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Resumo

Apresentamos um estudo numérico da emergência de estados ligados de Andreev e Majorana em 
um sistema composto por dois pontos quanticos, um acoplado a um supercondutor usual, SC1, e outro 
conectado a um supercondutor topologico, SC2. Atraves do controle do entre os pontos quanticos 
estudamos o sistema desde o regime em que os pontos quanticos estao desacoplados ente si ate o 
regime de forte acoplamento mutuo. Aplicando o metodo das funcoes de Green recursivas extraímos o 
resultado numericamente exato da densidade de estados local do sistema. Primeiramente, mostramos 
que na configuracao de pontos quanticos desacoplados, estados ligados de Majorana e Andreev nao 
coexistem em um unico ponto quantico. Num segundo momento, estudamos sua coexistencia no 
sistema de pontos quanticos acoplados. Nesta configuracao, na fase trivial de SC2, mostramos que 
os estados ligados de Andreev encontram-se ligados a um unico ponto quantico no regime atômico 
(fraco acoplamento entre os pontos) ou estendidos em toda molecula no regime molecular (forte 
acoplamento entre os pontos). Fenomenos ainda mais interessantes surgem na fase topologica de SC2. 
Neste caso, no limite atomico, o estado ligado de Andreev aparece ligado a um dos pontos quanticos, 
enquanto o Majorana aparece no outro. No regime molecular, os estados ligados de Andreev se 
encontram estendidos em toda a molecula, mas o estado de Majorana continua ligado a apenas um 
dos pontos quanticos.

Palavras Chaves: Estados ligados de Andreev, Estados ligados de Majorana, Supercondutores 
topologicos, Efeitos de proximidade, Densidade de estados.



Abstract

We present a numerical study of the emergence of Majorana and Andreev bound states in a system 
composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, 
and the other connects to a topological superconductor, SC2. By controlling the interdot coupling 
we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system 
configurations. We employ a recursive Green’s function technique that provides us with numerically 
exact results for the local density of states of the system. We first show that in the uncoupled dot 
configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual 
dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot 
system. We then study the coexistence of these states in the coupled double dot configuration. In 
this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual 
quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in 
the molecular regime (strong interdot coupling). More interesting features are actually seen in the 
topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one 
of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, 
on the other hand, the Andreev bound states take over the entire molecule while the Majorana state 
remains always bound to one of the quantum dots.

Keywords: Andreev bound states, Majorana bound states, Topological superconductors, Proximity 
effects, Density of states.



“Under the calm mask of matter

The divine fire burns.”

Vladimir Solovyev
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1 Introdução

A supercondutividade consiste em um dos fenômenos mais interessantes da natureza. Supercon­

dutores possuem essencialmente duas propriedades fundamentais: sua resistividade vai a zero abaixo 

de uma temperatura crítica Tc, e eles expelem todo campo magnetico em seu interior, comportando-se 

como diamagneticos perfeitos, esse fenomeno e conhecido como efeito Meisner (2, 3).

A teoria da supercondutividade a baixas temperaturas foi desenvolvida com sucesso por Bardeen, 

Schrieffer e Cooper, a qual hoje e conhecida como teoria BCS (4, 5). O mecanismo principal pela 

supercondutividade a baixas temperaturas e a interacao atrativa entre eletrons mediada por fonons, 

formando os chamados pares de Cooper. No entanto, nos anos 80 foram descobertos supercondutores 

a temperaturas críticas muito mais altas do que a teoria BCS era capaz de explicar. Esses supercon­

dutores a altas temperaturas continuam um misterio ate os dias atuais (6).

Juncoes entre materiais normais e supercondutores apresentam propriedades interessantes e que 

podem ser exploradas de diversas maneiras. O fenomeno mais interessante nestas juncoes e a chamada 

reflexao de Andreev (7). A reflexao de Andreev consiste na reflexao de um eletron do sistema normal 

em um buraco no mesmo, com spin e momento oposto ao eletron incidente. Diversas reflexões deste 

tipo dao origem aos chamados estados ligados de Andreev, que residem energeticamente no interior 

do gap supercondutor.

Recentemente, um novo aspecto dos supercondutores ganhou bastante destaque e vem sendo 

assunto de diversas pesquisas atuais. Isso decorre do fato que, em 2001, o físico russo Alexei Ki- 

taev mostrar que supercondutores topologicos podem suportar excitacoes que se comportam como 

fermions de Majorana (8). Desde entao, a procura por tais excitacoes exoticas, no ambito da materia 

condensada, se tornou um dos topicos principais de pesquisa nesta area (9, 10).

Fermions de Majorana sao fermions que possuem a peculiar propriedade de serem suas proprias 

anti-partículas. Foram propostos originalmente por Etore Majorana, na busca de solucoes puramente 

reais da equacao relativística de Dirac (11). Como consequencia, os fermions que obedecessem essa



condição, deveriam ser eletricamente neutros e serem suas próprias anti-partículas, o que reflete no 

fato de possuírem funções de onda puramente reais. Na linguagem de segunda quantizaçao, isso 

significa que o operador que aniquila este fermion em certo estado, e identico ao operador que cria 

o mesmo. Acredita-se que os neutrinos possam vir a ser fermions de Majorana. No entanto, ate os 

dias atuais nao houve ainda evidencia de alguma partícula elementar que se comporta-se de tal forma 

(12, 13).

Em supercondutores topologicos, nao temos tais partículas elementares, mas excitacoes que se 

comportam como fermions de Majorana, muitas vezes tambem denominados modos de Majorana (8). 

Nestes sistemas, temos que a fase topologica em questao garante a existencia de estados protegidos 

que podem suportar tais excitacoes exoticas. Aqui, assim como nos aclamados isolantes topologicos, 

a nocao de topologia surge para explicar as diferentes fases da materia, mesmo que nao haja nenhuma 

quebra espontanea de simetria no sistema, a qual determina as transicoes de fase no sentido usual 

(teoria de teoria de Landau-Ginzburg-Wilson) (14, 15).

Supercondutores topologicos sao sistemas que naturalmente podem exibir fermions de Majo­

rana sob condicoes específicas. Isso porque, as excitacoes em supercondutores sao superposicoes de 

eletrons e buracos, que na condicao de simetria partícula-buraco, tornam-se eletricamente neutras. O 

papel da topologia surge para garantir estados de energia zero, onde o operador que cria a excitacao e 

exatamente o mesmo que a aniquila, fornecendo, entao, a propriedade mais exotica dos fermions de 

Majorana. Infelizmente os supercondutores topologicos sao escassos na natureza (16). Isso decorre 

do fato de que o emparelhamento dos pares de Cooper na maioria dos supercondutores nao fornecer 

fases topologicamente nao triviais. Por esta razao foram propostas realizacoes experimentais usando 

supercondutores usuais, acoplamento spin-orbita e campo magnetico (10, 17, 18). Iremos explorar 

em detalhes uma dessas propostas adiante.

Apesar dos estados ligados de Andreev, e mais recentemente, os estados ligados de Majorana 

serem amplamente estudados, pouca atencao tem se dado para a influencia que um possa exercer no 

outro (19, 20). Esta e uma questao que surge naturalmente uma vez que, ambos estao intimamente 

relacionados com efeitos de proximidade de sistemas normais e supercondutores.

Para abordar esse problema, propomos um sistema de pontos quanticos acoplados a supercondu­

tores normais e topologicos, cada um suportando um desses tipos de estado ligado. Pontos quanticos 

sao estruturas artificiais que possuem confinamento nas três dimensoes espaciais. Por apresentarem 

um espectro discreto, consequencia quantica do confinamento, muitas vezes os pontos quanticos sao 

chamados de atomos artificiais (21-23). A grande facilidade de se controlar o tamanho e conse­

quentemente, o espectro dos pontos quanticos, os fazem plataforma perfeita para diversas realizacoes

9



experimentais.
10

1.1 Objetivos e Metologia

Uma vez que pouca atençao se tem dado para a influencia que estados ligados de Andreev e 

Majorana exercem um ao outro temos como objetivo estudar um sistema que seja capaz de prover 

alguma informacao sobre tal. Para isso, propomos um sistema composto de pontos quanticos devido 

a facilidade de controle deste tipo de sistema, o que faz com que sejam interessantes para propósitos 

experimentais futuros.

Utilizaremos o metodo das funcoes de Green para calcularmos a densidade de estados local de 

cada ponto quantico, assim como dos supercondutores acoplados aos pontos. Calculamos tambem 

a funcao espectral de Majorana, uma vez que ela se faz util por motivos teoricos, os quais serâo 

abordados em detalhes adiante. Resolvendo o sistema de equacoes de movimento para as funcoes 

de Green do sistema encontramos resultados numericamente exatos, nos fornecendo propriedades 

espectrais que podem ser acessadas experimentalmente via condutancia diferencial.

Esta dissertacao esta organizada da seguinte maneira: No capítulo 2 iremos fazer uma breve 

revisao dos aspectos basicos da supercondutividade, assim como a origem dos estados ligados de 

Andreev. Ja no capítulo 3 iremos discutir em detalhes o surgimento dos estados ligados de Majorana, 

no contexto do modelo artificial de Kitaev. E tambem iremos abordar em detalhes a ja proposta 

realizacao deste modelo em fios quanticos com forte acoplamento spin-orbita. Por ultimo, no capítulo 

4 iremos analisar um sistema por nos proposto, capaz de suportar tanto estados ligados de Andreev, 

quanto de Majorana e como se correlacionam. Algumas ferramentas matematicas, assim como alguns 

calculos importantes para a compreensao do texto sao apresentados em detalhes nos apendices.
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2 Supercondutividade

Muitas características fundamentais dos sistemas de estado solido podem ser estudadas simples­

mente desprezando as interacoes entre os eletrons ou entao as expressando em um sistema nao inte­

ragente com parâmetros renormalizados, por exemplo, renormalizacao da massa.

Isso e uma das características do chamado líquido de Fermi (veja Apendice B.3), e explica porque 

consideracoes tao drâsticas nos fornecem resultados com otima concordancia com o experimento.

Contudo, certos fenômenos nao podem ser explicados atraves dessa aproximacao. Um dos 

fenômenos mais importantes que nao podem ser explicado desprezando a interacao entre os eletrons 

e a chamada supercondutividade (2). Um supercondutor apresenta duas características fundamentais: 

Abaixo de uma temperatura critica (Tc) supercondutores apresentam condutividade perfeita, e expe­

lem totalmente o campo magnetico do seus interiores agindo como diamagneticos perfeitos (efeito 

Meisner).

Durante aproximadamente 50 anos a origem microscópica da supercondutividade foi desconhe­

cida, ate que Bardeen, Cooper e Schrieffer propuseram que a origem do fenomeno esta associada com 

a interacao atrativa entre os eletrons mediada pelas vibracoes da rede do sistema (fonons) (4). Tal te­

oria e conhecida como Teoria BCS, que consiste de uma teoria de campo medio, como abordaremos 

mais adiante.

Para entendermos como se da a interacao efetiva entre os eletrons mediada por fonons basta 

lembrarmos que em um solido os eletrons viajam aproximadamente a velocidade de Fermi (vF) de tal 

forma que a escala de tempo associado ao movimento dos eletrons, usando o princípio de incerteza 

energia tempo, e O(E-1), onde EF e a energia de Fermi. Ao passar por determinada regiao a interacao 

eletrostatica do eletron com os íons da rede provoca uma distorçao da mesma, gerando vibracoes. Por 

outro lado, as vibracoes da rede (fonons) sobrevivem durante tempos O ^ ^ 1), onde e a chamada

frequencia de Debye. Em solidos temos que << EF, logo as distorções da rede sobrevivem por

muito mais tempo do que a permanencia do eletrons em sua vizinhanca. Com isso, um segundo eletron



pode passar na vizinhança distorcida pela passagem do primeiro e então interagir atrativamente com o 

primeiro eletron atraves da vibraçao dos íons da rede. A interaçao Coulombiana entre os dois eletrons 

e desprezível em relaçao a interaçao com a rede, pelo fato dos dois ja  estarem consideravelmente 

afastados. Portanto, existem uma interaçao efetiva atrativa entre os dois eletrons mediada pelos fonons 

da rede.
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Figura 1: Figura esquemática dos pares de Cooper. A linha tracejada denota o estado ligado dos eletrons que 
formam os pares de Cooper no estado |k, f,  - k f>, note que o comprimento de correlacao dos pares de Cooper e 
muito maior do que a ditancia entre os eletrons. Fonte: Henrik Bruus, Karsten Flensberg. Many-Body Quantum 
Theory in Condensed Matter Physics: An introduction. Oxford Graduate Texts, 2003.

O estado ligado descrito acima e chamado par de Cooper (5). Note que como a interacao e 

mediada por fonons, e de se esperar que seja extremamente sensível a temperatura. Isso explica 

porque altas temperaturas destroem o estado supercondutor. Existem os chamados supercondutores 

a altas temperaturas que nao podem ser descritos pela teoria BCS. O mecanismo que os governa 

permanece um misterio ate os dias de hoje (6).

O estado em que todos os eletrons formam os pares de Cooper, muitas vezes chamado conden­

sado supercondutor, e protegido contra espalhamentos, uma vez que eles sao energeticamente des­

favoráveis, pelo fato de entre o condensado supercondutor e os estados normais existir um gap de 

energia, denominado A. Logo, neste estado os pares de Cooper se comportam como um condutor 

ideal. Essa e uma das mais importantes predicoes da teoria BCS.

2 .0 .1  T eoria  d e  C a m p o  M éd io

Em sistemas de muitas partículas, sua interacao mutua torna-se fundamental para a descricao da 

dinamica de cada uma, tornando a dinamica de cada uma delas extremamente complexa. Para um sis-



tema com um número de partículas da ordem do número de Avogadro, esse problema é insolúvel tanto 

analiticamente, quanto computacionalmente. Uma maneira de descrevermos um sistema de muitas 

partículas, e transformarmos todo o problema em um problema de uma partícula so. Isto pode ser 

feito se incluirmos todas as correlacoes de uma partícula com as outras em uma densidade media (ou 

campo medio), entao o problema inicialmente de muitas partículas torna-se em um problema de uma 

partícula so sobre a influencia de um campo medio efetivo, no qual esta contido todas as complexas 

correlacoes do sistema. Este problema a principio e completamente solúvel. Este metodo e conhecido 

como teoria de campo medio. O campo medio e escolhido de tal forma que minimize a energia livre 

do sistema, uma vez que estamos mapeando um sistema interagente em um nao interagente.

Como exemplo, vamos considerar um sistema com dois tipos de partículas que interagem entre 

si, cujo hamiltoniano e dado por:
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H  = Ho + Vint,

onde

Ho = ^  e fy a v  + 2  sffiibp
v V

e

Vint = VV/I,V'll' Ctybjjãv' b^' ,
vv',w'

onde H0 descreve a energia cinetica das partículas e Vint descreve a interacao aos pares dos dois tipos 

de partículas. Vamos supor que os operadores densidade a\,av> e se diferem muito pouco de seus

valores medios (aÍav/) e (b^b^/). Definimos entao os dois operadores

dvv' = alav' -  (a lay)

= bÍ V - ( b í

de tal forma que

d v v ' = al av'b jb ^  - a l̂ av'(bjlb ^ ') -b lb ^ (a \a v ')  + (a t̂ av')(bjlb/ ) ,



que ainda podemos escrever como
14

4  bjoy V  = dvv' + ( 4  aA b lb p ') + b ^b^ia l oy>) -  <4 a^XbJb^').

Substituindo no Hamiltoniano do sistema temos

H  = Ho + Vcm + ^  dw' e^n',
yy',yUyU'

com

VCM = ^  j Vv̂ ,v'^' (ãyav'{b/db '̂> + b/db^'{avav')  ^  j Vv^,v'^'iavav'){.bpbfi'). C2-1)
vv,HH' W',yUyU'

Vcm e chamada interacao de campo medio. Perceba que o terceiro termo do Hamiltoniano e ínfimo, 

uma vez que dvv' e ew ' sao pequenos, entao seu produto dvv' e ^  e ainda menor e entao pode ser 

desprezado. Isso nos leva ao chamado Hamiltoniano de campo medio

Hcm = Ho + Vcm . (2.2)

Podemos escrever de forma mais compacta o termo de campo medio se consideramos dois operadores 

A  e B cuja a interacao entre os dois e dada simplesmente por seu produto

Hab = AB.

Fazendo o mesmo procedimento anterior, podemos descrever tí^M  como

h Â m = AiB) + (A)B -  (A)(B). (2.3)

A pergunta agora e: como podemos calcular a media desses operadores? Existem essencialmente 

duas maneiras, a primeira e de forma auto-consistente, e a segunda e escolher a media que satisfaz 

a condicao de minimizacao da energia livre. Apesar de parecer drástica essa aproximacao, onde 

deixamos de lado toda a complexidade da correlacao entre as partículas, a teoria de campo medio e 

extremamente bem sucedida em vaírios sistemas interagentes, talvez os exemplos mais famosos sejam 

os sistemas ferromagneticos e a teoria BCS que tambem se utiliza da teoria de campo medio como 

veremos a seguir.



2 .0 .2  T eoria  B C S  d a  su p e r co n d u tiv id a d e
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Vamos agora analisar os aspectos fundamentais da supercondutividade. Como já discutimos ante­

riormente, um supercondutor comporta-se de forma anaioga a um condutor ideal. A maioria dos 

supercondutores possuem pares de Cooper formados por eietrons com momentos e spins opostos: 

(k T, - k 4), como dissemos anteriormente a origem da supercondutividade e devido a interacao entre 

eietrons mediada por fonons. O Hamiltoniano generico resultante da interacao eietron-fonon neste 

caso e dado por

H  = ^  £k<rcko-ck<T -  ^  V kkckTC- ki C-k,i ck'T (2.4)
kx k,k'

onde ckx (ckx) cria (aniquila) um eletron com momento k e spin x , Vkk' e a magnitude da interacao 

eletron-eletron (mediada por fonons), que por sua vez consideramos independente do spin, essa ca­

racterística acompanha a maioria dos supercondutores usuais, levando a um emparelhamento su­

percondutor do tipo s-wave. Esse tipo de emparelhamento tambem e chamado de singleto devido 

as projecoes opostas dos spins dos eletrons que formam o par de Cooper. Temos tambem que 

ek = h2k2/2m* -  u, onde u  e o potencial químico e m* a massa efetiva do eletron. Vamos apli­

car a aproximacao de campo medio, usando a relacao da equacao (2.3). Fazendo A = c ^ c - k  ̂ e 

B = c-k'4ck'T, podemos escrever

H  = ^ Skxckx ckx - ^  Vkk (ckTc-ki<c-k'ick'T> + c-k'ick'T<ckTc-ki) - <ckTc-kJXc-k'j,ck"r>).
kx k,k'

Definimos agora as quantidades

Ak = ^  Vkk'<c-k'|ck'T> (2.5)
k'

A  = Z  Vik '< T rcV -  (2.6)
k'

Com isso podemos escrever

H  = ^  ekxcfkxckx -  ^  AkckTc-k4 -  ^  Akc-k^ckT + constante.
kx k k
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O termo constante que vem de (A)(B) representa um deslocamento energético e pode ser desprezado. 

Com isso chegamos ao chamado Hamiltoniano da teoria BCS:

Hbcs fikaC^Cka AkckTC-k | -  X  Akc-k ickT. (2.7)
ka k k

Onde c l « * .,) cria (aniquila) um eletron com momento k e spin a  com energia eka. Vkk' e a mag­

nitude da interacao eletron-eletron e aqui Ak e o  chamado parametro de ordem supercondutor, com 

(c-k/|Ck'T), <ck,TC-k/|) correspondendo a media termodinamica da aniquilacao e criacao de um par de 

Cooper respectivamente.

2 .0 .3  F o r m a lism o  d e  N a m b u

Em supercondutores, devido a estrutura do Hamiltoniano BCS, e interessante representarmos 

nossos campos (operadores) de forma que eletrons e buracos sejam tratados em pe de igualdade, isso 

e feito usando o chamado spinor de Nambu.

O formalismo de Nambu foi proposto por Yochiro Nambu no contexto da física de partículas 

(24). No chamado espaco de Nambu, os operadores sao compostos tanto por operadores de partículas 

quanto de anti-partículas (no presente caso, no contexto da materia condensada, teremos a eletrons 

e buracos). O primeiro a notar a familiaridade de tal formalismo com a supercondutividade foi P.W. 

Anderson (25). Aqui o spinor de nambu sera definido como

¥k
( \

ckT
c-k | /

CkT C-kí (2.8)

onde a primeira componente esta relacionada com o eletron e a segunda com o buraco. E interessante 

argumentar tambem que os spinors de Nambu obedecem a relacao canônica de anti-comutacao dos 

fermions

[¥ka, ̂ ] + =  ‘M t k  -  k'). (2.9)

Um Hamiltoniano genetico H  nessa representacao pode ser descrito como
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H  =
k

(2.10)

com

(
Hk =

v

ak

dk

bk
\

ek /

Explicitamente temos entao

Z = z ( ckt  c -K
í ak 

K dk

bk

ek c
ckT
t
-k| /

nos resultando

^  ^k H k ^k  = (akckTCkT + bkckTc-ki + dkC_k|CkT + ekc_k|c-kr),
k k

usando agora que [ c ^ ,  ckv ' ]+ = dkk ',^ ' podemos escrever

2  ̂ k H k^k = £  [akckTCkT + ^ k A  + dkC-k^CkT -  ekcj^ck^] + ek.
k k k

Comparando o resultado acima com o Hamiltoniano (2.7), notamos que o Hamiltoniano da teoria 

BCS pode ser escrito no espaco de Nambu na forma compacta

e ^

com

(
H k =

\

ek

-Ak

-Ak

-ek /
(2.11)

O termo Z k ek representa uma constante energetica, que pode ser negligenciada, uma vez que a ener­

gia pode ser medida a menos de uma constante. Com isso podemos escrever
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H bcs = 2 > Í H k ¥ k .  (2.12)
k

O Hamiltoniano acima é referenciado na literatura como Hamiltoniano de Bogoliubov-de Gennes 

(26).

Quase-Partículas de Bogoliubov

Afim de diagonalizar o Hamiltoniano (2.12) precisamos exercer uma rotacao na base, em outras pa­

lavras, uma transformacao unitaria da forma

HBCs = I> k u t(U k■WkU|!)Uk¥ k,
k

onde Uk e uma matriz unitaria e tem a forma generica

( \
Uk

uk Vk

—vk Uk

2 2usando |uk| + |vk| = 1. (2.13)

Definindo agora os spinor na base rotacionada como

Xk = U k^k =
( \

a kT

V a -k | '
e usando o fato que o Hamiltoniano e diagonal na baseXk podemos escrever

(2.14)

HkXk = EkXk. (2.15)

O que nos leva a equação secular

s k — Ek — Ak

—Ak —s k — Ek

entao

Ek = sk + |Ak|2. (2.16)
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Essa energia corresponde a energia das excitações, ou quase-partículas, do sistema. Temos entao a 

forma diagonal

HBCS = X i EkXkT3Xk’ 
k

onde t í, com i = 0,1,2,3, sao as chamadas matrizes de isospin definidas como

T0 =
1 0

0 1

0 1 0 - i ' 1 0
, T2 = , T3 =

, 1 0 , , i 0 , , 0 - 1 ,

(2.17)

(2.18)

Ao diagonalizarmos o Hamiltoniano BCS percebemos que existe uma energia mínima Ak entre 

o estado fundamental, formado por um condensado de pares de Cooper e os estados excitados cor­

respondendo quase-partículas de Bogoliubov. Por causa desse gap de energia, no regime de baixas 

temperaturas, excitacoes elementares se tornam inviaveis, fazendo que o estado fundamental (con­

densado de pares de Cooper) se torne robusto, prevalecendo assim o estado supercondutor. Vamos 

agora escrever de forma explicita os operadores das quase-partículas a k'i na base de Nambu. Temos 

que

(
Xk =

\

®kí
f
kja

í
UkTk =

V

\
Vk ckt

“k > CfV c-kj /

o que nos leva as importantes relacoes

akt = UkCki + vkc-k i, 

a -kj = “kc- k j -  vkckf.

(2.19)

(2.20)

As relacoes acima sao chamadas transformações de Bogoliubov, por esta razao as quase-partículas 

acima sao chamadas de quase-partículas de Bogoliubov. É importante notar que as mesmas sao 

compostas por superposicoes de eletrons e buracos e, sob condicoes especiais, apresenta uma física 

interessante relacionada com os chamados fermions de Majorana, o qual abordaremos mais adiante.

A transformacao inversa e dada por

T  =
c
ckt
í
-kj, /

u kxk “k
V

\-Vk akt

“k 7 aV a -kj /
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o que nos leva a

ckT = uka kT vka _k|,

c1,., = Mk^I k| + vk<*kT.-k|

(2.21)

(2.22)

Para determinar os coeficientes uk e vk basta resolver para um dos valores de Ek a equação secular 

correspondente. Apos alguns caiculos encontramos

2 1 
uk = 2 1+ £k

4Ak + 4

(2.23)

2 _ 1 
Vk = 2

£k

4Ak + 4

(2.24)

Funções de Green de Nambu-Gor’kov

1

Afim de determinarmos a densidade de estados do sistema supercondutor, vamos utilizar o forma­

lismo das funcoes de Green (para uma breve introducao a funcoes de Green recomendamos a leitura 

do Apendice B). Sabemos que a funcao de Green retardada no espaco das frequencias, usando a 

notacao de Zubarev (27) e dada por

G k M  = «Ak; Bk»w, (2.25)

onde Ak(Bk) sao operadores genericos escritos na representação de Heisenberg (veja o Apendice A.2). 

Como vimos na seçao 2.0.3, para sistemas supercondutores faz-se interessante trabalharmos com o 

spinor de Nambu, vamos entao definir uma funcao de Green que seja o produto direto de ambos spi­

nors como

G k M = « ^ k  ® * k » ^ (2.26)

note que neste caso, a funcao de Green se torna uma matriz e e dada explicitamente por

Gk M
ckT 

CfV c_k| /
®( cU  c_ki



que nos leva então a
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G k M  =
((ck t; ckt))w ((ck t; c- k |))w

« C- k |;CkT))-  « C- k |;c- k |))w ,

G kt(^) Fk(m)

, F kí(m) G- k |(m) ,
(2.27)

As funções de Green da diagonal de (2.27) sao as funções de Green usuais para elétron e buraco. 

Contudo, as funçoes de Green fora da diagonal

F k(^ ) — <<ckT; ̂ k ^ ^ w  (2.28)

e

Fk (w) — « c - k i; ckT» w (2.29)

representam as chamadas funçoes de Green anômalas ou funçoes de Green de Gor’kov, e estao asso­

ciadas com propagadores de pares de Cooper. Para çalçularmos essa funçao de Green, vamos utilizar 

o metodo da equaçao de movimento (veja Apendice B.1), de sorte que podemos escrever

w « ^k  ® ̂ k»w  — <[^k, ̂ k ] +> + « [^ k , H bcs ]_ ® ̂ k»w . (2.30)

Usando que [a,bc]_ — [a,b]+c-  b[a,c]+, juntamente com [ ¥ k ,^k]+ — ^k,k' e a expressao de HBCS de 

(2.12) temos

[^ k ,Hbcs]_ = ^ {H k[^ k, ^ ]_¥* - H k ^ ]_} = H k^ k.
k'

Assim a equação de movimento fica sob a forma

- « ^  ® ̂ k » - = 1+ Hk ® ̂ » -

que nos conduz entao a expressao

« ^ k  ® ̂ k ) )w = [m -H k ]-1.

De forma explicita, temos que calcular a matriz inversa

[m - H k  ]-1
( *m -  £k Ak

A*

-1

í j  — + ek

Neste caso, por se tratar de uma matriz de baixa ordem, a inversa pode ser calculada facilmente usando
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o método dos cofatores, que nos diz que a matriz inversa de uma matriz genérica A  é dada por

A-1 =
1

ldet(A)l
adj(C ), Cij = ( - i y +jdet(A -i- A (2.31)

onde adj(C ) = (co f (C))T. Com isso obtemos

[m - H k ] -1
m2 -  ek - |A k |2

 ̂ m + ek -A k ^

-Ak m -  ek

resultando finalmente na função de Green

(2.32)

Gk(w) = « ^ k  ® ̂ » m  =
w2 -  ek - |A k |2

m + ek -Ak

-Ak m -  ek
(2.33)

Comparando com (2.27) temos, as funcoes de Green do eietron, buraco e anômalas dadas respectiva­

mente por

1

1

m + ek
GkT(m) 2 2 ia 12, m2 -  ek - |A k |2

(2.34)

^  m -  ek
G-ki (m) 2 2 ia 12, m2 -  ek - |A k |2

(2.35)

F k(m) = 2 2
m2 -  ek - |A k |2

(2.36)

- A*
F kf (m) = ^ .

m2 -  ek - |A k |2
(2.37)

Perceba que para Àk = 0, temos Fk(rn) = F^(m) = 0 como esperado. Note que os polos das funcoes 

de Green sao m = ± s]s2 + |Àk|2 = ±Ek, que correspondem exatamente a energia das quase-partículas 

de Bogoliubov que encontramos via diagonalizacao do Hamiltoniano BCS. Podemos escrever ainda 

de uma forma mais interessante a funcao de Green (2.34) usando os coeficientes (2.23) e (2.24), de 

sorte que

e

Gkr(m)
w + ek w + ek

m2 -  ek - |A k |2 m2 -  Ek

U 1 + — + 1 Í1  -  L _ .
2 \ Ek)  m - E k 2 \ Ek)  m + Ek

Ou simplesmente,
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GkT(m) = + ■ (2.38)
W — Ek W + Ek

Para fins de continuação analítica temos que tomar w ^  w + in , com n sendo um número real infini­

tesimal. Usando agora a relaçao

u v

lim ------------
m + in -  €

e que a densidade de estados é dada por

P
m — €

— inô(m — €)

Pk(m) = —  Im[Gk(m)] 
n

temos

(2.39)

Pkr(w) = ukô( W — Ek) + vkú(w + Ek). (2.40)

O primeiro termo corresponde a criaçao de uma quase-partícula adicionando um eletron e o segundo 

a criacao de uma quase-partícula adicionando um buraco ao sistema. Como o operador que forma 

a quase-partículas tem a forma a k-[ = ukck|  + vkc—k  ̂ podemos ver que a quase-partícula pode ser 

formada removendo ou adicionando eletrons, ficando claro que uk e a amplitude de probabilidade 

de se criar uma quase-partícula adicionando um eletron e vk a amplitude de o fazer adicionando um 

buraco.

Descrevemos acima a densidade de estados para uma unica quase-partícula. Agora, se queremos 

calcular a densidade de estados para todo sistema precisamos somar sobre todos os momentos, da 

forma

Pt( w) = —1  V  /m[Gkr(w)]. (2.41)
k

Transformando a somatória acima em uma integral na energia, usando uma densidade de estados 

p  = p 00(w — D)Q(w + D), onde 2D e a largura da banda e por questões de normalizacao p 0 = 1/2D, 

obtemos

p^(m) = —— Im  
n f de

m + e
m2 -  e2 ■■|A|2

onde por simplicidade consideramos e e A independentes de k. Usando que

X
oo

TO
m + e

de z z T 
m2 — e2 — |A|2

nm

Va 2 -  m2
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temos

nos levando então ao resultado

P|(m) = Im
ponm

VÃ2—m2

, , P0n Mp T(m) = — 0 ( M -  Ã). (2.42)
VÃ2—m2

A mesma expressão vale para eletrons com spin down. A densidade de estados acima e apresentada na

figura (2). Sabemos que em resposta linear a condutancia e diretamente proporcional a densidade de 

estados1, logo experimentos de STM foram usados para comprovar a teoria BCS nos anos 60 (28, 29).

Figura 2: Densidade de Estados de um supercondutor usual extraída da teoria BCS. No interior do gap super­
condutor apenas pares de Cooper sao permitidos.

2.1 Supercondutividade induzida e estados ligados de Andreev

A juncao entre sistemas normais (metalicos ou semicondutores) e sistemas supercondutores apre­

senta uma serie de fenômenos fascinantes, um deles e a chamada reflexao de Andreev (7, 30). Se 

o potencial químico do sistema normal se encontra em uma regiao situada energeticamente no gap 

supercondutor, um eletron de conducao do sistema normal so pode se transferir para o supercondutor 

se consequentemente juntar-se com um outro eletron de momento e spin oposto, formando entao um 

par de Cooper no supercondutor.

1Veja o Apendice C.2
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E < a {

Figura 3: Reflexão de Andreev na junção X/supercondutor, onde X representa um material usual, seja metálico 
ou semicondutor. Vemos que um eletron incidente na interface com um supercondutor produz a reflexao de um 
buraco, perceba que com momento e spin invertidos. Fonte: Jean-Damien Pillet, Tunneling spectroscopy of the 
Andreev Bound States in a Carbon Nanotube, PhD thesis, 2011.

Note que no processo acima, a formação do par Cooper no supercondutor resultou na reflexao 

de um buraco no sistema normal, essa reflexao e chamada reflexao de Andreev (RA). Sucessivas RA 

coerentes resultam em estados ligados conhecidos como estados ligados de Andreev (Andreev Bound 

States-ABS) que, como podemos ver, energeticamente residem no interior do gap supercondutor (veja 

Fig. 3).

A juncao de sistemas normais e supercondutores tambem apresenta o que chamamos de supercon­

dutividade induzida. Correlacoes supercondutoras podem ser induzidas no sistema normal (renorma- 

lizadas pelo acoplamento entre o supercondutor e o sistema normal), fazendo com que as propriedades 

espectrais do sistema normal apresentem tambem um caráter supercondutor.

O processo fundamental na reflexao de Andreev ja aparece no Hamiltoniano BCS. Para vermos 

isso vamos nos concentrar no termo responsavel pela dinamica dos pares de Cooper

Hpair = -  ^  (^kck |c-k | + Akc-k lckt) . 
k

(2.43)
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O termo Akc^ c_ ki está associado com aniquilação de um par de Cooper e a criação de uma quase- 

partícula no sistema supercondutor, voltaremos a ele mais adiante. Vamos analisar o segundo termo 

de (2.43) Akc_k|Ck|. Para isso, perceba que o operador que aniquila um eletron cko corresponde a 

criacao de um buraco com momento oposto com o operador h_ko, escrevendo matematicamente esta 

relacao temos cko = h_ko.

Akc_k|ckr = hki Akck? ’

este termo representa a aniquilacao de um eletron e a criacao de um par de Cooper (descrito por A p 

e um buraco de momento e spin oposto ao eletron aniquilado. Este fenômeno representa exatamente 

a reflexao de Andreev. De forma resumida podemos descrever o processo acima como

e_ ^  Par2_ + h+. (2.44)

Note na equacao acima que o processo de reflexao de Andreev mistura de forma coerente eletrons 

e buracos. Alem disso, podemos ver que o processo conserva carga, e_ ^  2e_ _ e_, energia, uma 

vez que E _ ^  2E_ _ E _ , e como ja dissemos, corresponde a reflexao de um eletron em um buraco, 

k_ ^  (k_ _  k_) _ k_ ', levando k ^  _ k . Onde usamos que o buraco possui a carga, momento e 

energias iguais em modulo as do eletron, porem com o sinal negativo.

A fim de ilustrar os dois fenomenos citados acima, vamos considerar um sistema simples formado 

por um ponto quantico (PQ) de um unico nível ligado a um supercondutor (Fig.4). O Hamiltoniano 

desse sistema eí dado por

H  = 2  Sdo-di da + ^  [Vkck^da + Vkd_ cko] + 2  4 o cko _Y _l [Akck?c_ki + Akc_k|ckT], (2.45)
<r ko ko k

o primeiro termo representa a energia cinetica do PQ , onde dO(do ) cria (aniquila) um eletron do PQ 

com energia s do e spin o , o segundo termo representa o acoplamento entre o PQ e o reservatório 

supercondutor com Vk (Vk) descrevendo o tunelamento de eletrons entre o PQ e o supercondutor e os 

dois ultimos termos representam o Hamiltoniano BCS ja discutido anteriormente.

Podemos escrever o Hamiltoniano (2.45) no formalismo de Nambu definindo o spinor para PQ 

na forma

(
^ d  =

\

\d^ 

d_ /
^  = (  dT_ di ), (2.46)

resultando no Hamiltoniano da forma



27

Figura 4: Ponto Quântico acoplado a um reservatório supercondutor. Fonte: Elaborada pelo autor.

H  = Yd + £  H k Yk + ^  K  Hdk Yd + Yd W]k Yk ], (2.47)

Hd =
(

s dT 0
, Hk =

( A >

II£ > k 0
. (2.48)

, 0 - £ dl , , - Ak - £k , , 0 Vk ,

Para calcularmos as propriedades espectrais do PQ precisamos calcular a funcao de Green retardada 

do mesmo, que definiremos da forma

Gd (w) = ((Yd ® Yd )),. (2.49)

ou de forma explicita

((dT;d}))w ((dT;di))w

, ((d | ; dT))w ((d\ ; d*)), ,
(2.50)

usando novamente a equacao de movimento temos

w((Yd ® Yd))w = ([Yd, Yd ]+) + (([Yd, HL ® Yd)),.

usando (2.47) na equacao de movimento acima obtemos o sistema de equacoes
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= i + H d « ^ d  ® + ^  H jk« ^ k  ® ̂ d » w
k

m «Tk ®^d»m = H k « ^ k  ®^d»m + WdkiÇVd ® ̂ d » w.

Combinando as duas equações, ficamos com

m «Td ® ̂ » m  = 1 + H d « ^ d  ®^d»m + Z  H ]k[m -H k l-1H k « ^ d  ® ̂ » m
k

Portanto,

® ̂ d  » - = [ ^ - H s ] -1 , (2.51)

onde definimos

H  = Hd + £  H ]k[m -H dk l-1Hdk, (2.52)
k

note que o termo da somatória nada mais é do que a auto-energia S(m). Usando (2.32) temos que

Z H dk[^ -H k ]-1 H d k = 2
|Vkl2

m2 -  s i  -|A kl2

m + Sk

- Ak

-Ak

m -  Sk )

Vamos considerar por simplicidade que V, s  e A sao independentes de k. Transformando a somatória 

nos momentos em uma integral usando uma densidade de estados constante p 0 e considerando o li­

mite em que a banda de conducao (D) muito larga (Wide Band Limit) (veja o Apendice B.2), obtemos

X O

O
PolV l2

m2 2 |A|2
m + s 

-A*

A

m - s

\
ds,

/

usando que
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r

w + S
w2 -  s 2 - |A |2

;ds = -
wn

A2 ■w* X A
- »  w2 -  s 2 -  |A|2

ds  =
An

VA2 -"w2

obtemos

Z H Í [w - « k ] - ‘H dk
k

Po|V|2n w -A

VA2 -  w2 [ -A* w

com isso temos que

w - H s
 ̂ w -  Sd + wrVÃ2-W

A*r
VÃ2-w2

Ar
VÃ2-« 2

w + s d + w r
VÃ2- w 2 /

com r  = np0|V|2. Muitas vezes o resultado acima e escrito de forma compacta usando as matrizes de 

isospin (2.18). Note dos resultados acima que podemos escrever a auto-energia em WBL como

S(w) =
r

Va 2 -  w2
(AT2 -  wTo), (2.53)

onde definimos /A = -iA . Com os resultados acima podemos escrever

Gd (w) = wTo -  SdT3 -
r

Va 2 -  w2

i- i
(AT2 -  wTo) (2.54)

Usando o metodo dos cofatores(2.31) para calcular a inversa obtemos

Gd(w) =
1

w -  Sd + wr
VÃ2-w2 

( w + Sd +

w + Sd +

wr
VÃ2-w2

wr Ar
Va2-w2 Va2-w2 

Ar

l2

VÃ2-w2
A*r

VÃ2-w2 w -  Sd + wr
VÃ2-w2

X

/

Com esse resultado podemos identificar a funcao de Green do eletron
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« d T; d j» «
«  + Sd + «r

Va2—«2

«  — Sd + «r
Va2—«2 «  + Sd + «r

Va2—«2
Ar

Va2—«2

t2’

do buraco

« d j; d»>«
«  — Sd + «r

Va2—«2

«  — Sd + «r
Va2—«2 «  + Sd + «r

Va2—«2
Ar

Va2—«2

t2’

e as funcoes de Green de Gor’kov

« d T; d j» «
Ar

Va2—«2

«  — Sd + «r
Vã2— «  + Sd + «r

Va2—«
Ar

< > 1 £ro

t2’
2 2«

(2.55)

(2.56)

(2.57)

« d j; d}»«

AT
Va2—«2

«  — Sd + «r
Va2—«2 «  + Sd + «r

Va2—«2
Ar

Va2—«2

t2 " (2.58)

Note que para A = 0 os resultados acima sao exatamente iguais as funcoes de Green de um PQ aco­

plado a um reservatório normal na aproximacao de WBL como o esperado.

Uma vez que conhecemos as funcoes de Green do PQ podemos calcular sua densidade de estados

Pd («) = — n  1m[«dT; d j» « ]. (2.59)

Os resultados para o caso normal e supercondutor são mostrados nas figuras 5 e 6. Perceba que 

o espectro do PQ apresenta agora características supercondutoras, mostrando a supercondutividade 

induzida por efeitos de proximidade a um supercondutor. Contudo, note que no interior do gap 

supercondutor temos a presenca de dois estados ligados, que representam Andreev-Bound-States, 

devido a sucessivas reflexões de Andreev como esquematizado na figura 3. Perceba que quando o 

PQ e conectado a um reservatório normal (A = 0) sua densidade de estados apresenta um alargamento 

provocado pelo acoplamento com os eletrons do reservatório metalico, figura 5. Contudo, quando 

o mesmo e acoplado a um supercondutor, o PQ apresenta uma densidade de estados característica 

dos supercondutores, alem da presenca de estados ligados de Andreev que residem no interior do gap 

supercondutor, mostrados na figura 6.
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Figura 5: Densidade de Estados do PQ acoplado a 
um reservatório normal (A = 0), como a presemja do 
reservatório apenas alarga o nível, como esperado da 
aproximacao de banda larga.

Figura 6: Densidade de Estados do PQ acoplado 
a um reservatório supercondutor (A + 0), note que 
agora o espectro apresenta características supercon­
dutoras, alem de ABS no interior do gap.

E interessante notar tambem que podemos descrever um Hamiltoniano efetivo para o PQ na 

presença do reservatório supercondutor. Para isso basta notarmos que conseguimos descrever a função 

de Green do PQ na forma

Gd (w) = [w - H s ] -1, (2.60)

com H s dado por

H  =
edT 0

0 - e d|

I Vkl
w2 — e2 —

2

w2 -  ek -lAkl2
w + ek -A k

-Ak w -  ek
(2.61)

Se consideramos WBL como nos cálculos anteriores, temos que

Hs
í  n  3Pdt 0

0 - e d|

r

Va 2 -  w2

w -A  

-A* w

e consideramos agora A »  m ficamos com

Hs =
( edT r

r  - p d4

Assim, escrevendo em termos de da e d^ o hamiltoniano efetivo para PQ, agora supercondutor e
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Hds = ^  da + r(d}dj + dj,dT).
l

(2.62)

Esse é do que o Hamiltoniano efetivo para um PQ na presença de um supercondutor no limite 

(D, A) »  m. Perceba que, como esperavamos, a supercondutividade induzida no PQ e mediada 

pelo acoplamento com o supercondutor. Perceba que a equacao (2.62) possui todos os ingredien­

tes mínimos necessarios para a existencia de estados ligados de Andreev no PQ.
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3 Supercondutividade tipo p em fios 
quânticos com forte acoplamento 
spin-Orbita

No capítulo anterior discutimos os aspectos fundamentais do fenômeno da supercondutividade. 

Nesse momento e importante relembrar que os eletrons nos pares de Cooper possuem spin com 

projecoes opostas. Dizemos que este estado corresponde ao estado de singleto. Supercondutores 

desse tipo sao geralmente chamados de supercondutores s-wave, em analogia a simetria do orbital 

atomico s. Os supercondutores do tipo s-wave sao os mais abundantes da natureza. Chamamos a 

atencao do leitor para o fato de que quando falamos da simetria do supercondutor estamos nos refe­

rindo a simetria de spin dos eletrons que formam o par de Cooper, por isso certas vezes tal simetria e 

referida como simetria de emparelhamento.

Embora bastante raros e instaveis, existem tambem supercondutores cujos spins dos eletrons nos 

pares de Cooper sao paralelos, caracterizando um estado conhecido como tripleto (31-33). Uma vez 

que o spinor neste caso e uma funcao simetrica, necessariamente a funcao de onda espacial deve ser 

anti-simetrica, para manter a anti-simetria da funcao de onda total dos pares de Cooper, uma vez 

que sao compostos por fermions. Por essa razao, em analogia com as funcoes de onda espaciais de 

orbitais do tipo p, que sao assimetricas. Supercondutores que possuem esse tipo de emparelhamento 

sao chamados de supercondutores do tipo p.

Os chamados fermions de Majorana ou modos de Majorana aparecem apenas em superconduto­

res do tipo p. Como tais supercondutores sao bastante raros e instaveis, precisamos contornar este 

problema de alguma forma. A maneira de fazermos isso e usarmos um supercondutor usual do tipo 

s-wave e entao induzir um estado onde ele seja efetivamente do tipo p, como proposto em (9, 17).

No presente capítulo iremos abordar como a simetria da supercondutividade corrobora para o 

aparecimento dos modos de Majorana. Feito isso, vamos construir um sistema com supercondutivi-
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3.1 Formalismo de Nambu: Simetria partícula-buraco no Ha- 
miltoniano de Bogoliubov-de Gennes

Como dissemos acima, estamos interessados em supercondutores cuja projecâo de spin dos eletrons 

que formam o par de Cooper seja a mesma, logo o índice de spin se faz dispensavel e temos neste 

caso que ¥ k = 1 ck c lk I e temos que o Hamiltoniano sera novamente dado por

Hbcs = J > k H k ^ k ,  Hk
k

Ck —Ak

, - Ak - *
(3.1)

Com o intuito de abordar a simetria partícula-buraco, precisamos saber qual e o operador que trans­

forma ¥ k em ^k . Para isso, note que

í
r i^ k  = V

0

1

1

0 c
Ck
l
k

l

ck
k

= ( V / .

Note que a operacao acima levou k para -k . Correspondendo a transformacao de operadores que 

criam uma quase-partícula de Bogoliubov em um buraco. Portanto, essa transformacao nos sugere 

uma simetria partícula-buraco. O operador responsavel por essa simetria e dado por

P = Ti K, (3.2)

onde K é o  operador de conjugacao. Note que esse operador possui importantes propriedades:

P 2 =
0 K

K 0

0 K

K 0

1 0

0 1

onde usamos que K2 = 1, isso entao nos da

P 2 = 1 . (3.3)

Vejamos quais sao as consequencias da aplicacao do mesmo no Hamiltoniano. Para analisarmos isso,



primeiramente vamos considerar o caso sem supercondutividade Ak = 0. Neste caso temos
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P H k P f =
0 K ek 0 \ 0 K

K 0 , V 0 -ek / , K 0

ek 0

0 £k

Vemos, portanto, que

PHk P f = -H k . (3.4)

Perceba que e-k = s k, uma vez que s k = h2k 2/2m* -  u. Com isso podemos escrever

PHk P f = -H -k ,

PHk P f P  = -H -k P ,

PHk = -H -kP .

Isso nos mostra que na ausencia de supercondutividade existe uma simetria partícula-buraco intrínseca 

do sistema no formalismo de Nambu. Podemos perceber isso quando escrevemos o Hamiltoniano 

para um ponto quantico de um nível acoplado a um supercondutor. Como dobramos a dimensao do 

Hamiltoniano do PQ artificialmente, era de se esperar que as solucoes em dimensao maior estivessem 

associadas de alguma forma, e essa relacao e dada exatamente pela simetria partícula-buraco descrita 

acima.

Se considerarmos agora o caso supercondutor Ak ^  0 e impusermos a simetria partícula-buraco

PHk P f = -H -k ,

temos como consequencia que

Ak = -A -k, (3.5)

ou seja, que o parâmetro de ordem supercondutor seja uma funcao impar do momento k, essa e a 

propriedade fundamental dos supercondutores p-wave. Outra consequencia interessante e que para 

cada estado com energia Ek teremos um estado parceiro com energia - E k. Para vermos isso basta



voltarmos a equação de auto valores
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HkXk = EkXk,

que podemos tambem escrever

PH kPt (Pxk) = PEk P t (Pxk),

H-k(Pxk) = -E-k(Pxk),

Hk(Pxk) = -Ek(PXk).

Onde usamos que H-k = Hk e E-k = Ek. Com isso temos que

HkXk = EkXk, (3.6)

Hk (Pxk) = -Ek(Pxk). (3.7)

Podemos compactar as duas expressões acima em uma so definindo X  = P xk , onde das equações 

acima podemos ver que Ek = - E k. Para analisarmos melhor os conceitos acima vamos lembrar que 

Xk = ( a k a - k ) , com isso temos

PXk
( 0 K W

K  0
ak

\ (

a -k  /

a t
k

a -k

como X  k = PXk

( ~ \ ta  k a k
a  tV 11 -k ) , a -k y

(3.8)

concluímos entao que a k = ak, ou seja, criar uma quase-partícula de Bogoliobov com energia Ek e 

equivalente a aniquilar (criar um buraco) com energia - E k, onde usamos que Ek = - E k. Mas algo 

curioso acontece caso tenhamos exatamente Ek = Ek, neste caso temos Ek = - E k implicando Ek = 0.



Consequentemente,
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®k = a j ,  (Ek = 0). (3.9)

Isto corresponde à propriedade fundamental dos fermions de Majorana, que e uma partícula igual a 

sua anti-partícula. Aqui isto se traduz no fato de que o operador que cria uma quase-partícula de 

Bogoliobov e igual a seu operador de aniquilacao. Como nosso operador e composto por operadores 

de criacao de aniquilacao de eletrons, nesse contexto de materia condensada nao estamos diante de 

uma partícula elementar que corresponde a um fermion de Majorana, mas sim excitacoes que se 

comportam desta maneira, por isso muitas vezes e usada a expressao modos de Majorana.

Perceba que para que o sistema suporte fermions de Majorana precisamos que exista um estado 

de energia zero. A existencia desse estado em supercondutores do tipo p  pode ser garantida em uma 

das fases topologicas que o mesmo apresenta, como abordaremos mais adiante.

3.2 Modelo de Kitaev

Os primeiros estudos relacionando fermions de Majorana no ambito da materia condensada foram 

propostos por Kitaev atraves de um modelo artificial, que descreve um sistema com emparelhamento 

dos pares de Cooper do tipo p, ou seja, um sistema efetivamente sem spin (8). Discutiremos em 

detalhes como isso pode ser feito de forma pratica na secao seguinte.

O Hamiltoniano de Kitaev e dado por

H  = - p ^  cjcj - 1 ^  (tc jcj+i + Ael̂ cjcj+i + H.c.) (3.10)
j j

onde p  e o potencial químico, t e o elemento de matriz que acopla um sítio ao outro adjacente, 

cj (cj) cria(aniquila) um eletron no sítio j, A e <p estao relacionados ao emparelhamento do par de 

Cooper. Muitas vezes <p e igualado a zero por questões de simplicidade, como fizemos no capítulo de 

supercondutividade. Perceba que o grau de liberdade do spin foi omitido, pois assume-se que todos 

os eletrons possuem mesma projecao de spin.

Afim de estudar os aspectos topologicos do sistema vamos passar para o espaco reciproco. Para 

isso definimos a seguintes transformadas de Fourier
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Cj = 4 =  V e -iiV t , c) = 4 -  V  eiix'cl.
V N V  j V N V  k

Aplicando agora a transformada de Fourier na Eq. (3.10) obtemos

H -  -  V V  e~ÍXj(k-k,)cÍck' -  - W  e -ixj(k- k,)eik'ac)cv
j kk

Y ^ e -iXj(k,-k)e-ik'ac l  Ck

2n E E  eJ kk
Aei$

'e ckc k

2N *-J kk
Ae-i$

2N Y l Y j e iXj(k+k,)eik,aCkCk
J kk'

2N

V V

j kk'
e-ixj(k+k)e- ik a J  ct 

k' k.

Usando novamente a Eq. (3.57) podemos ainda escrever

H  = - — V  c\ck'ôk,k -  2 V  elkac\ckôk,k -  2  V  e lkac\'Ckôk,k
2 kk' 2

-
kk'

Aei$
kk'

2 "^j elkaCkCk' Ak' , k

V
k

kk' 

- — - 1

Ae-i$
2

eika + e-ika
kk'

+ Aei$
cl ck

V  eik'a4  c)6k,-k'

V  e‘kaCkC-k -  A^  V  e-‘kã4 t 4

que nos resulta em

H  = - ^  [— + 1 cos(ka)]ckck -  —A e ¥ ^  ika„_„ . Ae „-ika„ t „ te CkC-k -  ■ ■Ee c-kck

Agora note que

V  e‘ka CkC-k = y  eika CkC-k + £  eika CkC-k = £  é k° CkC-k + £  e~ika c-kCk
k<0 k>0 k<0

V ( e ika -  e-lka)CkC-k = V  2isen(ka)CkC
k<0 k<0

t

2

2

(3.11)

(3.12)

e



39

£  e*“ct c-k = £  e‘Í°ctc- t  + Z  eii°ckc-k = £  eikac-t ct  + £  e ^ c k c - k
k<0 k>0 k>0
£ ( e lka -  e-lka)ckc-k = £  2isen(ka)ckc-k.

k>0 k>0

-k .
k>0 k>0

Somando as duas expressões acima temos

2 £  eikackc-k £  2isen(ka)ckc-k + £  2isen(ka)ckc.
k<0 k>0

ou seja

^  elkack€-k = ^  isen(ka)ckc-ckc-k 
k k

De forma anaioga

£ e-ikac k l  k £  e-ikackc-k + £  e-ikackc-k = £  e- * d c_k + £
k<0 k>0 k<0 k<0

e-ikackck k + Z  eikack / k

^ ( elka -  e lka)c lc-k = ^  2isen(ka)c í cík k
k<0 k<0

£ e ^ c V - k ^  e-lkac lc -k + e-ikac íc -k = eikac -kcl + e-lkac íc -k

’̂ ( e lka -  e-ika)clkc \  = Y ^  2isen(ka)cJ cí
k -k.

k>0 k>0

O que nos leva em

J V ^ - k  = Z isen(ka)c-kcl;

e resulta

'y 'i e lkac -kcl = -  ̂  isen(ka)cí  A -

k

k

e

(3.13)

(3.14)

(3.15)



Substituindo as Eqs. (3.13), (3.14) e (3.15) na Eq. (3.12) ficamos com
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1
2

^ { - 2 [ p  + 1cos(ka)]c^kck + iAe1̂ sen(ka)ckc- k - iAe sen(ka)c-kc\}.
k

(3.16)

Escrevendo o hamiltoniano acima na forma de Bogoliubov-de Gennes, definindo ^k  = [ck> c-k] 

encontramos que

Hk (k)
-[p  + 1 cos(ka)] iAel$ sen(ka) 

- iA e -l$sen(ka) p  + 1cos(ka)
(3.17)

Vimos que a forma geral dos auto-valores do Hamiltoniano de Bogoliubov-de Gennes é dado por

Ek = e2 + |A k I2.

Da Eq. (3.17) e facil ver que para o Hamiltoniano de Kitaev temos

ek = -[p  + 1 cos(ka)] (3.18)

A k = iAe1̂  sen(ka). (3.19)

Entao temos que

Ek = ± y  [p + 1 cos(ka)]2 + A2 sen2(ka)

= ± y j (t -  A2) cos2(ka) + 2ptcos(ka) + p 2 + A2. (3.20)

Queremos agora encontrar pontos onde a energia seja nula, pois o mesmo esta associado com os mo­

dos de Majorana, para isso temos que

(t -  A2)cos2(ka) + 2pt cos(ka) + p 2 + A2 = 0.

A equação acima deve ser satisfeita para qualquer A, logo precisamos exigir que os termos -A 2 cos2(ka) 

e A2 se cancelem mutuamente, isso ocorre para cos(ka) = ±1. Com base nisso podemos escrever as 

relações
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)(t + u)2 = 0, se cos(ka) = 1
2 (3.21)

(t - u )2 = 0, se cos(ka) = -1 .

Das equacoes acima vemos que so podemos ter solucoes com energia zero se u  = ±t. Veja que 

estes pontos correspondem exatamente a extremidade da banda do fio quantico. Olhando para a zona 

de Brillouin vemos que os pontos k = ± n |a  (limites da primeira zona de Brillouin) corresponderâo a 

U = t e que k = 0 corresponde a u  = - t .  A diferenca entre estes dois regimes ficara mais clara quando 

abordamos o problema do ponto de vista topologico, que e o assunto da proxima secao.

3 .2 .1  T o p o lo g ia  e  m a té r ia  c o n d e n sa d a

Tradicionalmente na materia condensada as transicoes de fase sao classificadas e entendidas de 

acordo com as ideias de Landau, estao associadas a quebra de alguma simetria do sistema, ou seja, 

alguma simetria e quebrada espontaneamente (14, 15, 34).

Contudo, nos ultimos anos surgiu uma nova classificacao das transicoes de fase baseadas na nocao 

de ordem topologica1 (14, 34). Em geral dizemos que dois objetos sao topologicamente equivalentes, 

ou seja, pertencem a mesma classe topologica se podem ser conectados atraves de variacoes contínuas 

(suaves). Caso isso nao seja possível, os objetos em questao pertencem a classes topologicas dife­

rentes. Uma das grandezas que caracterizam a classe topologica e o chamado invariante topologico. 

Objetos que possuem mesmo invariante topologico sao topologicamente equivalentes (veja a figura 

7).

Nos anos 80 as transicoes de fase topologicas foram estudadas de forma pioneira por Thouless, 

Kosterlitz e Haldane (35-38). Contudo, uma das mais surpreendentes aplicacoes da topologia em 

materia condensada se deu no entendimento da quantizacao da condutancia do efeito Hall quantico 

(39) e posteriormente no estudo do efeito Hall quantico fracionario (40).

Para entendermos melhor o conceito de topologia aqui usado, imagine uma esfera no espaço 

euclidiano tridimensional. Agora comece a distorce-la suavemente, de forma que a superfície dela 

seja sempre contínua, perceba que e possível transforma-la em um cilindro macico ou em uma bola de

1Topologia e o ramo da matemática que estuda como elementos matemáticos se comportam sob mudancas infinite­
simais, está dividida em topologia geral, topologia algebrica e topologia geometrica. Os conceitos aqui abordados se 
referem a topologia geomeítrica.
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(a) Transição de fase do tipo Landau

Grupo de Simetria 1 Grupo de Simetria 2
-------------------------------- • ------------------------------------- Parametro fino

(b) Transição de fase topológica 

Grupo de Simetria 1 Grupo de Simetria 1 Parâmetro fino

Figura 7: (a) Transição de fase segundo a teoria de Landau. (b) Transição de fase topológica. Figura adaptada 
de L. Tsui, F. Wang, and D. H. Lee, arxiv: 1511.07460v1.

futebol americano. Isso quer dizer que estes objetos pertencem à mesma classe topologia. Contudo, 

perceba que nao podemos transformar a esfera em uma rosquinha sem que facamos um buraco na 

sua superfície, o que caracterizaria uma deformacao descontinua. Logo, a esfera e a rosquinha nao 

pertencem a mesma classe topologica. Considere agora uma caneca (com alca), podemos deforma- 

la continuamente de tal forma que a mesma se transforme na rosquinha, entao, esses dois objetos 

pertencem a mesma classe topologica. Note que, neste caso a diferenca entre a esfera e a caneca e 

essencialmente o numero de buracos que a superfície possui.

Como dito anteriormente, o invariante topologico sera a quantidade que caracterizara a classe 

topologica em questao. No caso das superfícies, classes distintas estao associadas com o numero 

de buracos, e estes com o invariante topologico chamado ”genus” (g) (41). No exemplo acima, a 

esfera possui g = 0 (nenhum buraco), ja a caneca possui g = 1 (um buraco), como possuem invari­

antes topologicos diferentes, pertencem a classes topologicas distintas. A distincao entre as classes 

topologicas nem sempre e tao evidente como no caso acima, mas uma vez encontrado o invariante 

topologico, podemos classificar as diferentes classes topologicas.

Em materia condensada, a ideia de topologia tambem pode ser usada para estudar a teoria de ban­

das, dando origem a chamada teoria topologica de bandas. Para isso, precisamos estudar a topologia 

no espaco recíproco. Como ja dissemos, fases topologicas diferentes nao podem ser conectadas de 

forma suave, isso faz com que ao analisarmos a estrutura de banda, transicoes de fase topologicas 

sejam caracterizadas pelo fechamento do gap em pontos protegidos por alguma simetria do sistema.

O vacuo e um isolante trivial do ponto de vista topologico, de maneira que exista uma equi- 

valencia entre o vacuo e qualquer outro isolante topologicamente trivial, logo na superfície de um
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2 holes

e lectrica l
conductance

0 holes

Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences

Figura 8: Quantização da condutância no efeito Hall quântico. Essa quantização tem origem nas distintas fases 
topologicas que o sistema apresenta que se diferem em mímeros inteiros associados com o invariante topologico 
da fase em questao.

isolante trivial, onde há contato com o vácuo, nao teremos nenhuma consequencia física interessante, 

uma vez que os estados de superfície podem ser conectados âdiâbâticâmente com os estados de vacuo. 

Porem, caso o isolante seja topologicamente nao-trivial, seus estados diferem dos estados de vacuo, 

entao, nao existe uma conexao adiabatica entre os estados de superfície e os de vacuo, fazendo com 

que hajam estados de superfície metalicos (”gapless”) uma vez que, neste caso, necessariamente deve 

haver uma transicao topologica na fronteira das duas regiões. Essa ideia e analoga ao fato de nao 

podermos conectar uma esfera com uma rosquinha sem que facamos uma deformacao abrupta (nao 

contínua), consequencia destas superfícies pertencerem a espacos topologicamente distintos.

A ideia acima explorada para isolantes pode ser estendida para supercondutores, uma vez que 

os estados normais, caracterizados por quase-partículas de Bogoliobov tambem apresentam um gap 

provindo do condensado supercondutor. Nas fases topologicamente nao-triviais de sistemas supercon­

dutores e que ocorrem excitacoes de energia zero (isto e, sem gap) que se comportam como fermions 

de Majorana. A seguir vamos aborda-los no contexto simples do modelo de Kitaev.

De maneira formal, em topologia, a relacao de equivalencia entre dois mapas e chamada de 

homotopia. Neste caso estaremos interessados em mapas que podem ser continuamente deformados 

um no outro, caracterizando sua equivalencia do ponto de vista topologico. Para uma abordagem



matematicamente rigorosa de topologia e suas aplicações em física veja a referência (41).

3 .2 .2  In v a r ia n te  T o p o lo g ico  d o  m o d e lo  d e  K ita ev

A existencia dos modos de Majorana esta associada com a fase topologica a qual o sistema se 

encontra. Vamos entao agora explorar os diferentes regimes topologicos do hamiltoniano de Kitaev 

calculando seu invariante topoloígico.

Primeiramente vamos escrever (3.17) da forma
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H  =
Sk Ã k 1 0 0 1 0 —i

= Sk + Re[Ã k] + Im[Ã k]
. Ã Î -Sk  _ 0 -1 1 0 i 0

Usando as já conhecidas matrizes de Pauli

r x =
0 1

; r y =
0 - i

; r z =
1 0

1 0 i 0 0 —1

podemos escrever

Hk = h(k) • cr

com

h(k) = hx (k)x + hy (k)y + hz(k)z, 

r  = r xX + r yy + r zz,

hx(k) = Re[Ãk ], hy(k) = Im[Ãk], hz = Sk.

(3.22)

Olhando para (3.18) e (3.19) percebemos que

hx,y(k) = - h x,y(-k) (3.23)

hz(k) = hz(-k). (3.24)

Vamos definir agora o vetor unitario

h(k) = -h (k ). (3.25)
|h(k)|

O versor acima mapeia todo hamiltoniano (no espaco reciproco) em uma esfera unitaria S 2. Das 

relacoes de paridade acima e facil perceber que nos limites da zona de Brillouin (k = 0 e k = n) temos



hx,y(0) = hx,y(n) = 0, onde usamos a simetria do sistema para considerar apenas o limite da zona de 

Brillouin 0 < k < n. Com isso podemos escrever

fc(0) = soz (3.26)

e

W )  = snz. (3.27)

Essas relacoes decorrem essencialmente do fato da supercondutividade no presente caso ser do tipo 

p. Lembrando que hz representa a energia cinetica (3.18) e escolhendo a = 1, temos

hz(k) = - p  + 1 cos(k). (3.28)
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Perceba que o começo e término da trajetória (limites da zona de Brillouin) irá coincidir com os 

polos da esfera unitaria s0z e Estes dois pontos sao identificaveis e, portanto, distintos. Perceba 

que isso e uma consequencia da simetria partícula-buraco, esta e a simetria que nos garante estados 

topologicamente protegidos no presente caso.

Note que s0 e sn nada mais sao do que o sinal da energia cinetica nos polos (medida em relacao ao 

nível de Fermi) que claramente sao ±1. E razoavel procuramos alguma quantidade que seja invariante 

do ponto de vista topologico. Note que s0 e sn sozinhos nao revelam nenhuma física interessante. 

Contudo, vamos analisar o produto s0sn.

Quando variamos de k de 0 ate n podemos observar dois comportamentos distintos. Sempre 

que a trajetória de h(k), sobre a superfície da esfera unitaria, for fechada teremos que, independente 

do caminho que tomarmos, o produto s0sn sempre sera positivo. Por outro lado, se tivermos uma 

trajetória que se fecha em algum ponto, correspondendo ao fechamento do gap, e portanto a transicao 

de fase topologica, entao neste caso temos que s0sn sempre sera negativo. Portanto, nesse contexto, o 

invariante topologico pode ser definido simplesmente por (9)

V = S0 Sn (3.29)

Quando v = 1 teremos um regime chamado trivial ou nao topologico. Se v = -1  entao temos o cha­

mado regime topologico. Usando a equacao 3.28 teremos que
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hz(0) _ t -  m _  I +1, se ß <  t

\hz(0)\ |t - ß\ ! -1 , se ß  > t

e

sn
hz(n)
\hz(n)\

- t  -  ß  
\t -  ß\

+ 1, se ß > - t  

-1 , se ß < - t

Logo,

V _ S0 Sn _
t2 -  ß 2 
\t - ß\2

-1 , se \m\ < t 

+ 1, se \m\ > t

(3.30)

(3.31)

(3.32)

(trivial)

(topological)

1 '—t cos A:
non-topological 
(strong pairing)

topological 
(weak pairing)

/X =  - tnon-topological 
(strong pairing)

Figura 9: (a) Energia cinética para o modelo de Kitaev.(b) Regime topologico trivial, observe que o gap se 
fecha em determinado ponto.(c) Regime topologico nao-trivial, perceba que o gap continua aberto neste caso, 
distinguindo-se do caso trivial(b). Fonte: Reports on Progress in Physics, 75(7):076501.

Perceba que em ^  = ±t temos exatamente a transição de fase do regime trivial para o topologico 

(veja Fig. 9 (a)), essa transicao de fase e caracterizada pelos chamados “gapless states”. Vamos agora 

analisar a energia no ponto de transicao topologica. Lembremos que

Ek _

com

s k _ -[ m + 1cos(k)], Ak _ iAe1̂ sen(k),
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para k = 0 ,n  (limites da zona de Brillouin) temos e0,n = - [u  ± t] e Ãk = 0, entao para u = ±t temos 

simplesmente que

E0n = 0, com u  = ±t. (3.33)

Mas, perceba que como vimos antes essa é exatamente a condição para modos de Majorana em 

supercondutores p-wave, por isso muitas vezes no contexto de materia condensada chamamos modos 

de Majorana de energia zero . Portanto, sera exatamente nos pontos de transicao topologica (“gapless 

states”) que temos a ocorrência de modos de Majorana.

Se o fio estiver no regime topologico, suas pontas, que fazem fronteira com o vacuo, vao apresen­

tar “gapless states” e, consequentemente, modos de Majorana. Isso decorre, como dito anteriormente, 

pelo fato do vacuo ser topologicamente trivial, logo, necessariamente na interface dos dois sistemas 

deve haver uma transicao de estado topologica para que se conectem. Para acessar a física dos modos 

de Majorana neste sistema vamos decompor o fermion regular (efetivamente sem spin) em termos de 

dois fermions de Majorana da forma

e-í0/2
(YB, j + ÍJA, j). (3.34)cj = 2

Os operadores de Majorana obedecem as relacoes canônicas

Ya, j = Tl, j (3.35)

{Yi, j,'Y ir, j,} = 2^ i i '  & jj '. (3.36)

Escrevendo a equacao (3.10) em termos dos operadores de Majorana teremos
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H
N e ^ 2 ,  + e-il /̂2

- ^ Z j ~ T (7k j  -  1Ya ,j ) 2 (yb,j + iYA,/-) 
j=1
N-1 r ei0/2 e-i0/2

j -  l'rA, j )— ^ ( 7 B ,  j+i + Í7A, j+ i)-  2  E
j= iL

tV A  ei<f'/2 , . e-i^/2N-1 r
-L y  (r t _ i r t )2 /  ; 2 ^YB,j+1 *YA,j + 1'
2 j=1L 2

-(YB, j + ijA, j)

-  | E '

N-1
J0

j=1

e-i^/2 e-i4>/2 

~^2 2 (yB, j + iYA, j )(YB, j+1 + iYA, j+ i)

A y 1 _ ,y ^ /2 e^ /2
-  A E

-i<P.

j=1
2 2 (yB, j+1 + íyA, j+1)(YB, j + .YaJ

2

(3.37)

Manipulando matematicamente a equação acima e usando (3.35) e (3.36) encontramos

N . N-1
H  = - 2  y !(1  + iYBjYAj) -  4 y \  [(A + t)YB,jYA,j+1 + (A -  t)YA,jYB,j+11. (3.38)

2 j=1 4 j=1

O hamiltoniano acima se torna extremamente simples em dois casos limites. Primeiramente va­

mos analisar o caso em que u  ^  0 e  t = A = 0, analisando a equacao 3.32, perceba que neste caso temos 

v = +1. Ou seja, corresponde ao regime trivial. Aplicando esse essas condicoes em (3.38) obtemos

N
H  = -  2 £ < 1  + iYB, jYA, j). (3.39)

2 j=1

Note que todos os modos estao ligados entre si. Considerando o outro limite dado pelas condicoes 

U = 0 e  t = A ^  0. Neste caso, analisando (3.32), temos v = -1 , correspondendo exatamente ao regime 

topologico. Neste caso temos que (3.38) fica simplesmente

1 N-1
H  = -  2 L X  Yb, j Ya, j+1. (3.40)

2 j=1

Perceba que este regime possui uma característica interessante. Veja que o primeiro termo da 

soma de (3.40) conecta dois modos de Majorana de sítios diferentes atraves de yB,1YA,2 e o ultimo 

termo da soma conecta yB,N-1YA,N. Mas veja que os termos yA,1 e yB,N nao aparecem no Hamiltoni­

ano. Isto que dizer que eles estao desacoplados e nao possuem custo de energia algum para o sistema



(veja figura 10). Perceba que isso so é possível no regime topologico, evidenciando a importância do 

mesmo para a aparicao dos modos de Majorana. Talvez fique mais claro se escrevermos o Hamilto- 

niano neste limite em termos de um operador fermionico ordinario, definindo
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dj = Ya, j+1 + íjb , j), (3.41)

o Hamiltoniano (3.40) fica

H  = t (3.42)

Note que no Hamiltoniano acima fica evidente o termo que nao depende da soma, esse termo esta 

associado exatamente aos modos de Majorana nas pontas do fio. Note que ele esta desacoplado do 

resto do Hamiltoniano, e e chamado termo de energia zero (porque nao ha custo algum de energia 

para adiciona-lo). É importante ressaltar tambem que qualquer operador fermionico regular pode 

ser decomposto em uma parte real e imaginaíria como fizemos acima, consistindo nada mais do 

que uma tecnica matematica sem desdobramentos físicos. Contudo,no presente caso, os estados 

topologicamente protegidos nas pontas do fio garantem a fracionalizacao do fermion em dois mo­

dos de Majorana espacialmente separados, mostrando que, neste caso, esse formalismo descreve um 

fenomeno físico e nao consiste apenas um metodo algebrico (34).

Veja que mesmo que estejam a uma distancia muito grande, sempre formarâo um férmion regu­

lar (Eq. (3.41)). Essa nao-localidade dos modos de Majorana e bastante interessante para possíveis 

aplicacoes em computacao quantica (8, 9, 14, 34).

Figura 10: (a) Limite em que u + 0 e  t = A = 0 e (b) u  = 0, t = A + 0, perceba que neste limite temos na ponta 
da cadeia yA,i e yB,N formam um modo de Majorana de energia zero. Fonte: Reports on Progress in Physics, 
75(7):076501.
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3.3 Supercondutividade efetiva do tipo p

Como dito anteriormente, precisamos de um sistema que possa suportar supercondutividade do tipo p, 

isso pode ser feito utilizando os seguintes ingredientes: Um supercondutor usual do tipo s próximo a 

um fio quantico com forte interacao spin-orbita e um campo magnetico aplicado perpendicularmente 

a direcao do fio. Vamos mostrar que estes elementos sao capazes de nos gerar um estado onde os 

eletrons dos pares de Cooper produzam um emparelhamento do tipo tripleto.

Figura 11: Campo magnetico aplicado em um fio quântico próximo a um supercondutor. Fonte: Reports on 
Progress in Physics, 75(7):076501.

Vamos descrever separadamente cada termo do Hamiltoniano do sistema citado acima. Como 

dissemos, o fio quantico em questao precisa possuir acoplamento spin-orbita, para nossos propositos 

iremos considerar o acoplamento spin-orbita tipo Rashba (42). O Hamiltoniano de Rashba no fio e 

dado por (43, 44)

Hr = ia c !j+hSz.(&ss' xx)c js’ + H.c. (3.43)
jss'

onde crss/ = ( r U  V  . ), trizes de Pauli. Perceba que no capítulo 1s s ss ss ss
as descrevemos usando x = 1, y = 2 e z = 3, tal escolha e so uma questao de notacao. Temos ainda 

que cj+1 s cria um eletron no sítio j  + 1 com projecao de spin s e Cjs/ aniquila um eletron no sitio j  

com projecao de spin s' e H.c. significa hermitiano conjugado. O termo a  nos da a intensidade do 

acoplamento e dado por a  = VESOt, ESO = m*a2/2h, onde m* e a massa efetiva do eletron no fio, a  

a constante de Rashba e t o parâmetro de hopping. Primeiramente note que

x xy xz

r  ss' x x  = rss' r y s' rzss' II 1 a

1 0 0



Com isso, é fácil ver que
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e lembrando que

obtemos

z.(<xss' x x) = - a yss,

<ry =
0

i

■ \- i

í
(-iajz.(crss' x  X) = ia a yss = a

\

0

-1

1

0 /

Escrevendo explicitamente agora o hamiltoniano de Rashbá temos

Hr = ^  a(c)+i f n  -  c)+u j  + c]icj+i,'[-  c] f j+ n ) .  (3-44)
j

Devido ao campo magnetico aplicado no fio tambem surgira um termo de energia Zeeman no fio, este 

sera importante para quebrar a degenerescencia de spin. Esse termo e descrito por

H  ^  , (3.45)
jss'

onde Vz é energia de Zeeman que aparece devido a aplicação do campo magnético ao longo do eixo 

”z”. A energia de Zeeman e dada por

Vz = g^sBz, (3.46)

onde juB e o  magneton de Bohr e Bz e a componente do campo magnetico na direcao z, e g o fator 

de Lande. Esse fator e modificado pela intensidade do acoplamento spin-orbita, de sorte que, mesmo 

que apliquemos um campo magnetico pequeno, se tivermos um sistema com forte acoplamento spin­

orbita, ou seja com alto fator de Lande, teremos uma energia de Zeeman considerável. Entao e 

desejavel que o fio quantico possua forte acoplamento spin-orbita, dois bons exemplos sao fios feitos 

de InAs e InSb  (9, 42). Podemos ainda por a expressao (3.45) numa forma mais simpatica usando

o z =
1 0  

0 -1 /

e escrevendo os termos de spin explicitamente, o que nos conduz a

Hz = yz Z  (CW -  c) j  
j

(3.47)



Temos ainda os termos
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He = - ^ Z  (CW  + (3’48)
j

onde u  e o  potencial químico. Finalmente, o termo de tunelamento entre os sítios do fio e dado por

Ht = - t Y j (cj+l,sCjs + C]sCj+l,s), (3.49)
js

onde t e o elemento de matriz entre funcoes de onda localizadas em distintos sítios, que permite um 

eletron ir de um sítio a outro. Por simplicidade consideramos sendo iguais para todos os sítios. Esses 

dois ultimos termos correspondem ao fio sem acoplamento spin-orbita e efeito Zeeman. E possível 

induzir um par de Cooper no fio devido sua proximidade com o supercondutor. Esse efeito pode 

ser justificado de forma fenomenologica ou rigorosa por meio de funcoes de Green (45-48). Vamos 

simplesmente supor que induzimos supercondutividade no fio externo eí do tipo s, de sorte que o termo 

de supercondutividade sera dado pela expressao

h sc = A 2 (C/rC/i + CjTCj í )’ (3.50)
j

onde A e a magnitude do par de Cooper. Note que essa e uma supercondutividade do tipo s. Temos 

entao que o Hamiltoniano total do fio sera dado por

H  = He + Ht + Hz + Hr + HSC,

ou de forma explicita,

H  = Z [(-U + yz)C]TCjt + ( - U -  Vz)C]l Cj|]  -  ^ (C]+l,sCjs + C]sCj+l,s) 
j js

+ Z i a(C j +l,TCjí  -  C j + i,|CjT + C/'|Cj+1,T -  C/'TCj+1’̂ ) 
j

+A Z ( C jV j |  + C j  (3.51)
j

Para que a física fique mais clara, vamos diagonalizar o Hamiltoniano de Rashba. Para tanto 

vamos aplicar as seguintes transformacoes

Cj+ = ^ 2 (c/t +

Cj-  = ^ 2 (C/t -  iCj i ).



Consequentemente, as transformações inversas serão
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j  = y 2 (c /+ + cj~) 

cji  = y 2 (cj+ -  cj_)'

Perceba que o que fizemos fisicamente foi rotacionar a base de spin dos elétrons. Afim de escrever os 

termos de (3.51) nesta nova base, note que

cW  = 2 (cj++ cí - )(cj + + cj - ) = 2 (c /̂+c/,++ c)+cj- + j cj++ c) - cj- )

cW (i)(-i)(c í+ -  c] - )(cj+ -  cj - ) = 1(cj+cj+ -  cj+cj - -  cj - cj++ c j-cj - ).

Temos ainda que

cj+1,scjs + c)scj+l,s = c r̂+i,t cjT + c) îcj+1 T + c) îcj+1 T + c)+l,icjl + c) icj+1l.

Na nova base ficamos com

c]+1,TcjT + cÍTcj+l,T + cj  cj+l,T + c]+U cji + c^ cj+U 

= c]+i,+cj+ + c]+i,-cj-  + c]+cj+1,+ + c] - cj+l,-.

Os termos de emparelhamento se transformam como

cf cf = cj r j i 2 (d + + c ) j (j  -  d _ )

= 2 « j - j  -

cJicJT = -  2 (cj + -  cj - )(cj+ + cj - )

= -  2 (cj+cj - -  cj - cj+).

Somando os dois liltimos termos obtemos

cJ A l  + cJícJT = 2 f(cî - c]+ + cj - cj+) -  (c]+c]- + cj+cj-



Usando as relações de anti-comutação
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[cj+, c j j+  = 0, [cj+, Cj-]+ = 0,

ficamos com

c]'[cjl  + Cj i CjT = i(c] -c]+ -  cj+cj-).

Utilizando os resultados acima podemos escrever as Eqs. (3.47), (3.48), (3.49) e (3.50) como:

Hz = 2 cj—cj+ + cj+cj—, 
j

(3.52)

He = —̂  (cj+cj++  cj—cj—̂  
j

(3.53)

H  = —̂  (cj+i,+cj+ + cj+i,—cj— + cj+cj+i,+ + cj— cj+i,—x 
j

(3.54)

H sc = (cj—cj+ — cj+cj—). (3.55)
j

Por Ultimo vamos calcular o termo de Rashba. Para tanto, note que na nova base temos

cj +l,TCjl 

cj+ u c'T

cU + LT

cjTc;+U

2 <c j+i,+c;'+ -  cj+i,+cj -  + cj+i,-cj+ -  cj+i,-cJ-)2

r (cj+i +cj+ + cj+i +c j— cj+i,-cj+ -  cj+ i,-cj-)„t
2 VL j+ i,u  j+ + l j+i,+c j—

2 (cj+cj+i,+— cj+cj+i,+—cj—cj+i,+—cj—cj+i,—)

—2 (cj+cj+i,+— cj+cj+i,— + cj—cj+i,+— cj—cj+i,—).

Substituindo estes resultados na equaçao (3.44) obtemos

Hr = (cj+cj+i,+ + cj +i,—cj— — cj+i,+cj+ — cj—cj+i,—). (3.56)
j

Todos os calculos ate agora foram feitos no espaco real, porem a fim de estudarmos a topologia do 

sistema, comparando com o modelo de Kitaev (secao 3.2.2), precisamos saber como se da a forma 

deste Hamiltoniano no espaco recíproco. Para isso vamos fazer uma transformada de Fourier discreta 

da forma
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cjh - V  e-ikxjckh, j  = - ^ V  eikxjc?e ^
VN V  jh _  kh’

com h = + ,- .  Aplicando a transformada de Fourier em cada um dos termos da Eq. (3.51). 

termo de Zeeman temos

H  = N  Vz X  X (ei,k-k'>x,clck'+  + ei(k-k,)zjc]+ck'-).
j kk'

Lembrando que

I X  eilk-k' lxj = % ',
N

j

temos

Hz = Vz X (ck-ck+ + ck+ck-).

O termo do potencial químico no espaco reciproco fica

He = 2 > ilk-k' j L < * +  + ei(k-k' lxjck_ck'-)
j kk' -

He = - j ^ X  (ck+ ck+ + ck- ck- ).

Transformando agora o termo de hopping

H  = 4 X X e ik(xj+a)c? c . e -ik'xj + e“ “ j+*>c? c . e - ^
N j kk'

ck+ck'+e j + e Vj T k-ck'-e j +

^ - ck+ck'e-?ikxj'c! c.ve-ik' (xj+a) + eikxj'cLck' - e-ik' (xj+a).

Ou

Ht = - ? X  (c?+ck+ + ck_ck-)e'ka + (ck+ck+ + ck- ck-)e- ika

Para o

(3.57)

(3.58)

(3.59)



Podemos ainda escrever de forma mais compacta,
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H, = - t £  (clrctr )(eíka + e-íka)
k,r

de onde obtemos

Ht = -2 tY _ i ^ irCkr cos(ka).
kr

Para o termo de Rashba podemos escrever

ík' xjHr = N  Z  Z  eikXjcl+eik,(Xj+a)Ck'+ + eik(Xj+a)Ck-ck- e ík x

Por liltimo, temos

j kk'

e-ík(xj+a)cl+ ck'+eík'xj -  eíkxjc l- ck' - eík' (xj+a) 

Hr = ía ^  cl+ck+(eíka -  e-íka) + clk-ck-(e-íka -  eíka)

Hr = 2a  ̂  (cl +ck+ -  cl- ck-)sen(ka).

H c = £ Z ZN
eíkxjcl  eík'xjcl  + eíkxjcl  eík'xjclk k'+ + k k'

j kk'

Fazendo aqui k' = - k  e usando a relacao (3.57) obtemos

H Sc = í A ^  (ctk - c-k + + c-k,+ck,-)

Temos entao que (3.51) no espaco recíproco fica como

H  = 2  [ek+cl+ck+ + Sk-cl(-ck- + Vz(cl +ck- + cl- ck+) + íA(cl- c -k+ -  c-k+ck-)\.

(3.60)

(3.61)

(3.62)

(3.63)

Onde
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s k+ = - u  -  2t cos(ka) + 2asen(ka) (3.64)

= - u  -  2t cos(ka) -  2a  sen(ka). (3.65)

Para nossos propósitos vamos escrever (3.63) da forma

H  = Hi + H Sc, (3.66)

onde separamos o termo supercondutor de (3.63). Perceba tambem que podemos escrever H\ na 

forma matricial como

Hi = f 4+ 4 -

(
s k+ Vz

V Vz s k-

\ (  \ck+

Ck-

Por meio de calculo direto podemos ver que

Ckc+ Ckc-
(

&k+ Vz

\ Vz £k-

Ck+

Ck-
= Sk+4+Ck+ + Z k -4 - Ck- + Vz4+Ck- + V z4- Ck+z k+ z k

que nos da exatamente todos os termos de (3.63), com excecao do termo supercondutor. Vamos agora 

diagonalizar H \ , definindo Ek como os autovalores, temos

Que nos da

&k+ Ek Vz

Vz &k- -  Ek
= 0.

(sk+ -  Ek)(sk -  Ek) -  Vz2 = 0 

E2 -  Ek(sk+ + sk-) + sk+sk- -  Vz2 = 0.

(3.67)

As solucoes da equacao acima sao
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E± (k) Sk+ + Sk- 
2

Sk+ + Sk- 
2

Sk+ + Sk- 
2

± 1 ^ (sk+ + Sk-)2 -  4-Sk+Sk- + 4VZ

± 2 V S2+ + S2-  -  2sk+Sk- + 4Vz2 

± 2>/(sk+ -  Sk- )2 + 4V2.

Note que os valores ek+ e ek- sao dados por (3.64) e (3.65), respectivamente, de onde obtemos

E±(k) = - ß  - 2t cos(ka) ± 1 y jí6 a 2 sen2(ka) + 4V2

Ou, finalmente

E±(k) = - ß  - 2t cos(ka) ± 4 a2 sen2(ka) + V2. (3.68)

Até aqui apenas diagonalizamos o Hamiltoniano afim de obter a relação de dispersão e vermos como

k/a

Figura 12: Relaçao de dispersao para Vz = 0 (B = 0). 
Perceba que temos uma degenerescencia exatamente 
em k = 0, impedindo assim a existencia de estados 
”spinless“.

k/a

Figura 13: Relacao de dispersao para Vz + 0 (B + 0). 
Note que a degenerescencia em k = 0 desaparece de­
vido a polarizacao dos spins induzida pelo campo 
magnetico aplicado. Permitindo acoplamento p- 
wave.

o campo magnetico desdobra os níveis destruindo a degenerescencia em k = 0 (figuras 12 e 13). Pre­

cisamos agora adicionar o efeito da supercondutividade nas bandas. Vimos que o emparelhamento 

supercondutor esta relacionado com as projecoes de spin, para isso precisamos voltar para a base ori­

ginal ( t, 4). Isto pode ser feito atraves das transformacoes inversas
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ck+ -  (ckT + iCkl)
V2

Ck- -  (ckt -  iCkl).
2

Computando agora os termos de interesse

CÍ+ Ck+

CÍ- Ck-

CÍ+ Ck-

cj-  Ck+

Cf Cf k- -k+

1
-  2 (Ĉ TCki + iCfeTCkl -  ÍCfelCkt + c/tlCkl)’

-  2 (Ĉ TCkT -  ÍCfeTCkl + iCÍ lCkT + Cklckl),

-  2 (Ĉ TCkT -  iCÍTCkl -  iCÍ lCkT -  c! ickl),

-  2 (Ĉ TCkT + ÍCfeTCkl + iCÍ lCkT -  C! lCkl)’

-  2 (Ĉ TC-kT -  iCÍTC-kl + iCÍ lC-kT + Cî l Cî l )’

c-k+ ck- -  2 (C-kTCkT -  iC-kTCkl + iC-klCkT + c-k lckl)

e substituindo as relações acima em (3.63) obtemos

H  = ^  [(-u  -  2t cos(ka) + V  }cJr CfeT + ( -u  -  2í cos(ka) -  V ^c^ck j 
k

+ ^  [2z'a£m(ka)c£Tck|  -  2ia  sm(ka)c[Tck|]k T T

^ A(cÍTC-k| + C-k |ckT). 
k

Como fizemos anteriormente, vamos escrever o Hamiltoniano da forma

H  -  Hi + Hsc

(3.69)

onde agora
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Hl = < cîT cl
-U -  2t cos(ka) + Vz 2iasin(ka)

-2iasin(ka) - u  -  2 tcos(ka) -  Vz y

\ (  \ckT

\ Ckï >
(3.70)

Se diagonalizarmos H  iremos obter novamente

E :(k) = - u  -  2t cos(ka) + ^  4 a 2 sen2(ka) + VZ2.

O que era esperado, uma vez que as transformações feitas apenas efetuaram uma rotação na base do 

sistema. Precisamos tambem encontrar os autovetores do sistema. Para isso considera o problema de 

autovetores geral

Ei -  E  yS

S  E2 -  E
= 0,

que nos da autovalores da forma

E
Ei + E2

2

^ Ei -  E2 2
I + LSI2.

Vamos determinar primeiramente os autovetores do autovalor E+:

Ei S  

S  E 2

a+

b+
E

( \a+

b+

Ei -  E+ a+

E2 -  E+ b+

\
= 0

/

(3.7i)

com isso obtemos a relaçao

(Ei -  E+)a+ + f3b+ = 0

b+ =
(Ei -  E+)

fS
a+. (3.72)

Usando (3.72) e a condido de normalizacao que |a+|2 + |b+|2 = i, obtemos
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|a+|2 1 +
(E i - E + )2

|S|2

|a+|2 [|S|2 + (Ei - E+)2j = |S|2.

Escolhendo a+ real, obtemos

a+ n
V(Ei -  E+ )2 + |S|2

9 ^ +b+ = -
(Ei -  E+) n i

V(Ei -  E +)2 + |n|2 n

Para o autovalor E_ teremos

Ei n

n  E2

( \ a

b-
= E -

( \ a

b

Ei -  E - n

n  E2 -  E -

V  1 a

b-
= 0.

Resolvendo (3.74) obtemos

n*a- + (E2 -  E -)b - = 0 

(E2 -  E -)a_ =
n

Usando novamente a condicao de normalizacao e escolhendo b-  real obtemos

(E2 -  E -) yS ,
a_ = ---- , — , b- =

V(E2 -  E - ) 2 + |S|2 lS|

|n |

V(E2 -  E - ) 2 + |S|2

Comparando (3.70) com (3.7i) temos

E i = - u -  2t cos(ka) + Vz 

E 2 = - u -  2t cos(ka) -  Vz 

S  = 2iasin(ka) 

fi* = -2iasin(ka).

(3.73)

(3.74)

(3.75)
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Vimos que para o caso geral que os autovetores tomam a forma

a+ n
V(Ei -  E +)2 + \fi\2 ’

b+
(Ei -  E+) n_

V(Ei - E +)2 + ini2 ^

a- = (E2 -  E -) n

V(E2 - E - ) 2 + \S|2
b \n\V(e 2 -  E -)2 + ini2 ‘

Se usarmos as expressões acima para E 1, E 2 e fizermos algumas manipulações algébricas ficamos 

com os coeficientes

a +
2a| sen(ka)\

+ V2 + V f -  Vz2

(3.76)

b+ = -  i
+Vz2 -V z

\  2 ^ 4 a 2 sen2(ka) + V|
-sign(k),

J 4 a 2 sen2(ka) + V2 -  Vz 
a -  = i ------  ̂ ■ sign(k),

\  2 ^ 4 a 2 sen2(ka) + Vf

(3.77)

(3.78)

2a| sen(ka)\
(3.79)

Onde sign(k) e a chamada funcao sinal, ela retorna apenas o sinal de k. Agora que conhecemos os 

autovetores, podemos escrever ckf e ck|  em funcao de ck+ e ck- da forma

(

\

ckt 

ck| ,

a+

a-

b+
b*_

ck+

Ck-

\

/

Que corresponde as relações

Ckt =  a+Ck+ + b+Ck (3.80)



Cki = a*_€k++ b*_Ck~.
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(3.81)

Perceba que tais transformações aparecem de forma mais natural quando voltamos para a base defi­

nida pela projeçao dos spin. Usando isso podemos agora escrever o termo supercondutor nessa nova 

base,entao

Hsc = [a+(k)ck+ + b+(k)ck_ ][a_(_k)c_k+ + b_(_k)c_k_] + H.c.
k

= A ̂ {a+ (k)a_(_k)ck+c_k+ + b+(k)b_(_k)ck_c_k_
k

+a+ (k)b_(_k)ck+c_k_ + b+(_k)a_(k)c_k_ck+} + H.c.

Que podemos escrever ainda como

Hsc = A^{a+(k)a_(_k)ck+c_k++ b+(k)b_(_k)ck -kk_c_k_
k
+ [a+[a+(k)b_(_k) _ b+(_k)a_(k)] ck+c_k_} + H.c. (3.82)

Note que usei a notacao ar(k) uma vez que os autovetores sao funcoes unicamente de k. Usando os 

valores que encontramos para os autovetores podemos calcular

a+(k)a_(_k)
iasin(ka)

+ v2

a+(k)b_(_k)

, b+(k)b_(_k) = 

_ 4 a 2 sen2(ka)

ia sin(ka)

+ V2

yj'4a2sen2(ka) + V2 yj'4a2sen2(ka) + V2 _ V z 

yj'4a2 sen2(ka) + _ Vz
b+(_k)a_(k)

. yj'4a2sen2(ka) + V2

Temos ainda que

a+(k)b_(_k) _ b+(_k)a_(k) Vz

2’ z^JÃ-ãksên^ikã^+V^

Com isso podemos escrever (3.82) como

H sc = A 2 [fp(k)(ck+c_k+ + ck_c_k_) + f s(k)ck+c_k_] + H .c. (3.83)

2
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fp(k)
iasen(ka)

fs(k)
Vz

^1'4a2 sen2(ka) + Vf ^ 4 a 2 sen2(ka) + V
(3.84)

Note que / p(k) é uma função impar, que tanto almejávamos, f s(k) corresponde a uma função par, 

o emparelhamento do tipo p  conecta elementos intra-banda, ja o emparelhamento do tipo s acopla 

elementos inter-banda (figura 12). Precisamos agora encontrar um regime onde nao haja emparelha­

mento do tipo s, mas apenas do tipo p. Isso vai acontecer quando o potencial químico se encontrar 

entre as bandas, de forma que os eletrons e buracos que se encontrem nesse regime estarao todos com 

a mesma projecao de spin (figura 13).

Vamos escrever agora o Hamiltoniano na forma de Bogoliubov-de Gennes apresentada no capítulo 

anterior

H = 1 Z  ̂ w * .
k

Definindo agora ^  = [cj_,c-k - ,cj+,c-k+], temos que H k para o presente sistema toma a forma

E -  (k) Afp (k) 0 0

Afp(k) -E -(k ) Af s (k) 0

0 AfS(k) E+(k) Afp(k)

0 0 A f;(k ) - E+(k)

A matriz acima pode ser subdividida em dois sub-espacos da forma

(3.85)

onde

Hk =
Hp Hpq 

H qp H q

Hp

Hpq

E-(k) Afp(k) 

A/p (k) -E -(k )

0 0 ’ 

Afs(k) 0 _ ’

H Q =
E+(k) Afp(k)

Afp(k) -E+(k) _ ’

H QP =
0 AfS(k) 

0 0

Note que HPq = h Qp. Da equação de Schrodinger temos que

(3.86)

(3.87)

Hk ̂ k  = E ^ k , (3.88)



explicitamente temos que
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Hp Hpq 

H qp h q

pp 
--EPp

\ p Q > \ p Q j

Vamos nos concentrar apenas no sub-espaco P, considerando apenas a projecao do espaco Q no 

mesmo. Para isso vamos considerar ha uma grande separacao energetica das bandas representadas 

por H q e HP. Com isso da equacao acima temos

(Hp + Hpq(E -  H q) 1 H qpJ pp = Epp

que nos leva entao a um Hamiltoniano efetivo

HHp(K) = Hp + Hpq(E -  H q)-1 H qp. (3.89)

Podemos expandir o denominador da expressão acima da forma

HHp (K) = Hp + Hpq(E -  H q)-1 H qp

Hp + Hpq
E

Matricialmente temos

H-íp(k) = Hp + —
E

0 0 

0 A2fS  / E
+= Hp +

Substituindo a expressão de Hp temos

0 0  

0 A3 f j f p / E 2

Hp(k)

+ ...

E -  (k)

2
i + Hq  + Hq ] + ...

E E H QP.

0 0 0 Afs 1
+----—

0 0

_ Afs 0 _ _ 0 0 E 2 . A f;  0

E+(k) A fp

AfH -E+(k)

Afp(k)

[ Afp  (k) -E -(k ) + f 2A2 + f f -

0 A fs 

0 0
+

(3.90)

Assumindo

E E -U -  2 tcos(ka) + ^ 4 a 2sen2(ka) + Vz



e para k pequenos temos cos(ka) « 1; sen2(ka) « 0 vemos que
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A2f2  ^  A2
E  ~ - 2 t  + | V | - i

Perceba que se tivermos | Vz -  i |  »  A, com ji = ji + 2t, podemos escrever

E-(k) Afp(k)

Afp(k) -E -(k )
(3.91)

Portanto, temos um regime onde se apresenta apenas emparelhamento do tipo p  e juntamente 

com a simetria partícula-buraco possibilita a existencia dos modos de Majorana. Observe tambem 

que precisamos de uma grande energia de Zeeman (Vz) para que haja um um emparelhamento efetivo 

do tipo p .

Vamos agora fazer a conexao com o modelo de Kitaev. Para isso vamos escrever (3.91) explicita­

mente, usando (3.84) temos

Hp(k) =
E-(k)

-iA asen(ka)
^  4a2 sen2(ka)+V'2

iA asen(ka) 
^4a2 sen2(ka)+V2

-E -(k )
(3.92)

Expandindo os termos dependentes de k para seus pequenos valores, obtemos

iA a  sen(ka) iA aka iA aka

^ 4 a 2 sen2(ka) + V2 ^ 4 a 2(k2a 2) + V2 V̂Z

Nos dando entao

Hp(k)
E-(k)
-iA aka

L IV |

iA aka 
IVI

- E -  (k)

onde k e a dependencia em k proximo a origem. Fazendo o mesmo para (3.17) ficamos

(3.93)

Hk(k)
- E - (k) iAel$ka

■iAe-l^ka E - (k)
(3.94)

Podemos entao estabelecer a relacao
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A -  —  AAkitaev — ,A ,
1 Vz\

(3.95)

onde AKitaev — Ae'^, /A corresponde à supercondutividade induzida no fio pelo supercondutor. Esse 

resultado ocorre quando estamos próximos do fundo da banda superior e o topo da banda inferior 

(figura 13). Se o potencial químico se encontrar entre as bandas, entao e possível acessar estados com 

emparelhamento supercondutor do tipo p  (tripleto). Note que e desejavel que |Vz| seja considerável, 

de tal forma que a razao a/|V z| seja razoavelmente pequena, fazendo que o emparelhamento super­

condutor seja pequeno (equacao (3.95)), o que corresponde exatamente ao regime topologico (v — -1 ) 

do modelo de Kitaev.

Vimos que o que difere o regime trivial e topologico e o fechamento do ”gap“ protegido por 

alguma simetria do sistema, como ja discutimos. Portanto, para que tenhamos a passagem do regime 

topologico para o trivial temos necessariamente que o gap deve fechar.

Discutimos acima o caso limite onde ||VZ| - p| >> A, onde mostramos o mapeamento do sistema 

proposto no modelo de Kitaev. Contudo, podemos analisar melhor a estrutura de bandas do sistema e 

a fase topologica do mesmo se usarmos o Hamiltoniano de Bogoliobov-de Gennes em sua totalidade 

(3.85). Primeiramente vamos analisar o caso onde temos o campo magnetico aplicado (VZ — 0). O 

resultado e mostrado na figura 14. Perceba que a estrutura de bandas apresentam a simetria partícula- 

buraco presente do Hamiltoniano de Bogoliobov-de Gennes, isso se reflete no fato da estrutura de 

bandas ser simetrica com relacao a E(k) — 0 .

Para campos magneticos fracos, como na figura 15, temos que o gap em k — 0 se abre, mas ob­

serve que a regiao de acesso do potencial químico correspondente a emparelhamento supercondutor 

do tipo p  ainda e muito limitada. Isso decorre do fato das bandas de diferente helicidade (curva azul e 

vermelha da figura 15) estarem muito proximas, impossibilitando a eliminacao da supercondutividade 

do tipo s, que como vimos anteriormente, conecta elementos de diferentes bandas. No entanto, perce­

bemos que o gap fecha em k — 0 exatamente para o valor de VZC — -\/a 2 + p 2, como mostrado na figura 

16, caracterizando entao a passagem do regime trivial para o regime topologico e e exatamente onde 

ocorre a formacao de modos de Majorana, o valor da energia de Zeeman crítica pode ser encontrado 

diagonalizando analiticamente o Hamiltoniano (3.85) (9, 17).

Os resultados acima sao calculados no ”bulk” do fio supercondutor. Logo, precisamos que o fio 

se encontre em um regime topologico para que sua fronteira com o vacuo apresente ”gapless states” e 

consequentemente, a presenca de modos de Majorana nestes pontos. Entao para que o sistema esteja
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k/a

Figura 14: Estrutura de banda do fio supercondutor para campo magnético nulo. A linha tracejada corresponde 
à posicao do potencial químico com relacao ao fundo da banda, definida por f  = f  + 2t. A escolha do alto valor 
da interacao spin-orbita (a) e apenas para a melhor vizualizacao das bandas.

k/a

Figura 15: Estrutura de banda do fio supercondutor para pequeno campo magnetico. A linha tracejada corres­
ponde a posicao do potencial químico com relacao ao fundo da banda, definida por f  = f  + 2t. Perceba que a 
regiao de acesso a emparelhamento supercondutor do tipo p e bastante limitada.

na fase topologica precisamos obedecer a condição

|VZI > 7Ã2 + f 2, (3.96)

a figura 17 mostra o fio supercondutor no regime topologico. Apesar de limites próximos da transicao 

de fase topologica nao apresentarem supercondutividade do tipo p  muito robusta, ainda assim obser-
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k/a

Figura 16: Estrutura de banda do fio supercondutor. A linha tracejada corresponde à posição do potencial 
químico com relacao ao fundo da banda, definida por f  = f  + 2t. O gap se fecha em k = 0, caracterizado pela 
energia de Zeeman crítica V|  = sjA2 + f 2, no presente caso V|  « 2.011.

varemos modos de Majorana, uma vez que os mesmos tem origem topologica e so podem desaparecer 

caso haja a interface com uma fase trivial.

k/a

Figura 17: Estrutura de banda do fio supercondutor, com VZ > V| . A linha tracejada corresponde à posição 
do potencial químico com relacao ao fundo da banda, definida por fl = ju + 2t. Neste caso o supercondutor e 
topol(5gico e sua interface com o vacuo (trivial) ira suportar modos de Majorana.
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4 Estados ligados de Andreev e Majorana 
em pontos quanticos

4.1 Motivação

Nos capítulos anteriores discutimos em detalhes os mecanismos responsáveis pela formação de 

estados ligados de Andreev e Majorana. O primeiro surge na junçao de sistemas normais com super­

condutores usuais, enquanto o segundo aparece na interface de um sistema trivialmente topologico 

com um supercondutor topologicamente nao trivial.

Figura 18: Esquematizacao do contato entre um nível ressonante e um supercondutor usual (figura superior) e 
topologico (figura inferior). No caso usual vemos a formacao do estado ligado de Andreev, enquanto na inferior 
a presenca do modo de Majorana. Fonte: Figura elaborada por Edson Vernek e adaptada pelo autor.

Por simplicidade, vamos considerar apenas um nível ressonante em contato com um supercondu­

tor, trivial em um caso e topologico no outro, os fenomenos associados com esse tipo de juncoes estao 

esquematizados na figura 18. Note na figura superior a presenca de um estado ligado de Andreev, ca­

racterizado pelos picos duplos e simetricos com relacao ao nível energetico do nível ressonante. Ja na



figura inferior podemos observar a transferência do modos de Majorana do supercondutor usual para 

o nível ressonante, como previsto em (49).

Apesar dos dois fenômenos descritos acima ja serem extensivamente estudados, pouca atencao 

tem sido dedicada para a influencia que um possa exercer no outro (19, 20). Devemos entao procurar 

um sistema simples que possa suportar os dois fenomenos e que, alem disso, possibilite o acoplamento 

de um com o outro como mostrado na figura 19.
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Figura 19: Esquematização de um sistema que suporte tanto estados ligados de Andreev quanto de Majorana 
e que possibilite a interaçao entre ambos. Fonte: Figura elaborada por Edson Vernek e adaptada pelo autor.

Para estudarmos entao os dois fenômenos e sua interaçao propomos um sistema de estudo que e 

composto por dois pontos quanticos acoplados entre si e os mesmos acoplados cada um a um respec­

tivo reservatório metalico e a seu supercondutor (veja figura 20).

Figura 20: Sistema de estudo. Dois pontos quanticos acoplados entre si e os mesmos a acoplados a reser­
vatórios metalicos e fios supercondutores, sendo que o supercondutor SC2 apresenta uma fase topologica.

No limite de banda larga os reservatórios metalicos apenas vao oferecer um alargamento ao nivel do 

ponto quantico. Contudo, aqui os supercondutores serao tratados em sua totalidade, para o calculo



das propriedades espectrais do mesmo usaremos o método iterativo descrito em detalhes na próxima 

seção. O Hamiltoniano do sistema e entao dado por
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H  -  Hdots + HSC + Hleads + Hdot-leads + Hdot-SC + HT, (4.1)

onde

Hdots — 'Y i £i,sdj,sdi,s,
i=1,2,s

Hleads — 'Y i £ík,scj>k,scik,s (i  = 3 ,4),
ík,s

Hdot-leads (V3d1,sC3,k,s + V4d2,sC4,k,s + H x ') ,
k, s

Hdot-SC = -  Y j  (y id1,sC- 1,s + V2dl / l s )  + H.c^

(4.2)

(4.3)

(4.4)

(4.5)

Ht = -  V12 ̂  { d \sd2,s + d \ sd \ , ^ . (4.6)
s

Na expressao acima temos que d js(d;-,s) cria (aniquila) um eletron no ponto quantico correspondente 

com energia eí,s e spin s e cjk s(c^k,s) cria (aniquila) um eletron no reservatório metalico com momento 

k e energia e^k,s. V1 e V2 denotam o acoplamento com os cadeias supercondutoras, V3 e V4 sao 

os acoplamentos do PQ com seu respectivo reservatório metalico, e por ultimo, V12 representa o 

acoplamento entre os PQs.

O Hamiltoniano das cadeias supercondutoras HSC deve ser analisado cuidadosamente. O super­

condutor 1 (SC1) representa apenas uma cadeia supercondutora usual (BCS). Ja o supercondutor 2 

(SC2) apresenta tambem interacao spin-orbita e um campo magnetico aplicado perpendicularmente 

ao mesmo, para que o mesmo possa ser mapeado em uma cadeia de Kitaev que apresenta estados 

topologicamente protegidos, capazes de suportar modos de Majorana.

Explicitamente temos que HSC = H 1 + H2, com
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e

Hl = Z  K + b s j  + Aici r ci i  + Hx ) ,
j = i

(4.7)

H2

TO - i

= Z  2 ( - ^  + Vz^  ci s cj,s -  t2c)+hsCj,s
j'=1,sL

+A2ci r ci i  + H x J  + ia  Z (cj+1^  j  + H -C-)
j=1

(4.8)

Note que H 2 e igual a H 1 se fizermos A2 = A1? t2 = t1, ^  = Vz = a  = 0, por isso vamos considerar 

no calculo iterativo H 2 e basta considerarmos as escolhas acima para representarmos H 1. Podemos 

escrever de uma forma mais explicita o termo H2 sob a forma

H2 = Z
= 1,sL

2  (- ^  + VZ^Ss) c]f,scj,s -  t2cj+1,scj,s + A2c1tc! í + H-c- (4.9)

+a Z  (cj+1,Tcj4 + cj | cj+1’T cj+1,icjT cjTcj+1’i )' 
j=1

É interessante notar no ultimo termo da expressao acima que ao tunelar de um sítio para outro, o 

eletron precessa seu spin, isso e uma consequencia do acoplamento spin-orbita do tipo Rashba.

4.2 Cálculo iterativo da função de Green para a cadeia supercon­
dutora

Vamos agora calcular a funcao de Green do fio supercondutor descrito por H2. Para isso vamos 

usar um metodo iterativo, de tal forma que consigamos descrever a funcao de Green da ponta do 

cadeia (j  = 1) renormalizada pela interacao com o restante da cadeia. Definindo a funcao de Green 

retardada:

Gjs,jV(£) — ((cjs; cj s/))e • (4.10)



Que obedece à seguinte equação de movimento
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s« / ; cjs,» s  = Ôss> + « [ /  HL; c L » e .Js> js' (4.11)

Afim de demonstrar o metodo recursivo adotado, comecemos pelo càlculo da função de Green do 

sítio j  = N  -  1. Sua equacao de movimento e dada por

s ((cN-1,s; cN-1 s' ^ £ = ^ss' + (([cN-1,s,H L ; cN-1 s'^ s (4.12)

Substituindo na equacao de movimento o Hamiltoniano (4.9) e usando novamente a relacao

[A, BC]_ = [A,B]+C -  B[A,C]+ (4.13)

obtemos

^ N - ^  H] = SN-1,TcN-1,T -  tcN,T + AcN- 1,| -  aCN,l,

[cN-1 , | , H] = Sn  - 1,4 cN-1 ,T -  tcN ,l-  A cN- 1 ,t + acN,T,

onde sn- 1,t = - ^  + V  e sn- 1,4 = - ^  -  Vz.

Com isso ficamos com as seguintes equacoes de movimento:

s ((cN-1,T; cN- 1 s'^^s ^T,s' + SN-1,T^(cN-1,T; cN- 1 s'^^s t((cNT; cn - 1 s'^^s

+A((cN- 1| ;  cN- 1,s'^^s + a ((cN4; cN- 1,s'^ s , (4.14)

s ((cN-1,4; cN- 1,s'^^s  = ^4, s' + sN-1,4^(cN-1,4; cN-1, s' ^ s  t((cN4; cn - 1,s')) s

A((cN 1T; cN- 1 s'» s  a ((cNT; cN- 1 s'» s .

A

(4.15)

A equacao de movimento das funcoes de Green de Gor’kov serao dadas por:

s ((cN-1,t ; cN-1,s '» s = ^Ts' + [cN—1 ,t , H]; cN-1,s '» s 

s ^̂ cN-1,4; cN-1,s '» s = ^4s' + ^ N - ! ^  H]; cN-1,s '» s

. j (4.16)

(4.17)

e



Usando novamente o Hamiltoniano (4.9) e a relação (4.13) temos
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1 ,T ’ _ £N- 1 ,T CN- 1 ,T + tCNT ^ CN-1,4 + ’

[cN-1,4’H] _ £N-14 CN-1,4 + tCN4 + A C n -1 ,T aCN,1 ■

Obtemos as equações de movimento

e((CN-1q ’ CN- 1,S,^̂ £ £N -1,T̂ ^Cn- 1,4’ CN- 1,S,^̂ £ A((CN-1 ’4> CN- 1,s'))e,

+ t((cN,|; CN-1,s '»£ + CN-1,V»£ (4.18)

£^̂ cN-1,4;cN-1,s '»£ _ £n- u ^ cN-u ;cN-1,s^»£ + a ((cn-1’t;cN-1,s'))£

+ t((CN,4’ CN- 1,s'^^£ -  a ^̂ CNT; CN- 1,S,^̂ £.

t . „t .„t

(4.19)

As equaçoes acima çompoem o conjunto de equaçoes de movimento:

(£ £N-1 ,TX(cN-1T; CN- 1 s'^£ ^s'T + ^X Cn- 14; CN- 1 s'^£ X^cNT; Cn- 1 sr^£

+a ((cN4; Cn- 1 s'^£

(£ £N-1’4)((CN-14; CN- 1’S,^̂ £ _ ^sr4 A((Cn- 1t; CN- 1,S'^^£ X^cN4; CN- 1,S,^£

a ((cNT; Cn- 1 s'^^£

(£ + £N- 1,T)XCn-  1t; CN- 1 s'^^£ ^ ( (cN-14; CN- 1 s'^^£ + X^Cnt; CN- 1 sr^£.„t J  . J

+a ((CN4; CN- 1,s,^̂ £

(£ + £N-1 ,4)XCn-  14; CN- 1 s'^£ ^ ( (cN- 1T; CN- 1 s'^^£ + X^Cn4; CN- 1 s'^^£

- a « cN t; cN-1 , v^ £

.„t J  . J

O çonjunto de equaçoes açima pode ser desçrito de uma forma mais çonveniente se definirmos o 

spinor de Nambu = í ct C4 c^ c^  j . Com isso podemos definir a funçao de Green no espaço

e

e



de Nambu
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de forma explicita temos

Gi, j(e)

G i,j(e) = «%■ ® Y] » e ,

/ \
ciT

ci|
c]ciT
c]v « 4 v

®| c]jT c jA cjT cjl

ao realizarmos o produto tensorial obtemos

Gi, j(e)

' « cít; ĉ JT»e  «ciT; cji ))e « c ^ , cjT»e « cít; cj|))e

« cít; ĉ Ji ))e « c i |; c]ji ))e «c il, cj-))e « c i|, cj|))e

«c]T; c]T))e «cJT; c]i ))e «c]T; c^))e «cJT; cj|))e

, « cH; c]T))e iic]| ; c]i ))e « cÜ; cjT))e « c]4; cj l ))e

Assim, as equações de movimento podem ser escritas na forma matricial

\

/

GN-1 ,N-1(e) = gN-1 ,N-1(e) + gN-1 ,N-1(e) AGN-1 ,N-1(e)

+ gN-1 ,N-1 (e) tGN,N -  1(e),

com

e

g j,j(e)

í  _ l _
e-eT

0

0

0

0
1

e-ei
0

0

0

0
1

e+eT
0

0

0
1

e +e |

(
- t - a 0 0

- a - t 0 0
t=

0 0 t a

, 0 0 a t

A =

0 0 0 A

0 0 -A 0

0 -A 0 0

A 0 0 0

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)



Manipulando a Eq. (4.22) podemos escrevê-la sob a
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(1 -  gN - 1 ,n  - 1 (e) A) G N -1 ,n -  1 (e) = g n-  i ,n-  i (e) + gN-1 ,n- 1 (s )íGn ,n  - 1 (e). 

Definindo a funcao de Green

gj, j (e) = (1 -  g j,j(e)A) 1gj, j (e)

que representa a funcao de Green livre local renormalizada localmente devido a presenca da super­

condutividade. Podemos entao escrever

GN-1,N-1(e) = gN-1,N-1(e) + gN-1,N-1(e)tGN,N-1(e). (4.25)

Note que esta equacao e uma equacao de Dyson na forma matricial. Perceba que, uma vez que 

conhecemos a funcao de Green do sítio N , podemos entao calcular a do sítio N -  1, e assim por 

diante de forma iterativa, de tal forma que podemos calcular a funcao de Green do primeiro sítio 

renormalizada devido a presenca de todos os outros. Na maioria dos casos a funcao de Green do sítio 

N e dada pela funcao de Green de um unico sítio desacoplado do resto da cadeia, sendo a condicao 

inicial do problema.

Podemos ainda calcular GN,N -1(e) atraves de sua equacao de movimento que e simplesmente 

dada por

GN,N- 1 (e) = g n,n (e)t^GN-1 ,N-1 (e). (4.26)

Substituindo o resultado acima na equacao de Dyson para GN-1,N -1(e) obtemos:

GN-1,N-1(e) = f1 -  gN-1,N-1(e)tgN,N(e)tt] gN-1,N-1(e). (4.27)

Observe que desta forma expressamos a funcao de Green apenas em termos da funcao de Green local 

gN -1N -1(e) renormalizada devido a presenca do sítio N do supercondutor.

Podemos ja perceber que para uma cadeia semi-infinita a funcao de Green que leva em conta a 

ponta da cadeia (j  = 1), representada por GN,N(e) e igual a GN-1,N -1(e), ou seja

GN,N(e) = GN-1,N-1(eX N ^  rc>. (4.28)

Levando isso adiante, obteríamos uma equacao matricial de segundo grau, cuja solucao forneceria 

de forma analítica exata a funcao de Green para a extremidade do fio. Entretanto, a solucao de uma



equação matricial de segundo grau so é possível em condições muito especiais, não contempladas 

no presente caso. Assim, precisamos resolver a mesma numericamente. Como todos os termos do 

Hamiltoniano sao quadráticos, teremos que a solucao será numericamente exata.

A solucao numerica consiste em calcular as funcoes de Green iterativamente, comecando do 

ultimo sítio da cadeia supercondutora e entao calculando a funcao de Green do sítio anterior renor- 

malizada pelo sítio posterior. De forma que, consigamos calcular a funcao de Green da ponta da 

cadeia renormalizada pela presenca de todos os outros sítios. Para a convergencia de nossos calculos 

usamos uma cadeia de 20 mil sítios. Detalhes sobre o metodo iterativo aqui usados sao discutidos na 

referencia (50).

4.3 Funções de Green dos Pontos Quânticos
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Uma vez que conhecemos as funcoes de Green das cadeias supercondutoras, podemos calcular 

as funcoes de Green dos pontos quanticos acoplados as mesmas. Para isso vamos definir os spinors 

de Nambu para os pontos quanticos denotada por T di = |  d^ dq dj  dj  ̂ j , com i = 1,2. Vamos 

primeiramente considerar os pontos quanticos desacoplados entre si, mas acoplados a seus reser­

vatórios metalicos e cadeias supercondutoras. Usando as Eqs. (4.2), (4.4) e (4.5) podemos escrever 

as equacoes de movimento

Gdi,di(s) = gdi(e) + gdl(e)V/ Gi/,i/(e), (4.29)

(4.30)Gi/,ii(e) = g i/,ii (e)V; Gd/(e),

onde G ii,ii(e) e a funcao de Green do primeiro sítio da cadeia supercondutora a qual o ponto quantico 

se acopla, ela e calculada via (4.28) e Gdi,di(e) = « T di ® a funcao de Green do ponto quantico

no espaco de Nambu. Temos ainda que

gdi (e)

£-£i1 +iT 0

0 i
e-eH+ir

0 0

0 0

0

0
i

e+Sft+ir
0

0

0

0
(4.3i)

e+eii+i'r
i
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e

Vl 0 0 0

0 Vl 0 0

0 0 -Vl 0

0 0 0 -Vl

(4.32)

onde r  = nV2/2D, onde usamos V3 = V4 = V , com D sendo a metade da largura da banda de condução. 

Este e o alargamento do nível do PQ devido ao acoplamento com o reservatório metalico (limite de 

banda larga). Resolvendo as equacoes de movimento acopladas temos

Gdl,dl(s) = [ l  -  gd/(£)V/gN,N(e)VJ] gdl(s) = gdl^X (4.33)

Perceba que o ponto quantico conectado a sua respectiva cadeia supercondutora foi reduzido a 

um problema de sítio unico com a funcao de Green efetiva gdl(e).

Podemos, finalmente, acoplar os dois pontos quanticos entre si, que agora sao representados por 

dois sítios efetivos. Usando a Eq. (4.6) se pode notar que a equacao de movimento de ambos e dada 

por

e

Gdi,dt(e) = gdi(e) + gdlV l2Gd2,dl(£),

G d2,di(e) = g d2(e)Vj2Gdi(e)

Gd2,d2(e) = g d2(e) + í ^ V j ^ d i ^ t e X  

Gdi,d2(e) = gd1(e)V l2Gd2(e),

com Gd2,di(e) = « ^ d 2 ® Y ^))*, Gdi,d2(e) = « ^ d i ® ̂ d2))E e

Vi2 0 0 0

0 Vi2 0 0

0 0 -V i2 0

0 0 0 -V i2

Isso nos permite entao escrever a funcao de Green para cada ponto quantico

Gdi,di(e) = [l -  gdi(e)Vi2gd2(£)Vd2] gdi(e), 

Gd2,d2(e) = f1 -  ^ ( e y v i^ d i íe y V ^ ]  gd2(e).

(4.34a)

(4.34b)

(4.35a)

(4.35b)

(4.36)

(4.37)

(4.38)



Observe que todas as informações não locais estao contidas nas funções de Green efetivas, de tal 

forma que as equaçoes acima possuem toda a informaçao dos reservatórios e das cadeias supercon­

dutoras, portanto, para conhecermos as propriedades espectrais locais do sistema de pontos quanticos 

duplos em sua totalidade basta usarmos estas expressoes, uma vez determinada as funcoes de Green 

efetivas de cada um.
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4.4 Densidade de estados

Uma vez que conhecemos as funções de Green dos pontos quânticos, podemos calcular grandezas 

físicas relevantes para nossos propósitos, como a densidade de estados local (LDOS), que como ja 

vimos e dada em termos da funcao de Green na forma

pS(e) = - 1 1m [« d is ,4 » ] ,  (i = 1,2). (4.39)' n i,s

No limite em que o acoplamento entre os PQ’s e muito maior do que o alargamento dos níveis, 

r  << V12 o sistema encontra-se em um regime que chamaremos de molecular, uma vez que neste 

limite os níveis individuais dos PQ’s se hibridizam como em uma molecula. O regime r  >> V12, por 

sua vez, sera chamado de regime atômico. O regime molecular e melhor entendido se definirmos os 

operadores

d±,s = ^ (d1,s ± d2,sX (4.4°)
V2

que agora nos da a densidade de estados molecular local (MLDOS)

P± (£) = Pl(g) 2 P2(g) + 2 n Im  t(<di,s; dj,s»  + « d 2,s; dí,s» l .

Perceba que no limite V12 ^  0 temos que a MLDOS se torna apenas a media aritmetica da LDOS dos 

PQ’s.

Do ponto de vista teorico, e interessante tambem definirmos a chamada funcao de Green de 

Majorana

M l i M  -  « ra - ;Yai»  (com a  = A,B), (4.41)

onde os operadores de Majorana ya sao dados por

YAi = 2 +  f i ,s )  , Y Bi = 2 { f i,s f i ,s )  , (4.42)
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onde f , s é um operador fermiônico regular genérico, como por exemplo Note ainda que

Yai = (Yai) , {y Sai,7a' j } = 2^i,j^aa'Õss', (4.43)

que sao as propriedades fundamentais dos fermions de Majorana. É interessante expressarmos a 

funcao de Green de Majorana em termos de operadores fermionicos regulares usando as relacoes 

acima, com isso obtemos

M SAi,Ai(£)

MBi,Bi(e)

4 [« fi,s; f?s»  + f  fi,s»  + f  A s »  + f  / ? » ] ,

1  [« fi,s; f l s»  + f  A s »  -  « fi,s; A s »  -  « f l s; f - í,» ] .

(4.44)

(4.45)

O resultado acima nos mostra dois elementos fundamentais para a existencia de modos de Majorana 

no contexto da materia condensada: supercondutividade e emparelhamento supercondutor do tipo p. 

Isso pode ser observado no surgimento de funcoes de Green anomalas (funcoes de Green de Gor’kov), 

que sao diferentes de zero em sistemas supercondutores, cujo sinal e exatamente o que difere as ex­

pressões MSi Ai e M sBi Bi. Note ainda que, as funcoes de Green de Gor’kov aparecem para componentes 

com mesma projecao de spin, diferente do que no caso da supercondutividade usual do tipo s, mas 

caracterizando supercondutividade do tipo p, que como ja dito extensivamente, pode suportar modos 

de Majorana.

Devemos enfatizar que nao faz sentido falarmos de numero de ocupacao para yai, mas apenas 

para fermions regulares formados pela superposicao de modos de Majorana. Por isso, nao podemos 

definir uma densidade de estados de Majorana, mas podemos definir sua funcao espectral para um 

dado spin s da forma

® »  = -  ̂  M Mi  J  (4.46)

que como veremos adiante, nos auxiliara na analise dos resultados.

4.5 Resultados

Para nossos cálculos numéricos usamos t1 = t2 = t = 10 meV, r  = 5 x 10-5í e também escolhemos 

e 1 = £2 = 0, tambem escolhemos os valores A1 = A2 = 0.025t e a  = 0.07t. Os valores acima foram 

escolhidos devido a valores realísticos previamente estudados experimentalmente (44, 51).



4 .5 .1  C o n f ig u r a ç ã o  d e  p o n to s  q u â n t ic o s  d e s a c o p la d o s  (V 12 =  0 )
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Para analisar em detalhes os fenômenos físicos possíveis do sistema proposto vamos observar as 

propriedades espectrais na configuracao em que os pontos quanticos estao desacoplados, e quando 

eles se acoplam. Ambas configuracoes apresentam características interessantes. Na configuracao de 

pontos quanticos desacoplados iremos abordar em detalhes a transicao de fase topologica, variando 

parâmetros tais como potencial químico e energia de Zeeman. Ja na configuracao de pontos quanticos 

duplos estaremos interessados em analisar a coexistencia de estados ligados de Andreev e Majorana 

e como se relacionam.

Primeiramente, vamos estudar a configuracao de apenas um tínico ponto quantico acoplado a 

um supercondutor topológico, para isso vamos fazer V12 = 0 e calcular as propriedades espectrais 

do PQ2 que esta acoplado ao supercondutor que apresenta fase topologicamente nao trivial. Nesta 

configuracao vamos variar o potencial químico da cadeia supercondutora u  e a energia de Zeeman 

VZ que e proporcional ao campo magnetico aplicado na cadeia, analisando entao as consequencias na 

densidade de estados local do PQ2, os resultados sao mostrados na figura 21.
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Figura 21: Densidade de estados local (LDOS) do PQ2 em unidades de 1/nF para ambas componentes de 
spin, variando a energia, o potencial u (esquerda) e energia de Zeeman VZ (direita). Na esquerda mantemos 
VZ = 0.05/ fixo e variamos u, e no lado direito variamos a energia de Zeeman VZ mantendo fixo o potencial 
químico em u = -1.01/. As linhas tracejadas denotam a transição de fase topologia côrrôbôrandô com o 
criterio VZ > ^ A2 + U2, com jU = u  + /.
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Vamos primeiro analisar o caso em que variamos u, mantendo VZ fixo (paineis do lado esquerdo 

da figura 21). Perceba que, para u  = 0 observamos dois picos correspondentes a estados ligados



de Andreev resultante do efeito de proximidade ao supercondutor SC2 [figura 21(a)], os mesmos 

sofrem um pequeno desdobramento, consequencia do campo magnetico aplicado. A  medida em que 

diminuímos p  de p  = 0 ate p  = - t ,  os picos característicos de Andreev desaparecem. Isso decorre pelo 

fato de que a medida que variamos o potencial químico aumentamos a assimetria entre partículas e 

buracos, isso dificulta o processo de reflexao de Andreev, que e formada por eletrons e buracos, como 

ja discutido anteriormente.

Contudo, o regime mais interessante encontra-se na regiao delimitada pelas linhas tracejadas da 

figuras 21(b) e 21(d). Esse regime caracteriza a transicao de fase topologica do regime trivial para o 

nao trivial, que, como dissemos anteriormente, corresponde a abertura do gap em k = 0 definida por 

VZ > VA2 + P 2, com p  = p  + 1, ou p  e [ - t -  (VZ -  A)1/2, - t  + (VZ -  A)1/2], para os parametros escolhidos 

temos entao que o criterio acima e respeitado para p  e [ - 1.043t, -0.957t] que corresponde exatamente 

a regiao tracejada no painel acima, para os calculos acima tambem escolhemos V2 = 0.008t.

Na transicao de fase topologica ocorre a formacao de modos de Majorana nas pontas do fio 

supercondutor, que como ja dissemos, sao caracterizados por energia zero e por serem ’’metade” 

de um fermion regular. Ambas assinaturas presentes na LDOS do PQ2 na regiao tracejada, uma 

vez que um modo de Majorana “vaza” para o PQ (49). Esse fenômeno ocorre mesmo quando o 

PQ e interagente, veja a Ref.(52). Perceba tambem que temos a presenca de modos de Majorana 

apenas para a componente de spin down, uma vez que, os modos de Majorana podem aparecer apenas 

mediados por correlacoes de mesma projecao de spin, no presente caso, spin down. Se invertermos o 

sinal de VZ sera a componente de spin up e que sera acoplada com o modo de Majorana.

Vamos agora analisar o caso onde variamos VZ e mantendo o potencial químico fixo (paineis 

do lado direito da figura 21). Acima do valor crítico V | = A2 + p 2, note a presenca de um modo 

de Majorana em energia zero, figura 21(d), note tambem próximo a linha tracejada dois picos que 

rapidamente se desdobram para energias distantes de zero. Isso e um efeito da fracionalizacao do 

fermion regular em dois modos de Majorana, um deles presente na ponta do fio acoplada ao PQ e o 

outro na outra ponta, que no caso em questao se encontram separados por uma distancia infinita, uma 

vez que consideramos um fio semi-infinito. A interacao entre os modos de Majorana e proporcional 

a e-£L (9), onde £ é o comprimento de coerência e L o comprimento do fio. Assim, para um fio 

semi-infinito temos essencialmente que os modos de Majorana nao interagem entre si.

Afim de conectar nossos caílculos com grandezas experimentais, eí interessante analisar a densi­

dade de estados local em energia zero, isso porque a condutancia diferencial em experimentos, por 

exemplo de STM e proporcional a densidade de estados nesse ponto1. Logo, na figura 22 e mostrado a 1

1veja o Apendice C.2
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Figura 22: Densidade de estados local(LDOS) em energia zero do PQ2 para ambas componentes de spin, 
variando o potencial u (esquerda) e energia de Zeeman VZ (direita) usando os mesmos parâmetros da figura 21.

LDOS em energia zero para o sistema na configuracao acima abordada. É interessante notar que, pelo 

menos na configuracao de unico PQ, estados ligados de Andreev e Majorana, no presente contexto, 

não coexistem.

A densidade de estados em energia zero e tambem interessante por outro motivo. Quando ana­

lisamos com mais cuidado a mesma podemos perceber a acentuada descontinuidade da mesma no 

ponto de transicao de fase topologica. Podemos entao fazer uma pequena alusao com as transicoes 

de fase usuais (Landau) de primeira ordem. Contudo, perceba que, como ja dissemos, a transicao de 

fase topologica nao esta associada com alguma quebra espontanea de simetria, mas sim com o inva­

riante topologico da fase em questao. Dito isso, podemos afirmar que tais descontinuidades podem 

indicar, em certas condicoes, transicoes de fase topologicas em experimentos de STM, fazendo com 

que abordagens como a nossa sejam relevantes para futuras analises experimentais.

4 .5 .2  C o n fig u ra çã o  d e  d o is  p o n to s  q u â n tic o s  a c o p la d o s  (V 12 £  0)

Vamos agora analisar o sistema em sua totalidade, considerando agora o acoplamento entre os 

pontos quanticos. O acoplamento do PQ1 com o supercondutor SC1 da origem a estados ligados 

de Andreev como ja discutido anteriormente. Ja o acoplamento do PQ2 ao supercondutor SC2 ira 

abrigar um modo de Majorana no regime topologico de SC2, como estudado extensivamente na secao 

anterior.



Mostramos que na configuração de um único ponto quântico, a coexistência de estados ligados 

de Majorana e Andreev nao e possível. Porem, perceba que na configuracao de ponto quantico du­

plo podemos conectar os dois pontos que apresentam separadamente estado ligado de Majorana ou 

Andreev e ver como esses estados ligados interagem. Para isso, vamos analisar a LDOS de cada PQ 

como funcao do acoplamento entre eles V12. Com o intuito de analisar tanto o regime trivial quanto
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Figura 23: Densidade de estados local(LDOS) do PQ1 e PQ2 em unidades de 1 /nT  para componentes de spin 
down, em funcao da energia e acoplamento entre os PQ’s V12. Sao mostrados os resultados para a fase trivial 
(paineis superiores) e para a fase topologica (paineis inferiores), perceba na fase topologica a passagem do 
modo de Majorana do PQ2 para o PQ1 para grandes valores de V12.

o topologico do SC2 vamos usar diferentes valores de energia de Zeeman. Vimos que a transicao 

de fase topologica ocorre para VZC = sjA2 + jj2, para os parâmetros usados temos que a energia de 

Zeeman crítica e VZC « 0.027t. Logo, para os calculos no regime trivial usaremos VZ = 0.02t < VZC e 

para os calculos do regime topologico usamos VZ = 0.05t > VJC. Usamos tambem para nossos calculos 

V1 = 0.008t e V2 = 0.002t. A escolhas de V1 e V2 simplesmente afeta a posicao e a intensidade dos 

picos de Andreev, mas nao interfere nos fenômenos físicos em questao. Os valores escolhidos foram 

apenas para uma melhor visualizacao.

O ponto quantico 1 sempre ira apresentar estados ligados de Andreev, uma vez que ele se encontra 

conectado ao supercondutor SC1 que possui apenas uma fase topologicamente trivial. Por outro lado, 

o PQ2 ira apresentar um tinico pico em energia zero, relacionado a um fermion regular, que pode ser 

fracionalizado em modos de Majorana dependendo da fase de SC2, como discutido anteriormente. 

Uma vez que os modos de Majorana se acoplam apenas a uma componente de spin, vamos discutir 

separadamente os casos para cada uma delas.



Para a componente de spin down, figura 23, observamos para a fase trivial (painéis superiores) os 

dois fenômenos citados acima, para o PQ1 observamos os estados ligados de Andreev, que por sua 

vez se desdobram a medida que o acoplamento entre os PQ’s aumenta, o mesmo e observado para o 

pico em energia zero do PQ2, relacionado a um fermion regular. Contudo, na fase topologica (paineis 

inferiores) ocorrem fenomenos ainda mais interessantes. Perceba para pequenos valores de V12 a 

LDOS do PQ2 apresenta um pico em energia zero e com metade da altura de um fermion regular, 

denotando entao o modo de Majorana, os outros picos que aparecem em energias nao nulas corres­

pondem ao outro modo de Majorana que se separa do modo em energia nula devido a fracionalizacao. 

No entanto, note que para valores maiores de V12 o modo de Majorana “vaza” do PQ2 para o PQ1, 

denotado pela presenca de um pico em energia zero, agora na LDOS do PQ1. Isso mostra que para 

acoplamentos grandes o modo de Majorana se transfere de um ponto quantico para outro. É inte­

ressante notar tambem que existe uma regiao de coexistencia entre o estado ligado de Andreev e de 

Majorana, que vai desaparecendo a medida que a interacao entre os PQ’s se torna muito maior que o 

alargamento dos níveis r ,  veja a figura 23(b).
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Figura 24: Densidade de estados local(LDOS) do PQ1 e PQ2 em unidades de 1 /nT  para componentes de spin 
up, em função da energia e acoplamento entre os PQ’s V12. Sao mostrados os resultados para a fase trivial 
(paineis superiores) e para a fase topologica (paineis inferiores), perceba que para grandes valores de V12 o 
PQ2 apresenta modos de Majorana mediados pelos estados ligados de Andreev.

Como ja discutimos em detalhes na secao 2.1, a reflexao de Andreev consiste de uma reflexao de 

um eletron em um buraco, com momentos e spin opostos, logo, estados ligados de Andreev podem 

fornecer canais que conectam as diferentes componentes de spin do sistema. Como ja dissemos, os 

modos de Majorana se conectam apenas com uma das componentes de spin. No entanto, devido a



mecanismos como a reflexão de Andreev, que estao presentes no PQ1, pode conectar os modos de 

Majorana indiretamente com outra componente de spin. Para observamos esse fenômeno calculamos 

a LDOS tambem para a componente de spin up mostrada na figura 24. Perceba que na LDOS do PQ2, 

para grandes valores de V12 temos a presenca de um pico fraco correspondo a projecao do Fermion de 

Majorana do PQ2, que e intermediada pelos estados ligados de Andreev. Observe tambem que o sinal 

do modo de Majorana e muito mais fraco do que para a componente de spin down que se conecta 

diretamente com o mesmo. Isso decorre pelo fato do acoplamento indireto com a componente up ser 

um processo de alta ordem.
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Figura 25: Funçao espectral de Majorana (MSF) no regime trivial do PQ1 e PQ2 em unidades de 1/nT para 
componentes de spin up, em funcao da energia e acoplamento entre os PQ’s V12.

Para melhor entender a presenca de modos de Majorana nesse sistema, vamos fazer uso da funcao 

espectral de Majorana (MSF), definida na Eq. 4.46. Como ja dissemos anteriormente, a funcao es­

pectral de Majorana nao corresponde a um observavel, mas nos ajuda a confirmar as propriedades 

singulares dos modos de Majorana. Primeiramente vamos considerar o regime trivial, onde nao ha a 

presenca de modos de Majorana, a MSF para spin up e down e mostrada na figura 25 e 26, respectiva­

mente. Note, nos paineis (c) e (d) das figuras 25 e 26, que em energia zero, para pequenos valores de 

V12, temos que os dois modos de Majorana, aqui denotados por A e B se encontram energeticamente 

superpostos, mostrando que correspondem simplesmente a um fermion regular denotado na base de 

Majorana. A partir de V12 ~ r  vemos o desdobramento usual dos níveis. E interessante notar tambem 

que, na fase trivial, nao temos essencialmente nenhuma diferenca entre as diferentes componentes de 

spin da MSF (figuras 25 e 26).
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Figura 26: Função espectral de Majorana (MSF) no regime trivial do PQ1 e PQ2 em unidades de 1/nF para 
componentes de spin down, em funçao da energia e acoplamento entre os PQ’s V12.

f-H

10

f-H

10

10

5

0

- 5

- 1 0

5

0

- 5

- 1 0

QD1 QD2

0 1 2 3 4 5
v12/r

0 1 2 3 4 5
c12/r

Figura 27: Funçao espectral de Majorana (MSF) no regime topologico do PQ1 e PQ2 em unidades de 1/nF 
para componentes de spin up, em funcao da energia e acoplamento entre os PQ’s V12. Note a presenca de um 
modo de Majorana em energia zero no PQ2 apenas para valos grandes de V12.

Por outro lado, no regime topologico temos a presenca de modos de Majorana no sistema, a 

MSF pode corroborar com tal característica. Com esta finalidade calculamos a MSF dos PQ’s no 

regime topologico para ambas componentes de spin, os resultados sao mostrados nas figuras 27 e 28. 

Para a componente de spin down do PQ2, figura 28(c), podemos perceber claramente a presenca de 

um unico modo de Majorana em energia zero, enquanto o outro modo se encontra energeticamente 

separado,figura 28(d), confirmando a separacao espacial dos modos de Majorana. Como já observado
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Figura 28: Função espectral de Majorana (MSF) no regime topologico do PQ1 e PQ2 em unidades de 1/nF 
para componentes de spin down, em funçao da energia e acoplamento entre os PQ’s V12. Perceba a separaçao 
energetica entre os modos de Majorana A e B em PQ2.

nos resultados anteriores, para grandes valores de V12 o modo de Majorana se transfere de um ponto 

quântico para outro. Para a componente de spin up, figura 27, observamos, no painel (c), a presenca 

de um modo de Majorana em energia zero apenas para valores muito altos de V12 provindo da conexao 

entre as diferentes componentes de spin devido aos estados ligados de Andreev.
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Figura 29: Densidade de estados local molecular (MLDOS) no regime topologico em unidades de 1 /nT  para 
ambas componentes de spin, em funcao da energia e acoplamento entre os PQ’s V12. Perceba que neste caso 
nao temos PQ1 e PQ2, mas os orbitais moleculares ±.



Dos resultados acima percebemos que ocorre uma mudança de comportamento quando V12 ~ r . 

Isso ocorre porque, neste caso, passamos de um regime “atomico” para um regime “molecular”. 

Como ja definimos anteriormente temos que o regime atomico e denotado V12 << r  e o regime mo­

lecular para V12 >> r ,  onde a passagem de um regime para o outro ocorre para V12 ~ r .  No regime 

atomico o sistema e melhor descrito pelas componentes individuais de cada PQ, como fizemos nos 

calculos anteriores. Entretanto, para valores muito grandes de V12 se faz interessante pensar nao mais 

em cada PQ individualmente, mas sim como uma molecula de dois níveis, devido a forte hibridizacao 

dos níveis nesse limite. Para analisar o regime molecular usaremos entao a densidade de estados local 

molecular (MLDOS) definida pela Eq. (4.41), mostrada na figura 29.

No regime molecular a nocao de PQ1 e PQ2 como entes separados perde o sentido e se faz mais 

interessante pensar nos dois como um sistema de dois níveis com orbitais moleculares denotados 

aqui por “+” e “- ”. Observe na figura 29 que para pequenos valores de V12 a MLDOS nao passa da 

media aritmetica da LDOS de cada um dos pontos quanticos, como ja dito anteriormente. Contudo, 

e para valores grande de V12 que se faz interessante a MLDOS, observamos que nesse regime para 

ambos orbitais nos temos a presenca do modo de Majorana caracterizado novamente pelo pico em 

energia zero, sendo mais evidente para as componentes de spin down, e quase imperceptível para 

a componente de spin up. Isso decorre, como ja dissemos, devido ao acoplamento indireto com o 

Majorana atraves das reflexões de Andreev, nas componentes de spin up. E interessante notar tambem 

que os estados ligados de Andreev se faz presente em toda molecula, mesmo para V12 >> r .  Isso e 

caracterizado pelo fato de que, os picos satelites, em torno de energia zero, devido a Andreev se 

encontram separados no orbital ”+” e ”- ”, tanto para spin up, quanto para spin down (figura 29). Por 

outro lado, o estado ligado de Majorana, denotado pelo pico em energia zero, se encontra em ambos 

orbitais atômicos. Isso significa que o modo de Majorana sempre esta ligado a um orbital atômico 

em questao. Isso decorre porque o modo de Majorana sempre se encontra ligado a um unico ponto 

quantico, revelando, no presente contexto, seu carater atomico, ou seja, altamente localizado.

Com o intuito de conectarmos novamente com a observacao experimental dos fenomenos aqui 

citados vamos analisar com mais cuidado a LDOS em energia zero do sistema de pontos quanticos 

duplo. Vamos analisar o caso onde variamos o acoplamento V12 e tambem onde variamos a energia 

de Zeeman, para observamos a transido de fase topologica nessa configuracao.

Ao variarmos o acoplamento entre os PQ’s V12 observamos na LDOS em energia zero no regime 

trivial que no PQ1 vemos que a mesma e muito pequena devido ao desdobramento provindo dos es­

tados ligados de Andreev figura 30(a). Ja para o PQ2 vemos que a LDOS em energia zero e presente 

em grande intensidade e a medida que o acoplamento V12 aumenta ela diminui devido ao desdobra-

90



mento provindo desse acoplamento figura 30(c). Note que há degenerescência entre as componentes 

de spin, isso decorre pelo fato de que, no regime trivial, o sistema nao apresenta modos de Majorana, 

que influencia, drasticamente, a componente de spin a qual se acopla diretamente, quebrando entao a 

degenerescencia das componentes de spin.

No regime topologico, analisando a curva correspondente a componente de spin down, que aco­

pla com o modo de Majorana, observamos que ela se reduz pela metade [figura 30(d)], caracterizando 

a fracionalizacao do fermion regular em um modo de Majorana. Perceba que a medida que o acopla­

mento V12 aumenta o modo de Majorana passa do PQ2 para o PQ1 figura 30(b). Isso fica evidente no 

aumento da LDOS da componente de spin down neste painel, a partir de V12 ~ r ,  acompanhada da 

diminuicao da componente de spin down do painel 30(d), indicando entao a transferencia do modos 

de Majorana do PQ2 para o PQ1.
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Figura 30: Densidade de estados local (LDOS) em energia zero dos PQ’s em função do acoplamento V12. No 
regime trivial (paineis superiores) e no regime topologico (paineis inferiores).

Novamente, e interessante analisarmos a LDOS em energia zero em funcao da energia de Zeeman 

para compararmos a evolucao da fase trivial para a fase topologica do sistema. Para isso analisamos o 

sistema tanto no regime atomico quanto no regime molecular, os resultados estao mostrados na figura 

31. Perceba que no regime molecular, acima da energia critica de Zeeman observamos para o PQ2 

a presenca do modo de Majorana figura 31(c), novamente caracterizada pelo pico de energia zero a 

meia altura. No regime molecular figuras 31(b) e 31(d), observamos acima da energia de Zeeman 

critica a aparicao do modo de Majorana, so que agora no PQ1 caracterizando a transferencia do modo 

de um ponto quantico para outro, como argumentado anteriormente. A analise mais cuidadosa da
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Figura 31: Densidade de estados local (LDOS) em energia zero dos PQ’s em função da energia de Zeeman 
VZ. No regime atômico (paineis superiores) e no regime molecular (paineis inferiores).
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LDOS em energia zero corrobora com nossas afirmaçao anterior, que mesmo no regime molecular, o 

modo de Majorana sobrevive. De maneira análoga a configuracao de pontos quânticos desacoplados, 

perceba que no ponto de transido de fase topologica observamos novamente uma descontinuidade, 

evidenciando a presenca de modos de Majorana na fase topologica. Alem disso, analisando o regime 

molecular e atomico, podemos observar o deslocamento da descontinuidade do espectro de um ponto 

quantico para o outro, confirmando entao a transferencia do modo do PQ2 para o PQ1.
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5 Conclusão

Neste trabalho estudamos a formação de estados ligados de Andreev e Majorana em sistemas 

compostos por supercondutores e pontos quanticos. Para tal utilizamos o metodo das funçoes de 

Green para o calculo da densidade de estados dos sistemas propostos. Discutimos tambem os aspectos 

topologicos da formacao de estados ligados de Majorana em fios supercondutores, o modelo artificial 

de Kitaev, e discutindo uma ja proposta realizacao experimental do mesmo utilizando supercondutores 

usuais, acoplamento spin orbita e campo magnetico aplicado.

Para observamos como os estados ligados de Andreev influenciam os estados ligados de Majo- 

rana propomos um sistema composto por dois pontos acoplados entre si e cada um deles suportando 

um dos tipos de estado ligado. Primeiramente analisamos a configuracao de um unico ponto quantico 

acoplado a um supercondutor que apresentava fase topologicamente nao trivial. Observamos entao 

que a forte assimetria produzida pelo criterio topologico impossibilita a coexistencia de estados liga­

dos de Andreev e Majorana no configuracao de um unico ponto quantico.

Por outro lado, na configuracao de pontos quanticos duplos observamos que por um pequeno 

período estados ligados de Andreev e Majorana podem coexistir. Alem disso, observamos que mesmo 

a componente de spin que nao se conecta diretamente ao modo de Majorana apresenta influencia 

do mesmo, isso devido ao acoplamento indireto induzido pelas reflexões de Andreev que conectam 

fermions com diferentes componentes de spin. Analisando a densidade de estados molecular con­

cluímos que no regime molecular ,V12 >> r ,  os estados ligados de Andreev se encontram em todo 

orbital molecular, enquanto o estado ligado de Majorana se encontra acoplado sempre a um unico 

ponto quantico em questao, refletindo o caracter de estado altamente localizado do modo de Majo- 

rana.

A analise cuidadosa da LDOS em energia zero nos revelou que, os pontos de transicao de fase to- 

pologica sao caracterizados por descontinuidades acentuadas, que podem servir como caracterizacao 

de transicoes de fase deste tipo em experimentos de STM. Alem disso, na configuracao de pon­

tos quanticos acoplados, observamos tambem descontinuidades nos pontos de transicao de fase to-



pologica, além da transferência da descontinuidade de um ponto quântico para outro, quando temos 

V12 ~ r ,  caracterizando entao a localizacao espacial do modos de Majorana.

Como perspectivas futuras pretendemos analisar o caso onde ha interacao Coulombiana nos pon­

tos quanticos, uma vez que essa e uma das escalas de energia mais relevantes para esse tipo de sistema. 

Com isso poderemos observar fenômenos tais como o efeito Kondo que podem vir a influenciar os 

estados ligados de Majorana (52). No regime interagente podemos ainda observar os estados ligados 

de Shiba (53) e como se relaciona com os outros estados ligados presentes no sistema. Pretende­

mos tambem atacar diferentes configuracoes e como a topologia do sistema influencia os fenomenos 

envolvidos.

94
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A

APENDICE A -  Representações na Mecõnica Qucintica

Na mecânica quântica existem essencialmente três tipos de representações, sao elas: Representação 

de Schrodinger, Representacao de Heisenberg e Representacao de interacao. Cada uma delas se torna 

interessante dependendo do problema físico em questao e as quantidades a serem calculadas. Vamos 

discutir brevemente cada uma delas.

A.1 Representação de Schrodinger

A Representação de Schrodinger é a mais conhecida e utilizada em um primeiro contato com a 

mecânica quantica. Como sabemos a dinamica de um estado quantico |^(í)> e governada pela equacao 

de Schrodinger

d
ih—|^(t)) = H |^(t)), 

dt
(A.1)

onde H  é o Hamiltoniano do sistema físico em questão, é importante ressaltar que o Hamiltoniano é 

independente do tempo e obedece a equacao de Schrodinger independente do tempo

H  |<A(0» = £|<A(0», (A.2)

onde E é a auto energia do estado |^(0)>. Com isso temos como solução da equação de Schrodinger

ÍHt
I <A(0> = e- t  * |<K0)>. (A.3)

Seja agora A um operador qualquer, que pode ser dependente do tempo ou nao. Se queremos 

tomar o valor esperado deste operador temos entao que
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(A) = < ^ ( 0 ^ ( 0 ) ,

em resumo nesta representação temos que a dinâmica se encontra na evolução do estado quântico e 

não dos operadores.

A.2 Representação de Heisenberg

A principal diferença entre a Representação de Heisenberg e da anterior é que neste caso a 

dinâmica e governada pela evoluçao temporal dos operadores, e nao dos estados. Para ver isso vamos 

voltar novamente na media do operador A definida anteriormente

iHt iHt
(A) = (^(t)|A |^(t)) = (A) = (<A(0)|e-F tAe- t  t |<A(0)),

resultando entao em

(A) = (^(t)|A |^(t)) = (<A(0)|A(t)|<A(0)),

onde definimos

A(t) = eh tAe ht, (A.4)

note que podemos tambem escrever a evoluçao de |^(0)>, usando (A.2)

ÍHf
|<A(0)) = e"^t |<A(t)). (A.5)

Como agora temos que a dinâmica é dada pelo operador precisamos encontrar uma equação que 

governa tal evoluçao temporal do sistema, para isso basta derivarmos A(í):

d d mtí  iH _mt mtí  _iHt í iH \ d „—A(t) = —[eh tAe h t] = —  eh tAe h t + eh tAe h M----- + — A
dt dt h V h / dt

i d
= -[H ,A(t)] + - A, 

h dt
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aqui vamos considerar que A seja independente do tempo, logo a última derivada parcial na expressão 

acima e nula e entao temos

onde [H,A(t)]_ = HA(t) - A(t)H  e a relacao de comutacao usual. A equacao acima e chamada equacao 

de Heisenberg e domina toda a dinamica nesta representacao. Utilizaremos a mesma quando formos 

deduzir uma expressao para a dinamica das funcoes de Green.

A.3 Representação de Interação

A Representacao de Interacao e uma representacao intermediaria entre as duas anteriores, neste 

caso temos que tanto o operador, quanto o estado evoluem no tempo. É importante notar que em 

ambas representacoes acima o Hamiltoniano era independente do tempo, nesta representacao vamos 

definir um Hamiltoniano mais geral, cuja as componentes de interacao dependem do tempo:

d i
- A ( t )  = -  [H, A(t)]_, 
dt h

(A.6)

H  (t) = Ho + V (t),

e nesta representacao temos

/O. *0 +
l<A(t)> = V(t)>,

iH o (A.7)

e
/o. lt±0 + lt 10 *

A(t) = e h  tAe h t.
iH 0 1 - i H 0

(A.8)

Nesta representacao os operadores sempre serao representados com um ”chapeu” para distingui-los 

das outras representacoes. Queremos agora saber como se da a dinamica de |i^(t)>, para isso vamos 

calcular sua derivada temporal parcial
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SM
 C

b 

II / . d  iHo
v d te h

= 1 iHo t 
e ~  t[- 

h

iHo t d
t ̂  |<A(t)>dt

iHo t V (t)3 h 1——
h |<A(t)>,

-iHo
mas temos que |^(t)> = e h  t1 0-(t)>, isso nos leva à

d ~ iHo t iHo t ,
i -  |<A(t)> = e ~  V  (t)e- - t |<A(t)>, 
dt

t

resultando etào

d ,  V(t) ,
^  l<A(t)> = - ^  |<V(t)>, dt h

(A.9)

vamos considerar que a evoluçào do estado |i^(t)> seja dada por um operador unitàrio U, de forma que 

|i^(t)> = U(t, to)|«Â(to)>, note que U(to, t0) = 1, dito isso ficamos com

d
dt U (t, to)|«Â(to)> =

VV(t)
-i—— U (t, to)|«Â(to)>, h

nos resultando entao uma equaçao para U(t, to) dada por

d V(t)
— U (t, to) = - i —— U (t, to), 
dt h

note que a equaçao acima nao e simplesmente uma exponencial como nos casos anteriores porque 

agora Ê(t) depende do tempo, logo a solucao neste caso e uma equacao integral da forma

U (t, to) = 1 + ( -  i ) J * V(t')U (t', t o W ,  (A.io)

onde usamos que U(to, to) = 1. Essa equacao integral pode ser resolvida de forma iterativa, temos que

U (t, to) = 1 + ( -  h ) f ^ V ( t i ) U  (ti, to)dti
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mas U(q, to) por sua vez é dado por

U(ti,to) = i + ( - I V(t2)U(t2,to)dt2,

substituindo em U(t, t0) ficamos com

U (t, to) = i + ( -  dtiV(t) i +1 - ^ M  dt2V (t2)U (t2, to)

temos agora uma nova equação para U(t2, to) e assim por diante. Continuando a iteração ficamos com

U (b to) = i + dti V (ti) +
2 nti

•JTrftiV(ti) dt2V(t2)

+
3

t o

z - t2  ^  p
I í dt2V(t2) I

to  to

dtiV(ti) | dt2V(t2M dt3V(t3) + .... (A .ii)

podemos escrever os produtos de integrais da expressao acima de uma forma mais interessante per­

cebendo o seguinte

r J i  r t2  i r J i  r t2  i r t2  r t2

dtit>(ti H  dt2V"(t2) = 2 I d ti ^ (tiW  dt2 ^ (t2) + 2 ^ i V ^
v 7 to  v 7 to  2 to  v 7 to  2 to  v 7 to

onde apenas permutamos ti com t2 nas integrais acima. Vamos usar agora a chamada funcao degrau, 

a funcao degrau e definida por

6(t - t')
i, se t > t'

o, se t < t'
(A.i2)

podemos entao escrever

t i  t 2 i t  tA  I A  I I  I A  A  /A /A

dtiV(ti) dt2V(t2) = 2 dti dt2[V(ti)V(t2)0(ti -  t2) + -  ti)],
t o t o 2 t o t o

definindo agora o operador de ordenamento temporal

T [V (ti)V (t2 )l =  V (ti)V (t2 )0 (ti -  t2) + V (t2)V (ti)0(t2  -  t i) , (A .i3 )
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ficamos com

r ti r t2 1 r t r t „
d tiV (tiH  dt2V(t2) = -  d t i \  dt2T[V(ti)V(t2)],

Jto Jto 2 j  to Jto

de maneira anaioga podemos escrever o produto triplo de integrais da forma

í  dtiV(ti) C dt-V(t-) Ç dt3V(t3)
J  to Jto Jto

1 t1 t2 t3
-  d tlt>(ti H  dt2V(t2) I dt3V/(t3)
6 Jt0 Jt0 Jt0

+1 [  ' d t M t i )  f  3dt3V(t3) f  2 dt2V(t2)
Jto Jto Jto6 Jto

i r t2 r t3 r ti
+ 6 dt2V(t2) \ dt3V(t3) dtiV(ti)

6 Jto Jto Jto
i r t2 r ti r t3

+ 6 dt2V(t2) dtiV(ti) dtiV(t3)
6 Jto Jto Jto
i r t3 r ti r t2

+6 d t 3 m  dtiV(ti) I dt2V(t2)
6 J to Jto Jto
i r t3 r t2 r ti

+6 dt3V(t3) dt2V(t2) \ dtiV(ti),
6 jto Jto Jto

onde apenas permutamos ti?t2 e t3, seguindo os mesmo passos do caso anterior com a ajuda da funcao 

degrau podemos escrever

ti t2 t3 t t t
dtií>(ti) dt2V(t2) dt3V(t3) = d t i \  d t j  dt3T[t>(ti)y(t2)y(t3)l,

to Jto Jto Jto Jto J  to

com
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T [V(Í1)V(Í2)V(Í3)1 = V(Í1)V(Í2))V(Í3)0(Í1 -  Í2)0(Í2 -  t3)

+ V(Í1)V(Í3))V(Í2)0(Í1 -  t3)e(t3 -  t2) 

+ V(t2)V(tl))V(t3)e(t2 -  t3)ô(t3 -  tl)

+ V(t2)V(t3))V(tl)0(t2 -  ti)0(ti -  t3)

+ V(t3)V(t2))V(tl)0(t2 -  ti)0(ti -  t3)

+ V(t3)V(tl))V(t2)0(ti -  t2)0(t2 -  t3),

a generalização para o operador de ordenamento temporal para o produto de n operadores é direto:

T[V(ti)V(t2)....V(t„)] = £  V(tl)V(t2)....V(t„)0(tp(i) -  tp(2))—0(tp(n-1) -  tp(n)),
peSB

(A.14)

onde Sn e o grupo das permutações. Fazendo isto para todos os produtos de integrais que aparecem 

na expressao de U(t, to) temos

U(t,to) = V  1  ( - f  d t i . . . T  dt„T[V(ti)....V(tn)], 
n=on ! l  h / -'to Jto

(A.15)

logo o operador de evolução temporal se reduz simplesmente a forma

U (t, to) = T e-h J j ^ ) (A.16)

finalmente temos nessa representação que um estado evolui de um tempo to até um posterior t da forma

!<Â(t)> = T e-h í ^ ( f ) l<Â(to)>. (A.17)

Muitas vezes , quando a pertubação (interação) do sistema é significantemente pequena em 

relação as escalas de energias analisadas, podemos considerar apenas os primeiros termos de (A.15), a 

mais importante dessas aproximações e a que chamamos de resposta linear, neste caso, considera-se



apenas o termo linear na interação no operador de evolução temporal e temos
102

U(t, to) « 1 -  j  f  dt'V(t'), 
h j  to

(A.18)

esta aproximação será importante quando considerarmos sistemas fora do equilíbrio, onde utilizare­

mos a formula de Kubo que sera discutida mais adiante.
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APÊNDICE B -  Funções de Green

Uma das ferramentas mais poderosas da chamada teoria quântica de campos sao as chamadas 

funções de correlacao. Contudo, essa ferramenta se mostrou bastante Util para caiculos de física 

estatística, sobretudo, utilizando as chamadas funcoes de Green.

As funcoes de Green em física estatística sao funcoes de correlacao generalizadas de dois opera­

dores, as principais funcoes de Green em física estatística sao a funcao de Green causal (GC), funcao 

de Green retardada (GR) e funcao de Green avancada (GA), definidas respectivamente como (27):

Gc(t; t') = <<A(t); B (t')»c = -i(TA(t)B(t')), (B.1)

Gr (t; t') = «A(t); B (t')» r = -iQ(t -  t')<[A(t), B(t')]z» , (B.2)

Ga(t; t') = <<A(t); B (t')»a = id(t' -  t)<[A(t), B(t')]^» , (B.3)

onde A(t), (B(t')) são operadores genéricos escritos na representação de Heisenberg, T  é o operador 

de ordenamento temporal, Q(t - t') a funçao degrau usual e

[A(t), B(t')]z = A(t)B(t') -  Z B(t')A(t), (B.4)

com Z = 1 caso A(t)(B(t')) sejam operadores bosonicos e Z = -1  caso sejam fermionicos. Para nossos 

propósitos vamos nos concentrar em GR, note que a mesma pode ser escrita de forma explicita da 

forma

Gr(t; t') = 6(t-  t')[-i(A(t)B(t')) + Zi(B(t')A(t)>], (B.5)

vamos agora definir a chamada funcao de Green maior e funcao de Green menor, dadas respectiva­
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mente por

G>(t; t') = -i(A(t)B(t')), (B.6)

G<(t;t') = -iZ(B(t')A(t)). (B.7)

Usando as definições acima podemos escrever GR como

Gr (t; t') = 6(t -  t')[G>(t; t') -  G<(t; t')]. (B.8)

De forma analoga, podemos escrever GA como

Ga(t; t') = d ( t ' -  t)[G< (t; t') -  G>(t; t')]. (B.9)

Para nossos caiculos estamos interessados na funcao de Green nao no domínio temporal, mas sim 

no domino das frequencias. Para tanto, precisamos efetuar uma transformada de Fourier na mesma. 

Entretanto, primeiramente vamos olhar com mais cuidado a media termodinamica (A(t)B(t')). No 

contexto da mecanica estatística, essa media termodinamica (no ensemble canónico) e calculada da 

forma1

(A(t)B(t')) = !  2 < n |e ^ HA(t)B(O|n>,
n

ou simplesmente

(A(t)B(t')> = Tr{pA(t)B(t')}. (B.10)

Na expressao acima p  e a matriz densidade dada por

e-pH
p = —  (B.11)

e Z e a funcao de particao que tem a forma

1A generalizacao para o ensemble grande-çanõniçõ e direta, considerando o vínculo do numero de partículas tomando 
H  = H  - juN e somando sobre o numero de partículas.
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Z = <n\e pHIn),
n

com S  = [KbT]- 1 e \{n}) é o conjunto dos auto-estados do Hamiltoniano H. Como a média termo­

dinâmica so depende do traco da matriz densidade que por sua vez é invariante sobre mudanca de 

base, escolhemos o conjuntos dos auto-estados por conveniencia.

Lembrando agora que os operadores estao escritos na representacao de Heisenberg temos2

A(t) = elHtAe lHt, 

B(t') = elHt' Be-iHt' .

Utilizando a completeza do e s p a c e in' \n')(n'\ = 1, podemos escrever

<A(t)B(t' )) = 1  ^  e~SEn <n\e-iHtAe-iHt\n')(n'\elHt' Be-iHf\n)
nn'

= 1  Y j e~SEn <n\A\n')<n'\B\n)ei(t-t' )(En-En). (b .12)
nn'

De forma analoga obtemos

<B(t')A(t))
1
Z

1
Z

-SEn <n\e-iHt' Be-iHt'\n')<n'\eiHtAe-iHt\n) 

-SEn <n\B\rí)<rí\A\n)e-i(t-t' )(En-En). (B.13)

É interessante notar dos resultados acima, que GR depende apenas de t - 1' . Geralmente como esta­

mos interessados no espaco das frequencias e dos momentos, efetuaremos a transformada de Fourier

X TO
Gr(t; t')e iw(t-t°d(t - 1'), (B.14)

TO
cuja a transformada inversa dada por

2Note que utilizamos h  =  1, o mesmo será feito para todos os calculos desta seçao.
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Gr (t; t')
1

2n

X O
G(m)e-im(t-t' W

oo

(B.15)

Usando (B.5),(B.12) e (B.13) temos

Gr (m) = -  z dreimT6(r) [<n|A|n')<n'|B|n)eÍT(En-E«')

-Z<n|B|n')<n'|A|n)e-ÍT(E'1-En A ,

onde fizemos r  = t - 1'.

Devido a descontinuidade de GR no espaço temporal, vamos nos concentrar na transformada de Fou­

rier no espaço das frequencias. Primeiramente note que

r
dre irW+(En- Enf)]

0

conduzindo-nos a

o0
dre iT [ w +(En -En )]

ei[w +(En -Bn ' )]o 1

i[m + (En -  En' )] i[m + (En -  En' )]

De modo anaiogo, temos

(En-En' )]
e«[w-(E„-E„/ )]o 1

i[m -  (En -  En' )] i[m -  (En -  En' )] .

Perceba que o primeiro termo do resultado das duas integrais acima diverge. Isto e uma consequencia 

da nao continuidade da funcao 6(t - t'), o que faz com que tanto GR quanto GA nao sejam bem de­

finidas pra t = t'. Para resolvermos este problema temos que efetuar uma continuacao analítica da 

frequencia no plano complexo, fazendo m ^  m + in, onde n e um infinitesimal puramente real e posi­

tivo. Fazendo isso nas integrais acima obtemos
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e

J "dTeÍT[M+iri+(En-En, )] eí[u+(En-E„r )]“ e-nTO 1

í[m + ín + (En -  En' )] í [m + ín + (En -  En')]
1

í[m + ín + (En -  En' )]

f dTeíT[u>+ín-(En-En' )] eíW-(En-En' )]TOe~nTO 1

í[m + ín -  (En -  En' )] í[m + ín -  (En -  En' )]
1

í[m + ín -  (En -  En')] ‘

Nas duas liltimas expressões usamos que e-n™ ^  0. Para GA o procedimento é o mesmo, mudando 

apenas a continuacao analítica para o plano complexo inferior (m ^  m -  iif), uma vez que GA depende 

de Q(t' - t). Isso nos leva a expressao de GR e GA, respectivamente

e

Gr(m)
Z S  enn'

~ßEn (n\A\n')(n'\B\n) (n\B\n')(n'\A\n) '
m + ín + (En -  En' ) h m + ín -  (En -  En' ) J ’

Ga(m) = 1  ^  e-ßEn'
nn'

(n\A\n')(n'\B\n) (n\B\n')(n'\A\n) '
m ín + (En En' ) m ín (En En' )

Dessa forma fica clara a relacao que existe entre GR e GA no espaco das frequencias, uma e simples­

mente o complexo conjugado da outra

Gr (m) = [Ga(m)]*. (B.16)

Podemos juntar os dois termos da GR na expressao acima, notando que

m + in -  (En -  En') 
que ainda podemos escrever como

e-ßEn (n\B\n')(n'\A\n) = ^  (n'\A\n)(n\B\n')
m + ín -  (En -  En' ) ’

eßEn (n\B\n,)(n'\A\n) = ^ En, (n\A\n,)(n'\B\n)
m + ín (En En' ) m + ín + (En En' )

Dessa forma, a GR pode ser finalmente escrita como
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1
Gr (w) = - > .

(n\A\n')(n'\B\n) ,_ ß En _ ^ En, , .
I “ “  )Z  t W + llj + (En En' )

(B.17)

A função de Green escrita da forma acima é conhecida como função de Green na representação de 

Lehmann. Vamos agora efetuar a transformada de Fourier para as funcoes de Green maior e menor. 

Para a funcao de Green maior temos que

G> (w) G>(t; t')eilú(t_t')d(t _ t')

_i (A(t)B(t'))eM t_f)d(t _ t').

Usando novamente (B.12) temos

i   no
G>(w) = _ z Y j e ~ ßEn (n\A\n')(n'\B\n)

Z nn'
dTeir[M+(En_En,)]

(B.18)

Note que

o que nos fornece

í
dreiT[w+(E”

G>(w) == _ e_ßE
Z  Hnn'

En' )] = 2nô[w + (En _ En' )],

n (n\A\n')(n'\B\n)ô[w + (En _ En' )].

Para a função de Green menor, de forma análoga,

G< (w)
X o

G<(t; t')eiw(t_t')d(t _ t')
o

X o
(B(t')A(t))eiw(t_t')d(t _ t').

O

(B.19)

(B.20)

Usando agora (B.13) obtemos

O ’
G<(w) = _Z Y je _ ßEn {n\B\n')(n'\A\n)ô[w _ (En _ En' )].

nn'
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Comutando novamente os dois elementos de matrizes A  e B podemos escrever

O ’
G<(m) = - Z J V ^ < n |A |n ') < n '|B |n ) « 5 [ w  + (En - En>)]. (B.21)

nnr

Podemos relacionar as duas funcoes de Green, menor e maior notando da funcao delta que En  -  En = 

m, logo, comparando (B.19) com (B.21) notamos que

G<(m) = ZG>(rn)e-pm. (B.22)

Vamos agora relacionar a parte imaginaria de GR com as funcoes de Green maior e menor. Para isso, 

usaremos a relacao

lim -------
n^o m + in

---- inô(m)
m

em (B.17) podemos escrever

21m[G(m)] - Y j <n\A\n,)<n'\B\n)ô[m + (En -  En,)] (e-pEn -  Ze-pEn')
nn'

r\ ___

-  y  Z  e-PEn <n\A\n,)<n'\B\n)ô[m + (En -  En' )] (l -  Çe-^ )  
nn'

-i(1  -  Z e-pm)G>(rn).

Definindo agora a funcao espectral A(m) = -21m[G(m)] temos entao as relacoes

G>(m) = -  1 _ l e-pmiA(m) 

G<(m) = - Z ̂  iA (m),

lembrando que a distribuição de Fermi-Dirac (Z = -1 ) e Bose-Einstein (Z = 1) sao dadas por



110

f  (" )  = ^ , (B 2 3 )

podemos escrever as importante relações

iG > M  = [1 + Zfz M ]A (m ) (B.24)

iG < M  = f  (m)A(m). (B.25)

As relações acima sao fundamentais para a teoria de funções de Green no equilíbrio termodinâmico, 

elas representam o chamado teorem a de flutuação-dissipação. Este nome e dado porque das relações 

acima vemos que flutuacoes, relacionadas com as funcoes de Green maior e menor se relacionam di­

retamente com a parte imaginaria da funcao de Green retardada, que por sua vez esta associada com 

fenômenos de dissipacao. Vimos ainda que, GR e GA sao o complexo conjugado uma da outra, logo 

como A M  = -2/m[G(m)] temos entao

A M  = i(Gr M  -  Ga M ) . (B.26)

Vamos explorar ainda mais os resultados do teorema de dissipacao-flutuacao. Da transformada 

inversa de Fourier sabemos que

G>(t; t')
1

2n G > M e-iw(t-t°dm,

das relacoes acima podemos escrever

G> 1 r™
(t; t') = - —  [1 + f  (m)]iA(m)e-iw(t-t' )dm.

2n %J—co

Da definicao temos G>(t; t') = -i(A(t)B(t')), obtemos

(A(t)B(t')) = J  (m)[1 + Zfz (m)]eiw(t-t,)dm, (B.27)

com

J(m) = - 1 7m[GM ],
n

(B.28)
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onde usamos que A(m) = -2/m[G(m)]. De forma análoga para G<(t; t') obtemos

(B(t')A(t)) = J  (w) fz  M e iw(t-t' W (B.29)

Note que as médias acima podem ser calculadas mesmo pra t = t', vimos também de (B.12) e (B.13) 

que as mesmas so dependem de t - 1', nos levando entao as relacoes

(A(t)B(t))

(B(t)A(t))

<A(0)B(0)) = 

<B(0)A(0)) =

X œ
J(m)[1 + z fz  (m)]dm

œ

Xœ
J(m) fz  (m)dm.

OO

(B.30)

(B.31)

As medias termodinamicas acima sao conhecidas como funções de correlaçao temporal e pos­

suem importante papel em diversos caiculos (e.g. transporte). Perceba que uma vez que conhecemos 

GR estamos a princípio aptos a calcular as funcoes de correlacao. Ate aqui A(t) e B(t') sao opera­

dores genericos, a especificacao dos mesmos depende da contextualizacao do problema físico e das 

quantidades físicas de interesse.

B.1 Equaçao de Movimento para a funçao de Green

Ate aqui apenas descrevemos as propriedades da funcao de Green retardada, vamos agora apre­

sentar uma metodo de obtermos a mesma, o qual sera utilizado constantemente nesta dissertacao. 

Como vimos na secao anterior, a funcao de Green retardada e dada por

Gr (t; t') = «A(t); B(t')))r = -Í6(t -  t')([A(t), B(t')]^).

Derivando com a expressao acima com relacao ao tempo temos
J

-  <<A(t); B(t')))r 
dt

J
-  [-Í6(t -  t')<[A(t),B(t')]z)]

J
-iô(t -  t'))[A(t), B(t')]z) -  iQ(t- 1')- <[A(t),B(t')]z),
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onde usamos que

J
— e(t - t') = õ(t - t'). 
dt

Uma vez que, como estamos na representação de Heisenberg, os operadores obedecem a equaçao de 

movimento

d
- A ( t )  = -i[A(t), H]_. 
dt

(B.32)

Assim,

—
dt

<[A(t), B(t')]z ) = <[-i[A(t), H]_, B(t')]z ),

que nos conduz a equaçao

J
i - <<A(t); B(t')))r = õ(t -  t')<[A(t), B(t)]z) + <<[A(t), H]_; B(t')))r. (B.33)

A equaçao (B.33) e a chamada equaçao de movimento para a funçao de Green. Como estamos interes­

sados no espaço das frequencias, aplicando uma transformada de Fourier na equaçao acima obtemos:

m<<A; B )) l  = <[A, B]ç) + <<[A, H]_; B))ríú. (B.34)

Tendo sempre em mente que para fins de continuidade analítica devemos fazer m ^  m + irj. Esta 

equaçao sera usada para a obtençao das funçoes de Green no presente trabalho.

Note que as informações de muitos corpos estao contidas no termo [A, H] , isso faz com que ao 

aplicarmos o metodo da equaçao de movimento, geramos uma nova família de funçoes de Green, 

cujas equaçoes de movimento geram outras novas famílias, e assim sucessivamente. Este conjunto de 

equaçoes geralmente nao e fechado, logo, se e preciso truncar a hierarquia das funçoes de Green com 

as aproximaçoes apropriadas.

Como exemplo simples, consideremos um gas de Fermi nao interagente. Vamos entao calcular a



função de Green « c k; cj » . Da equação de movimento temos que
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m((c*; = ([ck, cj]+) + (([c*, HL; cí»L . (B.35)

Neste caso Hamiltoniano é dado por

h  = z e*ckc*.
k

(B.36)

Usando agora as importantes relacoes [A,BC]_ = [A,B] C + B[A,C]_ ,[A,BC]_ = [A,B]+C — B[A,C]+, 

e que [c*, c*,]+ = ô**,[c*, c*,]+ = [c*,c* ]+ = 0 temos

[c*, H]_ = e* [c*, c* ]+c* -  e*c* [c*, c*]+ = e*c*.

Substituindo esta equacao na Eq. (B.35) obtemos

« c * ; c *  ) ) L  =

1
m + iij — e*

(B.37)

Essa e a chamada função de Green de uma Unica partícula, ou ainda, propagador livre. Temos ainda 

que a media do operador numero e dada por

(cíc*) f ' P* (m)f+(m)dm, (B.38)

onde percebemos neste caso que J(m) nada mais e do que a densidade de estados local, dada por

P* (m) = — n  Im  [((c*; cj))m|.

Note ainda que, podemos escrever este resultado em termos da funcao espectral Ak(m)

P* (m) = —  A* (m), 
2n

onde usamos que Ak(m) = -2Im[Gk(m)]. Se queremos saber a densidade de estados total, temos que



somar todos os momentos, logo temos a importante relação entre a função espectral e a densidade de 

estados:
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(B.39)
k

O calculo da densidade de estados via GR e uma das aplicações mais importantes do metodo das 

funçoes de Green. Apesar de exemplificarmos usando o modelo simples do gas de fermi nao intera­

gente a relacao acima se mantem valida, uma vez que o formalismo das funcoes de Green e geral. No 

caso acima podemos calcular de forma simples a densidade de estados lembrando que

l im ----- ;-------
m + in — Sk

1
= P --------

m — Sk
— inô(m — Sk ),

que nos leva à

pk (m) = ô(m — Sk ). (B.40)

Vamos entender melhor o porque essa função de Green é chamada de propagador livre. Para isso 

vamos calcular a transformada de Fourier inversa, temos entao

Gk(t) e—imtGk (m)dm

g—imt
----- :------- dm.
m + in — Sk

Essa integral pode ser resolvida por integraçao complexa via teorema dos resíduos, mostrando mais 

uma vez a utilidade da continuidade analítica. Vamos tomar um contorno C no sentido anti-horário no 

semi-plano complexo inferior, uma vez que ele possui uma singularidade em m = ek -  in, do teorema 

dos resíduos temos

(j) f  (z — a)dz = 2niRes(a), (B.41)

onde a representa um ponto singular no plano complexo. No presente caso temos que
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1 g-ÍM

2nw  + Ín -  Sk
dw

1 „-ÍMt

2n m + Ín -  Sk
dw + f  i

JCínf 2

-IMt

2n m + Ín -  Sk
dw,

e

onde a primeira integral do contorno representa a integral no plano real e a segunda no semi-plano 

complexo inferior. Usando entao o teoremas dos resíduos temos que

1 g-íMt

C 2n w + Ín -  Sk
dw = 2nÍRes(sk -  Ín).

Como temos polos simples a formula para o resíduo e

Res(a) = lim(z -  a) f  (z).z^a

Assim,

Res(sk -  Ín)
1 (w -  s k + in)e 1

lim  ------;---------- ——w^sk-Ín 2n (w -  Sk + tn)

— e-Í(Sk-Ín)t 
2n

(B.42)

Uma vez que, por definido que a funcao de Green para partículas e definida para tempos positivos, 

entao a integral no plano complexo inferior deve zerar e, portanto,

-

OO

TO

1 g-ÍMt

2nw  + Ín -  Sk
dw = -Íe -Í(Sk-Ín)t (B.43)

Se quisermos estender esse resultado para todos os tempos, basta utilizarmos a funcao degrau, com 

isso finalmente obtemos

Gk(t) = -Í6(t)e-i(Sk-in)t. (B.44)

O termo complexo no argumento da exponencial entre parenteses e o responsavel pela convergencia 

do propagador para tempos muito longos, como dissemos anteriormente. Veremos que, em sistemas 

interagentes, o termo imaginario do polo da funcao de Green esta associado com o tempo de meia



vida de uma quase-partícula.

B.2 Equação de Dyson

116

Uma das formas de calcularmos as funções de Green de um certo sistema é usarmos a chamada 

equação de Dyson, que conecta a funcao de Green do sistema interagente com a funcao de Green do 

sistema nao interagente, tambem chamada de propagador livre. Como exemplo vamos utilizar um 

sistema descrito por uma impureza acoplada a um gas de eletrons nao interagente, de maneira que o 

Hamiltoniano seja dado por

H  = ^  São-d-o-do + ^   ̂Sfco-C^Cka + 'y Vkd<rCko + Vicc^a_dIT, (B.45)
o ko ko

onde dO(do ) cria(aniquila) um eletron com energia s d e spin o  na impureza, c'ko_(cko) cria(aniquila) 

um eletron com energia s k e spin o  na banda de conducao e Vk e a matriz de hibridizacao que acopla 

a impureza e os eletrons da banda de conducao. Usando o metodo da equacao de movimento descrito 

na secao anterior, temos que

m«do; dO» = 1 + «[do, H  ] ; dO».

Efetuando o comutador obtemos

[da ,H \_ — &dada + ^  Vkcka, 
ka

o que nos leva a

^ « do; do )) = 1 + Sdo((do; do )) + ^  Vk« Cko; do )).
ko

Agora temos que fazer a equacao de movimento pra a nova funcao de Green que apareceu do lado 

direito da equacao acima

^ « Cko; do')') = « [cko, H]_; do')').

Como

[ckat H~\_ — Skacka + V|(da ,

obtemos o conjunto de equacoes

Gda (m) Sda(m) + Sda(m) ^  VkGka,da(m), 
ka

(m -  Ska)~l VÍGda(u),Gka,da(m)
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onde definimos Gd-(m) = « d - ; dl)), Gka,da(m) = « c k a d -)) e o propagador livre gd-(m) = (m

eda) •
Combinando o conjunto de equações acima, podemos escrever

Gda (m) — gda-(m) + Sdir(m) I I  Vk (m -  e*a )—1vH Gd (m). (B.46)
_ k a

Perceba que toda a informaçao da interaçao esta contida no termo em colchetes. De maneira geral 

podemos escrever a equacao acima da forma

Gda(m) — gda(m) + gda-(m)S(m)Gda-(m), (B.47)

onde S(m) e chamada auto-energia que contem toda a informacao das interacoes da interacao do sis­

tema. A equacao acima e chamada Equação de Dyson. Para o presente sistema, a auto-energia e 

simplesmente dada por

A forma da equacao de Dyson e a mesma para sistemas mais complexos, mas geralmente precisa 

ser resolvida de forma iterativa e com auto-energias mais complicadas, podendo ainda tomar a forma 

matricial.

Vamos olhar com atempo a auto-energia nesse presente caso. Para isso, vamos lembrar que por 

meios de continuidade analítica temos que tomar m ^  m + ii), com isso temos que

S M  — ^  Vk(m -  Skv)-1Vk*. (B.48)
ka

k* m + Itf — Ska
(B.49)

Podemos entao separar a auto-energia em uma parte real e uma imaginaria da forma

S(m) — A(m) + iA(m), (B.50)

onde definimos

(B.51)

Por simplicidade vamos considerar Vk = V e s ka = s a , ou seja, independentes de k. Vamos agora 

transformar a somatória nos momentos em uma integral na energia, e assumir que a densidade de 

estados para os eletrons livres e dada por p(e) = p 0d(|D| -  e), com p 0 = 1/2D e 2D sendo a largura da



banda de condução. Com isso temos então que
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A(m) = ^
k

\Vk \2(m -  e ^ )  
(m -  ek^)2 + n2

= Po\V\: / D

m -S
-D (m -  s )2 + n2

ds = p 0\V\2ln
(m + D)2 + n 
(m -  D)2 + n

2 P/2

2

Perceba que se estivermos interessados em excitações próximas do nível de Fermi, que geralmente se 

encontra no meio da banda e tomando a banda muito larga, podemos fazer m << D e lembando que 

n ^  0 temos entao A(m) = p 0|V|21n(1)1/2 = 0. Portanto, para o limite em que a banda e muito larga, 

temos que a parte real da auto-energia neste caso nao contribui para o sistema. Essa e a chamado 

limite da banda larga ou Wide Band Lim it (WBL).

Para a parte imaginária, neste caso, temos que

A(m) n
\Vk\2

(m -  £kix)2 + n2

-po\V \ DD
n

J-D (m -  e)2 + n2

-Po\V\2n I d(m -  e)de 
-D

-npo\V \2,

de

onde usamos
r  1 nl i ^ ^ ---------------
n^o n (m -  e)2 + n2

d(m -  e).

Pela equação de Dyson podemos escrever

(B.52)

Gd (m)
1

m -  Sd -  2(m)
1

m -  Sd -  [A(m) + iA(m)]
m -  Sd -  A(m) i'A(m)

[m -  Sd -  A(m)]2 + [A(m)]2 [m -  Sd -  A(m)]2 + [A(m)]2 ’

lembrando que p d(m) = -1 /nIm [G d(m)] temos então

Pd (m) = - 1________ A(m)_________
n [m -  Sd -  A(m)]2 + [A(m)]2

(B.53)



Para o caso presente, onde usamos o aproximação da banda larga, temos simplesmente que
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Pd M
1 r
n (m -  Sd )2 + r 2’

(B.54)

onde r  = np0| V|2. Perceba, portanto, que a densidade de estados da impureza neste caso e simples­

mente uma lorentziana centrada em s d e com largura r .  Note que, uma vez que o acoplamento com 

o gas de eletrons diminui, temos que a densidade de estados de torna uma delta de Dirac novamente, 

como o esperado. É interessante notar tambem que, na aproximacao da banda larga, a auto-energia 

nao depende da frequencia. Ém geral isso nao e verdade. Para sistemas supercondutores, por exem­

plo, mesmo em WBL temos ainda dependencia da auto-energia com a frequencia. Éssa aproximacao 

e muito utilizada em toda a dissertacao.

Perceba que, com a equacao de Dyson conseguimos escrever a funcao de Green na presenca da 

interacao na forma de um propagador livre, mas com o polo s d + 2(m), usando WBL, vimos que a 

funcao de Green toma a forma

Gd (m) = ------ í— , (B.55)
m — Sd + il

que nos leva a

Gd (t) = -i6(t)e-i(ei-ir)t, (B.56)

onde do termo imaginário em parenteses conseguimos identificar o tempo de meia vida t- 1 = r . 

A medida que r  aumenta, o que corresponde ao aumento da interacao da impureza com o gas de 

eletrons, o tempo de meia vida do eletron na impureza diminui, uma vez possui maior probabilidade 

do eletrons escapar da impureza.

B.3 Líquido de Landau-Fermi

Uma das mais importantes aplicacoes da equacao de Dyson e na chamada teoria do líquido 

de Landau-Fermi, as vezes chamado simplesmente de líquido de Fermi. Se considerarmos agora 

a equacao de Dyson em sua forma geral

G(k,m) = G0(k,m) + G0(k,m)S(k,m)G(k,m), (B.57)

vemos que neste caso a auto-energia possui todos os processos de espalhamento entre propagacoes 

livres, ou seja, a auto-energia carrega toda a informacao de muitos corpos. Uma das maneiras mais 

comuns de expressar a auto-energia eí usando diagramas de Feynman. De forma geral, a auto-energia 

sempre eí uma grandeza complexa que pode ser separada em uma parte real e uma imaginaíria, como



fizemos no exemplo anterior, de forma que
120

2(k,m) = A(k,m) + iA(k,m). (B.58)

Ao resolvermos a equaçao de Dyson obtemos

G(k,m)
1

m -  Sk -  [A(k, m) + i A(k, m)]
(B.59)

Vimos no exemplo anterior que a densidade de estados nesse caso é uma lorentziana. Quando a parte 

real da auto-energia nao e nula, temos que

p(k,m) = -
1 A(k,m)
n [m -  Sk -  A(k,m)]2 + [A(k,m)]2’

(B.60)

que nada mais e do que uma lorentziana centrada na energia renormalizada devido interacoes êk = 

Sk + A(k,m). Vamos tomar è*k o ponto onde seja o maximo dessa energia renormalizada, se estamos 

interessados em excitacoes próximas desse ponto podemos expandir a energia em torno dele, de forma 

que

A(k, m) = A(k, Sk) + (m -  Sk) I —  A(k, m)d
dm m=s

Com isso temos entao

m -  Sk -  A(k, m) = m -  Sk -  A(k, Sk) -  (m -  Sk) | dm A(k, m) j = (m -  Sk)Z-1,
m = S k

onde definimos

Z-1 =  1 -  1  A H  m = S .-
(B.61)

Desta forma podemos entao escrever a funcao de Green da forma

Zk
G(k,m) = -----  k ,  , ,

m -  Ck -  iAk
(B.62)

com

H  = Sk + A(k,Sk), (B.63)

sendo a energia renormalizada e

T-1 = Zk A(k,Sk) (B.64)

o tempo de meia vida. Perceba que, ao fazermos essa expansao, conseguimos ainda obter carac­

terísticas de um propagador livre, mas com parâmetros renormalizados devido as interacoes. Esse 

e o importante conceito de líquido de Fermi (6, 54), onde podemos conectar de forma adiabatica



sistemas fermiônicos não interagentes com sistemas interagentes, mas com parâmetros renormaliza- 

dos devido as interacoes. Neste caso, temos o que chamamos de quase-partículas (55, 56), uma 

vez que devido as interacoes elas nao possuem exatamente as mesmas características de partículas 

livres, mas parâmetros renormalizados. Zk e o chamado peso da quase-partícula e nos da o ”over- 

lap” entre as quase-partículas e as partículas nao interagentes. Note tambem que quanto menor for a 

parte imaginaria da auto-energia, maior serâ o tempo de vida da quase-partícula. Sistemas fortemente 

correlacionados muitas vezes nao podem ser descritos como líquidos de Fermi (6).

Como fizemos uma expansao apenas em torno do pico da lorentziana, onde processos coerentes 

dominam, precisamos considerar os termos nao coerentes correspondentes a interacoes de muitos 

corpos mais complicadas, se quisermos descrever todos os processos mais importantes, de tal forma 

que a funcao de Green de um liquido de Fermi seja dada por

G(k,m) = ----- + One (k,m), (B.65)
w -  e k - l A k

onde Olne(k,m) possui as contribuicoes nao coerentes das interacoes. A teoria do liquido de Fermi 

consegue responder, por exemplo, porque um gas de fermions nao interagentes consegue explicar 

muito bem a maioria das propriedades dos metais usuais. Para sistemas fermionicos unidimensionais 

essa teoria nao se aplica. Isso acontece devido ao fato de que em uma dimensao os polos da funcao 

de Green sao instaveis em todos os pontos, neste caso precisamos recorrer para a chamada teoria do 

liquido de Luttinger (57), a qual nao abordaremos aqui.
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APÊNDICE C -  Sistemas fora do equilíbrio- Resposta
linear

Toda teoria de funções de Green aqui apresentada so é valida para sistemas em equilíbrio. A teoria 

quântica de campos fora do equilíbrio e extremamente riça e interessante, contudo, nao a abordare­

mos no presente trabalho. Para descrevermos sistemas fora do equilíbrio vamos considerar apenas a 

resposta linear a pertubacoes e entao associar as medias termodinamicas de equilíbrio com estados 

fora do equilíbrio via a chamada formula de Kubo.

C.1 Formula de Kubo

Vamos considerar um sistema em equilíbrio governado pelo Hamiltoniano H0, de tal forma que 

suas autoenergizas sejam dadas pelo conjunto {En} e auto estados {|n}}. O valor medio de um operador 

A no presente caso e dada simplesmente por

(A) = Z- ^ (n \A \n )e PEn (C.1)

ou simplesmente

(A) = 1  Tr[po A]. 
Z0

Onde

po = e-iH0 = ^  \n)(n\e~-3En,
n

(C.2)
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sendo p 0 chamado operador densidade e Z0 = T r[p0] a função de partição do sistema em equilíbrio. 

Vamos agora em t = t0 ligar uma pertubaçao, de tal forma que agora o sistema e governado por um 

Hamiltoniano dependente do tempo na forma

H(t) = Ho + V(t)6(t -  to). (C.3)

Neste caso temos que agora os estados dependem do tempo, de tal forma que o valor medio de A 

depende do tempo da forma

ou simplesmente

<A(t)> = Y<n(t)|A|n(t)>e
Zn '

ßEn

(A> = 1  Tr\p(t)A], 
Zn

com

P(t) = e-ßH(t) = ^  ln(t)>(n(t)le-ßEn. (C.4)
n

A forma de (C.3) claramente sugere que neste caso e interessante usarmos a representação de interação, 

em que

|n(t)> = e-iHot |n(t)>,

como vimos, na versao de interaçao temos |n(t)) = U(t, t0)|n(t0)>. Com isso podemos escrever nos leva 

que
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<A(t)> = Z- 2 < n |U f (t, to)eiHotAe-iHotU(t, to)|n>

71  Y <n|U  f (t, to)A(t)U (t, to)|n>,
Zq -t—'

onde usamos que |/z(ío)) = |n). Vamos considerar agora que a interação nao é muito forte de maneira 

que possamos considerar

U(t, to) « 1 -  i1 -  i f  dt'V(t'),
Jto

de forma que

<n|U f (t, to)A(t)U (t, to)|n> = <n| 1 + i f  d t 'V(t') A(t) 1 - i f  dt'V(t')
- ' t o  J  L J t o

|n>

<n|A(t)|n> + <n|

-<n| iAV(t)

f  dt'V(t'
Jto

f  dt'V(t'
Jto

|n>

|n> + O(V2(t)).

Considerando apenas termos lineares na pertubaçao temos entao

<A(t)> = <A)q -  i f  dt'<[2Í(t), V(t')L>o,
Jto

(C.5)

onde <...)q denota que a media e feita sobre os estados de equilíbrio. Definindo agora a diferença entre 

a media fora do equilíbrio e de equilíbrio ô<A(t)> = <A(t)> -  <A>0, temos, finalmente,

5<A(t)> = - i  f  dt'<[2Í(t), V(t')L>o,
Jto

(C.6)

esta e a celebrada fórm ula de Kubo, que relaciona a diferença entre medias fora do equilíbrio e no 

equilíbrio em resposta linear com a pertubacao. Podemos ainda escrever de uma forma mais familiar 

essa equacao como
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J r*ro
dt'C rAV (t, t')e-n(t-t° , (C.7)

to

onde CAV(t, t') é a chamada função de correlação retardada dada por

CAv (t, t') = -i0 (t -  t')'([A(t), V(t')]_ >0. (C.8)

Note que essa função tem a forma das funções de Green apresentadas anteriormente. Como dito an­

teriormente, as funçoes de Green no presente contexto sao funçoes de correlaçao de dois operadores.

O termo e-n(t-C apareçe novamente para evitar divergençias nao físiças no infinito, çomo ja vi­

mos no çaso de GR e GA. Isso fiça mais çlaro quando passamos para o espaço das frequençias a 

formula de Kubo. Primeiramente vamos fazer a transformada de Fourier em V(t):

V (t) = T  ^  e-i“ V,„.
J - o  2n

Assim,

CAv (t, t') = dc° -í(Dt
2n CAVüj(t, t' ).

Substituindo a equaçao acima na formula de Kubo e fazendo t0 = -ro  onde nao estamos preocupados 

com o transiente, temos

Xoo j

— e-íl t  dt'e-i(íll+in)(t'-t)CrAVl (t' - 1) ,
o  2 n J - o  AVl

onde usamos novamente que a funcao de correlacao assim como a funcao de Green depende apenas 

da diferenca t - 1'. Temos, portanto,

X
OO /■/

M e- íl t CA v i  ( i ) ,

çom
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X O
dle« * » W - 0 C rAvj , _ n

CO

( C . 9 )

P o d e m o s  p e r c e b e r ,  p o r t a n t o  q u e

X
CO J

— e-iMõ(A(u)>, <5<A(m)> = CrAVu>(d). ( C . 1 0 )

V e r e m o s  q u e  q u a n d o  u s a m o s  a  f o r m u l a  d e  K u b o  n o  e s p a c o  d a s  f r e q u e n c i a s  p o d e m o s  u t i l i z a r  o  t e o ­

r e m a  d e  d i s s i p a c a o - f l u t u a c a o ,  r e s u l t a n d o  e m  u m a  d a s  s u a s  m a i s  p o d e r o s a s  a p l i c a c o e s .

C.2 Corrente de Tunelamento

U m a  i m p o r t a n t e  a p l i c a c a o  d a  f o r m u l a  d e  K u b o  e  n o  c a l c u l o  d a  c h a m a d a  c o r r e n t e  d e  t u n e l a m e n t o .  

I s t o  p o r q u e ,  u m a  d a s  t e c n i c a s  e x p e r i m e n t a i s  m a i s  p o d e r o s a s  p a r a  o  e s t u d o  d e  s i s t e m a s  n a n o s c o p i c o s  

e  e f e i t o s  d e  m u i t o s  c o r p o s  f a z  u s o  d o  c h a m a d o  “ S c a n n i n g  T u n n e l i n g  M i c r o s c o p e ”  ( S T M ) .  N e s t e  t i p o  

d e  e x p e r i m e n t o ,  u m a  p o n t a  d e  p r o v a ,  g e r a l m e n t e  f e i t a  d e  T u n g s t e n i o  ( W )  o u  P l a t i n a - I r í d i o  ( P t - I r )  

e  c o l o c a d a  p r ó x i m a  a  s u p e r f í c i e  d o  s i s t e m a  a  s e r  a n a l i s a d o  ( a m o s t r a ) .  U m a  d i f e r e n c a  d e  p o t e n c i a l  e  

e n t a o  a p l i c a d a  e n t r e  a  a m o s t r a  e  a  p o n t a  d e  p r o v a ,  d e  t a l  f o r m a  q u e  o  m o v i m e n t o  d o s  e l e t r o n s  c r i e  u m a  

c o r r e n t e .  E s s a  c o r r e n t e  n a o  p o d e  s e r  e n t e n d i d a  d o  p o n t o  d e  v i s t a  d a  m e c a n i c a  c l a s s i c a ,  j a  q u e  a  p o n t a  

e  a  a m o s t r a  n a o  e s t a o  c o n e c t a d a s  e m  s i ,  m a s  s i m  m u i t o  p r o x i m a s .  P o r t a n t o ,  o c o r r e  o  t u n e l a m e n t o  d o s  

e l e t r o n s  d a  a m o s t r a  p a r a  a  p o n t a  d e  p r o v a ,  d e v i d o  a o  “ o r v e l a p ”  d a s  r e s p e c t i v a s  f u n c o e s  d e  o n d a .  O  

q u e  e  e n t a o  m e d i d o  e  a  c o n d u t a n c i a  l o c a l  d e  c a d a  p o n t o  d a  a m o s t r a  ( v e j a  f i g u r a  3 2 ) .

E x p e r i m e n t o s  d e  S T M  f o r a m  u s a d o s  c o m  m u i t o  s u c e s s o  e m  d i v e r s o s  t i p o s  d e  s i s t e m a s ,  d e  p o n t o s  

q u a n t i c o s  a  s u p e r c o n d u t o r e s  ( 2 8 ,  2 9 ,  5 8 ) .  V a m o s  e n t a o  d e d u z i r  u m a  e x p r e s s a o  p a r a  a  c o r r e n t e  d e  

t u n e l a m e n t o  e  e n t a o  m o s t r a r  q u e  p a r a  p e q u e n a s  v o l t a g e n s  e  t e m p e r a t u r a s  m u i t o  b a i x a s  a  c o n d u t a n c i a  

e  p r o p o r c i o n a l  a  d e n s i d a d e  d e  e s t a d o s  l o c a l  d o  s i s t e m a .  P a r a  i s s o  v a m o s  c o n s i d e r a r  d o i s  s i s t e m a s  ( 1 )  

e  ( 2 ) ,  q u e  p o s s u e m  u m  t e r m o  d e  t u n e l a m e n t o ,  m a s  q u e  s u a s  c o m p o n e n t e s  i n d i v i d u a i s  s e j a m  i n d e p e n ­

d e n t e s .  O  H a m i l t o n i a n o  d e s s e  s i s t e m a  e  d a d o  p o r

H(l) = Ho + £  Tkpc\k(l)c2 p(l) + T*pclp(l)cik ( l) ,  ( C . 1 1 )

kp
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Figura 32: Representação esquemática do funcionamento do método de STM. O movimento da ponta de prova 
é controlado por um tubo piezoeietrico que vare a superfície da amostra. Uma diferença de potencial aplicada 
na amostra produz uma corrente de tunelamento mostrada em detalhes no círculo em destaque. Fonte: Michael 
Schmid, TU Wien. URL: https://en.wikipedia.org/wiki/Scanning_tunneling_microscope.

onde H0 = H 1 + H2 e a parte nao perturbada do sistema, mas que contem toda eventual física de mui­

tos corpos de cada um e [H1, H2] = 0, ou seja, os termos nao perturbados sao independentes. A única 

conexao entre os dois e o termo de tunelamento, que no presente caso e a própria pertubacao, k e p  

sao graus de liberdade das partículas e TkP o elemento de matriz entre os dois sistemas, que nos da a 

amplitude do tunelamento. Primeiramente temos que perceber que no presente caso temos flutuacoes 

de partículas e entao precisamos fazer H 0 = H0 -  p N  ou H0 = H 0 + p N . Com isso temos entao que o 

termo de tunelamento HT(t) na representacao de interacao e dado por

Ht (t) = eiH0 tHTc-iH0t. (C.12)

Como ha flutuacao de partículas dos dois lados temos que esta expressao se torna

Ht (t) = eiH0tei(Pi ni+P2 N2)tHTe-iH0te-i(Pi Ni+P2N2)t, (c  13)

onde p 1 e p 2 sao os potenciais químicos do sistema 1 e 2 respectivamente, o operador ntimero 

Ni = £ jcJjCj, com i = 1,2; j  = k,p. E por ultimo

https://en.wikipedia.org/wiki/Scanning_tunneling_microscope
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Ht = £  n pc\kC2p + T V J / I * .  (C.14)
kp

Temos que ser cuidadosos ao calcular os termos da equação C.13, isso porque tratam-se de exponenci­

ais de operadores. Para ilustrarmos isso vamos calcular um dos termos que aparecem no Hamiltoniano 

de tunelamento:

eí(piN1+P2N2)íct C2pe-*'(yU1 Nl+^2N2)t em  N ^ t  e í [̂ 2 N2-P1 Nl]tC2 pe-í^2 N2t

onde usamos que H 1 e H2 sao independentes. Lembrando que estamos trabalhando com exponenci­

ais, o termo c2pe-i^2N2t fica da forma

C2pe-i>2N2t = C2p ^  n1 [ ( -i>2N2t)n. 
n=0

Note que o operador c2p nao pode ser arbitrariamente comutado com a exponencial, para isso, note 

que

C2pN2 = c2p ^ \  C2p' C2p'
p'

Z C2p'C2 p' C2p p'

Ôpp' C2p' + ^  C2p' C2p' C2p 
p' p^p'

(1 + ^  C2p' C2p' )C2p.
p'

Temos, portanto,

C2pN2 = (1 + N2)c2p. (C.15)

Para o adjunto tambem e valido se notarmos que [c2pN2]  ̂ = [(1 + N2)c2p]^, que nos resulta entao

N2c2 p = C2p(1 + N2). ( C . 1 6 )

Fazendo isso n vezes na expressao da exponencial do operador, temos entao que
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C2pe- m  n2 t = C2p ^  _l_(_ iU2N2t)n = ^  . i [ - ^ 2 ( 1  + N2)t]- C2p = e-i^ l+N2)tC2p, 
n=0- ' n=0- '

note que para o termo em  Nl tĉ1k usando o mesmo procedimento anterior e usando agora a relação para 

o adjunto temos

eipiNitcf _ _f _í̂ i(1+Ni)í 
e L1k _ L 1/T

Com isso temos entao que

ei(pi Ni+H2 N)t C1kC2pe i(m Ni+H2 N2)t eipi Nitcfk ei[p2 N2-P1 Ni]tC2pe

cf ei>i(i+Ni)tei[yU2N2-piNi]te

p.

ip2 N2t

-ip2(i+N2)tC2p

Perceba que p i e p 2 sao apenas escalares, logo exponenciais que dependam dos dois podem ser co­

mutadas sem problema. Com isso temos finalmente que o Hamiltoniano de tunelamento sera dado 

por:

Ht (t) _ ^  Tkpei(lli-ll2)tem0tc\kC2pe- m t  + T*kpe-i(pi-p2)tem0tc2pcike-m0t, (C.i7)
kp

ou simplesmente

Ht (t) _ ^  Tkpei{pi-p2)tc\k(t)hp(t) + T*kpe-i(pi-p2)tc2p(t)cik(t), (C.i8)
kp

com

c\k(t)c2p(t) _ em0tc\kc2pe lHot, c2p(t)cik(t) _ elHotc2pcike lHot. (C.19)

Podemos agora usar a formula de Kubo para determinar a corrente de tunelamento1

1Como vimos anteriormente a formula de Kubo e definida para a variação entre a quantidade física no equilíbrio e 
fora do mesmo, no presente caso ô{íit)} _ <í(t)) -  <í)0. Mas como temos que no equilíbrio nao ha corrente </)o _ 0, entao
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Jr*ro
dt'6(t - 1'

to
</(t)> = - i  d m  - 1 )<[I(t), Ht (t')]_>e')] \ e- n(t-t' ) (C.20)

onde temos que Iej(t) = -eIj(t), j  = 1,2 e Ij(t) = N ,(t). Da equação de Heisenberg temos que* 2

Nj = h[H(t), Nj (t) ]_.

Vamos calcular para j  = 1 e segue de forma análoga para o sistema 2. Temos entao que

[H(t), N i(0L  = £  Z  [TkPClk (Í)c2p(í) + T*kpclp(t)clk (t), cík, (f)cifc, (t)]_
kp k'

= E E  Tkp[cjk (t)C2p(t), c}k' (t)cik' (t)]_ + T y c J  p(t)cik(t), c}k' (t)cik' (t)]_.
kp k'

Lembrando que os elétrons sao férmions e portanto respeito as relações canônicas de anti-comutação 

e usando que [a,bc]_ = [a,b]+c - b[a,c]+ temos que

[c\k(t)C2p(t), c\k' (t)cw  (t)]_ = [c\k(t)C2p(t), c\k' (t)] + Cik' (t) -  c\k' [c}k(t)C2p(t), ] + Cik' (t)

= -c\kf (t)C2p(t)Ôkk',

e

[c2p(t)cik(t), c}k' (t)cik' (t)]_ = [c2p(t)cik (t), c}k' (t)]+Cik' (t) -  c}k' (t)[c2p(t)cik (t), Cik' (t)]+

= c2p(t)cik' (t)ökk'.

Com isso ficamos com

[H(t), Ni(t)L = - ^  [Tk p cjk (t)c2p (t) -  T*p c2p (t)cik  (t)],
k p

temos entao que

M 0 >  = </(0>.
2Perçebã que recuperamos h afim de expressar o quanta da condutância mais adiante.
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h(t) = - h ^ [ T k p c lk (t)c2p(0 -  T*kpclp(t)cik(t)]. (C.21)
kp

Podemos ainda escrever este resultado em termos dos operadores C1k e C2p da mesma forma que fize­

mos para o Hamiltoniano de tunelamento anteriormente. O resultado e direto e tem a forma

A(t) = -  h 2 [ T k p e ^ 2)tCÍk (t)C2p(t) -  T\pe~i{̂ 1 "^2)tĈ p(t)Cik (t)]. (C.22)
kp

Afim de simplificarmos a notacao vamos definir:

L(t) = ^  CÍk (t)C2p(t), ^ ( t )  = ^  T*p4p(t)C1k (t). (C.23)
kp kp

Assim,

I1(t) = -  l-  (£(t)ef(w-w)t -  L  (t)e-í(w-w)t), (t) = L(t)eí(w-w)t + L  (t)e-í(w-w)t. (C.24)

Substituindo as expressões acima em

dt'6(t - t' )<[/1(í), Hr  (t')]_ )e-n(t-t°, 
to

e definindo Ju1 -  ji2 = eV, ou seja, a diferença de energia dos dois lados e simplesmente a voltagem 

aplicada para o surgimento da corrente. Obtendo

<1i(t)) = <1iN (t)) + </i7 (t)), (C.25)

com

1
</1N (t)> = -  J  dt'6(t - t ') [e-ieV(t' -t)<Lt (t), L (t')> - eieV(t' -t) <L(t), Lt (t'))j e-n(t-t°

1 /-»TO
<hs (t)> = ^  J  dt'0(t - t ') [eieV(t'+t) <Lt (t), Lt (t')> -  e-ieV(t'+t)<L(t), L(t')>] e-n(t-t° .

e

(C.26)

(C.27)



O termo </1S (t)) está relacionado com junções supercondutoras e dá origem a chamada corrente de 

Josephson, que por sua vez e proporcional ao seno da diferenca de fase dos parâmetros de ordem dos 

supercondutores. No presente caso, sempre consideraremos o parâmetro de ordem puramente real, 

escolhendo a fase sempre nula e portanto nao haverâ corrente de Josephson. Vamos nos concentrar 

no termo </1N(t)). Perceba que o segundo membro de (C.26) e simplesmente o complexo conjugado 

do primeiro, logo com isso podemos escrever:
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2 r “
G in (t)) = TRe

h X
dt'e(t -  t')e-ieV(t'-t)<L2 (t), L(t'))e-n(t-t° (C.28)

Colocando de forma explicita L2(t) e L(t') temos que

G in (t)) = h Re d t'6 (t-  t ' ) Y j  TkpTk'p'e~ieV(t'~
h kp k' p'

Como já dissemos os dois lados são independentes com exceção com o termo de tunelamento, com 

isso podemos então escrever

t)<[c2_(t)cik(t),4 , (t')c2p'(t)'])e-n(t-t ).

2 r»“
G in  (t)) = t  Re dt'6(t -  t ') ^ \T k p \2e~ieV (t ' - t ) [<cu  (t)c\k (t'))<ct2p(t)c2p(t'))

h Jt0 kp

-<c\k (t')cik (t))<c2p (t/)c2p (t))| e-n(t - t ,).

Note que na expressao acima apareceram simplesmente a definicao das funcoes de Green maior e 

menor

G>(t; t' ) = -i<ci(t)c2(t')); G<(t; t') = i<c2{ (t')a(t)). (C.29)

Com isso temos que

r\
G in (t)) = t Re J  d m  -  t')J ] \T kp \2e~ieV(t' - í) [G>k(t -  t')G<p (t' - 1)

-G<k (t -  t')G > p(t'-1)] e-n(t - t ,),

kp
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onde já usamos o fato das funções de Green dependerem apenas da diferença dos tempos (veja seção 

de funções de Green). Fazendo agora a mudança t' ^  t' +t, temos que t - t' ^ - t '  e t' - 1 ^  t ' , obtemos

<1lN (t)> 2  y
kp

,| 2Re
r u

J  d t'e-ieVt' [G\k(-t')G}<p (t') -  G<k(- t')G >2p(t')\ en . (C.30)

Essa importante expressão mostra o poder da fórmula de Kubo. Se não estivermos interessados no 

comportamento de transiente podemos fazer t0 = - to, e com isso ficarmos com

{í in  (t)>=22 y  iTkpi2Re
kp

X 0
dt'e-ieVf [G>k(-t')G<p(t') -  G<k(-t')G>p(t')] en .

oo

O interessante neste çaso e que podemos entao realizar uma transformada de Fourier e obtermos a 

expressao

(Î1N(t)> = h  y  |Tk p |2 f  ^  [G>(m)G<p (m + eV) -  G<k(m)G>p (m + eV)]
n kp J - to 2n

(C.31)

onde usamos que J dte-imt f( t)g (- t)  = f  (dm'/2n)f(m  + m')g(m) e que os produtos G>k(-t')G<p e 

G< (-t')G>p(t') sao puramente reais, uma vez que as funçoes de Green maior e menor sao pura­

mente imaginarias. Podemos agora utilizar o teorema de dissipaçao-flutuaçao expresso por

G>(m) = -[1  -  /+(m)]iA(m); G<(m) = /+(m)iA(m). (C.32)

Com isso temos que

G>k (^)G<p (m + eV ) 

G<k (m)G>p (m + eV )

Aik(m)A2p(m + eV  )[1 -  /+(m)]/+(m + eV  ), 

Aik(m)A2p(m + EeV  ) /+(m)[1 -  /+(m + eV )].

(C.33)

(C.34)

Dai podemos escrever

G>kM G < p (m + eV) -  G<(m)G>p (m + eV) = A1k (m)A2p (m + eV)[/+(m + eV) - /+(m)].
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Por fim escrevemos

(11N (t)> = ^ - A i k (m)A2p(m + eV) [/+(m + eV) -  /+(m)] . 
2n

(C.35)

A expressão acima mostra uma das mais poderosas aplicacoes do teorema de dissipacao-flutuacao. 

Perceba que conseguimos expressar uma grandeza fora do equilíbrio ((11n (t)>) em funcao totalmente 

de funcoes definidas no equilíbrio (A1k(m), A2p(m)).

Podemos ainda expressar nossos resultados em funcao da densidade de estados, para isso vamos con­

siderar \Tkp\2 = |T|2 e usar que

^ A i k  (m) = 2npi(m); ^  A2 p(m + eV) = 2np2(m + eV). (C.36)
k  p

Entao temos que

1 2 2 C“ dm [ ]
H in  (t)> = j  \T\24n2 — pi(m )p2(m + eV) [/+(m + eV) -  /+ (m)].

h J - “  2n
(C.37)

Por outro lado, lembremos que (Z1eN(t)> = - e ( /1N(t)>, entao temos

~ e 2 2 r  dm [ ]
(Iu n (t)> = - j l T \ 24n2 j — pi(m)p2(m + eV )[/+ (m + eV )- /+(m )]. (C.38)

h J - “  2n

Vamos agora considerar o caso que a tensao aplicada seja muito pequena eV << 1, logo neste caso 

temos podemos escrever que

/ +(m + eV) ~ A M  +
d/+(m + eV) 

dm
eV.

Portanto, temos que

e2
( L n  (t)> = eh\T\24n2J

dm
—00 2n

Pi(m)p2(m + eV)
d/+(m + eV) 

dm
V.

Mas sabemos que em resposta linear temos G1 = d (/1eN(í))/dV , com isso temos entao a formula para
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G i(T ) = Go|T |24n2 dw
df+ (w + eV, T  ) 

dw
Pi(w)p2(w + eV ), (C.39)

onde Go = e2/h  é o quanta de condutância. Lembrando que todos os cálculos são análogos caso 

escolhêssemos usar a corrente do sistema 2, e explicitamos que a funcao de particao depende da tem­

peratura. Isso porque para T = 0 temos que

d f+(w + eV, T = 0) 
dw

d(w + eV ).

Com isso, obtemos simplesmente

Gi = Go|T |24n2p i(-eV  )p2(0); T = 0. (C.40)

12 interessante notar que, por exemplo, caso o sistema 1 seja um metal comum, de tal forma que 

possamos fazer p 1(-eV )  « c, onde c e uma constante, obtemos que G1 ^  p 2(0). Logo, neste caso 

podemos usar a condutancia do sistema 1 para estudar a densidade de estados do sistema 2. Imagine 

o caso onde o sistema 1 seja a ponta de prova do STM e o sistema 2 seja um sistema qualquer, que 

inclusive pode ser um sistema interagente de muitos corpos. Podemos entao obter as informacoes da 

sua densidade de estados via experimentos de STM, caracterizando entao uma importante aplicacao 

do mesmo.

Quando tratamos um dos sistemas como um metal usual com densidade de estados constante p0 

a zero bias (eV = 0) e levando em conta os canais de spin, temos que a expressao (C.39) se torna uma 

equacao do tipo Landauer dada por

G(T  ) = nrGo df+( w, T ) 
dw p (T (w), (C.4i)

com r  = 2np0|T|2. Essa importante formula tambem foi deduzida de forma mais geral por Meir e 

Wingreen usando o formalismo de Keldish (59).
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