente mais complexo (Palin & 

Geitmann 2012), com impacto significativo sobre as características físico-químicas da matriz 

celular (Mohnen 2008). As pectinas formam um grupo heterogêneo de polissacarídeos 

(Cosgrove 1997), ricos em ácido galacturônico que pode estar presente nas três classes: 

ramnogalacturonanos I (RG-I), ramnogalacturonanos II (RG-II) e homogalacturonanos (HGA) 

(Ridley et al. 2001; Willats et al. 2001; Pérez et al. 2003; Albersheim et al. 2011). A última 

classe, HGA, é a mais abundante na composição da matriz da parede celular primária das 

plantas terrestres (Ridley et al. 2001; Willats et al. 2001), representando 60% do valor total das
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pectinas (O Neill et al. 1990; Mohnen et al. 2008). As pectinas são sintetizadas na forma metil- 

esterificada (Palin & Geitmann 2012) e estão sujeitas a modificações que alteram a sua 

conformação e ligação na parede através do processo de de-metil-esterificação (Xiao & 

Anderson 2013). O processo de de-metil-esterificação altera a funcionalidade das pectinas e 

consequentemente a função das células e tecidos (Albersheim et al. 2011). As diferenças no 

grau de metil-esterificação dos epitopos das pectinas em folhas com diferentes posições ao 

longo da roseta de Aechmea distichantha podem representar adaptações que maximizam o 

armazenamento de água nos tecidos.

Poucos estudos abordam a variação na composição da parede celular durante o 

desenvolvimento foliar em espécies de monocotiledôneas (Carpita 1984; Hermes et al. 2014), 

e a maioria trata da quantificação ou da síntese dos seus componentes (Burke et al. 1974; Jarvis 

et al. 1988; Carpita 1989; Yapo 2010). De fato, este é o primeiro estudo que busca entender a 

variação imunocitoquímia da parede celular e a capacidade plástica dos tecidos do ápice e da 

base de folhas, em diferentes posições na roseta, para Aechema distichantha Lem 

(Bromeliaceae). Geralmente, o gênero Aechmea Ruiz & Pav. (Bromeliaceae) tem sido foco de 

estudos anatômicos puramente descritivos (Arruda & Costa 2003; Proença & Sajo 2004; 

Scatena & Segecin 2005), taxonômicos (Versieux et al. 2010) ou ecológicos, visando 

compreender a variabilidade adaptativa à diferentes condições ambientais, principalmente em 

ambientes de sol e sombra em populações distintas (Scarano et al. 2002; Zotz et al. 2002; Freitas 

et al. 2003; Zotz et al. 2004; Skillman et al. 2005; Cavallero et al. 2009; Cavallero et al. 2011; 

Voltolini & Santos 2011; Prado et al. 2014).

Considerando que as folhas internas das bromélias tanque-dependentes apresentam 

características para facilitar a absorção e o transporte de água, enquanto as folhas externas 

investem em estruturas para armazenamento e retenção dessa água. Considerando ainda que o 

ápice das folhas está mais adaptado para fotossíntese, enquanto a base para a absorção e
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armazenamento de água, o objetivo deste estudo foi avaliar a plasticidade estrutural das folhas 

de A. distichantha, dentro de um gradiente espacial, analisando diferentes indivíduos no período 

chuvoso. A análise da plasticidade dos tecidos foliares, principalmente do parênquima aquífero, 

e as variações na estrutura da parede celular dos tecidos do ápice e da base de folhas ocupando 

diferentes posições na roseta responderiam as principais questões a serem avaliadas neste 

trabalho: (a) existem diferenças estruturais (citológicas e histológicas) entre folhas proximais e 

distais do tanque? (b) Qual (ais) estrutura (s) foliar (es) que apresenta (m) maior plasticidade, 

considerando diferentes posições no tanque em A. distichantha? (c) Qual é a magnitude desta 

diferença?

Material e Métodos

Sistema de estudo

Aechmea distichantha Lem. é uma Bromeliaceae que ocorre como rupícola nos campos 

rupestres (Fig. 1A) e a disposição das folhas formam um reservatório hídrico (tanque). As folhas 

são coriáceas, verdes à levemente avermelhadas, tanto na superfície adaxial, como na abaxial, 

bainha alva, espinhos negrescentes no ápice foliar, inflorescência com escapo rosáceo; brácteas 

escapais rosáceas; flores roxas e raque rosa (Fig. 1A-B).

O material de estudo foi coletado no Parque Nacional da Serra da Canastra - PNSC (S 

20° 08’ 16,1’’ W 46° 47’ 18,2’’), Sacramento, Minas Gerais, Brasil. A área do PNSC e seu 

entorno situam-se no domínio fitogeográfico do Cerrado e a maior parte do PNSC é coberta por 

formações campestres e afloramentos rochosos (MMA/IBAMA, 2005). O espécime foi 

identificado por especialistas da família, Rafaela Forzza e Leonardo Melo Versieux, e 

depositado no Herbarium Uberlandense (HUFU), da Universidade Federal de Uberlândia, sob 

a seguinte especificação: Aechmea distichantha Lem., Hermes, M. B. 01, Castro, N. M., 

Oliveira, D. C (HUFU 72189).
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Para análise anatômica, a amostragem foi realizada em cinco indivíduos de A. 

distichantha. De cada indivíduo foram coletadas três folhas retiradas no sentido centro-periferia 

da roseta: primeira folha (F1) - a interna, completamente inserida no tanque; quarta folha (F4)

- posição intermediária; e a oitava folha (F8) -  a mais externa que não estivesse senescente e 

nem apresentasse injúrias (Fig. 1C). De cada folha foi separado um trecho da região apical e 

um trecho da região basal, da porção central entre os bordos, como mostra a figura 1D. Parte 

das amostras foi fixada em FAA 50 (Johansen 1940), preservada em etanol 50% e seccionada 

à mão com auxílio de lâminas descartáveis. Parte das secções foram clarificadas com solução 

comercial de hipoclorito de sódio (20%), coradas com azul de astra e safranina (Bukatsch 1972, 

modificado, apud Kraus & Arduin 1997) e montadas em lâminas histológicas com gelatina 

glicerinada (Kaiser 1880 apud Kraus & Arduin 1997). As secções foram analisadas em 

microscópio Leica® DM500 acoplado a câmera digital ICC50 HD e software de análise LAS 

EZ (Leica Application Suite) versão 2.1.0.

Microscopia Eletrônica de Varredura

Parte das amostras foi fixada em Karnovsky (1965) foi desidratado em série etílica 

(30%, 50%, 70%, 80, 90% e 100%). Posteriormente, as amostras foram levadas ao dessecador 

utilizando ponto crítico de CO2 líquido e em seguida procedeu-se a deposição de filmes de ouro 

no Denton Vacuum. A análise foi realizada no Microscópio Eletrônico de Varredura (Jeol, JSM

-  610, equipado com EDS e Thermo scientific NSS Spectral Imaging), operado a 4 Kv, 

instalado no Laboratório Multiusuário de Microscopia de Alta Resolução (LABMIC) no

Análise Anatômica

Instituto de Física -  Universidade Federal de Goiás.
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Análises Histométricas e Índice de Plasticidade (RDPI)

Foram realizadas medidas dos seguintes caracteres: (1) espessura total do mesofilo, (2) 

espessura do parênquima aquífero, (3) espessura do parênquima clorofiliano, (4) área das 

células da camada externa do parênquima aquífero -  sob a epiderme, (5) área das células da 

camada interna do parênquima aquífero - adjacente ao parênquima clorofiliano, (6) área 

ocupada pelos tecidos vasculares, (7) área dos feixes vasculares, (8) comprimento da célula da 

camada externa do parênquima aquífero e (9) comprimento da célula da camada interna do 

parênquima aquífero. Em média, foram selecionados 22 cortes de cada região foliar (ápice e 

base) e de cada uma das três folhas (F1, F4 e F8). As medidas foram feitas através do software 

ImageJ®.

A plasticidade fenotípica dos diferentes caracteres foliares de A. distichantha, em 

relação à posição no tanque, foi avaliada a partir dos dados histométricos, com o uso o índice 

de Plasticidade baseado em Distâncias Relativas (RDPI) descrito por Valladares et al. (2006). 

Foram calculadas as distâncias relativas (RD) entre os valores das características, em relação à 

posição do tanque e à região foliar (ápice ou base). As RDPI foram calculadas pela fórmula:

RDPI = 2  (dij -  i'j '/(x i-j- + x ij))/n 

RD ij -  ij' = dij — i j '/(xij- + xij)

onde j e j ’ são indivíduos da mesma espécie escolhidos aleatoriamente, i e i’ são regiões foliares 

(ápice e base) e posições foliares ao longo da roseta, n é o número total de distância e x é uma 

determinada característica a ser analisada. O RDPI varia de 0 (nenhuma plasticidade) a 1 

(plasticidade máxima).
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O material previamente fixado foi seccionado à mão com auxílio de lâminas 

descartáveis e montado em lâminas histológicas para análises de imunocitoquímica (Tabela 1, 

CENTER FOR PLANT SCIENCE, UNIVERSITY OF LEEDS, UK). As lâminas foram 

incubadas em solução de proteína de leite/PBS para evitar ligações cruzadas, seguida de 

incubação com anticorpo primário (diluição de 1:10 com proteína de leite/PBS), por duas horas. 

Em seguida, foram lavadas em PBS e incubadas em anticorpo secundário FITC Goat anti-rat 

(Sigma) (diluição 1:100 em proteína de leite/PBS por duas horas) e posterior lavagem em PBS. 

As lâminas foram montadas em glicerina (50%) e mantidas no escuro. Para controle negativo, 

o anticorpo primário foi suprimido. Os testes foram realizados em triplicatas para confirmação 

dos resultados. As secções foram analisadas em microscópio Leica® DM4000 B LED e software 

de análise LAS X (Leica Application Suite).

Análise estatística

Todos os dados são apresentados como médias. Após a transformação dos valores para 

raiz quadrada, para homogeneidade dos valores, utilizou-se ANOVA (Analysis of Variance) 

para analisar os resultados, e as médias foram comparadas pelo teste Tukey a 5% de 

probabilidade (p=0,05). Para as análises estatísticas utilizou-se o software JMP5® (Statistical 

Analysis System Institute).

Resultados

Características Gerais

A superfície foliar é revestida por escamas de escudo assimétrico (Fig. 2A-G). Na F1 

(folha interna) as escamas em escudo aparecem levemente elevadas na superfície foliar (Fig. 

2A-D). Na base de F1, as duas superfícies foliares tem, aparentemente, a mesma quantidade de 

escamas. No ápice da F4 (folha intermediária) inicia-se o processo de senescência das escamas,

Imunocitoquímica
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com a queda do escudo de várias delas (Fig. 2E e 2E1), enquanto que na base ainda há muitas 

escamas (Fig. 2F e 2F1). Em F8 (folha externa), a quantidade de escamas é aparentemente 

menor e o escudo, quando presente, está completamente apoiado sobre a lâmina foliar (Fig. 

2G). A folha é hipoestomática, com os estômatos localizados em pequenas depressões e 

protegidos pelo escudo das escamas (Fig. 2H e 2H1).

A epiderme é uniestratificada (Fig. 3A e 3B), formada por células pequenas, 

retangulares, de paredes espessas, exceto a periclinal externa (espessamento em U), e lúmen 

reduzido (Fig. 3C e 3D). As escamas são inseridas pelo pedículo, de três a quatro células, em 

depressões (Fig. 3C). O mesofilo é dorsiventral (Fig. 3A e 3B) e a hipoderme pode ser 

reconhecida como um tecido mecânico ou armazenador de água adjacente à epiderme, 

dependendo da forma das células e do grau de espessamento parietal. A hipoderme mecânica, 

na face adaxial, é constituída por duas a três células esclerenquimáticas de parede espessas e 

lúmen reduzido (Fig. 3C) e na face abaxial, por duas camadas de células, interrompida pelas 

câmaras subestomáticas (Fig. 3D). Adjacente à hipoderme da face adaxial, ocorre o parênquima 

aquífero formado por células grandes, aclorofiladas, de paredes delgadas (também chamada de 

hipoderme aquífera) que ocupa aproximadamente um terço da espessura do mesofilo (Fig. 3A 

e 3B). O formato das células e o número de camadas de parênquima aquífero variam de acordo 

com a região foliar (ápice ou base) e a posição da folha na roseta (Tabela 2). O parênquima 

clorofiliano, localizado internamente à hipoderme aquífera, é formado por células 

isodiamétricas e é interrompido por canais de aeração, contínuos às câmaras subestomáticas 

(Fig. 3A e 3B). Esses canais são formados por células braciformes (Fig. 3F). A espessura do 

parênquima clorofiliano não apresentou variação entre as folhas nas diferentes posições e nem 

entre o ápice e a base de cada folha.

Feixes vasculares colaterais, maiores e menores, dispostos em série única, intercalam- 

se com os canais de aerênquima (Fig. 3A e 3B). Os feixes maiores são circundados
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completamente por bainha fibrosa, fortemente lignificada, e pela bainha parenquimática -  

endoderme -, enquanto que nos feixes menores as fibras os circundam apenas parcialmente 

(Fig. 3A, 3B e 3G). Externamente à endoderme são observadas células parenquimáticas 

clorofiladas dispostas de forma radiada (Fig. 3G).

índice de Plasticidade (RDPI)

Os caracteres analisados apresentaram diferentes valores para o Índice de Plasticidade 

Fenotípica baseado em Distâncias Relativas (RDPI), dependendo da posição da folha na roseta 

(folha interna - F1; folha intermediária - F4; folha externa - F8) e da região foliar (ápice ou 

base), ou seja, algumas características anatômicas variam mais em forma e tamanho dentro da 

roseta (Fig. 4A-H).

Quando se compara o ápice e a base da F1, a área da célula da camada interna do 

parênquima aquífero e a espessura do parênquima aquífero apresentam maior plasticidade em 

relação à a outras características avaliadas (Fig. 4A). Entre o ápice e a base da F4, os maiores 

valores de plasticidade foram para a área e para o comprimento da célula da camada interna do 

parênquima aquífero e para a área dos tecidos vasculares (Fig. 4B). Na F4, a espessura do 

mesofilo e do parênquima clorofiliano varia muito pouco em plasticidade (Fig. 4B). O único 

caso em que o maior valor da plasticidade não foi para a área da célula da camada interna do 

parênquima aquífero, e sim no comprimento desta célula, ocorreu na comparação entre o ápice 

e a base da F8. Valor semelhante foi observado para a área da célula da camada interna do 

parênquima aquífero e da camada externa do parênquima aquífero (Fig. 4C). Na F8 a área dos 

feixes vasculares, espessura do mesofilo, espessura do parênquima aquífero e espessura do 

clorofiliano tem valores de plasticidade mais baixos (Fig. 4C).

Na comparação entre o ápice e base da F1, com ápice e base da F8, os caracteres que 

apresentaram maior plasticidade são os relacionados com o parênquima aquífero -  área e
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comprimento da célula da camada interna do parênquima aquífero e área da célula da camada 

externa do parênquima aquífero (Fig. 4D). Ao comparar o ápice da F1 com o ápice da F4, os 

maiores valores de plasticidade são observados na área da célula interna do parênquima 

aquífero, área dos tecidos vasculares e área da célula externa do parênquima aquífero (Fig. 4E). 

O parênquima aquífero e o parênquima clorofiliano tem índices de plasticidade 

significativamente menores (Fig. 4E). Quando comparamos o ápice da F4, com o ápice da F8, 

os maiores valores de plasticidade foram para a área da célula da camada interna do parênquima 

aquífero, para o comprimento da célula da camada externa e para o comprimento da célula da 

camada interna do parênquima aquífero (Fig. 4F). Na comparação entre o ápice da F1 e o ápice 

da F8, os caracteres com maiores valores de plasticidade foram a área das células da camada 

interna e da camada externa do parênquima aquífero e comprimento da célula da camada interna 

e externa do parênquima aquífero (Fig. 4G). Ao comparar a base da F1 com a base da F8, os 

caracteres com os maiores valores de plasticidade foram os mesmos observados na comparação 

entre o ápice e base da F1 com o ápice e a base da F8: área e comprimento da célula da camada 

interna do parênquima aquífero e área da célula da camada externa do parênquima aquífero 

(Fig. 4D e 4H).

Na comparação entre todos os caracteres avaliados, nas folhas em diferentes posições 

na roseta e nas duas regiões de cada folha, a maior plasticidade foi observada na área da célula 

da camada interna do parênquima aquífero (Fig. 4B e 4D-4H), na espessura do parênquima 

aquífero (Fig. 4A) e no comprimento da célula da camada interna do parênquima aquífero (Fig. 

4C). A menor plasticidade foi encontrada para a espessura do parênquima clorofiliano (Fig. 4A, 

4D, 4F e 4G) do mesofilo (Fig. 4C e 4H) e do parênquima aquífero (Fig. 4E), e para a área dos 

feixes vasculares (Fig. 4B).
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As análises de imunocitoquímica mostraram clara variação no grau de metil- 

esterificação das HGAs e na distribuição das proteínas de parede (AGPs e extensinas) nos 

tecidos das folhas em diferentes posições na roseta e no ápice e na base foliar (Tabelas 3-8).

No ápice da F1 houve intensa marcação de epitopos de HGA de alta metil-esterificação, 

reconhecidos pelo JIM7, no parênquima aquífero (Fig. 5A), nas junções intercelulares do 

parênquima clorofiliano, nos tecidos vasculares e nos canais de aeração (Fig. 5B). Na base da 

F1 houve intensa marcação nas células do parênquima clorofiliano, no parênquima aquífero, 

nos feixes vasculares e nos canais de aerênquima. Para epitopos de HGA de baixa metil- 

esterificação, conhecidos pelo JIM5, ocorreu moderada marcação nas junções intercelulares das 

células do parênquima clorofiliano, fraca marcação nas células braciformes dos canais de 

aeração (Fig. 5C) e intensa marcação nos tecidos vasculares (Fig. 5D). Na base, houve intensa 

marcação com JIM5 nos tecidos vasculares, moderada marcação nas células braciformes dos 

canais de aeração e fraca marcação nas células do parênquima clorofiliano adjacentes ao 

parênquima aquífero e próximas aos canais de aeração (Fig. 5E). Não houve marcação com 

JIM5 no parênquima aquífero nem no ápice e nem na base da F1. No ápice da F1, houve intensa 

marcação para epitopos de proteínas arabinogalactanas (AGPs), reconhecidos pelo LM2, nos 

tecidos vasculares, no parênquima clorofiliano e nos estômatos, moderada marcação nas células 

epidérmicas da face adaxial e abaxial e nas escamas (Fig. 5F). Não houve marcação para 

epitopos de AGPs nas células do parênquima aquífero próximas à face adaxial, porém houve 

fraca marcação nas células do parênquima aquífero próximos ao parênquima clorofiliano (Fig. 

5F). Na base houve intensa marcação nas células esclerenquimáticas da face adaxial, moderada 

marcação para epitopos de AGPs no parênquima clorofiliano e fraca marcação no parênquima 

aquífero. Não houve marcação para epitopos de extensinas marcados pelo LM1, nem no ápice,

Análise de Imunocitoquímica

nem na base da F1.
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No ápice da F4, houve moderada marcação pelo JIM7 nas células do parênquima 

clorofiliano próximos à epiderme da face abaxial e intensa marcação nas demais células do 

parênquima clorofiliano (Fig. 6A). Tanto no ápice quanto na base houve fraca marcação com 

JIM7 no parênquima aquífero (Fig. 6A) e intensa marcação nos tecidos vasculares e células 

braciformes dos canais de aeração (Fig. 6A e 6B). Na base houve moderada marcação com 

JIM7 apenas nas junções intercelulares das células do parênquima clorofiliano (Fig. 6C). No 

ápice da F4, houve intensa marcação para epitopos de HGA de baixa metil-esterificação, 

reconhecidos pelo JIM5, no tecido vascular e nas células braciformes dos canais de aeração 

(Fig. 6D). Houve moderada marcação nas junções intercelulares das células do parênquima 

clorofiliano (Fig. 6D). Na base houve intensa marcação com JIM5 nos tecidos vasculares e nas 

células braciformes dos canais de aeração (Fig. 6E). E fraca marcação com JIM5 nas junções 

intercelulares das células do parênquima clorofiliano próximas dos tecidos vasculares (Fig. 6E). 

Não houve marcação com JIM5 no parênquima aquífero em nenhuma das três folhas no ápice 

e na base. No ápice da F4, houve intensa marcação com LM2 nos tecidos vasculares, nas células 

epidérmicas da face adaxial e nas células subsidiárias dos estômatos. Na base houve intensa 

marcação para epitopos de AGPs nos tecidos vasculares, no escudo das escamas, nas células 

epidérmicas da face adaxial e abaxial. Fraca marcação para epitopos de AGPs foi observado 

nas células da endoderme e junções intercelulares do parênquima clorofiliano. No ápice da F4, 

intensa marcação para epitopos de extensinas foi observada nas células epidérmicas tanto da 

face adaxial como abaxial, nas escamas e nos estômatos, e moderada marcação para epitopos 

de extensinas nas células do parênquima aquífero (Fig. 6F). Na base da F4 observou-se as 

mesmas marcações que no seu ápice.

No ápice da F8, houve intensa marcação com JIM7 nas células do parênquima 

clorofiliano adjacentes ao parênquima aquífero, nos canais de aeração, nas câmaras 

subestomáticas e nos estômatos (Fig. 7A e 7B). Na base da F8 houve intensa marcação com
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JIM7 nas células braciformes dos canais de aeração e nas células do escudo das escamas e, fraca 

marcação com JIM7 no parênquima aquífero e tecidos vasculares (Fig. 7C). No ápice da F8, 

houve intensa marcação com JIM5 nos tecidos vasculares, nas células braciformes dos canais 

de aeração, na epiderme da face abaxial, nos estômatos e nas junções intercelulares do 

parênquima clorofiliano (Fig. 7D e 7E). Na base, houve intensa marcação no floema e nas 

células braciformes dos canais de aeração. Moderada marcação foi observada nas junções 

intercelulares do parênquima clorofiliano e no xilema (Fig. 7F e 7G). No ápice da F8, houve 

intensa marcação com LM2 nas células epidérmicas da face adaxial e abaxial, no pedículo das 

escamas e nos estômatos. Na base, houve intensa marcação no xilema, nas células epidérmicas 

da face adaxial, no pedículo das escamas e nas células subsidiárias dos estômatos No ápice da 

F8, houve intensa marcação para epitopos de extensinas nas células epidérmicas, no pedículo 

das escamas e nos estômatos. Houve moderada marcação para epitopos de extensinas no 

parênquima aquífero (Fig. 7H). Não houve marcação para LM1 na base.

Discussão

Várias espécies de bromélias são adaptadas a ambientes xéricos e assim investem em 

estruturas que captam, absorvem e armazenam água em seus tecidos, como a formação de 

tanque, presença de escamas e de parênquima aquífero, respectivamente (Benzing 2000). A 

compartimentalização de função nas regiões ápice-base das folhas, e dependendo da posição na 

roseta de bromélias já  foi avaliada em outros trabalhos (Souza & Neves 1996; Proença & Sajo 

2004), porém, pela primeira vez, o tamanho desta variação foi avaliado através do índice de 

plasticidade fenotípica e composição da parede celular. Nas folhas de Aechmea distichantha o 

tecido que apresenta maior plasticidade é o parênquima aquífero e, de fato, as células deste 

tecido mostram intensa marcação para epitopos de alta metil-esterificação. A presença de
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pectinas com alta metil-esterificação no parênquima aquífero confere maior elasticidade a 

parede celular, uma importante adaptação ao armazenamento de água.

As amostras de A. distichantha, coletadas em ambiente xerofítico dos campos rupestres, 

apresentam as mesmas características anatômicas observadas por Proença & Sajo (2004), que 

analisaram amostras provenientes de ambientes mesofíticos do Estado de São Paulo (Brasil), 

ou seja: epiderme unisseridada, hipoderme mecânica e parênquima aquífero, parênquima 

clorofiliano paliçádico, canais de aeração e feixes vasculares em série única. Na população 

coletada no campo rupestre nota-se variação na quantidade de escamas de acordo com a posição 

da folha na roseta, fato comum já observado em outras espécies de bromélias (Benzing 2000). 

De acordo com Proença & Sajo (2004), A. distichantha apresenta maior densidade de escamas 

na face adaxial e na região basal, devido ao contato direto desta região com a água contida no 

tanque. Estes dados corroboram com os de Freschi et al. (2010), que também verificam nas 

espécies por eles estudadas, que a densidade de escamas na região basal é duas vezes maior, do 

que nas regiões mediana e apical. A presença de escamas no ápice foliar de A. distichanta está 

relacionada com outras funções dessa estrutura, como a reflexão do excesso de luz e diminuição 

da transpiração, funções discutidas por Benzing (2000) para outras bromélias. O escudo das 

escamas de A. distichantha também protegem os estômatos contra a perda de água, criando um 

microclima que conserva a umidade, como já  mencionado por Tomlinson (1969), Fahn & 

Cutler (1992), Benzing (2000) e Dickison (2000) entre outros, sendo mais um dos mecanismos 

adaptativos ao ambiente xérico, assim como o espessamento em U pronunciado observado nas 

células da epiderme. Este espessamento reduz a evaporação da água, evitando o colapso celular 

em decorrência do murchamento, permitindo a sobrevivência destas bromélias num ambiente 

com déficit hídrico, assim como o espessamento das células da hipoderme mecânica (Krauss 

1949; Pyykko 1966; Tomlinson 1969, Esau 1977; Brighigna et al. 1984).
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Índices de Plasticidade Fenotípica dos tecidos foliares baseado em Distância Relativa (RDPI)

Como já  mencionado, o parênquima aquífero foi o tecido que apresentou maior 

plasticidade. Proença & Sajo (2004), para A. distichantha, e Freschi et al. (2010), para 

Guzmania monostachia (L) Rusby ex Mez var. monostachia, também relataram variação na 

espessura do parênquima aquífero em diferentes regiões da folha. Nossas análises histométricas 

seguidas pelo cálculo do índice de plasticidade confirmam esta variação no tecido. A diferença 

na espessura do parênquima aquífero no ápice e na base de folhas ocupando diferentes posições 

na roseta ocorre devido ao armazenamento da água absorvida pelas escamas (Benzing 2000). 

A água contida no tanque fica disponível para a absorção apenas por um curto período de tempo, 

devido ao processo natural de evaporação (Zotz & Thomas 1999; Benzing 2000; Freschi et al. 

2010). Assim, para plantas como A. distichantha, o parênquima aquífero é um tecido essencial 

para a sobrevivência no ambiente xérico, armazenando água a médio e longo prazo e 

disponibilizando-a para os tecidos adjacentes, como mencionado por Schulte & Nobel (1989). 

Como avaliado neste estudo, o fluxo de água que entra e sai do parênquima depende, entre 

outros fatores, da composição e capacidade elástica da parede celular.

A espessura do mesofilo de A. distichantha é mais influenciada pela quantidade de 

parênquima aquífero, do que de parênquima clorofiliano, diferentemente do esperado para 

plantas de sol e sombra, que como usualmente referido na literatura, folhas de sol são mais 

espessas, principalmente pela maior quantidade de parênquima paliçádico e aquífero (Lee et a l. 

1989; Dickison 2000; Mantuano et al. 2006; Terashima et al. 2006). Scarano et al. (2002), 

observaram que em Aechmea bromeliifolia (Rudge) Baker, indivíduos crescendo em ambiente 

seco e sob alta irradiação solar, as folhas apresentavam menor espessura do parênquima 

clorofiliano, mas nos indivíduos crescendo em ambientes alagados e com alta irradiação solar, 

o parênquima clorofiliano era mais espesso. Assim, não é apenas a exposição à alta irradiação
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solar ou a disponibilidade hídrica do ambiente que interferem na espessura do mesofilo, mas 

essas duas características ambientais podem atuar em conjunto.

O parênquima clorofiliano apresentou, na maioria dos tratamentos, pequena plasticidade 

fenotípica entre as folhas em diferentes posições na roseta. Geralmente espécies expostas à alta 

irradiação solar apresentam folhas mais espessas, devido ao maior número de camadas de 

parênquima clorofiliano (Lee et al. 1989), porém em A. distichantha não se observou um maior 

número de camadas de parênquima clorofiliano na região apical e, nem nas folhas mais 

externas, expostas à maior irradiação solar.

Os canais de aerênquima são mais desenvolvidos na região basal das folhas, o que 

facilitaria a aeração foliar (Tomlinson 1969; Souza & Neves 1996), uma vez que em A. 

distichantha, esta região pode permanecer submersa na água do tanque.

A área total dos feixes vasculares (tecidos vasculares mais fibras) e dos tecidos 

vasculares (xilema mais floema) não apresentaram muita plasticidade, na maioria dos 

tratamentos. Isto porque os feixes e os tecidos vasculares, após diferenciados não mudam mais 

a conformação das suas células.

Imunocitoquímica da parede celular

Assim como foram observadas variações anatômicas entre ápice e a base das folhas em 

diferentes posições na roseta, a composição da parede celular também varia, especialmente das 

pectinas e das proteínas estruturais (AGPs), nos diferentes tecidos.

Epitopos de pectinas (HGAs) com alta metil-esterificação foram reconhecidas pelo 

JIM7 nas células do parênquima aquífero. Neste tecido não foram detectadas pectinas com 

baixa metil-esterificação reconhecidas pelo JIM5 e assim, podemos dizer que o processo de de- 

metil-esterificação é reduzido. Em geral as pectinas são sintetizadas no complexo de Golgi na 

forma altamente metil-esterificada (Mohonen 2008), e durante o desenvolvimento dos órgãos
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pode ocorrer o processo de de-metil-esterificação (Micheli 2001). O grau de metil-esterificação 

das pectinas determina as propriedades e funções da parede celular durante o desenvolvimento 

de órgãos (Knox 1997). HGAs com alta metil-esterificação promovem maior flexibilidade à 

célula como observado em outras espécies (Mastroberti et al. 2008). Caso o processo de de- 

metil-esterificação ocorresse nas células do parênquima aquífero, as paredes ficariam rígidas e 

assim, comprometeria o armazenamento de água.

Na F1, na maioria dos tecidos, ainda estão em processo de diferenciação, assim 

apresentam maior quantidade de epitopos com alta metil-esterificação na parede celular, como 

também mencionado por Micheli (2001) & Mohonen (2008). A quantidade de células com 

marcação nos epitopos de alta metil-esterificação diminui gradativamente nos tecidos da F4 e 

na F8, porque as paredes celulares estão no processo final da de-metil-esterificação e 

consequentemente, mais rígidas, como reportado em outros trabalhos (Knox 1997; Micheli 

2001). Á medida que ocorre a diferenciação celular, os grupos metil das pectinas se ligam com 

Ca+2, enrijecendo a parede celular, tornando-se de-metil-esterificadas (Palin & Geitmann 2012). 

Entretanto, neste estudo, mostra-se que embora haja completa diferenciação e maturação do 

parênquima aquífero, não ocorre marcação de epitopos com baixa metil-esterificação. Uma 

evidência de que o processo de de-metil-esterificação é reduzido nas células deste tecido e 

garante sua plasticidade.

A folha interna da roseta não apresenta diferença no grau de metil-esterificação das 

HGAs nos tecidos em relação base-ápice. À medida que as folhas crescem e se diferenciam 

ocorre o processo de de-metil-esterificação, corroborado pela diferença na presença de epitopos 

reconhecidos por JIM7 e JIM5 nas folhas intermediárias e externas.

Nota-se que a quantidade de AGPs diminuiu significativamente da F1 para a F8, pois a 

F1 está com a maioria dos seus tecidos em diferenciação, enquanto as F4 e F8 já  cessaram ou 

estão cessando a sua diferenciação celular. Isto ocorre porque as AGPs estão envolvidas na
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proliferação celular (Majewska-Sawka & Nothnagel 2000), que já  cessou na F4 e F8, e na 

formação da parede celular (Mogami et al. 1999; Mastroberti & Mariath 2008), que também já 

está concluída ou em conclusão nestas folhas. O decréscimo na marcação de AGPs na 

maturidade também foi observado por Herman & Lamb (1992), Schindler et al. (1995) e 

Mastroberti & Mariath (2008) em folhas de tabaco, coleóptilo de milho e células de mucilagem, 

respectivamente. Além disso, as AGPs são expressas de maneira específica de acordo com o 

tecido (Van Holst & Clark 1986) e isto também pode ser uma das causas da variação de AGPs 

nos diferentes tecidos.

A presença de extensinas foram marcadas moderadamente apenas em alguns tecidos da 

região apical e basal da F4 e na região basal da F8 não houve marcações na F1, contrapondo os 

resultados esperados. A F1 está em um estágio mais inicial de diferenciação do que as demais 

folhas, por isso esperava-se que houvessem marcações de extensinas nesta folha e poucas 

marcações nas folhas F4 e F8. Além disso, a maioria dos tecidos que tiveram marcações de 

extensinas estão relacionados com absorção e armazenamento de água (escamas, estômatos e 

parênquima aquífero) e, consequentemente, com mudanças na conformação celular, 

principalmente na flexibilização. Mesmo sabendo que estes tecidos são mais desenvolvidos e 

abundantes na região basal das folhas (Freschi et al. 2010), somente na base da folha 

intermediária é que as extensinas foram detectadas. Estudos complementares devem ser feitos 

para uma melhor compreensão da relação entre o processo de diferenciação celular e as 

extensinas, no ápice e na base de folhas ocupando diferentes posições na roseta de uma bromélia 

tanque-dep endente.

Assim, através da análise da parede celular, comprovou-se que as folhas de A. 

distichantha se desenvolvem a partir da região basal da folha, como já  foi visto em outras 

monocotiledôneas por Popp et al. (2003). Além disto, embora o parênquima aquífero seja um 

tecido totalmente diferenciado no ápice e na base das folhas em diferentes posições ao longo
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da roseta, este tecido não apresenta pectinas de-metil-esterificadas, devido à necessidade de 

flexibilização da sua parede celular para o armazenamento de água.

Conclusão
A partir deste trabalho pode-se concluir que: (a) existem variações da estrutura da parede 

celular e estas variações estão relacionadas com as funções exercidas pelos tecidos e as regiões 

que eles estão localizados; (b) nas folhas de A. distichantha, o parênquima aquífero é o tecido 

com maior plasticidade fenotípica, principalmente devido à necessidade que esta planta tem de 

armazenar água para sua sobrevivência e (c) a magnitude da plasticidade na espessura do 

parênquima aquífero, é entre 0,07 e 0,31.
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Tabela 1. Descrição e reconhecimento dos anticorpos monoclonais.
Anticorpos monoclonais Epítopo Referenda

JIM5 HGA (metil-esterificação até 40%) Clausen et al. (2003)
JIM7 HGA (metil-esterificação entre 15-80%) Clausen et al. (2003)
LM1 Extensina Smallwood et al. (1995); Cassab 

(1998); Sabba & Lulai (2005); 
Leroux et al. (2011)

LM2 AGP Smallwood et al. (1996); Yates et 
al. (1996)
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Tabela 2. Medidas dos Índices de Plasticidade Fenotípica baseado em Distância Relativa (RDPI) dos caracteres nos diferentes tratamentos. A: ápice. B: base. Comp.: 
Cél.: Célula. Comprimento. Esp.: Espessura. Ext.: Externa. F1: Folha Interna. F4: Folha Intermediária. F8: Folha Externa. Int.: Interna. PA: Parênquima Aquífero. PC: 
Parênquima Clorofiliano.___________________________________________________________________________________________________________________________

Caracteres AF1 x BF1 AF4 x BF4 AF8 x BF8 ABF1 x ABF8 AF1 x AF4 AF4 x AF8 AF1 x AF8 BF1 x BF8 p < 0,05

Área Tecidos Vasculares 0,25c,d ±0,19 0,35a ±0,28 0,23b,c,d ±0,18 0,25b,c ±0,19 0,28d ±0,22 0,24c,d ±0,20 0,22d ±0,19 0,27a,b ±0,19 <0,0001

Área Feixes Vasculares 0,19b’c’d±0,22 0,22a±0,17 0,17d±0,16 0 i 9 b,c,d±020 0,16b±0,18 0,17c,d±0,17 0,18d±0,22 0,21b,c±0,18 <0,0001

Comp. Cél. Int. do PA 0,31b,c±0,23 0,34a,b±0,20 0,39a±0,24 0,33b±0,23 0,24d±0,17 0,27c,d±0,18 0,26c,d±0,17 0,35b±0,27 <0,0001

Comp. Cél. Ext. do PA 0,20c,d±0,12 0,23b,c±0,15 0,22b,c±0,14 0,19d,e±0,14 0,16f±0,12 0,27a±0,15 0,25a,b±0,15 0,17ef±0,12 <0,0001

Área Cél. Int. do PA 0,35b,c±0,25 0,40a±0,24 0,38a,b±0,28 0,36b±0,24 0,29c±0,20 0,38a,b±0,24 0,35b±0,22 0,37a,b±0,28 <0,0001

Área Cél. Ext. do PA 0,29a,b,c±0,20 0,29a,b,c ±0,20 0,30a,b ±0,20 0,29a,b ±0,19 0,26c±0,19 0,27b,c±0,19 0,26b,c±0,18 0,31a±0,21 <0,0001

Esp. do PC 0,16b±0,15 0,25a±0,12 0,22a±0,11 0,16b±0,14 0,10c±0,16 0,08c±0,05 0,10c±0,16 0,15b±0,10 <0,0001

Esp. do PA 0,31a±0,12 0,21b±0,10 0,24b±0,16 0,23b±0,16 0,07d±0,05 0,23b±0,16 0,24b±0,16 0,19c±0,13 <0,0001

Esp. do Mesofilo 0,20b±0,09 0,25a±0,15 0,19b±0,12 0,16c±0,11 0,12f±0,42 0,14d,e±0,16 0,12e±0,07 0,14c,d±0,08 <0,0001

Dados são expressos como média (± SD) de 22 amostras de repetição. A estatística foi feita para um caracter analisado em todos os tratamentos. As diferenças foram 
significativas entre as médias. Letras diferentes indicam médias estatisticamente significativas entre os caracteres (teste Tukey-Kramer, p < 0,05 e a  = 0,05).
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Tabela 3. In tensidade de m arcação d os anticorpos JIM 7, JIM 5, L M 2  e L M 1 na reg ião  apical
da fo lh a  interna (F 1). (-)  ausente; (+ ) fraca m arcação; (+ + ) m oderada m arcação; (+ + + )
in ten sa  m arcação.

Tecidos foliares 

Parênquima aquífero
Parênquima clorofiliano próximo à epiderme 
Parênquima clorofiliano próximo ao parênquima 
aquífero
Junções intercelulares do parênquima clorofiliano
Xilema
Floema
Endoderme
Células braciformes dos canais de aeração
Câmaras subestomáticas
Estômatos
Escamas
Células esclerenquimáticas 
Epiderme

JIM7

+++
+++
+++

+++

Anticorpos 
JIM5 LM2 LM1
- + -
- - -
- - -

++ - 
+++ +++

-

+++ +++ -

+ - -
- - -
- +++ -
- ++ -
- - -
- ++ -

Tabela 4. Intensidade de marcação dos anticorpos JIM7, JIM5, LM2 e LM1 na região basal 
da folha interna (F1). (-) ausente; (+) fraca marcação; (++) moderada marcação; (+++) 
intensa marcação.

Tecidos foliares 

Parênquima aquífero
Parênquima clorofiliano próximo à epiderme 
Parênquima clorofiliano próximo ao parênquima 
aquífero
Junções intercelulares do parênquima clorofiliano
Xilema
Floema
Endoderme
Células braciformes dos canais de aeração
Câmaras subestomáticas
Estômatos
Escamas
Células esclerenquimáticas 
Epiderme

JIM7
Anticorpos

JIM5 LM1 LM2
- + -

+ - -

++
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Tabela 5. In tensidade de m arcação d os anticorpos JIM 7, JIM 5, L M 2 e L M 1 na reg ião  apical
da fo lh a  in term ediária (F 4). (-) ausente; (+ ) fraca m arcação; (+ + ) m oderada m arcação; (+ + + )
in ten sa  m arcação.

Tecidos foliares Anticorpos
JIM7 JIM5 LM1 LM2

Parênquima aquífero + - - ++
Parênquima clorofiliano próximo à epiderme ++ - - -
Parênquima clorofiliano próximo ao parênquima +++ - - -
aquífero
Junções intercelulares do parênquima clorofiliano ++
Xilema +++ +++ +++ -
Floema +++ +++ +++ -
Endoderme - - - -
Células braciformes dos canais de aeração +++ +++ - -
Câmaras subestomáticas - - - -
Estômatos - - ++ +++
Escamas - - - +++
Células esclerenquimáticas - - - -
Epiderme - - +++ +++

Tabela 6. Intensidade de marcação dos anticorpos JIM7, JIM5, LM2 e LM1 na região basal 
da folha intermediária (F4). (-) ausente; (+) fraca marcação; (++) moderada marcação; (+++) 
intensa marcação.

Tecidos foliares Anticorpos
JIM7 JIM5 LM1 LM2

Parênquima aquífero + - - ++
Parênquima clorofiliano próximo à epiderme - - - -
Parênquima clorofiliano próximo ao parênquima - - - -
aquífero
Junções intercelulares do parênquima clorofiliano ++ + + -
Xilema +++ +++ +++ -
Floema +++ +++ +++ -
Endoderme + -
Células braciformes dos canais de aeração +++ +++ - -
Câmaras subestomáticas - - - -
Estômatos - - - +++
Escamas - - +++ +++
Células esclerenquimáticas - - - -
Epiderme - - +++ +++
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Tabela 7. In tensidade de m arcação d os anticorpos JIM 7, JIM 5, L M 2  e L M 1 na reg ião  apical
da fo lh a  externa (F 8). (-)  ausente; (+ ) fraca m arcação; (+ + ) m oderada m arcação; (+ + + )
in ten sa  m arcação.

Tecidos foliares
JIM7

Anticorpos 
JIM5 LM1 LM2

Parênquima aquífero + - - ++
Parênquima clorofiliano próximo à epiderme ++ - - -

Parênquima clorofiliano próximo ao parênquima +++ - - -
aquífero

Junções intercelulares do parênquima - +++ - -
clorofiliano

Xilema ++ +++ - -
Floema ++ +++ - -

Endoderme - - - -
Células braciformes dos canais de aeração +++ +++ - -

Câmaras subestomáticas +++ - - -
Estômatos +++ +++ +++ +++
Escamas - - +++ +++

Células esclerenquimáticas - - - -
Epiderme - +++ +++ +++

Tabela 8. Intensidade de marcação dos anticorpos JIM7, JIM5, LM2 e LM1 na região basal 
da folha externa (F8). (-) ausente; (+) fraca marcação; (++) moderada marcação; (+++) 
intensa marcação.

Tecidos foliares
JIM7

Anticorpos
JIM5 LM1 LM2

Parênquima aquífero + - - -
Parênquima clorofiliano próximo à epiderme - - - -

Parênquima clorofiliano próximo ao parênquima - - - -
aquífero

Junções intercelulares do parênquima - ++ - -
clorofiliano

Xilema + ++ +++ -
Floema + +++ - -

Endoderme
Células braciformes dos canais de aeração +++ +++ - -

Câmaras subestomáticas - - - -
Estômatos
Escamas +++

- +++ - 
- +++ -

Células esclerenquimáticas - - - -
Epiderme - - +++ -
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Ápice

Base

Bainha

Figura 1. Aechmea distichantha Lem. - Habitat, inflorescência e esquemas foliares de 
Aechmea distichantha Lem.. A: Habitat da espécie. B: Inflorescência. C: Esquema da 
filotaxia das folhas, desde a folha mais interna (1) até a folha mais externa (8). D: 
Esquema de uma folha mostrando a região do ápice, da base e a bainha.
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Figura 2. Aechmea distichantha Lem. - Microscopia Eletrônica de Varredura (MEV) - 
Distribuição e formato das escamas e dos estômatos do ápice e da base das folhas em 
diferentes posições na roseta. A: Superfície abaxial do ápice da F l. Al: Detalhe da escama. 
B: Superfície adaxial do ápice da F l. C: Superfície abaxial da base da F l. D: Superfície 
adaxial da base da Fl. E: Superfície adaxial do ápice da F4, mostrando apenas os pedículos 
das escamas, devido à queda do escudo da escama. E 1: Detalhe do pedículo da escama. F: 
Distribuição das escamas da superfície abaxial da base da F4. Fl: Detalhe da escama. G: 
Distribuição das escamas na superfície adaxial da base da F8. H: Estômatos distribuídos 
longitudinalmente em depressões na face abaxial da base da Fl. Hl: Detalhe do estômato 
protegido pela escama. Fl: Folha Interna. F4: Folha Intermediária. F8: Folha Externa.
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Y

PA

fc

Figura 3. Aechmea distichantha Lem. -  Secções transversais da folha. A e B. Vista geral da 
folha intermediária (F4). A: Ápice. B: Base. C-G. Detalhes do ápice e da base das três 
folhas. C: Escama da face adaxial da base da F l. D: Estômato e câmara subestomática na 
face abaxial da base da F4. E: Células alongadas anticlinalmente do parênquima aquífero do 
ápice da F8. F: Canal de aeração fonnado por células braciformes da base da F l. G: Feixe 
vascular colateral de maior calibre circundado por fibras pericíclicas da base da F4. Barras: 
lOOpm. BFL: Bainha Fibrosa. CBr: Célula Braciforme. CBa: Célula Basal. CP: Células do 
Pedículo. CS: Câmara Subestomática. En: Endoderme. Ep: Epiderme. Es: Esclerênquima. 
FC: Feixes comensurais. Fl: Floema. PA: Parênquima Aquífero. PC: Parênquima 
Clorofiliano. Xi: Xilema. Asterisco (*): Estômato. Tracejado: Canal de Aeração. Seta: 
Escama. F l: Folha Interna. F4: Folha Intermediária. F8: Folha Externa.
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Figura 4. A echm ea distichantha  Lem. - Gráficos do índice de Plasticidade de caracteres no 
ápice, na base de folhas com  diferentes posições na roseta. A: Á pice da F1 x  Base da F l. B: 
Á pice da F4 x B ase da F4. C: Á pice da F8 x B ase da F8. D: Á pice e Base da F l x  Ápice e Base 
da F8. E: Á pice da F l x  Á pice da F4. F: Á pice da F4 x Á pice da F8. G: Á pice da F l x  Á pice da 
F8. H: Base da F l x  Base da F8. As diferenças foram significativas entre as médias referentes à 
todos os caracteres analisados no ápice e na base da F l ,  F4 e F8 em  todos os tratamentos. Letras 
diferentes indicam médias estatisticamente significativas entre os caracteres (teste Tukey- 
Kramer, p < 0,05 e a  = 0,05). Cél.: Célula. Comp: Comprimento. Esp: Espessura. PA: 
Parênquima Aquífero. PC: Parênquima Clorofiliano. Ext.: Externa. Int.: Interna. F l: Folha 
Interna. F4: Folha Intermediária. F8: Folha Externa.
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Figura 5. Aechmea distichantha Lem. Cortes transversais do ápice e base da Folha 1, 
marcados com anticorpos monoclonais JIM7, JIM5 e LM2. Fig. A e B. JIM7. A: Ápice. 
Alta marcação no parênquima aquífero. B: Base. Alta marcação no parênquima aquífero, 
nos canais de aeração, nas junções intercelulares do parênquima clorofiliano e nos feixes 
vasculares. Fig. C-E. JIM5. C: Ápice. Moderada marcação para as junções intercelulares do 
parênquima clorofiliano, autofluorescência nos estômatos e na cutina. D: Ápice. Alta 
marcação feixes vasculares. E: Base. Moderada marcação nos canais de aeração e alta 
marcação nos feixes vasculares. F. LM2 F: Ápice. Moderada marcação no parênquima 
clorofiliano e alta marcação nos feixes vasculares. CA: Canal de Aerênquima. Fl: Floema. 
FV: Feixe vascular. PA: Parênquima Aquífero. PC: Parênquima Clorofiliano. Xi: Xilema. 
Asterisco (*): Estômato.
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Figura 6. Aechmea distichantha Lem. Cortes transversais do ápice e da base da Folha 4, 
marcados com anticorpos monoclonais JIM7, JIM5, LM2 e LM1. Fig. A-C. JIM7. A: 
Ápice. Fraca marcação no parênquima aquífero, moderada marcação no parênquima 
clorofiliano e nos canais de aeração. Nos feixes vasculares há moderada marcação e baixa 
autofluorescência. B: Base. Auto fluorescência na cutina, nas escamas e nos feixes 
vasculares. Fraca marcação no parênquima clorofiliano. Moderada marcação nos feixes 
vasculares e nos canais de aeração. C: Base. Moderada marcação nas junções intercelulares 
do parênquima clorofiliano e autofluorescência na cutina. Fig. D e E. JIM5. D: Ápice. 
Moderada marcação nas junções intercelulares do parênquima clorofiliano e nos feixes 
vasculares. Alta marcação nos canais de aeração. Autofluorescência nos feixes vasculares e 
na cutina. E: Base. Moderada marcação nos feixes vasculares e alta marcação nos canais 
de aeração. Autofluorescência nos feixes vasculares e na cutina. (F) LM1. F: Ápice. 
Moderada marcação no parênquima aquífero e autofluorescência neste mesmo tecido. CA: 
Canal de Aerênquima. FV: Feixe Vascular. PA: Parênquima Aquífero. PC: Parênquima 
Cloro filiano.
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Figura 7. Aechniea distichantha Lem. Cortes transversais do ápice e base da Folha 8, 
marcados com anticorpos monoclonais JIM7, JIM5, LM2 e LM1. Fig. A-C. JIM7. A: 
Ápice. Fraca marcação no parênquima aquífero. Moderada marcação no parênquima 
clorofdiano. Alta marcação nos canais de aeração. Autofluorescência nos feixes vasculares 
e no parênquima aquífero. B: Ápice. Alta marcação nos canais de aeração e nas câmaras 
subestomáticas. Autofluorescência nos estômatos e na cutina. C: Base. Fraca marcação no 
parênquima clorofiliano e moderada marcação nos canais de aeração. Autofluorescência 
nos feixes vasculares e na cutina. Fig. D-G. JIM5. D: Ápice. Fraca marcação no 
parênquima clorofdiano, moderada nos feixes vasculares e alta marcação nos canais de 
aeração. Autofluorescência nos feixes vasculares. E: Ápice. Moderada marcação nos feixes 
vasculares e alta marcação nos canais de aeração. Autofluorescência na cutina, nos 
estômatos e nos feixes vasculares. F: Base. Fraca marcação no parênquima clorofdiano, 
moderada marcação nos feixes vasculares e alta marcação nos canais de aeração. 
Autofluorescência nos feixes vasculares. G: Base. Alta marcação nas células bracifonnes 
presentes nos canais de aeração. Fig. H. LM1. Fig. H: Ápice. Moderada marcação no 
parênquima aquífero. Autofluorescência na cutina e no parênquima aquífero. CA: Canal de 
Aerênquima. CBr: Células Braciformes. CS: Câmara Subestomática. Fl: Floema. PA: 
Parênquima Aquífero. PC: Parênquima Clorofdiano. Xi: Xilema. Asterisco (*): Estômato
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end. This article file should not include any illustrations or tables, all of which should be 
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Material and Methods and Results should be clear and concise. 

The Discussion section should avoid extensive repetition of the results and must finish with 

some conclusions. This section can be combined with results (Results and Discussion), 

however, we recommend authors consult the Editoral Board for a previous evaluation.

Plant names must be written out in full in the abstract and again in the main text for 

every organism at first mention but the genus is only needed for the first species in a list within 

the same genus (e.g. Hymenaea stigonocarpa e H. stilbocarpa). The authority (e.g., L., Mill., 

Benth.) is required only in Material and Methods section. Use The International Plant Names 

Index (www.ipni.org) for correct plants names. Cultivars or varieties should be added to the 

scientific name (e.g. Solanum lycopersicum ‘Jumbo’). Authors must include in Material and 
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For volume, use the cubic metre (e.g. 1 x 10-5 m3) or the litre (e.g. 5 pL, 5 mL, 5 L). For 
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Numbers up to nine should be written out unless they are measurements. All numbers 
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Citations in the text should take the form of Silva (2012) or Ribeiro & Furr (1975) or 

(Mayer & Wu 1987a; b; Gonzalez 2014; Sirano 2014) and be ordered chronologically. Papers 

by three or more authors, even on first mention, should be abbreviated to the name of the first 

author followed by et al. (e.g. Simmons et al. 2014). If two different authors have the same last 

name, and the article have the same year of publication, give their initials (e.g. JS Santos 2003). 

Only refer to papers as ‘in press’ if  they have been accepted for publication in a named journal, 

otherwise use the terms ‘unpubl. res.’, giving the initials and last name of the person concerned 

(e.g., RA Santos unpubl. res.).

References should be arranged alphabetically based on the surname of the author(s). 

Where the same author(s) has two or more papers listed, these papers should be grouped in year 

order. Letters ‘a’, ‘b ’, ‘c’, etc., should be added to the date of papers with the same citation in 

the text. Please provide DOI of ‘in press’ papers whenever possible.

For papers with six authors or fewer, please give the names of all the authors. For papers 

with seven authors or more, please give the names of the first three authors only, followed by 

et al.
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Websites and other sources (citation should be avoided)

Anonymous. 2011. Title of booklet, leaflet, report, etc. City, Publisher or other source, Country. 
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title of article. Full URL. 21 Oct. 2014 (Date of last successful access).
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thank...” is preferable to “The present authors would like to express their thanks to ...” . Funding 

information should be included in this section.

The following example should be followed:
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