
UNIVERSIDADE FEDERAL DE UBERLÂNDIA 
PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS E MATEMÁTICA

BEATRIZ APARECIDA SILVA ALVES

A ÁLGEBRA NA PERSPECTIVA HISTÓRICO-CULTURAL: UMA PROPOSTA DE 
ENSINO PARA O TRABALHO COM EQUAÇÕES DE 1° GRAU

UBERLÂNDIA - MG
2016



BEATRIZ APARECIDA SILVA ALVES

A ÁLGEBRA NA PERSPECTIVA HISTÓRICO-CULTURAL: UMA PROPOSTA DE 
ENSINO PARA O TRABALHO COM EQUAÇÕES DE 1° GRAU

Dissertação apresentada à Banca Examinadora do Programa de 
Pós-Graduação em Ensino de Ciências e Matemática da 
Universidade Federal de Uberlândia, como requisito parcial 
para obtenção do título de Mestre em Ensino de Ciências e 
Matemática.
Área de concentração: Ensino de Matemática.
Orientadora: Prof3. DU. Fabiana Fiorezi de Marco.

UBERLÂNDIA - MG
2016



A474a
2016

Dados Internacionais de Catalogação na Publicação (CIP) 
Sistema de Bibliotecas da UFU, MG, Brasil.

Alves, Beatriz Aparecida Silva, 1988-
A álgebra na perspectiva histórico-cultural: uma proposta de ensino 

para o trabalho com equações de 1° grau / Beatriz Aparecida Silva Alves. 
- 2016.

160 f. : il.

Orientadora: Fabiana Fiorezi de Marco.
Dissertação (mestrado) - Universidade Federal de Uberlândia, 
Programa de Pós-Graduação em Ensino de Ciências e Matemática.

Inclui bibliografia.

1. Ciência - Estudo e ensino 2. Matemática (Ensino fundamental) 
Estudo e ensino - Teses. 3. Álgebra - Estudo e ensino - Teses. I. Marco, 
Fabiana Fiorezi de. II. Universidade Federal de Uberlândia, Programa de 
Pós-Graduação em Ensino de Ciências e Matemática. III. Título.

CDU: 50:37



A ÁLGEBRA NA PERSPECTIVA HISTÓRICO-CULTURAL: UMA PROPOSTA DE 
ENSINO PARA O TRABALHO COM EQUAÇÕES DE 1° GRAU

Dissertação aprovada para a obtenção do título de Mestre no 
Programa de Pós-Graduação em Ensino de Ciências e 
Matemática da Universidade Federal de Uberlândia, pela banca 
examinadora formada por:

Uberlândia, 02 de setembro de 2016.

Prof®. Dr®. Fabiana Fiorezi de Marco (Orientadora)

Prof®. Dr®. Anemari Roesler Luersen Vieira Lopes

Prof®. Dr®. Maria Teresa Menezes Freitas



À  minha mãe Maria Hehena, 

Aos meus avós Severino (in memoriam) e Beatriz, 

A o meu esposo ECio Jr. e 

À  minha irmã Táôata, 

pelo amor e apoio incondicionah 

em todas as etapas de minha vida, 

dedico esse traôaCho.



AGRADECIMENTOS

A Deus e Nossa Senhora Aparecida, fontes de infinita Sabedoria, por me darem força 

e amparo, direcionarem meus caminhos e sempre me protegerem.

À minha querida e estimada orientadora Prof.a Dr.a Fabiana Fiorezi de Marco, por toda 

sua paciência, carinho e educação, pela confiança a mim depositada, por ter me 

proporcionado conhecer os estudos da Teoria Histórico-Cultural, encontrando assim 

embasamento à minha prática docente, correspondendo minhas expectativas ao ingressar no 

Programa de Mestrado, pelos ensinamentos valiosos e esclarecedores, por me receber mesmo 

aos finais de semana em sua residência, por ler e reler essa dissertação sempre com olhar 

cuidadoso fornecendo as contribuições essenciais que em muito enriqueceram esse texto, por 

me acalmar perante minhas inseguranças, entender meus momentos de afastamento, me dar a 

oportunidade de compartilhar momentos pessoais que aconteceram ao longo da pesquisa. 

Com toda certeza, sem sua parceria, preocupação e cuidados essa pesquisa não aconteceria de 

forma tão prazerosa e enriquecedora, por me proporcionar colocar-me em atividade e 

inúmeras aprendizagens pessoais e profissionais.

À Prof.a Dr.a Anemari Roesler Luersen Vieira Lopes meus sinceros agradecimentos 

pela leitura cuidadosa, contribuições e sugestões no exame de qualificação estreitando ainda 

mais minha escrita à Teoria Histórico-Cultural, pelo respeito e empenho dedicados a minha 

pesquisa.

À Prof.a Dr.a Maria Teresa Menezes Freitas por sempre acreditar nas minhas 

potencialidades desde a Graduação, enaltecer minha escrita, pelas valiosas contribuições no 

exame de qualificação em sua leitura sempre atenta e pelos conselhos e puxões de orelhas nas 

disciplinas em que a tive como docente.

À Lóren, minha amiga e grande companheira de caminhada ao longo dessa jornada, 

por me ouvir nas horas de conflito, pelas mensagens, e-mails e conversas em que dividimos 

nossas ansiedades e receios, que muito me fortaleceram.

À Carolina, pelas contribuições e oportunidades de discutir algumas interrogações 

inerentes à construção do meu conhecimento e por prontamente me ajudar sempre que a 

procurei.

À Escola Municipal Freitas Azevedo por me possibilitar o desenvolvimento dessa 

pesquisa, contribuindo sempre que necessário.



Aos meus amados alunos, protagonistas dessa pesquisa, por terem aceito embarcar 

nessa pesquisa, expondo suas considerações e dúvidas, sempre com comprometimento, 

empenho, competência e sinceridade e muito terem me ensinado.

À minha mãe, Maria Helena, minhas palavras faltam para lhe agradecer pelos 

ensinamentos que fizeram de mim uma pessoa mais forte e determinada, por sempre acreditar 

e rezar por mim, me oferecer um afago nas horas mais difíceis, estar ao meu lado 

incondicionalmente encorajando-me sempre nos caminhos de minha escolha.

À minha querida vovó, Beatriz, por todo amor, pela atenção e cuidados dedicados e, 

ao meu amado vovô, Severino, por ter me dado a honra de conviver belos e inesquecíveis 

momentos ao seu lado e que, mesmo do Céu, ainda cuida de mim, eternas saudades!

À minha irmã, Tábata, por aguentar todos os meus momentos de chatices, reclamações 

e inseguranças e por fazer destes momentos mais leves e divertidos e, também, ao meu 

cunhado, Alex, por sua preocupação e torcida com o andamento da pesquisa.

Ao meu esposo, Elcio Jr., pelo amor e companheirismo incondicional, pelo apoio aos 

meus sonhos, compreensão nos meus momentos de isolamento durante essa pesquisa, pelas 

madrugadas em claro para me fazer companhia enquanto escrevia, por me ouvir divagar sobre 

a teoria, mesmo que nem sempre compreendesse o que estava falando, pelos chocolates para 

aliviar meu humor, ou falta dele! Enfim, por sempre ter fé em mim e pela eterna parceira nas 

minhas realizações pessoais.

A todos os Professores e Colegas do Programa de Pós-Graduação em Ensino de 

Ciências e Matemática da Universidade Federal de Uberlândia pelas inúmeras discussões e 

crescimento profissional.

A todos, meus sinceros e emocionados agradecimentos...



[...] espaço de formação do professor, e talvez o principal, é a escola onde este 
profissional atua. Sendo espaço do fazer, é nele que se deverá colocar como 
sujeito de seu conhecimento e produtor de situações de ensino que Cevem a uma 
melhor aprendizagem. Isso implica em tomar consciência de que no ensino existe 
a ôusca constante de condições ótimas de aprendizagem ta l como acontece em 
qualquer atividade humana, é  este estatuto que pode qualificar este profissional 
como educador matemático e pode co(ocá-(o em sintonia não só com as 
necessidades que a sociedade lhes impõe, mas principaCmente pode antever estas 
necessidades e planejar ações que possam ser cada vez mais condizentes com as 
aspirações humanas por melhores condições de vida. O profissional da Educação 
Matemática é, para nós, aquele que toma o conhecimento matemático como um 
projeto humano e procura todos os meios de fa zer  com que os seus educandos 
adquiram este conhecimento por meio de situações de ensino onde quer que a 
Matemática possa estarfMOVRfl, 2000, pp. 17-18).



RESUMO

Na presente pesquisa, de caráter qualitativo, apresentamos nossa preocupação com a formação 
do pensamento algébrico e do conceito de equações de 1° grau sob a perspectiva da atividade 
orientadora de ensino (MOURA, 1992; 2000; 2001). O estudo foi realizado com 27 
estudantes do 7° ano do ensino fundamental de uma escola municipal da cidade de 
Uberlândia/MG, com faixa etária entre 12 a 15 anos. Os princípios norteadores dessas 
atividades versam sob os nexos conceituais da álgebra: fluência, campo de variação e variável 
(SOUSA, 2004), que podem ser apreendidos à luz da Teoria Histórico-Cultural (VIGOTSKI, 
1989; 1991; LEONTIEV, 1978; 1983) e dos princípios de Davidov (1982; 1987) acerca da 
construção do conhecimento teórico. Realizamos um estudo histórico do surgimento da 
álgebra (BAUMGART, 1992; EVES, 2002, entre outros) por acreditarmos que os nexos 
conceituais se fazem presentes ao longo da construção histórica do conceito, um breve olhar 
sobre livros didáticos presentes na escola onde a pesquisa aconteceu e um levantamento de 
pesquisas já realizadas sobre a temática, a fim de verificar se estes nexos se encontram em 
destaque. Diante desses encaminhamentos, estabelecemos a seguinte questão de pesquisa: 
quais implicações pedagógicas para o processo de formação do pensamento algébrico e do 
conceito de equação de 1° grau para os estudantes do ensino fundamental as atividades de 
ensino, desenvolvidas na perspectiva da Atividade Orientadora de Ensino, podem propiciar? 
Na busca por respondê-la, traçamos como objetivo analisar possíveis implicações pedagógicas 
para a formação do pensamento algébrico e a aprendizagem do conceito de equação de 1° 
grau para estudantes do 7° ano do ensino fundamental por meio da atividade de ensino. Para 
efeito de análise, categorizamos os dados em episódios e cenas (MOURA, 2004) discutindo 
os movimentos possibilitados pelas situações desencadeadoras de aprendizagem, assim como 
as ações e reflexões dos estudantes perante as situações propostas. Por meio das análises 
realizadas, parece-nos que houve a formação do pensamento algébrico pelos estudantes e que 
estes se apropriaram do conceito de equação de 1° grau, assim como notamos indícios de que 
os nexos conceituais algébricos são de extrema relevância para a aprendizagem da álgebra, 
em um movimento no qual os estudantes compreenderam as justificativas de suas ações 
mediante as necessidades que as motivaram, permitindo aos estudantes atribuírem nova 
qualidade ao processo de apreensão dos conceitos algébricos, no qual houve a predominância 
do saber pensar ao invés do saber fazer, possibilitando percebermos indícios de 
desenvolvimento do conhecimento teórico, em um ambiente de respeito às ideias apresentadas 
pelo outro e construção coletiva dos significados algébricos. Esperamos que este trabalho 
contribua com a área de Educação Matemática, especialmente com o ensino de equação por 
meio de situações desencadeadoras de aprendizagem que propiciem a formação do 
conhecimento teórico.

Palavras-Chave: Pensamento Algébrico; Equações de 1° grau; Atividade Orientadora de 
Ensino; Nexos Conceituais; Teoria Histórico-Cultural.



ABSTRACT

In this qualitative research, we present our concern with the formation of algebraic thinking 
and the concept of first degree equations from the perspective of teaching guiding activity 
(MOURA, 1992; 2000; 2001). The study was conducted with 27 students in the 7th grade of 
elementary school from a public school of the city of Uberlândia/MG (Brazil), aged between 
12 and 15 years old. The guiding principles of these activities regard the concept of algebra 
links: fluency, variation field and variable (SOUSA, 2004), which can be grasped in the light 
of Historical-Cultural Theory (VIGOTSKI, 1989; 1991; LEONTIEV, 1978; 1983) and the 
principles of Davidov (1982, 1987) about the construction of theoretical knowledge. We 
conducted a historical study of the emergence of algebra (BAUMGART, 1992; EVES, 2002, 
among others) because we believe that the conceptual connections are present along the 
historical construction of the concept, a brief analysis of textbooks present in the school where 
the research took place and a survey of previous studies in order to verify if these links are 
highlighted. Given this, we established the following research question: What pedagogical 
implications for the process o f formation o f algebraic thinking and the concept o f first degree 
equation for elementary school students the teaching activity, developed in the perspective o f 
the Teaching Guiding Activity, can provide? Seeking to answer this question, we aimed at 
analyzing possible pedagogical implications for the formation of algebraic thinking and 
learning the concept of first degree equation for students in the 7th grade of elementary school 
through the teaching activity. For analytical purposes, we categorized the data in episodes and 
scenes (MOURA, 2004) discussing the movements made possible by triggering learning 
situations, as well as the actions and thoughts of students towards the proposed situations. 
Through the performed analyses, it seems that there was the formation of algebraic thinking 
by students and they have appropriated the concept of first degree equation, as we also noted 
evidence that the algebraic conceptual links are extremely relevant to learning algebra, in a 
movement in which the students comprehended the reasons for their actions upon the needs 
that motivated them, allowing students to allocate new quality to the process of apprehension 
of the algebraic concepts, in which knowing how to think prevailed instead of knowing how 
to do, enabling us to perceive evidence of a development of the theoretical knowledge, in an 
environment of respect to the ideas presented by the other and collective construction of 
algebraic meaning. We hope this work will contribute to the field of Mathematics Education, 
especially with the teaching of equation through triggering learning situations that encourage 
the formation of theoretical knowledge.

Keywords: Algebraic Thinking; First degree equations; Teaching Guiding Activity; 
Conceptual links; Historical-Cultural Theory.
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INTRODUÇÃO

Peço licença ao leitor para escrever na primeira pessoa do singular grande parte dessa 

introdução, pois penso que os parágrafos que seguem me permitem esse movimento, uma vez 

que contarei os caminhos que percorri até chegar a esse momento.

Sempre fui considerada uma ‘ótima estudante’ por meus professores nas séries iniciais 

do ensino fundamental (1a à 4a série ou, desde 2007, 1° ao 5° ano). Essa qualidade devia-se ao 

fato das notas acima da média que compunham meu boletim e a forma como me comportava 

nas aulas: uma estudante que permanecia sempre em silêncio e realizava todas as atividades 

propostas, das quais hoje entendo apenas como meros exercícios de cunho mnemónico, que 

visavam nos preparar para as avaliações e não a apreensão do conceito.

Entretanto, essa postura começou a mudar quando ingressei no ensino fundamental II 

(5a à 8a série ou, 6° ao 9° ano). Nesse momento já não conseguia compreender o significado 

daquelas “continhas” que a professora estava fazendo no quadro e questões como “o que é o 

x?” e “onde vou usar isso na minha vida?” muito me inquietavam e em nada me esclareciam o 

que estava estudando. Mas como questionar não era a melhor opção, resolvia me calar e 

apenas executar.

Essa inquietude me acompanhou por toda a vida escolar na educação básica. Por 

vezes, quando me propunha a questionar os professores de matemática do porquê de estarmos 

estudando determinados conteúdos, da sua real necessidade, não ouvia nenhuma resposta.

De repente, me vi concluindo o ensino médio, às vésperas do encerramento das 

inscrições do processo seletivo para ingresso na Universidade Federal de Uberlândia (UFU), 

com o Edital em mãos, sem saber qual opção de curso colocar. Foi então que decidi optar pelo 

curso de Matemática, afinal, poderia encontrar algumas respostas às minhas inquietações.

Meses depois, fui aprovada... Era hora de começar uma nova fase, acreditava que seria 

bem-sucedida no curso, afinal de contas eu havia concluído o ensino médio sempre com 

rendimento entre 97 e 99% na disciplina de Matemática, não havendo motivos para 

preocupações.

Já no primeiro semestre, as decepções vieram. Percebi que os algoritmos que havia 

decorado e que me ajudaram a ser uma excelente estudante no ensino básico em nada 

contribuíam em minha caminhada acadêmica. Era isso: eu sabia operar números, resolver 

equações, mas não tinha a mínima ideia dos seus significados e definições, sendo necessária 

muita dedicação para “correr atrás do prejuízo”.
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Por meio dos diálogos realizados nas disciplinas pedagógicas (Informática e Ensino, 

Psicologia da Educação, Estágios, Metodologia de Ensino, Oficinas, entre outras), começava 

a formar a ideia de que ao professor cabe “compartilhar significados” (MOURA, 2000). Nesse 

momento percebi que gostaria de atuar como docente para desmistificar a ideia de um ensino 

imutável, descolado do percurso histórico e da produção de significados.

Atuei como bolsista do Programa Institucional de Bolsa de Iniciação à Docência1 2 

(PIBID), o qual me proporcionou a participação em minicursos e oficinas realizados dentro da 

Faculdade de Matemática da Universidade Federal de Uberlândia agregando conhecimentos 

docentes para a constituição de minha futura prática pedagógica.

Finalmente, conclui a graduação e me vi inserida no corpo docente de uma escola 

pública estadual. Muitas inseguranças permeavam meus pensamentos: “qual a melhor forma 

de ensinar determinado conteúdo para que os estudantes de fato aprendam e não apenas 

decorem?”, “como fazer para que os estudantes se interessem pelas minhas aulas?”. 

Inquietações como essas me acompanhavam constantemente e a busca às devidas respostas 

me levaram a ingressar no Programa de Pós-graduação do Ensino de Ciências e Matemática 

da Universidade Federal de Uberlândia, onde minha atividade (LEONTIEV, 1978) passou a 

ser a de investigar questões como as mencionadas anteriormente.

Concomitante ao ingresso no Mestrado houve a distribuição das turmas na escola onde 

ministro aulas desde o ano de 2012 e me tornei responsável pelos sétimos anos. Mais uma 

vez, me vi preocupada com a forma que trabalharia os conteúdos, principalmente, as equações 

de 1° grau, tão utilizadas ao longo dos ensinos fundamental e médio, e objeto de conflito entre 

os estudantes, como pude vivenciar até então no decorrer de minha vivência.

Juntamente com minha orientadora do Programa de Pós-Graduação, decidimos que 

nosso objeto de estudo versaria, então, sobre a formação do pensamento algébrico e do 

conceito de equações de 1° grau. A nossa intenção era trabalhar com os nexos conceituais da 

álgebra (SOUSA, 2004) corroborando para que o estudante se aproprie desse conceito e não 

seja apenas um usuário que opere com letras sem atribuir nenhum tipo de significado.

Em relação ao ensino de álgebra não é diferente, pois conforme nos diz Scarlassari 

(2007, p. 3)

1 O PIBID é programa financiado pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) 
que busca antecipar o vínculo entre os licenciandos e as salas de aula da rede pública, apoiando a formação dos 
futuros professores.
2 A partir desse momento, volto a utilizar a 1a pessoa do plural.
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a álgebra ainda é considerada um assunto difícil de ser trabalhado em sala de aula 
porque envolve muitos “conceitos novos” para os alunos do Ensino Fundamental, 
como no caso do “tal x”, como eles mesmos dizem, ou seja, do conceito de variável, 
de incógnita; e na ideia de movimento, fundamental para a compreensão do conceito 
de variável, que nem sempre é explorado devido ao fato de os professores não 
estarem preparados para trabalhar o mesmo em sala de aula, pois não tiveram 
contato com ele em sua formação acadêmica. Além disso, na sua formalização, a 
álgebra requer uma linguagem específica, simbólica e rigorosa.

Pensar a complexidade do objeto principal do professor, o ensino, e, no caso desse 

estudo, a formação do pensamento algébrico e do conceito de equações de 1° grau, além de 

uma metodologia que o ajude a organizar este ensino visando à produção de novos 

conhecimentos não é simples. Nas palavras de Moura (2000, p. 4)

o processo de produção do conhecimento matemático tem assim um duplo 
movimento: por um lado é gerado como necessidade de resolver problema e de 
outro, serve de instrumento para produzir novos significados que servirão, mais 
adiante, como novas ferramentas para novos problemas gerados na dinâmica da vida 
humana em interação com a natureza física e simbólica.

Esta afirmação sugere pensar no docente como promotor de um ensino com objetivos 

e ações intencionalmente definidas para solucionar problemas gerados na dinâmica da vida e 

cuja prática possui uma intencionalidade a ser alcançada: a apropriação de conhecimento 

matemático pelos estudantes.

O anseio em atribuir nova qualidade à nossa prática pedagógica e o movimento vivido 

em sala de aula, direcionou-nos à preocupação que se tornou uma necessidade para nós: a de 

promover a apropriação de conhecimento algébrico por parte dos estudantes. Nas palavras de 

Araújo:

Se não se introduzir a álgebra de maneira significativa, conectando os novos 
conhecimentos aos conhecimentos prévios que os alunos já possuem, se aos objetos 
algébricos não se associar nenhum sentido, se a aprendizagem da álgebra for 
centrada na manipulação de expressões simbólicas a partir de regras que se referem 
a objetos abstratos, muito cedo os alunos encontrarão dificuldades nos cálculos 
algébricos e passarão a apresentar uma atitude negativa em relação à aprendizagem 
matemática, que para muitos fica desprovida de significação (ARAÚJO, 2008, p. 6).

Entendemos que se faz interessante que o professor desenvolva sua prática com a 

intencionalidade de que o estudante desenvolva sentidos próprios dos conceitos que, pelas 

ações mobilizadoras do professor coincida com os significados dos conceitos algébricos ao 

invés de recebê-los como regras a serem memorizadas. São inúmeras as contribuições da 

álgebra na formação das funções psicológicas mais desenvolvidas do ser humano que, 

conforme nos diz Vigotski (1987),
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[...] pelo aprendizado da álgebra, a criança passa a compreender as operações 
aritméticas como casos particulares de operações algébricas. Isso dá à criança uma 
visão mais livre, mais abstrata e generalizada de suas operações com quantidades 
concretas. Assim como a álgebra livra o pensamento da criança da prisão das 
relações numéricas concretas e o eleva ao nível mais abstrato3 (VYGOTSKY, 1987, 
p. 180, tradução nossa).

De posse destas reflexões elaboramos a seguinte questão de pesquisa: quais 

implicações pedagógicas para o processo de formação do pensamento algébrico e do 

conceito de equação de 1° grau para os estudantes do ensino fundamental as atividades de 

ensino, desenvolvidas na perspectiva da Atividade Orientadora de Ensino, podem propiciar?

Como objetivo principal dessa pesquisa, procuramos analisar possíveis implicações 

pedagógicas para a formação do pensamento algébrico e a aprendizagem do conceito de 

equação de 1° grau para estudantes do 7° ano do ensino fundamental por meio de atividades 

de ensino, desenvolvidas na perspectiva da Atividade Orientadora de Ensino.

Nossas ações desenvolvidas para atingir os objetivos foram:

• organizar uma unidade didática que permita cumprir com o objetivo da formação 

conceitual do pensamento algébrico e de equações de 1° grau;

• investigar as ações dos estudantes frente às atividades de ensino, investigando se as 

mesmas tornar-se-ão atividades de aprendizagem;

• investigar se a atividade de ensino pode influenciar no saber pensar e saber fazer do 

estudante.

As atividades de ensino foram propostas para 112 estudantes do 7° ano do ensino 

fundamental, com faixa etária entre 12 e 15 anos, nas turmas em que a pesquisadora atuava 

também como professora. Entretanto, somente uma turma com 27 estudantes foi selecionada 

para análise neste estudo devido ao atendimento aos critérios estabelecidos, que serão 

expostos no capítulo 4.

Para efeito de elaboração do relatório da pesquisa desenvolvida, o organizamos da 

seguinte forma:

No capítulo 1 abordamos o conceito de atividade, atividade de ensino, atividade de 

aprendizagem e a importância da formação do conhecimento teórico buscando elucidar 

elementos que possam nos auxiliar a compreender o processo de apropriação do 

conhecimento na atividade de aprendizagem. Para tanto, dialogamos com autores como

3 Tradução livre que faço de “[...] by learning algebra, the child comes to understand arithmetic operations as 
particular instantiations of algebraic operations. This gives the child a freer, more abstract and generalized view 
of his operations with concrete quantities. Just as algebra frees the child’s thought from the grasp of concrete 
numerical relations and raises it to level of more abstract thought”.
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Vigotski (1989; 1991), Leontiev (1978; 1983), Davidov (1982; 1987) e Moura (1992; 2000; 

2001).

No capítulo 2, discutimos o surgimento da álgebra nas civilizações babilónicas, 

egípcias, gregas, hindus, árabes e europeias, além do movimento histórico de formação das 

equações de 1° grau, à luz das ideias de Baumgart (1992); Boyer (1996); Eves (2002); Garbi 

(2009); Lanner de Moura e Sousa (2005) e Lima, Takazaki e Moisés (1998).

No capítulo 3, há a discussão de como a álgebra tem sido apresentada no ensino 

fundamental mediante as concepções dos autores como Fiorentini, Miorim e Miguel (1993); 

Usiskin (1995); Lins e Gimenez (1997); Sousa (2004); Sousa, Panossian e Cedro (2014); as 

indicações dos Parâmetros Curriculares Nacionais (BRASIL, 1998); o enfoque adotado por 

alguns livros didáticos e algumas pesquisas já realizadas.

No capítulo 4, apresentamos a questão, os objetivos, a metodologia e os protagonistas 

da pesquisa. Apresentamos as atividades de ensino (a unidade didática, que compõem o 

produto educacional deste estudo) propostas aos estudantes e fazemos uma breve 

apresentação sobre os eixos de análises que nortearam nossas reflexões.

No capítulo 5, trazemos nosso olhar para as análises das implicações pedagógicas da 

vivência e exploração de atividades de ensino, buscando dialogar com os autores que 

respaldam nosso estudo. Para tanto, utilizamos a ideia de episódios e cenas (MOURA, 2004). 

O Eixo 1, situações desencadeadoras de aprendizagem, apresenta, no Episódio 1, a história 

virtual do conceito que contribuiu para os estudantes terem contato com o número 

desconhecido e flexível e, no Episódio 2, dois jogos como situações desencadeadoras que 

contribuíram para o movimento de apreensão do conceito pelos estudantes. No Eixo 2, ações 

e reflexões coletivas, apresentamos, no Episódio 1, o movimento de formação do pensamento 

algébrico e, no Episódio 2, o movimento de apreensão do conceito de equação de 1° grau 

desenvolvido pelos estudantes.

Por fim, apresentamos algumas considerações acerca de nosso estudo, da vivência 

promovida pelo movimento de pesquisa, retomamos nossa questão de investigação a fim de 

verificarmos se a mesma fora respondida e se esta nos é satisfatória. Assim como, resgatamos 

nossas inquietudes e objetivos do início de nossa pesquisa, ao voltarmos nosso olhar para tais 

questões, buscamos refletir sobre as mesmas.

Almejamos, assim, que nossa pesquisa seja inspiração para práticas pedagógicas que 

objetivem colocar o estudante em movimento, como protagonista da apropriação dos 

conhecimentos produzidos historicamente, onde o professor se coloque em atividade de
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ensino, o estudante em atividade de aprendizagem, abarcando, assim, a atividade orientadora 

de ensino como potencializadora para a formação do conhecimento teórico matemático.
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1. TEORIA HISTÓRICO-CULTURAL: UMA APROXIMAÇÃO

A matemática, na perspectiva que colocamos, está participando tanto do 
desenvolvimento do sujeito, ao dotá-lo de conteúdo, como também da sua formação, 
já  que lhe proporciona a capacidade de lidar com informações de modo que possa 
solucionar adequadamente os problemas que lhe são colocados tanto 
cotidianamente como aqueles que deverá resolver, de modo mais sistemático, na 
sua vida profissional (MOURA; LANNER DE MOURA, 1998, p. 10).

Neste capítulo apresentamos os referenciais teóricos que embasam nosso estudo. 

Inicialmente, apresentamos os aportes teóricos da Teoria Histórico-Cultural (THC), com seu 

representante Lev Semenovitch Vigotski (1989; 1991), pois, assim como proposto em sua 

teoria, acreditamos no potencial das interações entre os sujeitos como mediação para o 

desenvolvimento e a aprendizagem. Em seguida, apresentamos os pressupostos teóricos da 

Teoria da Atividade embasando-nos em Alexei Nikolaievich Leontiev (1978; 1983), onde é 

destacado que um sujeito estará em atividade quando mover-se por uma necessidade 

responsável pelo desenvolvimento de suas funções superiores. Refinando nosso olhar para o 

ensino, caminhamos com Moura (1992; 2000; 2001), compreendendo seus estudos sobre a 

Atividade Orientadora de Ensino (AOE) e, à luz dessa teoria, temos o movimento de 

organização do ensino, no qual, tanto professor quanto estudantes estão em atividade -  o 

professor a partir da necessidade de ensinar e o estudante da necessidade aprender. Por fim, 

finalizamos com Vasily Vasilovich Davidov (1982; 1987), acerca da construção do 

conhecimento teórico.

1.1 Compreendendo as ideias de Vigotski

Lev Semenovitch Vigotski4 foi um cientista bielo-russo, do qual referenciamos alguns 

pontos de seus estudos na Rússia, pós Revolução de 1917, no que diz respeito à Teoria 

Histórico-Cultural (THC).

4 Ao longo de nossa produção textual adotaremos a grafia dos nomes dos autores russos usados no alfabeto 
ocidental (Vigotski, Davidov), porém nas citações e referências respeitaremos a grafia conforme a obra original 
do autor consultada. Prestes (2010) esclarece-nos que “toda essa confusão não pode ser somente explicada pelas 
regras de transliteração de nomes russos, escritos em alfabeto cirílico, mas vale uma ponderação: o idioma russo 
possui três tipos de i com grafia, sonoridade e funções diferentes. O sobrenome de Vigotski se escreve com esses 
três tipos de i (BblTOTCKMR). Alguns tradutores tentaram, com a grafia diferente, representando um tipo de i 
do russo com o y e o outro com i, conservar a diferença existente entre os tipos de i russos, pelo menos de dois. 
No português, temos um único som tanto para o i como para o y, portanto, para o leitor brasileiro tanto faz se é i

http://pt.wikipedia.org/wiki/Bielorr%C3%BAssia
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De acordo com Goulart (2010, p. 168), nessa época “os soviéticos começaram a rever 

as bases de todo seu conhecimento, procurando construir um sistema que fosse coerente com 

sua opção política, isto é, um corpo de conhecimentos fundamentado no marxismo”. Diante 

disso, fazia-se necessário uma teoria psicológica colaborativa ao governo, bem como 

produções científicas voltadas para a educação e medicina. Vigotski busca, nesse contexto, 

compreender os processos mentais humanos.

Correlacionava às ideias de Marx, “na medida em que se preocupou em um 

fundamento ao pensamento e à ação, opondo-se assim a qualquer dogmatismo. Daí a ênfase 

nas origens sociais da linguagem e do pensamento” (VERÍSSIMO, 1996, p. 132), procurando, 

assim, as origens do comportamento existentes nas relações sociais que os indivíduos mantêm 

com o mundo exterior. Assim, Vigotski percebeu no materialismo histórico dialético de Marx, 

uma fonte importante para as suas elaborações teóricas.

Vigotski (1989) considera dois tipos de conceitos: espontâneos (adquiridos fora do 

contexto escolar) e científicos (sistematização de ideias inter-relacionadas). Podemos pensar 

nos conceitos espontâneos (cotidianos) como os conhecimentos prévios que o estudante já 

possui, que o ajudam a interpretar algo melhor, estes evoluem na medida em que há 

aprendizagem, podendo ser generalizados, partindo do concreto para o abstrato. Já os 

conceitos científicos instigam o estudante, dizem respeito às relações das palavras com outras 

palavras, sua sistematização, partindo do abstrato para o concreto. Assim, Vigotski (1989) 

apresenta a ideia de que a educação promove o desenvolvimento cognitivo, onde o 

desenvolvimento dos conceitos espontâneos e científicos está em constante consonância.

Poder-se-ia dizer que o desenvolvimento dos conceitos espontâneos da criança é 
ascendente, enquanto o desenvolvimento dos seus conceitos científicos é 
descendente, para um nível mais elementar e concreto. [...] Ao forçar sua lenta 
trajetória para cima, um conceito cotidiano abre o caminho para um conceito 
científico e o seu desenvolvimento descendente. Cria uma série de estruturas 
necessárias para a evolução dos aspectos mais primitivos e elementares de um 
conceito, que lhe dão corpo e vitalidade. Os conceitos científicos, por sua vez, 
fornecem estruturas para o desenvolvimento ascendente dos conceitos espontâneos 
da criança em relação à consciência e ao uso deliberado. Os conceitos científicos 
desenvolvem-se para baixo por meio dos conceitos espontâneos; os conceitos 
espontâneos desenvolvem-se para cima por meio dos conceitos científicos 
(VYGOTSKY, 1989, pp. 93-94).

Na formação dos conceitos espontâneos, Vigotski destaca a ocorrência de três 

estágios. No primeiro deles, Pensamento Sincrético, “o significado das palavras representa

ou y, a pronúncia é a mesma” (PRESTES, 2010, p. 91). Mediante esse esclarecimento, adotaremos os nomes dos 
autores grafados com i.
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para a criança um conglomerado vago e sincrético de objetos isolados, vinculados a alguma 

imagem mutável em sua mente” (NÚNEZ, 2009, p. 34). Sendo assim, a criança forma seus 

primeiros agrupamentos ao acaso, não existindo uma organização prévia das palavras por 

algum critério.

No segundo estágio, Pensamento por Complexos, “apresentam-se estágios de 

associações nos quais as palavras perdem sua função denotativa de objetos isolados e passam 

a ganhar um sentido de generalização, agrupando objetos e fenômenos por suas semelhanças, 

contrastes ou contiguidade no espaço” (NÚNEZ, 2009, p. 34). Entretanto, os critérios para a 

organização ainda não são estabelecidos pelo pensamento lógico, mas pela experiência 

imediata.

No último estágio, Pensamento Conceitual, temos como resultado processos 

intelectuais mais elaborados, pois “mediante a análise, os objetos e representações se 

decompõem em traços e elementos diferenciáveis. Desse modo, pode-se examinar 

independentemente os atributos comuns e essenciais dos objetos, abstraindo-os dos demais” 

(VYGOTSKY, 1989, p. 37). Entendemos que, nesse estágio, o conceito é impossível sem a 

palavra e somente existe pensamento conceitual mediante o pensamento verbal. Nas palavras 

de Vigotski (1989, p. 68), “um conceito só aparece quando os traços abstraídos são 

sintetizados novamente, e a síntese abstrata daí resultante torna-se o principal instrumento do 

pensamento. A palavra desempenha um papel decisivo nesse processo”. Os conceitos 

científicos são apoiados na palavra; o sujeito foca sua atenção no próprio ato de pensar, pois 

estes permitem a formação da consciência, o domínio do pensamento, em oposição aos 

conceitos cotidianos, para os quais o enfoque é dado no objeto. O indivíduo atribuirá 

significado a uma palavra que define um conceito científico, se este se encontra apoiado em 

outros conceitos aos quais foram atribuídas palavras com significado para o indivíduo.

Com relação ao desenvolvimento do estudante, Vigotski (1989) propõe que este deva 

acontecer de forma a se considerar a capacidade potencial de aprendizagem, respeitando o 

nível de desenvolvimento que ele se encontra. Podendo estar no Nível de Desenvolvimento 

Real (ou efetivo), onde estão compreendidas as funções mentais já estabelecidas na criança, 

àquilo que ela é capaz de fazer sozinha, ou no Nível de Desenvolvimento Potencial, onde são 

compreendidas as tarefas realizadas mediante a ajuda de outras pessoas. Entre esses dois 

níveis situa-se a Zona de Desenvolvimento Proximal (ZDP), ou Zona de Desenvolvimento 

Imediato. Nas palavras de Vigotski (1989, p. 97), a ZDP é:
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a distância entre o nível de desenvolvimento real, que se costuma determinar através 
da solução independente de problemas, e o nível de desenvolvimento potencial, 
determinado através da solução de problemas sob a orientação de um adulto ou em 
colaboração com companheiros mais capazes.

Prestes (2010) denomina a ZDP como Zona de Desenvolvimento Iminente. Para a 

autora, tanto a palavra proximal quanto a palavra imediato não transmitem a relevância desse 

conceito, que caminha concomitante à relação existente entre desenvolvimento e instrução e à 

ação colaborativa de outra pessoa. “Quando se usa zona de desenvolvimento proximal ou 

imediato não se está atentando para a importância da instrução como uma atividade que pode 

ou não possibilitar o desenvolvimento” (PRESTES, 2010, p. 168). De acordo com a autora, 

Vigotski não se refere à instrução como garantia de desenvolvimento, a instrução, ao ser 

realizada mediante uma ação colaborativa, cria possibilidades para o desenvolvimento. Assim, 

a autora defende que o termo mais correto seja Zona de Desenvolvimento Iminente, pois

sua característica essencial é a das possibilidades de desenvolvimento, mais do que 
do imediatismo e da obrigatoriedade de ocorrência, pois se a criança não tiver a 
possibilidade de contar com a colaboração de outra pessoa em determinados 
períodos de sua vida, poderá não amadurecer certas funções intelectuais e, mesmo 
tendo essa pessoa, isso não garante, por si só, o seu amadurecimento (PRESTES, 
2010, p. 173).

Ainda nas palavras de Vigotski:

Pesquisas permitiram aos pedólogos pensar que, no mínimo, deve-se verificar o 
duplo nível do desenvolvimento infantil, ou seja: primeiramente, o nível de 
desenvolvimento atual da criança, isto é, o que, hoje, já está amadurecido e, em 
segundo lugar, a zona de seu desenvolvimento iminente, ou seja, os processos que, 
no curso do desenvolvimento das mesmas funções, ainda não estão amadurecidos, 
mas já se encontram a caminho, já começam a brotar; amanhã, trarão frutos; 
amanhã, passarão para o nível de desenvolvimento atual (VIGOTSKI, 2004, p. 485 
apud PRESTES, 2010, p. 173).

Concordamos com a defesa de Prestes (2010), por entendermos que apenas a instrução 

de um adulto ou alguém mais amadurecido que a criança não será a garantia do 

desenvolvimento intelectual. Entendemos que essa instrução se faz de grande importância, 

para estimular a criança, sendo necessária a ela a presença do outro ao longo do seu caminhar, 

buscando estimular seu desenvolvimento.

Sendo assim, a aprendizagem como atividade transformadora utiliza-se de ferramentas 

mediadoras (instrumentos e signos) para agir sobre o objeto.

A invenção e o uso dos signos como meios auxiliares para solucionar um dado 
problema psicológico (lembrar, comparar coisas, relatar, escolher, etc.) é análoga à
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invenção e uso dos instrumentos, só que agora no campo psicológico. O signo age 
como instrumento de atividade psicológica de maneira análoga ao papel de um 
instrumento no trabalho (VYGOTSKY, 1991, p. 39).

Como vimos na citação anterior, Vigotski considera os instrumentos e os signos como 

os principais elementos mediadores da atividade:

A função do instrumento é servir como condutor da influência humana sobre o 
objeto da atividade; ele é orientado externamente; deve necessariamente levar a 
mudanças nos objetos. Constitui um meio pelo qual a atividade humana externa é 
dirigida para o controle e domínio da natureza. O signo, por outro lado, não 
modifica em nada o objeto da operação psicológica. Constitui um meio da atividade 
interna dirigido para o controle do próprio indivíduo; o signo é orientado 
internamente (VYGOTSKY, 1991, p. 41).

A linguagem assume o papel na comunicação entre os indivíduos e por meio dela se 

podem estabelecer os significados. Concordamos com as ideias de Vigotski (1991) quando 

alega que

a capacitação especificamente humana para a linguagem habilita as crianças a 
providenciarem instrumentos auxiliares na solução de tarefas difíceis, a superar a 
ação impulsiva, a planejar uma solução para um problema antes de sua execução e a 
controlar seu próprio comportamento. Signos e palavras constituem para a criança, 
primeiro e acima de tudo, um meio de contato social com outras pessoas. As funções 
cognitivas e comunicativas da linguagem tornam-se, então, a base de uma forma 
nova e superior de atividade nas crianças distinguindo-as dos animais 
(VYGOTSKY, 1991, p. 24).

Pensando nas relações entre pensamento e linguagem, Vigotski (1991) analisa o 

significado de palavra, distinguindo-o entre o significado propriamente dito e o sentido. O 

significado propriamente dito diz respeito ao sistema de relações objetivas que se formou no 

processo de desenvolvimento das palavras, compartilhado por todas as pessoas que a utilizam. 

O sentido, por sua vez, se refere ao significado da palavra atribuído por cada indivíduo, onde 

se fazem presentes as relações que dizem respeito ao contexto e uso da palavra.

Assim, a palavra atua como mediadora, constituindo as relações e generalizações 

construídas pelo indivíduo no social em um determinado período histórico, podendo ser 

entendida como um signo, inicialmente como papel na formação do conceito e, 

posteriormente, atua como o seu símbolo.

A teoria vigotskiana permite reconhecer o indivíduo como um ser social, implicando 

assim, que a aprendizagem escolar permita o desenvolvimento do estudante enquanto 

indivíduo. Seguimos agora apresentando a Teoria da Atividade, à luz das ideias de Leontiev.



26

1.2 Uma aproximação às ideias de Leontiev

Alexei Nikolaievich Leontiev foi um psicólogo russo que em 1924 graduou-se em 

Ciências Sociais e, posteriormente, trabalhou com Vigotski. Sua obra nos fala do conceito de 

atividade, introduzido por Marx, em um sentido materialista. Em suas palavras, “a atividade 

em sua forma inicial e principal é a atividade prática sensitiva mediante a qual as pessoas 

entram em contato prático com os objetos do mundo que as circundam, experimentam sua 

resistência, influem sobre eles, subordinando-se à suas propriedades objetivas5” (1983, p. 15, 

tradução nossa).

Segundo Marco (2009, p. 27), Leontiev “aborda atividade como uma unidade de 

formação na qual as necessidades emocionais e materiais dirigem a ação do sujeito”. Para o 

próprio Leontiev (1978, p. 68), atividade é definida como “os processos psicologicamente 

caracterizados por aquilo a que o processo, como um todo, se dirige (seu objeto), coincidindo 

sempre com o objetivo que estimula o sujeito a executar esta atividade, isto é, o motivo”.

Uma situação pode ser caracterizada como atividade mediante os seguintes elementos: 

objeto, motivo, operação/ação e objetivo, sendo que o objeto e o motivo devem sempre 

coincidir dentro de uma atividade, “o objeto da atividade é seu motivo real6” (LEONTIEV, 

1983, p. 83). Esse motivo pode tanto ser externo como ideal, percebidos ambos como 

existentes somente na imaginação, na ideia. O conceito da atividade está necessariamente 

relacionado ao conceito de motivo, a atividade somente existe mediante o objetivo, pois 

“podemos dizer que um sujeito se encontra em atividade quando o objetivo de sua ação 

coincide com o motivo de sua atividade, e esta deverá satisfazer uma necessidade do 

indivíduo e do grupo em sua relação com o mundo, procurando atingir um objetivo” 

(MARCO, 2009, p. 28).

Sobre a ação, Leontiev (1983, p. 83), a define como

o processo que se subordina à representação daquele resultado que haverá de ser 
alcançado, quer dizer, o processo subordinado a um objetivo consciente. Do mesmo 
modo que o conceito de motivo se relaciona com o conceito de atividade, assim 
também o conceito de objetivo se relaciona com o conceito de ação7.

5 Tradução livre que faço de “la actividad en su forma inicial y principal es la actividad práctica sensitiva 
mediante las cuales personas entran en contacto práctico con los objetos del mundo circundante, experimentan 
en sí su resistencia, influyen sobre ellos, subordinando se a sus propiedades objetivas”.
6 Tradução livre que faço de “el objeto de la actividad es su motivo real”.
7 Tradução livre que faço de “al proceso que se subordina a la representación de aquel resultado que habrá de ser 
alcanzado, es decir, el proceso subordinado a un objetivo consciente. Del mismo modo que el concepto de 
motivo se relaciona con el concepto de actividad, así también el concepto de objetivo se relaciona con el 
concepto de acción”.
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A ação orienta-se para um objetivo, “está relacionada aos objetivos conscientes para 

os quais ela se dirige, a operação está relacionada com as condições da ação, isto é, as 

operações constituem as formas de realização de uma ação” (MARCO, 2009, p. 28).

Para acompanharmos estas ideias, recorremos ao clássico exemplo sobre atividade: a 

caçada primitiva coletiva.

A caçada coletiva é a atividade, a caça o seu objeto, e a fome da presa é o seu 
motivo. Quando os batedores fazem barulho para assustar o veado, o bater das suas 
mãos é uma operação, e o bater como um todo é uma ação dentro da atividade da 
caça, motivada pela fome a ser satisfeita pela realização da atividade. Essa ação de 
fazer barulho tem como objetivo assustar o veado. No entanto, o objetivo contradiz 
o objeto e o motivo da atividade, que é apanhar o animal e distribuir e consumir a 
comida. A ação dos batedores é parte da atividade na base do seu saber consciente 
de que eles assustam o veado para que ele possa ser apanhado. Isto implica que a 
consciência humana tem um aspecto representacional mediador e mobilizador. A 
ação dos batedores só é possível na condição de representar a ligação entre o 
objetivo da sua ação e o motivo da atividade cooperativa. Eles precisam ser capazes 
de representar relações entre objetos, mesmo sendo irrelevantes para as suas 
necessidades reais, ou então eles continuarão simplesmente por si próprios e dessa 
forma muitas vezes falhando na obtenção do objeto. As suas consciências 
específicas e particulares são constituídas através do seu conteúdo, o qual tem como 
elementos os significados. Através dos significados eles são capazes de representar 
a relação entre o motivo e o objetivo da ação; desta forma eles implicam-se na 
atividade; faz sentido para os batedores. Uma atividade distingue-se de outra 
principalmente pelo seu objeto e motivo. Isto pode ser a chave para nos 
apercebermos do desenvolvimento da atividade da seguinte forma. Se, por exemplo, 
um batedor descobrir que é divertido bater, se ele começa a bater pelo seu belo 
prazer, ele está motivado pelo bater; o bater é um objeto apropriado; ele produz uma 
nova atividade a partir de uma antiga ação. Uma ação pode, portanto, desenvolver-se 
numa atividade pela aquisição de um motivo, e a nova atividade pode ela própria 
subdividir-se num conjunto de ações. Por outro lado, uma atividade pode tornar-se 
uma ação se o seu motivo se desvanece, e pode integrar-se noutra atividade. Da 
mesma forma, uma ação pode evoluir para uma operação, capaz de cumprir várias 
ações (LEONTIEV, 1983, p. 76).

Leontiev (1978) corrobora com as ideias sobre pensamento e linguagem de Vigotski. 

O conhecimento humano é gerado pela atividade intelectual, donde é chamado de pensamento 

o “processo de reflexo consciente da realidade, nas suas propriedades, ligações e relações 

objectivas, incluindo mesmo os objetos inacessíveis à percepção sensível imediata” 

(LEONTIEV, 1978, p. 84). Para exemplificar, (LEONTIEV, 1978) cita o fato de mesmo não 

enxergando os raios ultravioletas, reconhecemos sua existência e propriedades. O pensamento 

humano surge pelo fato de sermos capazes de ações independentes orientadas com 

determinada intencionalidade para um fim podendo esta “posteriormente tornar-se actividade 

independente, capaz de se transformar numa actividade totalmente interna, isto é, mental” 

(LEONTIEV, 1978, p. 84).
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A linguagem é, por esse autor, abordada como produto da coletividade, da ação 

humana, isto é, a partir de uma necessidade do homem.

A linguagem não desempenha apenas o papel meio de comunicação entre os 
homens, ela é também um meio, uma forma da consciência e do pensamento 
humanos, não destacado ainda da produção material. Torna-se a forma e o suporte 
da generalização consciente da realidade. Por isso, quando, posteriormente, a 
palavra e a linguagem se separam da actividade prática imediata, as significações 
verbais são abstraídas do objecto real e só podem, portanto, existir como facto de 
consciência, isto é, como pensamento (LEONTIEV, 1978, p. 87).

As significações atribuídas na atividade a um dado objeto ou fenômeno, são 

descobertas “num sistema de ligações, de interações e de relações objetivas” (LEONTIEV, 

1978, p. 94), sendo estas refletidas e fixadas na linguagem. Sendo assim, a significação torna­

-se a forma pela qual o homem irá assimilar a experiência humana generalizada e refletida. 

Nas palavras de Leontiev (1978, p. 95), “a significação mediatiza o reflexo do mundo pelo 

homem na medida em que ele tem consciência deste, isto é, na medida em que o seu reflexo 

do mundo se apoia na experiência da prática social e a integra”. A significação trata de um 

reflexo da realidade que nos cerca, independentemente da nossa relação individual com tal 

realidade e buscamos, por meio da significação, a apropriação dos objetos, fenômenos da 

realidade humana, como nos afirma Leontiev (1978, p. 96) que nos diz que

a significação é o reflexo da realidade independente da relação individual ou pessoal 
do homem a esta. O homem encontra um sistema de significações pronto, elaborado 
historicamente, e apropria-se dele tal como se apropria de um instrumento, esse 
precursor material da significação. O fato propriamente psicológico, o fato da minha 
vida, é que eu me aproprie ou não de uma dada significação, em que grau eu a 
assimilo e também o que ela se torna para mim, para minha personalidade; este 
último elemento depende do sentido subjetivo e pessoal que esta significação tenha 
para mim.

Para apropriar-se dos objetos ou dos fenômenos, produtos do desenvolvimento 

histórico, Leontiev (1978, p. 268) propõe a aquisição de instrumentos, “produto da cultura 

material que leva em si, da maneira mais evidente e mais material, os traços característicos da 

criação humana”. O instrumento torna-se então um objeto social, onde são incorporadas 

operações de trabalho historicamente elaboradas, o que nos leva a inferir que o instrumento é 

o meio que permite ao homem transformar o objeto da atividade.

Dando continuidade ao conceito de atividade e tendo em vista a necessidade de 

pensarmos em instrumentos para a organização de nosso trabalho docente, apresentamos a 

seguir o olhar de Moura (1992; 2000; 2001), acerca na atividade no contexto escolar.
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1.3 Atividade orientadora de ensino: caminhando para a compreensão

Os estudos de Moura (1992; 2000; 2001) nos remetem à necessidade da organização 

do ensino de forma intencional, uma vez que compreendemos a escola “como lugar social 

privilegiado para a apropriação de conhecimentos produzidos historicamente” (MOURA et 

al., 2010, p. 89).

Moura (2000, p. 24) alega que a atividade “é regida por uma necessidade que permite 

o estabelecimento de metas bem definidas” onde o estabelecimento dos objetivos determinará 

estratégias para que se consiga cumprir tais metas, podendo-se lançar mão de diferentes ações 

e instrumentos. Incorporando ao conceito de atividade, volta seu olhar para o ensino e defende 

que a atividade de ensino tem como objetivo “organizar uma sequência de conteúdos 

escolares que permitem cumprir com determinado objetivo educacional” (MOURA, 2000, p. 

22). Mais ainda, define atividade orientadora de ensino (AOE), como

aquela que se estrutura de modo a permitir que sujeitos interajam, mediados por um 
conteúdo, negociando significados, com o objetivo de solucionar coletivamente uma 
situação-problema. É atividade orientadora porque define elementos essenciais da 
ação educativa e respeita a dinâmica das interações que nem sempre chegam a 
resultados esperados pelo professor. Este estabelece os objetivos, define as ações e 
elege os instrumentos auxiliares de ensino, porém não detém todo o processo, 
justamente porque aceita que os sujeitos em interação partilhem significados que se 
modificam diante do objeto de conhecimento em discussão (MOURA, 2002, p. 
155).

Sintetizando os componentes centrais da AOE, na figura 1, temos:
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Figura 1: AOE: relação entre atividade de ensino e atividade de aprendizagem

Fonte: Moraes, 2008, p. 116

Assim, entendemos que a AOE é concebida como uma unidade formadora, entre as 

atividades de ensino e as de aprendizagem.

A Atividade Orientadora de Ensino tem uma necessidade: ensinar; tem ações: define 
o modo ou procedimentos de como colocar os conhecimentos em jogo no espaço 
educativo; elege instrumentos auxiliares no ensino: os recursos metodológicos 
adequados a cada objetivo e ação (livro, giz, computador, ábaco, etc.). E, por fim, os 
processos de análise e síntese, ao longo da atividade, são momentos de avaliação 
permanente para quem ensina e aprende (MOURA, 2001, p. 155).

O professor, ao se colocar em atividade de ensino, continua apropriando-se de 

conhecimentos teóricos, organizando suas ações, pois “a atividade de ensino quase sempre 

está associada à ideia de busca do professor por um modo de fazer com que o estudante 

aprenda um determinado conteúdo escolar” (MOURA, 2000, p. 23), fomentando a atividade 

de aprendizagem, atividade essa, que pode permitir a apropriação dos conhecimentos teóricos. 

Assim:
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Os elementos característicos da AOE (necessidades, motivos, ações, operações) 
permitem que ela seja elemento de mediação entre a atividade de ensino e a 
atividade de aprendizagem. Logo, a atividade de ensino e a atividade de 
aprendizagem só podem ser separadas para fins de explicação didática, entretanto, o 
motivo de ambas deve coincidir para que sejam concretizadas. [...] Não há sentido 
na atividade de ensino se ela não se concretiza na atividade de aprendizagem, por 
sua vez, não existe a atividade de aprendizagem intencional se ela não se dá de 
forma consciente e organizada por meio da atividade de ensino (MOURA et al.,
2010, p. 100).

A AOE, em seu aspecto metodológico, desenvolve-se a partir de três momentos: a 

síntese histórica do conceito, o problema desencadeador de aprendizagem e a síntese da 

solução coletiva (PERLIN, 2014). Acreditamos que, ao passar por tais momentos, possibilita­

-se a criação de significados por parte dos sujeitos envolvidos, pois tal criação “parece estar 

estritamente ligada ao fato de o sujeito ter um motivo, estabelecer um conjunto de ações para 

realizar o que se propõe e avaliar os seus atos para inferir sobre a validade dos mesmos diante 

dos êxitos alcançados” (MOURA; LANNER DE MOURA, 1998, p. 12).

A Síntese Histórica do Conceito (SHC) perpassa pelo momento onde o professor 

apropria-se da gênese do conceito matemático elaborado ao longo da história da humanidade. 

Nesse sentido, recorremos a Kopnin (1978) que afirma que

o estudo da história do desenvolvimento do objeto cria, por sua vez, as premissas 
indispensáveis para a compreensão mais profunda de sua essência, razão porque, 
enriquecidos da história do objeto, devemos retomar mais uma vez a definição de 
sua essência, corrigir, completar e desenvolver os conceitos que o expressam. Deste 
modo, a teoria do objeto fornece a chave do estudo de sua história, ao passo que o 
estudo da história enriquece a teoria, corrigindo-a, completando-a e desenvolvendo­
-a (KOPNIN, 1978, p. 186).

As situações desencadeadoras de aprendizagem (SDA) são caracterizadas como o 

momento onde o estudante é convidado a resolver um problema desencadeador de 

aprendizagem. Elas permitem ao professor proporcionar ao estudante a necessidade de 

apropriação do conceito, “de modo que suas ações sejam realizadas em busca da solução de 

um problema que o mobilize para a atividade de aprendizagem -  a apropriação dos 

conhecimentos” (MOURA et al., 2010, p. 101).

Mediante o movimento das SDA, contemplando a gênese do conceito, salientamos que 

essas devem buscar “explicitar a necessidade que levou a humanidade à construção do 

referido conceito, como foram aparecendo os problemas e as necessidades humanas em 

determinada atividade e como os homens foram elaborando as soluções ou síntese no seu 

movimento lógico-histórico” (MOURA et al., 2010, p. 104). O estudante, a partir de suas
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interações coletivas, pode potencializar a apreensão do conceito ou a atribuição de nova 

qualidade para o seu conhecimento. Nas palavras de Moura et al. (2010, p. 103):

Na Atividade Orientadora de Ensino as necessidades, motivos, objetivos, ações e 
operações do professor e dos estudantes se mobilizam inicialmente por meio da 
situação desencadeadora de aprendizagem. Esta é organizada pelo professor a partir 
dos seus objetivos de ensino que, como dissemos, se traduzem em conteúdos a 
serem apropriados pelos estudantes no espaço de aprendizagem. As ações do 
professor serão organizadas inicialmente visando colocar em movimento a 
construção da solução da situação desencadeadora de aprendizagem. Essas ações, 
por sua vez, ao serem desencadeadas, considerarão as condições objetivas para o 
desenvolvimento da atividade: as condições materiais que permitem a escolha dos 
recursos metodológicos, os sujeitos cognoscentes, a complexidade do conteúdo em 
estudo e o contexto cultural que emoldura os sujeitos e permite as interações sócio­
-afetivas no desenvolvimento das ações que visam o objetivo da atividade -  a 
apropriação de certo conteúdo e do modo geral de ação de aprendizagem.

Moura e Lanner de Moura (1998) trazem os jogos, as situações emergentes do 

cotidiano e a história virtual do conceito como possíveis recursos metodológicos para as SDA, 

conforme sistematizado na figura 2:

Figura 2: Recursos Metodológicos de uma SDA
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Fonte: Sistematização da Pesquisadora

Acreditamos que não será apenas pela utilização do jogo como recurso metodológico 

que podemos garantir a apropriação do conhecimento. O jogo para se constituir em atividade
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de aprendizagem “deve cumprir o papel de auxiliar no ensino do conteúdo, propiciar a 

aquisição de habilidades, permitir o desenvolvimento operatório do sujeito” (MOURA, 1992, 

p. 47).
Moura (1992) salienta ainda a importância do cuidado do professor em relação ao 

jogo, onde sua intenção deva ser a do jogo auxiliar no processo de apreensão do conceito 

matemático, colocando o estudante frente a “uma situação-problema semelhante à vivenciada 

pelo homem ao lidar com conceitos matemáticos” (MOURA; LANNER DE MOURA, 1998, 

p. 12).
Moura (1992) classifica os jogos em dois blocos: o jogo desencadeador de 

aprendizagem e o jogo de aplicação.

Quem vai diferenciar estes dois tipos de jogo não é o brinquedo, não é o jogo, e sim 
a forma como ele será utilizado em sala de aula. Para ser mais preciso: é a postura 
do professor, a dinâmica criada e o objetivo estabelecido para determinado jogo que 
vão colocá-los numa ou noutra classificação (MOURA, 1992, p. 49).

Ao jogo podemos, ainda, relacionar a resolução de problemas (MOURA, 1992), 

gerando assim uma necessidade para o estudante na busca da solução ao problema 

apresentado, constituindo-se, dessa forma, em atividade. A resolução de problemas apresenta 

duas fases, sendo a primeira referente à possibilidade de se ensinar um conteúdo novo, isto é, 

“pela estratégia de resolução de problemas podemos mostrar ao estudante como o 

conhecimento é construído” (MOURA, 1992, p. 48); a segunda, refere-se à possibilidade de 

desenvolver habilidades para encontrar a solução de problemas análogos.

Por situações emergentes do cotidiano, Moura e Lanner de Moura (1998) 

compreendem as situações que podem ser trazidas pelos próprios estudantes para a sala de 

aula, mediante suas experiências pessoais. Com isso, o professor pode, intencionalmente, 

expor o estudante um ambiente dotado de situações onde se gera a necessidade de buscar 

soluções. “A problematização de situações emergentes do cotidiano possibilita à prática 

educativa a oportunidade de colocar a criança diante da necessidade de vivenciar a solução de 

problemas significativos para ela” (MOURA; LANNER DE MOURA, 1998, p. 14).

A história virtual do conceito é definida por Moura et al. (2010) como uma história 

que coloca o estudante diante de uma situação semelhante àquela vivida por nossos 

antepassados historicamente, podendo ser

compreendida como uma narrativa que proporciona ao estudante envolver-se na 
solução de um problema como se fosse parte de um coletivo que busca solucioná-lo, 
tendo como fim a satisfação de uma determinada necessidade, à semelhança do que
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pode ter acontecido em certo momento histórico da humanidade. [...] o significado 
de virtual é encontrado ao se apresentar um problema na situação desencadeadora de 
aprendizagem que possua todas as condições essenciais do conceito vivenciado 
historicamente pela humanidade (MOURA et al., 2010, p. 105).

Moura e Lanner de Moura (1998) nos esclarecem que o objetivo principal da história 

virtual do conceito é situar o estudante historicamente, possibilitando a ele refletir sobre a 

conduta dos seus antepassados na formação dos conhecimentos tão comumente utilizados pela 

sua geração, buscando, assim, que o estudante faça parte do processo de produção do 

conhecimento da humanidade. A história virtual do conceito constitui-se de

uma proposta metodológica que busca responder eficientemente por esta formação 
em que se incorpora o valor do conhecimento como elemento propulsor de busca de 
novos conhecimentos e que procura colocar em prática o pressuposto educacional de 
que é necessário, fazer com que a criança perceba o valor do conhecimento 
produzido na humanidade como elemento de sua formação de cidadania (MOURA; 
LANNER DE MOURA, 1998, p. 14).

Difere-se, assim, da ação de contar a história da matemática, por colocar os estudantes 

em uma situação-problema semelhante à vivida pela humanidade em algum momento de 

nossa história. Seguindo regras para resolvê-la, os estudantes estarão no movimento de expor 

seus conhecimentos individuais, em busca de uma solução coletiva, satisfazendo as exigências 

da situação-problema.

Assim, acreditamos que a SDA, na perspectiva da AOE é entendida como uma 

situação planejada e organizada pelo professor. Encontramos aproximação desta compreensão 

com a atividade computacional de ensino definida por Marco (2009, p. 40), onde exista

a intencionalidade de propor para o aluno atividades de aprendizagem de modo que 
este tenha um motivo que mobilize suas ações para aprender. Tais atividades podem 
desencadear um novo conhecimento para o aluno, pois elas geram neste uma 
necessidade que, a partir dos conhecimentos já elaborados e assimilados, poderão 
proporcionar-lhe um conhecimento diferente do inicial. O aluno poderá, ainda, 
desenvolver significados próprios para o conceito envolvido, que o levem a melhor 
apreender o mundo em que vive e adquirir novos instrumentos para intervir em seu 
meio cultural.

Mediante o exposto, inferimos que a AOE pode potencializar nova qualidade à 

atividade de aprendizagem desenvolvida pelo estudante, na qual este poderá encontrar um 

motivo, gerado pela necessidade apresentada pelo professor em sua atividade de ensino, para 

apreender um conceito.
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Por meio da AOE o professor interage com os estudantes e, juntos, corroboram para a 

Síntese da Solução Coletiva (SSC), sendo esse momento caracterizado como coletivo 

obtendo-se uma solução a partir do compartilhamento das ações.

Na próxima seção faremos uma breve discussão acerca de nossa compreensão do que 

Davidov (1982; 1987) define como conhecimento teórico.

1.4 Conhecimento teórico: as ideias de Davidov

Vasily Vasilovich Davidov, de origem russa, doutor em psicologia, se dedicou às 

pesquisas relativas ao enfoque histórico-cultural na psicologia e na didática. Davidov também 

esteve preocupado em estudar sobre o desenvolvimento do sujeito no ambiente escolar.

Mediante nossos estudos, notamos a importância da apropriação do conhecimento 

teórico, uma vez que este pode proporcionar a compreensão de novos significados. Foi 

possível perceber também o cuidado necessário em organizar a forma de como desenvolver 

no ambiente escolar os conhecimentos teóricos.

Ao organizar o ensino, o professor lança mão dos conceitos que acredita serem 

relevantes aos estudantes ou à realidade em que se encontram. Para que ocorra de fato a 

apreensão desse conhecimento, se faz interessante que compreendamos a forma como é 

assimilado o conteúdo escolar e o tipo de pensamento que é formado pelo estudante. Davidov 

(1982) aponta-nos a necessidade de pensarmos três formas principais do pensamento: 

generalização, abstração e conceito.

A generalização pode ser entendida como o movimento que mostra as características 

comuns de uma dada situação, objeto ou fenômeno, em relação ao seu todo, pois

no caso da generalização, por um lado, tem lugar a busca e a designação com uma 
palavra de determinado atributo in v a r ia n te  entre a diversidade de objetos e seus 
atributos; e por outro lado, a identificação dos objetos da diversidade dada com a 
ajuda da característica invariante escolhida8 (DAVYDOV, 1982, p. 13).

8 Tradução livre que faço de “En el caso de la generalización, por una parte, tiene lugar la búsqueda y el 
nombramiento mediante la palabra de un cierto in v a r ia n te  entre la diversidad de objetos y sus atributos; y por 
otra, la identificación de los objetos de la diversidad dada con ayuda del invariante escogido”.
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Assim, “com base em um grande número de fatos adequadamente selecionados, nasce 

a ideia abstrata, generalizadora, de um dos atributos que estão associados ao conceito9” 

(DAVYDOV, 1982, p. 15).

Por meio da generalização, temos a ideia de abstração:

separar como geral uma certa qualidade implica desgarrá-la de outras qualidades, o 
que permite ao [aluno] transformar a qualidade geral em um objeto independente e 
singular de seus atos subsequentes (o atributo geral se designa com algum signo: 
vocábulo, desenho gráfico, etc.). O conhecimento do geral, sendo resultado da 
comparação e de sua fixação por meio de um signo, constitui sempre algo a b s tra to ,  
não concreto, im a g in á v e l10 (DAVYDOV, 1982, p. 17).

A abstração pode ser compreendida como a separação do geral e sua confrontação 

com o particular, pois, ao separar mentalmente os atributos comuns e formar grupos com 

objetos, o estudante estará abstraindo as características do objeto das suas relações com 

qualquer outro.

Davidov (1987) se refere a situações onde os professores consideram que os conceitos 

podem se formar, por meio da generalização e abstração, quando, por exemplo, solicitam aos 

estudantes observarem objetos e, a partir de tais observações, exporem seus resultados. 

Assim, a constituição da generalização se dará por meio da intuição e da percepção, algo 

criticado pelo autor, pois o conhecimento desenvolvido

tem um caráter classificador, catalisador e assegura a orientação da pessoa no 
sistema de conhecimentos já acumulados sobre as particularidades e os traços 
externos de objetos e fenômenos isolados da natureza e da sociedade. Tal orientação 
é indispensável para fazeres cotidianos, durante o cumprimento de ações laborais 
rotineiras; porém é absolutamente insuficiente para assimilar o espírito autêntico da 
ciência contemporânea e os princípios de uma relação criativa, ativa e de profundo 
conteúdo em face a realidade11 (d Av ÍDOV, 1987, p. 144).

Portanto, tal conhecimento possui apenas o caráter empírico, não possibilitando de 

fato a apreensão de um conceito, pois, em determinado estágio, não serão possíveis serem

9 Tradução livre que faço de “Sobre la base de un gran número de hechos adecuadamente seleccionados nasce la 
idea abstracta, generalizadora, de uno de los atributos que los asocian”.
10 Tradução livre que faço de “Separar como general una cierta cualidad implica desgajarla de otras cualidades, 
lo que permite al nino transformar la cualidad general en objeto independiente y singular de sus actos 
subsiguientes (el atributo general se designa con algún s ig n o : vocablo, diseno gráfico, etc.). El conocimiento de
10 general, siendo resultado del hecho comparativo y de su fijación en el signo, constituye siempre algo
a b s tra c to , in c o n c re to , im a g in a b le ”.
11 Tradução livre que faço de “tiene un carácter clasificador, cataloguizador y asegura la orientación de la 
persona en el sistema de conocimientos ya acumulados sobre la particularidades y rasgos externos de objetos y 
fenómenos aislados de la naturaleza y la sociedad. Tal orientación es indispensable para quehaceres cotidianos, 
durante el cumplimiento de acciones laborales rutinarias; pero es absolutamente insuficiente para asimilar el 
espíritu autêntico de la ciencia contemporánea y los principios de una relación creativa, activa y de profundo 
contenido hacia la realidad”.
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observadas determinadas características dos objetos ou fenômenos, fazendo-se necessário 

desenvolvermos o conhecimento teórico para a apreensão de conceitos. Estamos entendendo 

conceito por “toda generalidade abstrata expressa em palavras ” conforme exposto por 

Davidov (1982, p. 297).

Apresentamos no quadro da página seguinte (Quadro 1), um paralelo entre 

conhecimento empírico e conhecimento teórico:

Quadro 1: Comparação entre o conhecimento empírico e o conhecimento teórico 

Conhecimento Empírico Conhecimento Teórico

Elaborado quando se compara os objetos às 
suas representações, valorizando as 
propriedades comuns dos objetos.

Análise de papel e da função de uma certa 
relação entre as coisas no interior de um 
sistema.

A comparação entre os objetos e suas 
representações torna possível a generalização 
formal das propriedades dos objetos, a qual, 
por sua vez, permite situar objetos específicos 
no interior de uma dada classe formal, 
independentemente da existência de relações 
entre esses objetos, ou da ausência de tais 
ligações.

Procura-se saber qual tipo de relação entre 
classes; caracteriza, a um tempo, um 
representante de uma classe e um objeto em 
particular.

Baseia-se na observação, refletindo apenas as 
propriedades exteriores dos objetos e 
apoiando-se inteiramente nas representações 
concretas.

Oriundo da transformação dos objetos, 
refletindo as relações entre as suas 
propriedades e suas ligações internas. Supera as 
representações sensoriais.

A propriedade formal comum, construída a 
partir da comparação entre os objetos, é 
análoga às propriedades específicas dos 
objetos.

Determina a ligação entre uma relação geral 
com as suas manifestações concretas, ou seja, é 
o elo entre o geral e o particular.

É concretizado por meio de exemplos 
relativos a uma certa classe formal.

A concretização exige a transformação do saber 
em uma teoria desenvolvida por meio de uma 
dedução, e uma exemplificação das 
manifestações concretas do sistema, a partir de 
uma base fundamental.

É uma palavra, um termo, que serve para fixar 
os resultados.

É expresso, a princípio, por diferentes modos 
de atividade intelectual e, em segundo 
momento, por diferentes sistemas semióticos.

Fonte: Adaptado de Rubtsov, 1996, pp. 130-131

Acreditamos na importância do conhecimento teórico por este fornecer condições para 

a apropriação dos conhecimentos historicamente construídos, sendo este parte da atividade de 

aprendizagem. *

Tradução livre que faço de “[...] toda generalidad abstracta expresada en palabras”
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Notamos ainda, pelo quadro, que a generalização e a abstração, concebidos no 

conhecimento empírico, permitem diferenciar, classificar com outros termos os objetos e 

fenômenos, não abarcando a possibilidade da formação de novos conhecimentos. Conforme 

nos fala Davidov (1982, p. 93), “o esquema empírico de generalização e formação do conceito 

não fornece meios para romper precisamente as peculiaridades do próprio objeto substancial, 

o nexo interno de todos os seus aspectos ”.

Acerca do conhecimento científico (conhecimento teórico) e os nexos internos, 

Davidov (1982, p. 105), fala-nos que

o conhecimento científico não é a simples continuação, aprofundamento e expansão 
da experiência diária de homens. Requer que se elaborem meios especiais de 
abstração, análise única e generalização que permite definir os nexos internos das 
coisas, suas essências; requer maneiras peculiares de "idealização" dos objetos de 
conhecimento13 14.

Assim, entendemos que os nexos internos, permitem a aquisição do conhecimento por 

estes mobilizarem o cognitivo do sujeito, não considerando apenas sua percepção ou intuição 

acerca da história que o constituiu.

Por fim, podemos inferir que os nexos internos possibilitam “a revelação do caráter 

geral de uma relação e por consequência o seu aspecto de generalidade15” (DAVYDOV, 

1982, p. 353).

Buscamos nesse capítulo apresentar nossos estudos acerca da formação do 

conhecimento teórico, mediante uma organização do ensino que coloque o professor em 

atividade de ensino e o estudante em atividade de aprendizagem, ambos em um ambiente de 

colaboração, buscando a apreensão dos conceitos. Para tanto, entendemos que a necessidade 

de apropriação do conhecimento gera a atividade, caminhando para a formação do 

conhecimento teórico.

Consideramos que as situações desencadeadoras de aprendizagem que foram 

propostas aos estudantes neste estudo se situam na Zona de Desenvolvimento Iminente, 

proposta por Vigotski (PRESTES, 2010), uma vez que elas se configuram em problemas a

13 Tradução livre que faço de “el esquema empírico de generalización y formación del concepto no aporta medios 
para desgajar precisamente las peculiaridades substanciales del propio objeto, el nexo interno de todos sus 
aspectos”.
14 Tradução livre que faço de “El conocimiento científico no es la simple continuación, profundización y 
ampliación de la experiencia cotidiana de los hombres. Requiere que se elaboren medios especiales de 
abstracción, de singular análisis y generalización que permita fijar los nexos internos de las cosas, sus esencias; 
requiere vías peculiares de “idealización” de los objetos del conocimiento”.
15 Tradução livre que faço de “[...] una cierta relación peculiar viene a revelar su carácter general y se eleva hasta 
el nivel de generalidad”.
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serem resolvidos de forma coletiva e com a mediação da professora pesquisadora, visando 

que os estudantes se apropriem de um novo conhecimento.

No próximo capítulo apresentamos um estudo do caminho histórico em que se 

constituiu a álgebra, nas diferentes civilizações com seus principais precursores.
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2. O CAMINHO HISTÓRICO DA ÁLGEBRA

Pela sua atividade, os homens não fazem, senão, adaptar-se à natureza. Eles 
modificam-na em função do desenvolvimento das suas necessidades. Criam os 
objetos que devem satisfazer as suas necessidades e igualmente os meios de 
produção desses objetos, dos instrumentos às máquinas mais complexas 
(LEONTIEV, 1978, p. 265).

No capítulo anterior, apresentamos as ideias de alguns estudiosos que estiveram à 

frente da Teoria Histórico-Cultural, enfatizando a produção do conhecimento por meio da 

coletividade, os elementos necessários para que se instituam as atividades de ensino e de 

aprendizagem e, por fim, os caminhos para que o conhecimento empírico torne-se 

conhecimento teórico.

Buscamos, neste capítulo, ampliar nossa compreensão acerca dos conceitos algébricos, 

o que nos levou à recorrer à sua construção histórica: o movimento do surgimento da álgebra 

e suas fundamentações. Para tanto, nos reportamos às ideias de Baumgart (1992); Boyer 

(1996); Eves (2002); Garbi (2009); Lanner de Moura e Sousa (2005); Lima, Takazaki e 

Moisés (1998).

A inserção deste capítulo se deve pela necessidade de compreender, por meio da 

história da matemática, o movimento lógico histórico que deu origem aos conceitos 

algébricos, objeto de nosso estudo. Entendemos, ainda, que compreender esse movimento nos 

permitirá elaborar atividades de ensino que possam direcionar os estudantes à apropriação do 

conhecimento teórico.

2.1 O movimento de surgimento da álgebra

Segundo Baumgart (1992) a álgebra divide-se em duas fases: a Álgebra antiga 

(elementar) cujo estudo se refere às equações e métodos de resolvê-las e a Álgebra moderna 

(abstrata) que estuda as estruturas matemáticas -  grupos, anéis e corpos. Nessa pesquisa, por 

estarmos interessadas no processo de formação do pensamento algébrico e do conceito de 

equação de 1° grau, nos atentaremos ao percurso histórico da Álgebra elementar. Assim, nesta 

sessão, dialogaremos com os autores Baumgart (1992); Boyer (1996); Eves (2002); Garbi 

(2009); Lanner de Moura e Sousa (2005); Lima, Takazaki e Moisés (1998) acerca do processo 

de construção desse movimento.
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A linha do tempo (Figura 3) a seguir apresenta o fluxo de surgimento da álgebra nas 

diferentes civilizações estudadas:

Figura 3: Linha Cronológica do surgimento da álgebra

Fonte: Sistematização da pesquisadora

Eves (2002) nos relata que Nesselmann (1842, p. 206) caracterizou três estágios no 

movimento da álgebra. O primeiro deles, a álgebra retórica, “em que os argumentos da 

resolução de um problema são escritos em prosa pura, sem abreviações ou símbolos 

específicos”, pertence a um período anterior a Diofanto, cerca de 250 d.C. Neste estágio da 

álgebra, “há o uso de descrições em linguagem comum para resolver tipos particulares de 

problemas e para suprimir a falta de símbolos ou sinais especiais para representar incógnitas” 

(LANNER DE MOURA; SOUSA, 2005, p. 14); o segundo estágio refere-se à álgebra 

sincopada, no período entre 250 d.C. e 1600 d.C., “em que se adotam abreviações para 

algumas das quantidades e operações que se repetem mais frequentemente” (EVES, 2002, p. 

206) e, por fim, o último estágio, chamado de álgebra simbólica, “em que as resoluções se 

expressam numa espécie de taquigrafia matemática formada de símbolos que aparentemente 

nada têm a ver com os entes que representam” (EVES, 2002, p. 206), tendo seu início depois 

de Viète 1600 d.C. até os dias atuais. De acordo com Eves (2002) os estudos na Europa 

Ocidental permaneceram na álgebra retórica até o século XV, havendo de fato a imposição da
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álgebra simbólica na metade do século XVII. Compete aqui chamarmos a atenção de que até 

hoje não temos de fato uma uniformidade no uso de símbolos, por exemplo, “em alguns 

países europeus ‘+’ significa ‘menos’” (BAUMGART, 1992, p. 3).

Entre os babilônios, Eves (2002) destaca que a aritmética, próximo ao ano 2000 a.C., 

desenvolvera-se para uma álgebra retórica, seja pela resolução de equações quadráticas, ou até 

mesmo de equações cúbicas e biquadradas. Segundo Garbi (2009) os babilônios realizaram 

diversas descobertas matemáticas, tais como resolver equações de 1° e 2° graus, calcular áreas 

e volumes de certas figuras geométricas, das quais “não mais se faziam de maneira puramente 

intuitiva e contavam com o apoio de algum raciocínio dedutivo não formalizado, que 

desconhecemos” (GARBI, 2009, p. 11).

Tomemos um exemplo da álgebra praticada pelos babilônios:

É um exemplo típico dos problemas encontrados em escrita cuneiforme16, em 
tábulas de argila que remontam ao tempo do rei Hammurabi (1700 a.C.). A 
explanação, naturalmente, é feita em português; e usa-se a notação decimal indo- 
-arábica em vez da notação sexagesimal cuneiforme.
Comprimento, largura. Multipliquei comprimento por largura, obtendo assim a área: 
252. Somei comprimento e largura: 32. Pede-se comprimento e largura.
[Dado] 32 soma;

252 área.
[Resposta] 18 comprimento, 14 largura.
Segue-se do método: Tome metade de 32 [que é 16].
16 x16 = 256.
256 -  252 = 4 
A raiz quadrada de 4 é 2.
16 + 2 = 18 comprimento.
16 -  2 = 14 largura.
[Prova] Multipliquei 18 comprimento por 14 largura.
18 x 14 = 252 área. (BAUMGART, 1992, pp. 4-5).

Garbi (2009) nos relata que os babilônios e egípcios não utilizavam da simbologia que 

hoje se faz tão corriqueira, apenas os números eram representados por símbolos, “os 

desenvolvimentos eram, em sua quase totalidade, expressos por palavras, uma forma de 

expressão que hoje é conhecida por ‘álgebra retórica’” (GARBI, 2009, p. 12).

A álgebra surgiu no Egito quase ao mesmo tempo em que na Babilônia, “mas faltava à 

álgebra egípcia os métodos sofisticados da álgebra babilônia” (BAUMGART, 1992, p. 6). Os 

problemas dos Papiros de Moscou e de Rhind datam de cerca de 1850 a.C. e 1650 a.C., em 

que, para resolver as equações lineares, esses povos usavam um “método de resolução 

consistindo em uma estimativa inicial seguida de uma correção final -  um método ao qual os

16 Escrita feita com o auxílio de objetos em formato de cunha.
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europeus posteriormente deram o nome um tanto abstruso de ‘regra da falsa posição’” 

(BAUMGART, 1992, p. 6).

Os egípcios utilizavam a palavra ahá para representar quantidades desconhecidas, 

“que significa monte, montão, foi criada pelos egípcios, para representar quantidades, sem, 

necessariamente, recorrer ao numeral” (LANNER DE MOURA; SOUSA, 2005, p. 15). A 

partir desta palavra, os povos egípcios pensaram sobre a incógnita.

A criação egípcia marca o ponto de partida do desenvolvimento da linguagem 
matemática. Com ela, o pensamento matemático começa a desenvolver uma 
linguagem própria, diferente da linguagem usual das palavras. É, portanto, com a 
matemática egípcia, que a linguagem matemática começa a se separar da linguagem 
usual. Trata-se da linguagem matemática através de palavras, que apesar de ser um 
pequeno passo, quase despercebido por ainda usar palavras, foi importante no 
sentido de criar um vocabulário próprio -  a língua da matemática. A linguagem 
Matemática através de Palavras é o primeiro passo da criação da linguagem 
especificamente matemática para o qual são escolhidas as palavras que mais direta e 
claramente expressam movimentos matemáticos (LIMA; MOISÉS, 2000, pp. 27­
28).

Segundo Lanner de Moura e Sousa (2005) com o uso da álgebra retórica, o homem 

buscou representar, por meio de palavras, quantidades desconhecidas, sendo essa a primeira 

tentativa de representação, “Aqui, a função da palavra é equivalente à função do zero na 

aritmética, por assegurar que ali falta algo. A palavra representa a casa ou o valor 

desconhecido” (LANNER DE MOURA; SOUSA, 2005, p. 16).

A álgebra geométrica elaborada pelos gregos foi “formulada pelos pitagóricos (540 

a.C.) e por Euclides (300 a.C.)” (BAUMGART, 1992, p. 6), em um momento em que esses 

povos acreditavam que a geometria encontrava-se descolada da aritmética, as verdades eram 

representadas a partir das formas, “os segmentos de reta são os elementos primários da 

álgebra geométrica. A partir deles foram se definindo todas as operações do cálculo: adição, 

subtração, multiplicação e divisão” (LANNER DE MOURA; SOUSA, 2005, p. 18). Temos 

que:

A soma era representada como adição de segmentos. A diferença como eliminação 
de parte do segmento igual ao segmento subtraendo. A multiplicação conduzia à 
construção de representação bidimensional. O produto de a por b representava um 
retângulo com lados a e b. O produto de três segmentos formava paralelepípedo e 
não se podia considerar o produto maior de fatores. A divisão só podia ser efetuada 
quando o dividendo era maior do que a dimensão do divisor. Representava-se a 
divisão a partir do conceito de área (LANNER DE MOURA; SOUSA, 2005, p. 18).
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De acordo com Boyer (1996), no período conhecido como Segunda Idade de 

Alexandria (250 a 350 d.C.) encontramos o maior algebrista grego, Diofanto de Alexandria, e 

seu destaque deve-se por ser o primeiro a apresentar uma álgebra sincopada.

Eves (2002) considera Diofanto como o maior responsável pelo desenvolvimento da 

álgebra, afirmando que “pode ter sido ele o primeiro a dar os primeiros passos rumo a uma 

notação algébrica” (EVES, 2002, pp. 208-209). Em sua obra intitulada Arithmetica, Diofanto 

dedica-se a resolução de 130 problemas que levam a equações de 1° e 2° graus, apresentando 

abreviações para incógnitas.

Nossa palavra “aritmética” provém da palavra grega a r ith m e tik e  que se compõe de 
a r ith m o s  (“número”) e te c h n e  (“ciência”). Heath assinalou bastante convicentemente 
que o símbolo usado por Diofanto para a incógnita provavelmente derivava por 
fusão das duas primeiras letras gregas da palavra a r ith m o s , a saber a e p. Com o 
tempo esse símbolo veio a se parecer com o sigma final grego ç (EVES, 2002, p. 
209).

Outro destaque a álgebra de Diofanto deve-se ao fato de que, enquanto a álgebra 

babilónica se “ocupava principalmente com soluções aproximadas de equações determinadas 

de até 3° grau, a Arithmetica de Diofanto dedicava-se à resolução exata de equações tanto 

determinadas quanto indeterminadas” (BOYER, 1996, p. 122), as ditas equações diofantinas, 

que são estudadas em cursos do Ensino Superior.

Ao nos dirigirmos para as civilizações hindus e árabes, recorremos a Hogben (1970), 

para nos auxiliar a entender a história das origens da álgebra entre esses povos que, segundo 

esse autor, possui três vertentes:

A necessidade de criar regras de calcular mais simples ou algoritmos (a aritmética, 
no século XIII, era assim chamada, por ter como principal divulgador o algebrista 
árabe Al- Khowarizmi);
A solução de problemas de caráter prático, que envolvessem o uso de números, isto 
é, a solução de equações;
O estudo das séries, que revelou novas descobertas sobre as propriedades dos 
números naturais, levando ao início do desenvolvimento da chamada álgebra 
abstrata (HOGBEN, 1970, p. 64).

De acordo com Baumgart (1992) os mais importantes algebristas hindus foram 

Brahmagupta (628 d.C.) e Bhaskara (1150). Seus trabalhos buscavam achar todas as soluções 

inteiras possíveis para as equações indeterminadas, superando o trabalho de Diofanto, que 

almejava uma solução possível para as equações indeterminadas.

Eves (2002) revela que os hindus buscaram sincopar sua álgebra e para a adição 

usavam a justaposição, para a subtração colocavam um ponto sobre o subtraendo, a
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multiplicação escreviam como bha “primeira sílaba da palavra bhavita, ‘produto’” (EVES, 

2002, p. 256) depois dos fatores, para a divisão, colocavam o divisor debaixo do dividendo e a 

raiz quadrada escreviam ka “da palavra karana, ‘irracional’” (EVES, 2002, p. 256) antes da 

quantidade.

Brahmagupta denota a incógnita por yã (de yãvattãvat, ‘tanto quanto’). Os inteiros 

conhecidos eram antecedidos de rü (de rüpa, ‘número puro’). De forma sincopada, no estilo 

de Brahmagupta, 5xy + V35 -  12, seria escrito da seguinte maneira:

Figura 4: Álgebra sincopada de Brahmagupta para a expressão 5xj; + a/35 -  12 
y a  ka 5 bha k(a) 33 w  12
x  y  5 produto irracional número 12

35 ’‘puro”

Fonte: Baumgart, 1992, p. 10

Nosso olhar agora se volta para o período arábico e, centrando nos estudos de al- 

-Khowarizmi, deparamo-nos com a palavra álgebra, que “surge como uma variante latina da 

palavra árabe al-jabr (às vezes transliterada al-jebr), usada no título do livro, Hisab al-jabr 

w ’al-muqabalah, escrito em Bagdá por volta do ano 825” (BAUMGART, 1992, p. 1). Uma 

tradução completa do título do livro é “ciência da restauração (ou reunião) e redução, mas 

matematicamente seria melhor ciência da transposição e cancelamento” (BAUMGART, 1992, 

p. 1). Neste livro, al-Khowarizmi sistematiza equações de 1° e 2° graus reduzindo-as a seis 

tipos básicos:

1. Quadrado igual à raiz;

2. Quadrado igual ao número;

3. Raiz igual a número;

4. Quadrado e raiz são iguais a número;

5. Quadrado e número são iguais a raiz;

6. Raiz e número são iguais a quadrado.

Boyer (1996, p. 157) considera que, devido aos seis casos apresentados, que “esgotam 

as possibilidades quanto a equações lineares e quadráticas que têm uma raiz positiva”, al- 

-Khowarizmi mereça o título de “pai da álgebra”, uma vez que, “sua exposição era tão 

sistemática que seus leitores não devem ter tido dificuldade para aprender suas soluções” 

(BOYER, 1996, p. 157). Completa ainda que a obra está mais próxima da álgebra elementar
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de hoje que as obras de Diofanto e Brahmagupta, pois “o livro não se ocupa de problemas 

difíceis de análise indeterminada mas contém uma exposição direta e elementar da resolução 

de equações, especialmente de 2° grau” (BOYER, 1996, p. 156).

Lanner de Moura e Sousa (2005) fazem referência à pré-álgebra, como o período 

anterior a invenção da palavra álgebra englobando as álgebras retórica, sincopada e 

geométrica que acabamos de apresentar.

Em relação à álgebra simbólica, o sinal de igualdade apareceu pela primeira vez, em 

1557, na obra de Robert Recorde, justificando o uso de um par de segmentos de reta paralelos 

como o símbolo de igualdade, “imaginando que nada pudesse ser mais igual que um par de 

retas gêmeas de mesmo comprimento” (LIMA; TAKAZAKI; MOISÉS, 1998, p. 12).

O matemático francês François Viète, introduziu o uso de vogais para representar 

incógnitas e consoantes para representar constantes, “antes de Viète era comum se usarem 

letras ou símbolos diferentes para as várias potências de uma quantidade. Viète usava a 

mesma letra, adequadamente qualificada [...] A, A quadratum, A cubum” (EVES, 2002, p. 

309). Viète usava os símbolos “+” e “- ” contudo, não possuía um símbolo para representar a 

igualdade, por exemplo: 5BA -  2CA + A = D, para Viète escrevia-se “B5 in Aquad -  C 

plano 2 in A + AcubaequaturD solido. [...] usava o símbolo de = entre duas quantidades não 

para indicar igualdade, mas sim a diferença entre elas” (EVES, 2002, p. 310).

Lanner de Moura e Sousa (2005, p. 21) completam, ainda, que pensar a álgebra a 

partir de Viète significa “pensar a álgebra a partir da propriedade do número, que contém as 

coisas e a numeralidade do número, o número em geral”. As autoras trazem ainda que a lógica 

de Diofanto é numérica, enquanto que a lógica de Viète é de espécies, isto é, Viète nos 

permite um formalismo simbólico, permitindo que a álgebra seja usada por outras áreas do 

conhecimento como uma ferramenta.

Foi o simbolismo pensado por Viète que possibilitou a escrita de expressões de 
equações e suas propriedades, a partir de fórmulas gerais. Os objetos das operações 
matemáticas passaram a ser não problemas numéricos e sim as próprias expressões 
algébricas. A característica do cálculo elaborado por ele é a arte. Tal característica 
permitiria a realização das descobertas matemáticas. Os símbolos elaborados 
sofreram modificações pelos matemáticos contemporâneos. (LANNER DE 
MOURA; SOUSA, 2005, p. 22).

No quadro a seguir (Quadro 2) podemos acompanhar a progressão das notações 

simbólicas.
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Quadro 2: Notações da álgebra simbólica

MATEMÁTICO ANO NOTAÇÃO NOTAÇÃO ATUAL
Diofanto 250 d.C. x3 2 x8 -  x2 5 1-4 = 44. 2x3 + 8x - (5x2 + 4) = 44

Brahmagupta 628 ya v(a) 3 ya 10. 3X2 +10x
Pacioli 1494 Trouame .1. n°.chegiõto al x + X  = 12

suoq drat° facia .12.
Vander Hoecke 1514 4Se. -  51Pri. -  30N 4x2-  51x - 30 = 45

ditisghelijc 45.
Ghaligai 1521 I □ e 32C° - 320 numeri. x2 + 32x = 320
Rudolff 1525 Sit 1jaequatusl2 7/- 36 x2 =12x -  36
Cardano 1545 CiibusF 6 rebus aequalis x3 + 6x = 20

20.
Stifel 1553 2 HA  + 2 y. aequata. 4335 2x4+ 2x2 = 4,335

Recorde 1557 14. H +.15. • = 71. • 14x +15 = 71
Buteo 1559 I 0 P 6p P 9 [ I 0 P 3p P x  + 6x + 9 = x  + 3x + 24

24.
Bombelli 1572 í. p.S. Eguale á 20. x6 + 8x3= 20

Stevin 1585 32 + 4 egalesà 21 + 4 3 x  + 4= 2x + 4
Viète 1591 I QC -  15QQ +85C - 225Q - 15x4 + 85x3- 225x2 + 274x = 120

+274N aequatur 120.
Harriot 1631 aaa -  3 bba == + 2ccc. x3- 3b2x = 2c3

Descartes 1637 y y x  cy - bcxy  +ay -  ac.
Wallis 1693 x4+ bx3+ cxx+ dx+ e = 0

Fonte: Baumgart, 1992, p. 32

Viète proporcionou uma generalização da aritmética, na qual as letras representavam 

um número ainda desconhecido. Porém, o uso da letra alfabética, para designar a incógnita 

(número desconhecido) “liberou definitivamente a álgebra da escravidão do verbo” 

(LANNER DE MOURA; SOUSA, 2005, p. 23), uma vez que, ao se utilizar a notação literal, 

excluía-se a ambiguidade das interpretações das línguas humanas adotadas nas diferentes 

civilizações; o simbolismo algébrico torna possível uma linguagem única para todos os povos, 

sem espaço para equívocos de interpretações.

A álgebra de Viète representou uma mudança conceitual no período do Renascimento, 

permitindo elaborar fórmulas, contudo, diante do novo contexto econômico, político e social 

da época, houve necessidade de uma álgebra mais elaborada, a álgebra abstrata e “os objetos 

utilizados podem ser quaisquer (matrizes, vetores, tensores etc.) sobre os quais se definem 

certas operações que verificam umas determinadas propriedades, construindo-se a álgebra a 

partir de axiomas previamente definidos” (SOCAS et al., 1996, p. 40).

A seguir, apresentamos uma síntese do desenvolvimento das linguagens algébricas 

abordadas nesse estudo:
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Figura 5: Desenvolvimento da Linguagem Algébrica

Retórica

Sincopada

Simbólica

Geométrica

1
Fonte: Adaptado de Lanner de Moura e Sousa, 2005, p. 26

Diante do exposto, percebemos que os diferentes povos, buscaram criar e consolidar 

“regras simples e consistentes que regem a utilização dos números abstratos e os símbolos 

taquigráficos representativos dos verbos e das operações matemáticas” (HOGBEN, 1970, p. 

319), as equações.

Na próxima sessão, apresentamos uma definição para o conceito de equações, o 

método da falsa posição dos egípcios e o método geométrico grego para resolver equações de 

1° grau.

2.2 O movimento das equações

Nesta pesquisa, compreendemos o conceito de equação à luz das palavras de Lima, 

Takazaki e Moisés (1998, p. 13), “equação matemática é a sentença matemática referente a 

um problema algébrico particular17, isto é, é toda sentença matemática que contém variáveis e 

é expressa por um sinal de igualdade”.

Garbi (2009) define equações algébricas como aquelas em que a incógnita aparece 

apenas submetida às chamadas operações algébricas: soma, subtração, multiplicação, divisão, 

potenciação inteira e radiciação. Para o autor, são exemplos de equações algébricas:

17 Um problema algébrico refere-se a toda situação que envolve a necessidade de se escrever uma sentença 
matemática utilizando variáveis. O problema algébrico particular é “todo o problema algébrico que se refere à 
determinação do valor numérico da variável numa situação particular dentro do movimento de variação ” (LIMA; 
TAKAZAKI; MOISÉS, 1998, p. 4).
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• x + 4 = 13;

• ax2 + bx + c = 0;

• my5-v '3y = 4;

Uma equação algébrica poderá assumir a qualidade de Equação Polinomial, quando 

estiver sob a forma canônica, isto é, aox" + aix"'1 + ■■■+ a„_2X2 + a„_ix + a„= 0 (n inteiro e 

positivo), o maior expoente da incógnita é denominado o grau da equação. Por exemplo, para 

a equação 5x + 3x + 2 = 0, o grau é 5. Contudo, nessa pesquisa, nosso objeto de estudo versa 

sobre equações algébricas lineares com uma variável, o que nos leva a recorrer a Cedro (2004, 

p. 74) que as define como

aquelas nas quais as variáveis (as incógnitas) são monômios de primeiro grau. Uma 
definição mais formal seria a seguinte: toda equação que possa ser expressa pela 
forma a1x1= h. em que c a incógnita c o-iC um número, será chamada de equação 
linear com uma variável.

Como exemplo para a definição acima podemos citar: 7x -  3 = 4 e, 6x1 = 9.

Buscando indícios de resolução de equações lineares ao longo do percurso histórico, 

encontramos que os primeiros registros foram encontrados cerca de 2000 a 1700 a.C. em 

tábulas de argila babilónicas e no papiro de Rhind, para tanto os egípcios utilizaram a ideia de 

Número Falso, ou método da Falsa Posição. Acompanhemos um exemplo, conforme proposto 

por Lima, Takazaki e Moisés (1998, p. 16):

Um montão e sua metade juntos somam 9. Qual é a quantidade?
1° Passo: Inicialmente eles passavam a sentença para a linguagem matemática.

-  Um número acrescido de sua metade é igual a 9.
-  Campo de variação: Reais.

2° Passo: Depois eles atribuíam ao número desconhecido, à incógnita, um valor 
específico, particular, provavelmente falso, que nos daria um momento particular 
diferente do que procuramos, isto é um resultado também falso. Esse resultado era 
comparado com o resultado que se pretende e, usando-se proporções chega-se à 
resposta correta.
Por exemplo, atribuíam a incógnita o “valor falso” 20, e faziam os cálculos:

-  um número: 20
-  sua metade: 10 +
-  soma: 30

A partir disto, usavam uma proporção para determinar o valor verdadeiro 
valor falso 20 um número (valor verdadeiro)
resultado falso 30 9
Resolvendo essa proporção:

20 = um número 
30 9
um número = 20.9 

30
um número = 6 

Assim a resposta é 6.
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Já para os gregos, no período de 500 a 200 a.C., a álgebra era geométrica, “devido à 

sua dificuldade lógica com números irracionais e mesmo fracionários e suas dificuldades 

práticas com os numerais gregos” (BAUMGART,1992, p. 68). Então eles recorriam a 

construções geométricas, conforme já expusemos. Vejamos um exemplo, apresentado por 

Lima, Takazaki e Moisés (1998, pp. 18-19): O dobro de um número acrescido de 7 é igual a 

25.

Inicialmente traçava-se uma medida igual ao resultado da equação:

Escrevia-se a sentença matemática dada

. 25

Então, efetuavam-se os cálculos: 25 -  7 = 18 e, 18 ^ 2 = 9

Assim, o número é 9.

Diante de todo o exposto, buscamos apresentar alguns movimentos que constituíram a 

álgebra simbólica da forma como a conhecemos hoje, bem como, alguns métodos para 

resolvermos equações algébricas lineares, ou as equações de 1° grau.

Ao consideramos o ensino desta na educação básica, notamos a importância deste 

movimento se fazer presente na construção do conhecimento teórico dos estudantes, pois, ao 

longo do processo de formação da linguagem algébrica simbólica, a álgebra contém o 

movimento da vida a partir dos movimentos presentes nos problemas da vida das diversas 

civilizações, um movimento não linear, pautado na mutabilidade e fluência do pensar humano 

“presente nos estágios denominados de retórico, sincopado e geométrico - que leva ao 

pensamento flexível da realidade, elaborado pelas várias civilizações, nos diversos momentos 

históricos” (LANNER DE MOURA; SOUSA, 2005, p. 12).
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No capítulo a seguir, apresentaremos uma discussão sobre a álgebra no ensino, 

dialogando com autores sobre algumas vertentes no que tange às concepções da educação 

algébrica, assim como buscamos estabelecer uma breve reflexão acerca do ensino de álgebra 

mediante as orientações dos Parâmetros Curriculares Nacionais e algumas obras de Livros 

Didáticos.
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3. ÁLGEBRA NO ENSINO FUNDAMENTAL

A álgebra é isso, é a extensão do limite corpóreo do homem na direção do 
movimento incessante do Universo (LIMA; TAKAZAKI; MOISÉS, 1998, p. 1).

Nos capítulos anteriores, discutimos aspectos da Teoria Histórico-Cultural e a História 

da Álgebra. Nesse capítulo, abarcamos diferentes aspectos sobre o estudo da álgebra. 

Apresentamos, inicialmente, algumas concepções sobre a álgebra como propuseram 

Fiorentini, Miorim e Miguel (1993); Usiskin (1995); Lins e Gimenez (1997); Sousa (2004) e 

Sousa; Panossian e Cedro (2014). Posteriormente, nosso olhar volta-se para as discussões 

propostas pelos Parâmetros Curriculares Nacionais (BRASIL, 1998), a produção de pesquisas 

de Mestrado e Doutorado, durante o período de 2010 a 2014, e, por fim, o enfoque abordado 

em algumas obras de livros didáticos presentes na escola onde a proposta aconteceu.

3.1 Algumas concepções sobre a álgebra: o olhar para a literatura

Segundo Moura (2001) a natureza do conhecimento que o professor pretende ensinar 

indica uma perspectiva para se relacionar com os estudantes, um direcionamento para 

organizar o espaço de aprendizagem e o direcionamento para escolha dos instrumentos que 

possibilitarão uma melhor apreensão do conteúdo por parte dos estudantes.

Desta forma, assim como Moura (2001, p. 148), entendemos por conteúdos 

matemáticos “aqueles que permaneceram como patrimônio cultural, porque de algum modo, 

contribuem para a solução de problemas ainda relevantes para o convívio social”, adquirindo 

assim objetivo social aliado à história da humanidade para resolver problemas.

Vemo-nos, então, diante da necessidade de compreender melhor como o conteúdo 

matemático de álgebra fora produzido historicamente e as concepções existentes, a fim de 

melhor dimensioná-lo no contexto escolar, pois

aprofundar-se no conteúdo é definir uma maneira de ver como este se relaciona com 
outros conhecimentos e como ele faz parte do conjunto de saberes relevantes para o 
convívio social. É também definidor de como tratá-lo em sala de aula, pois o 
professor, ao conhecer os processos históricos de construção dos conteúdos, os 
redimensiona no currículo escolar (MOURA, 2001, p. 149).
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De posse de tal necessidade, visitando a literatura, encontramos Fiorentini, Miorim e 

Miguel (1993) que apontam quatro concepções sobre a álgebra:

• Processológica: conjunto de procedimentos específicos, técnicas algorítmicas ou 

procedimentos iterativos, para abarcar certos tipos de problemas, que são resolvidos 

pelo seguimento de uma sequência padronizada de passos; o pensamento algébrico 

não possui uma forma específica de linguagem para ser expresso.

• Linguístico-estilística: linguagem construída com o objetivo de expressar 

concisamente procedimentos específicos. Enfatiza a forma de expressão do 

pensamento algébrico em detrimento da forma como esse pensamento se manifesta, 

gerando uma distinção entre forma de pensamento e forma de expressão desse 

pensamento, o que nos leva a necessidade de uma linguagem adequada àquela 

forma específica do pensamento.

[...] é necessário também que esse pensamento adquira consciência de que, para 
poder avançar, é preciso, de algum modo, estabelecer uma ruptura com aquilo que se 
revelou um obstáculo a esse desenvolvimento. Identifica, então, o obstáculo com a 
linguagem natural e a condição de ruptura com a possibilidade de criação de uma 
“nova linguagem”, isto é, de uma linguagem adequada àquela forma específica de 
pensamento (FIORENTINI; MIORIM; MIGUEL, 1993, p. 82).

• Linguístico-sintático-semântica: linguagem específica e concisa; condição 

necessária à existência de um pensamento algébrico autônomo e não apenas 

consciência da necessidade de existir uma linguagem específica a essa forma de 

pensamento, mas faz-se necessária a consciência de que para essa linguagem, 

adquire dimensão operatória e sintática e revela seu poder transformacional e 

instrumental, necessitando atingir o estágio de uma linguagem puramente 

simbólica. Essa concepção revela em nível semântico, uma leve e fundamental 

distinção

entre o uso da letra para representar genericamente quantidades discretas e 
contínuas, determinadas e particulares, e o uso de letras para representar 
genericamente quantidades genéricas, que essa linguagem revela sua dimensão 
operatória ou sintática, isto é, sua capacidade de efetuar e expressar transformações 
algébricas estritamente simbólicas (FIORENTINI; MIORIM; MIGUEL, 1993, p. 
83). 18

18 Conforme discutido por Figueiredo (2007, p. 40), compreendemos o termo concepções como “marcos 
organizadores implícitos de conceitos, com natureza essencialmente cognitiva”. Assim, utilizamos esse termo em 
detrimento do termo crença, por acreditarmos que o segundo refere-se a uma forma primitiva do saber, não 
possuindo suporte empírico que a valide. Notamos ainda que diferentes autores fazem uso de sinônimos ao termo 
concepções, tal como dimensões apresentada nos Parâmetros Curriculares Nacionais (BRASIL, 1998).
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• Linguístico-postulacional: imprime aos signos um grau de abstração e generalidade 

ainda não vistos, estendendo o domínio da álgebra a todos os campos da 

Matemática.

Atrelando tais concepções ao ensino, esses autores apontam seus olhares para a 

Educação Algébrica e elencam algumas concepções:

• Concepção linguístico-pragmática: acredita que a aquisição das técnicas, mesmo 

que memorizadas, seriam necessárias e suficientes para que o estudante adquirisse a 

capacidade de resolver problemas. Os autores constatam que essa concepção 

predominou ao longo de todo o século XIX e primeira metade do século XX e a 

vinculam à concepção Linguístico-semântico-sintática da Matemática.

• Concepção fundamentalista-estrutural: decorrente do movimento da Matemática 

Moderna, se baseia na visão linguístico-postulacional. Considera que a introdução 

de propriedades estruturais das operações algébricas capacitaria o estudante a 

identificar e aplicar essas estruturas nos diferentes contextos subjacentes.

• Concepção fundamentalista-análoga: vincula-se também à visão linguístico­

-sintático-semântica, porém busca promover uma síntese das duas concepções 

apresentadas acima, recuperando o valor instrumental da álgebra, assim como 

manter o caráter fundamentalista, o papel pedagógico da Álgebra é considerado 

como instrumento para resolver problemas. Acredita que a álgebra geométrica seja 

didaticamente mais interessante que uma álgebra estritamente lógico-simbólica, por 

fornecer visibilidade a algumas identidades algébricas.

Percebemos que as três concepções consideram a priori uma álgebra simbólica, já 

consolidada e, com isso, “em todos os casos o ensino e aprendizagem da álgebra reduz-se ao 

transformismo algébrico” (FIORENTINI; MIORIM; MIGUEL, 1993, p. 85), sendo assim, 

reduz-se o pensamento algébrico à linguagem algébrica, um ensino puramente manipulativo.

Os autores apontam então, a necessidade de repensar a relação existente entre o 

pensamento algébrico e a linguagem:

Acreditamos subsistir entre pensamento algébrico e linguagem não uma relação de 
subordinação, mas uma relação de natureza dialética, o que nos obriga, para melhor 
entendê-los, a colocar a questão de quais seriam os elementos caracterizadores de 
um tipo de pensamento que poderia ser qualificado de algébrico (FIORENTINI; 
MIORIM; MIGUEL, 1993, p. 85).
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Assim, passam a apresentar situações que corroboraram com elementos que 

caracterizam o pensamento algébrico. São eles: “percepção de regularidades, percepção de 

aspectos invariantes em contraste com outros que variam, tentativas de expressar ou explicitar 

a estrutura de uma situação-problema e a presença do processo de generalização” 

(FIORENTINI; MIORIM; MIGUEL, 1993, p. 87). Tais elementos levam os autores à 

conclusão, de que não existe uma única maneira que leve a formação do pensamento 

algébrico, este pode se expressar por meio das linguagens natural, aritmética, geométrica ou 

pela “criação de uma linguagem específica para esse fim, isto é, através de uma linguagem 

algébrica, de natureza estritamente simbólica” (FIORENTINI; MIORIM; MIGUEL, 1993, p. 

88).

Buscando a relação dialética entre o pensamento algébrico e a linguagem, Fiorentini, 

Miorim e Miguel (1993) propõem uma quarta concepção para a Educação Algébrica, onde o 

seu início perpasse pela exploração de situações-problema nas quais se façam presentes os 

elementos caracterizadores do pensamento algébrico, citados anteriormente. Além disso, 

indicam três etapas a serem consideradas no decorrer das situações-problema, não sendo esta 

uma sequência imutável no que diz respeito a sua ordem de acontecimento. Na primeira etapa, 

objetiva-se o trabalho com as expressões simbólicas, por meio da análise de situações 

concretas, os autores exemplificam. Na segunda, percorre-se o caminho inverso: a partir da 

expressão algébrica, busca-se tentar atribuir significações que a ela comporte. Por fim, na 

terceira etapa, enfatiza-se o transformismo, ou seja, o modo como uma expressão algébrica, 

transforma-se em outra equivalente, além da discussão acerca dos procedimentos que validam 

essas transformações.

Figueiredo (2007) apresenta-nos um quadro síntese (Quadro 3), sobre as concepções 

frutos dos estudos de Fiorentini, Miorim e Miguel (1993; 2005), complementando nossa 

discussão:
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Quadro 3: Concepções da Educação Algébrica segundo Fiorentini, Miorim e Miguel 
______________ (1993; 2005)_____________

Obras e universos de 
estudo

Concepções de 
Educação 
Algébrica

Predominâncias no ensino

Ênfases quanto à 
relação entre 
linguagem e 
pensamento 
algébricos

1. Linguístico- 
pragmática

Estudo das expressões 
algébricas, seguido do uso de 
equações para resolução de 
problemas, com aquisição 
mecânica desses
procedimentos pelos alunos. 
Predomínio do transformismo 
algébrico nas tarefas para 
alunos.

Fiorentini, Miorim e 
Miguel (1993): 

documentos, pesquisas e 
obras sobre o 

desenvolvimento 
histórico da Álgebra e 

de seu ensino no Brasil.

2. Fundamentalista- 
estrutural

Estudo de tópicos 
“fundamentadores” 
precedendo o estudo de 
expressões algébricas, valores 
numéricos, fatoração e outros, 
seguidos do estudo de novos 
conteúdos algébricos (como 
funções do 1° e 2° graus etc.). 
Predomínio das propriedades 
estruturais como justificativa 
para o transformismo algébrico 
nas tarefas para alunos.______

3. Fundamentalista- 
analógica

Síntese das anteriores, 
utilizando recursos visuais
(materiais concretos) por se
acreditar que certas
identidades algébricas seriam 
didaticamente superiores a 
qualquer forma de abordagem 
lógico-simbólica. Predomínio 
de tarefas que utilizam 
recursos analógicos
geométricos e materiais
concretos, como balanças e 
gangorras, para justificar o 
transformismo algébrico._____

Na linguagem, em 
detrimento do 
pensamento 
algébrico.

Fiorentini, Miorim e 
Miguel (2005): 

pesquisas próprias sobre 
o ensino da Álgebra

4. [Sem designação 
pelos autores]

Atividades abertas com tarefas 
exploratórias investigativas. 
Tarefas investigativas que 
permitam desenvolver o 
pensamento algébrico._______

Na dialética entre 
linguagem e 
pensamento 
algébricos.

Fonte: Figueiredo, 2007, p. 49

Logo, Fiorentini, Miorim e Miguel (1993; 2005) em seus estudos, descrevem as 

concepções de Educação Algébrica, ao longo da história e propõem uma nova concepção que 

destaca o uso de situações-problema a fim de estabelecer a relação entre pensamento
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algébrico e linguagem, onde o pensamento algébrico toma corpo concomitante ao 

desenvolvimento de uma linguagem apropriada para expressá-lo.

Usiskin (1995) afirma que a Álgebra da educação básica, diz respeito a compreensão 

do significado das “letras” e das operações relacionadas a elas. Em suas palavras,

as finalidades do ensino de álgebra, as concepções que tenhamos dessa matéria e a 
utilização de variáveis estão intrinsecamente relacionadas. As finalidades da álgebra 
são determinadas por, ou relacionam-se com concepções diferentes da álgebra que 
correspondem à diferente importância relativa dada aos diversos usos das variáveis 
(USISKIN, 1995, p. 13).

Assim, o autor alega que existem diferentes concepções sobre a ideia de variável. Na 

década de 1950, as variáveis eram vistas como um número mutável, posteriormente, como um 

número literal que pode assumir dois ou mais valores perante uma situação. Contudo, 

entende-se que “as variáveis comportam muitas definições, conotações e símbolos. Tentar 

enquadrar a ideia de variável numa única concepção implica uma super simplificação que, por 

sua vez, distorce os objetos da álgebra” (USISKIN, 1995, p. 12).

À luz das ideias de Usiskin (1995), temos quatro concepções para o uso das variáveis:

• Concepção 1 (álgebra como aritmética generalizada): as variáveis são pensadas 

como generalizadoras de modelos, por exemplo, o produto de qualquer número por 

zero, é zero, para todo n, n • 0 = 0. Nessa concepção o estudante traduz e generaliza 

situações por meio da representação de sentenças dos padrões numéricos 

observados.

• Concepção 2 (álgebra como um estudo de procedimentos para resolver certos tipos 

de problemas): permite resolver problemas como, a soma de um número com oito, 

resulta em 10, qual é esse número? Nessa concepção as variáveis são ou incógnitas 

ou constantes e o estudante busca simplificar ou resolver a situação na qual se 

encontra. Temos a manipulação do simbolismo algébrico para simplificar 

expressões visando resolver equações.

• Concepção 3 (álgebra como estudo das relações de grandeza): a variável é tratada 

como um argumento, ou seja, representa os valores do domínio de uma função, ou 

como um parâmetro, representando um número no qual dependem outros números. 

Nesse contexto, aparecem as ideias de variável independente e variável dependente.

• Concepção 4 (álgebra como estudo das estruturas): a álgebra do ensino superior, 

referindo-se a estruturas como anéis, grupos, corpos e espaços vetoriais. Nesse
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caso, a variável torna-se um objeto arbitrário de uma estrutura estabelecida por 

certas variáveis.

O autor destaca a importância de cada uma das quatro concepções alegando que:

já não cabe classificar a álgebra apenas como aritmética generalizada, pois ela é 
muito mais que isso. A álgebra continua sendo um veículo de resolução de 
problemas, mas também é mais do que isso. Ela fornece meios para se 
desenvolverem e se analisarem relações. E é a chave para a caracterização e a 
compreensão das estruturas matemáticas (USISKIN, 1995, p. 21).

Usiskin (1995), diferentemente de Fiorentini, Miorim e Miguel (1993), não nos fala 

em pensamento algébrico, mas ele nos leva a refletir sobre quais pontos devemos enfatizar na 

educação básica e nos mostra as relevâncias desse processo contínuo, demonstrando as 

diferentes possibilidades do uso das letras.

Lins e Gimenez (1997, p. 137) entendem a álgebra como “um conjunto de afirmações 

para as quais é possível produzir significados em termos de números e operações aritméticas, 

possivelmente envolvendo igualdade ou desigualdade”. Assim, a atividade algébrica pode ser 

entendida como o processo de produção de significados para a álgebra, na qual não é possível 

caracterizar uma atividade algébrica sem considerar duas partes: descrever quando a atividade 

acontece e descobrir se há processos cognitivos e peculiares a essa atividade.

Notamos que, para esses autores, a álgebra encontra-se fundamentada na aritmética, 

uma vez que eles estabelecem a relação entre o ensino da álgebra pautado no estudo dos 

números e suas operações, igualdades e desigualdades, destacando a importância de se 

trabalhar cada vez mais cedo o ensino da aritmética concomitantemente ao ensino da álgebra, 

para que ambas se desenvolvam juntas, uma implicada na outra. Para eles, “pensar 

algebricamente é produzir significado para situações em termos de números e operações 

aritméticas (e igualdades e desigualdades) e, com base nisso, transformar as expressões 

obtidas, produzindo significados” (LINS; GIMENEZ, 1997, p. 150). Acerca da produção de 

significados na álgebra, os autores descrevem que o pensamento algébrico possui três 

características fundamentais:

1. produzir significados apenas em relação a números e operações aritméticas 
(chamamos a isso a r itm e tic ism o );

2. considerar números e operações apenas segundo suas propriedades, e não 
“modelando” números em outros objetos, por exemplo, objetos “físicos” ou 
geométricos (chamamos a isso in te rn a lism o );  e,

3. operar sobre números não conhecidos como se fosse conhecidos (chamamos a 
isso a n a lit ic id a d e )  (LINS; GIMENEZ, 1997, p. 151).
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Lins e Gimenez (1997) destacam, ainda, algumas concepções para a educação 

algébrica:

• Concepção Letrista: cálculo feito com letras.

• Concepção Letrista Facilitadora: álgebra faz uso de situações concretas e materiais 

manipulativos. Embora se façam interessantes, os autores acreditam ser 

insuficiente, uma vez, que apesar dos estudantes considerarem como útil o material 

manipulativo, muitas vezes, não estabelecem as relações necessárias entre o que 

fora realizado com o material e o que é transposto para o formalismo matemático.

• Concepção “Concreta”: para se ensinar álgebra lança-se mão de propostas de 

investigação de uma situação real, “a Educação Algébrica se dá na medida em que 

a produção de conhecimento algébrico serve ao propósito de iluminar ou organizar 

uma situação, como ferramenta e não como objeto primário do estudo” (LINS; 

GIMENEZ, 1997, p. 109).

• Concepção de álgebra como conhecimento para esclarecer e organizar um problema 

ou situação.

De acordo com essas concepções, Lins e Gimenez (1997) apontam que a educação 

algébrica no Brasil prevalece ainda sob a concepção letrista e letrista facilitadora, sendo vista 

como “propósito de iluminar ou organizar uma situação, como uma ferramenta e não como 

objeto primário de estudo” (LINS; GIMENEZ, p. 109).

Em outra perspectiva, Sousa (2004) considera os nexos conceituais da álgebra 

(fluência, variável, campo de variação) como elementos necessários para uma melhor 

compreensão dos conceitos algébricos e, possivelmente, das equações. A autora, à luz dos 

nexos internos de Davidov (1982), infere que

os nexos conceituais que fundamentam os conceitos contêm a lógica, a história, as 
abstrações, as formalizações do pensar humano no processo de constituir-se humano 
pelo conhecimento.
Definimos nexo conceitual como o elo de ligação entre as formas de pensar o 
conceito, que não coincidem, necessariamente, com as diferentes linguagens do 
conceito (SOUSA, 2004, pp. 61-62).

Logo, os nexos conceituais se apresentam no movimento do pensamento, tanto do 

professor, quanto do estudante. Os nexos internos do conceito (DAVYDOV, 1982) mobilizam 

mais o movimento do estudante, enquanto que os nexos externos “não deixam de ser uma 

linguagem de comunicação do conceito apresentada em seu estado formal, mas que não
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necessariamente denotam sua história. Dá pouca mobilidade ao sujeito para elaborar o 

conceito” (SOUSA, 2004, p. 62).

Assim, nos atentamos aos nexos conceituais (fluência, campo de variação e variável) 

na elaboração de nossa proposta, uma vez que estes consideram o movimento do surgimento 

da álgebra e possibilitam que o estudante se aproprie do pensamento algébrico e do conceito 

de equações de 1° grau. Nas palavras de Sousa, Panossian e Cedro (2014, p. 121):

Esses conceitos, aos quais estamos denominando de nexos conceituais da álgebra, 
constituem o substancial, o movimento do pensamento algébrico, tendo em vista a 
busca da verdade relativizada. Fundamentam as diversas álgebras, elaboradas 
estruturalmente pelos matemáticos das diversas civilizações, de tempos em tempos, 
no intuito de descrever, de formalizar os diversos movimentos presentes no mundo 
no qual estamos inseridos.

Ao direcionarmos nosso olhar à fluência dos fenômenos e objetos presentes em nossa 

realidade, possibilitamo-nos compreender as inúmeras relações e constantes transformações 

desta realidade.

O mundo está em permanente evolução; todas as coisas, a todo momento, se 
transformam, tudo f lu e ,  tudo d e v é m . Isto, que é a afirmação fundamental do filósofo 
H e r á c lito  de Efeso foi, posteriormente, reconhecido por grandes pensadores e pode 
ser verificado por qualquer de nós, seja qual for aquele objecto em que fixemos a 
nossa atenção. Pois não é verdade que tudo está sujeito a uma mesma lei de 
nascimento, vida e morte, que, por sua vez, vai originar outros nascimentos? 
(CARAÇA, 1951, p. 110).

Esse primeiro nexo conceitual parece evidenciar o movimento da vida, a mutabilidade 

da álgebra, mostrar aos estudantes os caminhos percorridos para se chegar à configuração que 

temos hoje, se relacionando com os nexos conceituais campo de variação e variável.

Sobre o Campo de variação, Panossian (2014) remete à criação de diversos campos 

numéricos, ou campo de variação, como uma necessidade das diferentes civilizações, 

possibilitando a garantia de fluência do movimento de controle de quantidades, pois

consideramos que a qualidade desses campos numéricos se alterava em um 
movimento de evolução, no sentido em que sua essência não se modificava, mas se 
modificavam outras qualidades. É o que acontece, por exemplo, com a necessidade 
da criação de números que podem ser representados na forma de razão, os quais 
avançam de forma gradativa modificando a qualidade do número. Ou ainda com a 
organização de um campo de números inteiros, em que a quantidade negativa 
adquire significado (PANOSSIAN, 2014, p. 91).

Notamos, assim, que o campo de variação define dentro de um conjunto numérico, as 

possibilidades de valores que a variável poderá assumir. Devemos ter em mente que esse
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campo estará associado ao tipo de problema a ser estudado e depende “diretamente do 

movimento da realidade tratada. Não há uma resposta pronta e absoluta, embora boa parte dos 

movimentos da realidade pareça ocorrer no campo dos números reais” (SOUSA, 2004, p. 

158).

Em relação à variável e diante das ideias de Caraça (1951) podemos inferir que a 

variável é a fluência e representa o movimento do pensamento.

Pelo seu caráter essencial -  síntese do se r  e n ã o  s e r  -  ela sai fora daquele quadro de 
ideias que quer ver na realidade uma p e r m a n ê n c ia  e irrompe ligada à corrente de 
pensamento que, expressa ou tacitamente, vê na f lu ê n c ia  a primeira de suas 
características (CARAÇA, 1951, p. 127).

Entendemos que a constituição da variável leva em consideração as dimensões 

numéricas e geométricas, “o seu lógico-histórico mostra que estes se originaram das 

abstrações feitas pelos homens a partir da elaboração dos conceitos formais de número e de 

aspectos da geometria” (SOUSA, 2004, p. 82).

Conforme traz Caraça (1951, p. 128), “variável é o que for determinado pelo conjunto 

numérico que ela representa -  a sua substância, o seu domínio”, assim a variável estará dentro 

do movimento limitado por um campo de variação. Mais adiante, Caraça (1951) define 

variável da seguinte forma: “Seja (E) um conjunto qualquer de números, conjunto finito ou 

infinito, e convencionamos representar qualquer dos seus elementos por um símbolo, por ex.: 

x. A este símbolo, representativo de qualquer dos elementos do conjunto (E), chamamos de 

variável" (CARAÇA, 1951, p. 127).

Lima, Takazaki e Moisés (1998) esclarecem que o problema algébrico geral, 

caracteriza o movimento geral de variação quantitativa, “nele a variável é entendida como 

campo de variação” (LIMA; TAKAZAKI; MOISÉS, 1998, p. 4). Já o problema algébrico 

particular buscará na variável um valor definido, dentro do campo de variação, que satisfaça 

uma determinada situação, “a variável deve assumir um valor determinado do campo de 

variação. Esse valor é a resposta à necessidade imediata e particularizada do problema 

algébrico” (LIMA; TAKAZAKI; MOISÉS, 1998, p. 4) e, nesse caso, estamos nos referindo a 

variável na qualidade de incógnita, ou termo desconhecido, devendo este pertencer ao campo 

de variação da variável, pois caso contrário, o problema não terá solução.

A variável passa a adquirir qualidade por meio da fluência, um movimento limitado 

pelo campo de variação, que “constitui uma linguagem para os movimentos quantitativos 

gerais -  as equações -  que, por sua vez, representam uma peculiaridade e, portanto,



62

constituem uma linguagem particular, específica, um estado de movimentos de controle de 

quantidades” (CEDRO, 2004, p. 82).

Nesta mesma perspectiva, encontramos Caraça (1951) que destaca o conceito de 

variável como fundamento principal para toda a álgebra fundamental e, consequentemente, 

para sequências, equações e funções. Para o bloco sequências temos a variável relacionada à 

fluência e à padrão; para equações, temos a relação entre grandezas e, para funções, temos a 

variável relacionada à interdependência e fluência.

Diante do exposto, nesta pesquisa estamos interessadas na perspectiva apresentada por 

Souza (2004) acerca dos nexos conceituais, por acreditarmos que, diante da intencionalidade 

de apresentar situações desencadeadoras de aprendizagem que abarquem os nexos fluência, 

variável e campo de variação, os estudantes poderão colocar-se em atividade e, assim, 

apropriar-se do conceito de equações de 1° grau. Essa opção decorre pelo fato de entendermos 

que as outras perspectivas, presentes na literatura e aqui apresentadas, não consideram o 

movimento histórico de formação do conceito algébrico, direcionando apenas o estudante a 

ser um usuário da álgebra, realizando operações sem sentido e sem a apreensão do conceito.

Na próxima seção apresentamos como os Parâmetros Curriculares Nacionais orientam 

o ensino da álgebra na educação básica.

3.2 Parâmetros curriculares nacionais e a álgebra

O olhar para os Parâmetros Curriculares Nacionais se justifica por ser esse o 

documento oficial atual, de âmbito nacional, que orienta a organização curricular no país e 

está presente em grande parte das escolas, em especial, na escola onde a proposta foi 

desenvolvida, uma vez que se trata de uma instituição de âmbito municipal.

Os Parâmetros Curriculares Nacionais (BRASIL, 1998) sugerem que o estudo da 

álgebra pode encaminhar a um ambiente potencialmente significativo para que o estudante 

desenvolva e exercite sua capacidade de abstração e generalização, “além de lhe possibilitar a 

aquisição de uma poderosa ferramenta para resolver problemas” (BRASIL, 1998, p. 115). No 

entanto, faz-se necessário pensarmos nesse ambiente mediante a compreensão acerca do seu 

papel no currículo.

De acordo com o referido documento, os professores elencam quantidades 

exorbitantes de exercícios mecânicos no desejo de promover a apreensão desse assunto.
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Isso faz com que os professores procurem aumentar ainda mais o tempo dedicado a 
este assunto, propondo em suas aulas, na maioria das vezes, apenas a repetição 
mecânica de mais exercícios. Essa solução, além de ser ineficiente, provoca grave 
prejuízo no trabalho com outros temas da Matemática, também fundamentais, como 
os conteúdos referentes à Geometria (BRASIL, 1998, p. 116).

Uma opção para o ensino de álgebra, segundo os Parâmetros Curriculares Nacionais 

(PCN), constitui-se em propor situações que direcionem o estudante à observação de 

regularidades introduzindo o pensamento algébrico, contrapondo numerosas listas de 

exercícios com foco apenas na manipulação de expressões e equações, comumente mecânicas 

(BRASIL, 1998).

O quadro a seguir, descreve as dimensões que os PCN (BRASIL, 1998) aborda sobre a 

álgebra escolar:

Fonte: Brasil, 1998, p. 116

Notamos, no quadro 4, que a álgebra, segundo o PCN, assume quatro dimensões:

• Aritmética Generalizada: temos nessa dimensão as letras como forma de 

generalização, transição da aritmética para álgebra, assim como, a abordagem 

das propriedades das operações justificando as generalizações apresentadas (a 

citar, o uso de letras para generalizar operações com potências);
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• Funcional: nesse momento as letras assumem o papel de variáveis, interagindo 

com situações que envolvam relações e funções, o professor busca então 

trabalhar a variação de grandezas;

• Equações: as letras serão entendidas como incógnitas e busca-se resolver 

equações (isto é, descobrir valores desconhecidos);

• Estrutural: na qual as letras são tidas como símbolo abstrato, objetivando-se o 

cálculo algébrico e obtenção de expressões equivalentes, por exemplo, cálculo 

de produtos notáveis, fatoração de polinômios, entre outros.

Segundo os PCN (1998) seria interessante que as quatro dimensões fossem trabalhadas 

de forma articulada ao longo de todo o ensino fundamental. “Iniciar o estudo da sintaxe que o 

estudante está construindo com as letras poderá completar a noção da álgebra como uma 

linguagem com regras específicas para o manuseio das expressões, ou seja, o cálculo 

algébrico” (BRASIL, 1998, p. 188), podendo com essa abordagem, promover a percepção da 

transformação de uma expressão algébrica em outra equivalente, mais simples, um caminho 

que pode facilitar a busca pela solução de um problema.

Buscamos neste estudo, trabalhar com as dimensões aritmética generalizada e 

equações, apresentadas pelos PCN por entendermos que as dimensões funcional e estrutural 

não se adequam aos sujeitos dessa pesquisa, estudantes do 7°ano do ensino fundamental, pois 

essas dimensões serão fruto do estudo desses estudantes nos anos finais do ensino 

fundamental e durante o ensino médio. Entendemos que, ao propor as dimensões aritmética 

generalizada e equações, podemos apreender nova qualidade ao ensino, na busca de um 

movimento que considere os caminhos para a construção de um conceito e não apenas 

repetição mecânica de exercícios.

Na próxima sessão, com o intuito de conhecermos a produção acadêmica existente, 

apresentamos um mapeamento das dissertações e teses19 produzidas na região Sudeste20 de 

2010 a 2014, com foco no nosso objeto de estudo, equações de 1° grau.

19 As pesquisas foram retiradas no banco da Biblioteca Digital Brasileira de Teses e Dissertações. 
<http://bdtd.ibict.br/>. Acesso em: 11 maio 2015.
20 Inicialmente tínhamos o interesse em mapear as pesquisas realizadas no Brasil no período de 2010-2014. 
Porém, o banco de Teses e Dissertações da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 
(CAPES) encontrava-se em manutenção no momento de nossa pesquisa, o que nos levou a optar por refinar 
nosso mapeamento à Região Sudeste, por esta pesquisa se encontrar inserida nesta região.
Estabelecemos o período de 2010 a 2014, por 2010 ser o ano em que iniciamos nossa prática docente e 2014 o 
ano em que a proposta foi desenvolvida com os estudantes.

http://bdtd.ibict.br/
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3.3 Um olhar para as pesquisas existentes

Ao decidirmos verificar a produção acadêmica existente, inicialmente, definimos 

como critério pesquisas onde se fizessem presentes os termos: álgebra, equação de 1° grau, 

pensamento algébrico, em seus títulos e/ou resumos. Apresentado o resultado da busca, 

fizemos a leitura dos resumos a fim de refinar nossa seleção para pesquisas que voltassem 

seus olhares para o ensino fundamental, coincidindo assim como a nossa realidade.

Tal seleção nos possibilitou elaborar um gráfico conforme podemos visualizar na 

figura 6. Foram analisados 13 (treze) resumos, sendo 2 (duas) teses e 11 (onze) dissertações. 

Dessas dissertações, 4 (quatro) relativas ao Mestrado Profissional e 7 (sete) relacionadas ao 

Mestrado Acadêmico.

Figura 6: Classificação das Pesquisas quanto ao Grau de Titulação

■ Dissertação de 
Mestrado Acadêmico

■ Dissertação de 
Mestrado Profissional

■ Tese de Doutorado

Fonte: Dados da Pesquisadora

Pelas análises percebemos que o ensino fundamental foi o nível de ensino mais 

contemplado com 7 (sete) pesquisas, 1 (uma) abordou estudos com estudantes do ensino 

médio, 1 (uma) conduziu seu olhar para estudantes dos Ensinos Fundamental e Médio e 4 

(quatro) pesquisas focaram no desenvolvimento de experimentos de estudo com professores, 

sendo que dessas quatro, duas preocuparam-se com a formação dos futuros professores de 

matemática e as outras duas dizem respeito a prática docente, como apresentado na figura 7.
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Figura 7: Classificação das Pesquisas quanto aos Sujeitos

Fonte: Dados da Pesquisadora

Na tentativa de organizar o material analisado, organizamos um quadro (Quadro 5) 

com as informações das referidas pesquisas.

Quadro 5: Dados das Pesquisas

Título Autor Ano Instituição Dissertação/Tese

Metodologia da 
resolução de problemas 
no planejamento de 
atividades para a 
transição da Aritmética 
para a Álgebra

Danilo Eudes 
Pimentel

Orientadora:
Yuriko
Yamamoto
Baldin

2010

Universidade 
Federal de 

São Carlos - 
UFSCar

Dissertação

Iniciação a práticas de 
letramento algébrico 
em aulas exploratório- 
investigativas

Fernando Luís
Pereira
Fernandes
Orientador: 
Dario Fiorentini

2011

Universidade 
Estadual de 
Campinas -  
UNICAMP

Dissertação

Um estudo exploratório 
das relações funcionais 
e suas representações 
no terceiro ciclo do 
ensino fundamental

Edson Eduardo 
Castro
Orientadora: 
Barbara Lutaif 
Bianchini

2011

Pontifícia 
Universidade 
Católica de 
São Paulo -  

PUC/SP

Dissertação -  
Mestrado 

Profissional

Continua
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Continuação

Álgebra e a formação 
docente: o que dizem 
os futuros professores 
de matemática

Flávio de Souza 
Pires
Orientadora: 
Maria do Carmo 
de Sousa

2012

Universidade 
Federal de 

São Carlos - 
UFSCar

Dissertação

Obstáculos à 
aprendizagem de 
conceitos algébricos no 
ensino fundamental: 
uma aproximação entre 
os Obstáculos 
Epistemológicos e a 
Teoria dos Campos 
Conceituais

Luzia Maya 
Kikuchi
Orientador: Elio 
Carlos Ricardo

2012
Universidade 
de São Paulo 

-  USP
Dissertação

As concepções da 
álgebra articuladas aos 
conteúdos de 
matemática no ensino 
fundamental

Jailma Ferreira 
Guimarães
Orientadora: 
Ana Lucia 
Manrique

2013

Pontifícia 
Universidade 
Católica de 
São Paulo -  

PUC/SP

Dissertação

Patricia
Aparecida
Pinheiro
Orientadora:
Grazielle

Introdução ao estudo da 
álgebra no ensino 
fundamental

2013

Universidade 
Federal de 

São Carlos - 
UFSCar

Dissertação -  
Mestrado 

Profissional
Feliciani
Barbosa

O jogo pedagógico 
enquanto atividade 
orientadora de ensino 
na iniciação algébrica 
de estudantes de 6a 
série

Regiane de 
Oliveira Gaspar
Orientador: 
Maria do Carmo 
de Sousa

2013

Universidade 
Federal de 

São Carlos - 
UFSCar

Dissertação

Conhecimento 
matemático específico 
para o ensino na 
educação básica: a 
álgebra na escola e na 
formação do professor

Maria Cristina 
Costa Ferreira

Orientadora: 
Maria Manuela 
Martins Soares 
David

2014

Universidade 
Federal de 

Minas Gerais 
-  UFMG

Tese

Continua
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Conclusão

Consequências das 
Orientações Técnicas 
de Matemática, 
realizadas pelos PCNP, 
na atuação dos 
professores e na 
aprendizagem dos 
estudantes

Sara Margarida 
Santos
Orientador: 
Geraldo Pompeu 
Junior

2014

Universidade 
Federal de 

São Carlos -  
UFSCar

Dissertação

O movimento histórico 
e lógico dos conceitos 
algébricos como 
princípio para 
constituição do objeto 
de ensino da álgebra

Maria Lúcia 
Panossian
Orientador: 
Manoel 
Oriosvaldo de 
Moura

2014
Universidade 
de São Paulo 

-  USP
Tese

Resolução de 
problemas da pré- 
álgebra e a álgebra para 
fundamental II do 
ensino básico com 
auxílio do modelo de 
barras

Jonas Marques 
dos Santos 
Queiroz

Orientador:
Yuriko
Yamamoto
Baldin

2014

Universidade 
Federal de 

São Carlos -  
UFSCar

Dissertação -  
Mestrado 

Profissional

Um estudo sobre 
métodos algébricos de 
resolução de equações 
algébricas com 
proposta de atividades 
para o ensino básico

Valmir Roberto 
Moretti
Orientadora: 
Maria Sueli 
Marconi Roversi

2014

Universidade 
Estadual de 
Campinas -  
UNICAMP

Dissertação -  
Mestrado 

Profissional

Fonte: Sistematização da Pesquisadora

Após a leitura dos resumos, no que se refere aos objetivos das pesquisas analisadas, 

sintetizamos que as pesquisas pretendiam:

• Estudar os métodos algébricos para a resolução de equações;

• Investigar os obstáculos à aprendizagem de álgebra no ensino fundamental com o 

intuito de ajudar na compreensão das dificuldades envolvidas no aprendizado desse 

tópico;

• Analisar e avaliar se as Orientações Técnicas de Matemática, realizadas pelo 

Professor Coordenador do Núcleo Pedagógico, têm auxiliado ou não na melhoria da
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atuação dos professores em sala de aula, de suas formações profissionais, bem 

como as consequências para o processo de aprendizagem dos estudantes;

• Identificar elementos de saber, específicos do professor de matemática, que foram 

efetivamente mobilizados ou que seriam potencialmente mobilizáveis na prática 

concreta de sala de aula de álgebra;

• Identificar, analisar e discutir aspectos (também denominados como características) 

do pensamento algébrico -  ora chamado de letramento algébrico -  manifestados 

pelos estudantes do ensino fundamental;

• Investigar indícios de pensamento algébrico e de possíveis erros cometidos pelos 

estudantes;

• Investigar as relações entre o movimento histórico e lógico dos conceitos algébricos 

e o objeto de ensino da álgebra.

• Introdução ao pensamento e linguagem da Álgebra;

• Analisar a produção escrita de professores e estudantes do ensino médio, 

verificando os modos de resolução que estes utilizaram para resolver as questões de 

Álgebra.

Para atingir tais objetivos, os pesquisadores lançaram mão da análise de livros 

didáticos, elaboração de sequências didáticas, resolução de problemas, jogos pedagógicos, 

aplicação de provas elaboradas pelas instituições governamentais para a educação básica (por 

exemplo, Sistema de Avaliação do Rendimento Escolar do Estado de São Paulo -  SARESP) 

e, por fim, exposição de breve relato da história dos processos resolutivos de equações, 

questionários sobre a formação docente concomitante à questões acerca do ensino de álgebra.

Após a leitura dos resumos das pesquisas aqui apresentadas, acreditamos que se faz 

possível uma aproximação dessas às concepções de Usiskin (1995), abordadas na primeira 

seção desse capítulo, com exceção da quarta concepção (álgebra como estudo das estruturas), 

conforme se verifica no quadro 6.
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Quadro 6: Concepções de Usiskin (1995) abordadas nas pesquisas analisadas

CONCEPÇÃO RECORTES -  DISSERTAÇÃO/TESE

Álgebra como aritmética 
generalizada

“A utilização da argumentação e da demonstração para 
justificar a extensão de resultados obtidos nos processos de 
generalização na álgebra” (FERREIRA, 2014).
“Existem diversas abordagens possíveis para a iniciação ao 
estudo da Álgebra, tais como: generalização de padrões, 
modelagem” (CASTRO, 2011).

Álgebra como um estudo de 
procedimentos para resolver 
certos tipos de problemas

“Os alunos preferem usar a linguagem retórica para resolver 
situações-problema que envolvem equações” (GASPAR, 
2013).
“Deste modo foram planejadas e executadas 6 (seis) 
atividades utilizando a metodologia de Resolução de 
Problemas” (QUEIROZ, 2014).
“Foram planejadas e aplicadas atividades sob forma de 
resolução de problemas para detectar estas dificuldades e 
auxiliar na introdução ao raciocínio algébrico” 
(PIMENTEL, 2010).

Álgebra como estudo das 
relações de grandeza

“Desenvolver sequências de atividades, articulando os 
quatro blocos de conteúdos de matemática apresentados 
pelos Parâmetros Curriculares Nacionais do Ensino 
Fundamental - PCNEF com as concepções da álgebra 
propostas por Usiskin como estudo das relações entre 
grandezas” (GUIMARÃES, 2013).

Fonte: Sistematização da pesquisadora

Com relação à indicação dos PCN (1998), encontramos nas pesquisas analisadas a 

presença da aritmética generalizada onde “temos nessa dimensão as letras como forma de 

generalização, transição da aritmética para álgebra” (BRASIL, 1998, p. 116) e a dimensão que 

se fez mais presente foi a das Equações, em que “as letras serão entendidas como incógnitas, e 

busca-se resolver equações” (BRASIL, 1998, p. 116).

Acreditamos que nossa pesquisa, diferentemente da grande maioria das pesquisas aqui 

apresentadas, visa o desenvolvimento do pensamento algébrico por meio da organização do 

ensino com foco na formulação e resolução de equações de 1° grau. Nosso estudo pode 

possibilitar ao estudante uma maior exploração das diferentes concepções da álgebra, 

considerando os nexos conceituais já apresentados, fundamentados nos estudos de Sousa 

(2004). Ressaltamos que estes nexos se fizeram presentes em apenas uma das pesquisas aqui 

apresentadas, a de Panossian (2014).
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3.4 Álgebra e a abordagem nos livros didáticos

Diante das orientações apresentadas pelos PCN (1998), passamos a olhar a abordagem 

do tema Álgebra em alguns livros didáticos presentes na escola onde a proposta inerente à 

pesquisa foi desenvolvida.

Como no ano de 2013, se destinou a escolha do livro didático a ser adotado pelas 

Escolas Públicas para os anos de 2014, 2015, 2016, o Ministério da Educação, em conjunto 

com a Secretaria de Educação Básica e o Fundo Nacional de Desenvolvimento da Educação, 

elaboraram o Guia de Livros Didáticos -  PNLD 2014 . Neste guia são apresentadas resenhas 

de dez coleções de livros de Matemática do 6° ao 9° anos e uma avaliação das características 

de cada obra.

As resenhas aqui reunidas procuram retratar, o mais fielmente possível, a estrutura 
dos livros e o sumário dos seus conteúdos. Além disso, expressam uma avaliação de 
cada obra, feita por educadores que estão envolvidos com o ensino do 6o ao 9o ano. 
Nessa avaliação, foram tomados como base os critérios publicados pelo Ministério 
da Educação, no Edital do PNLD 2014 (BRASIL, 2013, p. 8).

Dentre os critérios que podem fazer com que o livro didático seja excluído da lista de 

opções para as escolas, no que tange à componente curricular Matemática, no Guia de Livros 

Didáticos -  PNLD 2014, podemos destacar: dar atenção apenas ao trabalho mecânico com 

procedimentos em detrimento da exploração dos conceitos matemáticos e de sua utilidade 

para resolver problemas; deixar de propiciar o desenvolvimento, pelo estudante, de 

competências cognitivas básicas, como: observação, compreensão, argumentação, 

organização, análise, síntese, comunicação de ideias matemáticas, memorização; 

supervalorização do trabalho individual. Notamos, assim, o cuidado desse Guia em atentar-se 

às orientações anteriormente apresentadas nos PCN (1998), assim como percebemos que se 

espera que os livros didáticos possam promover o ensino sob uma perspectiva que propicie o 

desenvolvimento da criticidade, coletividade, investigação em detrimento de um ensino 

puramente mecânico.

Selecionamos, dentre as dez coleções apresentadas pelo Guia, aquelas que foram 

encaminhadas à escola21 22 na qual a proposta se desenvolveu, limitando-nos nosso olhar a obra

21 <http://www.fnde.gov.br/programas/livro-didatico/guias-do-pnld/item/4661-guia-pnld-2014>. Acesso em: 23 
mar. 2015.
22 Em Uberlândia, os livros inicialmente são encaminhados ao Centro Municipal de Estudos e Projetos 
Educacionais Julieta Diniz, um centro de estudos oficializado pela Secretaria Municipal de Educação que visa 
executar atividades de formação dos professores municipais, onde são analisados se estas obras estão em acordo

http://www.fnde.gov.br/programas/livro-didatico/guias-do-pnld/item/4661-guia-pnld-2014
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para os 7°s anos. Este critério de seleção nos levou a quatro obras das quais elaboramos o 

quadro 7:

Quadro 7: Livros Didáticos analisados

Título Autor (es) Editora Ano de 
Publicação

Vontade de Saber 
Matemática

Joamir Souza, Patrícia Moreno 
Pataro FTD 2012

Projeto Teláris: 
Matemática Luiz Roberto Dante Ática 2013

Praticando Matemática Álvaro Andrini, 
Maria José Vasconcellos

Editora do 
Brasil 2012

Projeto Araribá 
Matemática

Fábio Martins de Leonardo et 
al. Moderna 2012

Fonte: Sistematização da pesquisadora

Como referencial para nosso estudo, atentamo-nos às seguintes questões:

• Como se dá a abordagem do conteúdo de equações?

• Existe a presença de um contexto histórico? Como?

• Como o estudante é levado a construir o conceito de equação?

• Há associação da aritmética com a álgebra (nexos conceituais)?

• Com relação aos exercícios propostos, quais são as características mais 

presentes?

Apresentamos a seguir uma síntese (Quadro 8), por nós elaborada, de cada obra, 

considerando também a descrição presente no Guia PNLD 2014 e os estágios no movimento 

da Álgebra -  álgebra retórica, sincopada e simbólica, caracterizada por Nesselmann (EVES, 

2002).

com o Plano Nacional do Livro Didático e, a  p o s te r io r i , são encaminhadas às escolas municipais para apreciação 
dos professores.
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Quadro 8: Um olhar para os livros didáticos referentes ao ensino de Equações

Título 
Autor (es)

Estrutura Organizacional 
do Conteúdo Abordagem do Conteúdo Procedimentos Nexos conceituais

Vontade de Saber 
Matemática

Joamir Souza, 
Patrícia Moreno 

Pataro

Expressões algébricas.
Fórmulas.
Equação, incógnita e solução 
ou raiz.
Resolvendo equações 
princípios aditivo 
multiplicativo.

pelos
e

Apresentação de um problema 
chamado de Táxi, onde, 
posteriormente o autor, traz um 
equacionamento do mesmo.
Pequeno trecho de uma situação de 
compra e venda para introduzir 
expressões algébricas e cálculo do 
valor numérico.
Passagem da álgebra retórica para 
álgebra simbólica, com inexistência da 
álgebra sincopada.
Apresentação de fórmulas, tais como, 
cálculo da altura de uma pessoa, custos 
de produções, índice de massa 
corporal.
Definição de Equação.
Uso de resolução de problemas e 
emprego das balanças como 
metodologia.

Exercícios para cálculo de valor 
numérico, ora são apresentadas 
situações para passagem da 
linguagem retórica para simbólica, 
ora apenas são apresentadas as 
expressões algébricas para serem 
calculados os valores numéricos.

Ausência do nexo 
fluência.

Resolução de Problemas: álgebra 
retórica para álgebra simbólica e, 
resolução de equações.
Exercícios assim como os 
problemas direcionam a aplicação e 
sistematização de procedimentos ou 
propriedades anteriormente
apresentadas.

Referência apenas ao 
nexo variável, com 
inexistência do nexo 
campo de variação.

Projeto Teláris:

Letras em lugares de 
números.
Expressões algébricas.
Equação, incógnita e solução 
ou raiz.
Equação de 1° grau com uma

Apresentação de dois problemas que 
nortearão o estudo das equações, 
chamados de Ponto de Partida, que 
seguindo o autor, irão preparar o 
estudante para as descobertas ao 
decorrer do capítulo.

Exercícios para cálculo de valor 
numérico, ora são apresentadas 
situações para passagem da 
linguagem retórica para simbólica, 
ora apenas são apresentadas as 
expressões algébricas para serem

Ausência do nexo 
fluência.
Referência apenas ao 
nexo variável, com 
inexistência do nexo 
campo de variação.
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Matemática incógnita. Relação entre aritmética e álgebra. calculados os valores numéricos.

Luiz Roberto 
Dante

Uma aplicação de equação:
geratriz de 
periódica.

uma dízima

Equações
incógnitas.

com duas

Inequações.
Revendo equações,
inequações e sistemas.

Pequeno trecho histórico para 
introduzir expressões algébricas.
Passagem da álgebra retórica para 
álgebra simbólica, com inexistência da 
álgebra sincopada.
Resolução de equações via cálculo 
mental.
Uso de resolução de problemas e 
emprego das balanças como 
metodologia.

Resolução de equações via cálculo 
mental.
Resolução de Problemas: álgebra 
retórica para álgebra simbólica e, 
resolução de equações e 
inequações.
Exercícios assim como os 
problemas direcionam a aplicação e 
sistematização de procedimentos ou 
propriedades anteriormente
apresentadas.

Em um segundo capítulo, relaciona 
álgebra à geometria, para resolver 
sistema de equações.

Exercícios mecânicos, visando 
apenas a execução de cálculos.

Praticando
Matemática

Álvaro Andrini, 
Maria José 

Vasconcellos

Letras e padrões.
Equações.
Algumas operações com 
letras.

Breve introdução acerca da passagem 
da álgebra retórica para simbólica. 
Ausência da álgebra sincopada.
Narrativa breve a história da Álgebra, 
citando Diofante e Al-Khowarizmi.

Balanças em equilíbrio 
eqações.
Mais problemas e equações.

Uso de resolução de problemas e 
emprego das balanças como 
metodologia.

Resolução de equações via cálculo 
mental.
Resolução de Problemas: álgebra 
retórica para álgebra simbólica e, 
resolução de equações e 
inequações.
Exercícios assim como os 
problemas direcionam a aplicação e 
sistematização de procedimentos ou 
propriedades anteriormente
apresentadas.

Ausência do nexo
fluência.
Referência a
variável, mas
inexistência do nexo
campo de variação.

Continua
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Conclusão

Expressões algébricas.

Projeto Araribá 
Matemática

Fábio Martins de 
Leonardo et al.

Calculando com letras. 
Igualdade.
Equações -  raiz ou solução 
de uma equação.
Resolver um problema por 
meio de uma equação.

O capítulo tem início com algumas 
situações que direcionam à ideia de 
expressão algébrica.
Apresenta alguns recortes da história 
da Álgebra, referenciando Ahmes, 
Diofanto, al-Khowarizmi e François 
Viète.

Equações equivalentes.
Equações de 1° grau com 
uma incógnita.
Situações-problema 
resolvidos por equação.
Equação de 1° grau com duas 
incógnitas.
Sistema de equações de 1° 
grau com duas incógnitas.
Inequações de 1° grau com 
uma incógnita.

Passagem da álgebra retórica, para 
álgebra simbólica. Ausência da álgebra 
sincopada.
Uso de resolução de problemas e 
emprego das balanças como 
metodologia.
Após serem apresentadas poucas 
situações envolvendo a escrita de 
expressões algébricas, passa-se 
rapidamente para a resolução de 
equações e de sistemas.

Exercícios para cálculo de valor 
numérico de forma mecânica.
Resolução de Problemas: álgebra 
retórica para álgebra simbólica e, 
resolução de equações e 
inequações.
Exercícios assim como os 
problemas direcionam a aplicação e 
sistematização de procedimentos ou 
propriedades anteriormente
apresentadas.

Ausência do nexo
fluência.
Referência aos nexos 
variável e campo de 
variação.
Apresentam a
resolução de uma
equação e em
seguida analisam a 
validade da raiz para 
o conjunto dos
números racionais e 
o conjunto dos
números inteiros. 
Após isso os autores 
apresentam um 
exercício, seguindo a 
mesma ideia do 
exemplo.

Fonte: Sistematização da Pesquisadora
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Pelo quadro apresentado, podemos verificar que em todas as obras analisadas há a 

ausência da álgebra sincopada (EVES, 2002; LANNER DE MOURA; SOUSA, 2005), sendo 

que todas as obras citadas evidenciam apenas a passagem dos textos em linguagem discursiva 

para a linguagem matemática.

Em apenas um livro didático -  Projeto Araribá Matemática -  identifica-se a 

abordagem de diferentes momentos históricos da álgebra e, nos demais livros, justifica-se esse 

estudo em situações cotidianas, vivenciadas pelos estudantes. É possível inferir que não se 

estimula a apreensão do conceito de equação, mas sim sua resolução via procedimentos 

determinados algoritmicamente. Assim como, é possível identificar que não existe uma 

preocupação com o aspecto relativo à pré-álgebra (LANNER DE MOURA; SOUSA, 2005), 

as expressões algébricas e equações são apresentadas de forma explícita e direta, não 

motivando a necessidade desse estudo, a formação e estruturação do pensamento algébrico 

como uma intencionalidade.

Por meio dessa análise, podemos inferir que há a necessidade de uma organização do 

ensino de álgebra, que promova a estruturação do pensamento algébrico, fomentando o ensino 

de equações e que coloque o sujeito em movimento de apropriação do conhecimento, onde 

esse esteja em atividade.

Buscamos nesse capítulo elencar diferentes concepções sobre o ensino de álgebra, 

presentes em documentos oficiais, pesquisas acadêmicas e livros didáticos. Concluímos 

reiterando nossa escolha pela organização do ensino que abarque os nexos conceituais da 

álgebra (fluência, variável e campo de variação) discutidos por Sousa (2004), uma vez que 

acreditamos que esses nexos consideram o movimento histórico da formação do pensamento 

algébrico e do conceito de equações de 1° grau, permitindo que os estudantes se apropriem 

desse conhecimento.

No próximo capítulo, vamos categorizar nossa pesquisa, os princípios éticos que 

adotamos e apresentaremos o espaço onde a proposta aconteceu, seus protagonistas e as 

atividades de ensino que foram desenvolvidas.
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4. CONHECENDO A PROPOSTA E SEUS PROTAGONISTAS

O  m é to d o  m a te r ia lis ta  h is tó r ic o -d ia lé tic o  c a r a c te r iza -se  p e lo  m o v im e n to  do  
p e n s a m e n to  a tra v é s  d a  m a te r ia lid a d e  h is tó r ic a  d a  v id a  d o s  h o m e n s  em  s o c ie d a d e ,  
is to  é , tra ta -se  d e  d e s c o b r ir  (p e lo  m o v im e n to  d o  p e n s a m e n to )  a s  le is  fu n d a m e n ta is  
q u e  d e fin e m  a  fo r m a  o rg a n iz a tiv a  d o s  h o m e n s  em  s o c ie d a d e  a tra v é s  d a  h is tó r ia  
(P IR E S , 1997 , p . 83).

Nos capítulos anteriores discutimos os aspectos teóricos de nosso estudo. 

Apresentamos a Teoria Histórico-Cultural, fizemos um resgate histórico dos caminhos da 

álgebra ao longo das diferentes civilizações e estabelecemos um panorama da álgebra no 

ensino, abarcando diferentes concepções da educação algébrica, as pesquisas já realizadas 

com esse tema, as orientações dos Parâmetros Curriculares Nacionais e uma breve análise de 

livros didáticos presentes na escola onde a proposta aconteceu.

Nesse capítulo apresentamos nossa metodologia de pesquisa caracterizando-a sob a 

abordagem qualitativa (BOGDAN; BIKLEN, 1994), discorremos sobre o materialismo 

histórico dialético, retomamos nossa questão de pesquisa e nossos objetivos, apresentamos os 

princípios éticos adotados nesse estudo (BOGDAN; BIKLEN, 1994; FIORENTINI; 

LORENZATO, 2006), os instrumentos que tivemos em mãos para a observação do fenômeno 

em movimento, bem como os critérios estabelecidos para conseguirmos definir nossos 

protagonistas, nosso isolado (CARAÇA, 1951), as atividades de ensino propostas aos 

estudantes (SOUSA, 2004; SCALASSARI, 2007) e, por fim, nosso caminho para análise do 

material obtido.

4.1 Caracterização da pesquisa

A partir de nossa atuação como professora da rede pública de ensino, vivenciamos 

situações em que os estudantes demonstravam dificuldades em definir equações de 1° grau. 

Na maioria das vezes, quando os indagávamos sobre esse assunto, se restringiam a descrever 

“procedimentos para se resolver uma equação”, dizer que “toda equação tem o x”, ou “se 

estiver mais vai passar menos e vice-versa, mas não sei porquê”, não conseguindo 

compreender e definir equações de 1° grau.

O ingresso no Programa de Pós-Graduação em Ensino de Ciências e Matemática, 

juntamente com essa inquietude nos levou a pensar em uma pesquisa que trouxesse a
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possibilidade da formação conceituai do tema equações de 1° grau para estudantes do 7° ano 

do ensino fundamental, por meio de atividades de ensino em que, à medida que a proposta 

fosse vivenciada pelos estudantes, adquirisse o caráter de atividades de aprendizagem 

conforme discutimos no Capítulo 1.

Mediante as reflexões apresentadas até o momento, elaboramos a seguinte questão de 

pesquisa: quais implicações pedagógicas para o processo de formação do pensamento 

algébrico e do conceito de equação de 1° grau para os estudantes do ensino fundamental as 

atividades de ensino, desenvolvidas na perspectiva da Atividade Orientadora de Ensino, 

podem propiciar?

Como objetivo principal dessa pesquisa, procuramos analisar possíveis implicações 

pedagógicas para a formação do pensamento algébrico e a aprendizagem do conceito de 

equação de 1° grau para estudantes do 7° ano do ensino fundamental por meio de atividades 

de ensino a partir dos pressupostos da atividade orientadora de ensino. E, como ações 

desenvolvidas para atingir os objetivos, procuramos:

• organizar uma unidade didática que permita cumprir com o objetivo da formação 

conceitual do pensamento algébrico e de equações de 1° grau;

• investigar as ações dos estudantes frente às atividades de ensino, investigando se as 

mesmas tornar-se-ão atividades de aprendizagem;

• investigar se atividades de ensino podem influenciar no saber pensar e saber fazer 

do estudante.

O desenvolvimento da proposta de ensino aconteceu no âmbito de uma escola pública 

municipal da cidade de Uberlândia/MG, com 27 estudantes do 7° ano do ensino fundamental, 

com faixa etária entre 12 e 15 anos, no ano de 2014.

Ao tomarmos a sala de aula como nosso campo de investigação, como um “ambiente 

natural” da formação do conhecimento teórico de estudantes, acreditamos nos aproximar das 

características de uma pesquisa de enfoque qualitativo. Segundo Bogdan e Biklen (1994, p. 

16):

As questões a investigar não se estabelecem mediante a operacionalização de 
variáveis, sendo, outrossim, formuladas com o objectivo de investigar os fenómenos 
em toda a sua complexidade e em contexto natural. Ainda que os indivíduos que 
fazem investigação qualitativa possam vir a seleccionar questões específicas à 
medida que recolhem os dados, a abordagem à investigação não é feita com o 
objectivo de responder a questões prévias ou de testar hipóteses. Privilegiam, 
essencialmente, a compreensão dos comportamentos a partir da perspectiva dos 
sujeitos da investigação. As causas exteriores são consideradas de importância
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secundária. Recolhem normalmente os dados em função de um contacto 
aprofundado com os indivíduos, nos seus contextos ecológicos naturais.

Para estes autores, a investigação qualitativa apresenta cinco características a serem 

observadas, sobre as quais passamos a discorrer relacionando-as à nossa pesquisa.

As atividades por nós realizadas durante a pesquisa foram organizadas e aconteceram 

na escola, observando-se o movimento realizado pelos estudantes, bem como suas ações. Essa 

é a primeira característica apontada pelos autores Bogdan e Biklen (1994, p. 47), pois “a 

investigação qualitativa a fonte direta de dados é o ambiente natural, constituindo o 

investigador o instrumento principal”.

No decorrer da escrita dessa dissertação, procuramos apresentar uma escrita que relate 

e analise a realidade dos estudantes frente a seu movimento de apropriação do conhecimento, 

contemplando, assim, a segunda característica de uma pesquisa qualitativa: “a investigação 

qualitativa é descritiva” (BOGDAN; BIKLEN, 1994, p. 48).

A terceira característica, “os investigadores qualitativos interessam-se mais pelo 

processo do que simplesmente pelos resultados ou produtos” (BOGDAN; BIKLEN, 1994, p. 

49), remete-nos ao cuidado tomado por nós durante o planejamento das atividades de ensino, 

em que buscamos investigar como ocorre o processo de estruturação e formação do 

pensamento algébrico, culminando no conceito de equações de 1° grau. Esta característica 

indica o interesse no movimento de apropriação do conhecimento dos estudantes.

Em momento algum de nossa pesquisa estávamos com conclusões previamente 

definidas ou buscávamos comprovar alguma resposta já pré-estabelecida. À medida que as 

atividades foram propostas e desenvolvidas e os dados adquirindo forma, pudemos inferir 

algumas conclusões. Este fato nos aproxima da quarta característica de uma investigação 

qualitativa que, nas palavras de Bogdan e Biklen (1994, p. 50), “os investigadores qualitativos 

tendem a analisar os seus dados de forma indutiva”.

A última característica “o significado é de importância vital na abordagem qualitativa” 

(BOGDAN; BIKLEN, 1994, p. 50), é atendida nas análises dos dados observados, ao 

buscarmos sentido as ações dos sujeitos de nossa pesquisa.

Outra característica da relevância da pesquisa em sala de aula é destacada por Moura 

(2000), que a considera o “lugar privilegiado para a observação dos alunos nos seus processos 

de aquisição de conhecimentos e onde as interações tanto podem servir para resolver 

problemas dados como para gerarem novos pela troca simbólica em jogo” (MOURA, 2000, 

pp. 14-15).
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Diante do exposto, passamos a uma breve apresentação sobre o método materialista 

histórico dialético, balizador dessa investigação.

4.2 O Materialismo Histórico Dialético

Entendemos que essa pesquisa nos permitiu perceber a construção dos conceitos 

algébricos pelos estudantes, frente às atividades que lhes foram propostas, tendo sempre o 

olhar voltado para suas ações e movimentos. Essa premissa nos remete a Leontiev (1978), que 

afirma que

[...] devemos estudar como se formam as relações vitais do homem em tais ou tais 
condições sociais históricas e que estrutura particular engendra dadas relações. 
Devemos em seguida estudar como a estrutura da consciência do homem se 
transforma com a estrutura da sua atividade (LEONTIEV, 1978, p. 92).

Ao pensarmos no caminho metodológico para direcionar nossa pesquisa, sentimos a 

necessidade de acompanharmos os processos pelos quais nossos sujeitos perpassaram e não 

somente o produto final de suas ações. Este fato nos direcionou a buscar no materialismo de 

Marx e no método de Vigotski um caminho para organizarmos nossa pesquisa.

Agregar ao nosso estudo o materialismo histórico dialético se justifica por termos um 

direcionamento para investigar as mais simples manifestações dos sujeitos da pesquisa e, ao 

nos debruçarmos sobre estas, elaborando abstrações, poderemos compreender o movimento 

de apropriação de conhecimento dos estudantes envolvidos neste estudo.

Na literatura, encontramos que a dialética de Marx busca a superação da dicotomia 

sujeito-objeto, contudo um olhar focado na história nos revela que a dialética surgiu antes de 

Marx.

Em suas primeiras versões, a dialética foi entendida, ainda na Grécia antiga, como a 
arte do diálogo, a arte de conversar. Sócrates emprega este conceito para 
desenvolver sua filosofia. Platão utiliza, abundantemente, a dialética em seus 
diálogos. A verdade é atingida pela relação de diálogo que pressupõe minimamente 
duas instâncias, mas até aqui o diálogo acontece sob um princípio de identidade, 
entre os iguais. Entretanto, tal posicionamento foi precedido por uma visão distinta 
encontrada principalmente em Heráclito, filósofo grego que viveu de 530 a 428 a.C. 
(PIRES, 1997, p. 84).

Conforme registra Pires (1997), Heráclito defende que a conversa existe somente 

mediante o conflito entre os divergentes. Portanto, a lógica dialética compreende a realidade



81

como contraditória e em constante transformação. Mas foi com o filósofo alemão Hegel que a 

dialética retomou seu lugar como preocupação filosófica. Hegel constituiu a dialética como 

método, desenvolvendo o “princípio da contraditoriedade afirmando que uma coisa é e não é 

ao mesmo tempo e sob o mesmo aspecto. Esta é a oposição radical ao dualismo dicotômico 

sujeito-objeto e ao princípio da identidade” (PIRES, 1997, p. 85).

Contudo, foi Karl Marx, filósofo alemão, economista, jornalista e militante político 

quem superou as concepções de Hegel acerca da dialética e forneceu a ela um caráter 

materialista e histórico, em sua busca por um caminho que fundamentasse o conhecimento 

para interpretar a realidade que vivia.

Para o pensamento marxista, importa descobrir as leis dos fenômenos cuja 
investigação se ocupa; o que importa é captar, detalhadamente, as articulações dos 
problemas em estudo, analisar as evoluções, rastrear as conexões sobre os 
fenômenos que os envolvem. Isto, para este pensador, só foi possível a partir da 
reinterpretação do pensamento dialético de Hegel. A separação sujeito-objeto, 
promovida pela lógica formal, não satisfazia a estes pensadores que, na busca da 
superação desta separação, partiram de observações acerca do movimento e da 
contraditoriedade do mundo, dos homens e de suas relações (PIRES, 1997, pp. 85­
86).

Marx forneceu o caráter material ao método, no que diz respeito à organização dos 

homens na sociedade para a produção e reprodução da vida e o caráter histórico ao olhar 

como os homens vêm se organizando por meio de sua história.

Para Vigotski (2001) estudar algo historicamente é sinônimo de estudar em 

movimento, momento esse de suma importância ao método, pois

quando numa investigação se abarca o processo de desenvolvimento de algum 
fenômeno em todas as suas fases e mudanças, desde que surge até que desapareça, 
isso implica manifestar sua natureza, conhecer sua essência, já que somente em 
movimento demonstra o corpo que existe. Assim, pois, a investigação histórica da 
conduta não é algo que complementa ou ajuda o estudo teórico, mas consiste seu 
fundamento (VYGOTSKY, 2001, pp. 67-68).

De acordo com Pires (1997) o princípio da contradição, na lógica de Marx, nos remete 

a pensar uma realidade onde seja possível aceitar a contradição, caminhar junto a ela e 

apreender o que dela seja fundamental. Assim, partimos do empírico e, por meio das 

abstrações, chegamos ao concreto que, nas palavras de Pires (1997),

movimentar o pensamento significa refletir sobre a realidade partindo do empírico (a 
realidade dada, o real aparente, o objeto assim como ele se apresenta à primeira 
vista) e, por meio de abstrações (elaborações do pensamento, reflexões, teoria), 
chegar ao concreto: compreensão mais elaborada do que há de essencial no objeto, 
objeto síntese de múltiplas determinações, concreto pensado. Assim, a diferença 
entre o empírico (real aparente) e o concreto (real pensado) são as abstrações
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(reflexões) do pensamento que tornam mais completa a realidade observada (PIRES, 
1997, p. 87).

O materialismo histórico dialético de Marx influenciou o desenvolvimento do método 

de investigação da psicologia histórico-cultural de Vigotski. Cole e Scribner (1998) apresenta 

três princípios no método de investigação que o diferencia dos métodos utilizados em outras 

abordagens teóricas: 1) análise de processos, em substituição à análise de objetos; 2) 

explicação do fenômeno em substituição à descrição do mesmo; 3) investigação do 

“comportamento fossilizado”.

O primeiro desses princípios, analisar processos, e não objetos considera o estudo da 

dinâmica dos principais pontos constituintes da história dos processos que estão envolvidos na 

investigação, assim “a tarefa básica da pesquisa se torna uma reconstrução de cada estágio no 

desenvolvimento do processo: deve-se fazer com que o processo retorne aos seus estágios 

iniciais” (COLE; SCRIBNER, 1998, p. 64).

O segundo princípio, explicação versus descrição considera as manifestações 

exteriores, mas busca compreender as ligações reais entre os estímulos externos com as 

respostas internas, “necessariamente, a análise objetiva inclui uma explicação científica tanto 

das manifestações externas quanto do processo em estudo” (COLE; SCRIBNER, 1998, p. 66), 

isto é, subordina as manifestações externas à descoberta de sua origem real.

O último princípio, investigação do “comportamento fossilizado ” remete à busca da 

gênese, o levantamento da história de determinado comportamento, uma vez que alguns 

comportamentos já estão tão mecanizados que perderam sua origem, sua aparência externa 

nada nos diz sobre sua natureza interna. Nas palavras de Vigotski (2001, pp. 67-68)

quando, numa pesquisa, apropriamo-nos do processo de desenvolvimento de algum 
fenômeno em todas as suas fases e mudanças, desde que surge até que desaparece, 
isto implica em desvelar sua natureza, conhecer sua essência, já que só em 
movimento demonstra o corpo que existe. Assim, pois, a pesquisa histórica da 
conduta não é algo que complementa ou ajuda o estudo teórico, mas que constitui 
seu fundamento.

Assim, em nosso estudo, buscamos estudar o movimento realizado pelos estudantes, 

nos remetendo às suas ações e reflexos, buscando as justificativas para o conhecimento 

teórico por eles produzido.

Na seção seguinte dissertamos sobre as questões éticas que embasaram nosso estudo.
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4.3 Discorrendo um pouco sobre questões éticas

Ao pensarmos em uma pesquisa de abordagem qualitativa, recorremos a Bogdan e 

Biklen (1994, p. 77) e apresentamos os princípios éticos que nortearam nosso estudo:

1. As identidades dos sujeitos foram protegidas: lançamos mão do uso de 

pseudônimos para nos referirmos aos sujeitos, a fim de que não lhes causemos 

“qualquer tipo de transtorno ou prejuízo”;

2. Os sujeitos foram informados quanto aos objetivos da investigação e seu 

consentimento obtido, sendo também informados que seriam realizadas gravações 

de áudio e vídeo, onde não direcionamos à face dos mesmos, pois “os 

investigadores não devem mentir aos sujeitos nem registrar conversas ou imagens 

com gravadores escondidos”;

3. Comprometemo-nos em apresentar nessa pesquisa, os resultados da investigação, 

prevalecendo os movimentos reais de constituição desse estudo, uma vez que “a 

característica mais importante de um investigador deve ser sua devoção e fidelidade 

aos dados que obtém”.

Em relação aos procedimentos éticos na pesquisa em Educação Matemática, buscamos 

contemplar alguns princípios e cuidados sugeridos por Fiorentini e Lorenzato (2006) e que 

coadunam com aqueles apresentados por Bogdan e Biklen (1994): consentimento dos 

envolvidos; preservação da identidade e da integridade dos envolvidos; mínima interferência 

do pesquisador no ambiente; e cuidados na divulgação dos dados.

Orientadas por tais princípios nos comprometemos com os nossos protagonistas, 

buscamos respeitar sua identidade, suas ações e seu caminhar durante a realização das 

atividades de ensino, além de nos comprometermos em apresentar nesse estudo os rumos que 

de fato foram assumidos em seu decorrer, sendo assim, cumprimos com os procedimentos 

solicitados pelo Comitê de Ética e Pesquisa da Universidade Federal de Uberlândia 

(CEP/UFU), obtendo a aprovação deste órgão para darmos prosseguimento ao nosso estudo.

Apresentamos na próxima seção os instrumentos utilizados para a realização de nossa 

pesquisa.

4.4 Instrumentos de construção dos materiais analisados 23

23 O Termo de Consentimento Livre Esclarecimento (TCLE) encontra-se nos anexos.
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Como instrumentos de produção e construção do material analisado nesta pesquisa, 

tivemos:

a) registro, individual e em grupo, das atividades desenvolvidas pelos estudantes;

b) registros no diário de campo da professora pesquisadora;

c) áudio das discussões ocorridas entre os protagonistas durante o caminhar e a 

produção das atividades;

d) registro visual (fotos) das ações dos estudantes no decorrer das atividades.

Discutimos com os estudantes que seus registros não tinham como objetivo o relato do

que ocorria em sala de aula, mas que nosso intuito visava que nos contassem suas reflexões, 

anseios, inquietações, seus sentimentos com as atividades que estavam sendo desenvolvidas.

Enquanto a professora pesquisadora interagia com a classe, procurava também 

acompanhar o movimento natural dos estudantes, suas dúvidas e anseios. As interações entre 

os estudantes foram registradas no diário de campo da professora pesquisadora, objetivando 

não ser prejudicada pela ausência de lembranças ou detalhes dos fatos ocorridos.

Os registros audiovisuais e escritos permitiram o olhar acurado, o distanciamento da 

professora para então tornar-se apenas pesquisadora, visando a busca de aspectos relevantes a 

esta pesquisa, uma vez que, enquanto inseridas no movimento de sala de aula, muitas são as 

inquietudes dos estudantes no decorrer do processo e, ao passo que fez-se necessária a atenção 

aos mesmos, poderíamos deixar escapar detalhes importantes. Assim, os registros 

audiovisuais permitiram a retomada desse processo com o foco nas ações e discussões dos 

estudantes.

É chegado o momento de apresentarmos os protagonistas de nosso estudo.

4.5 Conhecendo os protagonistas da pesquisa

A professora pesquisadora encontra-se no cargo de Professora Efetiva em uma escola 

municipal da cidade de Uberlândia/MG, desde o final do ano de 2012. Essa escola situa-se na 

zona rural da cidade. Sua comunidade é composta por famílias que ali residem buscando um 

local para constituírem seus lares onde, por serem afastados do perímetro urbano, os lotes 

podem ser adquiridos por um valor monetário mais acessível. As famílias, em sua maioria, 24

24 A denominação de zona rural deve-se pelo fato da escola contemplar estudantes que residem em chácaras, não 
há nesse setor loteamento, assim como os moradores ainda não foram comtemplados com a infraestrutura 
presente nos bairros urbanos.
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são formadas por produtores rurais, mas que produzem apenas para o próprio consumo, 

muitos dos pais são chefes de família que antes do amanhecer do dia deixam suas casas rumo 

à “cidade”, como eles mesmos se referem, para mais um dia de trabalho e retornam apenas ao 

anoitecer para seus lares.

A escola é a única do bairro. No turno da manhã funcionam quatro turmas do ensino 

fundamental I (5° ano) e dezesseis turmas do ensino fundamental II (6° ao 9° anos); no turno 

da tarde, vinte turmas do ensino fundamental I (1° ao 4° anos) e, no noturno, quatro turmas da 

Educação de Jovens e Adultos do 6° ao 9° anos. Além das turmas regulares, existe, nos três 

turnos, uma pequena sala onde se desenvolve o atendimento especializado a estudantes que 

possuem algum tipo de deficiência física ou psicológica.

A realidade da escola é constituída por uma alta rotatividade dos estudantes. 

Infelizmente uma característica das famílias é o alto índice de separação entre os cônjuges ou 

a tomada de guarda das crianças, feita por avós ou outros parentes que a justiça julga estarem 

mais aptos a educar do que os próprios pais, assim, muitos estudantes são transferidos no 

decorrer do ano letivo, interferindo em seu sucesso escolar.

No ano de 2014, a professora pesquisadora encontrava-se responsável por ministrar 

aulas de matemática para os estudantes do 7° ano do ensino fundamental, sendo assim, a 

proposta foi desenvolvida com quatro turmas compostas em média por 30 estudantes. 

Contudo, devido o alto número de protagonistas, fez-se necessário, utilizarmos o conceito de 

isolado, proposto por Caraça (1951), para que pudéssemos refinar o número de sujeitos de 

nossa pesquisa. Na perspectiva de Caraça (1951), o isolado se explica pela “impossibilidade 

de abraçar, num único golpe, a totalidade do Universo [realidade observada], o observador 

recorta, destaca, dessa totalidade, um conjunto de seres e fatos, abstraindo de todos os outros 

que com eles estão relacionados” (CARAÇA, 1951, p. 105). Refletimos muito até que 

conseguíssemos chegar ao nosso isolado, que apresentaremos a seguir.

Como a proposta aconteceu no segundo semestre de 2014, devido a algumas 

festividades realizadas na escola e recessos escolares, o número de aulas em uma das turmas 

acabou sendo reduzido bruscamente, o que alterou o fluxo da proposta, impossibilitando que a 

mesma pudesse ocorrer de forma integral, isto é, algumas atividades não puderam ser 

realizadas.

Em outra turma se fizeram presentes dois conflitos: o alto número de rotatividade de 

estudantes e a baixa frequência. Iniciamos o ano letivo com 35 estudantes matriculados e 

findamos com apenas 25 estudantes, sendo que cinco destes ingressam em meados do mês de
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novembro, ou seja, a proposta já estava em andamento. Além disso, alguns estudantes da 

turma moravam em chácaras afastadas da escola, em locais onde, quando chovia, não se fazia 

possível que o ônibus escolar transitasse. Assim, infelizmente, os estudantes não conseguiam 

comparecer as aulas, sendo necessário que frequentassem a escola no contra turno para 

reporem a carga horária, feita com outra professora, específica para esta finalidade. Mais uma 

vez, vemos a impossibilidade de esses serem sujeitos de nossa pesquisa, devido à falta de 

fluência da proposta, já que alguns estudantes não acompanharam seu início e outros 

participaram de algumas poucas atividades, não vivenciando a proposta como um todo.

Na terceira turma, tínhamos também problemas com a frequência dos estudantes, 

advindos de dois motivos: o primeiro, como descrito no parágrafo anterior, os estudantes nem 

sempre conseguiam chegar à escola devido às chuvas da época e, o segundo, em uma turma 

de 30 estudantes composta por doze repetentes, onde dois deles repetiam o 7° ano pela 

segunda vez. Esses doze estudantes se encontravam fora da faixa etária (entre 14 e 16 anos) e 

manifestavam o desejo de serem transferidos para o noturno, pois assim poderiam ingressar 

na turma de Jovens e Adultos. Contudo, não havia vagas naquele ano no noturno, então, os 

mesmos, por seguidas semanas, não frequentavam as aulas, mantinham o hábito de assistir de 

duas a seis aulas por mês apenas para garantirem a matrícula para o ano seguinte. Mais uma 

vez, esse não poderia ser nosso isolado.

Esses fatores auxiliaram-nos a eleger os critérios de seleção dos sujeitos da pesquisa: 

frequência constante nas aulas; ter apresentado suas reflexões nos registros escritos e 

socialização na turma; ter vivenciado as atividades propostas, ou seja, ter participado da maior 

parte do movimento da proposta de atividades de ensino.

Assim, nosso isolado ficou determinado por uma turma do 7° ano composta por 27 

estudantes com faixa etária de 12 a 15 anos, regularmente frequentes de uma escola municipal 

da cidade de Uberlândia.

Lançamos mão da dinâmica, indivíduo-grupo-classe (LANNER DE MOURA et al., 

2003) objetivando o compartilhamento de sentimentos, experiências, significados e 

conhecimentos em que, num primeiro momento, o indivíduo está no movimento do pensar 

individual sobre a situação-problema a qual está inserido e atribuir significados próprios a ela; 

posteriormente, em pequenos grupos, poderá discutir suas ideias a fim de elaborar uma síntese 

coletiva que represente este grupo e, por fim, termos a discussão grupo-classe para encontrar 

uma possível solução ou a mais adequada -  e que ocorre mediada pelo professor. Adaptando 

o esquema de Marco (2009), podemos representar essa dinâmica no seguinte mapa conceitual:
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Figura 8: Movimento entre estudantes ao vivenciar uma atividade de ensino

Pelo que tratamos no Capítulo 1, dos fundamentos da Teoria da Atividade, vemos que 

os sujeitos em coletividade e sob as ações desencadeadas pela professora pesquisadora podem 

colocar-se em atividade construindo significados e apreendendo os conceitos, foco da 

intencionalidade da professora pesquisadora.

Para a realização das atividades de ensino propostas, a composição de integrantes em
25duplas, trios, quartetos ou equipes, em diferentes momentos, ficaram assim determinadas : 25

25 As configurações apresentadas para duplas, trios e quartetos se deram mediante as afinidades existentes entres 
os integrantes. Apenas para a composição das equipes, os estudantes estabeleceram como critério sua localização 
da sala de aula, isto é, uniram carteiras próximas umas das outras. Reiteramos mais uma vez, que os nomes 
fictícios, preservando assim, a identidade dos estudantes.
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Quadro 9: Descrição da Composição dos Grupos

Discriminação

Duplas
(como a classe era composta de 27 
estudantes, houve necessidade da 

composição de um trio)

Trios

Quartetos
(como a classe era composta de 27 
estudantes, houve a necessidade da 

composição de um trio)

Equipes
(como neste dia, havia faltado a 

estudante Lilian, ambas as equipes 
foram compostas por 13 integrantes)

Nomes dos Integrantes
Ana Clara e Nayra;
Ana Paula e Vanessa;
Bruna e Érica;
Carlos, Fabiana e Pedro Henrique; 
Davi e Rafael;
Fernanda e Pamela;
Gabriela e Lilian;
Jéssica e Regislaine;
Junior e Thaís;
Layla e Marina;
Leandro e Matheus;
Marcos Paulo e Natanael;
Otávio e Rian.
Ana Clara, Regislaine e Rian;
Ana Paula, Thaís e Vanessa;
Bruna, Otávio e Pamela;
Carlos, Junior e Pedro Henrique; 
Davi, Fabiana e Rafael;
Érika, Fernanda e Natanael; 
Gabriela, Jéssica e Layla;
Leandro, Marina e Nayra;
Lilian, Marcos Paulo e Matheus.

Ana Clara, Layla, Marina e Nayra;
Ana Paula, Davi, Junior e Thaís;
Bruna, Leandro e Matheus;
Carlos, Fabiana, Pedro Henrique e Rafael; 
Érika, Jéssica, Otávio e Regislaine; 
Fernanda, Marcos Paulo, Natanael e Pamela; 
Gabriela, Lilian, Rian e Vanessa.

I: Ana Clara, Carlos, Fabiana, Junior, Layla, 
Marina, Marcos Paulo, Natanael, Nayra, Pamela, 
Pedro Henrique, Thaís, Vanessa.

II: Ana Paula, Bruna, Davi, Érika, Fernanda, 
Gabriela, Jéssica, Leandro, Matheus, Otávio, 
Rafael, Regislaine, Rian.

Fonte: Sistematização da pesquisadora

Trazemos, na próxima seção, as atividades de ensino que foram propostas aos

estudantes.
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4.6 As atividades de ensino propostas: alguns desdobramentos

As atividades de ensino26 que se seguem foram organizadas pela professora 

pesquisadora ou adaptadas de outras pesquisas já realizadas e serão apresentadas com seus 

objetivos, duração para seu desenvolvimento, nexos conceituais, na ordem cronológica em 

que foram propostas aos estudantes nesta pesquisa. Tínhamos como objetivos nessas 

atividades gerar a necessidade em nossos estudantes para que essas se constituíssem em 

atividade de aprendizagem, compondo a atividade de ensino (MOURA, 2000). Assim, 

buscamos, nas situações desencadeadoras de aprendizagem, discutidas no Capítulo 1, gerar 

nos estudantes a necessidade de resolver um problema de modo a colocá-los numa situação 

semelhante à vivenciada historicamente.

A proposta foi desenvolvida no período de outubro de 2014 a dezembro de 2014, 

seguindo o seguinte cronograma:

Quadro 10: Cronograma de execução das atividades

Atividade Duração Objetivo Data

Movimentos
Numéricos 1 hora/aula Desenvolver a ideia de movimento. 05/10/2014

Banco Imobiliário 3 horas/aula Perceber a dificuldade do registro 
retórico.

08/10/2014
09/10/2014
12/10/2014

O Problema do 
Arquiteto Amon 

Toado
2 horas/aula

Entender que nem sempre temos uma 
única solução para um problema. 
Apresentar a necessidade dos 
egípcios em numeralizar o 
desconhecido.

15/10/2014
16/10/2014

Quiz 2 horas/aula

Discutir a concepção dos estudantes 
de que o número só existe na forma 
numeral, visível, fixo e imutável. 
Definir um intervalo numérico para 
determinada situação.

19/10/2014
22/10/2014

Pensando na 
Variável 2 horas/aula

Introduzir o uso da variável, podendo 
ser expressa em inúmeras 
representações.

23/10/014
26/10/2014

26 As atividades propostas estão destacadas em caixas de texto para que o leitor tenha maior compreensão das 
mesmas.
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29/10/2014

Jogo de Varetas 6 horas/aula
Representar a contagem de pontos do 
jogo de varetas por meio de uma 
expressão algébrica.

30/10/2014
02/11/2014
05/11/2014
06/11/2014
09/11/2014

Enigma 2 horas/aula
Apresentar equações de forma 
explícita e buscar soluções por meio 
de tentativas.

12/11/2014
13/11/2014

Número Falso 3 horas/aula
Equacionar problemas e buscar 
resolver equações pelo método do 
número falso.

16/11/2014
19/11/2014
20/11/2014

23/11/2014
Método do Retorno 4 horas/aula Equacionar problemas e resolver as 

equações pelo método do retorno.
26/11/2014
27/11/2014
30/11/2014

03/12/2014
04/12/2014
07/12/2014
10/12/2014
11/12/2014
14/12/2014

Triminó das 
Equações 6 horas/aula Equacionar problemas e resolver as 

equações.

Fonte: Sistematização da Pesquisadora

27Atividade 1: Movimentos Numéricos

Duração: 1 hora/aula (50 minutos)

Objetivos: Desenvolver a ideia de movimento e o nexo conceituai: fluência.

Desenvolvimento: Os estudantes pensarão individualmente e, posteriormente serão 

convidados a formarem duplas para socializarem suas considerações.

Responda as questões abaixo:
a) Quantas pessoas estão em sua casa agora?
b) Você é o(a) mesmo(a) de um ano atrás? De um mês atrás? De uma semana atrás? Por quê?
c) O mundo é o mesmo enquanto falamos a palavra “mundo”? Por quê?
d) A escola permanece a mesma depois que você vai embora para a sua casa? Por quê?
e) Olho uma pedra; fecho os olhos e vejo novamente a pedra. É a mesma? Por quê?
f) "O fogo vive a morte do ar e o ar vive a morte do fogo; a água vive a morte da terra e a terra vive a 
morte da água".
g) "Tu não podes descer duas vezes ao mesmo rio, porque novas águas correm sobre ti".
h) "As coisas, ao mesmo tempo, são e não são elas próprias; nós mesmos somos e não somos". 27

27 Atividade Adaptada de Sousa (2004).
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Nesta atividade, acreditávamos que, inicialmente, os estudantes tenderiam a afirmar 

exatamente um valor, imaginando o que acontecia em sua casa, por exemplo, não 

considerando a possibilidade de imprevistos. Bem como, acreditávamos que eles tenderiam a 

respostas exatas, numericamente fechadas. Contudo, esperávamos que após a mediação da 

professora pesquisadora, essa ideia imutável e inflexível poderia ser modificada.

28Atividade 2: Banco Imobiliário

Duração: 3 horas/aula (50 minutos cada)

Objetivos: Conduzir os estudantes a perceberem a dificuldade do registro apenas com 

palavras, devido à intensidade dos movimentos quantitativos. Nexo conceitual: Fluência. 

Desenvolvimento: Cada grupo, composto por quatro integrantes, receberá o seguinte roteiro:

Siga as orientações do jogo:
• Forme grupos de 4 integrantes. Cada jogador escolhe um marcador (vermelho, azul, amarelo, 

verde).

• Joguem o dado e, em ordem decrescente (maior número para menor número) será definida a 
ordem de jogada.

• Um dos jogadores deverá atuar como Banco, pagando e recebendo, inclusive as suas compras. 
Cada jogador deve receber 3 notas de R$ 5,00, 4 notas de R$10,00, 5 notas de R$ 50,00 e 5 
notas de R$ 100,00.

• Os jogadores lançam o dado e andam o número de casas sorteado.

• O jogador poderá comprar a cidade em que parar pagando ao Banco o valor estipulado no 
tabuleiro e pegar o Certificado de Propriedade Correspondente.

• Quando o jogador parar em uma cidade que já foi comprada deverá pagar ao proprietário o 
aluguel indicado no Certificado.

• Toda vez que um jogador passar pela linha de largada receberá do Banco R$100,00.
• Quando parar em uma cidade que já é sua o jogador poderá colocar uma casa, pagando ao 

Banco o valor indicado ao lado da foto no Certificado. Feito isso, o aluguel a ser cobrado sobe 
para o valor indicado na parte inferior do Certificado.

• Quando um jogador já tiver 2 casas e parar novamente sobre esta cidade poderá devolvê-las ao 
banco e colocar um hotel no seu lugar, pagando ao Banco o valor estipulado. Feito isto o 
aluguel a ser cobrado sobe para o valor indicado na parte inferior do Certificado.

• No caso das Companhias (CIA), o jogador que parar sobre elas terá de pagar ao proprietário o 
valor correspondente ao número tirado no dado vezes 50. Não é permitido ao proprietário 
colocar casas ou hotéis nas companhias. 28

28 Elaborada e Organizada pela Professora Pesquisadora.
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• Quando um jogador não tiver dinheiro para pagar um aluguel deverá hipotecar uma ou mais 
cidades ao Banco recebendo o valor de “Hipoteca” estipulado na parte inferior do Certificado. 
Quando puder o jogador poderá devolver o valor ao Banco, recuperar a cidade e voltar a 
receber os aluguéis.

• Qualquer jogador que parar sobre uma cidade hipotecada poderá comprá-la.
• Fim do Jogo: o jogador que não tiver mais dinheiro, nem cidades para hipotecar estará fora do 

jogo. A partida terá no máximo 3 voltas, assim, quando um jogador completar as três voltas, 
todas as cidades devem ser vendidas ao Banco pelo valor de sua hipoteca. Aquele que 
acumular mais dinheiro será o vencedor.

1. Registre todos os movimentos que você fizer, mas cuidado: ainda não é permitido o uso de 
qualquer símbolo matemático, você pode usar apenas palavras.

2. Quais conhecimentos matemáticos você mobilizou para jogar?
3. Que problemas essa forma de registrar os movimentos traz?
4. Como se pode resolver esse problema?
5. Agora, tente fazer esses registros, usando símbolos matemáticos.

6. O que você achou dessa forma de registrar usando símbolos e números?

29Figura 9: Jogo Banco Imobiliário
77 r̂

Fonte: Arquivo da Pesquisadora

Acreditávamos que inicialmente, os estudantes sentiriam dificuldades em fazer os 

registros sem o uso de símbolos ou abreviações e, assim, caminhariam à necessidade de 

atribuir abreviações ou utilizar a simbologia matemática da qual têm conhecimento, por

29 Fabricante do Jogo Banco Imobiliário: PMBI Artigos Didáticos LTDA.
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exemplo, para perdas de dinheiro, atribuir o sinal negativo “- ” e para ganhos o sinal positivo
u +”.

30Atividade 3: O Problema do Arquiteto Amon Toado

Duração: 2 horas/aula (50 minutos cada)

Objetivos: Entender que nem sempre temos uma única solução, dependemos das condições 

para estabelecer possíveis resultados. Apresentar a necessidade dos egípcios em numeralizar o 

desconhecido. Nexo conceitual: Variável Letra.

Desenvolvimento: Os grupos (constituídos por quatro estudantes) deverão se reunir para 

tentar solucionar o problema do arquiteto.

Estamos há quatro mil anos atrás Os 
escravos estão trabalhando, 
carregando pedras para a construção 
da pirâmide do faraó Na tenda do 
arquiteto Amou Toado, encarregado 
geral da obra, chega o chefe do 
depósito de pedras:

- Mandou-me chamar, senhor'.'
- Sim, mandei, Tuc Anon. Preciso saber quantas pedras temos no depósito para levantar a 

coluna mestra da pirâmide.
j ■ Temos 60, senhor.

• Quantas pedras os escravos já colocaram até hoje?
I - 12, senhor.

- Tudo bem, Tuc Anon, pode ir embora.
i - Com sua permissão, senhor,

Amon Toado virou-se para os seus papiros e pensou:
- "Pois é, colocamos já 12 pedras na coluna mestra. Temos, no depósito, 60 pedras que 

podem ser usadas nessa coluna Acontece que o faraó ainda não se decidiu qual a altura 
de sua pirâmide Dessa forma não posso indicar quantas pedras no total terá a coluna 
mestra Porém eu preciso deixar escrito aqui no projeto a altura da pirâmide para que os 
encarregados da obra fiquem com os dados registrados e não se confundam. Esse é o 
meu problema: como vou escrever a altura da coluna, considerando as 12 pedras já 
colocadas, as 60 pedras do depósito que podem ser usadas todas ou não, e a altura que 
eu ainda desconheço? Como escrever isso de forma matemática, quer dizer, da forma 
mais simples possivel e utilizando a linguagem das quantidades, isto é, a linguagem 
numérica0"
Pois é, pessoal, temos ai o problema do arquiteto das pirâmides_________________

Como escrever, utilizando a linguagem numérica, uma frase onde apareça 
um número desconhecido?

Após a leitura do texto, 30

30 Atividade extraída de Sousa (2004, p. 198).
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1. Cada estudante pensará sozinho, buscando a sua solução pessoal, registrando suas 
considerações;

2. Em grupos de três estudantes, deverão discutir, analisando a resposta de cada um, criando 
assim, a resposta do grupo;

3. Cada grupo apresentará sua solução que será discutida pela classe, permitindo a formação de 
uma resposta geral.

4. Porque os egípcios precisaram criar a linguagem dos números desconhecidos?
5. Porque foi escolhida uma palavra e não um numeral (ou outro símbolo qualquer) para escrever 

o número desconhecido?

Pensávamos que inicialmente os estudantes ficariam confusos, uma vez que estavam 

habituados a responder os problemas com uma resposta numérica exata. Entendíamos que 

mais uma vez as ações mobilizadoras da professora seriam importantes a fim de esclarecer as 

dúvidas que poderiam surgir.

Atividade 4: Quiz

Duração: 2 horas/aula (50 minutos cada)

Objetivo: Discutir a concepção que se tem de que o número só existe a partir da contagem, na 

forma de numeral, visível, fixo, imutável. Isto é, se o número for desconhecido, não contado, 

ele não existe. Definir um intervalo numérico para determinada situação. Nexo Conceitual: 

Campo de Variação.

Desenvolvimento: Será proposto um “quiz” aos estudantes. A classe será dividida em duas 

equipes, a professora pesquisadora fará as perguntas e os estudantes terão um tempo para 

pensar e apresentar a resposta.

Indique os limites máximo e mínimo e o número que responde a situação numérica, se possível:
a) A idade de José daqui sete anos.
b) A idade de Pedro há 12 anos atrás.
c) O dobro do dinheiro que trago no meu bolso.
d) A altura de Maria.
Pergunta: Quais dificuldades vocês encontraram para responder essas perguntas? 31

31 Nome dado a um jogo, onde os jogadores, nesse caso em grupos, tentam responder corretamente as questões 
que são feitas. O grupo vencedor será o que atingir maior pontuação. As atividades 4 e 5 foram adaptadas de 
Scalassari (2007).
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Os livros didáticos normalmente abordam o nexo campo de variação, como conjunto­

-universo de uma equação. Das análises que realizamos no Capítulo 3, percebemos que 

apenas uma das obras (Projeto Araribá) se refere ao nexo campo de variação, sendo este 

tratado em um exemplo e um exercício, onde o campo de variação já vem de forma explícita, 

apenas para que os estudantes verifiquem a possibilidade da raiz pertencer ou não ao mesmo.

Na atividade que apresentamos esperávamos que os estudantes analisassem quais eram 

as possibilidades para o campo de variação de cada sentença. Retornamos com as ideias de 

movimento, número desconhecido e, além disso, esperávamos que os estudantes definissem o 

intervalo de um conjunto numérico, no qual esse número desconhecido deveria pertencer ao 

contexto dado.

Atividade 5: Pensando na variável

Duração: 2 horas/aula (50 minutos cada)

Objetivo: Introduzir o uso da variável, compreender que esta pode ser expressa de inúmeras 

representações. Nexo conceitual: Variável Numeral.

Desenvolvimento: Inicialmente, o estudante pensará sozinho, posteriormente, formará duplas 

para dialogarem e decidirem por um único desenho e, por fim, a classe deverá escolher um 

único desenho.

Temos o seguinte problema: “Vamos nos imaginar em pleno Renascimento. Vamos nos 
dividir em grupos de matemáticos que trabalhavam no comércio da época. O comerciante de móveis e 
tapetes para o qual trabalham os matemáticos, explicou-lhes que quer aumentar o seu estoque de 
mercadorias em cinco unidades para todos os tipos. Assim, cadeiras, mesas, armários, tapetes, 
independente da quantidade inicial de cada, devem ser aumentadas em cinco unidades. Os grupos de 
matemáticos têm, assim, um problema: Como escrever numericamente o pedido do comerciante”?

Usando a criatividade desenhe uma variável que seja mais próxima possível do numeral, para 
escrever a sentença do comerciante. Após cada grupo criar a sua variável-numeral, apresentar para a 
sala. Inicialmente você pensará sozinho. Posteriormente, reúna-se com seu grupo e juntos encontrem 
um desenho no qual o grupo julga ser o mais adequado. A classe deverá escolher o que melhor 
expresse a numeralização da variável.

Esperávamos, com essa atividade, que os estudantes criassem uma variável mais 

próxima possível do numeral, reconstruindo a ideia dos egípcios quando introduziram o ahá, 

conforme apresentamos no Capítulo 2.
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Atividade 6: Jogo de Varetas

Duração: 6 horas/aula (50 minutos cada)

Objetivo: Representar a contagem de pontos do jogo de varetas por meio de uma expressão

algébrica, percorrendo as linguagens retórica, sincopada e simbólica. Nexo Conceituai:

Fluência, Campo de Variação e Variável.

Desenvolvimento: Cada grupo, composto por três integrantes, receberá o seguinte roteiro:

1. Pegue o jogo de varetas e escolha os parceiros (três integrantes) para jogá-lo. Leia as regras 
antes de começar a jogar. Jogue e registre os pontos e o número de varetas em cada jogada.

2. Após terem verificado quem ganhou, escreva na lousa, como seu trio registrou os pontos e o 
número de varetas durante as jogadas.

3. Discuta com o trio qual das formas que estão na lousa é a mais rápida e mais prática para 
marcar os pontos.

4. Vamos chamar de Expressão algébrica do cálculo dos pontos e do número de varetas do jogo, 
a expressão matemática mais simples que permite representar o cálculo de todos os pontos 
possíveis do jogo e o número de varetas de cada jogada. Qual é a expressão algébrica para o 
jogo de varetas?

5. Jogue novamente utilizando essa expressão algébrica para representar suas jogadas. O trio 
anota o resultado, expressando o número de varetas e de pontos de cada um dos seus 
jogadores, num placar geral para que verifiquemos o campeão da classe.

6. Escreva, na forma mais simples, uma expressão que representa o total de pontos do jogo de 
varetas, segundo as regras oficiais. Faça o cálculo, a partir dessa expressão.

7. De que maneira você poderia arranjar a expressão do item 6 de modo a fazer os cálculos mais 
rapidamente?

8. Quais propriedades das operações vocês empregaram para responder o item 7?

9. Escreva uma expressão algébrica para representar a seguinte regra do jogo: “some todos os 
pontos e subtraia o total de varetas azuis”.

10. Discuta com seu trio outra regra. Represente-a por meio de uma expressão algébrica e troque 
com a de outro trio, procurando interpretá-la com um exemplo numérico.

11. Considere a expressão algébrica T, para representar o total de pontos em cada jogada, T: 50pt 
+ 20az + 15am + 10vm + 5vd, onde pt, az, am, vm e vd representam, respectivamente, o 
número de vareta preta, azul, amarela, vermelha e verde. Qual é o papel das letras pt, az, am, 
vm, vd na expressão T?

12. O conjunto de valores que cada variável pode assumir é chamado de Conjunto Universo da 
variável. Escreva o Conjunto Universo para cada uma das variáveis da expressão T da questão 
11. 32

32

32 Atividade adaptada de uma proposta da Oficina Pedagógica de Matemática (OPM) da FE/USP. A OPM é um 
projeto que envolve a participação de professores que ensinam matemática na educação básica e tem como 
objetivo principal a elaboração, execução e avaliação de oficinas pedagógicas, centradas em atividades 
orientadoras de ensino, sendo coordenada pelo Prof. Dr. Manoel Oriosvaldo de Moura.
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33Figura 10: Jogo Pega Varetas

Fonte: Arquivo da Pesquisadora

Nessa atividade, esperávamos que inicialmente para o registro da pontuação, os 

estudantes trabalhariam com a linguagem algébrica retórica e sincopada. Posteriormente, ao 

escreverem a expressão algébrica, trabalhariam com a linguagem algébrica simbólica. Nos 

demais itens, buscávamos a construção da variável e, ao final da atividade, buscávamos 

trabalhar o campo de variação.

Atividade 7: Enigma33 34

Duração: 2 horas/aula (50 minutos cada)

Objetivos: Apresentar equações de forma explícita e buscar sua solução por meio de 

tentativas.

Desenvolvimento: Cada estudante receberá uma folha e fará sua atividade, individualmente. 

Após este momento, há discussão pelo grupo e, posteriormente, a socialização feita pelo 

grupo-classe.

Descubra o valor da cor que está faltando em cada situação:

COR VALOR
Azul 50
Preta ?

Vermelha 10

Seq. de Cores Equação Resposta
Vermelha e Azul ? + 5 = 55
Preta e Vermelha 15 + ? = 25
Vermelha e Preta ? + 15 = 35

33 Fabricante do Jogo Pega Varetas: Xalingo.
34 Atividade adaptada de Cedro (2004).
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COR VALOR
Azul 50
Preta ?

Vermelha 10

Seq. de Cores Equação Resposta
Azul e Preta 50 -  ? = 45

Preta e Vermelha ? + 10 = 30

Azul, Vermelha e Preta 50 + 10 + ? = 75

COR VALOR
Amarela ?

Preta 50
Verde 20

Seq. de Cores Equação Resposta
Preta e Amarela 50 -  ? = 35
Amarela e Verde ? + 20 = 30
Amarela e Preta ? + 50 = 55

COR VALOR
Azul ?

Verde 10

Vermelha 5

Seq. de Cores Equação Resposta
Azul, Azul e Verde ? + ? + 10 = 50

Verde, Vermelha e Azul 10 -  5 + ? = 20

Verde, Azul e Vermelha 10 + ? + 5 = 65

COR VALOR
Amarela 15
Verde ?

Preta 20

Seq. de Cores Equação Resposta
Amarela, Verde e Preta 15 + 20 + ? = 45
Preta, Verde e Amarela 20 + ? -  15 = 10

Verde, Preta, Amarela e Amarela 0 = ? -  20 -  15 -  15

Esperávamos que os estudantes descobrissem o valor da cor pelo método de tentativa e 

erro para as equações apresentadas.

Resolvendo Equações
35Nessa etapa, incialmente foi realizada uma aula dialogada onde formalizamos a 

definição de equações de 1° grau. Posteriormente, propusemos as seguintes atividades:

Atividade 8: Número Falso35 36

Duração: 3 horas/aula (50 minutos cada)

Objetivos: Equacionar problemas e buscar resolver as equações pelo método do número falso, 

apresentado no Capítulo 2.

Desenvolvimento: O estudante receberá os seguintes problemas:

35 Detalhes dessa aula serão apresentados no Capítulo 5.
36 Atividade adaptada de Lima; Takazaki e Moisés (1998).
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1 -  Um montão e sua metade juntas somam 9. Qual é a quantidade?
2 -  Um montão acrescido de sua metade somam 16. Qual é a quantidade?
3 -  Um montão adicionado ao seu dobro resultam em 21. Qual é a quantidade?
Inicialmente você pensará individualmente. Em um segundo momento, em grupo, irá se realizar uma 
discussão a fim de escolher a melhor forma de solucionar o problema. Cada grupo irá expor à sala sua 
resolução, que determinará o melhor caminho (aquele mais direto).

Acreditávamos que essa atividade permitiria aos estudantes conhecerem o método da 

falsa posição, onde são trabalhadas as ideias de proporcionalidade, conforme discutido no 

Capítulo 2. Esperávamos que esta situação permitisse aos estudantes acesso a uma parte da 

história da álgebra, conhecendo uma maneira de resolver equações.

37Atividade 9: Método do Retorno

Duração: 4 horas/aula (50 minutos cada)

Objetivos: Equacionar problemas e resolver equações pelo método do retorno, apresentado no 

Capítulo 2.

Desenvolvimento: Inicialmente, a atividade deverá ser pensada individualmente, em seguida 

os estudantes formarão trios para socializarem suas considerações e, posteriormente, teremos 

a discussão com a classe.

No primeiro momento, você pensará individualmente e, posteriormente, seguirão as discussões em 
grupo, finalizando com a discussão feita pela sala.
1 -  Ana ganhou uma caixa com bombons de sua mãe. Sua tia deu-lhe mais 12 bombons. Ana contou 
os bombons e, descobriu que possui 25 unidades, quantos bombons Ana tinha na caixa?
2 -  Mariana comprou um caderno e uma lapiseira, gastando ao todo 60 reais. O caderno custou 24 
reais. Quanto custou a lapiseira?
3 -  Um número menos 37 é igual a 15. Qual é esse número?
4 -  A idade de Helena aumentada de 17 anos é igual a 56. Qual é a idade de Helena?
5 -  Rodrigo e Leonardo são irmãos gêmeos. A soma de suas idades é 46 anos. Qual é a idade de cada 
um?
6 -  O dobro da quantia que Jair possui e mais R$18,00 corresponde a R$ 66,00. Quanto Jair possui?
7 -  O triplo da altura de Flávio e mais 15 cm é igual a 441 cm. Qual a altura de Flávio?
8 -  Em um estacionamento, cobram-se R$ 7,00 pela primeira hora e R$ 1,50 a cada hora excedente. Se 
um cliente pagou R$ 16,00, quanto tempo seu carro permaneceu nesse estacionamento? 37

37 Elaborada e organizada pela Professora Pesquisadora.
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9 -  Caio comprou três telas de arte por R$1320,00. Pela tela A pagou o dobro do que pagou pela tela 
B e, pela tela C pagou o triplo do que pagou pela B. Quanto custou cada tela?
10 -  Uma mesa plástica custa o triplo de uma cadeira plástica. Duas dessas mesas e oito dessas 
cadeiras custam R$ 226,80. Qual é o preço de uma cadeira? E, de uma mesa?

Com essa atividade, esperávamos poder construir juntamente com os estudantes o 

processo de resolução de uma equação, em que eles pudessem compreender as etapas do 

mesmo por meio da mediação da professora pesquisadora e das interações com o grupo e a 

classe. Não resumimos, assim, a um processo de memorização de técnicas e como as 

equações são construídas a partir dos problemas desencadeadores, acreditamos que estas têm 

um significado para os estudantes, não se tratando apenas manipulação de letras e números 

sem qualquer relevância.

Após as discussões realizadas pela classe, os estudantes ainda sentiam a necessidade 

de equacionar mais problemas e resolvê-los. Diante dessa necessidade, a professora 

pesquisadora, no seu movimento de atividade de ensino, elaborou o jogo triminó das 

equações.

38Atividade 10: Triminó das Equações

Duração: 6 horas/aula (50 minutos cada)

Objetivos: Equacionar problemas e resolver equações pelo método do retorno, apresentado no 

Capítulo 2.

Desenvolvimento: Cada dupla de estudantes deverá receber um jogo.

Forme dupla com outro colega. Juntos vocês pensarão nas respostas dos problemas. Mas lembrem-se: 
vocês deverão equacionar os problemas e resolver as equações nas folhas que receberam.

O jogo Triminó era composto por 16 peças, contendo problemas e soluções. Para 

realizar as jogadas, os estudantes deveriam equacionar e resolver um problema e encontrar 

uma peça com a respectiva resposta. Todas as peças do jogo estavam disponíveis na mesa, 

assim os estudantes as escolhiam aleatoriamente, resolviam os problemas e, depois, 

encaixavam os problemas com suas respectivas respostas.

As peças do triminó continham os seguintes problemas: 38

38 Jogo onde as peças são compostas por triângulos equiláteros (triângulos que possuem os três lados com 
medidas congruentes) onde se coloca a peça adjacente que será a resposta ao problema. Atividade Elaborada e 
organizada pela Professora Pesquisadora.
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Ao entrar numa loja, Marcos Paulo encontrou uma promoção: “Compre um skate e leve grátis 
uma bola de futebol, que custa R$50,00”. Sabe-se que o triplo do preço do skate com o preço 
da bola dá um valor de R$ 650,00. Quanto Marcos Paulo pagará no skate?

A idade de Layla é o quíntuplo da idade de Ana Clara, e a soma das idades das duas é 78 anos. 
Qual é a idade de Layla?

Com o quádruplo do dinheiro que possui, Vanessa conseguiria comprar um notebook que custa 
R$ 774,00 e sobrariam R$ 48,00. Quanto Vanessa possui?

Em uma eleição para a escolha do representante do grêmio estudantil, votaram 942 estudantes. 
Leandro teve 7 votos a mais que Matheus, e Natanael teve 5 votos a mais que Matheus. 
Quantos votos teve o estudante vencedor?

Regislaine descobriu que em um sétimo ano há 40 estudantes onde o número de meninas é 
igual a 3/5 do número de meninos. Quantas são meninas?

Pamela e Pedro Henrique querem repartir 162 balas de modo que Pamela receba 10 balas a 
mais que Pedro Henrique. Quantas balas Pamela receberá?

O peso de Jéssica é 5/7 do peso de Érika. Juntas, pesam 105 quilos. Quanto pesa Érika?

Thaís tem uma fita de 247 metros e quer dividi-la em duas partes, de modo que uma tenha 37 
metros a mais que a outra. Quanto mede a parte maior da fita de Thaís?

Lilian e Bruna vão dividir 156 miçangas para fazerem pulseiras. Lilian deve ficar com o dobro 
do número de miçangas que Bruna vai receber. Quantas miçangas Lilian receberá?

Nayra comprou dois cremosinhos e um bolinho, por R$3,25. Um bolinho custa R$0,55 a mais 
que um cremosinho. Qual é o preço de um cremosinho?

A avó de Otávio deu a ele uma quantia em dinheiro. Com a metade desse valor, Otávio 
compararia uma bicicleta por R$ 393,26 e ainda sobrariam R$ 31,15. Quanto Otávio ganhou ?

A professora Beatriz disse: Peguei a diferença entre a terça parte da idade que tinha quando 
casei com o número dois e obtive seis como resultado. Quantos anos tinha quando casei?

A quinta parte do número de Gibis de Ana Paula é igual a 16. Quantos gibis Ana Paula tem?

Na sala de Marina, a quarta parte dos estudantes vieram de outros bairros da cidade e 27 
sempre moraram no bairro Morada Nova. Qual o número de estudantes que vieram de outros 
bairros?

Um pacote de Pão de Queijo do barzinho pesa 1 quilo mais meio pacote. Quantos quilos pesa o 
pacote de Pão de Queijo?

Numa partida de basquete as equipes de Gabriela e Fernanda fizeram um total de 110 pontos. A 
equipe de Gabriela fez o dobro de pontos mais 5, que a equipe de Fernanda. Quantos pontos a 
equipe de Fernanda fez?

Junior tem oito bonés a menos que Rian. Juntos eles têm vinte bonés. Quantos bonés Junior 
têm?
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Rafael foi cuidar do carro de seu amigo na rua. Ele combinou que iria cobrar R$ 3,00 pela 
primeira hora e R$1,50 a cada hora excedente. Seu amigo pagou R$15,00, quanto tempo Rafael 
ficou cuidando do carro de seu amigo?

Figura 11: Jogo Triminó das Equações

Como a atividade foi decorrente de uma necessidade sentida pelos estudantes para 

atender ao pedido, ao elaborarmos o jogo buscamos colocar o nome de nossos protagonistas 

assim como procuramos inserir nos problemas situações vividas pelos estudantes em seu 

cotidiano.

Salientamos que esses nomes são fictícios, pois assumimos a responsabilidade de 

preservar a identidade de nossos protagonistas.

A seguir, apresentamos o caminho percorrido para as análises do material produzido 

durante a realização das atividades.
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4.7 Eixos de análise

Para analisarmos o material produzido no desenvolvimento da unidade didática 

proposta, como aporte metodológico usamos a ideia de episódios (MOURA, 2004), que 

propõe a escolha de alguns momentos que explicitem ações reveladoras do processo de 

formação dos sujeitos participantes. Nas palavras do autor,

Os episódios poderão ser frases escritas ou faladas, gestos e ações que constituem 
cenas que podem revelar interdependência entre os elementos de uma ação 
formadora. Assim, os episódios não são definidos a partir de um conjunto de ações 
lineares. Pode ser uma afirmação de um participante de uma atividade não tendo 
impacto imediato sobre os outros sujeitos da coletividade. Esse impacto poderá estar 
revelado em um outro momento em que o sujeito foi solicitado a utilizar-se de 
algum conhecimento para participar de uma ação no coletivo (MOURA, 2004, p. 
276).

A fim de organizar e apresentar o material produzido estabelecemos dois eixos de 

análise: situações desencadeadoras de aprendizagem e ações e reflexões coletivas.

No primeiro eixo de análise, situações desencadeadoras de aprendizagem, buscamos 

analisar os movimentos gerados por tais situações e investigar em que medida a forma como 

estruturamos as situações desencadeadoras contribuíram para que os estudantes se colocassem 

em atividade.

No segundo eixo referimo-nos às ações e reflexões coletivas desenvolvidas pelos 

estudantes, pois acreditamos no desenvolvimento do pensamento do sujeito por meio das 

interações coletivas (VYGOTSKY, 1989) permitindo-lhes compartilhar conhecimentos e 

modificar suas ações. Por meio deste eixo, buscamos analisar se nossa organização do ensino 

possibilitou aos estudantes colocarem-se em atividade de aprendizagem, em um ambiente de 

atividade coletiva, assim como buscamos analisar se os estudantes compreenderam o objeto 

de sua aprendizagem (pensamento algébrico e o conceito de equações de 1° grau).

Nesse capítulo apresentamos o movimento que percorremos para delinearmos nossos 

eixos de análise, respaldadas nos princípios éticos que elencamos, nos possibilitando 

direcionar nossa investigação para os indícios de apropriação do conhecimento teórico dos 

protagonistas de nossa pesquisa.

No próximo capítulo apresentamos as análises do material produzido em nosso estudo, 

na busca de compreendermos como as atividades de ensino que propusemos podem auxiliar 

na compreensão e estruturação do pensamento algébrico e do conceito de equações de 1°

grau.
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5. EM BUSCA DE INDÍCIOS DE APROPRIAÇÃO DOS NEXOS CONCEITUAIS
ALGÉBRICOS39

P o d e - s e  in fe r ir  q u e  o  d e s e n v o lv im e n to  p s íq u ic o  d a  c r ia n ç a  n ã o  é  n e c e s sa r ia m e n te  
d e se n c a d e a d o  q u a n d o  e la  é  fo r m a lm e n te  e n s in a d a  o u  f i c a  e s ta n q u e  q u a n d o  n ã o  é 
e n s in a d a  p o r  u m  in d iv íd u o  em  p a r t ic u la r ,  m a s  q u a n d o  p a s s a  a  p a r t ic ip a r  d e  u m a  
a tiv id a d e  c o le tiv a  q u e  lh e  tr a z  n o v a s  n e c e s s id a d e s  e e x ig e  d e la  n o v o s  m o d o s  d e  
a ç ã o . É  a  s u a  in se rç ã o  n e s sa  a tiv id a d e  q u e  a b re  a  p o s s ib i l id a d e  d e  o c o r r e r  u m  
e n s in o  r e a lm e n te  s ig n ific a tiv o  (S F O R N I, 2 0 0 4 , p . 95).

Nos capítulos anteriores discutimos os aspectos teóricos de nossa pesquisa, o 

movimento histórico algébrico, a álgebra no ensino fundamental e apresentamos nossa 

metodologia de pesquisa.

Neste capítulo buscamos, por meio dos eixos de análise, o diálogo entre a teoria e a 

prática que vivenciamos em sala de aula. Organizamos nosso material em dois eixos de 

análises: situações desencadeadoras de aprendizagem e ações e reflexões coletivas, onde 

cada eixo é composto por episódios e cenas (MOURA, 2004) formadas por diferentes trechos 

recortados do desenvolvimento da proposta desenvolvida em uma turma do 7° ano do ensino 

fundamental, conforme apresentamos no quadro a seguir:

Quadro 11: Eixos de Análise
Eixos de Análise Episódios Cenas

Situações
Desencadeadoras de 

Aprendizagem

Ações e Reflexões 
Coletivas

História Virtual do Conceito O Arquiteto Amon Toado
Banco Imobiliário

Jogos Quiz

Fluência
Apropriação dos Nexos Conceituais Variável

Campo de Variação

Formação do Conceito de Equação 
de 1° Grau

Equacionamento de 
Problemas

Estratégias de Resolução
Fonte: Sistematização da Pesquisadora

39 Reiteramos que por nexos conceituais da álgebra (fluência, variável, campo de variação) compreendemos 
como elementos necessários para uma melhor compreensão dos conceitos algébricos e, possivelmente, das 
equações (SOUSA, 2004).
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Ressaltamos que, para efeito de produção desse relatório de pesquisa, as análises aqui 

apresentadas ora centram-se em um dos grupos envolvidos ora em outro grupo, pois se optou 

por apresentar todo o movimento percorrido pelos estudantes Ana Paula, Carlos, Davi, 

Fabiana, Junior, Pedro Henrique, Rafael, Thaís e Vanessa, uma vez que esses estiveram 

frequentes em todas as aulas onde a proposta aconteceu e se mostraram envolvidos em todas 

as atividades. Com isso, não deixamos de atentar para os movimentos vivenciados pelos 

grupos, uma vez que a interação entre eles e as ações mobilizadoras da professora se fizeram 

presentes a todo o momento e em todos os grupos.

5.1 Eixo 1: Situações desencadeadoras de aprendizagem (SDA)

Conforme discutimos no Capítulo 1, as SDA (MOURA et al., 2010) visam gerar a 

necessidade de apropriação do conhecimento no estudante, em um movimento onde ele 

busque resolver problemas que o coloquem em atividade de aprendizagem.

Assim, buscamos nessa seção, educar nosso olhar para as SDA buscando analisar os 

movimentos por elas gerados, investigando se a forma como as estruturamos pôde contribuir 

para que os estudantes se colocassem em atividade de aprendizagem. Para tanto, os episódios 

que compõem este eixo são: 1) História virtual do conceito e, 2) Jogo.

O primeiro episódio remete-nos a entender como a história virtual do conceito 

(MOURA; LANNER DE MOURA, 1998) retratada na Cena 1, a atividade do Arquiteto 

Amom Toado, permitiu desencadear a aprendizagem do conceito de variação, um dos nexos 

conceituais da álgebra.

O segundo episódio tem nosso olhar voltado para dois jogos (MOURA; LANNER DE 

MOURA, 1998) que utilizamos em nossa proposta e os direcionamentos que eles 

possibilitaram para que encaminhássemos a formação do pensamento algébrico. Na Cena 1, 

evidenciamos o potencial do jogo Banco Imobiliário para a socialização de ideias sobre as 

linguagens algébricas retórica, sincopada e simbólica (EVES, 2002). E, na Cena 2, trazemos o 

jogo Quiz, que permitiu desencadear um diálogo sobre a ideia que os estudantes possuem do 

número apenas como fixo, imutável, buscando, assim, definir um intervalo numérico para 

determinada situação, o campo de variação, outro nexo conceitual da álgebra.

Sintetizamos na figura abaixo a forma como organizamos nosso processo de análise 

para o Eixo 1:
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Figura 12: Organização da análise para o Eixo 1

Fonte: Sistematização da pesquisadora

5.1.1. Episódio 1: História Virtual do Conceito

Neste episódio, buscamos identificar como o uso de uma situação problema 

semelhante a uma vivida pelas antigas civilizações, pode conduzir o estudante a refletir sobre 

o nexo conceitual campo de variação, considerando a necessidade da civilização egípcia em 

numeralizar o desconhecido e controlar os movimentos.

Cena 1: Arquiteto Amom Toado

Em grupos, compostos por quatro integrantes, os estudantes receberam uma folha com 

o seguinte problema (na página seguinte):
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Figura 13: Atividade do Arquiteto Amon Toado

Estamos há quatro mil anos atrás Os 
escravos estão trabalhando, 
carregando pedras para a construção 
da pirâmide do faraó Na tenda do 
arquiteto A moo Toado, encarregado 
geral da obra, chega o chefe do 
depósito de pedras:

- Mandou-me chamar, senhor?
- Sim, mandei, Tuc Anon. Preciso saber quantas pedras temos no depósito para levantar a 

coluna mestra da pirâmide.
J - Tcrnüs 60, senhor.

- Quantas pedras os escravos já colocaram até hoje?
- 12, senhor.
- Tudo bem, Tnc Anon, pode ir embora, 

i - Com sua permissão, senhor,
Anioit Toado virou-se para os seus papiros e pensou:

- "Pois é, colocamos já 12 pedras na coluna mestra. Temos, no depósito, 60 pedras que 
podem ser usadas nessa coluna. Acontece que o faraó ainda nâo se decidiu qual a altura 
de sua pirâmide Dessa forma não posso indicar quantas pedras no total terá a coluna 
mestra Porém eu preciso deixar escrito aqui no projeto a altura da pirâmide para que os 
encarregados da obra fiquem com os dados registrados e não se confundam. Esse é o 
meu problema: como vou escrever a altura da coluna, considerando as 12 pedras já 
colocadas, as 60 pedras do depósito que podem ser usadas todas ou não, e a altura que 
eu ainda desconheço? Como escrever isso de forma matemática, quer dizer, da forma 
mais simples possivel e utilizando a linguagem das quantidades, isto é, a linguagem 
numérica?"
Pois é, pessoal, temos ai o problema do arquiteto das pirâmides___________

Conto escrever, utilizando a linguagem numérica, uma frase onde apareça 
um número desconhecido?

Fonte: Arquivo da Pesquisadora

Esperávamos que pensassem em como escrever a altura da coluna, considerando as 12 

pedras já colocadas, as 60 pedras do depósito que podem ser usadas todas ou não, e a altura 

que ainda era desconhecida, usando a linguagem numérica.

A seguir, apresentamos o diálogo de um dos quartetos (Carlos, Fabiana, Pedro 

Henrique e Rafael), mas que também se fez presente concomitantemente nos demais, na 

tentativa de responder à pergunta.

Carlos: Gente, olha só, são 12 pedras que eles ja colocaram. Ainda tem 60 
pedras, então a altura é 60.
Pedro Henrique: Não! A altura vai ser 72, porque ja tem 12 mais as 60 
vai ficar 72 pedras.
Rafael: Mas se eles forem embora e não colocarem mais nenhuma. Pode 
num pode?
Fabiana: Eu acho que pode. Mas não tinha pirâmide muito baixinha no 
Egito não, nos filmes é tudo alto, eu acho que eles vão colocar mais...
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Rafael: Oh! Professora, não sabemos fazer isso não, porque vai poder ter 
muitas respostas, pode parar no 12 ou ir colocando mais pedras até eles 
cansarem, ou usar as 60 que estão no depósito ainda. Sei não....

Mediante esse trecho podemos inferir que os estudantes sentiram a necessidade de um 

conhecimento que ainda não possuíam, isto é, não conseguiram utilizar uma linguagem que os 

permitisse representar essa resposta desconhecida assim como aconteceu com a civilização 

egípcia. Pelo diálogo apresentado podemos considerar que a história virtual do conceito os 

permitiu entrar em movimento de atividade de aprendizagem, ou seja, percebemos que a 

história virtual proposta desencadeou a necessidade de resolução do problema apresentado.

De fato, podemos acreditar que esta situação desencadeou os estudantes ao movimento 

de estar em atividade, pois conseguimos caracterizar os seguintes elementos propostos por 

Leontiev (1983): a necessidade dos estudantes se caracterizava por descobrir a altura da 

coluna da pirâmide; o motivo dessa atividade tomou corpo quando os estudantes buscavam 

uma forma de escrever a altura da coluna da pirâmide; o objeto se constituía em representar 

um número desconhecido a partir da altura máxima e a altura mínima da coluna da pirâmide; 

a ação dos estudantes abarcava o levantamento de hipóteses para valores das alturas máximas 

e mínimas da coluna da pirâmide e, por fim, a operação desenvolvida por eles, constituiu-se 

no diálogo sobre as possibilidades da altura da coluna da pirâmide.

Diante deste indício, coadunamos com as palavras de Davidov (1999, p. 2), que nos 

indica que “as necessidades e os motivos educacionais direcionam as crianças para a 

obtenção por eles de conhecimentos como resultados da transformação do material dado”.

Nos momentos em que fora solicitado nosso auxílio, procuramos não interromper o 

diálogo que ocorria entre os estudantes, ou mesmo, fornecer a solução para o problema, mas 

sim, buscamos fomentar a discussão:

Professora: Meninos, vamos pensar um pouquinho... A altura da pirâmide 
está definida?
Pedro Henrique: Não, professora. Porque pode parar nas 12 pedras ou, ir 
colocando mais, parar quando eles quiserem ou até usar as 60 pedras. 
Carlos: Isso professora, num vai ter um número certo, porque vai 
depender da boa vontade do faraó!
Professora: Estão todos de comum acordo com isso? De que não teremos 
um número "fechadinho"?
Fabiana: Estamos sim, professora. O problema é como vamos escrever 
isso???
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Professora: Pensem em uma forma de escrever o que discutimos, se 
concordamos todos que não será um número exato, fica mais fácil, 
podemos escrever uma frase, com nossa discussão, o que acham?
Rafael: Professora.... É isso mesmo!!! Olha só, podemos colocar as 
possibilidades, da altura mínima e da altura máxima, porque escrever 
todas dá muito trabalho! Tem 12 pedras na coluna já, 60 pedras no 
depósito que podem ser usadas ou não, então a altura máxima que a 
pirâmide poderá ter é 72 e a altura mínima que a pirâmide poderá ter é 
12, porque o faraó pode mandar parar e não colocar mais nada!
Fabiana: Pode ser assim então, professora? Como não sabemos a altura 
exata da pirâmide, colocamos a altura mínima e a altura máxima.

Após nosso diálogo, os estudantes Fabiana e Rafael, formularam o seguinte registro:

Figura 14: Registro da estudante Fabiana

Fonte: Arquivo da Pesquisadora

Figura 15: Registro do estudante Rafael

Fonte: Arquivo da Pesquisadora

Por meio do diálogo acima, notamos que a problemática apresentada aos estudantes, 

fomentou um ambiente de exploração de ideias, socialização das mesmas para a formulação 

de uma resposta ao problema da história virtual apresentada, nos remetendo a Davidov 

(1999):

Nesta transformação do objeto está forçosamente latente o elemento criativo, o 
caráter educativo-atuante constituidor da aprendizagem daqueles conhecimentos, 
que se referem ao objeto da experimentação. Lá onde o mestre cria 
sistematicamente na sala de aula as condições que exijam dos alunos a obtenção 
de conhecimentos sobre o objeto por meio da experimentação com este, é onde
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as crianças deparam com as tarefas que exigem delas a realização da atividade 
de estudo40 (DAVIDOV, 1999, p. 2).

Percebemos a tendência dos estudantes em apresentar como reposta um número, uma 

resposta fechada, não se atentando que a altura da pirâmide é indefinida e que, na verdade, o 

problema buscava escrever uma frase usando o número desconhecido, uma representação para 

esse número, não objetivando estabelecer uma resposta numérica ao mesmo. Contudo, fez-se 

necessária a presença da professora pesquisadora para que os estudantes pudessem aceitar a 

ideia de que a altura da pirâmide poderia variar entre 12 e 72 pedras e que a resposta ao 

problema poderia ser dada na forma de 12 pedras < altura < 72 pedras, ou seja, uma 

quantidade que varia entre 12 e 72 pedras.

Assim, vemos a importância de situações desencadeadoras no ambiente escolar que 

corroborem para o envolvimento dos estudantes para a aprendizagem, descaracterizando um 

ensino sem intencionalidade ou participação dos estudantes.

Notamos ainda que a atividade proposta desencadeou ações de reflexão nos 

estudantes, permitiu o conflito de ideias em busca da tomada de uma solução feita em comum 

acordo pelo grupo.

Percebemos que a atividade permitiu que os estudantes se colocassem na posição de 

protagonistas, buscando apenas o respaldo e a sistematização com a professora, não 

recebendo a resposta correta e pronta. Puderam discutir e conjecturar diferentes caminhos até 

a tomada de decisão.

Por meio dessa história virtual do conceito, os estudantes puderam pensar sobre o 

movimento da vida, as relações de interdependência, se situar historicamente e refletir sobre a 

conduta dos antepassados na formação dos conhecimentos:

Professora: Então é isso, vocês conseguiram escrever a frase, 
considerando o movimento que poderá acontecer. Os egípcios passaram 
por esse problema, precisavam representar quantidades desconhecidas, 
assim como vocês fizeram com a altura da pirâmide. Sabem como eles 
faziam? Eles utilizavam a palavra ahá para representar essas 
quantidades desconhecidas. Para eles ahá, significava monte, montão.

40 Nesse estudo estamos compreendendo o termo atividade de estudo (Davidov, 1999) como equivalente ao 
termo atividade de aprendizagem, uma vez que, coadunamos com Moura et al. (2010, p. 87) onde “em se 
tratando da definição dos termos (estudo e aprendizagem), é importante salientar que, em alguns textos, 
sobretudo de tradução da língua russa para a língua inglesa, o termo a tiv id a d e  d e  a p re n d iza g e m  é equivalente ao
de a tiv id a d e  d e  e s tu d o ”.
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Podemos considerar que mediante essa SDA os estudantes estiveram em atividade 

onde o objetivo principal constituiu-se em estar frente a uma situação que lhes fizeram 

“refletir sobre o papel das gerações passadas na criação de saberes que hoje usufruem 

comodamente” (MOURA; LANNER DE MOURA, 1998, p. 13). Notamos, ainda, que 

apresentar essa atividade aguçou nos estudantes a curiosidade sobre os povos egípcios e sua 

matemática. Sobre isso, Davidov (1988) fala-nos que,

embora o pensamento das crianças tenha alguns traços em comum com o 
pensamento dos cientistas, artistas, filósofos da moral e teóricos do direito, os dois 
não são idênticos. As crianças em idade escolar não criam conceitos, imagens, 
valores e normas de moralidade social, mas apropriam-se deles no processo da 
atividade de aprendizagem. Mas, ao realizar esta atividade, as crianças executam 
ações mentais semelhantes às ações pelas quais estes produtos da cultura espiritual 
foram historicamente construídos. Em sua atividade de aprendizagem, as crianças 
reproduzem o processo real pelo qual os indivíduos vêm criando conceitos, imagens, 
valores e normas (DAVYDOV, 1988, pp. 21-22).

Ao final dessa atividade, muitos estudantes comentavam que mediante o problema do 

Arquiteto Amom Toado, nunca mais esqueceriam os povos egípcios e suas criações na 

matemática, mais ainda, se sentiram mobilizados a buscar resposta para a situação como é 

possível notar na fala de Rafael:

Rafael: Professora, eu só prestei atenção hoje na aula, porque fiquei 
curioso, achei que o problema ia ser fácil de resolver e depois vi que não 
era a resposta que tinha pensado. Esse povo aí, me deixou de cabeça 
quente!

Nessa fala do estudante Rafael, percebemos o reconhecimento às origens do 

pensamento algébrico, aos caminhos percorridos e consideramos que

A história virtual do conceito é uma proposta metodológica que busca responder 
eficientemente por esta formação em que se incorpora o valor do conhecimento 
como elemento propulsor de busca de novos conhecimentos e que procura colocar 
em prática o pressuposto educacional de que é necessário, fazer com que a criança 
perceba o valor do conhecimento produzido pela humanidade, como elemento de 
sua formação de cidadania (MOURA; LANNER DE MOURA, 1998, p. 14).

Ao utilizar essa SDA como instrumento de ensino, conseguimos que os estudantes se 

interessassem pela história dos egípcios e, conforme expressado pelo estudante Rafael, 

podemos inferir que se apenas apresentássemos um problema, sem nos remeter à história, não 

teríamos despertado nos estudantes o interesse em encontrar uma solução.
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Na sequência, apresentamos a análise do Episódio 2, buscando atribuir qualidade à 

utilização de jogos, em nossa proposta, como desencadeador para a transposição da 

linguagem retórica para sincopada e, posteriormente, para a simbólica. O jogo serviu, 

também, como desencadeador para a apropriação do nexo conceitual campo de variação.

5.1.2. Episódio 2: Jogos

Nesse episódio, nosso olhar esteve voltado para elencar indícios das contribuições dos 

jogos mediante a perspectiva de SDA, evidenciando sua potencialidade para a reflexão dos 

estudantes quanto ao movimento de registrar quantidades, os caminhos que podem ser 

percorridos a fim de se chegar à escrita simbólica. Outro indício que foi observado foi a 

possibilidade de um diálogo sobre número na perspectiva de campo de variação, analisando-o 

de acordo com o contexto que se encontrava inserido.

Cena 1: Banco Imobiliário

Os estudantes foram dispostos em grupos compostos por quatro integrantes. Cada 

grupo recebeu o jogo Banco Imobiliário e fichas (Figura 16) para que registrassem suas 

movimentações no decorrer do jogo. Entretanto, foram orientados a não realizar a escrita de 

forma abreviada, linguagem algébrica sincopada (EVES, 2002) ou utilizar símbolos 

matemáticos, linguagem algébrica simbólica (EVES, 2002), pois os valores gastos para 

adquirir imóveis, pagar aluguéis deveriam ser anotados por meio da escrita na linguagem 

discursiva, ou seja, retórica, a fim de que sentissem a necessidade da escrita simbólica.

Figura 16: Jogo Banco Imobiliário
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Fonte: Arquivo da Pesquisadora
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Figura 17: Ficha para registro dos movimentos no jogo Banco Imobiliário

Seguindo nossas orientações, sempre que realizavam algum movimento no jogo, o 

registravam na linguagem retórica, conforme podemos observar o registro do estudante 

Junior:

Figura 18: Registro do estudante Junior41

Fonte: Arquivos da Pesquisadora

41 Transcrição do registro de Junior: Eu comprei uma casa no valor de cinquenta reais; Eu recebi dez reais de 
aluguel; Eu acabo de pagar quarenta reais de aluguel; Eu paguei trinta reais ao banco; Eu comprei uma casa no 
valor de cento e cinquenta reais; Eu comprei uma cidade no valor de quarenta reais.
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Pelo registro de Junior, notamos a dificuldade sentida em não fazer uso da linguagem 

algébrica sincopada ou da linguagem algébrica simbólica sendo, por vezes, necessário rasurar 

os registros, reescrevendo-os. Essa dificuldade também foi encontrada por outros estudantes 

como notamos na fala a seguir:

Ana Paula: Nossa professora, já estou cansada! Toda hora que eu vou 
escrever, uso os números e só pode ser com palavras, tá ficando tudo 
rabiscado meu diário, imagina até o final do jogo, vai dar muito trabalho 
isso!

Essa situação de desconforto para realizar o registro, gerada pelas instruções 

oferecidas no início da atividade, revela o potencial do jogo como SDA, pois direcionou os 

estudantes a necessitarem e pensarem uma forma mais prática para resolverem o problema de 

controle das quantidades. Sobre esse aspecto, podemos recorrer à Moura (1992), quando se 

refere à compreensão do signo numérico por crianças alega que

Algumas formas de levar as crianças à compreensão do signo numérico podem ser, 
por exemplo, contando-lhes uma história, fazendo-as viver uma situação na qual seja 
necessário o controle de quantidades ou ainda sugerindo-lhes um jogo em que se 
deve marcar a quantidade de pontos a ser comunicada à classe vizinha através de um 
símbolo criado pelos jogadores. Isto deve ser feito de forma que vá ficando claro o 
sentido da representação, o caráter histórico-social do signo e como se pode 
melhorar os processos de comunicações humanas (MOURA, 1992, p. 52).

Ressaltamos, porém, que nesse momento da proposta, buscávamos apenas desencadear 

nos estudantes a necessidade de melhoria na comunicação humana, conforme apontado na 

citação acima, fato esse que nos levou a abordar a construção histórica dos signos algébricos 

em momentos posteriores.

Após alguns movimentos de jogo, os estudantes foram indagados de como poderiam 

realizar os registros de forma mais rápida e eficiente. Como respostas, recebemos:

Professora: Já que vocês estão cansados e reclamando tanto da forma 
como estão registrando os movimentos, me digam então como podemos 
fazer isso de uma forma mais tranquila?
Thaís: Simples demais, ao invés de escrever cento e oitenta e cinco, 
posso apenas colocar os números 1, 8 e 5.
Davi: Professora, por exemplo, se eu paguei um aluguel, então eu perdi 
dinheiro, se perdi posso colocar o sinal de -'!
Ana Paula: Ou então, se eu tiver recebendo o aluguel vou ganhar 
dinheiro, então eu posso registar com o sinal de ’+'!
Professora: Ok, então! Agora está liberado, a partir de agora vocês já 
podem registar os movimentos usando os símbolos e os algarismos.
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Davi: Demorou né professora! Se já existem formas mais simples pra quê 
ficar dando essa trabalheira pra nós?!

A seguir apresentamos o registro do estudante Davi utilizando-se das linguagens 

sincopada e simbólica:

Figura 19: Registro do estudante Davi42
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Fonte: Arquivos da Pesquisadora

Comparamos esse momento vivido pelos estudantes à consideração de Moura (1992) 

ao referir-se às crianças em idade pré-escolar, quando se veem frente a necessidade de 

significar quantidades de objetos:

É o aparecimento de situações que envolvem o controle de muitas quantidades que 
certamente lhe imprimirá a necessidade de uma comunicação mais permanente, 
encaminhando-a para a busca de algo que lhe permita representar simbolicamente as 
quantidades com que lida. Este parece ser o caminho da construção do signo 
numérico: a busca de um símbolo que lhe permita lembrar das quantidades em 
comunicações não-imediatas (MOURA, 1992, p. 52).

Mediante o registro de Davi e as falas dos estudantes Ana Paula, Davi, Junior e Thaís, 

apresentados anteriormente, é possível notarmos o potencial dessa SDA, pois essa situação se 

constituiu em atividade para os estudantes ao gerar a necessidade de buscarem uma escrita 

simbólica, agilizando as jogadas. Outro aspecto a ser destacado sobre essa SDA é o fato de 

que, a partir de suas experiências, os estudantes buscaram alternativas para simplificar suas 

escritas e aproveitaram da simbologia dos sinais “- ” e “+”, estudada no conteúdo de números 

inteiros relacionadas à perdas e ganhos, para atribuir o mesmo significado agora no contexto 

do jogo Banco Imobiliário. Assim, 42

42 Transcrição do Registro do estudante Davi: + aluguel da cidade de Washington de 10 reais. 
+ 2 casas, 1 em Washington e 1 na Cia de Navegação.
- aluguel de 10 reais em Buenos Aires
- 15 reais de aluguel em Santiago 
+ 100 reais de Banco
+ 15 reais de aluguel em Berlim
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Os conhecimentos prévios dos alunos são aproveitados na medida em que é na 
interação, estabelecida a partir da proposta de solução comum do problema, que 
cada criança irá lançar mão do que sabe para propor a sua forma de melhor resolver 
o problema coletivo (MOURA; LANNER DE MOURA, 1998, p. 14).

Por fim, podemos considerar que essa SDA permitiu aos estudantes sentirem a 

necessidade de uma escrita simbólica, compreendendo sua função e necessidade para os 

registros de muitos movimentos quantitativos.

Inferimos que os sentidos que os estudantes atribuíram coincidiram com o significado 

social da escrita simbólica, os estudantes não mais consideram os registros apenas como uma 

prática utilitarista ou como uma linguagem que sempre existiu, mas como uma linguagem que 

fora sofrendo modificações conforme as necessidades humanas foram sendo vivenciadas.

Na Cena 2, dialogamos sobre como o jogo Quiz foi desencadeador para o processo de 

apreensão do nexo conceitual Campo de Variação, por meio dos diálogos realizados entre os 

grupos no decorrer do jogo.

Cena 2: Quiz

Inicialmente, convidamos os estudantes a se dividirem em duas equipes. Por iniciativa 

própria agruparam-se considerando suas localizações naquele momento na sala de aula, ou 

seja, unindo fileiras próximas umas as outras. Cada equipe ficou composta por 13 estudantes, 

já que uma estudante havia faltado nesse dia.

Explicamos que seriam apresentadas algumas situações-problema que deveriam 

discutir entre si a fim de chegar a uma resposta comum à equipe. Essa, posteriormente, seria 

exposta à classe por meio de diálogos e todos deveriam optar pela resposta que melhor 

conseguisse solucionar o problema enunciado. Dessa forma, a equipe que apresentasse a 

melhor resposta ao problema proposto seria a campeã da rodada.

_______________________ Figura 20: Questões do Jogo Quiz__________________
Indique os limites máximo e mínimo e o número que responde a situação numérica, se possível:
a) A idade de José daqui sete anos.
b) A idade de Pedro há 12 anos atrás.
c) O dobro do dinheiro que trago no meu bolso.
d) A altura de Maria.

Fonte: Arquivo da Pesquisadora
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Professora: Meninos e meninas, faremos o seguinte, eu vou enunciar uma 
situação, vocês vão pensar em uma solução, registrar no papel e em 
seguida expor para a classe. Depois cada equipe irá analisar a resposta 
da outra e vamos ver se chegamos à equipe campeã da sala. Ok? Para as 
situações que vou falar indiquem os limites máximo e mínimo e o número 
que responde a situação numérica, sempre que for possível.
Primeira situação para pensarem: A idade de José daqui sete anos. 
Pensem em José como uma pessoa qualquer.

Os estudantes ficaram confusos com esse questionamento e começaram a conjecturar.

Na Equipe I tivemos o seguinte diálogo:

Carlos: Então, o José daqui sete anos vai ter 19 anos.
Pedro Henrique: Mas porque Carlos?
Carlos: Ué, eu tenho 12 anos daqui sete anos, vou ter 19, se a professora 
está fazendo essa pergunta aqui é porque o José deve ter nossa idade. 
Pedro Henrique: Entendi.... Mas eu tenho 11 anos ainda, daqui sete anos 
vou ter 18. Então não vai dar certo.
Carlos: Mas Pedro Henrique, pensa um pouco, a gente está no sétimo ano, 
no final do ano, nossa idade vai ser 12, então daqui sete anos vai todo 
mundo estar com 19 anos.
Vanessa: Oh esperto, e os repetentes, eles tem mais que 12 anos. Eu 
acho que não é isso não.
Carlos: Eu sei que tem os repetentes, mas vamos olhar pela maioria de 
nós e pronto.
Vanessa: Eu acho que não é isso não, a professora falou em limite máximo 
e limite mínimo, então eu acho que vai ter uma idade mínima e uma idade 
máxima que o José pode ter, então nesse caso ai, ele pode ter 18 anos no 
mínimo e 19 no máximo.

Após a fala de Vanessa, os estudantes da Equipe I concordaram e combinaram que 

essa seria a resposta. Ao solicitarmos que a equipe expusesse para a classe suas 

considerações, Vanessa foi questionada por Davi:

Davi: Mas Vanessa, o José pode ser qualquer pessoa, então ele pode ter 
acabado de nascer, aí sua idade mínima vai ser sete anos.
Vanessa: Eu acho que não Davi, porque se a situação é aqui na sala nós só 
pensamos no caso das nossas idades.
Davi: Mas você lembra que a professora falou que pode ser qualquer 
pessoa, então pode ser alguém que acabou de nascer.
Carlos: É verdade, pode mesmo. A gente não tinha pensado nisso. Mas se 
for assim então, pode ser alguém bem velhinho mesmo, aí a idade 
máxima, não vai ser 19 mais, pode ser 107 anos, se pensar em uma pessoa 
com 100 anos agora, porque eu não conheço ninguém com mais de 100 
anos...
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Esse trecho nos revela o quanto o problema proposto pode desencadear hipóteses nos 

diálogos dos estudantes. Inicialmente, a Equipe I tinha em mente um campo de variação bem 

limitado e, apenas após o conflito de ideias entre as equipes, puderam expandir seus intervalos 

e reformular sua solução. Notamos assim, a importância do momento de apresentação das 

soluções de ambas equipes, pois

a atividade de ensino de matemática coloca o sujeito diante de situações 
desafiadoras que o farão organizar um conjunto de conhecimento que possui, com o 
propósito de solucionar o conflito causado pela necessidade de resolver o problema 
para o qual não dispõe, de forma imediata de conhecimentos já prontos para 
solucionar (MOURA; LANNER DE MOURA, 1998, p. 12).

A fala final do estudante Carlos nos revela esse novo ponto de partida que fora 

estabelecido, pois, ao acompanhar o diálogo entre os outros estudantes, pôde reformular a 

resposta de sua equipe para o limite máximo da idade de José. Por fim, a classe concluiu que 

o limite mínimo seria de 7 anos, por considerarem uma pessoa que acabou de nascer, e o 

limite máximo de 107 anos, pensando em uma pessoa com idade de 100 anos.

A segunda situação proposta foi “A altura de Maria”. Para esse caso, a Equipe I 

realizou o seguinte diálogo:

Pedro Henrique: Vamos pensar nas possibilidades então, a Maria pode 
ter no mínimo quanto de altura?
Thaís: Minha irmãzinha nasceu mês passado, ela tinha uns 45 
centímetros.
Carlos: E a pessoa mais alta que o conheço mede uns 2 metros.
Pedro Henrique: Então fechou, a altura mínima vai ser 45 centímetros e 
a máxima vai ser 2 metros.
Vanessa: Lá vai eu de novo, os jogadores de basquete medem mais de 2 
metros, eu acho que podia colocar, a máxima de 3 metros.
Pedro Henrique: Então, vamos colocar tudo em metros, a altura mínima 
vai ser 0,45 metros e altura máxima vai ser 3,00 metros.

Podemos inferir que após o diálogo entre as equipes buscando solucionar a situação 1, 

a equipe I atribuiu nova qualidade à solução das situações que se seguiram, buscando, desta 

vez, expandir sua resposta a limites mínimos e máximos e considerando um campo de 

variação mais amplo. Acerca dessa nova qualidade Moura e Lanner de Moura (1998) alegam 

que

A atividade, por colocar os sujeitos em ação, em que a solução do problema envolve 
negociação, forçará a troca de conhecimentos através da partilha de saberes 
necessários para se chegar a um consenso sobre o ganhador e o perdedor. É essa
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busca de consenso que colocará em movimento o conjunto de saberes individuais e 
valores culturais que serão partilhados. Isso levará o próprio grupo a um novo nível 
de compreensão da realidade e a um conjunto de valores que agora são coletivos e, 
por isso, são novos pontos de partida para novas buscas de solução em situações de 
ensino em que a classe estará envolvida como um todo (MOURA; LANNER DE 
MOURA, 1998, p. 13).

As equipes I e II chegaram à conclusão de que a altura mínima poderia ser 0,45 metros 

e a máxima 3,00 metros. No entanto, indagamos a classe da seguinte forma:

Professora: Seria válido um intervalo com números racionais? Em caso 
afirmativo, isso poderá sempre acontecer?
Davi: Professora eu acho que vale pra altura sim, porque a maioria das 
pessoas não tem altura com número natural, medem 1,65; 2,10. No caso 
do dinheiro também poderá ser um número racional, porque existem os 
centavos.
Fabiana: É, mas nem sempre vai valer porque, por exemplo, se a 
professora perguntasse sobre quantidade de pessoas aqui na sala, aí 
tinha que ser números naturais.
Professora: Isso mesmo, estamos então falando sobre o campo de 
variação dessas situações, onde para cada situação, deveremos analisar 
qual é o mais adequado, pois para alguns casos, não poderemos, por 
exemplo, trabalhar com números racionais negativos, um exemplo, por 
favor!
Pedro Henrique: Na altura da Maria, professora, não vale falar em altura 
negativa de uma pessoa.
Fabiana: Professora, então nesse caso, o campo de variação será os 
números racionais positivos?
Professora: O que vocês acham?
Equipe I e Equipe II: Sim.
Professora: Isso!!!!

Por meio desse diálogo, notamos que o problema apresentado no jogo se constituiu 

como desencadeador (MOURA, 1992) para a discussão sobre o nexo conceitual campo de 

variação. Iniciamos discutindo sobre intervalos com limites mínimos e máximos e, 

direcionamos para o diálogo sobre campo de variação, um conhecimento novo e mais 

aprimorado para os estudantes. Contudo, esse movimento se deu mediante reflexões e 

conflitos, o que nos leva a inferir que o jogo, de fato, cumpriu seu papel de desencadeador da 

aprendizagem, pois
o jogo para ensinar matemática deve cumprir o papel de auxiliar no ensino do 
conteúdo, propiciar a aquisição de habilidades, permitir o desenvolvimento 
operatório do sujeito e, mais, estar perfeitamente localizado no processo que leva a 
criança do conhecimento primeiro ao conhecimento elaborado (MOURA, 1992, p. 
47).
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Entendemos então que o jogo Quiz foi uma situação desencadeadora que proporcionou 

aos estudantes se colocarem em atividade e reorganizarem seus conhecimentos sobre qual 

campo de variação a se considerar em cada situação, observando suas especificidades e, não 

mais olharem um problema em busca de uma solução pronta e absoluta.

No próximo Eixo discutimos as ações e reflexões dos estudantes frente às situações 

desencadeadoras de aprendizagem e buscamos apresentar os indícios de apropriação dos 

nexos conceituais fluência, campo de variação e variável corroborando para a formação do 

pensamento algébrico e, por último, analisamos se as ações e reflexões coletivas 

encaminharam-se para a formação do conceito de equações de 1° grau.

5.2 Eixo 2: Ações e reflexões coletivas

Buscamos, nessa seção, voltar nosso olhar para as ações e reflexões dos estudantes, 

apresentando os movimentos desenvolvidos por eles para a formação do pensamento 

algébrico e do conceito de equação de 1° grau. Para tanto, os episódios que compõem este 

eixo são: 1) Apropriação dos Nexos Conceituais e, 2) Formação do Conceito de Equação de 

1° Grau.

Conforme discutimos no capítulo 2, acreditamos que, ao se apropriar dos nexos 

conceituais da álgebra: fluência, campo de variação e variável (SOUSA, 2004), o estudante 

melhor se encaminha para a formação do pensamento algébrico.

Assim, no Episódio 1 desse eixo, buscamos analisar se as ações e reflexões dos 

estudantes frente às situações desencadeadoras de aprendizagem Movimentos Numéricos e 

jogo Pega Varetas corroboraram para apropriação dos nexos conceituais e, consequentemente, 

para a formação do pensamento algébrico.

No Episódio 2, discutimos o equacionamento de problemas que recaem em equações 

de 1° grau e o diálogo para a resolução dessas equações, por meio das SDA Enigma, Método 

do Retorno e Triminó, compreendendo se os estudantes estiveram em atividade de 

aprendizagem e se ocorreu a apropriação do conceito de equação de 1° grau.

Sintetizamos na figura abaixo nossa organização para o processo de análise do Eixo 2:
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Figura 21: Organização da análise para o Eixo 2
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Fonte: Sistematização da pesquisadora

5.2.1. Episódio 1: Apropriação dos Nexos Conceituais

Nesse episódio, vamos analisar como as ações e reflexões dos estudantes por meio de 

recortes das SDA Movimentos Numéricos e jogo Pega Varetas culminaram na apropriação 

dos nexos conceituais da álgebra, encaminhando para a formação do pensamento algébrico.

Cena 1: Nexo Conceituai: Fluência

Como já mencionado no capítulo 4, os estudantes foram convidados a refletir sobre as 

seguintes questões, inicialmente sozinhos e, posteriormente, foram convidados a formarem 

duplas a fim de socializarem suas considerações:

a) Quantas pessoas estão em sua casa agora?
b) Você é o(a) mesmo(a) de um ano atrás? De um mês atrás? De uma semana atrás? Por quê?
c) O mundo é o mesmo enquanto falamos a palavra “mundo”? Por quê?
d) A escola permanece a mesma depois que você vai embora para a sua casa? Por quê?
e) Olho uma pedra; fecho os olhos e vejo novamente a pedra. É a mesma? Por quê?
f) "O fogo vive a morte do ar e o ar vive a morte do fogo; a água vive a morte da terra e a terra vive a 
morte da água".
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g) "Tu não podes descer duas vezes ao mesmo rio, porque novas águas correm sobre ti".
h) "As coisas, ao mesmo tempo, são e não são elas próprias; nós mesmos somos e não somos".

Inicialmente, eles se mostraram confusos, como é possível percebermos no diálogo a 

seguir, da dupla Davi e Rafael:

Davi: Professora pra quê vai servir isso?
Rafael: Ué, não tem nada de matemática aqui não, professora!
Professora: Será Rafael? Vocês não vivem me dizendo que matemática 
está em tudo que fazemos? Gostaria que deixassem de lado esse 
pensamento que vocês têm da matemática ser apenas operações e que 
tentassem falar pra mim, o que entendem dessas frases. Não precisam 
escrever, vamos conversar. O que quer dizer a frase "Tu nao podes 
descer duas vezes ao mesmo rio, porque novas aguas correm sobre ti"? 
Davi: Vamos lá então. Como o rio tem a correnteza, ele nunca é o mesmo. 
Apesar de a gente olhar e achar que está vendo a mesma água, não é, 
porque ela segue a correnteza e outra água vem, por isso nunca estamos 
no mesmo rio! É essa viagem aí, não é?!
Rafael: É que nem a água da torneira professora. Quando abre sai uma 
água, mas não vai voltar a mesma, porque ela vai passar por outras 
tubulações, vai fazer tratamento, vai ser diferente!
Professora: Isso mesmo! Estão vendo, vocês estão descrevendo para a 
classe movimentos da vida. Nós estamos inseridos nesse movimento? 
Rafael: Estamos sim professora, porque nós também mudamos. Cada ano 
que passa eu sou diferente. Tô melhorando eu acho!!! (risos)

Nas falas dos estudantes percebemos que eles entendem que existe um movimento que 

rege todas essas transformações. Conforme Caraça (1951, p. 110), “o Mundo está em 

permanente evolução; todas as coisas, a todo momento, se transformam” e a esse movimento 

o autor o denomina Fluência.

Contudo, os estudantes ainda não conseguiam relacionar o porquê de estarmos 

discutindo essas questões em uma aula de matemática.

Davi: Tudo bem professora, acho que todo mundo entendeu aonde a 
senhora quer chegar, as coisas mudam, não são as mesmas de acordo com 
o tempo, vai modificando... Mas pra quê isso? Qual a relação com a 
matemática?
Professora: Eu gostaria que vocês tentassem estabelecer essa relação, 
ao invés de eu ter que falar!
Silêncio por alguns minutos...
Rafael: Professora, pensei o seguinte, em uma das questões a senhora 
perguntou quantas pessoas estão na minha casa agora? Se eu entendi
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direito, não dá pra responder com um número certo porque, por exemplo, 
minha mãe era pra estar lá, mas ela pode ter ido na vizinha, ela sempre 
vai lá fofocar (risos), então pode mudar esse valor, é isso que estou 
pensando agora, então não existe um número certo, pode mudar.

Parece-nos que o estudante passou a compreender que mesmo os números -  que 

normalmente parecem ser estáticos e imutáveis -  podem se movimentar, assim, parece-nos 

que ao compreender o movimento dos números, o estudante caminhou para a compreensão de 

da matemática como um movimento de vida e, atribuir nova qualidade às questões 

apresentadas, lembrando-nos Caraça (1951, p. 117), quando alega que

[...] arrastado na fluência de todas as coisas, ele transforma-se -  cada um dos seus 
componentes devém a todo o instante uma coisa nova. Alterando-se constantemente 
os elementos constitutivos, alteram-se as suas relações, isto é, as suas qualidades.

Logo, o estudante que em momentos anteriores havia apresentado uma resposta exata, 

três pessoas, retoma o problema e transforma a qualidade de seu entendimento, considerando 

o movimento da vida de sua mãe, concluindo não ser possível uma resposta certeira para esse 

problema.

Após a discussão, o estudante Davi concluiu dizendo que:

Davi: Professora, eu entendi agora também. É isso, nem sempre vai ter 
uma resposta de imediato, porque vai depender do movimento, algumas 
coisas na vida, se transformam, mudam então a matemática também é 
assim, vai mudando.

De posse dessa fala de Davi, a classe demonstrou aprovação à sua conclusão, o que 

nos possibilitou entender que os estudantes se apropriaram do nexo fluência, pois parece-nos 

terem compreendido o movimento da vida, a fluência do pensamento humano, “pois não é 

verdade que tudo está sujeito a uma mesma lei de nascimento, vida e morte, que, por sua vez, 

vai originar outros nascimentos?” (CARAÇA, 1951, p. 110).

Uma vez apropriado o nexo conceitual da álgebra, fluência, na Cena 2 voltamos nosso 

olhar ao movimento dos estudantes à apreensão do conceito de variável, por acreditarmos que 

a variável remete a esse movimento de fluência, de transformação do pensar humano.

Cena 2: Nexo Conceitual: Variável

A fim de discutirmos o nexo conceitual variável, acreditamos antes ser necessário, 

apresentarmos como nossos estudantes se apropriaram da linguagem algébrica, uma vez que
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entendemos esse movimento como necessário para a apropriação do conceito de variável. 

Sendo assim, vamos nos reportar as suas ações e reflexões no jogo Pega Varetas.

Os estudantes foram convidados a formarem trios e cada trio recebeu o jogo Pega 

Varetas.

Pedimos a cada estudante que registrasse seus pontos e o número de varetas de cada 

rodada, que dialogassem nos trios e, juntos, fizessem o registro da forma que melhor lhes 

conviesse. Posteriormente, os trios foram convidados a escreverem na lousa, a forma como 

haviam feito tal registro.

Acompanhemos a discussão do trio Ana Paula, Thaís e Vanessa e como as estudantes 

foram mudando suas concepções sobre a forma de registrar.

Ana Paula: Como você está fazendo Vanessa?
Vanessa: Ué, eu escrevo por extenso o número do tanto de varetas que 
tenho, escrevo o nome da cor e depois os pontos que dá. E você?
Ana Paula: Eu estou colocando assim também, mas estou com preguiça de 
ficar escrevendo toda hora, aí coloquei só o número, mas queria fazer de 
outro jeito. E, você Thaís, está fazendo como?
Thaís: Então, eu não estou colocando assim não, eu estou abreviando 
tudo, acho que fica mais rápido e fácil.

As estudantes Vanessa, Ana Paula e Thaís, optaram pelas seguintes formas de registar:

Figura 22: Registro da Estudante Vanessa

Fonte: Arquivo da Pesquisadora



125

Figura 23: Registro da Estudante Ana Paula

Fonte: Arquivos da Pesquisadora

Figura 24: Registros da Estudante Thaís

Fonte: Arquivo da pesquisadora

Vemos que cada estudante buscou uma forma de registrar, dando sentido pessoal ao 

seu movimento no jogo. Leontiev (1978, p. 95), acerca da significação, nos fala que essa 

“mediatiza o reflexo do mundo pelo homem na medida em que ele tem consciência deste, isto 

é, na medida em que o seu reflexo do mundo se apoia na experiência da prática social e a 

integra”.

Podemos entender, então, que o registro das estudantes reflete suas experiências 

sociais, uma vez que, por exemplo, em conversas informais no decorrer do ano letivo, a 

estudante Vanessa nos relatou que, durante os anos iniciais do ensino fundamental, sua 

professora tinha uma prática extremamente formal e não admitia que os estudantes lançassem 

mão da linguagem sincopada ou simbólica, assim a estudante não se sentia à vontade para 

fazê-lo nessa atividade. Para tanto, ao escrever a quantidade de varetas obtidas e sua 

respectiva cor, a estudante realizou seu registro mediante a linguagem retórica (EVES, 2002)
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e apenas para a pontuação se sentiu à vontade para registrar por meio da linguagem simbólica 

(EVES, 2002), uma vez que essa representa o total de pontos, fazia sentido para a estudante o 

registro simbólico apenas nesse momento.

Pela discussão do trio, percebemos que as diferentes formas de registro do jogo 

surgidas parecem ter proporcionado a negociação das opiniões entre os membros, com o 

objetivo de buscar a melhor alternativa que resolvesse o problema do registro. As formas 

retórica e sincopada, estabelecida pelas estudantes Vanessa e Ana Paula para registrar os 

pontos e o número de varetas de cada rodada desencadearam a percepção de novas formas de 

registros, abarcando outro tipo de linguagem, a simbólica, utilizada por Thaís.

A necessidade de escrever de modo rápido as varetas obtidas no jogo e sua pontuação 

gerou a utilização de uma linguagem matemática que algumas pareciam desconhecer, a 

linguagem simbólica, como podemos acompanhar pelo diálogo a seguir:

Vanessa: Professora eu não sabia que podia escrever assim não, só 
usando um pedaço da palavra, é bem mais rápido e fácil, mas eu achei que 
estava errado.
Professora: Por que errado Vanessa?
Vanessa: Ué, porque não é uma forma que já tivesse visto, mas dessa 
forma dá pra entender direitinho e é mais fácil.

Podemos considerar que esse isolado nos possibilitou verificar que os estudantes 

compreenderam o uso da linguagem algébrica simbólica em um movimento, não lhes sendo 

imposta uma forma de escrita, com um formalismo sem nenhum sentido a eles. Ao contrário, 

por meio do diálogo, elas optaram pela melhor forma de registrar e puderam compreender o 

significado da linguagem apresentada, ou seja, essa atividade de ensino possibilitou a 

assimilação de uma nova significação para as estudantes, por meio do sentido que lhe foi 

atribuído. Coadunamos com Leontiev (1978, p. 96) ao referir-se ao fato de que

o homem encontra um sistema de significações pronto, elaborado historicamente, e 
apropria-se dele tal como se apropria do instrumento, esse precursor material da 
significação. O fato propriamente psicológico, o fato da minha vida, é que eu me 
aproprie ou não, que eu assimile ou não uma dada significação, em que grau eu a 
assimilo e também o que ela se torna para mim, para a minha personalidade; este 
último elemento depende do sentido subjetivo e pessoal que esta significação tenha 
para mim.

Prosseguindo com o roteiro que haviam recebido, os estudantes foram convidados a 

escrever uma expressão algébrica, para o cálculo dos pontos e do número de varetas do jogo,
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a expressão matemática mais simples que permitisse representar o cálculo de todos os pontos 

possíveis do jogo e o número de varetas de cada jogada:

4. Vamos chamar de Expressão algébrica do cálculo dos pontos e do número de varetas do jogo, 
a expressão matemática mais simples que permite representar o cálculo de todos os pontos 
possíveis do jogo e o número de varetas de cada jogada. Qual é a expressão algébrica para o 
jogo de varetas?

Essa proposta desencadeou o seguinte diálogo entre a professora e o trio Davi, Fabiana 

e Rafael:

Professora: Pessoal, vamos supor que eu consiga pegar varetas de todas 
as cores, como nós faríamos para determinar minha pontuação?
Davi: Professora é só multiplicar a quantidade de varetas por quanto ela 
vale e depois somar tudo.
Fabiana: Isso mesmo, por exemplo, se a senhora pegar 1 preta, 1 
amarela, 1 azul, 1 vermelha e 2 verdes, vai ser, 50 vezes 1, 15 vezes 1, 20 
vezes 1, 10 vezes 1, 5 vezes 2, e depois somar os resultados.
Davi: É isso mesmo, como a senhora não falou quantas varetas de cada 
cor pegou, é só colocar o número de varetas e fazer a multiplicação. 
Rafael: Professora, eu fiquei pensando aqui, se a senhora, por exemplo, 
não tivesse pegado vareta preta, ia ser zero, né?
Davi: Ia Rafael.
Professora: Muito bem, mas agora que vocês ja encontraram o caminho 
para o exemplo que a Fabiana nos deu, eu gostaria que vocês pensassem 
no seguinte: e, se nosso problema fosse somente como eu tinha falado, 
um tanto de varetas de cada cor, imaginem que nós não podemos ficar 
colocando cada hora um valor. Como poderíamos reescrever essa 
expressão que vocês colocaram pra mim?
Rafael: Então, é só ficar trocando pelo número de varetas que cada 
pessoa tem e quanto não tiver nada coloca zero.
Fabiana: Mas Rafael, a professora quer saber como vai escrever a 
expressão se não souber o tanto.
Davi: Professora, não pode colocar a palavra desconhecido, ou um ponto 
de interrogação? Porque não sabe o tanto. Ou então fazer um desenho, 
igual aquela vez, das cadeiras43?

Na fala do estudante Davi, ao sugerir a utilização de uma palavra, do ponto de 

interrogação ou de um desenho, vemos surgir o movimento histórico da variável, defendido 

por Sousa (2004). No diálogo descrito vemos que o estudante busca caminhos para a 

representação, não direcionando-se automaticamente para a variável letra e percorre diferentes

43 Davi se refere a atividade 5 -  Pensando na Variável, apresentada no capítulo 4, em que propusemos aos 
estudantes, a criação da variável Letra.
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representações (variável palavra, numeral, letra, desenho). Segundo Sousa (2004, p. 154), 

“entendemos que a gênese substancial da álgebra está no desenvolvimento histórico do 

conceito de variável, o qual contém em seus fundamentos a palavra, sincopação, a figura e a 

letra”.

Sendo assim, consideramos que esse movimento remete à apropriação do conceito de 

variável, uma vez que o estudante está compreendendo a quantidade de varetas como um 

número mutável.

Contudo, notamos a dificuldade dos estudantes em formalizar o pensamento falado; o 

estudante Davi parece compreender a necessidade de representação onde seja possível 

quantificar um número desconhecido, mas faltam-lhe recursos para tanto. Acerca desse 

momento de iniciação da linguagem algébrica escrita, Vigotski (2001) nos esclarece que

[...] a álgebra é mais difícil do que a aritmética para a criança. A linguagem escrita é 
a álgebra da escrita. Entretanto, da mesma forma que a apreensão da álgebra não 
repete o estudo da aritmética, mas representa um plano novo e superior de 
desenvolvimento do pensamento matemático abstrato, que reconstrói e projeta para 
o nível superior o pensamento aritmético anteriormente constituído, de igual 
maneira a álgebra da escrita ou linguagem escrita introduz a criança no plano 
abstrato mais elevado da linguagem, reconstruindo assim, o sistema psicológico da 
linguagem falada anteriormente constituído (VIGOTSKI, 2001, p. 314).

Ou seja, os estudantes se viram em uma situação onde deveriam expressar seu 

conhecimento a partir do geral, em que a aritmética não lhes fornecia condições para resolver 

o problema proposto. Assim, acreditamos ter gerado, nesses estudantes, a necessidade do 

conhecimento algébrico, quando ainda não tinham clareza na representação desse número 

desconhecido e variável.

Acompanhemos mais um trecho do diálogo:

Professora: Davi, se nós colocarmos um único desenho ou mesmo o ponto 
de interrogação em cada lugar, o que ele estaria dizendo pra nós?
Davi: Um tanto de varetas que a pessoa pegou que nós não sabemos 
quanto é!
Rafael: Mas aí, não pode Davi, porque senão vai ficar parecendo que foi 
tudo igual, tudo o mesmo tanto, e pode ser tanto diferentes.
Professora: Isso mesmo Rafael, para esse caso, se nós usarmos sempre o 
mesmo símbolo, seja um desenho ou o ponto de interrogação, isso iria 
representar que são sempre os mesmos valores.
Fabiana (interrompendo a fala da Professora): E a quantidade de varetas 
varia né professora, mas não pode ser mais do que tem pra cada cor? 
Professora: Pode variar né Fabiana, vai depender da sorte e da eficiência 
na pessoa no jogo!
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Esse trecho nos apresenta maiores indícios da formação do conceito de variável, uma 

vez que os estudantes relacionam, ainda que de forma implícita, a variável ao campo de 

variação, em suas falas mencionam estes conceitos, ao relatarem que a quantidade de varetas 

pode variar, mas que não poderá ser superior a quantidade de cada cor de varetas presentes no 

jogo. Conforme as palavras de Scarlassari (2007), podemos acreditar que os estudantes 

encaminhavam-se para a formação do pensamento algébrico.

Quando nos referimos ao pensamento algébrico, relacionamos a este, além da 
operacionalidade, as ideias de movimento quantitativo, regularidade, variabilidade, 
dependência, intervalo numérico e outros. Esses são os nexos da aritmética que 
compõe a totalidade do pensamento algébrico que devem ser trabalhados em sala de 
aula por meio de atividades que instiguem o pensamento dos alunos, que 
possibilitem que eles desenvolvam tais conceitos. Sem o desenvolvimento destes 
conceitos e suas relações, o aprendizado de álgebra se torna fragmentado, como se 
fosse apenas aplicações de técnicas, sem a compreensão de que a álgebra é um 
instrumento muito útil para a resolução de problemas e uma ferramenta que pode 
facilitar o estudo de outras áreas além da Matemática (SCARLASSARI, 2007, p. 
40).

Sousa, Panossian e Cedro (2014, p. 122), também já nos alertavam acerca desse 

encaminhamento dos estudantes, isto é, esses autores afirmam que “a variável é a fluência, o 

próprio movimento, o fluxo do pensamento. [...] Só há sentido em mencionar a palavra 

variável, a partir do momento em que se considere o campo numérico. Ela não tem existência 

por si só, enquanto ser em si”. Logo, os estudantes se direcionavam à relação de dependência 

entre a variável e o campo de variação. Salientamos que o nexo conceitual campo de variação 

foi retomado posteriormente, nessa mesma atividade, visando um movimento maior para sua 

apreensão, o qual apresentaremos na Cena 3.

Encaminhamos, então, o diálogo a fim de formalizar o conceito de variável:

Professora: Então pensem um pouquinho, como podemos escrever aquela 
expressão de vocês, sem ter que saber qual o valor exato que foi pego de 
varetas e, pensando que ele pode variar, ou seja, pode ser qualquer valor, 
desde que não ultrapasse a quantidade máxima de cada cor de varetas? 
Silêncio por alguns minutos...
Fabiana: Já sei!!! Vamos escrever igual a Thaís fez aquela hora, pra 
vareta preta pt, pra vareta amarela am, pra azul az, pra vermelha vm, e 
pra verde vd. Porque assim, dá pra saber o que o pt, am, az, vm e vd 
representam e, depois é só trocar pela quantidade de varetas que a 
pessoa pegou.
Professora: Vocês concordam?
Classe: Simmmmmm!!!
Professora: Ok, então! Como vai ficar a expressão então?
Davi e Fabiana: 50pt + 15am + 20az + 10vm + 5vd.
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Professora: Perfeito!!!

O registro escrito dos estudantes Davi e Fabiana, se deu conforme apresentamos na 

figura 25:

_____ Figura 25: Registro dos Estudantes Davi e Fabiana___________
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Fonte: Arquivos da Pesquisadora

Por meio do diálogo estabelecido entre estudantes e professora e da expressão 

algébrica apresentada por eles, podemos inferir que conseguiram generalizar o modo de 

representar a pontuação do jogo Pega Varetas, considerando os pontos e a quantidade de 

varetas obtidas, o que nos leva a entender que, para eles, houve a formação do conceito de 

variável, pois

[...] a generalização de um conceito leva à localização de dado conceito em um 
determinado sistema de relações de generalidade, que são os vínculos fundamentais 
mais importantes e mais naturais do conceito. Assim, generalização significa ao 
mesmo tempo tomada de consciência e sistematização de conceitos (VIGOTSKI, 
2001, p. 292).

Conforme apresentamos acima, os estudantes sentiram a necessidade de limitar os 

possíveis valores para as variáveis, ou seja, não poderiam exceder ao número máximo de 

varetas de cada cor presente no jogo. Esse fato nos levou a direcionar nossas atividades de 

ensino para a apropriação do nexo conceitual campo de variação, conforme a apresentamos na 

Cena 3.

Cena 3: Nexo Conceitual: Campo de Variação

A partir da expressão algébrica 50pt + 15am + 20az + 10vm + 5vd apresentada por 

Davi e Fabiana, propusemos as seguintes questões para que os trios discutissem:

11. Considere a expressão algébrica T, para representar o total de pontos em cada jogada, T: 50pt 
+ 20az + 15am + 10vm + 5vd, onde pt, az, am, vm e vd representam, respectivamente, o 
número de vareta preta, azul, amarela, vermelha e verde. Qual é o papel das letras pt, az, am, 
vm, vd na expressão T?
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12. O conjunto de valores que cada variável pode assumir é chamado de Conjunto Universo da 
variável. Escreva o Conjunto Universo para cada uma das variáveis da expressão T da questão
11.

Vejamos o desenrolar dessa discussão pelo trio Carlos, Junior e Pedro Henrique:

Pedro Henrique: Então, pela expressão o pt é o número de varetas 
pretas, az é a quantidade de varetas azuis, am a quantidade de varetas 
amarelas, vm a quantidade de varetas vermelhas e vd é quantidade de 
varetas verdes.
Pedro Henrique: Tá bom então, ela quer saber o papel das letras?
Carlos: Isso. A gente não sabe quanto vale, porque cada pessoa pode 
pegar um número diferente de varetas.
Junior: Gente é só pensar assim, o papel é isso que o Carlos falou, contar 
pra gente quantas varetas de cada cor, a pessoa pegou. Então, como pode 
ter diferentes quantidades pra cada um, usa a letra pra indicar que pode 
ser qualquer valor e depois troca na cor. Como a gente fez com a 
expressão que a gente escreveu.
Pedro Henrique: Beleza, então, o pt só pode ser igual a 1, porque só tem 1 
vareta preta.
Carlos: Concordo.
Junior: Mas a pessoa pode não pegar nenhuma vareta preta, então acho 
que o pt, pode valer 0 ou 1.
Pedro Henrique: É verdade. Eu na terceira rodada do jogo, não peguei 
nenhuma vareta azul e nem preta, então tem hora que a letra vale zero 
mesmo, porque pode acontecer de não pegar daquela cor.
Junior: Isso mesmo Pedro Henrique, eu pensei isso, porque teve uma 
rodada que não peguei nenhuma, a mesa mexeu na hora e perdi a vez! 
Carlos: Então o pt vai de 0 a 1. O az vai de 0 a 5, am de 0 a 3, vm 0 a 5 e 
vd de 0 a 7.
Pedro Henrique e Junior: Isso. Professora terminamos.
Professora: Meninos só vamos melhorar um pouquinho. Foi pedido o 
conjunto de valores, vamos tentar escrever isso um pouquinho melhor. 
Como se escrevem os valores de um conjunto?
Pedro Henrique, Junior e Carlos: Vixi, professora!
Carlos: Tem que colocar todos os valores de cada letra professora, tipo 
assim, para a letra vm = 0, 1, 2, 3, 4, 5?
Professora: Isso Carlos, mas quando falamos em conjuntos numéricos, 
colocamos seus elementos dentro de chaves, lembram?
Carlos: Eu não lembrava não, mas tudo bem.... (risos)
Professora: E vamos usar uma notação especial, no exemplo que você deu 
Carlos, coloquem também Uvm, isso é, Conjunto Universo de varetas 
vermelhas.
Carlos: Ok!

Após nosso diálogo os estudantes formalizaram o seguinte registro:
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Figura 26: Registro do Trio Carlos, Junior e Pedro Henrique

Fonte: Arquivo da Pesquisadora

Pelo trecho anterior, vemos o quanto a proposta fomentou a apropriação do nexo 

conceituai campo de variação, uma vez que nos parece ter ocorrido que esse trio conseguiu 

apreender que para cada conjunto teremos uma possibilidade de valores a serem atribuídos, 

assim o trio se mostrou

capaz de concretizar a relação geneticamente inicial e universal do objeto em estudo 
em um sistema de conhecimentos particulares sobre ele, os quais devem manter-se 
em uma só unidade, que possa garantir transições mentais do universal ao particular 
e vice-versa (DAVÍDOV, 1987, p. 106).

Conforme discutido por Sousa, Panossian e Cedro (2014, p. 122), entendemos que, em 

nossa pesquisa, os estudantes também vivenciaram que “a essência da variável, 

necessariamente, está relacionada ou associada a um determinado campo de variação”.

Pelo caminho percorrido nas cenas 1, 2 e 3 deste episódio podemos inferir que os 

estudantes, em suas ações individuais e coletivas, se apropriaram dos nexos conceituais da 

álgebra (fluência, variável e campo de variação) e, parece-nos que essa apropriação conduziu 

os estudantes à formação do pensamento algébrico, já que

[...] as relações intrapsíquicas (atividade individual) constituem-se com base nas 
relações interpsíquicas (atividade coletiva). É nesse movimento do social ao 
individual que se dá a apropriação de conceitos e significações, ou seja, que se dá a 
apropriação da experiência social da humanidade (MOURA et al., 2010, p. 83).

Por meio do diálogo entre os grupos e com a classe toda, os estudantes puderam 

conflitar suas conjecturas, avaliar os caminhos escolhidos por cada grupo permitindo o 

compartilhamento de conhecimentos e exigindo novas qualidades às suas ações. Assim, os 

estudantes “têm de estudar essa conexão do geral com o particular e o singular, ou seja, operar
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com o conceito. A assimilação do material de estudo envolvida pelo conceito dado se efetuará 

no processo de transição do geral ao singular” (DAVYDOV, 1982, pp. 408-409).

Enfim, por tudo que discutimos, entendemos que os estudantes conseguiram se 

apropriar dos nexos conceituais da álgebra, uma vez que puderam contemplar o movimento 

dos fenômenos algébricos e constituir uma generalização essencial, estruturando o 

conhecimento teórico acerca da álgebra por meio do estabelecimento das relações de 

dependência, fluência, variável e campo de variação.

A partir da formação do pensamento algébrico, podemos agora, direcionar nosso olhar 

para a apropriação do conceito de equação de 1° grau. No Episódio 2, analisamos as ações e 

reflexões dos estudantes, interessadas agora em verificar se os sujeitos estavam em atividade 

de aprendizagem e se esta fomentou a apreensão do conhecimento do conceito abordado.

5.2.2. Episódio 2: Formação do Conceito de Equação de 1° Grau

Nesse episódio, nosso olhar direcionou-se a analisar se as ações e reflexões dos 

estudantes frente às SDA Enigma, Método do Retorno e jogo Triminó corroboraram para a 

formação do conceito e resolução de equações de 1° grau.

Como mencionado anteriormente, nesse episódio trazemos para análise as cenas 

intituladas de Equacionamento de Problemas e Estratégias de Resolução.

Cena 1: Equacionamento de Problemas

Nesse momento, como apontado no capítulo 4, nosso objetivo era proporcionar um 

primeiro contato com a representação das equações. Assim, após o jogo Pega Varetas, os 

estudantes receberam uma folha sulfite com o desafio: Descubra o valor da cor que está 

faltando em cada situação.

COR VALOR

Azul 5

Preta 15

Vermelha ?

Seq. de Cores Equação Resposta

Vermelha e Azul ? + 5 = 55

Preta e Vermelha 15 + ? = 25

Vermelha e Preta ? + 15 = 35



134

Seq. de Cores Equação Resposta

Azul e Preta 50 -  ? = 45

Preta e Vermelha ? + 10 = 30

Azul, Vermelha e Preta 50 + 10 + ? = 75

COR VALOR

Azul 50

Preta ?

Vermelha 10

COR VALOR

Amarela ?

Preta 50

Verde 20

Seq. de Cores Equação Resposta

Preta e Amarela 50 -  ? = 35

Amarela e Verde ? + 20 = 30

Amarela e Preta ? + 50 = 55

Seq. de Cores Equação Resposta

Azul, Azul e Verde ? + ? + 10 = 50

Verde, Vermelha e Azul 10 -  5 + ? = 20

Verde, Azul e Vermelha 10 + ? + 5 = 65

COR VALOR

Azul ?

Verde 10

Vermelha 5

COR VALOR

Amarela 15

Verde ?

Preta 20

Seq. de Cores Equação Resposta

Amarela, Verde e Preta 15 + 20 + ? = 45

Preta, Verde e Amarela 20 + ? -  15 = 10

Verde, Preta, Amarela e Amarela 0 = ? -  20 -  15 -  15

A fim de incentivar os estudantes apresentamos a proposta com a seguinte fala:

Professora: Meninos e meninas, nós temos agora o seguinte problema: 
vocês receberam uma folha com alguns pequenos desafios, nos quais 
terão que descobrir o valor de cada cor que está faltando, ele está 
representado pelo ponto de interrogação, mas atenção, em cada situação 
a cor terá um valor diferente, e este não é igual ao valor da cor no jogo 
Pega Varetas, os valores foram alterados, para dar mais emoção ao 
Enigma, ok? Vamos ver quem consegue resolver esse desafio!
Classe: Ok, professora!
Thaís: Professora está fácil demais, nem é desafio nada! É só ver o 
quanto falta pra dar o número depois do sinal de igual. Não tem segredo, 
estou fazendo rapidinho!
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Os estudantes resolveram o desafio de forma intuitiva, substituindo valores por meio 

da estratégia tentativa e erro, até encontrarem a solução de cada equação. De posse de nosso 

objetivo, que era proporcionar um primeiro contato com a representação das equações, a 

situação proposta possibilitou que fomentássemos o diálogo sobre o conceito de equação, 

conforme apresentamos em seguida.

Professora: Pessoal, no jogo Pega Varetas as expressões que vocês 
trabalharam eram...
Davi: Expressões Algébricas, professora.
Professora: Isso mesmo Davi, 50pt + 15am + 20az + 10vm + 5vd, 
representa a expressão algébrica dos pontos e do número de varetas 
obtidas no jogo. No desafio que vocês resolveram, trabalhamos com algo 
do tipo 50 - ? = 45, certo? Qual a diferença entre essa e a expressão do 
jogo?
Carlos: Ué, a de ontem tem uma única resposta e a expressão do jogo, 
pode ser qualquer resposta, depende do tanto de varetas que cada um 
pegar, a letra la podia variar e aqui eu acho que tem que ser um valor só! 
Professora: Ótimo Carlos é isso mesmo. Então se eu disser pra vocês que 
essas de ontem são chamadas de equações, como vocês explicariam para 
alguém que chegasse aqui agora o que significa uma equação?
Carlos: Equação é uma expressão matemática, mas que tem uma resposta 
certa, não pode ser qualquer número.
Professora: Ok. Mas vamos tentar melhorar um pouquinho. No lugar do 
ponto de interrogação, o mais comum são aparecerem letras, como nós 
fizemos para representar a quantidade de varetas, essas letras são 
chamadas de termo desconhecido ou incógnita, e representam o valor que 
poderá ser assumido para que se chegue no resultado, como o Carlos 
disse. Assim, escolham uma letra.
Davi: d, por causa do meu nome é claro!
Professora: Tudo bem! Agora Davi, reescreva a equação que eu falei 
como exemplo, trocando o ponto de interrogação pela letra d.
Davi: 50 - d = 45. Professora, então eu acho que entendi, equação vai ser 
uma expressão com letras, representando o número desconhecido e o 
sinal de igual. É isso?
Professora: Vocês concordam com ele, ou alguém tem uma opinião 
diferente?
Classe: É isso mesmo...
Professora: Bingo Davi!!! (risos) Ficaremos com essa definição dada por 
vocês então, gostaria de completar apenas dizendo que os termos que 
aparecem antes da igualdade são chamados de primeiro membro da 
equação e, após a igualdade de segundo membro da equação e, como aqui 
a incógnita apresenta expoente um, dizemos que essa é uma equação de 
1° grau.

Os estudantes, por meio do diálogo com seus pares e a professora definiram 

matematicamente os elementos de uma equação. Coletivamente, complementavam as ideias
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que surgiam, como por exemplo, quando o estudante Davi, a partir da fala de Carlos,

externaliza sua compreensão do conceito. O diálogo estabelecido nos leva a entender que
[...] o aprendizado desperta vários processos internos de desenvolvimento, que são 
capazes de operar somente quando a criança interage com outras pessoas em seu 
ambiente e quando em cooperação com seus companheiros. Uma vez internalizados, 
esses processos tornam-se parte das aquisições do desenvolvimento independente da 
criança (VYGOTSKY, 1989, p. 101).

Uma vez que os estudantes conseguiram formular sua própria definição para equação 

de 1° grau, almejávamos que os mesmos conseguissem equacionar problemas, fazendo uso da 

linguagem simbólica.

Para tanto, apresentávamos à classe alguns problemas e lançávamos como desafio que 

eles criassem uma equação para o problema enunciado. Os estudantes eram convidados a 

pensarem sozinhos inicialmente, em seguida, poderiam discutir com seus pares e, após alguns 

minutos, socializar para a classe a equação formulada pelo pequeno grupo. Alguns estudantes 

formavam duplas, outros trios ou quartetos, sendo que tais formações ocorreriam por 

afinidade entre os mesmos, sem qualquer interferência da professora.

Professora: Tenho agora um desafio a vocês. Gostaria que escrevessem 
uma equação para o seguinte problema: Ana ganhou uma caixa com 
bombons de sua mãe. Sua tia deu-lhe mais 12 bombons. Ana contou os 
bombons e descobriu que possui 25 unidades. Quantos bombons Ana 
tinha na caixa?

Um trio foi formado pelos estudantes Carlos, Junior e Pedro Henrique, estabeleceu o 

seguinte diálogo:

Carlos: Nós queremos descobrir a quantidade de bombons.
Pedro Henrique: Eu acho que, então, esse tanto que a gente não sabe, 
coloca a letra, então vamos colocar p de Pedro.
Carlos: Então tá. Vai ser p para o tanto de bombons, isso é o começo do 
problema, aí ela ganhou 12 e ficou com 25. Como a gente vai escrever uma 
equação?
Carlos: Se ela ganhou então aumenta, vai ser o sinal de mais. Então fica p 
+ 12.
Junior: Tá, 25 é o total, a equação tem que ter o igual, como 25 é o 
resultado, acho que ele fica depois do igual então.
Carlos: Ué então fica, p + 12 = 25.

Pelo diálogo do trio, vemos que o registro da equação, parece estabelecer um elo de 

significação estabelecido pelos estudantes do conceito de equação como uma sentença 

matemática, que contém variáveis e é expressa por um sinal de igualdade (LIMA;
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TAKAZAKI; MOISÉS, 1998). Esse fato nos leva a recorrer à Vigotski (2001, p. 236) que 

entende o processo de formação de conceitos como uma síntese complexa, no qual, “o 

momento central de toda essa operação é o uso funcional da palavra como meio de orientação 

arbitrária da atenção, da abstração, da discriminação de atributos particulares e de sua síntese 

e simbolização com o auxílio do signo”.

Além disso, ao observar e interagir com o objeto de estudo, a incógnita, podemos 

inferir que esses estudantes o transformaram, se apropriaram e passaram a se reconhecer no 

mesmo, como por exemplo, na fala de Pedro Henrique: “Eu acho que, então, esse tanto que 

a gente não sabe, coloca a letra, então vamos colocar p de Pedro”.

A fim de verificarmos se de fato, ouve a atribuição de significados culminando na 

apropriação do conceito de equação, indagamos os estudantes:

Professora: Tenho uma pergunta para vocês: existiria outra forma de 
escrevermos essa equação, nos referindo ao mesmo problema?
Silêncio por alguns instantes...
Junior: Tem sim, professora! Podia ser: 25 - p = 12. Porque se diminuir 
do total de bombons, que é 25, o que ela tinha no início, que a gente não 
sabe, vai ter que dar o tanto de bombons que a tia deu pra ela.
Carlos: É isso mesmo. Também concordo.
Pedro Henrique: Mas não vale colocar p - 25?
Junior: Não Pedro Henrique, porque 25 é o total de tudo e o tanto que 
ela tinha no começo é menos de 25, então o 25 vem primeiro, senão ia dá 
uma resposta negativa e não pode porque é o tanto de bombons, não faz 
sentido falar que ela tinha bombons negativos, porque é dela, ela tem! 
Pedro Henrique: Entendi, é isso mesmo. Eu não tinha pensado isso não, 
mas é isso mesmo.

Por meio das diferentes significações apresentadas pelos estudantes parece-nos que 

temos mais um indício da apropriação do conceito de equação de 1° grau, pois,

tal ou tal conteúdo, significado na palavra, fixa-se na linguagem. Mas para que um 
fenômeno possa ser significado e refletir-se na linguagem, deve ser destacado, 
tornar-se fato de consciência, o que, como vimos, se faz inicialmente na atividade 
prática dos homens, na produção (LEONTIEV, 1978, p. 86).

Mais ainda, “a linguagem não desempenha apenas o papel de meio de comunicação 

entre os homens, ela é também um meio, uma forma de consciência e do pensamento 

humanos” (LEONTIEV, 1978, p. 87).

Ao entendermos que houve a apropriação do conceito de equação de 1° grau pelos 

estudantes, podemos inferir que eles estavam em atividade (LEONTIEV, 1978) durante a
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realização das situações propostas pela professora, onde elencamos na sequência os elementos 

que categorizam a atividade dos estudantes segundo as ideias de Leontiev (1983):

Figura 27: Elementos que categorizam estudantes em atividade conforme Leontiev
(1983)

Necessidade

Saber a 
quantidade de 

bombons

Criar uma 
forma de 
escrever 

simbolicamente 
a situação 
proposta

Escrita 
simbólica de 

uma igualdade

Identificar 
quais 

elementos 
constituem uma 

equação de 
ordená-los

Equacionar o 
problema 

mediante os 
elementos 
obtidos

Fonte: Sistematização da Pesquisadora

Compete aqui enfatizarmos o fato de que, em diversos momentos, os estudantes 

trouxeram para o diálogo os nexos conceituais da álgebra (SOUSA, 2004) que foram 

discutidos em situações anteriores. Quando o estudante Carlos alega que na expressão 

registrada para o jogo Pega Varetas, “pode ser qualquer resposta, depende do tanto de 

varetas que cada um pegar, a letra lá podia variar” e completa dizendo que para a equação 

“tem que ser um valor só”, entendemos que o estudante remete-se à ideia de variável para o 

jogo das varetas e de incógnita para a equação, compreendendo assim a fluência da variável 

de acordo com o movimento que a mesma quantifica.

Quando o estudante Junior infere que a quantidade de bombons não poderia ser 

negativa, “senão ia dá uma resposta negativa e não pode porque é o tanto de bombons, 

não faz sentido falar que ela tinha bombons negativos, porque é dela, ela tem”, o mesmo
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remete-se ao nexo campo de variação, ao compreender o conjunto solução que se faz 

pertinente a essa equação.

Embora os estudantes demonstrassem apropriação do conceito e tivessem equacionado 

o problema proposto, ainda não haviam encontrado a solução para a questão de Ana. Acerca 

das estratégias de resolução das equações formuladas pelos estudantes, as apresentamos na 

Cena 2, onde trazemos as discussões dos estudantes em busca de uma estratégia para a 

resolução de equações de 1° grau.

Cena 2: Estratégias de Resolução

De posse da equação que o trio Carlos, Junior e Pedro Henrique havia formulado (p + 

12 = 25), nos dirigimos à lousa e, instigamos a classe acerca da resolução dessa equação:

Professora: Ok classe, vocês em duplas escreveram uma equação para o 
problema de Ana e conforme discutimos juntos, vamos ficar com a 
equação formulada pelo trio Carlos, Junior e Pedro Henrique, agora como 
podemos descobrir quantos bombons ela tinha?
Carlos: Professora, eu sei que a Ana tinha 13 bombons. Mas eu fiz a 
conta de cabeça, não usei a equação pra resolver não.
Professora: Beleza! Vamos começar por aí, sem problemas. Como você 
chegou nesse resultado Carlos?
Carlos: Então, eu fiz assim, com os 12 bombons que a tia deu pra ela, 
mais os que ela já tinha, ficam 25 bombons, então 25 menos 12 dá 13. E 
se eu somar 12 mais 13 dá os 25, então sei que minha conta está certa. 
Professora: Alguém discorda do Carlos ou pensou diferente?
Rafael: Professora, eu fiz a mesma conta, mas comecei pensando 
diferente do Carlos. Fiz assim, pensei que a gente precisa de um número 
que quando somar com 12 vai dar 25, ai eu fiz o 25 menos 12, e deu 13. 
Professora: Mas Rafael e Carlos, porque vocês fizeram 25 subtraindo 
12? Os dois falaram em um número que somado ao 12 resultaria em 25 e, 
no entanto, fizeram uma subtração ao invés de uma adição?
Rafael: Eu pensei no problema de traz pra frente, como eu não sei o 
número de bombons do começo e ela ganhou bombom pra dá 25, então se 
tirar os bombons que a tia deu dá o tanto que tinha no começo. Tipo a 
prova real, professora, que a gente fazia no 4° e 5° ano.
Carlos: É professora, pensa o contrário, que dá certo!!!!
Professora: Muito bem meninos, agora se nós tivéssemos que resolver a 
equação, achar essa resposta por meio dela, como poderíamos usar esse 
caminho que vocês encontraram para resolver a equação, que o trio do 
Pedro Henrique havia formulado p + 12 = 25?
Fabiana: Professora, eu entendi o que os meninos falaram, então o 12 não 
tinha que está antes do igual e sim depois pra ficar, p = 25 - 12, ai fazia a 
continha que eles falaram e ia achar p = 13.
Professora: Ok, Fabiana, eu acho que concordo com você, que deveríamos 
ter 25 menos 12, mas combinamos que a equação seria p + 12 = 25, ele
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não pode simplesmente desaparecer do primeiro membro da igualdade e 
aparecer do outro lado da igualdade subtraindo do 25. Eu acho que vamos 
ter que pensar uma forma de justificarmos isso. Como podemos fazer 
classe?
Rafael: Professora só se fizer assim, põe o 12 dos dois lados, aí 12 
menos 12 é zero, e aparece o 25 menos 12, depois do igual, aí vai ficar, p 
= 25 - 12, como a gente queria, como a conta que eu e o Carlos fizemos. 
Professora: Mas meninos e meninas, vocês concordam que eu posso fazer 
isso? Por que eu posso colocar o 12 subtraindo nos dois lados da 
igualdade? Como posso justificar esse passo?
Silêncio por alguns minutos...
Fabiana: Professora, é o que o Rafael falou aquela hora, o caminho 
inverso, então tem que aparecer o 25 diminuindo 12, e ele tem que sumir 
de antes do igual, o único jeito da conta da zero pra ele sumir é tirar o 
mesmo tanto que tem, então tem que ser 12 dos dois lados.
Professora: Complementando a Fabiana, um pouquinho, como estamos 
subtraindo o 12 dos dois lados da igualdade, não estamos alterando a 
igualdade, uma vez, que interferimos em ambos os lados, não a 
modificamos, certo?
Carlos: Certo, porque aí ele sumiu de um lado e apareceu onde a gente 
queria, e a senhora não muda nada, se somar o doze agora dos dois lados, 
volta para o que tinha antes.
Professora: Ótimo Carlos, é isso mesmo. Então Ana tinha 13 bombons, 
certo?
Classe: Simmmm....

Na figura 28 apresentamos a estratégia de resolução do estudante Rafael:

Figura 28: Registro do Estudante Rafael

Fonte: Arquivo da Pesquisadora

Os estudantes, mobilizados pelo desejo em descobrir a quantidade de bombons que 

Ana possuía, buscaram suas próprias estratégias para resolver o problema. Coletivamente
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conseguiram complementar as ideias que surgiram e justificar a estratégia utilizada. 

Elucidamos esse processo à luz das ideias de Moura et al. (2010) quando alegam que

[...] os sujeitos, mobilizados a partir do movimento de desenvolvimento da situação 
desencadeadora, interagem com os outros segundo as suas potencialidades e visam 
chegar a outro nível de compreensão do conceito em movimento. Além disso, o 
modo de ir se aproximando do conceito também vai dotando o sujeito de uma 
qualidade nova, ao ter que resolver problemas, pois, além de ter apreendido um 
conteúdo novo, também adquiriu um modo de se apropriar de conteúdos de um 
modo geral (MOURA et al., 2010, p. 103).

À medida que se inseriam nesse movimento e buscavam nova qualidade para a 

resolução da equação, os estudantes se aproximavam do método de resolução que fora 

desenvolvido por Bhaskara, conforme nos traz Lima, Takazaki e Moisés (1998):

De grande importância é o que ele mesmo [Bhaskara] chamou de “Método do 
Retomo” para resolução de equações. Método que consistia em começar a resolver 
as equações pelo fim. Para se chegar ao número procurado invertia-se todas as 
operações matemáticas que o problema prescrevia, um verdadeiro retorno sobre o 
enunciado. Este método encerra o princípio fundamental da álgebra em seu sentido 
mais puro: -  ‘al-jabr e wal-mugabala’ -  restauração e redução (LIMA; TAKAZAKI; 
MOISÉS, 1998, p. 22).

Com o intuito de obtermos novos elementos que constatassem nossas afirmações 

propusemos o jogo Triminó. Para essa proposta, os estudantes agruparam-se em duplas, 

determinadas por eles mesmos, seguindo o critério de afinidade.

O jogo Triminó, figura 29, era composto por 16 peças, contendo problemas e soluções. 

Para realizar as jogadas, os estudantes deveriam equacionar e resolver um problema e, 

encontrar uma peça com a respectiva resposta, conforme apresentamos na página seguinte:
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Figura 29: Jogo Triminó

Todas as peças do jogo estavam disponíveis na mesa, assim os estudantes as escolhiam 

aleatoriamente, resolviam os problemas e, depois, encaixavam os problemas com suas 

respectivas respostas. Na sequência, apresentamos o diálogo de uma dessas resoluções, da 

dupla Ana Paula e Vanessa.

Ana Paula: Vamos fazer esse aqui agora olha, Junior tem oito bonés a 
menos que Rian. Juntos eles têm 20 bonés. Quantos bonés Junior têm? 
Vamos montar a equação primeiro. Como a gente não sabe quanto de boné 
cada um tem então vamos colocar x. O Junior vai ser x e o Rian vai ser x 
- 8, porque ele tem oito bonés a menos.
Vanessa: Ana Paula, porque você está usando x, eu sei que pode ser 
qualquer letra mais porque x?
Ana Paula: Então eu estava conversando com meu irmão do nono ano e, 
descobri que se usa mais o x, então estou colocando x.
Vanessa: Tá bom Ana Paula, mas lê de novo o problema, tem uma coisa 
errada na sua equação, é o Rian que tem mais bonés, então o tanto de 
bonés dele é x. E, como o Junior tem oito a menos, vai ser x - 8.
Ana Paula: Verdade, é isso mesmo! Então o tanto do Junior mais o tanto 
do Rian, é igual a 20. Vai ficar então x - 8 + x = 20. Certo?
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Vanessa: Certo. Aí pode juntar os x num pode?
Ana Paula: Eu acho que pode. Professora... Aqui pode juntar os x, não 
pode? Porque eles são termos semelhantes, tudo letra x.
Professora: Isso Ana Paula, esses termos sao semelhantes porque 
apresentam a mesma parte literal.
Ana Paula: Isso, x + x é 2x, então fica 2x - 8 = 20, aí agora a equação vai 
estar resolvida quando a gente encontrar o valor de x, o tanto de boné 
do Rian, entao tem que tirar o 8 e o 2.
Vanessa: Essa eu sei, para tirar o 8, usa a operação inversa da subtração 
que é a adição, então vai somar 8 dos dois lados. Aí fica 2x - 8 + 8 = 20 + 
8, que vai da 2x = 28.
Ana Paula: Certo, aí pra tirar o 2, ele esta multiplicando porque eram 
dois x lembra, então o inverso da multiplicação é a divisão, então vai 
dividir por 2, dos dois lados, aí fica, x = 14.
Vanessa: Então o Rian tem 14 bonés e o Junior vai ter 14 menos 8, vai 
ser 6 bonés. Esta certo professora?
Professora: Eu quem faço essa pergunta, como podemos saber se esta 
certo?
Vanessa: Uai é só tirar a prova. Se o Rian tem 14 bonés e o Junior 6, 14 
mais 6 é 20 e, 6 mais 8 da 14, então esta certo.

Ao passo que dialogavam as estudantes Ana Paula e Vanessa realizavam o registro de 

suas ideias, conforme podemos verificar na figura a seguir:

Fonte: Arquivo da Pesquisadora
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Pela análise do diálogo parece-nos que o desejo de jogar mobilizou as estudantes para 

que demonstrassem a compreensão que elaboraram sobre o conceito de equação de 1° grau e 

sua resolução, envolvendo-os no processo de formar-se, ao desenvolver a atividade proposta.

Esse fato nos remete as ideias de Leontiev (1978), ao alegar que
as aquisições do desenvolvimento histórico das aptidões humanas não são 
simplesmente dadas aos homens nos fenômenos objetivos da cultura material e 
espiritual que os encarnam, mas são aí apenas postas. Para se apropriar destes 
resultados, para fazer deles as suas aptidões, “os órgãos da sua individualidade”, a 
criança, o ser humano, deve entrar em relação com os fenômenos do mundo 
circundante através de outros homens, isto é, num processo de comunicação com 
eles. Assim, a criança aprende a atividade adequada. Pela sua função, este processo 
é, portanto, um processo de educação (LEONTIEV, 1978, p. 272).

Podemos inferir que ao relatarem sua estratégia de resolução da equação, as estudantes 

demonstraram ter se apropriado do Método do Retorno, como estratégia de resolução de 

equações de 1° grau, uma vez que, por meio do coletivo, apropriaram-se de conceitos 

produzidos historicamente, além de atribuir nova qualidade a sua linguagem, ao fazerem uso 

de expressões como termos semelhantes e operações inversas, demonstrando consciência 

sobre o movimento que estão desencadeando.

Por tudo que foi exposto nesse capítulo, nossos dados nos direcionam a acreditar que 

os estudantes se apropriaram do conceito de equação de 1° grau e da resolução das mesmas, 

atribuindo sentido a esse movimento, a partir de uma nova qualidade dada a linguagem 

algébrica e que compreenderam o significado no número desconhecido em uma equação.

As análises realizadas permitiram compreender que, ao propormos situações 

desencadeadoras que oferecem aos estudantes a possibilidade de criar, dialogar e apreender 

conceitos matemáticos por meio de uma necessidade, eles conseguem atribuir significado e 

apropriar-se de conceitos matemáticos historicamente produzidos.

Os diálogos que apresentamos ao longo dessa análise nos remetem a pensar na postura 

do professor como mobilizador no ambiente escolar, buscando instigar seus estudantes, não 

apresentando respostas conclusivas as suas indagações, mas sim promovendo 

questionamentos que desencadeiam soluções às perguntas de seus discentes.

Por fim, destacamos a importância do desenvolvimento das relações sociais na escola, 

por acreditarmos que nossos estudantes apenas se envolveram com nossa proposta, por 

estarem inseridos em um ambiente de respeito às ideias apresentadas, não se sentindo 

intimidados ou constrangidos ao dialogarem com outros colegas ou com a professora 

pesquisadora. Conforme apresentamos nos diálogos, entendemos que a abordagem dos
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estudantes à professora se dava muitas vezes apenas para esclarecer dúvidas ou confirmar 

suas conjecturas, buscando assim apoio e sustentação as suas ideias.

No próximo capítulo, direcionamos nosso olhar às considerações acerca de nossa 

pesquisa, o movimento de formação do pensamento algébrico e do conceito de equações de 1° 

grau produzidos pelos estudantes, elucidando alguns de nossos olhares a fim de 

compreendermos se nossas inquietudes iniciais foram ou não esclarecidas.
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CONSIDERAÇÕES FINAIS

U m a p a la v r a  d e s p ro v id a  d e  p e n s a m e n to  é  u m a  c o isa  m o rta , e  u m  p e n s a m e n to  n ã o  
e x p re s so  p o r  p a la v r a s  p e r m a n e c e  u m a  so m b ra . A  r e la ç ã o  e n tre  e le s  n ã o  é, n o  
en ta n to , a lg o  j á  fo r m a d o  e  c o n s ta n te ;  su rg e  a o  lo n g o  d o  d e s e n v o lv im e n to  e ta m b é m  
se  m o d ific a  (V Y G O T S K Y , 1989 , p . 131).

As inquietudes e necessidades direcionadas ao objeto dessa pesquisa, a formação do 

pensamento algébrico e do conceito de equações de 1° grau por discentes do 7° ano do ensino 

fundamental, estiveram relacionadas à nossa formação como estudante da educação básica e à 

nossa preocupação durante nossa prática docente.

Buscamos, ao contrário do que nos fora oferecido enquanto estudante, um ensino que 

ofertasse aos sujeitos de nosso estudo a formação de significados matemáticos na perspectiva 

da Teoria Histórico-Cultural.

Partimos dessa teoria por entendermos a importância do sujeito perceber como o 

conceito se constituiu historicamente, de forma que tenha algum significado e sentido para 

ele, tornando possível a apropriação de conceitos.

Sentimos, assim, a necessidade de leituras referentes às ideias de Vigotski (1989; 

1991; 2001), Leontiev (1978; 1983), Davidov (1982; 1987; 1988; 1999) e Moura (1992; 

2000; 2001), a fim de inserirmo-nos em um ambiente que possibilitasse a apropriação de uma 

teoria no ambiente acadêmico correlacionando-a à nossa prática na escola de educação básica.

Ao nos vermos como docente da educação básica, para estudantes do 7° ano do ensino 

fundamental, vislumbramos uma oportunidade de colocar em prática um ensino que buscasse 

desencadear a necessidade de apropriação do conhecimento matemático teórico nestes 

estudantes.

Durante o desenvolvimento de nossa proposta, lançamos mão da escolha de um 

isolado (CARAÇA, 1951) para nossa pesquisa e o consideramos como um conjunto de dados 

que evidenciam interação, significação conceitual, além de possibilitar-nos encontrar “ações 

reveladoras do processo de formação dos sujeitos participantes” (MOURA, 2004, p. 272).

É importante destacarmos que, ao refinarmos nosso isolado, buscamos educar nosso 

olhar à um grupo específico de estudantes (duplas, trios, quartetos ou equipes nos quais os 

estudantes Ana Paula, Carlos, Davi, Fabiana, Junior, Pedro Henrique, Rafael, Thaís e 

Vanessa, faziam parte), pois entendemos que assim seria possível levantarmos melhores 

inferências de que os mesmos conseguiram atingir a formação do pensamento algébrico e se 

apropriaram do conceito de equação de 1° grau. Dessa forma, conseguimos acompanhar
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reflexões pessoais, negociações entre o grupo, podendo melhor justificar os diálogos 

apresentados e, se não houvesse esse refinamento, poderíamos emitir afirmações sem 

embasamento de quais diálogos levaram a tais considerações. Salientamos que, apesar de 

nosso olhar ter se dirigido, para efeito de elaboração deste relatório, a um grupo específico, os 

demais estudantes da classe colaboram igualmente nos diálogos e interagiram com as 

propostas apresentadas.

Ao delinearmos um olhar retrospectivo ao nosso estudo, deparamo-nos com um 

movimento de escrita e reescrita com relação à questão norteadora que motivou nossa 

pesquisa, donde formulamos ao final: quais implicações pedagógicas para o processo de 

formação do pensamento algébrico e do conceito de equação de 1° grau para os estudantes 

do ensino fundamental as atividades de ensino, desenvolvidas na perspectiva da Atividade 

Orientadora de Ensino, podem propiciar? A partir dela sentimos a necessidade de 

organizarmos o ensino com situações desencadeadoras de aprendizagem buscando, assim, que 

os sujeitos dessa pesquisa se colocassem em atividade (LEONTIEV, 2001).

Neste movimento de pesquisa, nos vimos em atividade de ensino (MOURA, 2000) ao 

passo que buscamos organizar uma unidade didática que permitisse cumprir o objetivo 

educacional da formação do pensamento algébrico e a apropriação do conhecimento teórico 

do conceito de equações de 1° grau por parte dos estudantes envolvidos. Compreendemos por 

pensamento o processo de reflexo consciente da realidade nas suas propriedades, ligações e 

relações objetivas (LEONTIEV, 1978) e o conhecimento sendo gerado pela atividade 

intelectual humana. Assim, depreendemos educação como o processo de apreensão de uma 

cultura produzida historicamente, onde, por meio dela, os sujeitos não sentem a necessidade 

de reinventar o mundo, mas permite conhecer os movimentos de desenvolvimento da 

humanidade e superá-los apreendendo novas qualidades aos conceitos já produzidos por 

civilizações anteriores.

No momento em que nos colocávamos em atividade de ensino, nosso objetivo admitia 

a qualidade de ensinar, nosso motivo se consolidava na busca da organização do ensino, 

nossas ações delineavam-se na busca em definir quais os procedimentos que poderiam 

colaborar para a apropriação do conhecimento teórico pelos estudantes e nossas operações 

versavam sobre a utilização de quais recursos metodológicos poderiam corroborar para o 

ensino, ou seja, a elaboração/adaptação das situações que desencadeariam nos sujeitos a 

necessidade do apreender determinado conceito, fruto de nosso desejo enquanto docente.
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Os estudantes estiveram em atividade de aprendizagem em que, mobilizados a partir 

do movimento gerado pelas situações desencadeadoras propostas, interagiram uns com os 

outros segundo as potencialidades de cada um e, por meio desse movimento das interações 

sociais, conseguiram atingir um novo nível de compreensão do conceito, atribuindo nova 

qualidade ao processo de apreensão desse, no qual houve a predominância do saber pensar ao 

invés do saber fazer e do conhecimento teórico sobrepondo-se ao conhecimento empírico, em 

um ambiente de respeito as ideias apresentadas pelo outro e constante negociação de 

significados.

Ao vivenciarem a situação desencadeadora do jogo Pega Varetas, os estudantes 

manifestavam um tipo de necessidade, de motivo inicial: registrar os pontos e o número da 

quantidade de varetas de cada rodada, de forma mais simples e rápida. Mais tarde, ao 

vivenciarem o momento da escrita de uma expressão algébrica para o cálculo dos pontos e do 

número de varetas do jogo, sua necessidade, seu motivo, consistia em compreender o que é 

uma expressão algébrica, quais são seus elementos, o que é uma variável e tentar escrever a 

expressão algébrica solicitada. Vimos, no decorrer dessa atividade, que ela se dirigia à 

satisfação de uma necessidade, as primitivas necessidades modificam-se e convertem-se em 

novas necessidades, que não são menos importantes, mas sim apenas dependem do momento 

em que o sujeito se encontra e qual o motivo que o impulsiona.

Notamos que os estudantes envolvidos em nosso estudo atribuíram nova qualidade às 

aulas de matemática, a partir do momento em que sentiram a necessidade em compartilhar 

ideias, negociar coletivamente significados, fomentando um aprendizado coletivo, onde o 

estudante não foi silenciado, mas sim, o protagonista de todas as aulas vivenciadas.

Compreendemos todo esse movimento nosso em atividade de ensino e dos estudantes 

em atividade de aprendizagem, como o movimento gerado dentro da atividade orientadora de 

ensino (MOURA et al., 2010), no sentido em que foi construída na inter-relação entre a 

professora pesquisadora e os estudantes, relacionada à nossa reflexão durante todo o processo, 

no qual sempre sentíamos a necessidade de reorganizar nossas ações por meio de uma 

contínua avaliação pautada nas ações e operações dos estudantes no decorrer da proposta.

Consideramos que nossas ações mobilizadoras foram aspectos que contribuíram para o 

caminhar da proposta, fomentando os diálogos dos estudantes, a organização dos caminhos 

por eles apresentados e a estruturação dos conceitos.

Respondendo a nossa questão de pesquisa, quais implicações pedagógicas para o 

processo de formação do pensamento algébrico e do conceito de equação de 1° grau para os
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estudantes do ensino fundamental as atividades de ensino, desenvolvidas na perspectiva da 

Atividade Orientadora de Ensino, podem propiciar?, a experiência de participar desta 

proposta para os estudantes, sujeito desta pesquisa, trouxe algumas implicações pedagógicas:

• os estudantes tornaram-se participantes ativos no processo de aprendizagem, tendo 

controle e responsabilidade sobre o mesmo, uma vez que os diálogos eram motivados 

mediante as necessidades apresentadas pelos estudantes;

• o planejamento das ações e os diálogos entre os estudantes ou para com a professora 

pesquisadora foram motivados por suas reflexões mediante o movimento da atividade 

de aprendizagem na qual estavam inseridos;

• a relação estudantes e situação desencadeadora fortaleceu-se e facilitou-se pelo fato 

dos estudantes atribuírem sentidos e significados ao problema que tentavam 

solucionar, assim como pelas relações sociais que se desenvolviam;

• o reconhecimento de que a construção coletiva das soluções dos problemas propostos 

foi de grande importância, uma vez que passaram a valorizar a fala do outro, buscaram 

complementar ou afirmar os diálogos apresentados pelos estudantes ou conflitar ideias 

a fim de melhor elucidar o problema proposto;

• a necessidade e o motivo para aprender eram considerados na atividade, uma vez que 

já não mais se perguntavam para que estudar determinado conteúdo.

Diante do exposto, cumprimos com o objetivo principal dessa pesquisa de analisar 

possíveis implicações pedagógicas para a formação do pensamento algébrico e a 

aprendizagem do conceito de equação de 1° grau para estudantes do 7° ano do ensino 

fundamental por meio da atividade de ensino.

Compreendemos que, ao buscar esse objetivo, conseguimos organizar uma unidade 

didática que permitiu: i) cumprir com o objetivo da formação conceitual do pensamento 

algébrico e de equações de 1° grau; ii) investigar as ações dos estudantes frente às atividades 

de ensino, concluindo que as mesmas tornaram-se atividades de aprendizagem e, por último, 

iii) concluímos que a atividade orientadora de ensino possibilitou o saber pensar e saber fazer 

dos estudantes.

As análises dos dados e a retomada dos estudos teóricos permitiram captar a 

potencialidade das atividades de ensino propostas e conseguimos por diversos momentos: i) 

considerar a historicidade do movimento humano (Arquiteto Amon Toado, o Método do 

Retorno, elaborado por Bhaskara); ii) os movimentos presentes no contexto social dos 

estudantes (Movimentos Numéricos, situações proposta para o Equacionamento); iii) as
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diferentes linguagens da álgebra (retórica, sincopada e simbólica) (EVES, 2002), nos jogos 

Banco Imobiliário, Pega Varetas, nos problemas a serem equacionados, dentre outros. 

Fizemos, também, menção aos outros tipos de linguagem encontradas no movimento histórico 

da álgebra (palavras e figuras) (SOUSA, 2004) e, ao construirmos com os estudantes o 

conceito de equação de 1° grau e as possíveis estratégias de resolução das mesmas, buscamos 

não conduzir a apresentação do conceito, mas à sua formação, caminhando assim para a 

aquisição do conhecimento teórico.

Por meio de nossos estudos teóricos e o desenvolvimento da proposta em conjunto 

com os estudantes, sujeitos de nossa pesquisa, elaboramos dois eixos de análises: situações 

desencadeadoras de aprendizagem e ações e reflexões coletivas.

Ao olharmos para ao Eixo 1, situações desencadeadoras de aprendizagem, buscamos 

enfatizar o aspecto potencializador para a aprendizagem que as situações desencadeadoras 

possuem e a necessidade que geraram nos sujeitos. O episódio 1 versou sobre a História 

Virtual do Conceito, onde, na cena 1, trouxemos o problema do Arquiteto Amon Toado, no 

qual foi apresentado um problema desencadeador com resgate histórico de como a civilização 

egípcia criou sua variável palavra (SOUSA, 2004). Essa atividade gerou nos estudantes a 

necessidade de descobrir a altura da coluna da pirâmide, uma situação nova para eles, haja 

visto o fato de em suas vidas escolares apenas terem sido apresentados problemas 

matemáticos com respostas fixas e imutáveis, contrariamente a essa situação desencadeadora, 

que permitiu aos estudantes o contato com o número desconhecido e flexível.

No episódio 2, Jogos, trouxemos na cena 1 o jogo Banco Imobiliário, no qual 

conseguimos gerar nos estudantes a necessidade do uso da linguagem simbólica (EVES, 

2002), como forma de registrar os movimentos do jogo de maneira mais rápida, uma vez que, 

inicialmente, restringimos que realizassem os registros por meio da linguagem retórica 

(EVES, 2002) e, apenas após sua inquietação, perceberam a necessidade da linguagem 

simbólica. Já na cena 2, Quiz, trouxemos algumas situações-problema, abarcando a ideia do 

campo de variação, no qual conseguimos discutir com os estudantes os limites máximos e 

mínimos para solucionar as situações propostas.

Para o Eixo 2, ações e reflexões coletivas, as análises dos dados e a retomada dos 

estudos teóricos permitiram captar a potencialidade dos nexos conceituais da álgebra, 

fluência, variável e campo de variação (SOUSA, 2004) para a formação do pensamento 

algébrico e apreensão do conceito de equações de 1° grau.
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No episódio 1, apresentamos como esses nexos foram apreendidos pelos estudantes e 

os diálogos que corroboraram para tanto, levando-nos a entender que a formação do 

pensamento algébrico só foi possível por considerarmos os nexos conceituais da álgebra, uma 

vez que, ao abordamos o nexo fluência, na cena 1, os estudantes puderam perceber o fluxo 

dos movimentos da vida, o movimento do pensamento humano. O nexo variável, abordado na 

cena 2, permitiu aos estudantes atribuírem significados aos símbolos utilizados, vivenciarem a 

fluência desse conceito ao longo do jogo Pega Varetas e formalizarem sua escrita por meio da 

linguagem algébrica, culminando na cena 3, onde o nexo campo de variação foi abordado, 

atribuindo os possíveis valores para as variáveis trabalhadas na cena 2.

Assim, os nexos conceituais da álgebra permitiram trabalhar os atributos internos e 

externos do conceito (DAVIDOV, 1987) pelos quais os estudantes compreenderam a 

necessidade do conhecimento algébrico, o movimento de desenvolvimento das linguagens que 

permitem expressá-lo, assim como a garantia do movimento de fluência no controle de 

quantidades, garantido pelo campo de variação.

No episódio 2, a vivência das situações desencadeadoras sobre o desenvolvimento do 

conceito das equações de 1° grau, cena 1, corroborou para que os estudantes, por meio dos 

seus próprios entendimentos e conjecturas, formulassem o pensar matemático explicitando 

suas significações acerca da transcrição dos problemas apresentados na linguagem retórica 

para a linguagem simbólica, compreendendo os elementos que constituem uma equação.

Na cena 2, os estudantes apropriaram-se das estratégias de resolução das equações de 

1° grau, estabelecendo os princípios das operações inversas, termos semelhantes, para então 

determinar o valor desconhecido. Ressaltamos ainda que, durante esse processo, os estudantes 

passaram a se reconhecer com o objeto de estudo, quando, por exemplo, atribuíam à incógnita 

a letra inicial de seus nomes.

A natureza das atividades propostas, baseadas na Atividade Orientadora de Ensino, 

associada à postura participativa dos estudantes, propiciou a ruptura do pensamento mecânico, 

da maneira de olhar para uma determinada proposta buscando um número que a solucione. Ao 

contrário, os estudantes despertaram para uma matemática conceitual, compreendendo as 

justificativas de suas ações mediante as necessidades que as motivaram.

Acreditamos que nossa unidade didática, o produto educacional gerado nessa pesquisa, 

não possui como fundamento ser um modelo de atividades de ensino (MOURA, 2004) acerca 

do conhecimento algébrico para estudantes do 7° ano, uma vez que são muitas as variáveis 

envolvidas nesse movimento do ambiente escolar. Esta pesquisa não contribui oferecendo
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modelos a serem seguidos com garantia de sucessos, pois no decorrer da proposta em sala de 

aula muitas foram as (re)organizações necessárias visando atender as necessidades e 

inquietudes dos estudantes.

Caminhando para o encerramento de nossas considerações, gostaríamos de salientar 

que todos os resultados que apresentamos somente foram possíveis devido à dedicação de 

nossos sujeitos, a responsabilidade que sempre apresentaram quanto a assiduidade nas aulas, o 

envolvimento com a proposta, o desprendimento com relação a apresentarem seus 

questionamentos expondo-se ao restante da classe, engajando-se no movimento por nós 

proposto.

Por fim, ao refletirmos sobre todo esse processo que vivenciamos, deparamo-nos com 

uma forma diferente de olhar para o ensino: se fez notável o vínculo gerado entre a teoria 

estudada e as atividades propostas e, hoje, nos vemos com a necessidade de refletir sobre 

nossa prática docente, organizando o ensino de modo a gerar no estudante a necessidade de 

apreender o conceito, priorizando assim a apropriação do conhecimento em detrimento de 

cálculos sem quaisquer significações.

Desejamos que essa pesquisa contribua à área de Educação Matemática, uma vez que 

entendemos a importância de que se reflita sobre o ensino e aprendizagem da matemática, e 

acreditamos que, por meio das situações desencadeadoras de aprendizagem o estudante possa 

se apropriar da formação do conhecimento teórico.
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A: Termo de consentimento livre e esclarecido

Prezado(a) senhor(a), o(a) menor, pelo qual o(a) senhor(a) é responsável, está sendo 
convidado(a) para participar da pesquisa intitulada “O ENSINO DE ÁLGEBRA NA 
PERSPECTIVA DA TEORIA HISTÓRICO-CULTURAL: UMA PROPOSTA PARA O 
TRABALHO COM EQUAÇÕES DE 1° GRAU”, sob a responsabilidade dos pesquisadores 
Fabiana Fiorezi de Marco e Beatriz Aparecida Silva Alves. Nesta pesquisa nós estamos 
buscando aprimorar o ensino de equações do primeiro grau para estudantes do 7° ano do 
ensino fundamental. O Termo de Consentimento Livre e Esclarecido será obtido pela 
pesquisadora Beatriz Aparecida Silva Alves, a pesquisa iniciará durante as aulas de 
matemática, realizadas na Escola Municipal Freitas Azevedo, no ano letivo de 2014, que 
atua como professora responsável pelos menores que participarão do estudo.
Na participação do(a) menor, ele(a) participará das atividades propostas em sala de aula, 
sendo que estas serão filmadas -  preservando sua identidade -  além dos registros por 
escrito realizados durante a atividade. Após a transcrição das gravações para a pesquisa 
as mesmas serão desgravadas. Em nenhum momento o(a) menor será identificado(a). Os 
resultados da pesquisa serão publicados e ainda assim a sua identidade será preservada. O(A) 
menor não terá nenhum gasto e ganho financeiro por participar na pesquisa. O único risco, da 
participação do(a) menor na pesquisa, se faz com relação à identificação dos participantes. 
Porém a equipe se compromete a preservar as identificações dos participantes. Em caso 
de filmagens, estas serão direcionadas apenas para mãos e ações dos participantes, não 
registrando os rostos. Para áudios e registros escritos serão utilizados pseudônimos. Os 
benefícios serão contribuição para a área de Educação Matemática em álgebra para o 
ensino fundamental, e, os participantes poderão aprender sobre a história da álgebra e, 
suas aplicações para a sociedade. O(A) menor é livre para deixar de participar da pesquisa a 
qualquer momento sem nenhum prejuízo ou coação. O(A) menor cuja participação não seja 
autorizada não sofrerá qualquer prejuízo nas suas atividades escolares.
Uma via original deste Termo de Consentimento Livre e Esclarecido ficará com o(a) 
senhor(a), responsável legal pelo(a) menor.
Qualquer dúvida a respeito da pesquisa, o(a) senhor(a), responsável legal pelo(a) menor, 
poderá entrar em contato com: Beatriz Aparecida Silva Alves -  Escola Municipal Freitas 
Azevedo -  (34) 3224-9527. Poderá também entrar em contato com o Comitê de Ética na 
Pesquisa com Seres-Humanos -  Universidade Federal de Uberlândia: Av. João Naves de 
Ávila, n° 2121, bloco A, sala 224, Campus Santa Mônica -  Uberlândia -MG, CEP: 38408­
100; fone: 34-32394131.

Uberlândia,____de____________ de 20____

Assinatura dos pesquisadores

Eu, responsável legal pelo(a) menor _________________________________________
consinto na sua participação no projeto citado acima, caso ele(a) deseje, após ter sido 
devidamente esclarecido.

Responsável pelo(a) menor participante da pesquisa


