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Resumo

Apresentamos um estudo numérico da emergéncia de estados ligados de Andreev ¢ Majorana em
um sistema composto por dois pontos quanticos, um acoplado a um supercondutor usual, SC1, e outro
conectado a um supercondutor topologico, SC2. Através do controle do entre os pontos quanticos
estudamos o sistema desde o regime em que os pontos quanticos estdo desacoplados ente si até o
regime de forte acoplamento mituo. Aplicando o método das funcdes de Green recursivas extraimos o
resultado numericamente exato da densidade de estados local do sistema. Primeiramente, mostramos
que na configuracao de pontos quanticos desacoplados, estados ligados de Majorana ¢ Andreev ndo
coexistem em um unico ponto quantico. Num segundo momento, estudamos sua coexisténcia no
sistema de pontos quanticos acoplados. Nesta configuracdo, na fase trivial de SC2, mostramos que
os estados ligados de Andreev encontram-se ligados a um tnico ponto quantico no regime atomico
(fraco acoplamento entre os pontos) ou estendidos em toda molécula no regime molecular (forte
acoplamento entre os pontos). Fendmenos ainda mais interessantes surgem na fase topoldgica de SC2.
Neste caso, no limite atdmico, o estado ligado de Andreev aparece ligado a um dos pontos quanticos,
enquanto o Majorana aparece no outro. No regime molecular, os estados ligados de Andreev se
encontram estendidos em toda a molécula, mas o estado de Majorana continua ligado a apenas um
dos pontos quanticos.

Palavras Chaves: Estados ligados de Andreev, Estados ligados de Majorana, Supercondutores
topoldgicos, Efeitos de proximidade, Densidade de estados.



Abstract

We present a numerical study of the emergence of Majorana and Andreev bound states in a system
composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1,
and the other connects to a topological superconductor, SC2. By controlling the interdot coupling
we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system
configurations. We employ a recursive Green’s function technique that provides us with numerically
exact results for the local density of states of the system. We first show that in the uncoupled dot
configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual
dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot
system. We then study the coexistence of these states in the coupled double dot configuration. In
this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual
quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in
the molecular regime (strong interdot coupling). More interesting features are actually seen in the
topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one
of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime,
on the other hand, the Andreev bound states take over the entire molecule while the Majorana state
remains always bound to one of the quantum dots.

Keywords: Andreev bound states, Majorana bound states, Topological superconductors, Proximity
effects, Density of states.



“Under the calm mask of matter

The divine fire burns.”

Vladimir Solovyev
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1 Introducao

A supercondutividade consiste em um dos fendmenos mais interessantes da natureza. Supercon-
dutores possuem essencialmente duas propriedades fundamentais: sua resistividade vai a zero abaixo
de uma temperatura critica T, e eles expelem todo campo magnético em seu interior, comportando-se

como diamagnéticos perfeitos, esse fendmeno € conhecido como efeito Meisner (2, 3).

A teoria da supercondutividade a baixas temperaturas foi desenvolvida com sucesso por Bardeen,
Schrieffer e Cooper, a qual hoje é conhecida como teoria BCS (4, 5). O mecanismo principal pela
supercondutividade a baixas temperaturas ¢ a interagao atrativa entre elétrons mediada por fonons,
formando os chamados pares de Cooper. No entanto, nos anos 80 foram descobertos supercondutores
a temperaturas criticas muito mais altas do que a teoria BCS era capaz de explicar. Esses supercon-

dutores a altas temperaturas continuam um mistério até os dias atuais (6).

Jungdes entre materiais normais € supercondutores apresentam propriedades interessantes € que
podem ser exploradas de diversas maneiras. O fendmeno mais interessante nestas jungdes € a chamada
reflexiio de Andreev (7). A reflexdo de Andreev consiste na reflexdo de um elétron do sistema normal
em um buraco no mesmo, com spin € momento oposto ao elétron incidente. Diversas reflexdes deste
tipo ddo origem aos chamados estados ligados de Andreev, que residem energeticamente no interior

do gap supercondutor.

Recentemente, um novo aspecto dos supercondutores ganhou bastante destaque ¢ vem sendo
assunto de diversas pesquisas atuais. Isso decorre do fato que, em 2001, o fisico russo Alexei Ki-
taev mostrar que supercondutores topologicos podem suportar excitagdes que se comportam como
férmions de Majorana (8). Desde entdo, a procura por tais excitagdes exoticas, no ambito da matéria

condensada, se tornou um dos tépicos principais de pesquisa nesta area (9, 10).

Férmions de Majorana sdo férmions que possuem a peculiar propriedade de serem suas proprias
anti-particulas. Foram propostos originalmente por Etore Majorana, na busca de solucdes puramente

reais da equacao relativistica de Dirac (11). Como consequéncia, os férmions que obedecessem essa
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condi¢do, deveriam ser eletricamente neutros € serem suas proprias anti-particulas, o que reflete no

fato de possuirem fungdes de onda puramente reais. Na linguagem de segunda quantizacdo, 18so
significa que o operador que aniquila este férmion em certo estado, € idéntico ao operador que cria
o mesmo. Acredita-se que os neutrinos possam vir a ser férmions de Majorana. No entanto, até os

dias atuais nao houve ainda evidéncia de alguma particula elementar que se comporta-se de tal forma
(12, 13).

Em supercondutores topoldgicos, ndo temos tais particulas elementares, mas excitacdes que se
comportam como férmions de Majorana, muitas vezes também denominados modos de Majorana (8).
Nestes sistemas, temos que a fase topoldgica em questdo garante a existéncia de estados protegidos
que podem suportar tais excitagdes exoticas. Aqui, assim como nos aclamados isolantes topoldgicos,
anog¢do de topologia surge para explicar as diferentes fases da matéria, mesmo que nao haja nenhuma
quebra espontdnea de simetria no sistema, a qual determina as transicoes de fase no sentido usual

(teoria de teoria de Landau-Ginzburg-Wilson) (14, 15).

Supercondutores topoldgicos sdo sistemas que naturalmente podem exibir férmions de Majo-
rana sob condi¢gdes especificas. Isso porque, as excitagcdes em supercondutores sdo superposicoes de
elétrons e buracos, que na condi¢@o de simetria particula-buraco, tornam-se eletricamente neutras. O
papel da topologia surge para garantir estados de energia zero, onde o operador que cria a excitagdo ¢
exatamente o mesmo que a aniquila, fornecendo, entdo, a propriedade mais exética dos férmions de
Majorana. Infelizmente os supercondutores topoldgicos sdo escassos na natureza (16). Isso decorre
do fato de que o emparelhamento dos pares de Cooper na maioria dos supercondutores nao fornecer
fases topologicamente ndo triviais. Por esta razdo foram propostas realizagdes experimentais usando
supercondutores usuais, acoplamento spin-6rbita ¢ campo magnético (10, 17, 18). Iremos explorar

em detalhes uma dessas propostas adiante.

Apesar dos estados ligados de Andreev, ¢ mais recentemente, os estados ligados de Majorana
serem amplamente estudados, pouca atengdo tem se dado para a influéncia que um possa exercer no
outro (19, 20). Esta € uma questdo que surge naturalmente uma vez que, ambos estdo intimamente

relacionados com efeitos de proximidade de sistemas normais e supercondutores.

Para abordar esse problema, propomos um sistema de pontos quanticos acoplados a supercondu-
tores normais e topolégicos, cada um suportando um desses tipos de estado ligado. Pontos quanticos
sdo estruturas artificiais que possuem confinamento nas trés dimensdes espaciais. Por apresentarem
um espectro discreto, consequéncia quantica do confinamento, muitas vezes 0os pontos quanticos sao
chamados de atomos artificiais (21-23). A grande facilidade de se controlar o tamanho e conse-

quentemente, o espectro dos pontos quanticos, os fazem plataforma perfeita para diversas realizacoes
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experimentais.

1.1 Objetivos e Metologia

Uma vez que pouca atengdo se tem dado para a influéncia que estados ligados de Andreev e
Majorana exercem um ao outro temos como objetivo estudar um sistema que seja capaz de prover
alguma informacao sobre tal. Para isso, propomos um sistema composto de pontos quanticos devido
a facilidade de controle deste tipo de sistema, o que faz com que sejam interessantes para propdsitos

experimentais futuros.

Utilizaremos o método das fungdes de Green para calcularmos a densidade de estados local de
cada ponto quantico, assim como dos supercondutores acoplados aos pontos. Calculamos também
a funcdo espectral de Majorana, uma vez que ela se faz tutil por motivos tedricos, 0s quais serdo
abordados em detalhes adiante. Resolvendo o sistema de equagdes de movimento para as fungdes
de Green do sistema encontramos resultados numericamente exatos, nos fornecendo propriedades

espectrais que podem ser acessadas experimentalmente via condutancia diferencial.

Esta dissertagdo estd organizada da seguinte maneira: No capitulo 2 iremos fazer uma breve
revisdo dos aspectos basicos da supercondutividade, assim como a origem dos estados ligados de
Andreev. J4 no capitulo 3 iremos discutir em detalhes o surgimento dos estados ligados de Majorana,
no contexto do modelo artificial de Kitaev. E também iremos abordar em detalhes a ja proposta
realizagdo deste modelo em fios quanticos com forte acoplamento spin-6rbita. Por ultimo, no capitulo
4 iremos analisar um sistema por nds proposto, capaz de suportar tanto estados ligados de Andreev,
quanto de Majorana ¢ como se correlacionam. Algumas ferramentas matematicas, assim como alguns

calculos importantes para a compreensao do texto sao apresentados em detalhes nos apéndices.
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2 Supercondutividade

Muitas caracteristicas fundamentais dos sistemas de estado solido podem ser estudadas simples-
mente desprezando as interacdes entre os elétrons ou entdo as expressando em um sistema ndo inte-
ragente com parametros renormalizados, por exemplo, renormalizagdo da massa.

Isso ¢ uma das caracteristicas do chamado liquido de Fermi (veja Apéndice B.3), e explica porque

consideragdes tao drasticas nos fornecem resultados com 6tima concordancia com o experimento.

Contudo, certos fendmenos ndo podem ser explicados através dessa aproximacdo. Um dos
fendmenos mais importantes que nao podem ser explicado desprezando a interacdo entre os elétrons
¢ a chamada supercondutividade (2). Um supercondutor apresenta duas caracteristicas fundamentais:
Abaixo de uma temperatura critica (7.) supercondutores apresentam condutividade perfeita, ¢ expe-
lem totalmente o campo magnético do seus interiores agindo como diamagnéticos perfeitos (efeito

Meisner).

Durante aproximadamente 50 anos a origem microscéopica da supercondutividade foi desconhe-
cida, até que Bardeen, Cooper e Schrieffer propuseram que a origem do fendmeno estd associada com
a interacdo atrativa entre os elétrons mediada pelas vibragdes da rede do sistema (fonons) (4). Tal te-
oria ¢ conhecida como Teoria BCS, que consiste de uma teoria de campo médio, como abordaremos

mais adiante.

Para entendermos como se da a interagdo efetiva entre os elétrons mediada por fonons basta
lembrarmos que em um sélido os elétrons viajam aproximadamente a velocidade de Fermi (vg) de tal
forma que a escala de tempo associado ao movimento dos elétrons, usando o principio de incerteza
energia tempo, ¢ O(E;l ), onde EF ¢ a energia de Fermi. Ao passar por determinada regido a interacdo
eletrostéatica do elétron com os fons da rede provoca uma distor¢cdo da mesma, gerando vibragoes. Por
outro lado, as vibracoes da rede (fonons) sobrevivem durante tempos O(wbl), onde wp € a chamada
frequéncia de Debye. Em solidos temos que fiwp << EF, logo as distor¢cdes da rede sobrevivem por

muito mais tempo do que a permanéncia do elétrons em sua vizinhanca. Com isso, um segundo elétron
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pode passar na vizinhanga distorcida pela passagem do primeiro ¢ entdo interagir atrativamente com o

primeiro elétron através da vibragdo dos ions da rede. A interacdo Coulombiana entre os dois elétrons
¢ desprezivel em relagdo a interagdo com a rede, pelo fato dos dois jd estarem consideravelmente
afastados. Portanto, existem uma interacio efetiva atrativa entre os dois elétrons mediada pelos fonons

darede.

Figura 1: Figura esquematica dos pares de Cooper. A linha tracejada denota o estado ligado dos elétrons que
formam os pares de Cooper no estado |k, T,—k |), note que o comprimento de correlacio dos pares de Cooper é
muito maior do que a ditincia entre os elétrons. Fonte: Henrik Bruus, Karsten Flensberg. Many-Body Quantum
Theory in Condensed Matter Physics: An introduction. Oxford Graduate Texts, 2003.

O estado ligado descrito acima ¢ chamado par de Cooper (5). Note que como a interacio ¢
mediada por fonons, ¢ de se esperar que seja extremamente sensivel a temperatura. Isso explica
porque altas temperaturas destroem o estado supercondutor. Existem os chamados supercondutores
a altas temperaturas que nao podem ser descritos pela teoria BCS. O mecanismo que os governa

permanece um mistério até os dias de hoje (6).

O estado em que todos os elétrons formam os pares de Cooper, muitas vezes chamado conden-
sado supercondutor, é protegido contra espalhamentos, uma vez que eles sdo energeticamente des-
favoraveis, pelo fato de entre o condensado supercondutor ¢ os estados normais existir um gap de
energia, denominado A. Logo, neste estado os pares de Cooper se comportam como um condutor

ideal. Essa é uma das mais importantes predi¢des da teoria BCS.

2.0.1 Teoria de Campo Médio

Em sistemas de muitas particulas, sua interacio mutua torna-se fundamental para a descricdo da

dindmica de cada uma, tornando a dinamica de cada uma delas extremamente complexa. Para um sis-
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tema com um numero de particulas da ordem do numero de Avogadro, esse problema € insolivel tanto

analiticamente, quanto computacionalmente. Uma maneira de descrevermos um sistema de muitas
particulas, ¢ transformarmos todo o problema em um problema de uma particula s6. Isto pode ser
feito se incluirmos todas as correlacdes de uma particula com as outras em uma densidade média (ou
campo médio), entdo o problema inicialmente de muitas particulas torna-se em um problema de uma
particula s6 sobre a influéncia de um campo médio efetivo, no qual estd contido todas as complexas
correlagdes do sistema. Este problema a principio ¢ completamente solivel. Este método € conhecido
como teoria de campo médio. O campo médio € escolhido de tal forma que minimize a energia livre

do sistema, uma vez que estamos mapeando um sistema interagente em um ndo interagente.

Como exemplo, vamos considerar um sistema com dois tipos de particulas que interagem entre

si, cujo hamiltoniano € dado por:
H = Ho + Vi,

onde

HO:ZS a)a, + Z bbT

— Tt
Vine = Z va,v'p'avbﬂav'b ‘s
vt

onde Hy descreve a energia cinética das particulas e Vj,, descreve a interacdo aos pares dos dois tipos
de particulas. Vamos supor que os operadores densidade aiavr e b;b,l/ se diferem muito pouco de seus

valores médios (aiavz) e (b;bﬂ/). Definimos entdo os dois operadores

v = aiav' - <aiav’>

ey = b —(bliby),

de tal forma que

dyy ey = aiavrblbﬂ/ - aiaw(b;bﬂ/) - b;bﬂz(aiavz) + (aiavr)(blbﬂ/),
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que ainda podemos escrever como

aIbZaV/b r=dyyrey + (aiavr(blbﬂ/) + b;bﬂ/(aiavr)) - (aiaw)(b;bﬂ/).

Substituindo no Hamiltoniano do sistema temos

H=Hy+Vcy+ Z va,v’p’ w €up’
w !

com

Veu = Z Vi (aiav,(b/ibﬂ/)+b;bﬂ/(aiam)— Z Vi (@ Xbjibye). 2.1)
w ! wopp!

Ve € chamada interagdo de campo médio. Perceba que o terceiro termo do Hamiltoniano € infimo,
uma vez que d,ys € e,y $30 pequenos, entdo seu produto d,,rey,s € ainda menor ¢ entdo pode ser

desprezado. Isso nos leva ao chamado Hamiltoniano de campo médio

Hey = Ho+ Veu. (2.2)

Podemos escrever de forma mais compacta o termo de campo médio se consideramos dois operadores

A ¢ B cuja a interacdo entre os dois € dada simplesmente por seu produto

Hap =AB.

Fazendo o mesmo procedimento anterior, podemos descrever H/féw como

HSM = A(BY +(A)B—(AX(B). (2.3)

A pergunta agora ¢: como podemos calcular a média desses operadores? Existem essencialmente
duas maneiras, a primeira ¢ de forma auto-consistente, ¢ a segunda ¢ escolher a média que satisfaz
a condi¢do de minimizacdo da energia livre. Apesar de parecer drastica essa aproximag¢do, onde
deixamos de lado toda a complexidade da correlacdo entre as particulas, a teoria de campo médio é
extremamente bem sucedida em vérios sistemas interagentes, talvez os exemplos mais famosos sejam
os sistemas ferromagnéticos ¢ a teoria BCS que também se utiliza da teoria de campo médio como

VEremos a Seguir.
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2.0.2 Teoria BCS da supercondutividade

Vamos agora analisar os aspectos fundamentais da supercondutividade. Como ja discutimos ante-
riormente, um supercondutor comporta-se de forma andloga a um condutor ideal. A maioria dos
supercondutores possuem pares de Cooper formados por elétrons com momentos € spins opostos:
(k 7,-k |), como dissemos anteriormente a origem da supercondutividade ¢ devido a interagdo entre
elétrons mediada por fonons. O Hamiltoniano genérico resultante da interacdo elétron-fonon neste

caso ¢ dado por

H= Z 8kgcltackg - Z Vik’ clT(chk LKLk (2.4)
ko kK’

onde cltg(ckg) cria (aniquila) um elétron com momento k ¢ spin o, Vi ¢ a magnitude da interagdo
elétron-elétron (mediada por fonons), que por sua vez consideramos independente do spin, essa ca-
racteristica acompanha a maioria dos supercondutores usuais, levando a um emparelhamento su-
percondutor do tipo s-wave. Esse tipo de emparelhamento também ¢ chamado de singleto devido
as projecoes opostas dos spins dos elétrons que formam o par de Cooper. Temos também que

ek = h°k%/2m* —u, onde u é o potencial quimico e m* a massa efetiva do elétron. Vamos apli-

Tt

car a aproximagdo de campo médio, usando a relagdo da equacdo (2.3). Fazendo A = CppClyy ©

B = c_y | ckr, podemos escrever
LCKRT

H= Z gko-clto.cko- - Z Vi (CIT(TCL{ JSfewicwr) + C—k'ick'T<C;;TCjk e (CIT(TCjk l)(C—k'wkfﬁ) .
ko kK

Definimos agora as quantidades

A=) Vige ek i) (2.5)
k/

— o
AL =D Vielcincl ) (2.6)
k/
Com isso podemos escrever

H = Z 8kgcltackg — Z AkclT{chkl — Z Al*(c_kickT + constante.
ko k k
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O termo constante que vem de (A){B) representa um deslocamento energético ¢ pode ser desprezado.

Com isso chegamos ao chamado Hamiltoniano da teoria BCS:

Hpcs = Z 8kgc£ackg - Z AkclT{chkl - Z Ay K| CK- (2.7
ko k k

Onde cltg(ckg) cria (aniquila) um elétron com momento Kk e spin o com energia €. Vkkr ¢ a mag-
nitude da interacdo elétron-elétron e aqui Ag € o chamado parametro de ordem supercondutor, com
(e <CIT<' chk, l> correspondendo a média termodindmica da aniquilagdo e criacdo de um par de

Cooper respectivamente.

2.0.3 Formalismo de Nambu

Em supercondutores, devido a estrutura do Hamiltoniano BCS, ¢ interessante representarmos
nossos campos (operadores) de forma que elétrons ¢ buracos sejam tratados em pé de igualdade, isso

¢ feito usando o chamado spinor de Nambu.

O formalismo de Nambu foi proposto por Yochiro Nambu no contexto da fisica de particulas
(24). No chamado espago de Nambu, os operadores sdo compostos tanto por operadores de particulas
quanto de anti-particulas (no presente caso, no contexto da matéria condensada, teremos a elétrons
e buracos). O primeiro a notar a familiaridade de tal formalismo com a supercondutividade foi P.W.

Anderson (25). Aqui o spinor de nambu sera definido como

Ckr

T
¢y

P = - ¥=(dy ew ). (2.8)

onde a primeira componente estd relacionada com o elétron € a segunda com o buraco. E interessante
argumentar também que os spinors de Nambu obedecem a relagdo candnica de anti-comutacdo dos

férmions

[P, Wl gl = Sapd (k=K. (2.9)

Um Hamiltoniano genético H nessa representacdo pode ser descrito como
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H= ) WMy, (2.10)
k

com

b
wk:(“k k ]
dx  ex

Explicitamente temos entdo
ak bk Ckr
Y H Py = ( el ek )[ ]( ]
k ) ’
; ; ¥ di ex J\ ¢!

nos resultando

Z \Pltq-{klyk = Z(ClkcltTCkT + bkcltTciki +diC_k| Ckt + ekc_kicjkT),
k k

usando agora que [Clta,ck'a'h = Okk’ oo podemos escrever
Z Wl H Py = Z [akcltTckT + bkclT(chkl +dkCx | Ckt — ekcltickl] + Z k.
K k -

Comparando o resultado acima com o Hamiltoniano (2.7), notamos que o Hamiltoniano da teoria

BCS pode ser escrito no espaco de Nambu na forma compacta
Hpcs = Z P! P + Z &k
Kk Kk

com

(2.11)

AN
wk:[ ok k].

—Al*( —£k

O termo i €k representa uma constante energética, que pode ser negligenciada, uma vez que a ener-

gia pode ser medida a menos de uma constante. Com isso podemos escrever



Hpcs = Z ‘Pltq'{kll’k.
k
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(2.12)

O Hamiltoniano acima € referenciado na literatura como Hamiltoniano de Bogoliubov-de Gennes

(26).

Quase-Particulas de Bogoliubov

Afim de diagonalizar o Hamiltoniano (2.12) precisamos exercer uma rotacdo na base, em outras pa-

lavras, uma transformagdo unitdria da forma
dig
Hyés = > PLULURHUD U,
Kk
onde U € uma matriz unitria ¢ tem a forma genérica
Uk Vk
Uk = , usando Iukl2 + Ivkl2 =1.
* *
Yk Uk

Definindo agora os spinor na base rotacionada como

Xk = Uk =

G’kT ]
T ?
CL’_kl

e usando o fato que o Hamiltoniano ¢ diagonal na base yx podemos escrever

Hixk = Exyk.

O que nos leva a equagado secular

ek — Ex —Ak

_Al*c —&k — Ex

Il
=

entao

Ei = % /&2 +|Akl2.

(2.13)

(2.14)

(2.15)

(2.16)



19

Essa energia corresponde a energia das excitacdes, ou quase-particulas, do sistema. Temos entdo a

forma diagonal

Ji
HBlgS = Z EletTSXk, (2.17)
K

onde 7;, com i =0,1,2,3, sdo as chamadas matrizes de isospin definidas como

10 0 1 0 —i 1 0
To = ., T1= ., T2= . T3= . (2.18)
0 1 1 0 i 0 0 -1

Ao diagonalizarmos o Hamiltoniano BCS percebemos que existe uma energia minima Ay entre

o estado fundamental, formado por um condensado de pares de Cooper ¢ os estados excitados cor-
respondendo quase-particulas de Bogoliubov. Por causa desse gap de energia, no regime de baixas
temperaturas, excitacdes elementares se tornam invidveis, fazendo que o estado fundamental (con-
densado de pares de Cooper) se torne robusto, prevalecendo assim o estado supercondutor. Vamos
agora escrever de forma explicita os operadores das quase-particulas ags; na base de Nambu. Temos

que

ak
Xk:( TT = Uk =

@y

T ][ ey ]
_u® * T ’
Yk U J\ Cyy

o que nos leva as importantes relagdes

g} = UkCkp + chT (2.19)

-k}’

o\ = el — Vi, (2.20)

As relaces acima sdo chamadas transformacoes de Bogoliubov, por esta razdo as quase-particulas
acima sdo chamadas de quase-particulas de Bogoliubov. E importante notar que as mesmas sdo
compostas por superposi¢des de elétrons e buracos e, sob condi¢des especiais, apresenta uma fisica

interessante relacionada com os chamados férmions de Majorana, o qual abordaremos mais adiante.

A transformacao inversa € dada por

Ckr u —Vk akr
c—k¢ vk Uk Cl’_kl
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o que nos leva a

Cp = kg = Vi s 2.21)

T

c—kl

= uxa | +vya. (2.22)

Para determinar os coeficientes uy € vk basta resolver para um dos valores de Ex a equacio secular

correspondente. Apds alguns cédlculos encontramos

€k

IA2 4 o2
Ak+8k_

1+ (2.23)

N =

€k

1/A12(+.92_

1- (2.24)

NI =

Funcoes de Green de Nambu-Gor’kov

Afim de determinarmos a densidade de estados do sistema supercondutor, vamos utilizar o forma-
lismo das fungdes de Green (para uma breve introducio a funcdes de Green recomendamos a leitura
do Apéndice B). Sabemos que a fungdo de Green retardada no espaco das frequéncias, usando a

notagdo de Zubarev (27) ¢ dada por

Gik(w) = ({(Ax; Bk))w» (2.25)

onde Ak(Bg) sdo operadores genéricos escritos na representacdo de Heisenberg (veja o Apéndice A.2).
Como vimos na secdo 2.0.3, para sistemas supercondutores faz-se interessante trabalharmos com o
spinor de Nambu, vamos entdo definir uma funcao de Green que seja o produto direto de ambos spi-

nors como

G(w) = (P ® ¥ )0 (2.26)

note que neste caso, a funcdo de Green se torna uma matriz ¢ € dada explicitamente por

w3 o o).
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que nos leva entao a

Gk(w) =

e (o e ]:(QW’) Fi(w) ] (2.27)

CCUNEON YR (RN Fi (@) Gk (w)

As funcdes de Green da diagonal de (2.27) s@o as fungdes de Green usuais para elétron e buraco.

Contudo, as fungdes de Green fora da diagonal

Fr(w) = ((Ckr =k Nws (2.28)

Fo (@) = (el Do (2.29)

representam as chamadas funcdes de Green andomalas ou fungdes de Green de Gor’kov, € estdo asso-
ciadas com propagadores de pares de Cooper. Para calcularmos essa funcdo de Green, vamos utilizar

o método da equagdo de movimento (veja Apéndice B.1), de sorte que podemos escrever

WPk @] N0 = (P, ¥ 1) + ([P Hpes 1 ©F)))o. (2.30)

Usando que [a,bc]_ = [a,b];c—bla,c];, juntamente com [‘I’k/,‘I’lT(]Jr = Ok x € a expressdo de Hpcs de
(2.12) temos
[Wk.Hpcs ] = Z{Wk' [P, W) 1 P — Hio Pre [P Pil = HicP.
k/
Assim a equacdo de movimento fica sob a forma
WPk @] N = 1+ Hi((Pk @] ),

que nos conduz entdo a expressdo

(P ®P[ = [w—Hil ™.

De forma explicita, temos que calcular a matriz inversa

-1

[w-wk]‘1=[ w-ek A ]

Al*c w+ &g

Neste caso, por se tratar de uma matriz de baixa ordem, a inversa pode ser calculada facilmente usando
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o método dos cofatores, que nos diz que a matriz inversa de uma matriz genérica A ¢ dada por

1 -
-1 _ . NEEPNY o
A Idet(A)Iad](C)’ Cij= (D" det(A_;_j), (2.31)

onde ad j(C) = (cof(C))T. Com isso obtemos

1 w+e —-A
w-H] " = ———— T T (232)
w —Sk—lAkl —Al*( W — Ek
resultando finalmente na fun¢ao de Green
n 1 w+ Ek —Ag
Gk(w) ={¥k@Y Vo= —F——7F—— . . (2.33)
w —8k—|Ak| -A, w—ék
Comparando com (2.27) temos, as fungdes de Green do elétron, buraco e andmalas dadas respectiva-
mente por
w+ &k
w=—— 2.34
Gn @)= 5= np (2.34)
w — &k
x(lw)=———, (2.35)
G = g
—Ak
Frlw) = ——— (2.36)
T e P
e ES
P (W) = —————— (2.37)

w? — &l —|Akl*
Perceba que para Ak = 0, temos Fx(w) = 7-‘1: (w) = 0 como esperado. Note que os polos das funcdes
de Green sdo w =+ m = +FY, que correspondem exatamente a energia das quase-particulas
de Bogoliubov que encontramos via diagonaliza¢do do Hamiltoniano BCS. Podemos escrever ainda
de uma forma mais interessante a funcao de Green (2.34) usando os coeficientes (2.23) ¢ (2.24), de

sorte que

w + €k _ w+ €k
2 - 2
wr—g — Ak WP-E}

1 &k 1 1 &k 1
= —|1+— +=1-— .
2 Ex /) w—-FEx 2 Ex ) w+ Ex

Gxr(w) =

Ou simplesmente,
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”12< v12< 0
w) = + . .38
ng( ) Fi Fi ( )

Para fins de continuagdo analitica temos que tomar w — w + i , com 1 sendo um ndmero real infini-
tesimal. Usando agora a relacdo
1 P

lim - = —iné(w—€)
—0w+in—€ w—¢€

e que a densidade de estados ¢ dada por

1
Pr(w) = —;IM[Gk(w)] (2.39)

temos

pxt(w) = 146(w— Ex) +vgd(w + Ex). (2.40)

O primeiro termo corresponde a criacdo de uma quase-particula adicionando um elétron e o segundo
a criagdo de uma quase-particula adicionando um buraco ao sistema. Como o operador que forma
a quase-particulas tem a forma axy = ukcgy + vkcjk . podemos ver que a quase-particula pode ser
formada removendo ou adicionando elétrons, ficando claro que ulz( ¢ a amplitude de probabilidade
de se criar uma quase-particula adicionando um elétron ¢ vlz( a amplitude de o fazer adicionando um

buraco.

Descrevemos acima a densidade de estados para uma unica quase-particula. Agora, se queremos
calcular a densidade de estados para todo sistema precisamos somar sobre todos os momentos, da

forma

1
priw) =~ ; Im[Gy(w)]. (2.41)

Transformando a somatdria acima em uma integral na energia, usando uma densidade de estados
p = pob(w— D)8 (w+ D), onde 2D ¢ a largura da banda e por questdes de normalizagdo pg = 1/2D,

obtemos

00 0 w+e
=——Im de———|,
pr(w) . [j:oo ng—gz—lAlz]

onde por simplicidade consideramos ¢ e¢ A independentes de k. Usando que

0 w+e W
de—— 2= ’
o wr—E7—|A A2 — 2
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temos
PO
= Im|
pr(w) m[ AZ—MZ]’
nos levando entao ao resultado
7Tlw|
pr(w) = 2222 (0] - A). (2.42)

4/ A2 — )2
A mesma expressao vale para elétrons com spin down. A densidade de estados acima € apresentada na

figura (2). Sabemos que em resposta linear a condutancia ¢ diretamente proporcional a densidade de

estados', logo experimentos de STM foram usados para comprovar a teoria BCS nos anos 60 (28, 29).

215 -10 -05 00 0.5 1.0 15

Figura 2: Densidade de Estados de um supercondutor usual extraida da teoria BCS. No interior do gap super-
condutor apenas pares de Cooper sdo permitidos.

2.1 Supercondutividade induzida e estados ligados de Andreev

A jung¢do entre sistemas normais (metéalicos ou semicondutores) € sistemas supercondutores apre-
senta uma série de fenémenos fascinantes, um deles é a chamada reflexdo de Andreev (7, 30). Se
o potencial quimico do sistema normal se encontra em uma regido situada energeticamente no gap
supercondutor, um elétron de condugdo do sistema normal s6 pode se transferir para o supercondutor
se consequentemente juntar-se com um outro elétron de momento e spin oposto, formando entdao um

par de Cooper no supercondutor.

1Veja o Apéndice C.2
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Figura 3: Reflexao de Andreev na juncao X/supercondutor, onde X representa um material usual, seja metalico
ou semicondutor. Vemos que um elétron incidente na interface com um supercondutor produz a reflexdo de um
buraco, perceba que com momento e spin invertidos. Fonte: Jean-Damien Pillet, Tunneling spectroscopy of the
Andreev Bound States in a Carbon Nanotube, PhD thesis, 2011.

Note que no processo acima, a formacdo do par Cooper no supercondutor resultou na reflexio
de um buraco no sistema normal, essa reflexao € chamada reflexdo de Andreev (RA). Sucessivas RA
coerentes resultam em estados ligados conhecidos como estados ligados de Andreev (Andreev Bound
States-ABS) que, como podemos ver, energeticamente residem no interior do gap supercondutor (veja
Fig. 3).

A jungdo de sistemas normais € supercondutores também apresenta o que chamamos de supercon-
dutividade induzida. Correla¢des supercondutoras podem ser induzidas no sistema normal (renorma-
lizadas pelo acoplamento entre o supercondutor € o sistema normal), fazendo com que as propriedades

espectrais do sistema normal apresentem também um cariter supercondutor.

O processo fundamental na reflexdo de Andreev ja aparece no Hamiltoniano BCS. Para vermos

1SS0 vamos nos concentrar no termo responsavel pela dindmica dos pares de Cooper

Hpair =— Z (Akc;;T Cikl + A;‘(c_kickT) . (2-43)
k
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o
k1€ k|

particula no sistema supercondutor, voltaremos a ele mais adiante. Vamos analisar o segundo termo

O termo Agc estd associado com aniquilagcdo de um par de Cooper ¢ a criacdo de uma quase-
de (2.43) A c_g cke- Para isso, perceba que o operador que aniquila um elétron ¢k, corresponde a
criacdo de um buraco com momento oposto com o operador hika, escrevendo matematicamente esta
relacdo temos cko = hika.

Al*(c_kickT = hltiAl*(ckT’

este termo representa a aniquilagdo de um elétron ¢ a criagdo de um par de Cooper (descrito por Ay)
e um buraco de momento e spin oposto ao elétron aniquilado. Este fendmeno representa exatamente

a reflexdo de Andreev. De forma resumida podemos descrever o processo acima como
N 2— +
e” =Par +h". (2.44)

Note na equagdo acima que o processo de reflexdo de Andreev mistura de forma coerente elétrons
e buracos. Além disso, podemos ver que o processo conserva carga, ¢~ = 2e” —e~, energia, uma
vez que E~ = 2FE~ — E™, e como ja dissemos, corresponde a reflexdo de um elétron em um buraco,
k™ = (kW -k7)—-k7, levando k™ = —k™. Onde usamos que o buraco possui a carga, momento ¢

energias iguais em modulo as do elétron, porém com o sinal negativo.

A fim de ilustrar os dois fend6menos citados acima, vamos considerar um sistema simples formado
por um ponto quantico (PQ) de um tunico nivel ligado a um supercondutor (Fig.4). O Hamiltoniano

desse sistema ¢ dado por

H= Y cardyds+ Y [Vkel, do+ Vidicrol + ) 8l ckr = ) [Akcfochy +Afe kel (245)
o ko ko k

o primeiro termo representa a energia cinética do PQ , onde d;(dg) cria (aniquila) um elétron do PQ
com energia g4, € spin o, o segundo termo representa o acoplamento entre o PQ ¢ o reservatdrio
supercondutor com Vi (Vf;) descrevendo o tunelamento de elétrons entre o PQ ¢ o supercondutor € os

dois dltimos termos representam o Hamiltoniano BCS j4 discutido anteriormente.

Podemos escrever o Hamiltoniano (2.45) no formalismo de Nambu definindo o spinor para PQ

na forma

Yy = , ‘P*:(d; d, ) (2.46)

T
T
dl

resultando no Hamiltoniano da forma
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SC

Figura 4: Ponto Quantico acoplado a um reservatério supercondutor. Fonte: Elaborada pelo autor.

H=WH P+ Y PLHT+ Y [PLHmTa + WH P (2.47)
k k
com
£ 0 e —A Vk O
Hy=| c He=| TR Ha=| < | (2.48)
0 -—&q -AL &k 0 Vi

Para calcularmos as propriedades espectrais do PQ precisamos calcular a funcdo de Green retardada

do mesmo, que definiremos da forma

Gu(w) = (Pa®W¥))), (2.49)

ou de forma explicita

(drsd Mo (drsdy)a

Ga(w) = ;
T ddn, wdld

(2.50)

usando novamente a equacdo de movimento temos
WPy ®P )0y = ([P, T L) + ([P H].®F )

usando (2.47) na equacdo de movimento acima obtemos o sistema de equagdes
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V(@ PN = T+ H(Pa®Y o+ > HL (P TN
k

W((Pk®¥ N0 = H(Pk@Y)w + Hac(Pa® ¥ )0

Combinando as duas equagdes, ficamos com
Y0¥, = 1+H(WiV H [ —H " Hl(Pa @Y
w({Va®Y ))w + Hil{Va @Y ) + alo—H] HKYa® Y ) ))o-
Kk

Portanto,

(Ya®¥ ) = [w=H]™, 2.51)

onde definimos

H, = 7‘(d+27'{;k[w—7'{dk]_17'{dk, (2.52)
k

note que o termo da somatdria nada mais € do que a auto-energia 2(w). Usando (2.32) temos que

2
o H T H o = |Vl wtex  —Ax
;ﬂdk[w Fi 1™ Hax Z 2 an ECIYWE ( .

k _Al*( w — Ek
Vamos considerar por simplicidade que V, € ¢ A sdo independentes de k. Transformando a somatéria

nos momentos em uma integral usando uma densidade de estados constante pg € considerando o li-

mite em que a banda de condugao (D) muito larga (Wide Band Limit) (veja o Apéndice B.2), obtemos

w—E&

f o ar g T polVP wte -A
;ﬂdk[a} i %“‘Lo W =2~ |AR| —A® -

usando que
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f‘” w=*e de wn f‘” A J Ar
_ = E=— ’
—00 —82 |A|2 \/Az—a)z —00 a)z_gz_lAl2 Az—a)z

obtemos

Zwﬁk[w-wk]—lwdkz-—po""z’r[ “ _A],
k

AZ_w2

com 1880 temos que

w—gg+—L AT
_7_{ — VAZ_ )2 VAZ )2
“ ' —_AT w+eg+—L ’
VAZ )2 VAZ_ )2

com I' = py|V|?. Muitas vezes o resultado acima ¢ escrito de forma compacta usando as matrizes de

isospin (2.18). Note dos resultados acima que podemos escrever a auto-energia em WBL como

r ~
Z(a)) = ﬁ(ATQ—wTQ), (253)

onde definimos A = —iA. Com os resultados acima podemos escrever

-1
L (A2 —wTo)] : (2.54)

Ga(w) = [wTo —E4T3 —
A2 _ wz

Usando o método dos cofatores(2.31) para calcular a inversa obtemos

1

2
I wl Al
W—E4+—= w+Eq+ -
[ d VAZ—wZ] [ d \/Az—wz] [ \/Az—wz]

AT
+e4+
[ w+éd \/AZ \/Az_wz ]

Gi(w) =

A*T wll
—— w—&4+
VAZ—w d VAZ )2

Com esse resultado podemos identificar a fungdo de Green do elétron
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w+eg+ A‘*z’r -
(dy:dye = —© : (2.55)
! w—eq4+—L Ha)+g + —L ]—[ AL ]2
R/ v ATV | | VA
do buraco
w—&q+ wl
(dld e = Ao , (2.56)
y w—eg+—2L Ha)+g + —l ]—[ AL ]2
AR/ v AT Va2 || VA
e as funcdes de Green de Gor’kov
AT
2_,,2
(drsdy))e = A 3 (2.57)
_ wl wl _ Al
w=edt m] [“’*‘9“ \/Az—wz] [\/Az—wz]
AT
«d:dlye = s (2.58)

3

wl wl AT
w+é&q+ -

VAZ—? ] [ d VA2—2 ] [ VA2—2 ]

w—&g+

Note que para A = () os resultados acima sdo exatamente iguais as fungdes de Green de um PQ aco-
plado a um reservatério normal na aproximagdo de WBL como o esperado.

Uma vez que conhecemos as fungoes de Green do PQ podemos calcular sua densidade de estados

1
pa(w) = ——Iml(dr:d}))o] (2.59)

Os resultados para o caso normal ¢ supercondutor sdo mostrados nas figuras 5 ¢ 6. Perceba que
o espectro do PQ apresenta agora caracteristicas supercondutoras, mostrando a supercondutividade
induzida por efeitos de proximidade a um supercondutor. Contudo, note que no interior do gap
supercondutor temos a presenga de dois estados ligados, que representam Andreev-Bound-States,
devido a sucessivas reflexdes de Andreev como esquematizado na figura 3. Perceba que quando o
PQ € conectado a um reservatorio normal (A = () sua densidade de estados apresenta um alargamento
provocado pelo acoplamento com os elétrons do reservatorio metdlico, figura 5. Contudo, quando
o mesmo ¢ acoplado a um supercondutor, o PQ apresenta uma densidade de estados caracteristica
dos supercondutores, além da presenca de estados ligados de Andreev que residem no interior do gap

supercondutor, mostrados na figura 6.
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Figura 5: Densidade de Estados do PQ acoplado a Figura 6: Densidade de Estados do PQ acoplado

um reservatorio normal (A = (), como a presenca do a um reservatorio supercondutor (A # 0), note que
reservatorio apenas alarga o nivel, como esperado da agora o espectro apresenta caracteristicas supercon-
aproximacao de banda larga. dutoras, além de ABS no interior do gap.

s

E interessante notar também que podemos descrever um Hamiltoniano efetivo para o PQ na
presenga do reservatorio supercondutor. Para isso basta notarmos que conseguimos descrever a funcio

de Green do PQ na forma

Ga(w) = [w—H,1™, (2.60)
com H; dado por
e 0 |Vil? w+ex —Ax
Ho=| D e mywn 2.61)
0 —&4| K ¢ —8k_|Ak| _Al*c w— &k

Se consideramos WBL como nos calculos anteriores, temos que

& 0 r w —A
H, =| o S ,
0 -—eq A2—w?2\ -AY w

e consideramos agora A > w ficamos com

e I
7-{3 = dT
r —&d|

Assim, escrevendo em termos de d,; € d; o hamiltoniano efetivo para PQ, agora supercondutor ¢
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His= ) eodidy +T(dld] +ddy). (2.62)

o

Esse ¢ do que o Hamiltoniano efetivo para um PQ na presenga de um supercondutor no limite
(D,A) > w. Perceba que, como esperavamos, a supercondutividade induzida no PQ ¢ mediada
pelo acoplamento com o supercondutor. Perceba que a equagdo (2.62) possui todos os ingredien-

tes minimos necessarios para a existéncia de estados ligados de Andreev no PQ.
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3 Supercondutividade tipo p em fios
qudnticos com forte acoplamento
spin-orbita

No capitulo anterior discutimos os aspectos fundamentais do fendmeno da supercondutividade.
Nesse momento ¢ importante relembrar que os elétrons nos pares de Cooper possuem spin com
projecdes opostas. Dizemos que este estado corresponde ao estado de singleto. Supercondutores
desse tipo sdo geralmente chamados de supercondutores s-wave, em analogia a simetria do orbital
atomico s. Os supercondutores do tipo s-wave sdo os mais abundantes da natureza. Chamamos a
atencdo do leitor para o fato de que quando falamos da simetria do supercondutor estamos nos refe-
rindo a simetria de spin dos elétrons que formam o par de Cooper, por isso certas vezes tal simetria ¢

referida como simetria de emparelhamento.

Embora bastante raros ¢ instaveis, existem também supercondutores cujos spins dos elétrons nos
pares de Cooper sdo paralelos, caracterizando um estado conhecido como tripleto (31-33). Uma vez
que o spinor neste caso ¢ uma fungdo simétrica, necessariamente a funcdo de onda espacial deve ser
anti-simétrica, para manter a anti-simetria da funcdo de onda total dos pares de Cooper, uma vez
que sdao compostos por férmions. Por essa razdo, em analogia com as fungdes de onda espaciais de
orbitais do tipo p, que sdo assimétricas. Supercondutores que possuem esse tipo de emparelhamento

sdo chamados de supercondutores do tipo p.

Os chamados férmions de Majorana ou modos de Majorana aparecem apenas em superconduto-
res do tipo p. Como tais supercondutores sdo bastante raros € instaveis, precisamos contornar este
problema de alguma forma. A maneira de fazermos isso € usarmos um supercondutor usual do tipo

s-wave ¢ entdo induzir um estado onde ele seja efetivamente do tipo p, como proposto em (9, 17).

No presente capitulo iremos abordar como a simetria da supercondutividade corrobora para o

aparecimento dos modos de Majorana. Feito isso, vamos construir um sistema com supercondutivi-
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dade do tipo p induzida em um fio quantico por um supercondutor usual do tipo s.

3.1 Formalismo de Nambu: Simetria particula-buraco no Ha-
miltoniano de Bogoliubov-de Gennes

Como dissemos acima, estamos interessados em supercondutores cuja proje¢ao de spin dos elétrons
que formam o par de Cooper seja a mesma, logo o indice de spin se faz dispensavel e temos neste

T
caso que Wk = ( Ck cjk ) e temos que o Hamiltoniano serd novamente dado por

(3.1)

ek —Ax
Hpcs = Z‘Pltﬂk‘l’k, Hyx = [ ]
K

—Al*( —&k

Com o intuito de abordar a simetria particula-buraco, precisamos saber qual ¢ o operador que trans-

+
0 1 Ck _ (N
1 0 cjk Ck

Note que a operacdo acima levou k para —k. Correspondendo a transformacdo de operadores que

forma Wk em lPqu Para isso, note que

1Pk = =wph.

criam uma quase-particula de Bogoliubov em um buraco. Portanto, essa transformagao nos sugere

uma simetria particula-buraco. O operador responsavel por essa simetria ¢ dado por

P=11K, (3.2)

onde K ¢ o operador de conjugacdo. Note que esse operador possui importantes propriedades:

S FET.

onde usamos que K? =1, isso entdo nos dd

P =

P2 =1. (3.3)

Vejamos quais sdo as consequéncias da aplicacdo do mesmo no Hamiltoniano. Para analisarmos isso,



35
primeiramente vamos considerar o caso sem supercondutividade Ax = 0. Neste caso temos

0 K 0 0 K - 0
PH, P = “k _| Tk
K 0 0 -—s&k K 0 0 &k
Vemos, portanto, que
PHP' = —Hy. (3.4)

Perceba que e_k = €k, uma vez que g = h2K?2 /2m* — u. Com isso podemos escrever

P?'{kPT = —Hx,
PHP'P = —H P,
PHy = —HP

Isso nos mostra que na auséncia de supercondutividade existe uma simetria particula-buraco intrinseca
do sistema no formalismo de Nambu. Podemos perceber isso quando escrevemos o Hamiltoniano
para um ponto quantico de um nivel acoplado a um supercondutor. Como dobramos a dimensdo do
Hamiltoniano do PQ artificialmente, era de se esperar que as solugdes em dimensdo maior estivessem
associadas de alguma forma, e essa relagdo ¢ dada exatamente pela simetria particula-buraco descrita

acima.

Se considerarmos agora o caso supercondutor Ag # 0 € impusermos a simetria particula-buraco

P?'{kPT =-H g,

temos como consequéncia que

Ag = —A g, (3.5)

ou seja, que o parametro de ordem supercondutor seja uma fungdo impar do momento k, essa ¢ a
propriedade fundamental dos supercondutores p-wave. Outra consequéncia interessante ¢ que para

cada estado com energia Exk teremos um estado parceiro com energia —FEg. Para vermos isso basta
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voltarmos a equacdo de auto valores

Hixk = Exxk.

que podemos também escrever

PH P (Pxi) = PExPT(Pxx),
H_k(Pxx) —E_x(Pxk),
Hi(Pxx) —Ex(Pxk).

Onde usamos que H_kx = Hk ¢ E_x = Ex. Com isso temos que

Hivk = Exxk, (3.6)

Hi(Pxx) —Ex(Pxx). (3.7

Podemos compactar as duas expressdes acima em uma sé definindo yx = Pyk, onde das equagoes

acima podemos ver que Ex = —FEk. Para analisarmos melhor os conceitos acima vamos lembrar que

T
Xk =( ak a/ik ) , Com 1SS0 temos

0 K ak al
P Xk = T = k s
K 0 al, a_g

como yk = Pyx

~ T
ak ¥y
= , 3.8
( &jk ] ( -k ] G

concluimos entdo que @k = a/lt, ou seja, criar uma quase-particula de Bogoliobov com energia Ey ¢

equivalente a aniquilar (criar um buraco) com energia —Fj, onde usamos que £y = —Ex. Mas algo

curioso acontece caso tenhamos exatamente Ex = Ex, neste caso temos Ex = —Ex implicando Ex = 0.
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Consequentemente,

w=af,  (Ex=0). (3.9)

Isto corresponde a propriedade fundamental dos férmions de Majorana, que ¢ uma particula igual a
sua anti-particula. Aqui isto se traduz no fato de que o operador que cria uma quase-particula de
Bogoliobov € igual a seu operador de aniquilagdo. Como nosso operador ¢ composto por operadores
de criagdao de aniquilacao de elétrons, nesse contexto de matéria condensada nao estamos diante de
uma particula elementar que corresponde a um férmion de Majorana, mas sim excitagdes que se

comportam desta maneira, por isso muitas vezes € usada a expressdo modos de Majorana.

Perceba que para que o sistema suporte férmions de Majorana precisamos que exista um estado
de energia zero. A existéncia desse estado em supercondutores do tipo p pode ser garantida em uma

das fases topoldgicas que o mesmo apresenta, como abordaremos mais adiante.

3.2 Modelo de Kitaev

Os primeiros estudos relacionando férmions de Majorana no ambito da matéria condensada foram
propostos por Kitaev através de um modelo artificial, que descreve um sistema com emparelhamento
dos pares de Cooper do tipo p, ou seja, um sistema efetivamente sem spin (8). Discutiremos em

detalhes como isso pode ser feito de forma pratica na secdo seguinte.

O Hamiltoniano de Kitaev ¢ dado por

H= —/JZ c;cj—% (tC;Cj.H +Aei¢cjcj+1 +H.c.) (3.10)
J J

onde u ¢ o potencial quimico, ¢ ¢ o elemento de matriz que acopla um sitio ao outro adjacente,

c; (c;) cria(aniquila) um elétron no sitio j, A e ¢ estdo relacionados ao emparelhamento do par de

Cooper. Muitas vezes ¢ € igualado a zero por questdes de simplicidade, como fizemos no capitulo de

supercondutividade. Perceba que o grau de liberdade do spin foi omitido, pois assume-se que todos

os elétrons possuem mesma projecdo de spin.

Afim de estudar os aspectos topoldgicos do sistema vamos passar para o espaco reciproco. Para

isso definimos a seguintes transformadas de Fourier
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oo Lze—ikxjck o Lzeikxjc?“
TN T WAN% ¢

Aplicando agora a transformada de Fourier na Eq. (3.10) obtemos

_ 2 _ " ik
H = ZZ UCJ(kkckck'__ZZ ixj(k=k") lkacTck,

J kK j kk
Z Z —ix;(k’ k)e ik Ck,C _ Z Z ixj(k+k’ )elk Uercp
j kK j kK
Ae @ —ix; (k'+k) Ka T T
Z et clel. 3.11)
j kK

Usando novamente a Eq. (3.57) podemos ainda escrever

t _
H = —/JZ Crlkk — = eka TCk/(5k k= ) e Ck,ckék K
Kk’ kk' Kk’
Ae ig 1t Ae_i¢ '
5 Z ek “erer Av —k — > Z o'k ac;;, CpOk—k/
Kk’ Kk’
eika + e—ika Aei¢ " Ae—i¢ i
= 2| S 2 Tt - 25 Tt
k k k
que nos resulta em

Ae'® - Ae™¢ »

- Z[,u + tcos(ka)]ckck = Z e ere_i — 5 e ’k“cjkc,t. (3.12)

k k k

Agora note que

Z e*ere = Z e*ere_ i+ Z e*ere = Z e+ Z ke e

k k<0 k>0 k<0 k<0
= Z(e’k“ —e ke i = Z 2isen(ka)cic—k
k<0 k<0
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Z e = Z e*ere_p + Z ooy = Z e®ee_en+ Z ek ey

k k<0 k>0 k>0 k>0
= Z(e’k“ —e ke = Z 2isen(ka)crc_.
k>0 k>0

Somando as duas expressdes acima temos

22 e*ere_p = Zleen(ka)ckc k+22men(ka)ckc k

k<0 k>0

ou seja
Z e*ere_y = Z isen(ka)cyc—i. (3.13)
k k

De forma analoga

—ika T T _ ika 1 T —ika T T _ lkaTT lkaT T
Sl = Vel o Y el = 3 el Y e ol

k k<0 k>0 k<0 k<0
= Z(e’k“ - e_’k“)c,tcjk = Z 21'sen(ka)c,tcT
k<0 k<0

Ze—ikac;;cik Z lkacl'ich_i_Z lkachTk_Z lka'{r T Z lkacl'ich

k k<0 k>0 k>0 k>0
= Z(eik“ - e_ik“)c,tcjk = Z 21'sen(ka)c,tcT
k>0 k>0

O que nos leva em

Z ’k“chTk = Z lsen(ka)c ck, (3.14)

k k
e resulta

Z e~ ka jkc,t Z isen(ka)cT kc,t. (3.15)
3 3
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Substituindo as Egs. (3.13), (3.14) ¢ (3.15) na Eq. (3.12) ficamos com

1 . .
H= 3 Z{—Z[,u + tcos(ka)]c,tck +iAe?sen(ka)cyc_y — iAe"¢sen(ka)cjka}. (3.16)
k

Escrevendo o hamiltoniano acima na forma de Bogoliubov-de Gennes, definindo ‘P,t = [cZ,c_k]

encontramos que

Hi(k) = (3.17)

—[p+tcos(ka)] iAe®sen(ka)
—iAe"®sen(ka) u+tcostka) |

Vimos que a forma geral dos auto-valores do Hamiltoniano de Bogoliubov-de Gennes € dado por

Ep ==, [8,% +]A2.

Da Eq. (3.17) € facil ver que para o Hamiltoniano de Kitaev temos

& = —[u+tcos(ka)) (3.18)

Ar = iNe? sen(ka). (3.19)

Entdo temos que

Er = =+ \/[,u +tcos(ka)]? + A%sen?(ka)

= =+ \/(t — A% cos?(ka) + 2ut cos(ka) + u? + A2, (3.20)

Queremos agora encontrar pontos onde a energia seja nula, pois 0 mesmo estd associado com 0s mo-

dos de Majorana, para isso temos que

(1 — A*)cos?(ka) + 2ut cos(ka) + p* + A% = 0.

A equagiio acima deve ser satisfeita para qualquer A, logo precisamos exigir que os termos —A? cos?(ka)
A? 1 i ka) = x1. Com b i d
e A“ se cancelem mutuamente, isso ocorre para cos(ka) = +1. Com base nisso podemos escrever as

relagdes
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(t+p)* =0, se coska) =1 (321)
(t—p)? =0, se cos(ka)=—1.

Das equagdes acima vemos que s podemos ter solugdes com energia zero se u = +f. Veja que
estes pontos correspondem exatamente a extremidade da banda do fio quantico. Olhando para a zona
de Brillouin vemos que os pontos k = +x/a (limites da primeira zona de Brillouin) corresponderdo a
p=teque k=0 corresponde a u = —t. A diferenca entre estes dois regimes ficard mais clara quando

abordamos o problema do ponto de vista topoldgico, que € o assunto da proxima se¢ao.

3.2.1 Topologia e matéria condensada

Tradicionalmente na matéria condensada as transicoes de fase sdo classificadas e entendidas de
acordo com as ideias de Landau, estdo associadas a quebra de alguma simetria do sistema, ou seja,

alguma simetria ¢ quebrada espontaneamente (14, 15, 34).

Contudo, nos ultimos anos surgiu uma nova classificacdo das transi¢des de fase baseadas na nogdo
de ordem topolégica! (14, 34). Em geral dizemos que dois objetos sio topologicamente equivalentes,
ou seja, pertencem a mesma classe topologica se podem ser conectados através de variacdes continuas
(suaves). Caso isso ndo seja possivel, os objetos em questdo pertencem a classes topoldgicas dife-
rentes. Uma das grandezas que caracterizam a classe topoldgica ¢ o chamado invariante topoldgico.
Objetos que possuem mesmo invariante topoldgico sdo topologicamente equivalentes (veja a figura
7).

Nos anos 80 as transicoes de fase topoldgicas foram estudadas de forma pioneira por Thouless,
Kosterlitz ¢ Haldane (35-38). Contudo, uma das mais surpreendentes aplicagdes da topologia em
matéria condensada se deu no entendimento da quantizacdo da condutancia do efeito Hall quantico

(39) e posteriormente no estudo do efeito Hall quantico fracionario (40).

Para entendermos melhor o conceito de topologia aqui usado, imagine uma esfera no espago
euclidiano tridimensional. Agora comece a distorce-la suavemente, de forma que a superficie dela

seja sempre continua, perceba que € possivel transforma-la em um cilindro macigo ou em uma bola de

ITopologia é o ramo da matemitica que estuda como elementos matemdaticos se comportam sob mudancas infinite-
simais, esta dividida em topologia geral, topologia algébrica e topologia geométrica. Os conceitos aqui abordados se
referem a topologia geométrica.
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(a) Transicao de fase do tipo Landau

Grupo de Simetria 1 Grupo de Simetria 2 .
% Parametro fino

(b) Transicao de fase topologica

Grupo de Simetria 1 . Grupo de Simetria 1 Parametro fino

Figura 7: (a) Transi¢io de fase segundo a teoria de Landau. (b) Transi¢io de fase topoldgica. Figura adaptada
de L. Tsui, F. Wang, and D. H. Lee, arxiv: 1511.07460v1.

futebol americano. Isso quer dizer que estes objetos pertencem a mesma classe topoldgica. Contudo,
perceba que ndo podemos transformar a esfera em uma rosquinha sem que fagamos um buraco na
sua superficie, o que caracterizaria uma deformagdo descontinua. Logo, a esfera e a rosquinha ndo
pertencem a mesma classe topologica. Considere agora uma caneca (com alga), podemos deforma-
la continuamente de tal forma que a mesma se transforme na rosquinha, entdo, esses dois objetos
pertencem a mesma classe topolégica. Note que, neste caso a diferenca entre a esfera ¢ a caneca ¢

essencialmente o nimero de buracos que a superficie possui.

Como dito anteriormente, o invariante topoldgico serd a quantidade que caracterizard a classe
topoldgica em questdo. No caso das superficies, classes distintas estdo associadas com o numero
de buracos, ¢ estes com o invariante topolégico chamado “genus” (g) (41). No exemplo acima, a
esfera possui g = 0 (nenhum buraco), jd a caneca possui g = 1 (um buraco), como possuem invari-
antes topoldgicos diferentes, pertencem a classes topoldgicas distintas. A disting@o entre as classes
topoldgicas nem sempre € tdo evidente como no caso acima, mas uma vez encontrado o invariante

topolégico, podemos classificar as diferentes classes topoldgicas.

Em matéria condensada, a ideia de topologia também pode ser usada para estudar a teoria de ban-
das, dando origem a chamada teoria topoldgica de bandas. Para isso, precisamos estudar a topologia
no espaco reciproco. Como ja dissemos, fases topoldgicas diferentes ndo podem ser conectadas de
forma suave, isso faz com que ao analisarmos a estrutura de banda, transicdes de fase topologicas

sejam caracterizadas pelo fechamento do gap em pontos protegidos por alguma simetria do sistema.

O vacuo é um isolante trivial do ponto de vista topoldgico, de maneira que exista uma equi-

valéncia entre o vdcuo e qualquer outro isolante topologicamente trivial, logo na superficie de um
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Lle ik O Y 4 3 holes
e, & : S ﬁ’\ electrical

b ® B S o'Foles conductance

1 hole
0 holes

Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences

Figura 8: Quantizacio da condutincia no efeito Hall quantico. Essa quantizagfo tem origem nas distintas fases
topoldgicas que o sistema apresenta que se diferem em nimeros inteiros associados com o invariante topolégico
da fase em questao.

isolante trivial, onde hé contato com o vacuo, ndo teremos nenhuma consequéncia fisica interessante,
uma vez que os estados de superficie podem ser conectados adiabaticamente com os estados de vacuo.
Porém, caso o isolante seja topologicamente ndo-trivial, seus estados diferem dos estados de vacuo,
entdao, nao existe uma conexao adiabatica entre os estados de superficie e os de vacuo, fazendo com
que hajam estados de superficie metalicos (“gapless”) uma vez que, neste caso, necessariamente deve
haver uma transicdo topoldgica na fronteira das duas regides. Essa ideia ¢ andloga ao fato de ndo
podermos conectar uma esfera com uma rosquinha sem que facamos uma deformagdo abrupta (ndo

continua), consequéncia destas superficies pertencerem a espagos topologicamente distintos.

A ideia acima explorada para isolantes pode ser estendida para supercondutores, uma vez que
os estados normais, caracterizados por quase-particulas de Bogoliobov também apresentam um gap
provindo do condensado supercondutor. Nas fases topologicamente ndo-triviais de sistemas supercon-
dutores € que ocorrem excitagdes de energia zero (isto €, sem gap) que se comportam como férmions

de Majorana. A seguir vamos aborda-los no contexto simples do modelo de Kitaev.

De maneira formal, em topologia, a relagdo de equivaléncia entre dois mapas ¢ chamada de
homotopia. Neste caso estaremos interessados em mapas que podem ser continuamente deformados

um no outro, caracterizando sua equivaléncia do ponto de vista topolégico. Para uma abordagem
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matematicamente rigorosa de topologia e suas aplicacdes em fisica veja a referéncia (41).

3.2.2 Invariante Topologico do modelo de Kitaev

A existéncia dos modos de Majorana estd associada com a fase topoldgica a qual o sistema se
encontra. Vamos entdo agora explorar os diferentes regimes topologicos do hamiltoniano de Kitaev

calculando seu invariante topoldgico.

Primeiramente vamos escrever (3.17) da forma

g A

H, = + Re[Ax]

:gk

A;; —&x

Usando as ja conhecidas matrizes de Pauli
01 0 —i 1 0
o = . o) = . o=
i 0 0 -1

10
Hy = h(k)-& (3.22)

podemos escrever

com
h(k) = ha(k)2+ hy()9 + h-(K)2,

G=0"%+V+0°%,

hy(k) = Re[Al,  hy(k)=Im[A], h, =&

Olhando para (3.18) ¢ (3.19) percebemos que

(k) = —hyy(=k) (3.23)
h (k) = h(=k). (3.24)
Vamos definir agora o vetor unitario
h(k) = }_’,(k) . (3.25)
A&l

O versor acima mapeia todo hamiltoniano (no espaco reciproco) em uma esfera unitaria S2. Das

relacdes de paridade acima ¢ facil perceber que nos limites da zona de Brillouin (k=0 ¢ k = ) temos
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hyxy(0) = hy y(m) = 0, onde usamos a simetria do sistema para considerar apenas o limite da zona de

Brillouin 0 < k < 7. Com isso podemos escrever

h(0) = 502 (3.26)

() = 5,5, (3.27)

Essas relagdes decorrem essencialmente do fato da supercondutividade no presente caso ser do tipo

p. Lembrando que & representa a energia cinética (3.18) e escolhendo a = 1, temos

h (k) = —u+ tcos(k). (3.28)

Perceba que o comeco ¢ término da trajetdria (limites da zona de Brillouin) ird coincidir com os
polos da esfera unitaria soZ € szZ. Estes dois pontos sdo identificaveis e, portanto, distintos. Perceba
que isso ¢ uma consequéncia da simetria particula-buraco, esta € a simetria que nos garante estados

topologicamente protegidos no presente caso.

Note que 59 € 5, nada mais sdo do que o sinal da energia cinética nos pdlos (medida em relagdo ao
nivel de Fermi) que claramente sdo 1. E razoavel procuramos alguma quantidade que seja invariante
do ponto de vista topoldgico. Note que sp € sr sozinhos nao revelam nenhuma fisica interessante.

Contudo, vamos analisar o produto sosz.

Quando variamos de k de 0 até 7 podemos observar dois comportamentos distintos. Sempre
que a trajetéria de h(k), sobre a superficie da esfera unitdria, for fechada teremos que, independente
do caminho que tomarmos, o produto sos; sempre serd positivo. Por outro lado, se tivermos uma
trajetoria que se fecha em algum ponto, correspondendo ao fechamento do gap, e portanto a transicdo
de fase topoldgica, entdo neste caso temos que oS, sempre serd negativo. Portanto, nesse contexto, o

invariante topoldgico pode ser definido simplesmente por (9)

V= $0Sx (3.29)

Quando v = 1 teremos um regime chamado trivial ou ndo topoldgico. Se v = —1 entdo temos o cha-

mado regime topoldgico. Usando a equagao 3.28 teremos que
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h(0)  t-p +1, se u<t

= _ _ (3.30)
T -l | —1, se p>t
(]
—f— +1, se > —t
SN0 bl p==t (3.31)
lh ()| |t —pl -1, se pu<-—t
Logo,
22 -1, se <t
V= Sosp = — b = <t (3.32)
|t =l +1, se |ul>t

a (b) :

s A—tcosk h
non-topological =1
(strong pairing) M= t (trivial) 1
topological (c) e
(weak pairing) v=—1
________________ (topological)

non-topelogical
(strong pairing)

Figura 9: (a) Energia cinética para o modelo de Kitaev.(b) Regime topoldgico trivial, observe que o gap se
fecha em determinado ponto.(c) Regime topolégico nao-trivial, perceba que o gap continua aberto neste caso,
distinguindo-se do caso trivial(b). Fonte: Reports on Progress in Physics, 75(7):076501.

Perceba que em y = +f temos exatamente a transi¢do de fase do regime trivial para o topolégico
(veja Fig. 9 (a)), essa transi¢cdo de fase € caracterizada pelos chamados “gapless states”. Vamos agora

analisar a energia no ponto de transi¢dao topoldgica. LLembremos que

Ep = Jei+ A,

e = —[u+tcos(k)], Ay = iNe? sen(k),

com
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para k = 0,7 (limites da zona de Brillouin) temos &pr = —[u£1] € Ax = 0, entio para u = £t temos

simplesmente que

Eor=0, com ==t (3.33)

Mas, perceba que como vimos antes essa ¢ exatamente a condi¢do para modos de Majorana em
supercondutores p-wave, por isso muitas vezes no contexto de matéria condensada chamamos modos
de Majorana de energia zero . Portanto, serd exatamente nos pontos de transi¢do topologica (“gapless

states”) que temos a ocorréncia de modos de Majorana.

Se o fio estiver no regime topoldgico, suas pontas, que fazem fronteira com o vacuo, vao apresen-
tar “gapless states” e, consequentemente, modos de Majorana. Isso decorre, como dito anteriormente,
pelo fato do vacuo ser topologicamente trivial, logo, necessariamente na interface dos dois sistemas
deve haver uma transi¢cdo de estado topoldgica para que se conectem. Para acessar a fisica dos modos
de Majorana neste sistema vamos decompor o férmion regular (efetivamente sem spin) em termos de
dois férmions de Majorana da forma
oi/2

2

cj= (vB,j+1vaA,j)- (3.34)

Os operadores de Majorana obedecem as relagﬁes canonicas
Ya.j = a.j ( : )

WajsYar.j} = 20006 - (3.36)

Escrevendo a equacdo (3.10) em termos dos operadores de Majorana teremos
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N oi9/2
2

ST N i :
(yB,j_lyA,j) 5 (VB,j+l)’A,j)

0i9/2
2

12 .
7 (YB,j+1 +1YA,j+1 )]

g~k )

42 i .
7 (VB,J-H_WA’jH)T(VB,j“‘WA,j)]

AN igl2 g2
2

(g A Bt iva )
s o912 pid]2

2 2

Opojor + Va2 VB 1VA))- (3.37)

Manipulando matematicamente a equagao acima e usando (3.35) e (3.36) encontramos

N . 1

M . .
H= 3 Z(l + lVB,jVA,j) 1 . [(A+ t))’B,jVA,jH +(A- t))’A,jVB,jH] . (3.38)

J=1 J

O hamiltoniano acima se torna extremamente simples em dois casos limites. Primeiramente va-
mos analisar o caso em que u # 0 ¢ t = A =0, analisando a equagdo 3.32, perceba que neste caso temos

v = +1. Ou seja, corresponde ao regime trivial. Aplicando esse essas condigoes em (3.38) obtemos

N
u .
H=-% ;(1 +iyB YA (3.39)

Note que todos os modos estdo ligados entre si. Considerando o outro limite dado pelas condicoes
u=0etr=A#0. Neste caso, analisando (3.32), temos v = —1, correspondendo exatamente ao regime

topoldgico. Neste caso temos que (3.38) fica simplesmente

. N-1
i
H= _Et; YB.jYA,j+1- (3.40)

Perceba que este regime possui uma caracteristica interessante. Veja que o primeiro termo da
soma de (3.40) conecta dois modos de Majorana de sitios diferentes através de yp1ya2 € o ultimo
termo da soma conecta ygn-1va.N. Mas veja que os termos ya,1 € Ypn ndo aparecem no Hamiltoni-

ano. Isto que dizer que eles estdo desacoplados € ndo possuem custo de energia algum para o sistema
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(veja figura 10). Perceba que isso s6 € possivel no regime topoldgico, evidenciando a importancia do

mesmo para a apari¢do dos modos de Majorana. Talvez fique mais claro se escrevermos o Hamilto-

niano neste limite em termos de um operador fermionico ordindrio, definindo

1 .
dj= 5(7A,j+1 +1YB,j), (3.41)
o Hamiltoniano (3.40) fica
N-1
H=1 (d*d - —) (3.42)
j=1

Note que no Hamiltoniano acima fica evidente o termo que ndo depende da soma, esse termo esta
associado exatamente aos modos de Majorana nas pontas do fio. Note que ele estd desacoplado do
resto do Hamiltoniano, e ¢ chamado termo de energia zero (porque ndao ha custo algum de energia
para adiciona-lo). E importante ressaltar também que qualquer operador fermidnico regular pode
ser decomposto em uma parte real e imaginaria como fizemos acima, consistindo nada mais do
que uma técnica matematica sem desdobramentos fisicos. Contudo,no presente caso, os estados
topolégicamente protegidos nas pontas do fio garantem a fracionalizacdo do férmion em dois mo-
dos de Majorana espacialmente separados, mostrando que, neste caso, esse formalismo descreve um

fendmeno fisico e ndo consiste apenas um método algébrico (34).

Veja que mesmo que estejam a uma distancia muito grande, sempre formardo um férmion regu-
lar (Eq. (3.41)). Essa ndo-localidade dos modos de Majorana ¢ bastante interessante para possiveis

aplicacdes em computacdo quantica (8, 9, 14, 34).
(a)

a—0 a—0 @@ eee @O

A1 By YA B2 Qs B3 YA,N VBN
(b)

OC——OC—_OC—“ 9 @

-~

YA,1 YB.1 YA,2 fB,2 YA,3 TB.3 TA,N VBN

Figura 10: (a) Limiteem que u #0er=A=0e(b) u =0, 1= A # (), perceba que neste limite temos na ponta
da cadeia ya,1 € ypn formam um modo de Majorana de energia zero. Fonte: Reports on Progress in Physics,
75(7):076501.
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3.3 Supercondutividade efetiva do tipo p

Como dito anteriormente, precisamos de um sistema que possa suportar supercondutividade do tipo p,
isso pode ser feito utilizando os seguintes ingredientes: Um supercondutor usual do tipo s proximo a
um fio quantico com forte interacdo spin-6rbita € um campo magnético aplicado perpendicularmente
a direcdo do fio. Vamos mostrar que estes elementos sdo capazes de nos gerar um estado onde os

elétrons dos pares de Cooper produzam um emparelhamento do tipo tripleto.

4o
'L 1D wire

X

s-wave superconductor

Figura 11: Campo magnético aplicado em um fio quéntico préximo a um supercondutor. Fonte: Reports on
Progress in Physics, 75(7):076501.

Vamos descrever separadamente cada termo do Hamiltoniano do sistema citado acima. Como
dissemos, o fio quantico em questdo precisa possuir acoplamento spin-6rbita, para nossos propdsitos
iremos considerar o acoplamento spin-6rbita tipo Rashba (42). O Hamiltoniano de Rashba no fio ¢
dado por (43, 44)

Hg ==Y iacl, | Z(Fsw xDejy +H.e. (3.43)
iy

onde &5y = (0,0~

gt ss,,a‘is,), O'g 880 as ja conhecidas matrizes de Pauli. Perceba que no capitulo 1

as descrevemos usando x = 1, y =2 e z = 3, tal escolha € sé uma questao de notacdo. Temos ainda
T

j+l.s
com projegdo de spin §” ¢ H.c. significa hermitiano conjugado. O termo « nos da a intensidade do

ue ¢ cria um elétron no sitio j+ 1 com projecido de spin s € ¢; aniquila um elétron no sitio j
5

acoplamento ¢ dado por @ = VEsot, Eso = m*@?/2h, onde m* é a massa efetiva do elétron no fio, &
p

a constante de Rashba ¢ ¢t o parametro de hopping. Primeiramente note que

6)-”, XX = O-;Cs' O-is' O-is' = O-is'y_o-is'z
1 0 0
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Com isso, € facil ver que

/Z\-(J_ss' X}C\) = _O-y ’

AN

e lembrando que

obtemos

(—ia)Z.(Fsy XX) = iaoy, = a/[ 01 (1) ]

Escrevendo explicitamente agora o hamiltoniano de Rashba temos

— i i o 'y
Hp = Z a/(ch’chi —Cg Gt C Gy~ chcJH,i). (3.44)
J
Devido ao campo magnético aplicado no fio também surgird um termo de energia Zeeman no fio, este

serd importante para quebrar a degenerescéncia de spin. Esse termo € descrito por

H.= Y Vel ot cjv, (3.45)
Jjss’
onde V; € energia de Zeeman que aparece devido a aplicagdo do campo magnético ao longo do eixo
”z”. A energia de Zeeman € dada por
V. =gupB., (3.46)

onde up ¢ o magneton de Bohr ¢ B, ¢ a componente do campo magnético na direcdo z, € g o fator
de Landé. Esse fator ¢ modificado pela intensidade do acoplamento spin-6rbita, de sorte que, mesmo
que apliquemos um campo magnético pequeno, se tivermos um sistema com forte acoplamento spin-
Orbita, ou seja com alto fator de Landé, teremos uma energia de Zeeman considerdvel. Entdo ¢é
desejavel que o fio quantico possua forte acoplamento spin-6rbita, dois bons exemplos sdo fios feitos

de InAs e InSb (9, 42). Podemos ainda por a expressao (3.45) numa forma mais simpatica usando

1 0
o =
0 -1
e escrevendo os termos de spin explicitamente, o que nos conduz a

H. = VZZ(chc =l (3.47)
7
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Temos ainda os termos

He=—p ) (chep+chicp), (3.48)
J
onde u € o potencial quimico. Finalmente, o termo de tunelamento entre os sitios do fio é dado por

Hy= =t ) (cl,) cjs+chein, (3.49)
js

onde 7 € o elemento de matriz entre funcdes de onda localizadas em distintos sitios, que permite um
elétron ir de um sitio a outro. Por simplicidade consideramos sendo iguais para todos os sitios. Esses
dois dltimos termos correspondem ao fio sem acoplamento spin-6rbita e efeito Zeeman. E possivel
induzir um par de Cooper no fio devido sua proximidade com o supercondutor. Esse efeito pode
ser justificado de forma fenomenoldgica ou rigorosa por meio de fungdes de Green (45-48). Vamos
simplesmente supor que induzimos supercondutividade no fio externo € do tipo s, de sorte que o termo

de supercondutividade sera dado pela expressao
Hee =AY (clet +cppep), (3.50)
J

onde A ¢ a magnitude do par de Cooper. Note que essa ¢ uma supercondutividade do tipo s. Temos

entdo que o Hamiltoniano total do fio serd dado por
H=H,+H,+H.+Hgr+ Hy,
ou de forma explicita,
H= Z[(—/J + Vz)c;chT + (—pu— Vz)c;lcji] - IZ(C;H’SCJ'S + C;SCJ'+]’S)

J Js

+ Za,(cjﬂ,chl —Cin G + Ci G+ — CjTCj+1,¢)
J

+A Y (et +epep). (3.51)
j

Para que a fisica fique mais clara, vamos diagonalizar o Hamiltoniano de Rashba. Para tanto

vamos aplicar as seguintes transformacoes

1 :
Cjr = —=(cjrticsy)

V2

1 .
Cj- = —=(cjp —icjy).

V2
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Consequentemente, as transformagdes inversas serao

1
Cir= —\5(614 +cj-)
1
Cjy = —@(Cﬁ = Cj-)-

Perceba que o que fizemos fisicamente foi rotacionar a base de spin dos elétrons. Afim de escrever os

termos de (3.51) nesta nova base, note que

1 1

C;chT = —(cT. +c;_)(cj++cj_):—(cT. cj++c;+cj_+c;_cj++c;_cj_),
(l)( i)

cjicjl = (T c;_)(cj+—cj) 2(cj+cj+—c;+cj_—c;_cj++c;_cj_).

Temos ainda que

i _ At _ . . i _ .
CJ+1 SCJS + CJSCJ+1’S - c]+1,TC~IT + CJTCJ+1’T + CJTCJ+1’T + c]+1,~Lc~I‘L + c]l,c]-'—l’l"

Na nova base ficamos com

i 1 1 1 1
Cir1aCit T CpCitn T ol Chy | CLH €5 a1

_ _ i ) o, o
= Cj+1’+CJ+ + Cj+1’_cj_ + Cj+CJ+1’+ + Cj_CJ+1,_.

Os termos de emparelhamento se transformam como

tof f
CiCip = 2(61++C )(c cj_)
P I
= (e cj=cjep),

i
cicip = —5lcje—ci-)cjr+cjo)
2

i
= _E(Cj+cj_ - Cj_Cj+).

Somando os dois dltimos termos obtemos

i
C;Tc;l +Cjicir = 3 [(c;_c;Jr +Cj-Cjs)— (C;Jrc;_ + cj+cj_)].
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Usando as relagoes de anti-comutagao

[C;+,C;_]+ =0, [cj+,Cj-1+ = 0

ficamos com

ol

t _o b .
nCiteicit = l(Cj_Cj+ —CjrCjo).

Utilizando os resultados acima podemos escrever as Eqs. (3.47), (3.48), (3.49) ¢ (3.50) como:

H, = Zc _cjtcheg, (3.52)
He=—-p Y (ch cjo+clei), (3.53)
j
H, = —tZ(cj+1,+cj+ + c; 1_Cj-+ cj+cj+1,+ + C;_Cj+1’_), (3.54)
Hy = iAZ(aj_oL —CjCjo). (3.55)

Por altimo vamos calcular o termo de Rashba. Para tanto, note que na nova base temos

i I . | T T ot .
Civ1pCil = 2(cj+1,+cf+ Cia1,4Cjm ¥ Cjyq Cjx = Cjyy Cj-)
i L Ll ) i . aF .ot .
Cirp Cim = 2(6j+1,+cf++cj+1,+cf— Ciy1—Cj+ = C iy _Cj-)
CT- Ci+ly = (C C'+1,+—CT- Cj+1,+—CT-_Cj+1,+—CT-_Cj+1,—)
JAARRl) A J* J J

_ i
C;T6j+1,¢ = _E(CJ+Cj+1,+—C;+Cj+l,—+C;_Cj+l,+—cj_cj+l,—)-

Substituindo estes resultados na equagdo (3.44) obtemos

Hg = iaZ(C;+Cj+1,+ +olf

j+1,-Ci= _c;+1,+cj+ _CT-_Cj+1,—)- (3.56)
J

J
Todos os célculos até agora foram feitos no espago real, porém a fim de estudarmos a topologia do
sistema, comparando com o modelo de Kitaev (se¢do 3.2.2), precisamos saber como se dd a forma

deste Hamiltoniano no espago reciproco. Para isso vamos fazer uma transformada de Fourier discreta

da forma
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1 —ikx; ¥ 1 tkx; T
Cjp = ——= e ey, €., = —— e e,
‘/N; jh /_N; kh

com h = +,—. Aplicando a transformada de Fourier em cada um dos termos da Eq. (3.51). Para o

termo de Zeeman temos

1 T RN
H,= NVZZ Z(e’(k k)chZ_ck/++e’(k k)x’cllck,_).
7 kK

Lembrando que
1 T
N Z el(k_k )xJ = 6kk'7 (3.57)
J
temos

Ho=V. ) (c]_crs +c,cr). (3.58)
k

O termo do potencial quimico no espago reciproco fica

H, = —/JZ Z(ei(k_k )xfc,t+ck,+ + itk )xfc,t_ckz_)
7 kK

He = -t ) (cl,crs +_ci). (3.59)
k

Transformando agora o termo de hopping

t T T o e
H, = _N Z Z €lk(x]+a)6‘;;+ck/+€ ik’ x; n €lk(x]+a)6‘;;_ck/_€ ik x; n
7w

. o .
€lkaCZ+Ck/€ ik (ch+a)_i_elkxjc?L

— ’ .
! cp-e ik (xj+a)'

H, = —IZ(C£+C]<+ + cZ_ck_)e’k“ + (CZ+ck+ + cZ_ck_)e_’k“.
3



Podemos ainda escrever de forma mais compacta,
Hy =t ) (c} cor)(e™ +e7k),
k,r
de onde obtemos

H, = —ZIZ chckr cos(ka).
kr

Para o termo de Rashba podemos escrever

i ibx i (% k(s ik s
Hy = N Z Z e’kxfclle’k (xj+a)ck,+ n €lk(x]+a)6‘;;_ck/_€lk X _
T

4 . L & S . . 217 .
¢ lk(xj+a)c;;+ck,+ezk Xj_ elkxj c,t_ck/_e’k (xj+a)

HR — lG’Z clt+ck+(eika _e—ika) + c;{'_ck_(e—ika _ eika)
k
Hp =2« Z(CLCH - c,t_ck_)sen(ka).
k

Por ltimo, temos

iA o ar g o
H,. = N Z Z elkxjc;;_elk XJCZ,_'_ + elkxjc;;_elk XJCI-Z'_'
7KK

Fazendo aqui &’ = —k e usando a relagio (3.57) obtemos
Hye=iA Y (cp el +epace)
k

Temos entdo que (3.51) no espago reciproco fica como

i Tt

H= Z [8k+c£+ck+ + 8k_cZ_ck_ + VZ(CZ+ck_ + ck_ck+) + iA(Ck—C—k+ - c_k+ck_)] .

k

Onde
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(3.60)

(3.61)

(3.62)

(3.63)
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&ry = —i—2tcos(ka) + 2asen(ka) (3.64)

&r— = —u—2tcos(ka) — 2asen(ka). (3.65)

Para nossos propositos vamos escrever (3.63) da forma

H=H+H,, (3.66)

onde separamos o termo supercondutor de (3.63). Perceba também que podemos escrever Hj na

forma matricial como

£ V C
H1=(CZ+ c,t_) o .
V. & Ck—
Por meio de célculo direto podemos ver que

er V. Ck+

T z I f T T

( Crp Cp_ ) = Ek+Cp, Ch+ T E-Cp_Cp—+ Vzck+ck_ + Vzck_ck+,
V. &r- Ck—

que nos da exatamente todos os termos de (3.63), com excegdo do termo supercondutor. Vamos agora

diagonalizar Hy, definindo E; como os autovalores, temos

ey — Ep V.
VZ gk_ _Ek

=(. (3.67)

Que nos da
(exs — Ex)(ex—Ex) = V2 =0

El% —E(epy + e )+ epi € — sz =0.

As solugdes da equacdo acima sao
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+er- 1
B = HEE LS e e - deen +4V.
Spe e 1
PO o b 4 e e +4V2
+er- 1
% =3 \/(gk+ — &) +4V2,

Note que os valores i, € g;— sdo dados por (3.64) ¢ (3.65), respectivamente, de onde obtemos

1
E.(k) = —p—2tcos(ka) + > \/16a/zsen2(ka) +4V2,

Ou, finalmente

E.+(k) = —u—2tcos(ka) + \/4a2sen2(ka) + V2. (3.68)

Até aqui apenas diagonalizamos o Hamiltoniano afim de obter a relagdo de dispersdo € vermos como

—2 -2 0 2 Y
1 = o > Z k/a
kla . ~ . ~

Figura 13: Relagio de dispersdo para V, # 0 (B#0).
Figura 12: Relagfo de dispersdo para V, =0 (B=0). Note que a degenerescéncia em &k = () desaparece de-
Perceba que temos uma degenerescéncia exatamente vido a polarizacdo dos spins induzida pelo campo
em k = 0, impedindo assim a existéncia de estados magnético aplicado. Permitindo acoplamento p-
“spinless®. wave.

o campo magnético desdobra os niveis destruindo a degenerescéncia em k = 0 (figuras 12 e 13). Pre-
cisamos agora adicionar o efeito da supercondutividade nas bandas. Vimos que o emparelhamento
supercondutor esta relacionado com as projegdes de spin, para isso precisamos voltar para a base ori-

ginal (T, ]). Isto pode ser feito através das transformagdes inversas
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1 .
Cky = _2(CkT +iCk))

\/_

1 .
Ck- = —=(Crp —iCky).

V2

Computando agora os termos de interesse

cZ+ck+ = %(c,tTckT + ic,tTcki - ic,tlckT + c,tlcki),
cZ_ck_ = %(c,tTckT - ic,tTcki + ic,tlckT + Cky Cky)s
c,Lck_ = %(c,tTckT - ic,tTcki - ic,tlckT - c,tlcki),
cZ_ckJr = %(c,tTckT + ic,tTcki + ic,tlckT - c,tlcki),
c,t_cijr = %(c,tchkT - ic,tchkl + ic,tlcjkT + c,tlc,tl),
CoptCh— = %(c_chkT —IC_gpCr +IC g Ck + C—g| Ck])

e substituindo as relacoes acima em (3.63) obtemos

H= Z[(—/J —2tcos(ka) + Vz)c,tTckT + (—u—2tcos(ka) — Vz)cltickl]
k
+ [21'a/sin(ka)cT Crl — 21'a/sin(ka)cT Cri]
KUk kCk
k

+ > Aefel + o). (3.69)
k

Como fizemos anteriormente, vamos escrever o Hamiltoniano da forma

H=H, +H,

onde agora
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H :( CZ CZ ) —u—2tcos(ka)+ V, 2iasin(ka) Ckt . (3.70)
T ! —2iasin(ka) —u—2tcos(ka)—V; Ck|

Se diagonalizarmos H; iremos obter novamente

E.+(k) = —u—2tcos(ka) + \/4a2sen2(ka) + V2.

O que era esperado, uma vez que as transformacdes feitas apenas efetuaram uma rotagio na base do
sistema. Precisamos também encontrar os autovetores do sistema. Para isso considera o problema de

autovetores geral

=0, (3.71)

que nos d4 autovalores da forma

Ei+E E— Fy\?
LT N [Ty

Vamos determinar primeiramente os autovetores do autovalor E.:

e

E-E., p ar | _,
ﬁ* E,—E, b+ -

com isso obtemos a relagdo

(E1—Epa,+pb, =0
_(El _E+)Cl

b, =
B

.. (3.72)

Usando (3.72) e a condi¢c@o de normalizagdo que la. > +1b4|*> = 1, obtemos



2
|a+|2[1+w]:1

812
a2 (1B + (E1 — E)?| = |1~

Escolhendo a, real, obtemos

|ﬂ| b, = (E1—Ey) ﬁ*

ay

Para o autovalor E_ teremos

()
B E> b_ b_
E,-E_ B a_ o
g E-E- )\ b )
Resolvendo (3.74) obtemos
Bra_+(Ey—E_)b_=0

__ BB
g

Usando novamente a condi¢do de normalizacio e escolhendo b_ real obtemos

(E;—E_) B b 18]

Comparando (3.70) com (3.71) temos

Ei=—u—-2tcos(tka)+V,
Ey=—u—2tcostka)—V;
B = 2iasin(ka)

B = =2iasin(ka).

T JE BB NE—E+B B

CE-E )+ BB B+ BE
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(3.73)

(3.74)

(3.75)
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Vimos que para o caso geral que os autovetores tomam a forma

o = 18] pooo EIZED B
JE—E. 2 +|B2 VE —E )2+ |7 Bl

L BBy B B
JE-E B E-E_ 2 +1BR

Se usarmos as expressoes acima para Ep, E> e fizermos algumas manipulagdes algébricas ficamos

com os coeficientes

2
a, = a|sen(ka)| ’ (3.76)

\/ 2 \[4a2sen2(ka) + V2 [ JHa2sen2(ka) + V2 V.

\/4a/zsen2(ka) +V2-V,
—i

b, = sign(k), 3.77)
2 \/ 4a?sen?(ka)+ V?
\/4a/zsen2(ka) +VZ-V,
a. =i sign(k), (3.78)
2 \/ 4atsen(ka)+ V?
2alsen(ka)|

b (3.79)

\/ 2 \[4a2sen2(ka) + V2 [ JHa2sen2ka) + V2 V.

Onde sign(k) € a chamada fung¢io sinal, ela retorna apenas o sinal de k. Agora que conhecemos 0s

autovetores, podemos escrever iy € ¢xy em funcdo de g+ € ¢x— da forma
Ckr | _ a, by Ck+
Ck| a_ bf Ck—

Cry = Ay Ch + D Cp— (3.80)

*

Que corresponde as relagoes
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Cry = A’ ck+ + b cr. (3.81)

Perceba que tais transformagdes aparecem de forma mais natural quando voltamos para a base defi-

nida pela proje¢do dos spin. Usando isso podemos agora escrever o termo supercondutor nessa nova

base,entao

Hy, = AZ[a+(k)cZ+ +b.(k)e)_Na—(=k)c", +b_(=k)c',_1+Hee.

AZ{a+(k)a (- k)ck ol i + b, (k)b_(— k)ck ¢l L
+a,(0b_(=k)c} ¢’ _+bi(~ka-tc,_cl }+He.
Que podemos escrever ainda como

C—AZ{a+(k)a (- k)ck+c k++b+(k)b (- k)ck ¢l L

+[a ()b—(=k) = by (~k)a_(K)c] ', _}+H.c. (3.82)

Note que usei a notacdo a,(k) uma vez que os autovetores sdo fungdes unicamente de k. Usando os

valores que encontramos para os autovetores podemos calcular

iasin(ka) iasin(ka)
as(k)a_(—k) = . bi(k)b_(=k) = .
A sin?(ka) + V2 a2 sin?(ka) + V2
A% sen*(ka
a, (b (k) = (ka) ,

2 \[4a2sen?(ka) + V2 [ JHa2sen2(ka)+ V2 - VZ]

\/ da?sen?(ka)+ V? -V,

b (=ka_k) = )

2 \/ da?sen?(ka)+ V?
Temos ainda que
V.

a(k)b_(=k)— b (-k)a_(k) =

\/ 4a?sen(ka)+ V?

Com isso podemos escrever (3.82) como

C—AZ[fp(k)(ck+c k++ck ¢l ke )+fs(k)c cik_]+H.c. (3.83)
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onde

iasen(ka) 2

Jp(k) = s fs(k) = :
\/ 4a?sen?(ka) + V?

(3.84)
\/ 4a?sen?(ka)+ V?

Note que f,(k) € uma funcdo impar, que tanto almejdvamos, fs(k) corresponde a uma fungdo par,
o emparelhamento do tipo p conecta elementos intra-banda, ja o emparelhamento do tipo s acopla
elementos inter-banda (figura 12). Precisamos agora encontrar um regime onde ndo haja emparelha-
mento do tipo s, mas apenas do tipo p. Isso vai acontecer quando o potencial quimico se encontrar
entre as bandas, de forma que os elétrons e buracos que se encontrem nesse regime estarao todos com
a mesma projecao de spin (figura 13).

Vamos escrever agora o Hamiltoniano na forma de Bogoliubov-de Gennes apresentada no capitulo

anterior
1 t
H= 3 ; ‘qu'{klyk.

Definindo agora ‘P,t = [c,t_, C_k—, cZ L C—k+], temos que Hi para o presente sistema toma a forma
[ E.(k) AfK) O 0
Ak —-E_(k) Afyk 0
g | M0 B0 ALK 385)
0 Afsk)  Eqk)  Afpk)
0 0 Af;(k) —E (k) |
A matriz acima pode ser subdividida em dois sub-espacos da forma
H, H
Hop Hg
onde
[ E_(k) Af,k E k) Af,k
R N T 3.56)
| Afp(k) —E_(k) Af, (k) —E(k)
0 0 0 Affk
Hpy = : Hop = 1 ®) (3.87)
| Afs(k) O 0 0
+

Note que Hpg = H/,,,. Da equagdo de Schrodinger temos que

oF

H WYy = EYg, (3.88)
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explicitamente temos que

( Hp Hpg ]( op ]:E[ op ]
Hgp Hg )\ ¢¢ gy

Vamos nos concentrar apenas no sub-espago P, considerando apenas a proje¢do do espago (0 no
mesmo. Para isso vamos considerar hda uma grande separagdo energetica das bandas representadas

por Hg ¢ Hp. Com isso da equacdo acima temos

(HP+HPQ(E_HQ)_1HQP)¢P =FE¢p
que nos leva entdo a um Hamiltoniano efetivo
ﬂp(K) :HP+HPQ(E—HQ)_1HQP. (389)

Podemos expandir o denominador da expressdo acima da forma

Hp(K) = Hp+Hpo(E—Hp) 'Hopp
~ Hpo|. Hp (Hg\’
= HP+T|:1+F+(F + ... HQP
Matricialmente temos
. 11 0 0[O0 A 1 0 0| Eik A 0 A
Foto = Hpad hl, L (&) Af, i,
ElAf;, 0[O0 0 EZLAfr Ol Afy —Ex) [0 0
B 0 0 . 0 0
0 NfE | |0 NfIE
Substituindo a expressdo de Hp temos
N E_(k) Afp(k)
Hp)~| e fszf*Aal (3.90)
Afy (k) —E_(k)+ =+ EPZ

Assumindo

E~FE_=—pu-2tcos(ka) + \/4a/zsen2(ka) + V2
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e para k pequenos temos cos(ka) = 1; sen’(ka) ~ 0 vemos que

AR A
E 2+ |V |-’

Perceba que se tivermos |V, — | > A, com ji = u+ 2¢, podemos escrever

E-(k) Afpk)
Af;(K) —E_(K)

Hp(k) ~ : (3.91)

Portanto, temos um regime onde se apresenta apenas emparelhamento do tipo p ¢ juntamente
com a simetria particula-buraco possibilita a existéncia dos modos de Majorana. Observe também
que precisamos de uma grande energia de Zeeman (V) para que haja um um emparelhamento efetivo
do tipo p.

Vamos agora fazer a conex@o com o modelo de Kitaev. Para isso vamos escrever (3.91) explicita-

mente, usando (3.84) temos

E ( k) iAasen(ka)
- A/ 2
7-{p (k) = —iAasen(ka) o s;nZEIZI)HVZ : (3.92)
v 40 sen? (ka)+ sz -

Expandindo os termos dependentes de k para seus pequenos valores, obtemos

iAasen(ka) N iAaka N iAaka
\/4a/2sen2(ka) +V? \/4a2(k2a2)+ V2 12

Nos dando entido

E_ ]~€ iAaka
Hp (k) ~ S0 (3.93)
—iAaka —E_ (k)
[Vl
onde k ¢ a dependéncia em k préximo a origem. Fazendo o mesmo para (3.17) ficamos
—E_(k) iAeka
Hi(k) ~ ( : - (3.94)
—iAe™%ka  E_(k)

Podemos entdo estabelecer a relacdo
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(04
Atitaey = mA, (3.95)
z

onde Agjger = Ae?, A corresponde a supercondutividade induzida no fio pelo supercondutor. Esse
resultado ocorre quando estamos proximos do fundo da banda superior € o topo da banda inferior
(figura 13). Se o potencial quimico se encontrar entre as bandas, entdo € possivel acessar estados com
emparelhamento supercondutor do tipo p (tripleto). Note que € desejavel que |V,| seja considerdvel,
de tal forma que a razdao «/|V,| seja razoavelmente pequena, fazendo que o emparelhamento super-
condutor seja pequeno (equagdo (3.95)), o que corresponde exatamente ao regime topolégico (v = —1)

do modelo de Kitaev.

Vimos que o que difere o regime trivial € topologico é o fechamento do “gap® protegido por
alguma simetria do sistema, como ja discutimos. Portanto, para que tenhamos a passagem do regime

topolégico para o trivial temos necessariamente que o gap deve fechar.

Discutimos acima o caso limite onde ||Vz| —fi| >> A, onde mostramos o mapeamento do sistema
proposto no modelo de Kitaev. Contudo, podemos analisar melhor a estrutura de bandas do sistema e
a fase topologica do mesmo se usarmos o Hamiltoniano de Bogoliobov-de Gennes em sua totalidade
(3.85). Primeiramente vamos analisar o caso onde temos o campo magnético aplicado (Vz =0). O
resultado € mostrado na figura 14. Perceba que a estrutura de bandas apresentam a simetria particula-
buraco presente do Hamiltoniano de Bogoliobov-de Gennes, isso se reflete no fato da estrutura de

bandas ser simétrica com relagdo a E(k) = 0.

Para campos magnéticos fracos, como na figura 15, temos que o gap em k = () se abre, mas ob-
serve que a regidao de acesso do potencial quimico correspondente a emparelhamento supercondutor
do tipo p ainda € muito limitada. Isso decorre do fato das bandas de diferente helicidade (curva azul e
vermelha da figura 15) estarem muito proximas, impossibilitando a eliminagdo da supercondutividade
do tipo s, que como vimos anteriormente, conecta elementos de diferentes bandas. No entanto, perce-
bemos que o gap fecha em k = () exatamente para o valor de V;, = VA? + ji2, como mostrado na figura
16, caracterizando entdo a passagem do regime trivial para o regime topoldgico ¢ ¢ exatamente onde
ocorre a formagao de modos de Majorana, o valor da energia de Zeeman critica pode ser encontrado

diagonalizando analiticamente o Hamiltoniano (3.85) (9, 17).

Os resultados acima sdo calculados no ”bulk” do fio supercondutor. Logo, precisamos que o fio
se encontre em um regime topoldgico para que sua fronteira com o vacuo apresente “gapless states” €

consequentemente, a presenga de modos de Majorana nestes pontos. Entdo para que o sistema esteja
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-3 —2 ) 0 1 2 3
k/a
Figura 14: Estrutura de banda do fio supercondutor para campo magnético nulo. A linha tracejada corresponde

a posicao do potencial quimico com relagdo ao fundo da banda, definida por i = u+2¢. A escolha do alto valor
da interac¢fo spin-6rbita («) ¢ apenas para a melhor vizualizacdo das bandas.

'Vy=0.5¢
A =0.25¢
a=2.0t

-3 -2 -1 0 1 2 3
k/a

Figura 15: Estrutura de banda do fio supercondutor para pequeno campo magnético. A linha tracejada corres-
ponde a posicao do potencial quimico com relagdo ao fundo da banda, definida por i = u +2¢. Perceba que a
regido de acesso a emparelhamento supercondutor do tipo p € bastante limitada.

na fase topoldgica precisamos obedecer a condicio

Vel > A2 +ji2, (3.96)

a figura 17 mostra o fio supercondutor no regime topoldgico. Apesar de limites proximos da transicdo

de fase topoldgica ndo apresentarem supercondutividade do tipo p muito robusta, ainda assim obser-
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'V, =2.01t
A=0.25¢

a=2.0t

) -1 0 1 2 3
k/a

Figura 16: Estrutura de banda do fio supercondutor. A linha tracejada corresponde & posigdo do potencial
quimico com relacio ao fundo da banda, definida por i = u+2¢. O gap se fecha em & = 0, caracterizado pela
energia de Zeeman critica V;, = 4/A% + i, no presente caso Vi =~ 2.01z.

varemos modos de Majorana, uma vez que os mesmos tem origem topoldgica e sé podem desaparecer

caso haja a interface com uma fase trivial.

'V, =2.95¢
A =0.25¢

a=2.0t

-3 —2 ) 0 1 2 3
k/a
Figura 17: Estrutura de banda do fio supercondutor, com Vz > V7. A linha tracejada corresponde a posigdo

do potencial quimico com relagdo ao fundo da banda, definida por i = u+ 2¢. Neste caso o supercondutor é
topolégico e sua interface com o vacuo (trivial) ird suportar modos de Majorana.
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4  Estados ligados de Andreev e Majorana
em pontos quanticos

4.1 Motivacao

Nos capitulos anteriores discutimos em detalhes os mecanismos responsaveis pela formagdo de
estados ligados de Andreev e Majorana. O primeiro surge na jun¢ao de sistemas normais com super-
condutores usuais, enquanto o segundo aparece na interface de um sistema trivialmente topoldgico

com um supercondutor topologicamente ndo trivial.

Estados ligados de Andreev

E ¥ ¥
B
S
= il — —_—
5 e - et i
o X — ——
é » .#‘ A
§ ,j — oa _—
= !
(=9
&
Estados ligados de Majorana
3
=
S Pt .
=] o A ; =
= —_— —
=1
o
2
[
(=N
=

Figura 18: Esquematizacio do contato entre um nivel ressonante e um supercondutor usual (figura superior) e
topoldgico (figura inferior). No caso usual vemos a formac@o do estado ligado de Andreev, enquanto na inferior
a presenca do modo de Majorana. Fonte: Figura elaborada por Edson Vernek e adaptada pelo autor.

Por simplicidade, vamos considerar apenas um nivel ressonante em contato com um supercondu-
tor, trivial em um caso e topoldgico no outro, os fendmenos associados com esse tipo de juncdes estao
esquematizados na figura 18. Note na figura superior a presenga de um estado ligado de Andreev, ca-

racterizado pelos picos duplos e simétricos com relacdo ao nivel energético do nivel ressonante. J4 na
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figura inferior podemos observar a transferéncia do modos de Majorana do supercondutor usual para

o nivel ressonante, como previsto em (49).

Apesar dos dois fendomenos descritos acima ja serem extensivamente estudados, pouca atengao
tem sido dedicada para a influéncia que um possa exercer no outro (19, 20). Devemos entdo procurar
um sistema simples que possa suportar os dois fendmenos e que, além disso, possibilite o acoplamento

de um com o outro como mostrado na figura 19.

O
O
¢
]
¢
)
]
]
]
1
'
'
[
[
.
.

Interface Topolégico —

Figura 19: Esquematizacdo de um sistema que suporte tanto estados ligados de Andreev quanto de Majorana
e que possibilite a interagdo entre ambos. Fonte: Figura elaborada por Edson Vernek e adaptada pelo autor.

Para estudarmos entdo os dois fendmenos e sua interagdo propomos um sistema de estudo que €
composto por dois pontos quanticos acoplados entre si € 0s mesmos acoplados cada um a um respec-

tivo reservatdrio metélico € a seu supercondutor (veja figura 20).

Figura 20: Sistema de estudo. Dois pontos quanticos acoplados entre si e os mesmos a acoplados a reser-
vatdrios metdlicos e fios supercondutores, sendo que o supercondutor SC2 apresenta uma fase topoldgica.

No limite de banda larga os reservatérios metélicos apenas vao oferecer um alargamento ao nivel do

ponto quantico. Contudo, aqui os supercondutores serdo tratados em sua totalidade, para o célculo
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das propriedades espectrais do mesmo usaremos o método iterativo descrito em detalhes na proxima

secdo. O Hamiltoniano do sistema € entdo dado por

H = Hdots + HSC + Hleads + Hdot—leads + Hdot—SC + HT’ (4~1)
onde
Hgyos = gi,sdzsdi,s’ 4.2)
i=1,2,s
Hieads = ) 80ksChy (Crks (£=3,4), (4.3)
K,s
Haot-leads = Z <V3d;sc3,lg,s + V4d;,sc4,lg,s+H'c') ’ 4.4)
Kk,s
Hdot—SC =— Z (Vld;sc—l,s + Vzd;’scl,s) + H.C., (4.5)
s
Hr = —V122<d;sd2,s +d;’sd1,s). (4.6)
s

Na expressdo acima temos que dzs(d,-, s) cria (aniquila) um elétron no ponto quantico correspondente
com energia ;s € Spin s € c;k’s(c{;k, s) cria (aniquila) um elétron no reservatério metalico com momento
k e energia g 5. V1 € V2 denotam o acoplamento com os cadeias supercondutoras, V3 e V4 sdo
os acoplamentos do PQ com seu respectivo reservatdrio metalico, ¢ por ultimo, Vi, representa o

acoplamento entre os PQs.

O Hamiltoniano das cadeias supercondutoras Hgc deve ser analisado cuidadosamente. O super-
condutor 1 (SC1) representa apenas uma cadeia supercondutora usual (BCS). J4 o supercondutor 2
(SC2) apresenta também interagdo spin-6rbita € um campo magnético aplicado perpendicularmente
a0 mesmo, para que 0 mesmo possa ser mapeado em uma cadeia de Kitaev que apresenta estados
topologicamente protegidos, capazes de suportar modos de Majorana.

Explicitamente temos que Hsc = Hy + H>, com
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H| = Z(llcjﬂ,scj,s+Alc;,TC;,¢+H'C')’ 4.7)
j=1

— [ 1
H, = Z [5(—/¢+ VzO'is)C;’st,s—QC;H’SCj,s
j=L.s
+Azc;,Tc;,¢ + H.c.] + ia/Z(c;H’sa'zs,cj,sr +H.c.).
j=1

ss’

4.8)

Note que H; ¢ igual a H; se fizermos Ay = Ay, tp =1, u = Vz = a =0, por isso vamos considerar
no cdlculo iterativo H; e basta considerarmos as escolhas acima para representarmos Hi. Podemos

escrever de uma forma mais explicita o termo H; sob a forma

o [ 1 1 1 to
H> = Zl [5(—/,& Vzo‘is)cj’scj;s—tzcj+1’scj,s+Azcj’ch’l+H.c. (4.9)
]= )
t t t t
+az(cj+l,chl+cj¢cj+1aT_cj+1,¢ch_chcj+1al)'
j=1

E interessante notar no dltimo termo da expressdo acima que ao tunelar de um sitio para outro, o

elétron precessa seu spin, isso ¢ uma consequéncia do acoplamento spin-6rbita do tipo Rashba.

4.2 Calculo iterativo da funcao de Green para a cadeia supercon-
dutora

Vamos agora calcular a fungdo de Green do fio supercondutor descrito por H;. Para isso vamos
usar um método iterativo, de tal forma que consigamos descrever a fungdo de Green da ponta do
cadeia (j = 1) renormalizada pela interacdo com o restante da cadeia. Definindo a funcdo de Green

retardada:

Gjs.jr(8) = (cjssch Mo (4.10)
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Que obedece a seguinte equagdo de movimento

£ js: ¢l e = S5 + (e js HL: €] e (4.11)

Afim de demonstrar o método recursivo adotado, comecemos pelo calculo da fun¢do de Green do

sitio j = N — 1. Sua equagao de movimento € dada por

EUCN-1.5:Chy_y Mo = Ossr + (len-1.5. HI cly_y Me (4.12)

Substituindo na equagdo de movimento o Hamiltoniano (4.9) e usando novamente a relagdo
[A, BC]_=[A,B]+C - B[A,Cls, 4.13)

obtemos
len-11.H] = en-11CN-11 —tCNg + AC]TV_M —aCN,,
len-1,y. H]l =én-1,cn-11 —tCN, — Ac;\,_m +acyy,
ondeeny_1p=—p+V,een1  =—u—-V,.

Com isso ficamos com as seguintes equagdes de movimento:

ECN-113C_y e = Ons +En_1q{len-11sCy_y e — KlenTs ey e

AUk el Ve +allengselyy e, (4.14)

ECN-1.43 g e = 0L +En 1y {len14s ey e —Klenys ey e

—A(el_ 3oy e —alenns g Ve (4.15)

A equagdo de movimento das fungdes de Green de Gor’kov serdo dadas por:
et et We=6rg + (et LHlieh ) (4.16)
N-1,1""N-1,¢7//8 = “Ts N-1,p° O N1/ e .

el ey e = O1y + ek ey Mo (4.17)



Usando novamente o Hamiltoniano (4.9) e a relacdo (4.13) temos

T

[CN—LT’H] = —SN_LTC]TV_LT + tc]TVT —Acy-1, +G’C]Tv’l,
c
[CZTV—I,UH] = —SN_]’lC;-V_l’l + tC}L\,l +Acy-11 —G’C]TV’T.

Obtemos as equacdes de movimento

ey 1 15l Ve = =eN-17Ch_; 13 Eh_y Mo = Alen-11:¢h_; oMo

(el el o Me+ (el sehy o Ve

kg 3Ny e = =eN-1L ek 3Ol o Ve + AUeN-1134_ o Ve

+t<<c;v, K CL_LS,»S - a((CLT; CL_LS,»S.

As equagdes acima compdem o conjunto de equacdes de movimento:

T

(€= EN-1DEN-11: Che_y Ve = Brp + Ak 3 Chy o e = Henms el e

+a{eny: Chy_y Mo

(€= EN-1)UEN-13Ch_y Do = By = AUk Chy o De = 1leny: oy o De

—a{{cnrs Cva_l,s/»e

(E+EN-1DUCK_ 113 iy g Mo = =AULCN-11:Ch_y o Do+ 1Lkl o De

+a<<c;v X CL_LS,»S

(E+EN-1)UCk_ 1 3Choy Do = DUen-11:¢]_y oMo+l seh_y oMo

T

—l{Cpps ey Ve
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(4.18)

(4.19)

O conjunto de equacdes acima pode ser descrito de uma forma mais conveniente se definirmos o

spinor de Nambu \¥; = ( Cit Ciy cj

Tl

al ) . Com isso podemos definir a fungdo de Green no espaco



de Nambu
Gij(e) = (¥i®¥]))..

de forma explicita temos

CiT

Ci
Gi,j(g):<< Tl ®( C;T CL it Ci )>>

ciT
T
cil,

ao realizarmos o produto tensorial obtemos

(esel e Cemsel Mo Lemsepde Kenicj)e
(eisel e Weqscl e Cesepe (eisende
(efsei e (elscl e Kehiepe (elsende
(ejreiNe (elpel Ve elsee (ejeie

G &)=

Assim, as equacdes de movimento podem ser escritas na forma matricial

Gn-_1n-1(8) = gn-1n-1(8) + Nn_1 N-1()AGN_1 N-1(E)

+gn-1 N-1(EtGNN-1(8),

com
= 0 0 0 ~ —a 0 0
© =5 0 0 — -1 0 0
g-’-g: » =
” 0 0 =L 0 0 0 ¢ «a
etéer
o 0o 0 0 0 a ¢
EtE|
c
00 0 A
0 0 -A 0
A=
0 -A 0 0
A 0O 0 0
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(4.20)

4.21)

(4.22)

(4.23)

(4.24)
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Manipulando a Eq. (4.22) podemos escreve-la sob a

(1 —gn-1.n-1(&)A) GN-1.n-1(8) = gN-1.N-1() + EN-1.N-1(ENGN N-1(&).

Definindo a fun¢do de Green
g,/(6)=1-g; &N 'g;i(e) .

que representa a fungdo de Green livre local renormalizada localmente devido a presenga da super-

condutividade. Podemos entiio escrever

Gr-1.n-1(8) = 8n-1.N-1(&) + Bn_1 N-1(EtGN N-1(8E). 4.25)

Note que esta equagdo ¢ uma equacdo de Dyson na forma matricial. Perceba que, uma vez que
conhecemos a fungdo de Green do sitio N, podemos entdo calcular a do sitio N —1, ¢ assim por
diante de forma iterativa, de tal forma que podemos calcular a funcdo de Green do primeiro sitio
renormalizada devido a presenga de todos os outros. Na maioria dos casos a fungdo de Green do sitio
N ¢ dada pela funcdo de Green de um udnico sitio desacoplado do resto da cadeia, sendo a condigdo

inicial do problema.

Podemos ainda calcular Gy y-1(g) através de sua equacdo de movimento que € simplesmente

dada por
Gry-1(8) = Bun(Et Gy v-1(8). (4.26)

Substituindo o resultado acima na equagdo de Dyson para Gy—1 n—1(€) obtemos:
N N -1,
Gn_1n-1(8) = [1 —SN-1.N-1 (8)th,N(8)tT] Sv-1.n-1(8). 4.27)

Observe que desta forma expressamos a fungdo de Green apenas em termos da fungdo de Green local

gny-1.~-1(&) renormalizada devido a presenga do sitio N do supercondutor.

Podemos ja perceber que para uma cadeia semi-infinita a funcdo de Green que leva em conta a

ponta da cadeia (j = 1), representada por Gy y(e) € igual a Gy—; n—1(€), ou seja
Gyn(Ee) =Gy n-1(8), N — oo. (4.28)

Levando isso adiante, obteriamos uma equagdo matricial de segundo grau, cuja solucdo forneceria

de forma analitica exata a fung¢do de Green para a extremidade do fio. Entretanto, a solugdo de uma
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equacdo matricial de segundo grau s6 € possivel em condi¢des muito especiais, ndo contempladas

no presente caso. Assim, precisamos resolver a mesma numericamente. Como todos os termos do

Hamiltoniano sdo quadraticos, teremos que a solucdo serd numericamente exata.

A solucdo numérica consiste em calcular as fungdes de Green iterativamente, comecando do
ultimo sitio da cadeia supercondutora e entdo cdlculando a fungdo de Green do sitio anterior renor-
malizada pelo sitio posterior. De forma que, consigamos calcular a funcdo de Green da ponta da
cadeia renormalizada pela presenga de todos os outros sitios. Para a convergéncia de nossos calculos
usamos uma cadeia de 20 mil sitios. Detalhes sobre o método iterativo aqui usados sdo discutidos na

referéncia (50).

4.3 Funcoes de Green dos Pontos Quanticos

Uma vez que conhecemos as fungdes de Green das cadeias supercondutoras, podemos calcular
as funcdes de Green dos pontos quanticos acoplados as mesmas. Para isso vamos definir os spinors
de Nambu para os pontos quanticos denotada por ¥y = ( dp dj leT lel )T, com /= 1,2. Vamos
primeiramente considerar os pontos quanticos desacoplados entre si, mas acoplados a seus reser-
vatoérios metélicos e cadeias supercondutoras. Usando as Eqs. (4.2), (4.4) e (4.5) podemos escrever

as equagoes de movimento

Gaai(e)
Gi1:(e)

ga(e) + 8a(e)ViG11(8), (4.29)
&1.1(e)V Gale), (4.30)

onde G;,1;(¢) € a fungio de Green do primeiro sitio da cadeia supercondutora a qual o ponto quantico
se acopla, ela ¢ calculada via (4.28) ¢ Ggrai(e) = ((Ya ®‘Pjﬂ))g a fungdo de Green do ponto quantico

no espago de Nambu. Temos ainda que

1
e—gp+ill 0 0 0
0 —L 0 0
ga(e) = ereurit 1 (4.31)
0 0 etep+il 0
0 0 0 1
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c
Vi 0 0 0
0 Vi 0 0
V= , (4.32)
0 0 -vi 0O
0 -V

onde I’ = 7V2/2D, onde usamos Vs = V4 = V, com D sendo a metade da largura da banda de conducio.
Este ¢ o alargamento do nivel do PQ devido ao acoplamento com o reservatorio metédlico (limite de

banda larga). Resolvendo as equagdes de movimento acopladas temos

Gara®) = [1-ga(@Vignn@V! | gale) = 8a(e). (4.33)

Perceba que o ponto quantico conectado a sua respectiva cadeia supercondutora foi reduzido a

um problema de sitio unico com a fungdo de Green efetiva g4;(¢).

Podemos, finalmente, acoplar os dois pontos quanticos entre si, que agora sao representados por

dois sitios efetivos. Usando a Eq. (4.6) se pode notar que a equacdo de movimento de ambos ¢ dada

por
Gaa1(e) = 8n(©)+8inVi2Gara1(e), (4.34a)
Gapale) = gdz(S)VIZGdl(S) (4.34b)
e
Gow(e) = Ene)+8nV ,Gaanle), (4.35a)
Gaan(e) = 8n(©)ViaGale), (4.35b)

com G,41(8) = (T2 @] Mo, Gar.an(e) = (Fa1 @1 ) €

Via 0 0 0

0 Vi 0 0
Vi = . (4.36)
0 0 -Vip 0

0 0 0 -V
Isso nos permite entdo escrever a funcdo de Green para cada ponto quantico
~ ~ -1,
Garai(e) = |1-gn (@ Viga@V],| &), (4.37)
~ ~ -1,
Ga.ar(e) = [1-8a(e)V],801(e)V12 | Ba(e). (4.38)
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Observe que todas as informagdes nao locais estdo contidas nas fungdes de Green efetivas, de tal

forma que as equagdes acima possuem toda a informagao dos reservatorios e das cadeias supercon-
dutoras, portanto, para conhecermos as propriedades espectrais locais do sistema de pontos quanticos
duplos em sua totalidade basta usarmos estas expressdes, uma vez determinada as fungdes de Green

efetivas de cada um.

4.4 Densidade de estados

Uma vez que conhecemos as fungdes de Green dos pontos quanticos, podemos calcular grandezas
fisicas relevantes para nossos propositos, como a densidade de estados local (LDOS), que como ja

vimos € dada em termos da funcdo de Green na forma

1
pi(e) = ——Im [«di,s;dzs»], (i=1,2). (4.39)

No limite em que o acoplamento entre os PQ’s ¢ muito maior do que o alargamento dos niveis,
I' << Vi, o sistema encontra-se em um regime que chamaremos de molecular, uma vez que neste
limite os niveis individuais dos PQ’s se hibridizam como em uma molécula. O regime I' >> V15, por
sua vez, sera chamado de regime atdmico. O regime molecular ¢ melhor entendido se definirmos os
operadores

1
di,s = %(dl,sidls)v (440)

que agora nos da a densidade de estados molecular local (MLLDOS)

s piE)+p5E) _ 1
Pie) = = F Im|(dy iy )+ (] D).

Perceba que no limite V2 — 0 temos que a MLLDOS se torna apenas a média aritmética da LDOS dos
PQ’s.

Do ponto de vista tedrico, € interessante também definirmos a chamada funcdo de Green de
Majorana
Mg, (&) =71 Ye)) (coma =A,B), (4.41)

onde os operadores de Majorana vy, sao dados por

Yai = %(f +f). vw= —% (fis— 1) (4.42)
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onde f; s € um operador fermionico regular genérico, como por exemplo d; ;. Note ainda que

+ ,
vai= () s v ) =200 Bawbs, (4.43)

que sdo as propriedades fundamentais dos férmions de Majorana. E interessante expressarmos a
funcdo de Green de Majorana em termos de operadores fermidnicos regulares usando as relacoes

acima, com 1sso obtemos

RO AR R ARSI R /RS ) R (CART AR B (4.44)

Al Al(g) =

e e

My o) = [Wiss )+ (S fish) = Chstfish) = I ], (4.45)

O resultado acima nos mostra dois elementos fundamentais para a existéncia de modos de Majorana
no contexto da matéria condensada: supercondutividade e emparelhamento supercondutor do tipo p.
Isso pode ser observado no surgimento de fungdes de Green anomalas (fungdes de Green de Gor’kov),
que sdo diferentes de zero em sistemas supercondutores, cujo sinal ¢ exatamente o que difere as ex-
pressdes Mf‘l 4 € MISSz B
com mesma projecao de spin, diferente do que no caso da supercondutividade usual do tipo s, mas

Note ainda que, as funcdes de Green de Gor’kov aparecem para componentes

caracterizando supercondutividade do tipo p, que como ja dito extensivamente, pode suportar modos

de Majorana.

Devemos enfatizar que ndo faz sentido falarmos de nimero de ocupacdo para y,i, mas apenas
para férmions regulares formados pela superposi¢do de modos de Majorana. Por isso, ndo podemos
definir uma densidade de estados de Majorana, mas podemos definir sua funcdo espectral para um
dado spin s da forma

D (&) = —llm[Ms 1 (4.46)

cn 1)

que como veremos adiante, nos auxiliara na analise dos resultados.

4.5 Resultados

Para nossos cdlculos numéricos usamos 11 =, = = 10 meV, I = 5x 1071 ¢ também escolhemos
£1 = & = 0, também escolhemos os valores A; = Ar = 0.025¢ ¢ o = 0.07¢. Os valores acima foram

escolhidos devido a valores realisticos previamente estudados experimentalmente (44, 51).
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4.5.1 Configuracao de pontos quanticos desacoplados (V12 = 0)

Para analisar em detalhes os fenomenos fisicos possiveis do sistema proposto vamos observar as
propriedades espectrais na configuragdo em que os pontos quanticos estdo desacoplados, € quando
eles se acoplam. Ambas configuragdes apresentam caracteristicas interessantes. Na configuragdo de
pontos quanticos desacoplados iremos abordar em detalhes a transicdo de fase topoldgica, variando
parametros tais como potencial quimico e energia de Zeeman. Ja na configuragcao de pontos quanticos
duplos estaremos interessados em analisar a coexisténcia de estados ligados de Andreev ¢ Majorana

e como se relacionam.

Primeiramente, vamos estudar a configuracdo de apenas um tunico ponto quantico acoplado a
um supercondutor topoldgico, para isso vamos fazer Vi, = 0 e calcular as propriedades espectrais
do PQ2 que esta acoplado ao supercondutor que apresenta fase topologicamente néo trivial. Nesta
configuracdo vamos variar o potencial quimico da cadeia supercondutora u ¢ a energia de Zeeman
Vz que € proporcional ao campo magnético aplicado na cadeia, analisando entdo as consequéncias na

densidade de estados local do PQ2, os resultados sdo mostrados na figura 21.

QD2

1.0

0.0

0
00 04 08 12 0.000 0.025 0.050
—p/t Valt

Figura 21: Densidade de estados local (LDOS) do PQ2 em unidades de 1/al" para ambas componentes de
spin, variando a energia, o potencial u (esquerda) ¢ energia de Zeeman Vz (direita). Na esquerda mantemos
Vz = 0.05¢ fixo e variamos u, € no lado direito variamos a energia de Zeeman Vz mantendo fixo o potencial
quimico em u = —1.017. As linhas tracejadas denotam a transi¢do de fase topoldgica corroborando com o

critério Vz > A2+ 2, com i = pu+1.

Vamos primeiro analisar o caso em que variamos g, mantendo Vz fixo (painéis do lado esquerdo

da figura 21). Perceba que, para u = 0 observamos dois picos correspondentes a estados ligados
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de Andreev resultante do efeito de proximidade ao supercondutor SC2 [figura 21(a)], os mesmos

sofrem um pequeno desdobramento, consequéncia do campo magnético aplicado. A medida em que
diminuimos u de u = 0 até pu = —t, os picos caracteristicos de Andreev desaparecem. Isso decorre pelo
fato de que a medida que variamos o potencial quimico aumentamos a assimetria entre particulas e
buracos, isso dificulta o processo de reflexdo de Andreev, que ¢ formada por elétrons e buracos, como

jéa discutido anteriormente.

Contudo, o regime mais interessante encontra-se na regido delimitada pelas linhas tracejadas da
figuras 21(b) e 21(d). Esse regime caracteriza a transicdo de fase topoldgica do regime trivial para o
ndo trivial, que, como dissemos anteriormente, corresponde a abertura do gap em k = 0 definida por
Vz > \/m, comi=p+t,oupu€[—t— (VZ—A)l/z, —+ (VZ—A)l/z], para os parametros escolhidos
temos entdo que o critério acima € respeitado para u € [—1.043¢,—0.957¢] que corresponde exatamente

a regido tracejada no painel acima, para os cdlculos acima também escolhemos V; = 0.008t.

Na transi¢do de fase topoldgica ocorre a formagdo de modos de Majorana nas pontas do fio
supercondutor, que como ja dissemos, sdo caracterizados por energia zero ¢ por serem ~metade”
de um férmion regular. Ambas assinaturas presentes na LDOS do PQ2 na regido tracejada, uma
vez que um modo de Majorana “vaza” para o PQ (49). Esse fenomeno ocorre mesmo quando o
PQ ¢ interagente, veja a Ref.(52). Perceba também que temos a presenca de modos de Majorana
apenas para a componente de spin down, uma vez que, os modos de Majorana podem aparecer apenas
mediados por correlagdes de mesma projec¢do de spin, no presente caso, spin down. Se invertermos o

sinal de Vz serd a componente de spin up e que sera acoplada com o modo de Majorana.

Vamos agora analisar o caso onde variamos Vz ¢ mantendo o potencial quimico fixo (painéis
do lado direito da figura 21). Acima do valor critico V;, = VA% + 12, note a presenga de um modo
de Majorana em energia zero, figura 21(d), note também préximo a linha tracejada dois picos que
rapidamente se desdobram para energias distantes de zero. Isso ¢ um efeito da fracionalizacdo do
férmion regular em dois modos de Majorana, um deles presente na ponta do fio acoplada ao PQ ¢ o
outro na outra ponta, que no caso em questao se encontram separados por uma distancia infinita, uma
vez que consideramos um fio semi-infinito. A interagdo entre os modos de Majorana € proporcional
a e~¢L (9), onde & ¢ o comprimento de coeréncia ¢ L o comprimento do fio. Assim, para um fio

semi-infinito temos essencialmente que os modos de Majorana ndo interagem entre si.

Afim de conectar nossos cdlculos com grandezas experimentais, ¢ interessante analisar a densi-
dade de estados local em energia zero, isso porque a condutancia diferencial em experimentos, por

exemplo de STM é proporcional a densidade de estados nesse ponto!. Logo, na figura 22 é mostrado a

lveja o Apéndice C.2
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Figura 22: Densidade de estados local(LDOS) em energia zero do PQ2 para ambas componentes de spin,
variando o potencial u (esquerda) e energia de Zeeman Vz (direita) usando os mesmos pardmetros da figura 21.

LDOS em energia zero para o sistema na configura¢ao acima abordada. E interessante notar que, pelo
menos na configuragdo de tnico PQ, estados ligados de Andreev ¢ Majorana, no presente contexto,

nao coexistem.

A densidade de estados em energia zero ¢ também interessante por outro motivo. Quando ana-
lisamos com mais cuidado a mesma podemos perceber a acentuada descontinuidade da mesma no
ponto de transi¢do de fase topoldgica. Podemos entdo fazer uma pequena alusdo com as transicoes
de fase usuais (LL.andau) de primeira ordem. Contudo, perceba que, como ja dissemos, a transi¢do de
fase topoldgica ndo estd associada com alguma quebra espontanea de simetria, mas sim com o inva-
riante topoldgico da fase em questdo. Dito isso, podemos afirmar que tais descontinuidades podem
indicar, em certas condi¢des, transi¢des de fase topoldgicas em experimentos de STM, fazendo com

que abordagens como a nossa sejam relevantes para futuras andlises experimentais.

4.5.2 Configuracao de dois pontos quanticos acoplados (V13 # 0)

Vamos agora analisar o sistema em sua totalidade, considerando agora o acoplamento entre os
pontos quanticos. O acoplamento do PQ1 com o supercondutor SC1 da origem a estados ligados
de Andreev como ja discutido anteriormente. J4 o acoplamento do PQ2 ao supercondutor SC2 ira
abrigar um modo de Majorana no regime topoldgico de SC2, como estudado extensivamente na secido

anterior.
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Mostramos que na configuragao de um unico ponto quantico, a coexisténcia de estados ligados

de Majorana ¢ Andreev ndo € possivel. Porém, perceba que na configuragdo de ponto quantico du-
plo podemos conectar os dois pontos que apresentam separadamente estado ligado de Majorana ou
Andreev ¢ ver como esses estados ligados interagem. Para isso, vamos analisar a LDOS de cada PQ

como fun¢do do acoplamento entre eles Vi2. Com o intuito de analisar tanto o regime trivial quanto

QD1 QD2
Vi <V3 (c) Vyz <V

1.0

0.0

3 4 5
Vi/T Vio/T

Figura 23: Densidade de estados local(LDOS) do PQ1 e PQ2 em unidades de 1/al para componentes de spin
down, em fun¢ao da energia ¢ acoplamento entre os PQ’s V2. Sao mostrados os resultados para a fase trivial
(painéis superiores) ¢ para a fase topoldgica (painéis inferiores), perceba na fase topoldgica a passagem do
modo de Majorana do PQ2 para o PQ1 para grandes valores de V.

o topolégico do SC2 vamos usar diferentes valores de energia de Zeeman. Vimos que a transi¢ao
de fase topoldgica ocorre para V5, = A2 + i, para os pardmetros usados temos que a energia de
Zeeman critica € V5, ~ 0.027t. Logo, para os cdlculos no regime trivial usaremos Vz = 0.02t <V ¢
para os cdlculos do regime topoldgico usamos Vz = 0.05¢> V7. Usamos tamb€m para nossos cdlculos
V1 =0.008¢t ¢ Vo = 0.002¢. A escolhas de V; e V, simplesmente afeta a posicdo ¢ a intensidade dos
picos de Andreev, mas nio interfere nos fendmenos fisicos em questdo. Os valores escolhidos foram

apenas para uma melhor visualizacdo.

O ponto quantico 1 sempre ird apresentar estados ligados de Andreev, uma vez que ele se encontra
conectado ao supercondutor SC1 que possui apenas uma fase topologicamente trivial. Por outro lado,
o PQ2 ir4 apresentar um tnico pico em energia zero, relacionado a um férmion regular, que pode ser
fracionalizado em modos de Majorana dependendo da fase de SC2, como discutido anteriormente.
Uma vez que os modos de Majorana se acoplam apenas a uma componente de spin, vamos discutir

separadamente os casos para cada uma delas.
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Para a componente de spin down, figura 23, observamos para a fase trivial (painéis superiores) os

dois fendmenos citados acima, para o PQ1 observamos os estados ligados de Andreev, que por sua
vez se desdobram a medida que o acoplamento entre os PQ’s aumenta, o mesmo ¢ observado para o
pico em energia zero do PQ?2, relacionado a um férmion regular. Contudo, na fase topoldgica (painéis
inferiores) ocorrem fendomenos ainda mais interessantes. Perceba para pequenos valores de Vip a
LDOS do PQ2 apresenta um pico em energia zero ¢ com metade da altura de um férmion regular,
denotando entdo o modo de Majorana, 0s outros picos que aparecem em energias ndo nulas corres-
pondem ao outro modo de Majorana que se separa do modo em energia nula devido a fracionalizagdo.
No entanto, note que para valores maiores de V12 o modo de Majorana “vaza” do PQ2 para o PQ1,
denotado pela presenga de um pico em energia zero, agora na LDOS do PQ1. Isso mostra que para
acoplamentos grandes o modo de Majorana se transfere de um ponto quintico para outro. E inte-
ressante notar também que existe uma regiao de coexisténcia entre o estado ligado de Andreev ¢ de
Majorana, que vai desaparecendo a medida que a interacdo entre os PQ’s se torna muito maior que o

alargamento dos niveis I', veja a figura 23(b).
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Figura 24: Densidade de estados local(LDOS) do PQ1 e PQ2 em unidades de 1/al para componentes de spin
up, em funcdo da energia ¢ acoplamento entre os PQ’s Vi;. S@o mostrados os resultados para a fase trivial
(painéis superiores) ¢ para a fase topoldgica (painéis inferiores), perceba que para grandes valores de Vs o
PQ2 apresenta modos de Majorana mediados pelos estados ligados de Andreev.

Como ja discutimos em detalhes na secdo 2.1, a reflexdo de Andreev consiste de uma reflexdo de
um elétron em um buraco, com momentos € spin opostos, logo, estados ligados de Andreev podem
fornecer canais que conectam as diferentes componentes de spin do sistema. Como jd dissemos, 0s

modos de Majorana se conectam apenas com uma das componentes de spin. No entanto, devido a
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mecanismos como a reflexdao de Andreev, que estdo presentes no PQ1, pode conectar os modos de

Majorana indiretamente com outra componente de spin. Para observamos esse fendmeno calculamos
a LDOS também para a componente de spin up mostrada na figura 24. Perceba que na LDOS do PQ?2,
para grandes valores de V15 temos a presenga de um pico fraco correspondo a proje¢do do Férmion de
Majorana do PQ2, que ¢ intermediada pelos estados ligados de Andreev. Observe também que o sinal
do modo de Majorana ¢ muito mais fraco do que para a componente de spin down que se conecta
diretamente com o mesmo. Isso decorre pelo fato do acoplamento indireto com a componente up ser

um processo de alta ordem.
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Figura 25: Fungio espectral de Majorana (MSF) no regime trivial do PQ1 ¢ PQ2 em unidades de 1/al" para
componentes de spin up, em fun¢do da energia ¢ acoplamento entre os PQ’s V1».

Para melhor entender a presenca de modos de Majorana nesse sistema, vamos fazer uso da fungdo
espectral de Majorana (MSF), definida na Eq. 4.46. Como j4 dissemos anteriormente, a fungdo es-
pectral de Majorana ndo corresponde a um observavel, mas nos ajuda a confirmar as propriedades
singulares dos modos de Majorana. Primeiramente vamos considerar o regime trivial, onde nao ha a
presenga de modos de Majorana, a MSF para spin up ¢ down ¢ mostrada na figura 25 e 26, respectiva-
mente. Note, nos painéis (c) e (d) das figuras 25 e 26, que em energia zero, para pequenos valores de
V12, temos que os dois modos de Majorana, aqui denotados por A ¢ B se encontram energeticamente
superpostos, mostrando que correspondem simplesmente a um férmion regular denotado na base de
Majorana. A partir de V5 ~ T vemos o desdobramento usual dos niveis. E interessante notar também
que, na fase trivial, ndo temos essencialmente nenhuma diferenga entre as diferentes componentes de
spin da MSF (figuras 25 ¢ 26).
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Figura 26: Fungio espectral de Majorana (MSF) no regime trivial do PQ1 ¢ PQ2 em unidades de 1/al" para
componentes de spin down, em funcio da energia ¢ acoplamento entre os PQ’s Vi,.
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Figura 27: Funcio espectral de Majorana (MSF) no regime topolégico do PQ1 e PQ2 em unidades de 1/al’
para componentes de spin up, em fungdo da energia e acoplamento entre os PQ’s V2. Note a presenga de um
modo de Majorana em energia zero no PQ2 apenas para valos grandes de Vs,

Por outro lado, no regime topoldgico temos a presenga de modos de Majorana no sistema, a
MSF pode corroborar com tal caracteristica. Com esta finalidade calculamos a MSF dos PQ’s no
regime topoldgico para ambas componentes de spin, os resultados sdo mostrados nas figuras 27 ¢ 28.
Para a componente de spin down do PQ2, figura 28(c), podemos perceber claramente a presenca de
um unico modo de Majorana em energia zero, enquanto o outro modo se encontra energeticamente

separado,figura 28(d), confirmando a separacdo espacial dos modos de Majorana. Como ja observado
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Figura 28: Funcio espectral de Majorana (MSF) no regime topolégico do PQ1 e PQ2 em unidades de 1/al’
para componentes de spin down, em fungdo da energia e acoplamento entre os PQ’s Vi». Perceba a separacio
energética entre os modos de Majorana A ¢ B em PQ?2.

nos resultados anteriores, para grandes valores de Vi2 o modo de Majorana se transfere de um ponto
quantico para outro. Para a componente de spin up, figura 27, observamos, no painel (c), a presenca
de um modo de Majorana em energia zero apenas para valores muito altos de Vi, provindo da conexdo

entre as diferentes componentes de spin devido aos estados ligados de Andreev.
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Figura 29: Densidade de estados local molecular (MLLDOS) no regime topolégico em unidades de 1/al" para
ambas componentes de spin, em fungdo da energia ¢ acoplamento entre os PQ’s V2. Perceba que neste caso
ndo temos PQ1 e PQ2, mas os orbitais moleculares +.
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Dos resultados acima percebemos que ocorre uma mudanga de comportamento quando Vi ~ T

Isso ocorre porque, neste caso, passamos de um regime “atdomico” para um regime “molecular”.
Como ja definimos anteriormente temos que o regime atdmico ¢ denotado Vi << I e o regime mo-
lecular para Vi, >>TI', onde a passagem de um regime para o outro ocorre para Vi, ~I'. No regime
atomico o sistema ¢ melhor descrito pelas componentes individuais de cada PQ, como fizemos nos
célculos anteriores. Entretanto, para valores muito grandes de Vi3 se faz interessante pensar nao mais
em cada PQ individualmente, mas sim como uma molécula de dois niveis, devido a forte hibridizacio
dos niveis nesse limite. Para analisar o regime molecular usaremos entdo a densidade de estados local

molecular (MLLDOS) definida pela Eq. (4.41), mostrada na figura 29.

No regime molecular a nogdo de PQ1 e PQ2 como entes separados perde o sentido ¢ se faz mais
interessante pensar nos dois como um sistema de dois niveis com orbitais moleculares denotados
aqui por “+” ¢ “=". Observe na figura 29 que para pequenos valores de Vi, a MLDOS nio passa da
média aritmética da LDOS de cada um dos pontos quanticos, como ja dito anteriormente. Contudo,
¢ para valores grande de Vi que se faz interessante a MLLDOS, observamos que nesse regime para
ambos orbitais nos temos a presenga do modo de Majorana caracterizado novamente pelo pico em
energia zero, sendo mais evidente para as componentes de spin down, ¢ quase imperceptivel para
a componente de spin up. Isso decorre, como ja dissemos, devido ao acoplamento indireto com o
Majorana através das reflexdes de Andreev, nas componentes de spin up. E interessante notar também
que os estados ligados de Andreev se faz presente em toda molécula, mesmo para Vip >> 1. Isso ¢
caracterizado pelo fato de que, os picos satélites, em torno de energia zero, devido a Andreev se

2

encontram separados no orbital ”+” ¢ 7", tanto para spin up, quanto para spin down (figura 29). Por
outro lado, o estado ligado de Majorana, denotado pelo pico em energia zero, se encontra em ambos
orbitais atomicos. Isso significa que o modo de Majorana sempre estd ligado a um orbital atomico
em questdo. Isso decorre porque 0 modo de Majorana sempre se encontra ligado a um dnico ponto

quantico, revelando, no presente contexto, seu cardter atdmico, ou seja, altamente localizado.

Com o intuito de conectarmos novamente com a observagdo experimental dos fendmenos aqui
citados vamos analisar com mais cuidado a LDOS em energia zero do sistema de pontos quanticos
duplo. Vamos analisar o caso onde variamos o acoplamento Vi € também onde variamos a energia

de Zeeman, para observamos a transicdo de fase topoldgica nessa configuragao.

Ao variarmos o acoplamento entre os PQ’s V12 observamos na LDOS em energia zero no regime
trivial que no PQ1 vemos que a mesma ¢ muito pequena devido ao desdobramento provindo dos es-
tados ligados de Andreev figura 30(a). Ja para o PQ2 vemos que a LDOS em energia zero € presente

em grande intensidade ¢ a medida que o acoplamento Vi, aumenta ela diminui devido ao desdobra-
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mento provindo desse acoplamento figura 30(c). Note que ha degenerescéncia entre as componentes

de spin, isso decorre pelo fato de que, no regime trivial, o sistema ndo apresenta modos de Majorana,
que influéncia, drasticamente, a componente de spin a qual se acopla diretamente, quebrando entdo a

degenerescéncia das componentes de spin.

No regime topoldgico, analisando a curva correspondente a componente de spin down, que aco-
pla com o modo de Majorana, observamos que ela se reduz pela metade [figura 30(d)], caracterizando
a fracionalizacdo do férmion regular em um modo de Majorana. Perceba que a medida que o acopla-
mento Vi, aumenta o modo de Majorana passa do PQ2 para o PQ1 figura 30(b). Isso fica evidente no
aumento da LDOS da componente de spin down neste painel, a partir de Vi, ~I', acompanhada da
diminui¢ao da componente de spin down do painel 30(d), indicando entdo a transferéncia do modos
de Majorana do PQ2 para o PQI.

1.0 QD1 ‘ QD2
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Figura 30: Densidade de estados local (LDOS) em energia zero dos PQ’s em func¢fo do acoplamento V. No
regime trivial (painéis superiores) ¢ no regime topoldgico (painéis inferiores).

Novamente, ¢ interessante analisarmos a LDOS em energia zero em funcdo da energia de Zeeman
para compararmos a evolucio da fase trivial para a fase topoldgica do sistema. Para isso analisamos o
sistema tanto no regime atdmico quanto no regime molecular, os resultados estdo mostrados na figura
31. Perceba que no regime molecular, acima da energia critica de Zeeman observamos para o PQ?2
a presenca do modo de Majorana figura 31(c), novamente caracterizada pelo pico de energia zero a
meia altura. No regime molecular figuras 31(b) ¢ 31(d), observamos acima da energia de Zeeman
critica a aparicdo do modo de Majorana, sé que agora no PQ1 caracterizando a transferéncia do modo

de um ponto quantico para outro, como argumentado anteriormente. A andlise mais cuidadosa da
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Figura 31: Densidade de estados local (LDOS) em energia zero dos PQ’s em fun¢fo da energia de Zeeman
Vz. No regime atomico (painéis superiores) e no regime molecular (painéis inferiores).

LDOS em energia zero corrobora com nossas afirmagdo anterior, que mesmo no regime molecular, o
modo de Majorana sobrevive. De maneira andloga a configuracdo de pontos quanticos desacoplados,
perceba que no ponto de transi¢ao de fase topoldgica observamos novamente uma descontinuidade,
evidenciando a presenca de modos de Majorana na fase topoldgica. Além disso, analisando o regime
molecular ¢ atdmico, podemos observar o deslocamento da descontinuidade do espectro de um ponto

quantico para o outro, confirmando entdo a transferéncia do modo do PQ2 para o PQ1.
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5 Conclusao

Neste trabalho estudamos a formagdo de estados ligados de Andreev € Majorana em sistemas
compostos por supercondutores e pontos quanticos. Para tal utilizamos o método das funcgdes de
Green para o cdlculo da densidade de estados dos sistemas propostos. Discutimos também os aspectos
topoldgicos da formagado de estados ligados de Majorana em fios supercondutores, o modelo artificial
de Kitaev, e discutindo uma ja proposta realizagao experimental do mesmo utilizando supercondutores

usuais, acoplamento spin 6rbita € campo magnético aplicado.

Para observamos como os estados ligados de Andreev influenciam os estados ligados de Majo-
rana propomos um sistema composto por dois pontos acoplados entre si € cada um deles suportando
um dos tipos de estado ligado. Primeiramente analisamos a configuracdo de um tnico ponto quantico
acoplado a um supercondutor que apresentava fase topologicamente ndo trivial. Observamos entdo
que a forte assimetria produzida pelo critério topoldgico impossibilita a coexisténcia de estados liga-

dos de Andreev ¢ Majorana no configuracdo de um unico ponto quantico.

Por outro lado, na configuracdao de pontos quanticos duplos observamos que por um pequeno
periodo estados ligados de Andreev e Majorana podem coexistir. Além disso, observamos que mesmo
a componente de spin que ndo se conecta diretamente ao modo de Majorana apresenta influéncia
do mesmo, isso devido ao acoplamento indireto induzido pelas reflexdes de Andreev que conectam
férmions com diferentes componentes de spin. Analisando a densidade de estados molecular con-
cluimos que no regime molecular ,Vip >> I, os estados ligados de Andreev se encontram em todo
orbital molecular, enquanto o estado ligado de Majorana se encontra acoplado sempre a um dnico
ponto quantico em questdo, refletindo o caricter de estado altamente localizado do modo de Majo-

rana.

A andlise cuidadosa da LDOS em energia zero nos revelou que, os pontos de transi¢cdo de fase to-
polégica sao caracterizados por descontinuidades acentuadas, que podem servir como caracterizacio
de transi¢oes de fase deste tipo em experimentos de STM. Além disso, na configuracdo de pon-

tos quanticos acoplados, observamos também descontinuidades nos pontos de transicdo de fase to-
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polégica, além da transferéncia da descontinuidade de um ponto quantico para outro, quando temos

V12 ~ T, caracterizando entdo a localizagdo espacial do modos de Majorana.

Como perspectivas futuras pretendemos analisar o caso onde hd interacdo Coulombiana nos pon-
tos quanticos, uma vez que essa ¢ uma das escalas de energia mais relevantes para esse tipo de sistema.
Com isso poderemos observar fendmenos tais como o efeito Kondo que podem vir a influenciar os
estados ligados de Majorana (52). No regime interagente podemos ainda observar os estados ligados
de Shiba (53) e como se relaciona com os outros estados ligados presentes no sistema. Pretende-
mos também atacar diferentes configuragdes e como a topologia do sistema influencia os fendmenos

envolvidos.
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APENDICE A - Representagies na Mecdnica Quadntica

Na mecanica quantica existem essencialmente tr€s tipos de representagdes, sdo elas: Representacao
de Schrodinger, Representacdo de Heisenberg e Representacio de interacdo. Cada uma delas se torna
interessante dependendo do problema fisico em questdo ¢ as quantidades a serem calculadas. Vamos

discutir brevemente cada uma delas.

A.1 Representacao de Schrodinger

A Representagdo de Schrodinger ¢ a mais conhecida e utilizada em um primeiro contato com a
mecanica quantica. Como sabemos a dinamica de um estado quantico |¢(¢)) € governada pela equacdo

de Schrodinger

0
ih= (1)) = Hy(0)). (A.1)

onde H ¢ o Hamiltoniano do sistema fisico em questdo, ¢ importante ressaltar que o Hamiltoniano ¢é

independente do tempo e obedece a equacdo de Schrodinger independente do tempo

H|y(0)) = Ely(0)), (A.2)

onde E € a auto energia do estado |¢(0)). Com isso temos como solucdo da equacdo de Schrodinger

() = e~ T I(0)). (A3)

Seja agora A um operador qualquer, que pode ser dependente do tempo ou ndao. Se queremos

tomar o valor esperado deste operador temos entdo que
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(A) = WOIAlY (@),

em resumo nesta representagao temos que a dindmica se encontra na evolucdo do estado quantico e

ndo dos operadores.
A.2 Representacao de Heisenberg

A principal diferenga entre a Representagdo de Heisenberg ¢ da anterior ¢ que neste caso a
dinamica ¢ governada pela evolucdo temporal dos operadores, € ndo dos estados. Para ver isso vamos

voltar novamente na média do operador A definida anteriormente
i _il
(A) = (WOIAI(D)) = (A) = W(O)le ™ 'Ae™ 7' y(0)),
resultando entdo em

(A) =WOIAlY @) = WOIADI(0)),

onde definimos

iH,  _iH,
Alt)y=en'Ae” 77, (A4)

note que podemos também escrever a evolugdo de |(0)), usando (A.2)

W(0)) = e T (). (A.5)

Como agora temos que a dinamica € dada pelo operador precisamos encontrar uma equagao que

governa tal evolugdo temporal do sistema, para isso basta derivarmos A(¢):

d d i iH iH in iH iH iH iH 0
—A() = —[ertAe 7ll=—erlAe "l+er'A —W(__)+_A
g0 = glerdeml=Srenide ity enide AN,

i 0
= E[H,A(t)] + EA’
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aqui vamos considerar que A seja independente do tempo, logo a ultima derivada parcial na expressdo

acima € nula e entdo temos

d i
EA(I) = %[H,A(t)]_, (A.6)

onde [H,A(t)]. = HA(t) - A(¢t)H ¢ arelagdo de comutacdo usual. A equacdo acima ¢ chamada equacdo
de Heisenberg ¢ domina toda a dinamica nesta representacdo. Utilizaremos a mesma quando formos

deduzir uma expressao para a dinamica das fungdes de Green.

A.3 Representacao de Interacao

A Representagdo de Interacdo ¢ uma representacdo intermedidria entre as duas anteriores, neste
caso temos que tanto o operador, quanto o estado evoluem no tempo. E importante notar que em
ambas representacdes acima o Hamiltoniano era independente do tempo, nesta representagdo vamos

definir um Hamiltoniano mais geral, cuja as componentes de interacdao dependem do tempo:

H(@)=Hy+ V()

€ nesta representagﬁo temos

0(0) = e (o)), (A7)

. iHy —iH
Al)y=e 'Ae™7 . (A.8)

Nesta representagdo os operadores sempre serdo representados com um “chapéu’” para distingui-los
das outras representacdes. Queremos agora saber como se dd a dinamica de [¥(f)), para isso vamos

calcular sua derivada temporal parcial
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0, .0
(z—e )|w<t>>+e SO

ot
1 i i
LT Ho + HI0) = ¢ 70

.0 -
lallﬁ(t»

(1)),

—iHy .
mas temos que |y(¢)) = eTotlw(t)), 18so nos leva a
N iHp _iHp
lalw(t» =e7 V(e 7 (D),

resultando etdo

V@

0 - n
Ellﬁ(t» = —lTllﬁ(I)), (A.9)

vamos considerar que a evolugio do estado |(¢)) seja dada por um operador unitario U, de forma que
IIZ(I)) = U(t, lo)llZ(lo)), note que U(tp, tp) = 1, dito isso ficamos com

0 5 V() ,
U, 10)ly(t0)) = —i——U(t, 10)lY(t0)).
ot h

nos resultando entdo uma equagao para U(t,#p) dada por

J _ Yo
EU(LIO)_ l h U(t’tO)v

note que a equacdo acima nao ¢ simplesmente uma exponencial como nos casos anteriores porque

agora V(1) depende do tempo, logo a solucio neste caso é uma equagio integral da forma

Ult.te) =1+ (—%) f VOUW 1) (A.10)

Iy

onde usamos que U(#, ) = 1. Essa equagdo integral pode ser resolvida de forma iterativa, temos que

Ult.te) =1+ (—%) f VU 10)dn

Iy
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mas U(ty, o) por sua vez € dado por

Uty 1) = 1+(—%) f V() U . t0)dt,

Iy

substituindo em U(z, tp) ficamos com

Ult,10) = 1+(—%)f1 dn V()

. 1
i

1+(-3) f diV(e)U (1. 10)]
hlJ,

temos agora uma nova equagao para U(f,1p) ¢ assim por diante. Continuando a iteragao ficamos com

U, to)_1+(—%) dt1V(t1)+ ! f dn V1) f At V(1)

- fdth(tl)f dtzV(tz)f dt3V(t3)+ (A.11)

podemos escrever os produtos de integrais da expressao acima de uma forma mais interessante per-

cebendo o seguinte

11 R 5] R 1 11 R 5] R 1 129} R 5] R
f dn V(tl)f dnV() = —f dn V(tl)f dnV() + —f dtzV(lz)f dn Vi),
4] 4] 2 4] ) 2 ) 4]

onde apenas permutamos {1 com f; nas integrais acima. Vamos usar agora a chamada funcao degrau,

a fung¢do degrau € definida por

, 1, se t>r¢
0t—1t) = (A.12)
0, se t<t

podemos entdo escrever

f dn V) f i V(1) = f dn f ALV ()00 — 1)+ V)V ()0t - 1),

definindo agora o operador de ordenamento temporal

TV V()] = V() V()61 — 1) + V() V()02 — 11), (A.13)
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ficamos com

11 R 5] R 1 3 73 R R
f dtlv(tl)f dtzv(l2)=§fdtlfdtzT[V(tl)V(tz)],
120) 4 4] ty

de maneira andloga podemos escrever o produto triplo de integrais da forma

11 R 5] R 13 R 1 11 R 5] R 13 R
f dtlv(tl)f dtzv(tz)f dsV() = gf dtlv(tl)f dtzv(tz)f dV(t3)
o o fy Iy t Iy
1 11 R 13 R 5] R
+—f dt1V(t1)f dt3V(t3)f dn V()
6 4] 4 4
1 %) R 13 R 1 R
+—f dtzV(tz)f dt3V(t3)f dnVv(t)
6 fo ty Iy
1 1) R 11 R 13 R
+—f dtzV(tz)f dt1V(t1)f dt1V(t3)
6 fo ty Iy
1 13 R 11 R 5] R
+—f dt3V(t3)f dt1V(t1)f dtzV(tz)
6 ) 4] 4]

1 13 R 129} R 11 R
+—f dt3V(t3)f dtzV(tz)f dn Vi),
6 4] 4 4]

onde apenas permutamos f1,f; € {3, seguindo os mesmo passos do caso anterior com a ajuda da funcdo

degrau podemos escrever

11 R 129} R 13 R ! ! ! R R R
f dtlv(tl)f dtzv(tz)f dt3V(I3)=fdt1f dtzf dnT[V(t) V() V(t3)],
fy fy fo fy fy Iy

com
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TIVe)V)V()]l = Ve)Ve)Vs)o — )6 —13)
+V) V) V()61 - 13)6(13 - 1)
+V() V) V(3)0(1, — 13)6013 - 17)
+V () V)V (116012 — 1)6(t, — 13)
+V(i3) V) V()62 ~1)6(11 ~ 13)
+V() V) V()61 - 12)6(1, - 13),

a generalizacdo para o operador de ordenamento temporal para o produto de n operadores ¢ direto:

TV @)V @) V)] = Y V)V @), V(t)ep) = 1p2)) ot pin-1) = pi),
pESy

(A.14)

onde S, € o grupo das permutacdes. Fazendo isto para todos os produtos de integrais que aparecem

na expressao de U(t,1p) temos

e 1 s n t t R R
U(t,to):z_;ﬁ(—%) fm diy.. fm A, TIV (). ). (A.15)

logo o operador de evolugdo temporal se reduz simplesmente a forma

U(t.10) = T[e‘%fro ‘W“’)], (A.16)

finalmente temos nessa representacido que um estado evolui de um tempo £y até um posterior ¢ da forma

() = T[e‘%ffo ””'W)] 1 (10)). (A.17)

Muitas vezes , quando a pertubacdo (interacdo) do sistema ¢ significantemente pequena em
relacdo as escalas de energias analisadas, podemos considerar apenas os primeiros termos de (A.15), a

mais importante dessas aproximacdes ¢ a que chamamos de resposta linear, neste caso, considera-se
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apenas o termo linear na interagao no operador de evolucdo temporal e temos

. s
Ult.to) ~ 1 -~ f dr ), (A.18)

esta aproximagdo serd importante quando considerarmos sistemas fora do equilibrio, onde utilizare-

mos a formula de Kubo que sera discutida mais adiante.
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APENDICE B - Funcées de Green

Uma das ferramentas mais poderosas da chamada teoria quantica de campos sdao as chamadas
funcdes de correlacdo. Contudo, essa ferramenta se mostrou bastante util para célculos de fisica

estatistica, sobretudo, utilizando as chamadas fun¢des de Green.

As fungdes de Green em fisica estatistica sdo fungdes de correlagdo generalizadas de dois opera-
dores, as principais fungdes de Green em fisica estatistica sdo a fungdo de Green causal (GC), funcdo

de Green retardada (GR) e fungao de Green avangada (GA), definidas respectivamente como (27):

G(t.r) = (AW@;B())) =-KTADBW)), (B.1)
G'(tr) = (AW BW)))" = -6t~ X[A®. B, (B.2)
Gty = (A@:BA))* =i — (AW, BU)]e)), (B.3)

onde A(r),(B(t")) sdo operadores genéricos escritos na representacdo de Heisenberg, T é o operador

de ordenamento temporal, 6(t —¢) a fun¢io degrau usual ¢

[A(D), B(t)]; = AM)B({') = {B()A(), (B.4)

com £ = 1 caso A(f)(B(t')) sejam operadores bosonicos e £ = —1 caso sejam fermidnicos. Para nossos
propoésitos vamos nos concentrar em GR, note que a mesma pode ser escrita de forma explicita da

forma

G'(t:1") = 0t = ) [-KAB(E)) + Li{BUHAD)], (B.5)

vamos agora definir a chamada funcido de Green maior ¢ funcdo de Green menor, dadas respectiva-
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mente por

G (1)
G=(t;1)

—i(A(t)B(!")), (B.6)
—if(BA@)). (B.7)

Usando as defini¢des acima podemos escrever GR como

G t0)=00-)G (t;!) -G (t:))]. (B.8)

De forma analoga, podemos escrever GA como

Gt,t) =0 = DG (1) -G(1,1)]. (B.9)

Para nossos calculos estamos interessados na fun¢do de Green ndo no dominio temporal, mas sim
no domino das frequéncias. Para tanto, precisamos efetuar uma transformada de Fourier na mesma.
Entretanto, primeiramente vamos olhar com mais cuidado a média termodinamica (A(r)B(¢’)). No

contexto da mecdnica estatistica, essa média termodinidmica (no ensemble canonico) € calculada da

forma’

1
AWBW)) = — Y (nle PP AWB()In),

ou simplesmente

(A(B{")) = TripA(H)B(1")}. (B.10)

Na expressdo acima p ¢ a matriz densidade dada por

p=— (B.11)

e Z ¢ a funcgdo de particdo que tem a forma

1A generalizagiio para o ensemble grande-candnico & direta, considerando o vinculo do nimero de particulas tomando
H = H —uN e somando sobre o nimero de particulas.
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Z= (nlen),

com B=[KgT] ' e |{n)) é o conjunto dos auto-estados do Hamiltoniano H. Como a média termo-
dinamica s6 depende do traco da matriz densidade que por sua vez ¢ invariante sobre mudanga de

base, escolhemos o conjuntos dos auto-estados por conveni€ncia.

Lembrando agora que os operadores estio escritos na representagio de Heisenberg temos?

A(t) — ethAe_th,

B(t/) — eth,Be—iHl,
Utilizando a completeza do espago Y, [n"){n’| = 1, podemos escrever

(ANB("))

1 _ _; _; STT T
_Ze ,BEn<n|e lHl‘Ae lHtln/><n/|elHt Be iHY |n>
nn’

1 o
_ -BE, ’ ’ it—t'YE,—E,»)
= = E e (n|Aln" Yn'|Bln)e . (B.12)

nn’

De forma andloga obtemos

1 . ’ . ’ . .
BOAWD) = — > P Friale™ B )| ™ e )
nn’
1 o
= 5 Z e PEn | BIn W' | Alnye I En=Ew), (B.13)
nn’

E interessante notar dos resultados acima, que GR depende apenas de 1 —¢’. Geralmente como esta-

mos interessados no espaco das frequéncias ¢ dos momentos, efetuaremos a transformada de Fourier

G (w) = f N G (t:0)e ™ d(t— 1), (B.14)

[oe]

cuja a transformada inversa dada por

ZNote que utilizamos /i = 1, o mesmo serd feito para todos os cdlculos desta se¢do.
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1 ™ o
Gr(m'):ﬂ f Glw)e . (B.15)

[oe]

Usando (B.5),(B.12) e (B.13) temos

G (@) ==y e | dre o) | Al ) (| Bimye ™)
4 —00

nn’

—{ <n|B|n/><n/|A|n)e_iT(En—En/)] ’

onde fizemos t=1—"¢.
Devido a descontinuidade de GR no espago temporal, vamos nos concentrar na transformada de Fou-

rier no espago das frequéncias. Primeiramente note que

foo dTe(T)eiT[u)+(En—En/)] — foo dTeiT[u)+(En—E”/)]
— oo 0

conduzindo-nos a

ol (En—E, oo 1
ilw+ (Ey—Ey)] i[w"‘(En_En’)]'

f dTeiT[w+(En—E”/)] —
0

De modo analogo, temos

llO—(Ep—E,)loo 1

ilw—(Eqn—Ep)]  ilw—(En—Ep)]’

f dTeiT[w—(En—E”/)] —
0

Perceba que o primeiro termo do resultado das duas integrais acima diverge. Isto ¢ uma consequéncia
da ndo continuidade da fungdo 6(r — '), o que faz com que tanto GR quanto GA nio sejam bem de-
finidas pra ¢ = ¢’. Para resolvermos este problema temos que efetuar uma continuagédo analitica da
frequéncia no plano complexo, fazendo w — w +in, onde 7 ¢ um infinitesimal puramente real € posi-

tivo. Fazendo isso nas integrais acima obtemos
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00 ] E,—E,1)]o0 ,—njco
f droitorint(Ey-E,] el Noogmne 1
0 ilw+in+(En—Ep)] ilw+in+(Ex—Ep)]
1

Cilw+in+ (En—Ey)]

c
00 [w—(E,—E,)]oo ,—1j00
f dreltlotin-(Ex—E)] - _ el Noee _ 1
0 ilw+in=(E,—Ey)]  ilw+in—(E,—Ey)]
1

Cilw+in—(En—Ep)]’

Nas duas ultimas expressdes usamos que e 7 — (. Para GA o procedimento ¢ o0 mesmo, mudando
apenas a continuacgdo analitica para o plano complexo inferior (w — w—in), uma vez que GA depende

de 6(¢' —1). Isso nos leva a expressdo de GR ¢ GA, respectivamente

1 s, | (nlAIn"}n'|Bln) (n|BIn"Yn'|Aln) |
ro,y - L BE, _
Gw=7) ‘wtin+t (En—Ep) “wtin—(En—Ep)]|

nn’

1 _ae, | (nlAln"Xn'|Bln) (n|Bln"Xn'|Aln) |
a - :BEn' —
G(“’)_zze ‘w—in+ (En—En) “w—in—(En—Ex)|

an’

Dessa forma fica clara a relacdo que existe entre GR ¢ GA no espago das frequéncias, uma € simples-

mente o complexo conjugado da outra

G'(w) = [GY(w)]". (B.16)

Podemos juntar os dois termos da GR na expressdo acima, notando que

BE _BIIAI) - g, (IAIn)nIBn’)

que ainda podemos escrever como

pE, _BOWNAI - _pp, A )| Bln)
w+in—(E,—Ey) w+in+(E,—Ey)

Dessa forma, a GR pode ser finalmente escrita como
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1 mlAIn"Yn'|Blny _ap _E
G'(w)== Bbn _ pePEn), B.17
(@) Z;w+in+(En—En/)<e () (B17)
A funcdo de Green escrita da forma acima € conhecida como funcdo de Green na representacdo de
Lehmann. Vamos agora efetuar a transformada de Fourier para as fungdes de Green maior € menor.

Para a funcdo de Green maior temos que

G (w) = f G (t:1)e (1 1)

[oe]

—i f OO<A(t)B(t’)>e"‘*’“‘f'>d(t— ). (B.18)

Usando novamente (B.12) temos

G (w) = —é Z o PEn (nlAIn')(n'IBln)f dre T En—E,)]

nn’

Note que

f dreTOHETED Z 25T+ (En — En)],

o que nos fornece

G (w) = —% e PEs(nAln Wn' | BInys[w + (En — En)]. (B.19)

nn’

Para a funcdo de Green menor, de forma analoga,

G (w) = f Gi(t;)e D d(t—1')

[oe]

—if f OO<B(t’)A(t)>e"‘”“‘t'>d(t— ). (B.20)

Usando agora (B.13) obtemos

G@) =L S P B Y Al — (En— Ex L.

nn’
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Comutando novamente os dois elementos de matrizes A ¢ B podemos escrever

G(w) = —g% > e A Yo' | Bin)S[w + (En = E)] (B.21)

nn’

Podemos relacionar as duas fungdes de Green, menor ¢ maior notando da fungdo delta que £,y — E, =

w, logo, comparando (B.19) com (B.21) notamos que

G (w) = (G (w)e P°. (B.22)

Vamos agora relacionar a parte imaginaria de GR com as func¢des de Green maior € menor. Para isso,

usaremos a relagdo

lim — = — — (W)
=0 w+1In w

em (B.17) podemos escrever

2
_77T Z(nlAln')<n’|Bln)(5[a) +(Ep— Ep)] (e—,BEn B {e‘ﬁEn')

_ _27” ¢ PEn (Al Y | BInyoleo + (En — En)](1— £ )

nn’

2Im[G(w)]

= —i(1-(e PG (w).

Definindo agora a funcio espectral A(w) = —2Im[G(w)] temos entdo as relacdes

G (w) = L A(w)

1= le~Pw
G (w)=-¢ IA(w),

P — (¢

lembrando que a distribui¢ao de Fermi-Dirac ({ = —1) e Bose-Einstein ({ = 1) sdo dadas por



1
felw) = -2 7
podemos escrever as importante relagdes
iG7(w) = [1+{fr(w)]Aw)
IG5 W) = Lf(w)Aw).
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(B.23)

(B.24)
(B.25)

As relaces acima sao fundamentais para a teoria de fungdes de Green no equilibrio termodinamico,

elas representam o chamado teorema de flutuacao-dissipacao. Este nome ¢ dado porque das relagses

acima vemos que flutuagdes, relacionadas com as fungdes de Green maior € menor se relacionam di-

retamente com a parte imagindria da funcao de Green retardada, que por sua vez estd associada com

fenomenos de dissipagao. Vimos ainda que, GR e GA sao o complexo conjugado uma da outra, logo

como Alw) = —2Im[G(w)] temos entdo

Alw) = i(G"(w) — GY(w)).

(B.26)

Vamos explorar ainda mais os resultados do teorema de dissipagdo-flutuagdo. Da transformada

inversa de Fourier sabemos que

| (it
G>(t, t/) — z_f G>(w)e—lw(t—t )dw’
TJ-

das relacdes acima podemos escrever

G>([; t/) _ _% foo[l N gf{(a))]iﬂ((/))e—iw(t_t,)dw'

Da definicdo temos G~ (r; ) = —i{A(t) B(t')), obtemos

(ANB()) = f T + £ fr (@) dew,

com

J(w) = —11 m[G(w)],
T

(B.27)

(B.28)
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onde usamos que A(w) = —2Im[G(w)]. De forma andloga para G=(¢;¢’) obtemos

(B(HA®)) = f B J() fr (@)= d. (B.29)

Note que as médias acima podem ser calculadas mesmo pra ¢ = ¢/, vimos também de (B.12) e (B.13)

que as mesmas s6 dependem de —1’, nos levando entdo as relagdes

(A(B()

(AO)BW)) = f J)[1+fr(w)ldw (B.30)

(B(NA(D))

(B(O)A(O)):f J(w)fr(w)dw. (B.31)

As médias termodindmicas acima sdo conhecidas como funcdes de correlagdo temporal ¢ pos-
suem importante papel em diversos calculos (e.g. transporte). Perceba que uma vez que conhecemos
GR estamos a principio aptos a calcular as fung¢des de correlagdo. Até aqui A(f) e B(1') sdo opera-
dores genéricos, a especificacao dos mesmos depende da contextualizagdo do problema fisico e das

quantidades fisicas de interesse.

B.1 Equacao de Movimento para a funcao de Green

Até aqui apenas descrevemos as propriedades da fungdo de Green retardada, vamos agora apre-
sentar uma método de obtermos a mesma, o qual sera utilizado constantemente nesta dissertagao.

Como vimos na se¢do anterior, a fungdo de Green retardada ¢ dada por
G'(t;1) = (AW; BU))" = =it — ' [A®), B()];)-

Derivando com a expressao acima com relagdao ao tempo temos

d IN\NF d ; ’ 4
TUAWBAY = —|=i6 = KAD. B )]

d
= —ié(t—t’»[A(t),B(t’)]g)—ie(t—t’)E<[A(t),B(t’)];>,
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onde usamos que

d N ¢
EG(I—I)—(S(I ).

Uma vez que, como estamos na representacdo de Heisenberg, os operadores obedecem a equagdo de

movimento

d .
EA(I) = —i[A(?),H].. (B.32)

Assim,

d
E([A(t),B(t')]ﬁ = ([~i[A®, H], B()]s),

que nos conduz a equagdo

d
lE((A(t);B(t')))r = 8(t =1 X[A®), B0 + ([A@). H] s B(t'))). (B.33)

A equacdo (B.33) € a chamada equagdo de movimento para a funcdo de Green. Como estamos interes-

sados no espago das frequéncias, aplicando uma transformada de Fourier na equacdo acima obtemos:

w({A; BY),, = ([A, Bl) + ([A. H] : B)),- (B.34)

Tendo sempre em mente que para fins de continuidade analitica devemos fazer w — w +in. Esta

equagdo sera usada para a obtengdo das funcdes de Green no presente trabalho.

Note que as informacdes de muitos corpos estdo contidas no termo [A, H]_, isso faz com que ao
aplicarmos o método da equacdo de movimento, geramos uma nova familia de fungdes de Green,
cujas equagdes de movimento geram outras novas familias, e assim sucessivamente. Este conjunto de
equagdes geralmente ndo ¢ fechado, logo, se € preciso truncar a hierarquia das funcdes de Green com

as aproximagdes apropriadas.

Como exemplo simples, consideremos um gas de Fermi ndo interagente. Vamos entdo calcular a
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fun¢ao de Green {{c; cZ)). Da equagdo de movimento temos que

wllersep, = (ercf1e) + e H s e, (B.35)

Neste caso Hamiltoniano € dado por

H=) siccr. (B.36)
k

Usando agora as importantes relagdes [A, BC]_=[A,B] . C + B[A,C]_,|A,BC]_=[A,B];C - B[A,(C],,

e que [cx, ¢}, 1+ = o lef cf 1+ = [ex crely = 0 temos

lee. H]. = Sk[ck,CZ]+Ck - SkCZ[Ck,CkL = ExCk-

Substituindo esta equacdo na Eq. (B.35) obtemos

1

(erepy, = e (B.37)

Essa ¢ a chamada fungdo de Green de uma tunica particula, ou ainda, propagador livre. Temos ainda

que a média do operador nimero ¢ dada por
(crey = f L) fr(@)dw, (B.38)
onde percebemos neste caso que J(w) nada mais ¢ do que a densidade de estados local, dada por
1 i
pir(w) = ==Im|(cx: ).
n
Note ainda que, podemos escrever este resultado em termos da fungdo espectral Ax(w)

1
pr(w) = 2—Ak(w),
T

onde usamos que Ax(w) = —2Im[Gi(w)]. Se queremos saber a densidade de estados total, temos que
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somar todos os momentos, logo temos a importante relacdo entre a funcdo espectral e a densidade de

estados:

ZAk(a)) = 27p(w) (B.39)
k

O célculo da densidade de estados via GR é uma das aplicacdes mais importantes do método das
funcdes de Green. Apesar de exemplificarmos usando o modelo simples do gds de fermi nfo intera-
gente a relagdo acima se mantém valida, uma vez que o formalismo das fun¢des de Green € geral. No
caso acima podemos calcular de forma simples a densidade de estados lembrando que

1

1
lim - =P —ind(w —&€x),
in—=0w+In—&x w—Ef

que nos leva a

Pr(w) = 6(w — k). (B.40)

Vamos entender melhor o porque essa fungao de Green ¢ chamada de propagador livre. Para isso

vamos calcular a transformada de Fourier inversa, temos entiao

Gr(n)

1 o
— f e G (w)dw
27 J_oo

1 oo e—iwt
= — —dw.
21 J_ wtin—&g

Essa integral pode ser resolvida por integragdo complexa via teorema dos residuos, mostrando mais
uma vez a utilidade da continuidade analitica. Vamos tomar um contorno C no sentido anti-horario no
semi-plano complexo inferior, uma vez que ele possui uma singularidade em w = & — iy, do teorema

dos residuos temos

9§f(z —a)dz = 2niRes(a), (B.41)
c

onde a representa um ponto singular no plano complexo. No presente caso temos que
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1 e—iwt - q e—iwt 1 e—iwt
_— da) = f e — da) + f -~ N dwv
c2mw+in—gg o 2Mw+in-—gg Cinf 2T W +in — &

onde a primeira integral do contorno representa a integral no plano real e a segunda no semi-plano

complexo inferior. Usando entdo o teoremas dos residuos temos que

1 e—iwt
— ———dw =2niRes(e —in).
Cc2mw+in—e;

Como temos polos simples a formula para o residuo ¢
Res(a) = lim(z—a) f(2). (B.42)
7—a

Assim,

1 (w—ep +ing)e

es(ex —in) w_g,?_,-,] 2n (w—er+in)
- ie_’.(g"_in)t-
2

Uma vez que, por defini¢do que a fungdo de Green para particulas ¢ definida para tempos positivos,

entdo a integral no plano complexo inferior deve zerar e, portanto,

© 1 e—iwt . .
f — =g, (B.43)
oo 2T W+ in—&g

Se quisermos estender esse resultado para todos os tempos, basta utilizarmos a funcido degrau, com

isso finalmente obtemos

Gi(t) = —if(t)e~¥e—imt, (B.44)

O termo complexo no argumento da exponencial entre parenteses ¢ o responsavel pela convergéncia
do propagador para tempos muito longos, como dissemos anteriormente. Veremos que, em sistemas

interagentes, o termo imagindrio do polo da funcdo de Green estd associado com o tempo de meia
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vida de uma quase-particula.

B.2 Equacao de Dyson

Uma das formas de calcularmos as fun¢des de Green de um certo sistema ¢ usarmos a chamada
equagdo de Dyson, que conecta a fungdo de Green do sistema interagente com a fungdo de Green do
sistema ndo interagente, também chamada de propagador livre. Como exemplo vamos utilizar um
sistema descrito por uma impureza acoplada a um gas de elétrons ndo interagente, de maneira que o

Hamiltoniano seja dado por

H-= Z Sdo-d;.do- + kz Sko-c;zo_cko- + kz de;ckg + V,j C;;O_do-, (B.45)
a a a

onde d;(dg) cria(aniquila) um elétron com energia &4 € spin ¢ na impureza, c,tg(ckg) cria(aniquila)
um elétron com energia & e spin o na banda de condugido ¢ Vi ¢ a matriz de hibridizacdo que acopla
a impureza e os elétrons da banda de conducio. Usando o método da equacdo de movimento descrito
na se¢do anterior, temos que

W({de3dy) = 1+ ([de, H] ;1))

Efetuando o comutador obtemos

[d0'7 H]_ = ng'dO' + Z chkaa
ko

o que nos leva a

W(des D)) = 1+ £ (dorsdi)) + Y Villiors di)).
ko

Agora temos que fazer a equacdo de movimento pra a nova fun¢do de Green que apareceu do lado
direito da equagdo acima

w{Crorsd)) = (ko H1 2 d1)).

Como

[ckos H]. = &koCro + V]jdow

obtemos o conjunto de equagdes

Gar(@) = 8ir(@)+8ir@) ) ViGiodor (@),
ko
Giodo(@) = (=tks)” V{Gaor(w).
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onde definimos G o (w) = ((dg;dg)), Giodor(w) = ((ckg;d;)) e o propagador livre ggr(w) = (w —

-1
ng') .
Combinando o conjunto de equagdes acima, podemos escrever

Gir(w) = 8dor (W) + &dor (W) Ga(w). (B.46)

Z Vilw - 1) 'V
ko

Perceba que toda a informagdo da interagdo estd contida no termo em colchetes. De maneira geral

podemos escrever a equacao acima da forma

Gir (W) = 8do (W) + 8dor (W) E(W)G dor (W), (B.47)

onde 2(w) ¢ chamada auto-energia que contem toda a informagdo das intera¢des da interacdo do sis-
tema. A equacgdo acima ¢ chamada Equacao de Dyson. Para o presente sistema, a auto-energia ¢

simplesmente dada por
Sw)= Y Vilw-e1e) Vi (B.48)
ko

A forma da equacdo de Dyson ¢ a mesma para sistemas mais complexos, mas geralmente precisa
ser resolvida de forma iterativa e com auto-energias mais complicadas, podendo ainda tomar a forma

matricial.

Vamos olhar com atencdo a auto-energia nesse presente caso. Para isso, vamos lembrar que por

meios de continuidade analitica temos que tomar w — w + in, com iSso temos que

2
Y(w) = Z L7 (B.49)

W+~ eko )
Podemos entdo separar a auto-energia em uma parte real ¢ uma imaginaria da forma
2(w) = AMw) +iA(w), (B.50)

onde definimos
Z Vil*(w —¢ o Z Vil?

Por simplicidade vamos considerar Vy = V ¢ g1, = &4, Ou seja, independentes de k. Vamos agora
transformar a somatdria nos momentos em uma integral na energia, ¢ assumir que a densidade de

estados para os elétrons livres € dada por p(e) = pof(|D]| — ), com pg = 1/2D e 2D sendo a largura da
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banda de conducdo. Com isso temos entao que

(a)+D)2+172 172

(w—D)? +n?

Vil*(w - £1o) D w-¢
Aw) = —i———;53=pmw{f —————de = polVI’In
— (w=é&)*+1 p(Ww=8)7+n

Perceba que se estivermos interessados em excitagdes proximas do nivel de Fermi, que geralmente se
encontra no meio da banda e tomando a banda muito larga, podemos fazer w << D ¢ lembando que
1 — 0 temos entio A(w) = polV|*In(1)"/? = 0. Portanto, para o limite em que a banda é muito larga,
temos que a parte real da auto-energia neste caso ndo contribui para o sistema. Essa € a chamado
limite da banda larga ou Wide Band Limit (WBL).

Para a parte imagindria, neste caso, temos que

|Vil?
A = - _
@ "Zgau—avﬂ+n2
D
n
- - vzj"._______dg
pol V] P
D
= _,00|V|27Tf 5(&) —8)d8
-D
= —mpolVI%,
onde usamos
1 U
lim——  =d6(w—2¢). B.52
nl—r%ﬂ(w—g)2+172 (w=e) ( )
Pela equagdo de Dyson podemos escrever
Ga(w) = 1
A e —t(w)
3 1
 w—ed—[Aw)+iNw)]
w—¢&4—Aw) IAN(w)

[w—ta— AP+ MDE  [w0—ea-A@P+AW@]

lembrando que pg(w) = —1/nlm[G 4 (w)] temos entdo

1 A
palw) = —= w)

T [w—eq— Aw))? +[Aw)]? (B.53)
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Para o caso presente, onde usamos o aproximacao da banda larga, temos simplesmente que

1 I

- B.54
T(w—gg)?+17? ( )

pa(w) =

onde I' = 71pp|V|?. Perceba, portanto, que a densidade de estados da impureza neste caso é simples-
mente uma lorentziana centrada em &4 ¢ com largura I'. Note que, uma vez que o acoplamento com
o gas de elétrons diminui, temos que a densidade de estados de torna uma delta de Dirac novamente,
como o esperado. E interessante notar também que, na aproximacdo da banda larga, a auto-energia
ndo depende da frequéncia. Em geral isso ndo ¢ verdade. Para sistemas supercondutores, por exem-
plo, mesmo em WBL temos ainda dependéncia da auto-energia com a frequéncia. Essa aproximacdo

¢ muito utilizada em toda a dissertacio.

Perceba que, com a equacdo de Dyson conseguimos escrever a funcdo de Green na presenca da
interacdo na forma de um propagador livre, mas com o polo &4 + X(w), usando WBL, vimos que a

funcdo de Green toma a forma
1

G =
aw) w—¢gg+1il

(B.55)

que nos leva a
Ga(t) = —if(t)e™ e, (B.56)

onde do termo imagindrio em parenteses conseguimos identificar o tempo de meia vida 7! =T
A medida que I' aumenta, o que corresponde ao aumento da interacdo da impureza com o gds de
elétrons, o tempo de meia vida do elétron na impureza diminui, uma vez possui maior probabilidade

do elétrons escapar da impureza.

B.3 Liquido de Landau-Fermi

Uma das mais importantes aplicacdoes da equagdo de Dyson € na chamada teoria do liquido
de Landau-Fermi, as vezes chamado simplesmente de liquido de Fermi. Se considerarmos agora

a equacdo de Dyson em sua forma geral
Gk, w) = G'(k,w) + GOk, w)Z(K, w)G(K, w), (B.57)

vemos que neste caso a auto-energia possui todos os processos de espalhamento entre propagacoes
livres, ou seja, a auto-energia carrega toda a informagao de muitos corpos. Uma das maneiras mais
comuns de expressar a auto-energia ¢ usando diagramas de Feynman. De forma geral, a auto-energia

sempre ¢ uma grandeza complexa que pode ser separada em uma parte real e uma imaginaria, como



120
fizemos no exemplo anterior, de forma que

2(k,w) = Ak, w) +iAK, w). (B.58)

Ao resolvermos a equagdo de Dyson obtemos

1
w—&r—[AK,w) +iAKk,w)]

Gk,w) = (B.59)

Vimos no exemplo anterior que a densidade de estados nesse caso ¢ uma lorentziana. Quando a parte

real da auto-energia ndo ¢ nula, temos que

oy oL Ak.w)
P = o= er— A )+ [AK. )

(B.60)

que nada mais € do que uma lorentziana centrada na energia renormalizada devido interagdes & =
ek + A(K,w). Vamos tomar & o ponto onde seja 0 maximo dessa energia renormalizada, se estamos
interessados em excitagdes proximas desse ponto podemos expandir a energia em torno dele, de forma

que

Ak, w) = AK. &)+ (w—&) (%A(k,w))

ok
u)—sk

Com isso temos entdo

w—er—AK,w) =w—-er—AK, &) —(w—&) (;A(k, a))) =(w-— é,ﬁ)Z‘l,
(4V] =&
k
onde definimos
Zit=1- (iA(k,w)) : (B.61)
ow e

k
Desta forma podemos entdo escrever a fungdo de Green da forma

L p——— (B.62)
w—& —ihg
com
& = ex+ Ak, &), (B.63)
sendo a energia renormalizada e
T = ZiAKk &) (B.64)

o tempo de meia vida. Perceba que, ao fazermos essa expansdo, conseguimos ainda obter carac-
teristicas de um propagador livre, mas com parametros renormalizados devido as interagdes. Esse

¢ o importante conceito de liquido de Fermi (6, 54), onde podemos conectar de forma adiabatica



121
sistemas fermionicos ndo interagentes com sistemas interagentes, mas com parametros renormaliza-

dos devido as interagdes. Neste caso, temos o que chamamos de quase-particulas (55, 56), uma
vez que devido as interagdes elas ndo possuem exatamente as mesmas caracteristicas de particulas
livres, mas parametros renormalizados. Z; ¢ o chamado peso da quase-particula ¢ nos dd o “over-
lap” entre as quase-particulas e as particulas nao interagentes. Note também que quanto menor for a
parte imagindria da auto-energia, maior serd o tempo de vida da quase-particula. Sistemas fortemente

correlacionados muitas vezes ndo podem ser descritos como liquidos de Fermi (6).

Como fizemos uma expansio apenas em torno do pico da lorentziana, onde processos coerentes
dominam, precisamos considerar os termos ndo coerentes correspondentes a interacdes de muitos
corpos mais complicadas, se quisermos descrever todos os processos mais importantes, de tal forma

que a funcdo de Green de um liquido de Fermi seja dada por

y4
Gk, w) = ——* 4 Gine(k, w), (B.65)
w—& — lAk

onde Gi,.(k,w) possui as contribuigdes nao coerentes das interagdes. A teoria do liquido de Fermi
consegue responder, por exemplo, porque um gas de férmions ndo interagentes consegue explicar
muito bem a maioria das propriedades dos metais usuais. Para sistemas fermionicos unidimensionais
essa teoria ndo se aplica. Isso acontece devido ao fato de que em uma dimensao os polos da funcdo
de Green sdo instdveis em todos 0s pontos, neste caso precisamos recorrer para a chamada teoria do

liquido de Luttinger (57), a qual ndo abordaremos aqui.
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APENDICE C - Sistemas fora do equilibrio- Resposta

linear

Toda teoria de funcdes de Green aqui apresentada s6 € valida para sistemas em equilibrio. A teoria
quantica de campos fora do equilibrio ¢ extremamente rica ¢ interessante, contudo, ndo a abordare-
mos no presente trabalho. Para descrevermos sistemas fora do equilibrio vamos considerar apenas a
resposta linear a pertubagdes € entdo associar as médias termodinamicas de equilibrio com estados

fora do equilibrio via a chamada férmula de Kubo.

C.1 Formula de Kubo

Vamos considerar um sistema em equilibrio governado pelo Hamiltoniano Hy, de tal forma que
suas autoenergizas sejam dadas pelo conjunto {E,} ¢ auto estados {|n)}. O valor médio de um operador

A no presente caso ¢ dada simplesmente por

Ay= %memw&, (1)

ou simplesmente

1
Ay = Z—OTI”[poA]-

Onde

po=e P = 3 innle P, (C2)
n
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sendo po chamado operador densidade ¢ Zy = T'r[po] a funcdo de parti¢do do sistema em equilibrio.
Vamos agora em f = fg ligar uma pertubagao, de tal forma que agora o sistema ¢ governado por um

Hamiltoniano dependente do tempo na forma

H(t) = Ho + V(0)6(t —19). (C.3)

Neste caso temos que agora os estados dependem do tempo, de tal forma que o valor médio de A

depende do tempo da forma

(AW) = ZiO;m(r)mm(t»e—ﬁEﬂ,
ou simplesmente
A) = 1T A
@) = - Trlp(AL.
com
p(t) = e PHO =" In()Xn(0)le 7. (C4)

A forma de (C.3) claramente sugere que neste caso € interessante usarmos a representagao de interacdo,

em que
In(t)) = e "H'a(r)),

como vimos, na versao de interacdo temos |72(¢)) = U (¢, tp)|71(tp)). Com isso podemos escrever nos leva

que
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(A@)

1 . .
= 2 (U (. 10)e™ A U 1. 1))
0 n

1 N
_ Z_OZ<n|UT(t,to)A(t)U(t,to)ln%

n

onde usamos que |i(fp)) = [n). Vamos considerar agora que a interagao ndo ¢ muito forte de maneira

que possamos considerar
t A
Ult,ty) ~ l—if dr'v(r'),
Iy

de forma que

WU OAOU L) = W||1+i f dff/(r’)]A(r)[l—i f dt'f/(t')]m)
= (nlA@)ny+(nl|i f dt’V(t’)A(t)]lm

3
~(nl [iA(t) f dr' V(') |Iny + O(V*(1)).
4]
Considerando apenas termos lineares na pertubagio temos entdo
t ~ A
(A@) =(A)o—1i f dt’([A@®), V()] Do, (C.5)
)

onde {...)o denota que a média ¢ feita sobre os estados de equilibrio. Definindo agora a diferenga entre

a média fora do equilibrio e de equilibrio 6(A(?)) = (A(¢)) — (A)o, temos, finalmente,

AM) =—i f d' ([A@0), V(1)) o, (C.6)

esta € a celebrada férmula de Kubo, que relaciona a diferenca entre médias fora do equilibrio e no
equilibrio em resposta linear com a pertubacdo. Podemos ainda escrever de uma forma mais familiar

€S8sa equagﬁo como
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SA(D) = f ) dr’ Cly(t,0)e ™1, (C.7)

0

onde C'y/(t,1") € a chamada fungdo de correlagdo retardada dada por

Chy(t.t') = —ib(t =Y ([A(t), V(') o. (C.8)

Note que essa fungdo tem a forma das fungdes de Green apresentadas anteriormente. Como dito an-

teriormente, as funcdes de Green no presente contexto sao fungdes de correlagdo de dois operadores.

p— — 4 . . A . ~ s, . . . ., .
O termo ¢~""") aparece novamente para evitar divergéncias nio fisicas no infinito, como ja vi-
mos no caso de GR e GA. Isso fica mais claro quando passamos para o espago das frequéncias a

formula de Kubo. Primeiramente vamos fazer a transformada de Fourier em V(¢):

V() = f Leiony,,
oo 2T

Assim,

C:w(f,l')=f %e_WCAVw(M')-

Substituindo a equagao acima na formula de Kubo e fazendo #p = —co onde ndo estamos preocupados

com o transiente, temos
Cdw _iy (T, —Hw+in)? —1) 7 '
6<A(t)> = 2—7T€ dt'e CAVu)(t —t),

onde usamos novamente que a funcdo de correlagdo assim como a funcido de Green depende apenas

da diferenca t —¢'. Temos, portanto,
“ dw _;
SCA®D) = I Iy (@)

com
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Cng(a)) — f dlei(wﬂn)(t_t,)cng([—t/). (C9)
Podemos perceber, portanto que

SAW) = f %e_””té(ﬂ(w)), S{AW)) = Clyy, (). (C.10)

Veremos que quando usamos a formula de Kubo no espaco das frequéncias podemos utilizar o teo-

rema de dissipagao-flutuagao, resultando em uma das suas mais poderosas aplicagdes.

C.2 Corrente de Tunelamento

Uma importante aplicacdo da formula de Kubo € no cédlculo da chamada corrente de tunelamento.
Isto porque, uma das técnicas experimentais mais poderosas para o estudo de sistemas nanoscopicos
e efeitos de muitos corpos faz uso do chamado “Scanning Tunneling Microscope” (STM). Neste tipo
de experimento, uma ponta de prova, geralmente feita de Tungsténio (W) ou Platina-Iridio (Pt-Ir)
¢ colocada proxima a superficie do sistema a ser analisado (amostra). Uma diferenca de potencial ¢
entdo aplicada entre a amostra ¢ a ponta de prova, de tal forma que o movimento dos elétrons crie uma
corrente. Essa corrente ndo pode ser entendida do ponto de vista da mecanica cldssica, ja que a ponta
€ a amostra nao estao conectadas em si, mas sim muito préoximas. Portanto, ocorre o tunelamento dos
elétrons da amostra para a ponta de prova, devido ao “orvelap” das respectivas funcdes de onda. O

que € entdo medido € a condutincia local de cada ponto da amostra (veja figura 32).

Experimentos de STM foram usados com muito sucesso em diversos tipos de sistemas, de pontos
quanticos a supercondutores (28, 29, 58). Vamos entdo deduzir uma expressdao para a corrente de
tunelamento € entdo mostrar que para pequenas voltagens ¢ temperaturas muito baixas a condutancia
¢ proporcional a densidade de estados local do sistema. Para isso vamos considerar dois sistemas (1)
e (2), que possuem um termo de tunelamento, mas que suas componentes individuais sejam indepen-

dentes. O Hamiltoniano desse sistema ¢ dado por

H(t) = Ho+ Y Thpe} (De2p(0)+ Tpc (1), (C.11)
kp
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Tunneling Distance control
current amplifier  and scanning unit

with electrodes

| Sample

—l— Tunneling
voltage

Data processing
and display

Figura 32: Representagio esquemadtica do funcionamento do método de STM. O movimento da ponta de prova
¢ controlado por um tubo piezoelétrico que vare a superficie da amostra. Uma diferenca de potencial aplicada
na amostra produz uma corrente de tunelamento mostrada em detalhes no circulo em destaque. Fonte: Michael
Schmid, TU Wien. URL: https://en.wikipedia.org/wiki/Scanning_tunneling_microscope.

onde Hy = H| + H, ¢ a parte ndo perturbada do sistema, mas que contém toda eventual fisica de mui-
tos corpos de cada um e [Hy, H;]_ =0, ou seja, os termos ndo perturbados sdo independentes. A dnica
conexao entre os dois € o termo de tunelamento, que no presente caso € a propria pertubacdo, k ¢ p
sdo graus de liberdade das particulas e Txp o elemento de matriz entre os dois sistemas, que nos da a
amplitude do tunelamento. Primeiramente temos que perceber que no presente caso temos flutuagdes
de particulas ¢ entdo precisamos fazer Hy = Hy — uN ou Hy = Hy + uN. Com isso temos entdo que o

termo de tunelamento Hy(¢) na representagdo de interacdo ¢ dado por

Hyp(r) = e'Hot gy o~ Hot, (C.12)

Como ha flutuagdo de particulas dos dois lados temos que esta expressao se torna

Hy () = o Hot i1 Ny +/lzNz)tHTe—iﬂote—i(/l1N1 +/lzNz)t’ (C.13)

onde u; € pp sdo os potenciais quimicos do sistema 1 e 2 respectivamente, o operador nimero

N;= chjjcija comi=1,2; j=k,p. E por dltimo


https://en.wikipedia.org/wiki/Scanning_tunneling_microscope
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Hr = ) Tepclicap + Tipch cike (C.14)
kp

Temos que ser cuidadosos ao calcular os termos da equagdo C.13, isso porque tratam-se de exponenci-
ais de operadores. Para ilustrarmos isso vamos calcular um dos termos que aparecem no Hamiltoniano

de tunelamento:

el +H2N2)tcik62pe—l(/l11\’1 +uaNo ) el/”Nltcikel[ﬂerle]tczpe_lﬂzNzt,

onde usamos que H; ¢ Hj sdo independentes. LLembrando que estamos trabalhando com exponenci-

ais, o termo czpe_iﬂzNzt fica da forma

[ee]
i I .
Copt ialNat — C2p —(—lﬂzNzt)n.
n!

n=0 "

Note que o operador ¢, ndo pode ser arbitrariamente comutado com a exponencial, para isso, note

que

_ t _ t
CcopN2 = C2p Z CopC2pr = D CopC2prCap
p p

— i
p/

p#p’
T
(1+ Z czp,czp/)czp.
p/

Temos, portanto,

Cszz (1 +N2)Czp. (C.15)

Para o adjunto também ¢ valido se notarmos que [cszz]T =[(1+ Nz)czp]T, que nos resulta entdo

Naocl, = ¢} (1+Ny). (C.16)

Fazendo isso n vezes na expressao da exponencial do operador, temos entao que
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—iuo Not . . — 1+No)t
Cop€ it = Cop §0 a(—l/izNzt)n = EO a[—luz(l +N2)t]n6‘2p = ¢ iH2(1+N2) Caps
n= n=

note que para o termo 1V ”cik usando o mesmo procedimento anterior ¢ usando agora a relagdo para

o adjunto temos

paNie .t F i (14Nt
4 clk—clke .

Com isso temos entdo que

el(/llN1+/l2N2)t671L =i Ni+puaNo)t el/l1N1tcikel[ﬂzNz—le]ICZPe—l/lzNzt

_ c}“kelﬂl(HNl)tel[ﬂzNz—mNﬂte—lﬂz(l+Nz)162p

— il —p)t ¢
= ¢ €1;C2p-

Perceba que u; € uy sdo apenas escalares, logo exponenciais que dependam dos dois podem ser co-
mutadas sem problema. Com isso temos finalmente que o Hamiltoniano de tunelamento serd dado

por:

Hy(t) = Z Tkpei(‘ll_/‘Z”e"%tcikczpe_mot + T,i‘pe_i(fll_/‘z)teiﬂotc;pclke_iﬂot, (C.17)
kp

ou simplesmente

Hr () = Z Tipe 20 E0 (002 (0) + T e 722 (e (1), (C.18)
kp

com

e (D2p(1) = M0 cope™0 2l (et = 0] cre 0 (C.19)

Podemos agora usar a formula de Kubo para determinar a corrente de tunelamento!

1Como vimos anteriormente a formula de Kubo & definida para a variaco entre a quantidade fisica no equilibrio e
fora do mesmo, no presente caso &I ()= (d () (Do. Mas como temos que no equilibrio ndo ha corrente (I)¢ = 0, entdo
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@) = —i f N dr' o — X, Br ()] e ™), (C.20)

onde temos que (1) = —el (1), j=1,2 e I;(1) = Nj(t). Da equagdo de Heisenberg temos que2

Nj= %[H(r),N,m]_.

Vamos calcular para j = 1 ¢ segue de forma andloga para o sistema 2. Temos entdo que

[H (1), N1 (D]

DD ITpel (Oeap()+ Tyl (Oc®. el e ()]

kp k'

D2 Taplef 0eap(@). ¢l (e ]+ T [el (Dew®, ¢ (e ().

kp k'

Lembrando que os elétrons sdo férmions e portanto respeito as relagdes candnicas de anti-comutacdo

e usando que [a,bc]_=[a,b]+c—bla,c]+ temos que

[} (De2p(Dcl Ocr O] = el eap).cl, Olecie @ =l el Oerp@). v eri @)

= _Cik/(t)CZp(t)ékk',

[c3, (D1, ¢l Ol c1re () = €], (Dle] Ocra@), crr D]+

= ¢, (01 (k0.

[c3,(De1r(), ¢l e (D]

Com isso ficamos com

[H®), N1 (D] = = > [Tipel (De2p(0) = Tl (Dc1x0)],
kp

temos entao que

sy = @)

Perceba que recuperamos 7 afim de expressar o quanta da condutincia mais adiante.
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hi=—2 ;[Tkpciku)czp(t) = Tp,ch (D).
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(C.21)

Podemos ainda escrever este resultado em termos dos operadores ¢y € C2p da mesma forma que fize-

mos para o Hamiltoniano de tunelamento anteriormente. O resultado ¢ direto e tem a forma

A i =M At o s —i(ui—n)iA N
10y =~ D [ Tipe ™78} (020 (0) = T e~ 017208, (0210
kp
Afim de simplificarmos a notagdo vamos definir:

Lioy= > el 00, L= Ti,eh 0t
kp

2p
kp

Assim,

IAl(t) — _% (ﬁ(t)eiW1—ﬂz)t _ﬁT(t)e—iW1—ﬂz)t)’ I-AIT(t) — ﬁ(t)eiW1—ﬂz)t + l’:T(t)e—i(lll—/lz)t.

Substituindo as expressdes acima em

o)== [ =X, A e,

(C.22)

(C.23)

(C.24)

e definindo y; — o = eV, ou seja, a diferenca de energia dos dois lados ¢ simplesmente a voltagem

aplicada para o surgimento da corrente. Obtendo
@)y = vy +<Tw),
com
(hin() = % f 8- O)[e V0,10 - VD0, (] e

(hs) = % f e o) | VLT @), £y = V), )y e

(C.25)

(C.26)

(C.27)



132
O termo (I (1)) estd relacionado com jungdes supercondutoras e da origem a chamada corrente de

Josephson, que por sua vez € proporcional ao seno da diferenga de fase dos parametros de ordem dos
supercondutores. No presente caso, sempre consideraremos o parametro de ordem puramente real,
escolhendo a fase sempre nula e portanto ndo haverd corrente de Josephson. Vamos nos concentrar
no termo {/1n(r)). Perceba que o segundo membro de (C.26) é simplesmente o complexo conjugado

do primeiro, logo com isso podemos escrever:

A 2 0 : ’ N A ’
<11N(t)>:£1ee f dr ot — e VI, L )ye 101, (C.28)
4]

Colocando de forma explicita LY(t) e L) temos que

o 2 o0 . I A R X o
(i) =2Re [ dtoa=1) 3 17, e O 0.8} ey 07D
fy kpk' p’

Como ja dissemos os dois lados s@o independentes com excecdo com o termo de tunelamento, com

1sso podemos entdo escrever

, 2 [ -
(Tin(0) = 3 Re f dro—1) Y [Tl e ™™ (el (Xl (Deap(d))
4] kp

_<Cik(l')61k(t))(czp(t’)c;p(t»] o).

Note que na expressdo acima apareceram simplesmente a definicdo das fungdes de Green maior e

menor

G; (t:1) = —ici(Dcl (), GFt) = ic] (@ )ein)). (C.29)

Com isso temos que

~ 2 “ ’ ’ —ieV({’'— ’ ’
()= ZRe f dt e(t—t)Z|Tkp|2e VDGt =1)Gs, (1 = 1)
) kp

—Grt=1)G3,( =] e ™,
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onde ja usamos o fato das funcdes de Green dependerem apenas da diferenga dos tempos (veja secdo

de funcdes de Green). Fazendo agora a mudancat’ — ¢’ +1, temos que t—t' — —t' ¢ ' —t — ’, obtemos

(hvwy == Z|Tkp| Re f dt' eV |Go(~1)G5, (1) = G(~1)G3, ()] ™. (C.30)

Essa importante expressdao mostra o poder da férmula de Kubo. Se ndo estivermos interessados no

comportamento de transiente podemos fazer fy = —oo, € com isso ficarmos com

vy == Z|Tkp| Re f di' eV |G (1G5, (1)~ G (~)G3, (1) e .

O interessante neste caso ¢ que podemos entdo realizar uma transformada de Fourier e obtermos a

expressao

<i1N(t)>:— |Tkp| f |G7@)G5, (@ +eV) = Giw)G3,(w+eV)]. (C.31)

onde usamos que fdte‘i‘*’tf(t)g(—t) f(da) [27) f(w + w')g(w) e que os produtos G (= t)G e
Gfk(—t’)G;p(t’) sdo puramente reais, uma vez que as fungdes de Green maior € menor sdo pura—

mente imaginarias. Podemos agora utilizar o teorema de dissipagado-flutuacido expresso por

G (W) = ~[1- fr(@]iAw):; G (W)= fi(w)iAw). (C.32)

Com isso temos que

GTk(a))G (w+eV) = Ap(wAy(w+eV)[1 - fi(w)lfi(w+eV), (C.33)
Gfk(w)G (w+eV) = Ap(w)Aypw+EeV)fi(w)l - filw+eV)]. (C.34)

Dai podemos escrever

G (w)G5 pw+eV)— G(w)G5 pwteV)=An(w)Ayw+eV) fi(w+eV) - fi(w)].
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Por fim escrevemos

X 1 o0
i) =2 " T f 99 Mo+ eV) [ fu(w+eV) = fu(@)]. (C.35)
kp -

o 2T

A expressdao acima mostra uma das mais poderosas aplicacdes do teorema de dissipagao-flutuagio.
Perceba que conseguimos expressar uma grandeza fora do equilibrio (D)) em fungdo totalmente
de fungdes definidas no equilibrio (A1x(w), A2p(w)).

Podemos ainda expressar nossos resultados em funcdo da densidade de estados, para isso vamos con-

siderar |Tkp|2 =|T|? ¢ usar que

DAk =2mp1(w); Y. Agplw +eV) = 2mpa(w+eV). (C.36)
k p

Entdo temos que

" do

n 1
<11N<t>>:E|T|24n2 f p1(p2(w +eV)[fr(w+eV) - fu(w)]. (C.37)

oo 2T

Por outro lado, lembremos que (T .n(0) = —elT1n (D)), entdo temos

" do

<fleN<t>>:—%|T|24n2 f p1(Wp2(w +eV)[fr(w+eV) = fi(w)]. (C.38)

oo 2T

Vamos agora considerar o caso que a tensdo aplicada seja muito pequena eV << 1, logo neste caso

temos podemos escrever que

0 1%
f+(a) +eV) = f+(a)) + Mev'
Ow
Portanto, temos que
[ ¢’ *dw Ofi(w+eV
han(t) = G4 [ S2pn@ipa(sev)| - Ny
h o0 27 Ow

Mas sabemos que em resposta linear temos G = d(fleN(t))/dV, com isso temos entdo a formula para
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a condutancia diferencial dada por:

(h(T)=(3dTF4ﬂ2Jn dw[_§!£91i£K12

5 ]Pl(w)pz(w +eV), (C.39)
W

[oe]

onde Go = e?/h é o quanta de condutincia. Lembrando que todos os cdlculos sdo analogos caso
escolhéssemos usar a corrente do sistema 2, e explicitamos que a funcdo de particdo depende da tem-

peratura. Isso porque para T = 0 temos que

_6f+(a)+eV,T =0)
Ow

=d(w+eV).

Com isso, obtemos simplesmente

= GolTP4rpi(=eV)pa(0); T =0. (C.40)

E interessante notar que, por exemplo, caso o sistema 1 seja um metal comum, de tal forma que
possamos fazer pj(—eV) = ¢, onde ¢ ¢ uma constante, obtemos que G o« py(0). Logo, neste caso
podemos usar a condutancia do sistema 1 para estudar a densidade de estados do sistema 2. Imagine
o caso onde o sistema 1 seja a ponta de prova do STM ¢ o sistema 2 seja um sistema qualquer, que
inclusive pode ser um sistema interagente de muitos corpos. Podemos entdo obter as informagdes da
sua densidade de estados via experimentos de STM, caracterizando entdo uma importante aplicagao

do mesmo.

Quando tratamos um dos sistemas como um metal usual com densidade de estados constante py
a zero bias (eV =0) e levando em conta os canais de spin, temos que a expressdo (C.39) se torna uma

equagdo do tipo Landauer dada por

cM)ﬂ%Zf [amwﬂww, (€A

com I' = 271po|T|?. Essa importante formula também foi deduzida de forma mais geral por Meir e

Wingreen usando o formalismo de Keldish (59).
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