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RESUMO 

 

 

Pesquisas revelam que no processamento de frutas cerca de 40% do volume total processado é 
descartado. Os resíduos de acerola se caracterizam pelo elevado valor nutricional atribuído à 
presença de ácido ascórbico e compostos bioativos, fenólicos e flavonoides. Análises 
químicas desse resíduo sugerem que o mesmo possui quantidades consideráveis de 
carboidratos, proteínas, lipídios e fibras, macro nutrientes essenciais ao organismo. Entraves 
como elevada umidade limita a vida útil de subprodutos (farinha por exemplo)  provenientes 
deste resíduo. Entre os equipamentos de secagem, o leito de jorro possui elevado interesse 
econômico. Exposições a elevadas temperaturas e tempos longos de operação podem afetar a 
qualidade nutricional do produto. Testes preliminares com sementes de acerola em leitos de 
jorro revelaram dificuldade de escoamento desse material, fato esse contornado pela adição de 
soja como material inerte. Caracterizações físicas da soja comprovaram o seu auxílio na 
escoabilidade do resíduo de acerola. O presente estudo teve como objetivo avaliar a eficácia 
de pré-tratamentos sobre a secagem de resíduo de acerola em leito de jorro, confrontando-se 
as características nutricionais do resíduo de acerola antes e após a secagem. Como pré-
tratamentos foram avaliados: a aplicação de ultrassom (meio aquoso e etanólico) e a 
pulverização de etanol. A partir dos resultados obtidos verificou-se que desidratações (sem 
pré-tratamentos) de sementes de acerola realizadas a 60oC, com vazão de ar 5% acima do 
jorro mínimo e fração de acerola de 35% se mostraram favoráveis. O uso de ultrassom em 
meio aquoso contribuiu para a redução de umidade do resíduo de acerola, entretanto 
degradações dos teores de ácido ascórbico e de fenólicos foram verificadas. A troca do meio 
de imersão de água por etanol e o tratamento com pulverização de etanol se mostraram 
favoráveis, sendo possível a redução do tempo de secagem em 25%.  O planejamento 
experimental adotado possibilitou avaliar os efeitos das variáveis (temperatura, volume de 
etanol e vazão de ar) sobre os teores nutricionais. O estudo por meio de simulações 
computacionais de propriedades físicas relativas ao movimento granular pode contribuir de 
modo satisfatório na determinação do comportamento fluidodinâmico das partículas no leito 
de jorro. Dentro desse contexto, faz ainda parte do escopo desse trabalho o estudo por meio de 
simulações numéricas de parâmetros fluidodinâmicos (ângulos de repouso estático e dinâmico 
e porosidade) que afetam o deslocamento das partículas no leito de jorro. Dentre os 
parâmetros estudados destacaram-se os efeitos dos coeficientes de atrito estático e de 
rolamento. As parametrizações adotadas se mostraram adequadas, sendo obtidos modelos 
preditivos capazes de determinar os efeitos dos parâmetros e de suas interações sobre as 
respostas. 

  



 
 

 
 

ABSTRACT 
 
 
 

Researches have shown that around 40% of the material produced in fruit processing is 
disposed off. Acerola residues have a high nutritional value due to the presence of ascorbic 
acid and bioactive, phenolic and flavonoid compounds. Chemical analyses have suggested 
that these residues have a considerable amount of carbohydrates, proteins, lipids and fibers, 
which are essential macronutrients to the human body. However, some issues, such as 
moisture, can diminish the shelf life of the flour produced from acerola residues. The 
exposition to high temperatures for a long time can affect the nutritional quality of the 
product. Among the drying methods, the spouted bed presents a high economic interest. 
Preliminary tests with acerola seeds in spouted bed revealed difficulties in the material flow  
material; however, this issue was solved by adding soy as inert material. The physical  
caracterization of soy was found to be useful to understand the flowability of acerola residues. 
This research aimed to evaluate the efficacy of pretreatments in the drying of acerola residues 
in spouted bed by comparing the nutritional properties of the residues before and after drying. 
The pretreatment processes evaluated were the application of ultrasound (in aqueous and 
ethanolic mediums) and the ethanol spraying. The results obtained showed the dehydration of 
(non pretreated) seeds of acerola performed at 60 ºC, air flow 5% higher than the minimum 
spout and percentage of acerola of 35% was satisfactory. The use of ultrasound in the aqueous 
medium reduced the moisture  of acerola residues; however, it also degraded the ascorbic acid 
and phenolic contents. The immersion in ethanol and the ethanol spraying treatment presented 
good results and decreased the drying time in 25%.  The experimental design adopted in this 
study allowed the analysis of the effects of variables (temperature, volume of ethanol and air 
flow) on the nutritional content. Computer simulations can satisfactorily contribute to predict 
the physical properties of the particle movement and determine the fluid dynamic behavior of 
particles in the spouted bed. In this context, this research also used numerical simulations to 
study the fluid dynamic parameters (dynamic and static angles of repose and porosity) that 
can affect the movement of particles in the spouted bed. The main parameters analyzed were 
the effects of the static and rolling friction coefficients. Parameterizations were adequate to 
predict models that determined the effects of parameters and their interactions with responses. 
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CAPÍTULO 1 

 

 

Introdução 

  

As diversidades no clima e no solo brasileiro têm contribuído de modo relevante na 

economia agrícola relacionada ao setor de fruticultura, onde o País ocupa uma posição de 

destaque na produção mundial. Dentre os países produtores em evidência no ramo da 

fruticultura encontram-se: China, Índia e Brasil. Em 2012, os três países colheram juntos 

357,761 milhões de toneladas de frutas frescas, o equivalente a mais de 40% da produção 

mundial (Anuário Brasileiro de Fruticultura, 2013).  

Dentro desse contexto, o Brasil ocupa a terceira colocação na produção mundial de 

frutas com recorde de produção em 2011 com 44,955 milhões de toneladas. No ano de 2012, 

de acordo com a FAO (Organização das Nações Unidas para a Alimentação e a Agricultura) o 

Brasil produziu cerca de 43,912 milhões de toneladas. Em 2013, a colheita foi de 40,253 

milhões de toneladas de frutas (Anuário Brasileiro de Fruticultura, 2013). Dentre as colheitas 

de frutas destacam-se as de: laranja, banana, abacaxi, melancia, mamão, uva, maçã, manga e 

limão. Quanto ao destino produtivo, cerca de 712 mil toneladas são enviadas ao mercado 

externo, especialmente para a Holanda, Reino Unido e Espanha  (IBRAF, 2014). 

Frutas tropicais consideradas exóticas como cajá, umbu, acerola, seriguela, pitanga, 

cultivadas na região Nordeste do Brasil, são bastante ácidas e possui baixa razão 

polpa/caroço, o que favorece o consumo destas frutas na forma de sucos. Geralmente, os 

frutos contêm, além dos nutrientes essenciais e de micronutrientes como minerais, fibras e 

vitaminas, diversos compostos secundários de natureza fenólica, denominados polifenóis. 

Dentre as frutas tropicais a acerola destaca-se devido ao elevado teor de vitamina C 

(em média de 1500 mg/100 g de polpa) o qual somente é superado pelo fruto camu-camu. O 

consumo de frutas ricas em vitamina C vem sendo incentivado, pois o organismo humano é 

capaz de absorver 100% da vitamina C quando a mesma apresenta-se na forma in natura, fato 

não evidenciado na ingestão de vitaminas sintéticas, com apenas 50% de absorção (ARAÚJO 

e MINANI, 1994). Ressalta-se que o ácido ascórbico é uma das vitaminas mais importantes 

por contribuir na prevenção do escorbuto. 

A acerola (Malpighia emarginata D. C.) caracteriza-se ainda pela presença de 

carotenoides, antocianinas (LIMA et al., 2000b) e fenólicos (CAETANO, 2009) que fornecem 
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ao fruto a característica antioxidante. Os carotenoides desempenham efeitos benéficos sobre a 

saúde na prevenção de câncer, doenças de coração e como reguladores de resposta do sistema 

imune (UENOJO et al., 2007). As antocianinas são flavonoides produzidos naturalmente 

pelos vegetais como mecanismo de proteção. São fontes importantes de antioxidantes e seu 

papel na prevenção de doenças cardiovasculares está relacionado à proteção contra o estresse 

oxidativo, à peroxidação lipídica e à redução no processo inflamatório.  De acordo com 

Podsedex (2007) os compostos fenólicos contribuem de modo relevante com benefícios à 

saúde, sendo considerado um dos principais compostos bioativos. Os flavonoides, 

pertencentes à família dos fenólicos, possuem propriedades bioquímicas e farmacológicas; 

atividades antioxidantes, antivirais, anticarcinogênicas e anti-inflamatória.  

Inúmeras são as aplicações práticas da acerola, sendo as alimentícias (fabricação de 

sucos, refrigerantes, bombons, geleias e compotas) as de maior importância. O uso de acerola 

nos setores de medicamentos e cosméticos são relatados por Souza et al. (2013). No entanto, 

no Brasil as formas comumente comercializadas da acerola são o fruto in natura, a polpa 

congelada e o suco engarrafado. 

Segundo estatísticas do Anuário Brasileiro de Fruticultura de 2013, desconsiderando-

se as perdas,  cerca de 53% das frutas frescas produzidas por ano no Brasil são consumidas in 

natura pelos consumidores internos e o restante (47%) segue para a indústria de 

processamento, ou seja, para a produção de polpas e sucos. Dentro desse contexto, quantidade 

significativa de resíduos é gerada, constituídos principalmente por sementes e cascas. 

De acordo com Aldrigue et al. (2002), são processadas anualmente 34,4 mil 

toneladas de acerola nas indústrias brasileiras, produzindo-se cerca de 18 mil toneladas de 

sucos e polpas. Entretanto, resíduos (bagaços, sementes e cascas) provenientes do processo 

fabril, entre 15% a 41% do volume total processado são simplesmente descartados ou 

adicionados em formulações de rações animais.  

Pesquisam apontam que esses resíduos destacam-se pela presença de compostos 

bioativos (DUZZIONI et al., 2013) o que tem desepertado interesse em seu aproveitamento, 

seja na forma de farinhas ou no enriquecimento de barra de cereais ou na formulação de 

cereais matinais. Teores elevados de umidade dos resíduos de acerola inviabilizam a produção 

de farinha a partir desse material. Desse modo, visando à conservação e evitando-se a 

deterioração do produto, a secagem evidencia-se entre os métodos de conservação, quando se 

leva em consideração aspectos econômicos e operacionais.  

As técnicas de secagem  em leitos agitado, fluidizado e de jorro têm se tornado 

populares e, aplicações com sucesso vêm sendo adotadas em todos os setores, especialmente 
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no alimentício (YOUNES, 2010; MEDEIROS et al., 2002; MORTOLA et al., 2003; 

NAGARAJU; BHATTACHARYA, 2010 e SOUZA, 2009). Os custos elevados de operação e 

de instalação do secador spray dryer contribuíram para a pesquisa de novas técnicas de 

secagem, dentre elas o uso de leitos de jorro. Os reduzidos investimentos iniciais e o custo 

operacional reiteram o interesse pelo uso do leito de jorro nesta e em diversas outras 

aplicações (MATHUR e EPSTEIN, 1974). 

A secagem de alguns materiais representa um desafio para os pesquisadores, pois 

fatores como a natureza termossensível e a diversidade nas propriedades dos materiais tornam 

o processo ainda mais complexo, requerendo estudos mais aprofundados. Sendo assim, na 

prática, secadores distintos são utilizados dependendo do tipo de alimento e às demandas 

requeridas.  

Estudos anteriores (Bortolotti, 2012) apontaram a reduzida escoabilidade dos 

resíduos de acerola em leito de jorro. Dentro desse contexto, soja foi adicionada como 

material inerte contribuindo para a fluidodinâmica do processo. Secagens de misturas 

constituídas por resíduos de acerola e grãos de soja, em leito de jorro, foram conduzidas em 

um estudo preliminar por Bortolotti (2012) no entanto, sem adoção de pré-tratamentos. 

Pré-tratamentos como aplicação de ultrassom, micro-ondas, pulverização de etanol e 

osmose vêm sendo adotados com sucesso na esfera alimentícia (ROMERO J.; YÉPEZ V., 

2015; LEONELLI; MASON, 2010; NUÑEZ-MANCILLA et al., 2013). Dentre as vantagens 

dos pré-tratamentos destaca-se o aumento das taxas de transferência de massa.  

Diante do exposto e objetivando aumentar a eficiência de secagem, o presente estudo 

foi conduzido utilizando secagem em leito de jorro e adotando-se o ultrassom e a pulverização 

de etanol como formas de pré-tratamento. Desta forma, este estudo teve como objetivo geral 

avaliar os efeitos de pré-tratamentos sobre a secagem de resíduos de acerola em leito de jorro, 

visando à obtenção de um produto com reduzida umidade e elevado teor nutricional. 

Como objetivos específicos destacam-se: 

• Avaliar a eficácia de pré-tratamentos sobre a secagem de resíduo de acerola em leito 

de jorro, confrontando-se as características nutricionais do resíduo de acerola antes e 

após a secagem; 

• Estudar a segregação axial da mistura no leito de jorro;   

• Avaliar morfologicamente os efeitos dos pré-tratamentos adotados; 

• Investigar os efeitos de parâmetros (potência do ultrassom, volume do meio de 

imersão, temperatura e vazão de ar) sobre a secagem e a qualidade nutricional;  
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• Realizar um estudo experimental e de simulação (DEM) sobre a fluidodinâmica da 

mistura de resíduo de acerola/soja em leito de jorro; 

• Avaliar os efeitos dos parâmetros dos modelos de força sobre os ângulos de repouso 

estático e dinâmico. 
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CAPÍTULO 2 

 

Revisão Bibliográfica 

 

2.1 A acerola  

 
A acerola ou cereja das Antilhas é originária da América tropical, sendo amplamente 

cultivada no oeste das Índias e na América do Sul, principalmente, nas regiões Nordeste e 

Sudeste do Brasil.  

 A história da produção de acerola data de 1955, onde mudas procedentes de Porto 

Rico foram introduzidas no Estado de Pernambuco pela Universidade Federal Rural de 

Pernambuco,  através da variedade B-17. Fatores como qualidades nutricionais, facilidades de 

cultivo e adaptação edafoclimáticas contribuíram para a expansão da área cultivada desse 

fruto (EMBRAPA, 2009). 

Segundo censo de 2004 realizado pelo IBGE a área plantada com acerola no Brasil 

ultrapassa  a 10.000 ha e compreende os estados da Bahia, Pernambuco e Ceará, sendo esses 

os maiores produtores. Produções de acerola em torno de 33.000t de frutos, provenientes da 

Região Nordeste e do Estado de São Paulo foram estimadas pelo IBGE (2004).  

Seu cultivo para fins comerciais vem se expandindo no Brasil, país considerado 

mundialmente o maior produtor, consumidor e exportador de acerola (CARVALHO et al., 

2000). Expansões crescentes de plantios para fins comerciais vêm sendo realizadas em 

praticamente todos os estados brasileiros. Países como Estados Unidos, Alemanha, França e 

Japão, são os principais importadores deste fruto (EMBRAPA, 2009). 

A acerola (Figura 2.1) apresenta formato arredondado, ovalado ou mesmo cônico 

possuindo casca de espessura fina. Com dimensões entre 1 e 2,5cm de diâmetro e peso de 2 a 

12g, apresenta, normalmente, três sementes que podem corresponder a aproximadamente, 

10% do peso total da fruta. As sementes possuem dimensões de 3 a 5 mm de comprimento, 

formato ovoide com dois cotilédones (ALMEIDA et al., 2002).  

O fruto acerola possui coloração esverdeada quando ainda não se encontra pronta 

para o consumo e laranja ou vermelho escuro, quando madura. Coloração essa obtida em 

função da variedade, condições de solo e tipo de fertilizante.  Segundo Lima et al. (2003) a 

cor vermelha da acerola, no estágio maduro, decorre da presença de antocianinas (3,81 a 
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47,36 mg/100 g)  e a coloração amarela se deve à presença de carotenoides. Quanto maior o 

teor de antocianinas, melhor a aceitação do produto por parte do consumidor.  

Estudos comparativos de teores de vitamina C apontam que os frutos totalmente 

maduros possuem teores inferiores quando comparados aos frutos em estado de prematuração. 

A acerola se constitui em média por 600 a 1.000 mg de vitamina C/100 g de amostra  

(CECÍLIO et al., 2009). De acordo com a Embrapa em algumas variedades é possível 

encontrar até 5.000 miligramas por 100 gramas de polpa. Este índice supera em cem vezes ao 

da laranja, dez vezes ao da goiaba, frutas com alto conteúdo dessa vitamina. 

 

 
 

Fonte: Ritzinger; Ritzinger (2011) 

 

De acordo com Freitas et al. (2006) os teores médios de vitamina C encontrados por 

diversos autores possuem divergências (Tabela 2.1) obtendo-se na literatura valores entre 779 

a 3094,43 mg/100 g de polpa. As discrepâncias se devem às variações como variedades, 

condições climáticas, tipos de solos e estágios de maturação. 

Agostini-Costa et al. (2003) relatam que a significativa presença de ácido ascórbico 

(vitamina C) nessa fruta tem favorecido o seu processamento e comercialização, levando-se 

em consideração os benefícios à saúde. Segundo o mesmo autor a acerola é ainda uma rica 

fonte de carotenoides,  em destaque  o  -caroteno  (7,1 µg/g de polpa),  a  -criptoxantina 

(1,7 µg/g de polpa) e -caroteno (0,2 µg/ g de polpa).  No entanto, em decorrência da alta 

instabilidade destes compostos naturais, o teor dos mesmos pode ser alterado em função do 

processamento e estocagem da acerola.  

A presença de vitamina C e de carotenoides como o licopeno e o -caroteno  

contribuem na prevenção e redução de risco de desenvolvimento de doenças como o câncer. 

Figura 2.1 - Imagem fotográfica da acerola 
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De acordo com Krinsky (1991) os carotenoides funcionam como antioxidantes naturais e 

possuem capacidade de proteger membranas, DNA e outros constituintes celulares contra 

danos oxidativos.   

 

Tabela 2.1 - Valores médios de vitamina C de acerolas, segundo diferentes autores. 

Autores Teores de vitamina C (mg 100 g-1) 

GONZAGA NETO et al. (1999)       779 a 2444 

GOMES et al. (2000)  853,51 a 1631,01 

AGUIAR (2001)  843,03 a 2322 

PIMENTEL et al. (2001)         1437,78 

SOARES et al. (2001 1620 

LIMA et al. (2000a) 1066,66 a 1845,79 

MOURA et al. (2002)  500,90 a 1854,92 

NUNES et al. (2002) 1598,29 a 2053,26 

SANTOS et al. (2002) 1089,22 a 3094,43 

PAIVA et al. (2002)      1001 a 1600 

Fonte: FREITAS et al. (2006) 

 

Estudos realizados por Jacob e Burri (1996) confirmam a ação antioxidante da 

acerola, a qual se deve ainda à presença de compostos bioativos, como os polifenóis, que 

atuam minimizando os danos oxidativos causados pelas espécies reativas de oxigênio e 

nitrogênio, na prevenção de doenças crônicas não transmissíveis, como câncer e aterosclerose. 

Dados de composição química da acerola são apresentados pela Nutrient Database 

for Standard Reference (2001) citada por Freitas (2006). Nota-se pela Tabela 2.2 apresentada 

que a acerola se caracteriza não somente pelo elevado teor de vitamina C, mas pela presença 

de teores consideráveis de vitamina A, bem como a presença de minerais importantes como o 

potássio. 

 

2.2 Compostos Bioativos 

 
2.2.1 O ácido ascórbico 

 As vitaminas, compostos orgânicos, se classificam em grupos levando-se em 

consideração à solubilidade em água, lipídios e solventes orgânicos. Dentro desse contexto 

existem as lipossolúveis, que são as vitaminas A, D, E e K e as hidrossolúveis, dentre as quais 
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destacam-se: ácido fólico, cobalamina, ácido ascórbico, piridoxina, tiamina, niacina, 

riboflavina, biotina e ácido pantotênico (PENTEADO, 2003).  A necessidade de suprimento 

diário das vitaminas hidrossolúveis se deve à reduzida capacidade de armazenamento dessas 

pelo organismo.  

Tabela 2.2 - Composição química da acerola. 

Nutrientes Valor por 100 g 
Água 91,41 g 
Calorias 32 kcal 
Proteínas 0,4 g 
Lípides totais (gordura) 0,3 g 
Carboidratos (por diferença) 7,69 g 
Fibra total dietética 1,1 g 
Cinzas 0,2 g 
Cálcio, Ca 12 mg 
Ferro, Fe 0,2 mg 
Magnésio, Mg 18 mg 
Fósforo, P 11 mg 
Potássio, K 146 mg 
Sódio, Na 7 mg 
Zinco, Zn 0,1 mg 
Cobre, Cu 0,086 mg 
Manganês, Mn 0 mg 
Selênio, Se 0,6 mcg 
Vitamina C, ácido ascórbico total 1677,59 mg 
Tiamina 0,02 mg 
Riboflavina 0,06 mg 
Niacina 0,4 mg 
Ácido pantotênico 0,309 mg 
Vitamina B6 0,009 mg 
Folato total 14 mcg 
Vitamina B12 0 mcg 
Vitamina A 231 mg 
Ácidos graxos, total saturados 0,068 g 
Ácidos graxos, total mono-insaturados 0,082 g 
Ácidos graxos, total poli-insaturados 0,09 g 
Colesterol 0 mg 

Fonte: USDA Nutrient Database for Standard Reference, Release 14 (Julho 2001) 

 

Compostos que apresentam quantitativamente a atividade biológica do ácido 

ascórbico são denominados genericamente por vitamina C. A vitamina C é solúvel em água 

(33% m/v a 35oC) e pouco solúvel em etanol (2%) e ácido acético (0,2%). O composto natural 

principal com a atividade da vitamina C é o ácido L-ascórbico, nome trivial dado ao L-treo-2-

hexenona-1,4-lactona (PENTEADO, 2003).  
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A vitamina C ocorre naturalmente em alimentos na forma reduzida do ácido L-

ascórbico, sendo seu produto de oxidação inicial o ácido dehidroascórbico, ambos 

apresentando atividade vitamínica (Figura 2.2). No entanto, os isômeros do ácido L-ascórbico 

(Figura 2.3) praticamente não exercem efeitos vitamínicos (DAVIES et al., 1991). 

 

                  ácido L-áscórbico                 ácido dehidroascórbico      

Figura 2.2 - Oxidação do ácido ascórbico em dehidroascórbico. 

 

 

Figura 2.3- Formas isoméricas do ácido ascórbico. 

Fonte: DAVIES et al., 1991 

 

O ácido L-ascórbico apresenta elevada importância em sistemas bioquímicos, 

farmacológicos, eletroquímicos e processamento de alimentos (ROIG et, al, 1993). Pela 

incapacidade de sintetização, a aquisição dessa vitamina pelo ser humano ocorre por meio da 

ingestão. O ácido ascórbico é absorvido no intestino humano por um mecanismo ativo e 

provavelmente transportado para o sangue por difusão. Armazenado até certa quantidade em 

tecidos como o fígado e o baço, quantidades em excesso são excretadas pela urina na forma 

dos ácidos oxálicos, treônico e dehidroascórbico (PENTEADO, 2003).   

Segundo Fornaro e Coichev (1998) o ácido ascórbico apresenta funções importantes 

no corpo, estando envolvido no metabolismo de vários tecidos e em múltiplos processos 

bioquímicos.  
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O ácido ascórbico possui ação inibitória na síntese química de nitrosaminas, 

importante fator de risco para câncer do estômago. Estudos epidemiológicos sugerem que 

uma ingestão de vitamina C acima do recomendado (60 a 90 mg por dia) pode reduzir o risco 

de doenças crônicas como problemas cardíacos e câncer, especialmente quando combinados 

com alta ingestão de vitamina E (HATHCOCK, 1997). No entanto, a recomendação norte-

americana diária para consumo de vitamina C foi elevada para 75 mg para mulheres e 90 mg 

para homens (INSTITUTE OF MEDICINE) 

De acordo com Pellegrini et. al (2007) os carotenoides, as vitaminas C e E  e 

fitoquímicos (fenólicos e flavonoides) são considerados antioxidantes naturais. Entende-se 

por antioxidantes os compostos químicos que contribuem na prevenção ou redução dos danos 

oxidativos de lipídios, proteínas e ácidos nucleicos causados por espécies de oxigênio reativo, 

os radicais livres. Ou seja, os agentes antioxidantes reagem com os radicais livres reduzindo 

os danos. Como resultados destacam-se a diminuição de incidência de doenças degenerativas 

como o câncer e doenças cardiovasculares, inflamações e disfunções cerebrais e ainda o 

retardamento do envelhecimento precoce (PIMENTEL et, al. 2005).  

Segundo Kaur e Kapoor  (2001) a vitamina C é um dos antioxidantes hidrossolúveis 

de maior importância pois, na maioria dos sistemas biológicos, o ácido ascórbico protege os 

compostos intra e extracelulares e reduz os radicais tocoferol de volta à sua forma ativa. 

 

2.2.2 O ácido cítrico 

 O ácido cítrico ou citrato de hidrogênio (ácido 2-hidroxi-1,2,3-propano tricarboxílico) 

é um ácido orgânico fraco (Figura 2.4). Encontra-se presente na maioria das frutas, 

essencialmente nas cítricas como limão e laranja. É um sólido cristalino branco, inodoro, de 

sabor levemente ácido. Possui massa molar 192,13 kg∕kmol, ponto de fusão de 153ºC e 

temperatura de decomposição térmica de 175ºC. 

 

 

Figura 2.4 - Fórmula estrutural do ácido cítrico. 

 
 Estudos realizados por Oliveira (2009) sobre a solubilidade do ácido cítrico em 

misturas hidro-alcóolicas, apontam que o mesmo é solúvel  em  água  na  temperatura de 
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293,7 K, com solubilidade de 59,78 g de produto anidro por 100 g de solução saturada. Em 

etanol, a 294,2 K, a solubilidade obtida foi de 57,93 g de produto anidro por 100 g de solução 

saturada. Efeitos da temperatura foram avaliados pelos autores indicando que a solubilidade 

deste ácido, em água, é função direta da temperatura. 

 A acidez do ácido cítrico se deve à presença de três grupos carboxilas (-COOH) que 

podem perder um próton em soluções, formando-se o íon citrato. 

As equações abaixo representam os processos de ionização do ácido cítrico: 
 

H3C6H5O7  → H+ + H2C6H5O7
-       Ka1= 7,44x10-4    (pKa = 3,13) 

H2C6H5O7
-  → H+ + HC6H5O7

-2       Ka2=1,73x10-5     (pKa = 4,76) 

HC6H5O7
2-   → H+  + C6H5O7

-3         Ka3= 4,02x10-7   (pKa = 6,40) 

  

 Os íons citratos formam com cálcio o citrato de cálcio, sal utilizado na preservação e 

condimentação dos alimentos.  

 O ácido cítrico possui vasta aplicação industrial pois, o mesmo possui diversas 

propriedades favoráveis tais como: acidulante, palatabilidade, atoxicidade, facilidade de 

assimilação pelo organismo humano, tamponamento e sequestramento de íons. Sendo assim 

cerca de 70% da produção deste ácido é utilizada pela indústria de alimentos, 12% pela 

indústria farmacêutica e 18% destinado a outras indústrias (ADITIVOS e INGREDIENTES, 

2011). 

 Na indústria alimentícia o ácido cítrico é utilizado como aditivo na fabricação de 

refrigerantes, sobremesas, conservas de frutas e vinhos. No processamento de frutas e 

vegetais, utiliza-se ácido cítrico na estabilidade de alimentos congelados através da inibição 

de reações enzimáticas. Sendo assim, devido à sua capacidade de aumentar a eficácia de 

conservantes antimicrobianos, prolongar a estabilidade da vitamina C, reduzir as alterações de 

cor, realçar os aromas e tamponar o meio, o ácido cítrico possui vasta aplicabilidade. 

 
2.2.3 Os fenólicos totais 

 De acordo com Moreira e Mancini-Filho (2004) os compostos antioxidantes podem 

ser divididos em duas classes considerando-se a presença ou não de atividade enzimática. Os 

compostos capazes de bloquear a iniciação da oxidação, ou seja, as enzimas que removem as 

espécies reativas ao oxigênio pertencem à classe dos que possuem atividade enzimática. Na 

segunda classe, estão moléculas que interagem com as espécies radicalares e são consumidas 
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durante a reação. Nesta classificação, estão presentes os antioxidantes naturais e sintéticos 

como os polifenóis. 

 Os polifenóis são compostos que possuem anel aromático com um ou mais 

substituintes hidroxílicos, incluindo seus grupos funcionais (SHAHIDI e NACZK, 1995).  

Estes fitoquímicos se classificam em diferentes grupos pelo esqueleto carbônico apresentado, 

ou seja, em função do número de anéis fenol que contêm e dos elementos estruturais que 

ligam estes anéis (SOARES et al., 2008). Sendo assim, os polifenóis se dividem em: A) 

ácidos fenólicos com subclasses, derivados de ácidos hidroxibenzoicos, como ácido gálico e 

ácido hidroxicinâmico; B) flavonoides, os quais incluem flavonóis, flavonas, isoflavonas, 

flavanonas e antocianidinas; C) estilbenos, cujo representante mais conhecido é o resveratrol; 

D) taninos, que são divididos em dois grupos: galotaninos, elagitaninos ou taninos 

hidrolisáveis (Tabela 2.3). 

 
Tabela 2.3 - Classe de compostos fenólicos presentes nas plantas. 

 
Fonte: ANGELO; JORGE (2007) 

 

 Naczk e Shahidi  (2004) afirmam que existem mais de cinco mil tipos de fenóis e que 

a variabilidade de estruturas existentes nestes compostos os tornam multifuncionais. Os 

compostos fenólicos são originados do metabolismo secundário das plantas, sendo essenciais 

para o seu crescimento e reprodução. Formam-se em condições de estresse como, infecções, 

ferimentos, radiações UV, dentre outros (NACZK; SHAHIDI, 2004). São considerados 

agentes antipatogênicos e contribuem na pigmentação. Em alimentos, são responsáveis pela 
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cor, adstringência, aroma e estabilidade oxidativa. Dentre os compostos fenólicos mais 

abundantes nos alimentos destacam-se: os flavonoides, os ácidos fenólicos e as lignanas. 

As frutas, especialmente as que apresentam a coloração vermelha/azul (como uvas, 

ameixas, jamelão, cereja e acerola) são as mais importantes fontes de compostos fenólicos na 

dieta, especialmente os derivados do ácido hidroxibenzoico e do ácido hidroxicinâmico. 

Muitos destes apresentam uma grande gama de efeitos biológicos, incluindo ações 

antioxidantes, antimicrobiana, antiplaquetária, anti-inflamatória e vasodilatadora 

(DEGASPARI; WASZCZYNSKY, 2004). 

Melo (2008) relata que a eficácia de sua ação antioxidante depende da estrutura 

química e da concentração destes fitoquímicos. A capacidade dessas substâncias em 

sequestrar radicais livres e metais pró-oxidantes explica, em parte, esta associação. Evidências 

recentes sugerem que estes compostos possam atuar por meio de outros mecanismos além da 

capacidade antioxidante, como: a modulação da atividade de diferentes enzimas (telomerase, 

lipoxigenase e cicloxigenase), as interações com receptores e vias de transdução de sinais e a 

regulação do ciclo celular, processos essenciais para a manutenção da homeostase dos 

organismos vivos (D’ARCHIVIO et al., 2007). 

As ações fisiológicas dos compostos fenólicos despertam grande interesse devido aos 

seus efeitos antiaterogênicos, neuroprotetores, anti-inflamatórios, anticarcinogênicos e 

antioxidantes (AJILA et, al., 2008). 

Rice-Evans et a. (1997) explica que a capacidade antioxidante dos polifenóis se deve, 

principalmente, às suas propriedades redutoras, cuja intensidade da ação antioxidante exibida 

por estes fitoquímicos é diferenciada uma vez que depende, fundamentalmente, do número e 

da posição de hidroxilas presentes na molécula. 

Este mecanismo de ação dos antioxidantes, presente em extratos de plantas, possui 

um papel importante na redução da oxidação lipídica em tecidos, vegetal e animal, pois não 

conserva apenas a qualidade do alimento, mas também reduz o risco de desenvolvimento de 

patologias, como arteriosclerose e câncer (RAMARATHNAM et al., 1995) 

A atividade anticarcinogênica dos fenólicos tem sido relacionada à inibição dos 

cânceres de cólon, esôfago, pulmão, fígado, mama e pele. Os compostos fenólicos que 

possuem este potencial são resveratrol, quercetina, ácido caféico e flavonóis (PIMENTEL et 

al., 2005).   
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2.2.4 Os flavonoides 

Os flavonoides, fitoquímicos amplamente distribuídos no reino vegetal, estão 

presentes em frutas, folhas, sementes e em outras partes da planta na forma de glicosídios ou 

agliconas. Os  flavonoides  possuem em comum a estrutura carbônica C6-C3-C6, consistindo 

de dois anéis aromáticos ligados por um heterocíclico oxigenado (HARBORNE et al., 1999). 

Os anéis aromáticos são denominados A e B, os quais estão unidos pelo anel 

heterocíclico, denominado C (Figura 2.5). O anel aromático A é derivado do ciclo 

acetato/malonato, enquanto o anel B é derivado da fenilalanina (MERKEN; BEECHER, 

2000). 

 

Figura 2.5 - Estrutura química dos flavonoides. 

 
Variações em substituição do anel C padrão resultam em importantes classes de 

flavonoides, como flavonóis, flavonas, flavanonas, flavanóis (ou catequinas), isoflavonas e 

antocianidinas (Figura 2.6). Nestas classes ocorrem grandes variações estruturais, dependendo 

do nível de oxigenação, alquilação, glicosilação, acilação e sulfação que ocorrem nas 

moléculas dos anéis A e B (HOLLMAN; KATAN, 1999). Dentre os aproximados 4000 

flavonoides conhecidos as maiores classes são flavonóis, catequinas ou flavonas, 

antocianidinas e isoflavonas.  

Os flavonoides englobam um numeroso grupo de pigmentos e são os principais 

responsáveis pelas cores e tons de azul, vermelho e amarelo em flores, frutos e folhas de 

diferentes espécies vegetais. As antocianinas pertencem ao grupo de pigmentos responsáveis 

pelas cores azuis e vermelhos, e as antoxantinas são as responsáveis por cores e tons de 

amarelo. Um terceiro grupo, as leucoantocianidinas, formado por compostos incolores, é 

resultante da condensação de duas ou mais moléculas de agliconas das antocianinas 

(BOBBIO; BOBBIO, 1992).  

Os flavonoides, como procianidina, proantocianidina, quercetina e catequina, são 

polifenóis  que, assim como o resveratrol, são capazes de inibir a oxidação da lipoproteína de 

baixa densidade (LDL-colesterol), que está intimamente correlacionada com as complicações 

da aterosclerose, como a doença arterial coronária (DAC), o acidente vascular cerebral e/ou 
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doença vascular periférica e alguns tipos de câncer (MAMEDE; PASTORE, 2004; OPIE; 

LECOUR, 2007). 

 

Figura 2.6- Estrutura das principais classes de flavonoides. 

                                 Fonte: CERQUEIRA; MEDEIROS; AUGUSTO (2007) 

 

2.3 Composição nutricional 

 
2.3.1 Cinzas 

O teor de cinzas em alimentos refere-se ao resíduo inorgânico, ou resíduo mineral fixo 

(sódio, potássio, magnésio, cálcio, ferro, fósforo, cobre, cloreto, alumínio, zinco, manganês e 

outros compostos minerais) remanescente da queima da matéria orgânica em mufla a altas 

temperaturas (500-600°C) (ZAMBIAZI, 2007). 

O conteúdo em cinzas em uma amostra alimentícia representa a quantidade total de 

minerais podendo, portanto, ser utilizado como medida geral da qualidade, e frequentemente é 

utilizado como critério na identificação de alimentos. O conteúdo de cinzas se torna 

importante para os alimentos ricos em certos minerais, o que implica em seu valor nutricional 

(ZAMBIAZI, 2007). 

Segundo Aguiar et al. (2010) a farinha de  semente de acerola não apresenta conteúdo 

expressivo de minerais, sendo o seu resíduo mineral fixo de apenas 0,44%. Entretanto as 

sementes possuem quantidades superiores de certos minerais quando comparada à polpa. 
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2.3.2. Proteínas 

Segundo Gava (1978) os tecidos vegetais são sistemas aquosos compostos por 

proteínas, hidratos de carbono e gorduras. Dissolvidas na fase aquosa encontram-se as 

substâncias solúveis em água, como hidratos de carbono, alguns ácidos graxos, sais minerais, 

vitaminas e pigmentos. Destaca-se que a composição nutricional de um alimento depende de 

suas condições conservacionais.  

As proteínas, macromoléculas formadas pela ligação peptídica entre os aminoácidos, 

podem ser encontradas no estado coloidal (vegetais) ou no estado de emulsão (PHILIPP, 

2008; NETO, 2003).  

Segundo Philipp (2008) e Neto (2003) as proteínas desempenham diversas funções 

no organismo. Destacam-se as proteínas estruturais (colágeno, elastina, queratina), as motoras 

(actina, miosina), as do sistema imune (anticorpos, peptídeos de superfície celular), as de 

transporte (albumina, hemoglobina) e as nucleoproteínas (proteínas associadas ao DNA). 

Gava (1978) complementa afirmando que os nutrientes capazes de fornecer energia 

para o homem e animais são os carboidratos, gorduras e as proteínas. Os carboidratos e as 

gorduras possuem combustão bioquímica completa. No entanto, as proteínas não sofrem 

oxidação completa no organismo, uma vez que diferentes compostos nitrogenados são 

excretados na urina como produto final do metabolismo das proteínas, a citar: uréia, ácido 

úrico e ácido hipúrico. 

A necessidade média de proteína para um adulto gira em torno de 0,8 g de proteína 

por kg peso/dia. Sendo assim, estima-se que de 10% a 15 % da ingestão total de energia diária 

devem ser provenientes das proteínas. Entre os alimentos ricos em proteínas estão carnes, 

ovos, leites e derivados. Já os alimentos de origem vegetal são considerados pobres nesse 

nutriente, exceto as leguminosas e os feijões (KRAUSE et al, 2005).  

Para Philipp (2008) as frutas, legumes e verduras fornecem pequenas quantidades de 

proteína. Segundo Salinas (2002) é possível encontrar de 1% a 3% de proteínas como reserva 

em hortaliças e frutas.  

 

2.3.3 Extrato etéreo (Lipídios) 

 Os lipídios constituem uma classe de compostos com estrutura variada, e se 

caracterizam pela sua alta solubilidade em solventes orgânicos e por serem, praticamente, 

insolúveis em água. Exercem diversas funções biológicas, como componentes de membranas, 

isolantes térmicos e reservas de energia. Muitos lipídios são compostos anfipáticos, ou seja, 
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apresentam na molécula uma porção polar (hidrofílica) e uma porção apolar (hidrofóbica) 

(MARZZOCO; TORRES, 2007). 

Dentre os lipídios destacam-se os ácidos graxos, que são ácidos monocarboxílicos, 

geralmente, de cadeia longa, constituído por número par de átomos de carbono e sem 

presença de ramificações, podendo a cadeia ser saturada ou conter insaturações 

(MARZZOCO E TORRES, 2007). 

 Os nomes triviais dos ácidos graxos, em geral, derivam-se das fontes onde são 

encontrados em abundância. Assim, o ácido palmítico do óleo de palma, ácido oleico do óleo 

de oliva, linoleico e linolênico do óleo de linhaça. Segundo Aguiar et al. (2010) as sementes 

de acerola possuem cerca de 62,4% de ácidos graxos insaturados, composto exclusivamente 

pelos ácidos graxos oleico, linoleico e linolênico. Já os saturados correspondem a 35,6% 

do total e estão representados apenas pelos ácidos palmítico e esteárico. 

 

2.3.4 Fibra  

Segundo Mertens (1992) o termo fibra possui sua definição vinculada ao método 

analítico empregado na sua determinação. Por exemplo, fibra bruta (FB), fibra insolúvel em 

detergente ácido (FDA), fibra insolúvel em detergente neutro (FDN) ou fibra alimentar total 

(FAT). Quimicamente a fibra é um agregado de compostos e não uma entidade química  

distinta, portanto, a composição química da fibra é dependente da sua fonte e da forma como 

foi medida. 

A determinação de fibra bruta envolve o uso de ácidos e bases fortes para sua 

extração, cuja extração ácida remove amidos, açúcares e parte da pectina e hemicelulose dos 

alimentos. Já a básica retira proteínas, pectinas e hemicelulose remanescentes e parte da 

lignina (MERTENS, 1992). A fibra bruta consiste principalmente de celulose com pequenas 

quantidades de lignina e hemicelulose.  

De acordo com Cerqueira et al. (2008) define-se fibra alimentar como o conjunto 

composto por polissacarídeos, oligossacarídeos, lignina e substâncias associadas. Presentes 

em alimentos vegetais as fibras alimentares podem ser classificadas como solúveis (pectinas, 

gomas e mucilagens) ou insolúveis (celulose, hemicelulose e lignina). As solúveis, um terço 

das fibras alimentares, são facilmente fermentadas por bactérias no cólon e as, 

incompletamente ou não fermentadas, são chamadas de fibras insolúveis. Vale destacar que as 

fibras insolúveis são as responsáveis pela proteção e pelo bom funcionamento do intestino, 

devido à capacidade de retenção de água (TATE; LYLE, 2008).  
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Benefícios à saúde dentre eles, o efeito laxante, a redução do colesterol e da glicose 

no sangue (AOAC, 2001), a intervenção no metabolismo dos lipídios e carboidratos e na 

fisiologia do trato gastrointestinal levaram a fibra à categoria de alimento funcional.   

A prevenção de doenças como diabetes mellitus e dislipidemias vem sendo 

associadas à ingestão de fibra alimentar (MENDES, 2013). Sendo assim, para suprir o déficit 

do consumo de fibra, o enriquecimento de produtos com fibra alimentar, seja esse realizado 

por meio de resíduos de frutas ou vegetais é uma das formas de contribuir com a saúde 

humana e ainda reduzir o desperdício.  

 

2.4 Os resíduos de acerola 

As indústrias processadoras de frutas tropicais processam, no Brasil, cerca de 34,40 

mil toneladas de acerolas por ano, o equivalente a 7,16% do total de frutas processadas. As 

acerolas submetidas ao processo fabril geram, aproximadamente, 18 mil toneladas de sucos e 

polpas por ano, concentrando-se esta produção na região nordeste (ASTN & APEX, 2001). 

Em contrapartida, o processamento de frutas nas indústrias alimentícias tem 

contribuído de modo significativo para a geração de resíduos, principalmente, o bagaço e as 

sementes.  Santos et al. (2010) em estudos de caracterização de farinha de resíduo de acerola 

afirma que esses resíduos representam 40% do volume de produção. Vasconcelos (2002) 

afirma que o uso de subprodutos da acerola (semente triturada e polpa após a retirada do suco) 

exige o aprofundamento de pesquisas no sentido de se conhecer o valor nutritivo dos mesmos, 

já que esses representam entre 15 a 41% do volume total de acerola produzido. 

Estudos científicos apontam que os resíduos de frutas podem servir como fontes 

alternativas de nutrientes de novos produtos, dentre eles destacam-se: Abud e Narain (2009) 

em estudos de enriquecimento de biscoitos com resíduos oriundos do processamento das 

frutas umbu, acerola, goiaba e maracujá; Santos et al. (2010) na obtenção de farinha 

proveniente de resíduos de acerola e Aguiar et al. (2010) e na caracterização de sementes de 

acerola. 

Cabe ressaltar que esses resíduos são, geralmente, desprezados ou usados como ração 

animal (JÚNIOR et al., 2006; SENA e NUNES, 2007)  ao passo que poderiam ser utilizados 

como fontes alternativas de nutrientes, com o objetivo de aumentar o valor nutritivo da dieta 

de populações carentes, bem como solucionar deficiências dietéticas alimentares. Ou ainda no 

enriquecimento nutricional de produtos alimentares como pães, biscoitos ou iogurtes. 

Portanto, a pesquisa e a implementação de um sistema de reciclagem de resíduos 

sólidos provenientes de indústrias de processamento de acerola possui extrema relevância, por 
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contribuir de modo significativo na mitigação dos impactos ambientais, ou mesmo na 

agregação de valor econômico produzindo-se uma farinha, que poderia ser adicionada em 

outros produtos como fonte de enriquecimento nutricional. Deste modo, o processamento 

desse resíduo configura-se uma forma dinâmica de destinação deste material, promovendo a 

geração de empregos, colaborando nos âmbitos social e ambiental.  

Segundo Giuntini et al. (2003) os estudos sobre o potencial dos resíduos industriais 

de frutas como fontes significativas de fibra alimentar, ainda são escassos e merecem 

aplicações industriais no desenvolvimento de novos alimentos. Santos et al.(2010) aponta a 

falta de estudos relacionados às fontes nutricionais deste resíduo e conclui através da 

caracterização físico-química da farinha de acerola, que esse resíduo possui elevados teores de 

fibra e reduzida percentagem de gordura, quando comparado ao da fruta in natura.  

De acordo com Giuntini et al. (2003) a fibra alimentar pode ser utilizada no 

enriquecimento de produtos ou como ingrediente, pois se constituem de polissacarídeos, 

lignina, oligossacarídeos e amido resistentes. Segundo estudos desse autor resíduos de 

abacaxi e maracujá possuem teores de fibras alimentares superiores ao de soja e aveia. 

Braga et al. (2011) realizaram estudos sobre caracterização físico-química de 

resíduos industriais de acerola com a finalidade de avaliar o seu potencial de aproveitamento 

na alimentação  humana. Avaliando-se resíduos provenientes de acerolas verdes e maduras, 

verificaram que os mesmos possuem elevados teores de ácido ascórbico e, significativa 

presença de fibras brutas, sendo que, os valores obtidos para resíduos de frutos maduros 

foram ligeiramente superiores aos da fruta imatura. O que indica a sua possível aplicação 

como fonte de enriquecimento de nutrientes na elaboração de produtos alimentícios. 

Avaliações de composição química e mineralógica de sementes de acerola realizadas 

por Aguiar et al. (2010) apontam que este resíduo possui potencial para a suplementação de 

dietas, principalmente em termos de carboidratos, fibra alimentar e proteína (Tabelas 2.4 e 

2.5). 

Aguiar et al. (2010) afirma ainda que a farinha de semente de acerola contém 

quantidade significativa de vitamina C e que, embora o teor de lipídio seja reduzido, essa 

quantidade é nutricionalmente importante em função do seu grau de insaturação representado 

principalmente pelos ácidos graxos oleico e linoleico.  Do ponto de vista mineralógico, 

Aguiar et al. (2010) destaca que o resíduo de acerola possui apenas 0,44% de mineral fixo, no 

entanto, a mesma pode ser considerada mais importante em relação ao conteúdo de minerais 

do que a polpa do fruto, em termos de cálcio, magnésio, zinco, manganês e cobre. 
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Tabela 2.4 - Composição química e valor nutricional da farinha de sementes de acerolas.  

Determinações Resultados (g/100g) 

Valor energético total (kcal)2 332,00 ±13,18 

Umidade1 9,40 ± 0,32 

Cinzas1  0,44 ± 0,01 

Proteína bruta1 16,94 ± 0,81 

Lipídios1 3,92 ± 0,02 

Carboidratos totais3 57,24 ± 2,44 

Fibras1 26,54 ± 1,33 

Açúcares redutores1 9,20 ± 0,4 

Vitamina C (mg/100 g)1 66,00 ± 1,19 
1média de 6 repetições, 2 valor teórico, 3calculado por diferença 

Fonte Aguiar et al. (2010) 
 
 

Tabela 2.5 - Composição de minerais em sementes de acerola obtidas por Aguiar et al. (2010). 

 

Minerais 

Teores (mg/100 mg) 

Farinha de sementes Acerola in natura 1 

Cálcio 41,76 ± 2,38 12,00 

Magnésio 22,24 ± 1,50 18,00 

Potássio 41,39 ± 2,01 146,00 

Zinco 0,09 ± 0,02 0,01 

Ferro 37,23 ± 1,73 0,20 

Maganês 0,74 ± 0,32 0,02 

Cobre (μg) 0,15 0,08 

Fósforo 0,08 11,00 
1 Fonte: USDA (2003) 

 
A escassez de dados sobre a capacidade antioxidante dos resíduos de  frutas (acerola,  

goiaba, cupuaçu, abacaxi, graviola e bacuri) motivou Sousa et al. (2011b) a investigar as 

propriedades antioxidantes desses resíduos com o objetivo evitar desperdícios e 

eventualmente fornecer às indústrias de alimentos e à população carente um suplemento 

nutricional com custo reduzido. Após estudo comparativo Sousa et al. (2011b) verificaram 

que dentre os resíduos de frutas avaliados, os de acerola se destacam pelo seu elevado teor de 

fenólicos totais. 
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O alto teor de fenólicos, antioxidante natural encontrado na acerola, sugere que os 

resíduos em pó provenientes desta fruta podem fornecer benefícios à saúde quando usados em 

produtos alimentares funcionais. O baixo custo dos resíduos de frutas (geralmente descartados 

como lixo no meio ambiente) e a sua composição nutricional sugerem o seu uso como recurso 

em potencial sendo capazes de oferecer suplementos nutricionais às comunidades de baixa 

renda.  

Diante do exposto e partindo-se da premissa de que os resíduos provenientes do 

processamento de acerola possuem elevado grau nutricional visa-se neste estudo o 

aproveitamento desse resíduo, constituído por sementes, seja no formato de farinha ou na 

formulação de um novo produto.  

 

2.5 A secagem de resíduos agroindustriais 

 
Pesquisas e avanços tecnológicos na esfera agroindustrial têm contribuído com o 

crescente aumento da produção da fruticultura brasileira. Em detrimento a esse fato resíduos 

provenientes desse setor são frequentes e, comumente, gerados em elevados volumes.  

Entende-se por resíduo agroindustrial frutas refugadas, cascas, sementes, caroços e 

bagaços. O aproveitamento desses resíduos no processamento de novos alimentos tem 

representado um segmento importante para as indústrias, principalmente no tocante à 

demanda por produtos enriquecidos a serem adotados em dietas especiais (SANTANA, 2005). 

Vale destacar que as farinhas de frutas, em relação às farinhas de cereais, apresentam como 

vantagens: maior conservação e concentração dos valores nutricionais; menor tempo de 

secagem; diferenciadas propriedades físicas e químicas, o que permite uma ampla gama de 

aplicações e diferenciadas aplicações no enriquecimento de produtos alimentares. 

A elevada umidade dos resíduos agroindustriais pode ocasionar a deterioração por 

microrganismos. Dentro desse contexto, para a produção de farinha constituída por resíduos 

agroindustriais, deve-se primeiramente reduzir o teor de água, o qual pode ser realizado 

submetendo-os à secagem.  

A secagem é uma das operações mais estudadas pelos pesquisadores no setor 

alimentício por se constituir na remoção da água, inibindo o crescimento de microrganismos e 

evitando a ocorrência de reações químicas. Possui elevada aplicação comercial na preservação 

de alimentos devido à simplicidade e ao baixo custo operacional, quando comparado a outros 

métodos preservativos como a centrifugação, o enlatamento, os tratamentos químicos e a 

irradiação.  
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A secagem pode ser definida como um processo simultâneo de transferência de calor 

e massa entre o produto e o ar de secagem, que consiste na remoção da umidade contida no 

interior do material por meio de evaporação. A secagem pode ocorrer via convecção forçada 

de ar previamente aquecido, de modo que o aumento da temperatura do material a ser 

desidratado promove a evaporação da água, enquanto que a circulação do ar remove a 

umidade evaporada. 

Dentre os parâmetros que promovem alterações na transferência de calor citam-se: as 

condições operacionais (temperatura, umidade, fluxo e direção de ar), as variáveis do leito 

(pressão) e as relacionadas à partícula (área de exposição do sólido e forma física). Fatores 

como natureza física da partícula, temperatura e conteúdo de umidade influenciam o 

movimento interno da umidade no material sólido e consequentemente a transferência de 

massa.  

Segundo Pallai-Varsányi et al. (2007) o processo de secagem é uma tecnologia que 

afeta significativamente a qualidade do produto final e possui elevado consumo energético. A 

seleção adequada do método de secagem depende ainda da umidade requerida no produto 

final. Segundo o autor, aspectos econômicos e de projeto são relevantes no processo de 

secagem, pois afetam os custos de operação.  

Estudos e pesquisas sobre caracterização e secagem de resíduos agroindustriais, em 

especial, os de fruticultura, tem sido realizados e de modo expressivo têm contribuído na 

minimização de impactos ambientais.  

Os resíduos do processamento de sucos de maracujá amarelo constituídos de cascas, 

sementes e bagaços, por apresentarem um elevado teor de açúcares são muito susceptíveis ao 

desencadeamento de processos fermentativos. Dentro desse contexto, Ferreira e Pena (2010) 

realizaram a desidratação desses resíduos em estufa de bandejas com recirculação de ar. Após 

caracterização da farinha resultante, obtiveram-se elevados teores de fibras brutas totais e 

devido à isenção de toxidade microbiológica, a mesma pôde ser empregada na 

complementação nutricional requerente de fibras. 

A presença de substâncias como fibras, vitaminas ou polissacarídeos tem contribuído 

no desenvolvimento de diversas pesquisas com resíduos agroindustriais. Monteiro et al. 

(2010) realizaram estudos de secagem do mesocarpo de maracujá por apresentar considerável 

teor de pectina e fibra solúvel, a qual atua na redução das taxas de glicose e colesterol. 

A secagem em leito de jorro tem sido utilizada como objeto de estudo de diversos 

trabalhos devido ao seu elevado potencial de aplicação. Dentre os estudos destaca-se o 

realizado por Silva (2010) com resíduos de limão siciliano, que confrontou a secagem em 
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leitos fixo e de jorro, obtendo-se valores de distintos de difusividade efetiva a citar: 4,72 a 

14,6.10-10 m/s2 em leito fixo e 26,4 a 42,6.10-10 m/s2 para a secagem realizada em leito de 

jorro. 

Pesquisas envolvendo resíduos de acerola vêm sendo desenvolvidas com objetivo de 

aproveitar bagaços e sementes, uma vez que os mesmos possuem elevados teores nutricionais 

de vitamina C e de compostos bioativos. Moreira (2007) na tentativa de reduzir a degradação 

de ácido ascórbico e antocianinas promoveu o encapsulamento do bagaço de acerola por 

atomização, para uso futuro na indústria como ingrediente funcional com propriedades 

antioxidantes. Resultados semelhantes foram obtidos por Tanaka (2007) em estudos de 

desidratação de suco de acerola microencapsulado realizados por meio de atomização, onde 

obteve uma redução na degradação de 80,65% no teor ácido ascórbico. Estudos de secagem 

de acerola foram também realizados por Almeida et al. (2009) através da avaliação da cinética 

de secagem desta fruta em leito fixo. Após análise dos efeitos da temperatura e da velocidade 

do ar de secagem concluiu-se que apenas a temperatura exerceu, nas condições aplicadas (40 

a 60oC), significativo efeito na cinética de secagem da acerola.  

A secagem e consequente obtenção de passas de acerola em secadores de bandeja 

precedidas por desidratação osmótica foi conduzida por Jesus et al. (2003), sendo que os 

resultados indicaram que a secagem se mostrou mais rápida em condições de temperatura alta 

(80oC), no entanto, nestas condições obteve-se elevada degradação de vitamina C, com perdas 

superiores a 60 %.   

Pesquisas envolvendo a secagem de bagaços de acerola em leito de jorro também 

foram realizadas por Borges (2011) que constatou a presença expressiva de compostos 

fenólicos totais e antocianinas, em teores da ordem de (2399,5 a 3074,6 mg/100 g) e (104,2 a 

270,4 mg/100 g),  respectivamente, em função do extrato utilizado. Tais resultados indicam 

que esse resíduo pode ser considerado uma valiosa fonte de compostos bioativos. Presenças 

significativas de ácido ascórbico 2748,03 mg/100 g foram detectadas no bagaço desidratado, 

com perdas de apenas 11% durante a secagem. 

Borges (2011) verificou ainda a capacidade antioxidante  e antienzimática do bagaço 

seco obtendo-se, respectivamente, valores entre as faixas (30,08 a 35,37)% e (29,86 a 

44,93)%, variações essas ocasionadas pelo uso de extratos distintos. Os resultados obtidos 

apontam a capacidade antioxidante do resíduo seco. Os bagaços desidratados apresentaram 

também elevados teores de fibras e proteínas e baixos teores de gordura. 

Desidratações de resíduos de acerola, constituídos apenas pelas sementes foram 

realizadas por Bortolotti (2012) em leito de jorro utilizando grãos de soja como material 
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inerte, visando melhorias na escoabilidade do material.  Em condições de fração mássica de 

acerola de 40% e altura de leito estático de 8 cm, a secagem promoveu acréscimos dos teores 

de ácido ascórbico. Já para os compostos bioativos, fenólicos e flavonoides, foram obtidos 

aumentos seguidos por decréscimos, dependendo do tempo de secagem adotado.    

 

2.6 A secagem precedida por pré-tratamentos  

 
A secagem precedida por pré-tratamentos tem sido, recentemente, avaliada por 

vários autores obtendo-se resultados favoráveis no estudo da desidratação de frutas 

(FERNANDES; RODRIGUES, 2007; NUÑEZ-MANCILLA et al., 2013; AADIL et al., 

2013; GAMBOA-SANTOS et al., 2013 e RODRÍGUEZ et al., 2014). Dentre os pré-

tratamentos aplicados à secagem destacam-se o ultrassom, a desidratação osmótica, e a 

desidratação mecânica. Técnicas essas aplicadas visando a redução do conteúdo de água 

inicial, a modificação da estrutura do tecido das frutas, ou a redução do tempo total de 

secagem. 

Ultrassons são ondas mecânicas que se propagam através de qualquer meio material 

e que possuem frequências maiores que 18 kHz. A propagação se faz por meio de ciclos 

sucessivos de compressão e rarefação (CHEN et al., 2011). 

Neste âmbito, o ultrassom representa uma nova forma de exploração de energia 

limpa, que pode ser utilizada pelas indústrias de diferentes segmentos, dentre os quais, o 

alimentício. Esta tecnologia vem sendo empregada na melhoria do processamento direto de 

alimentos, tais como limpeza de superfícies; aumento da desidratação; filtração; inativação de 

microrganismos e enzimas; extração de enzimas, proteínas e compostos antioxidantes; ruptura 

de células; desgaseificação de alimentos líquidos e aceleração da transferência de calor 

(KNORR et al., 2004). 

O pré-tratamento ultrassônico se baseia na imersão do alimento em água ou solução 

hipertônica, na qual se realiza a sonicação. Segundo Chen et al. (2011) o aumento de perda de 

umidade do fruto sujeito ao processo de pré-tratamento por ondas ultrassônicas se deve à 

ocorrência de uma série rápida de formação, crescimento e colapso de bolhas de dimensões 

micrométricas, fenômeno esse denominado por cavitação.  

A cavitação acústica pode promover alterações físicas e químicas no meio irradiado. 

Com os colapsos das bolhas de cavitação ocorre a liberação de grande quantidade de energia 

para o meio, proporcionando na microzona onde ocorreu o colapso, o aumento da temperatura 
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da ordem de alguns milhares de graus centígrados e da pressão para centenas de atmosferas 

(SUSLICK, 2003). 

No entanto o colapso cavitacional em sistemas heterogêneos, constituídos por sólido-

líquido ocorre de modo assimétrico. Se a cavitação acústica ocorre prolongadamente e 

próxima à superfície sólida, o colapso cavitacional é não esférico dando-se na forma de jatos 

de líquido de alta velocidade sobre a superfície sólida. A associação entre os jatos e as ondas 

de choque pode danificar a substancialmente a superfície expondo-a e causando mudanças em 

sua morfologia, composição e reatividade (SUSLICK, 2003). 

Chen et al (2011) acrescenta que a aplicação de ondas ultrassônicas em sistemas 

heterogêneos promove a criação de canais microscópicos que reduzem a camada limite 

difusiva e aumenta a transferência convectiva de massa, conduzindo a um processo de 

secagem mais rápido.  

Costa et al. (2013) em estudos sobre os efeitos da intensidade e do tempo de 

sonicação avaliaram as características físico-químicas de suco de abacaxi sonicado. Os efeitos 

foram avaliados por análise de superfície de resposta para as variáveis: atividade enzimática, 

teor de proteína, conteúdo fenólico, viscosidade do suco e aumento da temperatura. 

Conluíram que períodos de processamento de 4 a 5 min resultaram em atividade residual 

enzimática máxima. Verificaram ainda que o aumento da intensidade de sonicação altera de 

modo significativo os níveis de atividade enzimática. A intensidade ultrassônica mostrou 

efeito negativo quadrático sobre a concentração de proteína, ou seja aumento da itensidade do 

ultrassom resultou em perdas proteicas. Entretanto, os efeitos do tempo e da intensidade de 

sonicação não promoveram efeitos significativos sobre os teores de compostos fenólicos do 

suco de abacaxi.  

Trabalhos realizados por Nascimento et al. (2008) e por Rudolf e Resurreccion 

(2007) destacam que o uso de ultrassom como pré-tratamento de café despolpado e de 

amendoins, respectivamente, causou o aumento do conteúdo de compostos fenólicos desses 

produtos. De modo similar, Comarela et al. (2012) no estudo com uvas visando a correlação 

entre a dosagem ultrassônica e os teores de polifenóis, verificou que a aplicação de ultrassom 

ao fruto acarretou em aumento no teor de polifenóis totais dos sucos, para todos os 

tratamentos testados. Concluíram  ainda que o grau de resposta ao ultrassom foi influenciado 

pela dosagem, sendo o tratamento com densidade de potência de 113 W.cm–2 e 5 min de 

exposição, o mais eficiente na promoção da síntese de compostos fenólicos. 

Em contrapartida, estudos microscópicos realizados por Rodrigues et al. (2009) com 

tempo de sonicação de 20 min apontaram que após a sonicação as células de maçãs tornaram-
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se severamente distorcidas em algumas regiões densas, apresentando um maior grau de 

colapso. Verificaram ainda o alongamento das células, bem como a formação de canais e a 

perda de conteúdo fenólico, fato esse confirmado por microscopia de imunofluorescência. 

Segundo esses autores, o pré-tratamento induziu a formação de canais microscópicos na 

estrutura do tecido dos frutos. A formação destes canais microscópicos ocorreu, 

principalmente,  através da destruição das células densas, o que aumentou significativamente 

quando a solução osmótica foi empregada. A formação de canais microscópicos reduziu 

também a resistência à difusão de água, e um aumento da difusividade efetiva foi observado 

durante o processo de secagem com ar. 

Com o objetivo de obter um produto seco com baixos teores de açúcar Fernandes et 

al. (2008) e Oliveira e Rodrigues (2008) averiguaram o uso do pré-tratamento por ultrassom, 

na desidratação de mamão papaya. O processo envolveu imersão da fruta em pedaços em 

água onde o ultrassom foi aplicado. Segundo os autores supracitados, o processo ultrassônico 

oferece a vantagem de ser realizado à temperatura ambiente, reduzindo o potencial de 

degradação térmica. Neste trabalho, após pré-tratamento, as amostras passaram por processo 

de secagem. Foram investigadas as variáveis: perda de água, perda de açúcar e difusividade. 

Realizara-se ainda um estudo comparativo entre a aplicação de ultrassom e sua associação 

com desidratação osmótica como forma de pré-tratamento, utilizando solução de sacarose a 

35obrix. A utilização de ultrassom como um pré-tratamento causou perdas significativas nos 

teores de açúcar e aumento na difusividade efetiva levando à secagem mais rápida do fruto.  

De acordo com os autores o aumento da difusividade efetiva faz com que o uso de ultrassom 

como pré-tratamento seja uma metodologia interessante complementar à secagem clássica. 

Resultados similares foram obtidos por Fernandes e Rodrigues (2007) em estudos 

com secagem de bananas onde verificaram que a aplicação de ultrassom aumentou em 14,4% 

a difusividade no fruto durante o processo de secagem com ar.  Aumentos relevantes também 

foram obtidos por  Fernandes e Rodrigues (2012) em estudos com genipapo em presença de 

ultrassom, sendo que na condição operacional de 10 min de ultrassom obteve-se um aumento  

da difusividade efetiva de 42,7% e para o tempo de 20 min, uma elevação de 57,3%.  

Nos experimentos realizados com banana, Fernandes e Rodrigues (2007) verificaram 

que a condição ótima de pré-tratamento encontrada foi a exposição a ultrassom por 22 min, 

que promoveu uma remoção de 95% do teor de água, e uma redução de 748 min no tempo de 

processamento total. Em 2012, em estudos com genipapo os mesmos autores encontraram que 

as melhores condições de operação foram obtidas com o pré-tratamento de ultrassom durante 
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20 min, obtendo-se a redução de 68 min no tempo total de processamento, para a remoção de 

95% de água. 

A desidratação por osmose, também tem sido adotada como uma das formas de pré-

tratamentos utilizadas na secagem, gerando produtos com maiores teores de açúcares. O 

processo consiste na imersão dos alimentos sólidos em soluções aquosas concentradas 

adicionando-se açúcares ou sais. Durante a desidratação osmótica  tem-se o fluxo de água do 

alimento para a solução devido à diferença na pressão osmótica e ainda a transferência 

simultânea de soluto da solução para o alimento, promovida pelos gradientes de concentração 

(TORREGGIANI, 1993). 

Nos últimos anos a desidratação osmótica tem recebido uma considerável atenção 

como pré-tratamento porque reduz o consumo de energia e melhora a qualidade do alimento, 

além de reduzir o tempo de secagem, reter a cor natural e reter aromas temporários durante 

secagem subsequente (POKHARKAR et al., 1997 citado por FERNANDES et al., 2008). 

Experimentos associando a desidratação osmótica e o uso de ultrassom com maçãs 

foram realizados por Oliveira et al. (2011), onde foram obtidos aumentos da difusividade nos 

processos de secagem precedidos por tratamentos prévios com ultrassom, tratamentos esses 

conduzidos tanto na presença de água destilada como em solução osmótica (25°Brix). O uso 

de ultrassons como pré-tratamento, utilizando água destilada, provocou ainda uma perda de 

sólidos solúveis do fruto para o meio líquido, reduzindo a quantidade de sólidos solúveis, em 

especial de açúcar, acarretando em frutas secas com baixos teores de açúcar. 

O uso de etanol no auxílio da secagem vem sendo adotado na desidratação de 

alimentos por se tratar de um composto orgânico o qual é aceito na indústria alimentícia. A 

aplicação de etanol também foi testada por Lurie et al. (2006) como tratamento alternativo à 

proliferação de fungos, a fim de impedir a deterioração de uvas durante o armazenamento, 

mantendo a qualidade do fruto. Pesquisas envolvendo a pulverização de etanol ou o uso de 

atmosfera modificada resultaram em maiores evaporações de água e na retenção de 

compostos voláteis (BRAGA, 2007). 

Estudos realizados por Braga (2007) utilizando a pulverização de etanol para a 

secagem de abacaxi resultaram em aumentos da taxa de secagem  e menor degradação da cor 

acompanhada por maior retenção de vitamina C. Resultados similares foram obtidos por 

Tosato (2012) em pesquisas com a secagem de maçãs pulverizadas por etanol, que obteve  

redução de cerca de 4% a 35% no tempo de secagem. 

A influência do etanol sobre a secagem de bananas foi tema de estudo de Corrêa et 

al. (2012) que avaliaram os efeitos tanto da pulverização como da atmosfera atomizada de 
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etanol sobre a difusividade, a coloração e o encolhimento desse fruto. Corrêa et al (2012)  

relatam que a mistura etanol/água apresenta maior pressão de vapor quando comparada à 

água, tendo como consequência a redução do tempo de secagem. Os resultados obtidos por 

Corrêa et al. (2012) indicam que o uso de pulverização de etanol se mostrou mais eficaz do 

que a atmosfera atomizada, obtendo-se maiores reduções no tempo de secagem e requerendo 

menores volumes de etanol. Resultados satisfatórios foram também obtidos por Silva (2014) 

que estudou a pulverização de etanol como pré-tratamento na secagem de sementes de 

acerola.  

 

2.7. O leito de jorro e a secagem 

 
 A secagem, uma das operações unitárias mais utilizadas na indústria alimentícia, vem 

sendo adotada com êxito na redução da umidade de sólidos, utilizando para tanto secadores do 

tipo rotatório, leito fluidizado, leito fixo e leito de jorro.  

Aplicações práticas do leito de jorro no âmbito alimentício são vastas na literatura: 

Medeiros (2002) com polpa de frutas tropicais;  Mortola et al. (2003) em pesquisas com 

cebola em pasta e gelatina; Souza (2009) com polpa de frutas; Younes (2010) na secagem de 

ervilhas verdes e Naracaju (2010) em pesquisas com grãos de café.  

 Neste âmbito, o leito de jorro tem se mostrado promissor e vem sendo aplicado a 

processos como secagem, mistura de sólidos, granulação, pirólise, combustão e  revestimento 

de partículas (MATHUR E EPSTEIN, 1974; FREITAS e FREIRE, 2001). O vasto uso desta 

técnica em pesquisas científicas se deve ao elevado grau de mistura e ao efetivo contato 

sólido-fluido,  resultando em altos coeficientes convectivos de transferência de calor e massa 

entre as fases.  

As elevadas taxas de secagem em leitos de jorro são ainda creditadas aos 

movimentos cíclicos ocorridos durante o processo. O eficiente contato sólido-fluido se deve a 

fatores como o movimento concorrente (região central) e contracorrente (região anular), ou 

seja, é pelo elevado grau de circulação das partículas.  Dentro desse contexto, o leito de jorro 

se caracteriza pela formação de regiões distintas as quais são descritas a seguir e visualizadas 

na Figura 2.7. 

O ar é injetado no leito de jorro por um orifício de entrada localizado na base inferior 

do tronco de cone, o qual permeia as partículas.  A região de jorro se caracteriza pela elevada 

porosidade no leito onde ocorre o transporte pneumático das partículas com movimento 

concorrente do material. Na região de fonte, as partículas perdem sua energia cinética, caindo 
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na região anular. Para colunas cilíndricas, a altura da fonte aumenta com o aumento da 

velocidade superficial do gás, diminuindo as dimensões do orifício de entrada de ar e 

diminuindo o diâmetro das partículas. 

Na região anular, as partículas que caem da região da fonte se deslizam até a base do 

leito num movimento contracorrente ao escoamento do gás. Segundo Santos (2011) essa 

região possui porosidade próxima à do leito estático. 

 

Figura 2.7 - Representação esquemática das regiões no leito de jorro. 

Fonte: MATHUR e EPSTEIN (1974) 

 

Devido à alta velocidade das partículas no jorro a secagem em leito de jorro se 

caracteriza ainda pela promoção do atrito entre partícula/partícula e partícula/parede. 

Estudos de secagem de resíduo de acerola em leito de jorro apontam que a sua 

fluidodinâmica pode ser melhorada pela adição de materiais inertes como: esferas de vidro ou 

de polietileno. No entanto, a adição desses materiais em processamentos de alimentos não é 

viável tendo em vista a toxidade deles, pois um possível desgaste durante o processo poderia 

contaminar o material processado, o qual se destina ao consumo humano.  

Sólidos de caráter alimentício, como grãos de soja, foram utilizados como materiais 

inertes por Bortolotti (2012) na secagem de sementes de acerola. Características como elevada 

esfericidade e baixa densidade contribuem para a escoabilidade dessas partículas. 

 

2.7.1 Curva Característica 

O jorro, fenômeno visualmente observável, depende da combinação de parâmetros, 

tais como: velocidade do ar, tipo de sólidos e configuração do leito. A caracterização 
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fluidodinâmica de um leito de jorro pode ser descrita pela curva característica, ou seja,  

plotando-se a queda de pressão no leito em função da velocidade/vazão de gás injetado na 

entrada do leito. A curva característica representa a transição entre leito estático e leito de 

jorro, onde as etapas descritas a seguir ocorrem à medida que a vazão de ar é aumentada 

(MATHUR e EPSTEIN, 1974). 

A condição de leito estático ocorre quando o gás, em velocidades baixas, atravessa o 

leito, passando pelos espaços vazios existentes em seu interior, sem promover alterações no 

arranjo de partículas sólidas. Nessa fase, segmento A-B, a queda de pressão aumenta 

linearmente com o acréscimo da vazão (Figura 2.8). 

Com o aumento da vazão, a queda de pressão no leito continua a crescer, no entanto 

possui um comportamento não linear. Desse modo, a velocidade do fluido é elevada o 

suficiente para empurrar as partículas que se encontram nas proximidades do bocal de injeção, 

formando uma cavidade no leito (segmento B-C da Figura 2.8).   

Aumentos de vazões acima do ponto crítico (ponto C) promovem o alongamento da 

cavidade formada, de modo que o jorro interno passa a oferecer uma menor resistência ao 

escoamento do fluido no interior da coluna, iniciando-se a fase de decréscimos da queda de 

pressão no leito, representada pelo segmento C-D da Figura 2.8. 

 

Figura 2.8 Curva típica de queda de pressão em função da vazão de fluido, denominada de 

Curva característica. 

No ponto D, região denoinada de jorro incipiente, tem-se a expansão do leito 

provocada pelo deslocamento de muitas partículas do núcleo central. Oscilalações acentuadas 

de pressão podem ocorrer, devido ao surgimento ocasional do jorro no topo do leito. 

Com o acréscimo da vazão acima do ponto D, o jorro interno rompe a superfície do 

leito, tendo-se como consequência o decréscimo súbito da concentração de sólidos na região 

F 
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diretamente acima do jorro interno. Tal fenômeno se reflete sobre a queda de pressão e sobre 

o leito, onde o jorro contínuo é estabelecido. 

A partir desse ponto, um novo aumento da vazão do fluido não acarreta mudanças na 

queda de pressão, uma vez que a quantidade adicional de fluido injetado na coluna tem seu 

caminho de escoamento na região de jorro, onde é oferecida a menor resistência ao 

escoamento. A fonte se desenvolve e a circulação de partículas é uniforme, caracterizando o 

regime de jorro estável. 

Realizando-se o processo inverso, ou seja, reduzindo-se o fluxo de gás, o jorro  

mantém-se até o ponto F da curva característica onde se observa a queda de pressão de jorro 

mínimo e encontra-se a menor vazão de ar capaz de manter um jorro estável. Continuando 

com a redução da vazão chega-se ao ponto máximo de queda de pressão em vazões 

decrescentes (ponto E), que devido ao fenômeno de histerese, não corresponde ao ponto 

máximo de queda de pressão para vazões de gás crescentes, uma vez que não há mais a 

necessidade de romper a barreira formada pelo arco de material sólido ao longo do leito.  

Dentre os parâmetros que exercem influência sobre a fluidodinâmica da secagem em 

leito de jorro, destaca-se a velocidade/vazão de mínimo jorro, a qual pode ser obtida através 

da curva característica. A vazão de mínimo jorro é definida como a vazão mínima do fluido 

capaz de romper a estrutura do leito de partículas na região central e formar o jorro, a uma 

pressão considerada constante. Esta pressão constante no interior do leito é definida como a 

queda de pressão de jorro mínimo (Pjm). O parâmetro velocidade de mínimo jorro representa 

o valor mínimo de velocidade para existência de jorro estável (LOURENÇO, 2006). 

A Figura 2.9 ilustra a formação de jorro para a mistura constituída por resíduo de 

acerola e grãos de soja, à medida que se aumenta a vazão de ar. Verifica-se que inicialmente o 

ar somente percola o leito (Figura 2.9-a), com o aumento da vazão de ar ocorre a formação de 

uma cavidade na base do cone (Figura 2.9-b). Após novo acréscimo da vazão de ar, as 

partículas menores são deslocadas para a parte superior do leito (Figura 2.9-c), obtendo-se a 

região de jorro estável na Figura 2.9-d. 

 

2.8. Estudo Fluidodinâmico 

 

2.8.1. Parâmetros avaliados 

A análise fluidodinâmica no leito de jorro depende da elucidação do comportamento 

sólido-fluido, ou seja, da compreensão do movimento dos sólidos inseridos no meio fluido. 
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Portanto, predizer as propriedades relacionadas ao movimento de um material granular se 

torna necessário quando se deseja evitar problemas durante o processo de secagem.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 
 

Figura 2.9 - Processo de formação do jorro estável para a mistura constituída de 25% de 

resíduo de acerola e 75% de soja. 

Fonte: Bortolotti (2012) 

 

Problemas de estabilidade fluidodinâmica no leito de jorro são relatados por diversos 

pesquisadores na secagem de polpas de frutas tropicais utilizando materiais inertes 

(MEDEIROS et al., 2001), na desidratação de polpas de acerola (LIMA et al, 2000a), de 

produtos vegetais (MARTINEZ et al., 1995) e de misturas constituídas por sementes de 

acerola e soja (BORTOLLOTI, 2012). Em todos esses trabalhos, os autores expõem 

problemas de acúmulo/segregação de material, com o comprometimento das condições 

fluidodinâmicas e da estabilidade do leito.  
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O estudo numérico de propriedades físicas intrinsicamente relacionadas à 

escoabilidade do material pode contribuir para um melhor entendimento da fluidodinâmica do 

leito, ajudando a esclarecer problemas correlacionados à instabilidade no leito de modo a 

evitar transtornos durante a desidratação. Sendo assim, a determinação da fluidodinâmica 

depende da elucidação de parâmetros que exercem efeitos significativos sobre a escoabilidade 

do material particulado. 

Em se tratando de misturas binárias, além da composição, fatores como 

características das partículas sólidas e propriedades das partículas inertes (massa específica, 

esfericidade, ângulos de repouso) também interferem no acúmulo de material no leito. 

Ishikura et al. (2003) acrescenta que as distinções no tamanho, forma, velocidade terminal e 

características da superfície do material, ocasionam diferenças no comportamento de cada 

componente da mistura, podendo causar o fenômeno da segregação. Santos (2011) em estudos 

sobre a fluidodinâmica de mistura constituída por polietileno e esferas de vidro em leito de 

jorro, verificou a existência de segregação na mistura creditando tal variação à altura de leito 

estático e à composição da mistura. 

Diversas são as técnicas existentes destinadas à compreensão da escoabilidade do 

material granular com o objetivo de descrever a fluidodinâmica do sistema. Dentre estas 

destacam os métodos diretos (SCHWEDES, 1996) que envolvem a observação direta do 

comportamento das partículas durante o fluxo, como as células de cisalhamento (célula 

Jenike, células anulares e células triaxiais).  Já os métodos indiretos avaliam a fluidodinâmica 

por meio das propriedades do fluxo. Esses métodos se referem à determinação de parâmetros  

como: ângulos de repouso estático e dinâmico, empacotamento da mistura, entre outros. Ou 

seja, parâmetros físicos que interferem de modo expressivo no comportamento 

fluidodinâmico das partículas dentro de um secador do tipo leito de jorro. 

O angulo de repouso é uma propriedade sensível à coesão, e segundo Ganesan et 

al.(2008) é um indicador do potencial de fluxo de um material granular. Schulze (2014) define 

o ângulo de repouso como a inclinação de uma pilha de material granular escoado a partir de 

um funil e depositado sobre uma placa plana (Figura 2.10). O mesmo autor define o ângulo de 

repouso drenado e o ângulo de repouso dinâmico. 

De acordo com Medeiros (2001) o ângulo de repouso estático avalia a fricção do 

sólido granular sobre si mesmo, quando se encontra estático. É definido como o ângulo de 

talude formado com a horizontal na qual o material permanecerá quando empilhado, sendo 

que o tamanho, forma, teor de umidade e a orientação das partículas, exercem influência sobre 

esse parâmetro. 
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Figura 2.10 - Medidas do ângulo de repouso (a. ângulo de repouso, b. ângulo de repouso 

drenado e c. ângulo de repouso dinâmico). 

Fonte: Schulze (2014) 

 
Zhou (2002) acrescenta que o ângulo de repouso estático é um dos parâmetros 

macroscópicos mais importantes na caracterização do comportamento de materiais granulares, 

pois se relaciona a fenômenos importantes, como avalanches, estratificação e segregação. O 

autor relata ainda que o ângulo de repouso depende fortemente das propriedades do material 

tais como os atritos de deslizamento e de rolamento e densidade das partículas.  

O ângulo de repouso dinâmico, medida que caracteriza a escoabilidade do material, 

avalia o movimento superficial da partícula e pode ser determinado por meio de uma mesa 

inclinada ou tambor rotativo (DURY et al., 1998). Quando materiais granulares são colocados 

em um tambor rotativo, avalanches são observadas (COURRECH DU PONT et al., 2003) e 

partículas de tamanhos diferentes tendem a segregar nas direções radial e axial (HILL et al, 

1997). Segundo Dury et al. (1998) a segregação depende de parâmetros, tais como tamanho,  

formato, massa, força de atrito e nível de enchimento do tambor.  

O leito de jorro é um equipamento que tem sua fluidodinâmica altamente 

influenciada também pela porosidade do leito estático, parâmetro intrinsecamente ligado ao 

empacotamento do leito. Leitos com porosidades reduzidas, ou seja, com maior grau de 

empacotamento oferecem maior resistência à movimentação das partículas, fato esse que 

interfere na vazão de mínimo jorro e na queda de pressão.  

De acordo com pesquisas realizadas por Bortolloti (2012) a estrutura de 

empacotamento de uma mistura binária não é apenas função da composição desta. Variáveis 

como forças de fricção que agem sobre as partículas, razão entre os tamanhos e formato dos 

sólidos, e mecanismo de empacotamento exercem efeitos significativos sobre a segregação no 

leito. Desta forma, a definição e a análise numérica do empacotamento de misturas binárias é 

uma condição inicial essencial à modelagem e simulação do leito de jorro. 
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2.8.2. A modelagem e a simulação computacional 

 Diante do exposto, a análise por meio de simulações computacionais de propriedades 

físicas relativas ao movimento granular se torna necessária e pode contribuir para o 

conhecimento da fluidodinâmica do leito de jorro.  

Cabe ressaltar que a realização de experimentos é geralmente uma opção 

dispendiosa, portanto simulações computacionais podem substituir parcialmente os 

experimentos. Tais simulações apresentam ainda vantagens como a possibilidade de 

manipular parâmetros, testar modelos e armazenar informações em todos os instantes de 

tempo. Além disso, características como redução dos custos e aumento da capacidade de 

processamento dos computadores reiteram o uso da abordagem fluidodinâmica 

computacional. Grima et al. (2011) acrescenta que as simulações podem contribuir na 

confiabilidade de projetos de engenharia e na estabilidade de funcionamento de 

equipamentos, reduzindo os riscos em suas análises. 

A fluidodinâmica computacional se baseia em equacionamentos matemáticos, que se 

levarmos em conta o referencial adotado pelas equações que governam o movimento, duas 

abordagens podem ser utilizadas: a euleriana e a lagrangeana. Na euleriana onde o domínio 

espacial é discretizado por um conjunto de pontos que formam a malha computacional, as 

equações do transporte são solucionadas através de um conjunto de equações algébricas por 

intermédio de métodos numéricos. Já na abordagem lagrangeana, partículas individuais do 

fluido são seguidas através do espaço em cada passo de tempo traçando-se a trajetória de cada 

uma (WOLK, 2003; SPIVAKOVSKAYA et al., 2007).  

Dentre os métodos numéricos utilizados na investigação do comportamento das 

partículas destacam-se Monte Carlo, Cellular Autômato e Método dos Elementos Discretos 

(DEM), que leva em conta explicitamente os fatores geométricos e as forças envolvidas no 

sistema (ZHOU et al., 2002).  

O Método dos Elementos Discretos é um método numérico que simula o movimento 

de um número finito de partículas, modeladas por geometrias simples (geralmente esféricas) 

dentro de um sistema fixo ou móvel variante com o tempo.  O método fornece em cada 

instante, uma descrição detalhada das posições, velocidades e forças agindo em cada  

partícula assim como nos contornos físicos (MESQUITA et al., 2012). Ou seja, as simulações 

com DEM fornecem informações dinâmicas das partículas individuais.  

A vasta aplicação do DEM no tratamento de materiais granulados se deve ao fato de 

tratar de um sistema não contínuo, que considera as forças de contato (coesão) e de não 

contato (eletromagnética, gravidade e capilaridade) entre cada partícula. Cada partícula, no 
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sistema considerado, pode se mover em movimentos de translação e rotação e tem seu 

movimento governado pela 2ª Lei do Movimento de Newton (ZHU et al., 2008). 

 Segundo Nascimento et al. (2007) o DEM se propõe 

 

 

“ a modelar o material granular por meio de um conjunto de partículas 

discretas, cujo comportamento é governado por leis físicas e onde os 

contatos entre elas podem ser criados ou extintos à medida que o conjunto de 

partículas se deforma como um todo. A representação do meio contínuo 

como um sistema de partículas discretas ou descontínuas caracteriza-se 

como um processo altamente dinâmico e com mudanças rápidas da 

configuração do domínio.” 

 

  

O método DEM foi desenvolvido por Cundall e Strack (1979) sendo, inicialmente, 

simplista, mas que com o passar dos anos passou por evoluções, visando à compreensão dos 

fundamentos do escoamento de materiais granulares (CLEARY, 2010). Nos últimos anos, o 

método DEM tem se tornado uma poderosa ferramenta para as operações que envolvem 

material granulado devido à sua dinâmica aplicada às propriedades físicas e mecânicas dos 

materiais (SANTOS et al., 2012). Com o ajuste dos parâmetros da modelagem os modelos 

numéricos DEM podem predizer resultados importantes para a engenharia pela calibração dos 

resultados numéricos com o experimental. 

Uma das possibilidades e vantagens do método é a visualização virtual dos 

movimentos das partículas no sistema que se encontra em análise. Desta forma, o DEM está 

se tornando largamente aceito como um método efetivo de avaliar problemas de engenharia 

envolvendo materiais granulados especialmente em problemas de escoamento de partículas, 

tendo assim aplicação em várias áreas como, por exemplo, na estabilidade de taludes 

(NASCIMENTO et al., 2007), no estudo sobre o efeito da forma das partículas sobre o 

escoamento (SANTOS, 2012) e na mineração (MESQUITA et al., 2012).  

 Com relação ao material granular a ser modelado e simulado pelo DEM, o mesmo 

permite considerar a partícula como macia ou rígida. Na abordagem de partícula macia, os 

sólidos sofrem pequenas deformações, as quais são usadas na estimativa de forças elásticas, 

plásticas e de atrito entre os sólidos. Nesta abordagem são estabelecidos os múltiplos contatos 

entre as partículas, importante na modelagem de sistemas quase estáticos (NASATO, 2011). 
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Em contrapartida, em uma simulação de partículas rígidas, processa-se apenas uma colisão 

por vez, e considera a colisão como sendo instantânea, e frequentemente as forças entre 

partículas não são explicitamente consideradas. Portanto, tipicamente, o método de partículas 

rígidas é útil em escoamentos granulares rápidos. 

Sendo assim, a modelagem do movimento das partículas no DEM consiste na 

resolução, por meio de integração numérica, da equação estabelecida pela 2ª lei de  Newton. 

As forças e momentos externos agindo em cada partícula são provenientes de: choques entre 

partículas, choques entre partícula e parede; força gravitacional e forças provocadas pelo 

fluido no qual às partículas estão contidas. 

Nasato (2011) acrescenta que  

 

 

“uma partícula em um meio granular pode ter dois tipos de movimento: 

translacional e rotacional. O comportamento macroscópico de um material 

particulado é controlado pelas interações entre as partículas, assim como 

interações com um gás ou líquido circundante e paredes. Sendo assim o 

movimento não é afetado somente pelas forças e torques originados das 

partículas e fluido da vizinhança imediata, mas também pelo fluido e 

partículas distantes pela propagação de ondas de perturbação.” 

 

 

Portanto, no DEM as equações governantes do movimento, de acordo com 2ª lei de 

Newton para movimento de translação e rotação, são dadas pelas equações 2.1 e 2.2 (ZHU et 

al., 2008). Estas equações descrevem os movimentos da partícula i em um intervalo de tempo, 

t, devido a sua interação com outras k partículas ou com a parede. 

 ݉௜ ௗ௩೔ௗ௧ = ∑ ௜௝௖௝ܨ + ∑ ௜௞௡௖ܨ) + ௜௙ܨ + ௜௚)௞ܨ                                                                        (2.1) 

 �௜ ௗ௪೔ௗ௧ = ∑ (�௜௝)௝                                                                                                            (2.2) 

 
Sendo mi e  Ii  a massa e o momento de inércia da partícula i, respectivamente.  Mi o 

torque agindo na partícula i pela partícula j e vi e wi  as velocidade translacional e angular da 

partícula i. As forças envolvidas são ܨ௜௝௖   a força de contato, ܨ௜௞௡௖ a força de não contato que 

atua na partícula i pela partícula k ou por outras fontes, ܨ௜௙ é a força de interação partícula-
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fluido sobre a partícula i e ܨ௜௚ a força gravitacional. O esquema representativo das forças que 

agem sobre a partícula é dado pela Figura 2.11. 

 

 

Figura 2.11 - Esquema representativo de forças atuando sobre a partícula i. 

 (Fonte ZHU et al., 2008). 

 
2.8.2.1. Modelos de forças de contato 

O contato entre duas partículas ocorre em uma área finita, onde a distribuição de 

tração de contato sobre esta área pode ser decomposta em dois planos. Uma componente no 

plano de contato, isto é no plano tangencial e outra normal ao plano. Desta forma, uma força 

de contato possui duas componentes, a normal e a tangencial.    

A descrição de forma precisa e generalizada da distribuição de tração sobre esta área, 

e por consequência a força total e o torque agindo em uma partícula, requer a adoção de 

modelos ou equações simplificadas. Os modelos de força de contato descrevem o 

comportamento físico de um contato existente. Tuley (2007) acrescenta que a escolha 

adequada de um modelo implica diretamente na obtenção de resultados realísticos em 

simulações utilizando DEM. 

Geralmente, modelos lineares são mais intuitivos e simples. O modelo linear mais 

comum é o chamado modelo mola-amortecedor proposto por Cundall e Strack (1979). Neste 

modelo simples a mola expressa às iterações elásticas, o amortecedor refere-se à lei de 

amortecimento viscoso responsável pela dissipação de energia no sistema o elemento de atrito 

representa o atrito de Coulomb e o menisco representa a força de coesão devida à ponte de 
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líquido (JOHNSTONE, 2010). A Figura 2.12 explicita a representação esquemática deste 

modelo de forças de contato. 

 

Figura 2.12 - Representação esquemática do modelo de forças do tipo mola-amortecedor. 

 

Vários modelos baseados em teorias foram desenvolvidos para modelagem pelo 

DEM. A seguir um breve relato sobre os modelos adotados neste trabalho. 

 

2.8.2.1.1 Modelo de contato de Hertz-Mindlin  

O modelo de Hertz-Mindlin se baseia nos trabalhos de Mindlin (1949) e de Mindlin e 

Deresiewicz (1953). É um modelo não linear, cuja mecânica dos contatos pode ser 

considerada como uma configuração do tipo mola-amortecedor (Figura 2.13). O modelo não 

inclui forças coesivas, porém pode ser utilizado em conjunto com outros modelos como o de 

coesão linear e os de ligação. 

 

 

Figura 2.13 - Esquema representativo do modelo de forças adotado por Hertz-Mindlin. 
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Se ocorrer o contato elástico entre dois corpos esféricos e lisos, de raios Ri e Rj 

(Figura 2.14)  submetidos a um carregamento normal, a partir do modelo de Hertz-Mindlin o 

raio do círculo de contato, a0 , será dado pela Equação 2.3. 

 ܽ଴ଷ = ଷସ �(�௜ + �௝) ோ೔ோೕோ೔+ோೕ .  ௡                                                                                           (2.3)ܨ

 

 

Figura 2.14 - Representação do contato elástico entre duas esferas. 

 
Levando-se em consideração parâmetros que expressam a rigidez da partícula, ou 

seja, o módulo de Young (Y) também conhecido como módulo de elasticidade e o coeficiente 

de Poisson (), adimensional que mede a deformação de um material homogêneo e isotrópico, 

as constantes elásticas das partículas Ki e Kj podem ser representadas pelas Equações 2.4 e 

2.5. �௜ = ଵ−೔2�௒೔                                                                                                                                        (2.4)   �௝ = ଵ−ೕ2�௒ೕ                                                                                                                    (2.5) 

 
Segundo Carvalho (2013), devido à compressão, dois pontos distantes pertencentes 

aos corpos em contato podem ser aproximados por uma distância, ߜ௡, denominada por 

sobreposição normal, a qual é definida pela Equação 2.6. 

௡ଷߜ  = ଽଵ଺ . �ଶ(�௜ + �௝)ଶ + ோ೔+ோೕோ೔ோೕ .  ௡                                                                                     (2.6)ܨ

Neste modelo, a força normal, Fn, fundamenta-se na Teoria de Contato Hertziana e é 

tomada como função da sobreposição normal, δn, do módulo de Young efetivo Y* e 

considerando o raio efetivo, R*, sendo definida pela Equação 2.7. ܨ௡ = ସଷ ௡ଷߜ∗ܴ√∗ܻ ଶ⁄                                                                                                                  (2.7) 
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Como a teoria Hertziana assume um contato perfeitamente elástico, o modelo 

acrescenta o efeito da dissipação de energia, através da inclusão de um termo que segue a lei 

de amortecimento viscoso (CARVALHO, 2013). Dentro desse contexto, a força de 

amortecimento normal depende da velocidade normal relativa, ݒ௡௥௘⃗⃗⃗⃗ ௟, sendo dada pela Equação 

2.8 onde, ܵ௡ e ߚ são rigidez e durezas normais, e, é o coeficiente de restituição e ݉∗,  a massa 

efetiva  (Equações 2.9 e 2.10). 

௡ௗܨ  = −ʹ√ହ଺                                                                                                      ௡௥௘⃗⃗⃗⃗ ௟ݒ∗௡݉ܵ√ߚ
(2.8) 

 ܵ௡ =  ௡                                                                                                                    (2.9)ߜ∗ܴ√∗ܻʹ
ߚ  = ୪୬ ௘√୪୬2 ௘+�2                                                                                                                    (2.10) 

  
Já a componente da força de amortecimento na direção tangencial (Equações 2.11 e 

2.12), é uma função de ܩ∗ que representa o módulo de cisalhamento, ou módulo de torção o 

qual é dado em Pascal (Pa) e estabelece uma relação entre a tensão de cisalhamento aplicada 

ao corpo () e a sua deformação específica. 

௧ௗܨ  = −ʹ√ହ଺ . ௧௥௘⃗⃗⃗⃗ ௟                                                                                                  (2.11) ܵ௧ݒ∗௧݉ܵ√ߚ = ͺߜ∗ܴ√∗ܩ௡                                                                                                                   (2.12) 

 
As forças tangenciais são estimadas baseadas na sobreposição tangencial (ߜ௧ሻ e na 

rigidez tangencial  (ܵ௧ሻ dada pela equação: 

௧ܨ  = −ʹܵ௧ߜ௧                                                                                                                        (2.13) 

 
A força tangencial é limitada pelo atrito de Coulomb μsFn,  e o atrito de rolamento é 

estimado aplicando um torque às superfícies de contato de acordo com a equação: 

 �௜ = −�௥ܨ௥ܴ௜ݓ௜                                                                                                                 (2.14) 

 
 Dentro desse contexto os parâmetros de entrada do material da partícula e da parede 

descritos na Tabela 2.6 e os parâmetros relacionados à interação entre as partículas são 

fornecidos (Tabela 2.7) e, a partir destes calculam-se as forças e torques pelo modelo de 

forças adotado. Em seguida as Eqs. (2.1) e (2.2) são resolvidas numericamente. Desta forma, 
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as trajetórias e velocidades são resolvidas para um determinado instante de tempo. Para o 

incremento de tempo seguinte, as ações externas são novamente encontradas e as respostas 

(deslocamento e velocidade) são novamente determinadas. E este processo repete-se durante 

toda a análise. 

 
Tabela 2.6 - Parâmetros  de entrada para os materiais da partícula e da parede. 

Propriedades do material Unidades 
Massa específica ()  [kg/m3] 
Coeficiente de Poisson () [-] 
Módulo de cisalhamento (G) [Pa] 

Fonte: DEM Solutions 2011 
 

Tabela 2.7 - Parâmetros de entrada para as interações entre partículas e partícula parede. 
Propriedades de interações Unidade 
Coeficiente de atrito estático (μe) [-] 
Coeficiente de Restituição (e) [-] 
Coeficiente de atrito de rolamento (μr) [-] 

Fonte: DEM Solutions 2011 

 
Silvério (2012) destaca por meio de uma tabela os parâmetros de entrada adotados 

por outros autores na análise de  forças de contato. Verifica-se na Tabela 2.8 apresentada  pela 

autora  o time step utilizado em cada simulação bem como o número de partículas. Observa-se 

na Tabela 2.8, que os valores encontrados para os parâmetros dos modelos utilizados nos 

trabalhos de simulação DEM, variam expressivamente. Tal fato se justifica pela variabilidade 

de equipamentos, os quais podem conduzir a diferentes respostas de colisões partícula-

partícula e partícula-parede. Sendo assim verifica-se a importância em se estudar a influência 

e a interação dos parâmetros do modelo utilizados na simulação DEM, para encontrar um 

melhor conjunto de parâmetros que melhor caracterize o sistema em estudo.  

 

2.8.2.1.2   Modelo de coesão JKR 

O modelo de coesão JKR é referenciado pelas iniciais dos nomes Johnson-Kendall-

Roberts, de 1971. Este modelo pode ser considerado como uma extensão do modelo do Hertz-

Mindlin no qual foram realizadas alterações na força normal, mantendo-se, no entanto, a 

mesma formulação para força tangencial. 

O modelo JKR inclui a coesão através da Energia de superfície (), dada em J/m² 

(CARVALHO, 2013). Destaca-se que esse parâmetro introduz tanto as energias de superfícies 

para as forças de van der Waals em pós finos e secos como para as forças das pontes de 

líquidos em meios úmidos . 
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  Tabela 2.8 - Parâmetros utilizados nos modelos DEM em vários trabalhos da literatura (SILVÉRIO, 2012). 

Autores 
 
 

Equipamento 
 

Material 
 

dp (mm)   
 (kg/m3) 

nº  
partículas 

 

Coeficiente de 
restituição 

 

Coeficiente de 
atrito 

rolamento 

Time 
 Step (s) 

 

 NEUWIRTH et al (2012) leito fluidizado Polímero 6 1800 5900 0,83 e 0,85 0,25 e 0,32 - 

 REMY et al (2011) Misturador esfera de vidro 2 a 4 2200 14000 a 20000 0,6 0.5 - 

CHAUDHURI et al (2010) Calcinador Tanoeiro 2 8900 8000 0,8 - 3. 10-6 

ANAND et al (2009)  Hopper esfera de aço 2,35 7850 6790 - 0.2 - 

GENG et al (2009) 
secador rotatório 

 
cilindros de 

alumínio 2 2700 - 0,02 0,2 e 0,3 10-5 

FRIES et al (2012) leito fluidizado Alumina 2 1500 25.104 0,8 0,1 10-6 

JIANG et al (2011) tambor rotativo esfera de vidro 1,5 a 3 2600 15000 0,9 0,3 5. 10-5 
KETTERHAGEN et al 

(2008) 
Hopper 

 
esfera de vidro 

 0,5 a 2,24 2500 35500 0,94 0,1 e 0,15 - 

LI et al (2012) 
leito fluidizado 

 
sementes de 

papoula 1,2 1000 9240 0,98 0,1 - 

LI et al (2013) leito de jorro esfera de vidro 4,04 2526 44,8 0,87 0,1 - 

LI et al (2009)  Hopper esfera de vidro 10 2460 -  - 0,15; 0,13 1,14. 10-6 

ZHONG et al (2006) leito de jorro -  1,5 a 3,0  1020 62000 0,9 0,3 10-6 

SAHNI et al (2011)  - -   - 1600 4.104 a 105 0,7 0,7 2. 10-6 
REN et al (2012) 

  - Milho 6,6 e 6,4  1385 23956 e 26482 0,59 0,34 1. 10-6 
STEFAN RADL et al 

(2010) 
Misturador 

 
esfera de vidro 

 3 2500  - 0,98; 0,8, e 0,7 0,5 - 

REMY et al (2011) Misturados  - 2 a10 2200 14000 e 20000 0,6  - < 10-5 

LU et al (2008)  -  - 2 2508 1000 0,93 0,5 10-6 
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A definição de energia de superfície representa, segundo Fischer e Cripps (2000) 

citado por Santos (2013), o potencial que uma superfície tem para realizar uma ligação 

química com outros átomos, isto é, a energia potencial da camada superficial dos átomos. Nos 

líquidos essa ligação se manifesta por meio da tensão superficial.  

Nos sólidos, entretanto, os efeitos da tensão superficial não são facilmente 

observáveis, pois os sólidos não se deformam com a mesma percepção que em líquidos. 

No EDEM, software comercial que utilizada o método DEM, essa energia pode ser 

configurada para as interações partícula-partícula e partícula-geometria. Portanto, a coesão 

Jonhnson-Kendall-Roberts (1971) acrescenta ao modelo de Hertz-Mindlin forças de natureza 

adesiva, seja ela forças de van der Waals, de coesão, adesão, tensão superficial, força capilar, 

eletrostática, magnética ou ponte de líquido. 

Quanto aos locais de atuação dos modelos, a Figura 2.15 mostra que o modelo 

simplificado de Hertz atua no ponto de contato enquanto que o modelo de Coesão de JKR 

considera a área de contato sobreposta. No EDEM, para a interação partícula-geometria, este 

modelo quantifica a interação da partícula com qualquer parte da geometria. 

 
 
 

 

 

Figura 2.13 - Representação simplificada entre duas partículas esféricas. 

 
A Figura 2.16 mostra o contato elástico adotado pelo modelo entre duas partículas de 

raio Ri e Rj tanto na presença como na ausência de forças de superfície, onde o raio da 

superfície de contato entre as duas partículas na ausência e na presença de forças de superfície 

é dado por a0 e a1, respectivamente. 

 

 

 

 

 

 

 

Figura 2.14 - Esquema representativo do contato elástico entre duas partículas esféricas. 
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Dentro desse contexto a equação para força normal, FJKR é dada pelas Equações 2.15 

e 2.16, onde  é a energia de superfície ou tensão superficial e a é o raio de contato entre 

partículas sobrepostas. 

௃௄ோܨ  = −Ͷ√Ͷ��ܻ∗ܽଷ ଶ⁄ + ସଷ ௒∗ோ∗ ܽଷ                                                                                       (2.15) 

ߜ  = �2ோ∗ − √Ͷ�� �௒∗                                                                                                               (2.16) 

 
  
 O modelo JKR permite o cálculo de forças de coesão ainda que as partículas não 

estejam em contato físico. A distância máxima, δc, permitida entre duas partículas para que a 

força de coesão seja diferente de zero é dada nas equações: 

௖ߜ   = −√Ͷ�ߛ �೎௒∗ + �೎2ோ∗                                                                                                           (2.17) 

 ܽ௖ = [ଽ��ோ∗2ଶ௒∗ ቀଷସ − ଵ√ଶቁ]ଵ ଷ⁄
                                                                                                    (2.18) 
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CAPÍTULO 3 

 
 

Caracterização Química e Física dos Materiais 

 
As propriedades físicas, químicas e nutricionais do resíduo de acerola são parâmetros 

definidores da qualidade importantes em um processo de secagem, uma vez que a 

desidratação pode acarretar a degradação desses compostos ou a desnaturação proteica. As 

caracterizações físicas do resíduo de acerola e da soja (inerte) também possuem significativa 

importância no estudo da secagem em leito de jorro, pois parâmetros como esfericidade e 

massa específica influenciam na fluidodinâmica do processo. Os dados físicos são também 

relevantes na análise numérica de parâmetros determinadores do comportamento 

fluidodinâmico da secagem, dentre eles: os ângulos de repouso estático e dinâmico e a 

porosidade do leito estático. Diante do exposto, neste capítulo são apresentadas as 

metodologias e os resultados obtidos para a caracterização física e química dos materiais 

utilizados no presente estudo.   

 

3.1 MATERIAL E MÉTODOS 

 
3.1.1 Materiais 

 

O resíduo de acerola (sementes), objeto de estudo desta pesquisa, foi cedido pela 

Nettare Indústria Comércio Importação e Exportação de Alimentos LTDA., empresa 

vinculada ao processamento de frutas, ou seja, destinada à produção de polpas, situada na 

cidade de Uberlândia-MG. Após coleta, as sementes foram acondicionadas em embalagens de 

1 kg e conservadas sobe refrigeração em freezer a aproximadamente -18°C.  

As amostras destinadas à secagem foram dividas em lotes previamente 

homogeneizados. Em seguida, as amostras foram acondicionadas em embalagens plásticas e 

envoltas por papel alumínio, evitando-se a exposição à luz e conservadas sob refrigeração. 

Para realização da secagem ou do pré-tratamento, as amostras foram retiradas do freezer e 

colocadas na geladeira até completo descongelamento.  

A soja, material inerte utilizado no auxílio fluidodinâmico do processo, da variedade 

Brazilian BRS foi adquirida no comércio local da cidade de Uberlândia. 
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 A Figura 3.1 ilustra os materiais utilizados nesse estudo, em que se percebe que a 

semente de acerola não apresenta vestígios de polpa, o que demonstra a eficiência do 

despolpamento realizado na empresa. 

 
                  (A)                                                                    (B) 

 
3.1.2  Umidade 

A determinação de umidade foi realizada pelos métodos estufa à 105ºC por 24 h e 

pelo secador infravermelho IV 2500 da GEHAKA. Desvios inferiores a 2% foram obtidos, 

quando as metodologias adotadas foram confrontadas.  Dentro desse contexto optou-se pela 

análise em secador infravermelho por permitir a obtenção de resultados rápidos e confiáveis 

de percentagem de umidade. O infravermelho IV 2500 da GEHAKA (Figura 3.2) é equipado 

com emissor infravermelho, sensor de temperatura do tipo Platina (PT1000) e prato de 

alumínio descartável, sobre o qual é colocada a amostra. A sensibilidade da balança acoplada 

ao equipamento é de 0,001 g. 

 

 

 

 

 

 

 

 

Figura 3.2 - Esquema ilustrativo do secador infravermelho. 

Figura 3.1 -  Imagens dos materiais utilizados no presente estudo (A) resíduo de acerola 

(B) grãos de soja. 
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3.1.3 Massa Específica Real  

Para determinação da massa específica real, as sementes foram previamente secas em 

estufa à 105°C±3°C por 24 h, e colocadas em dessecador até que atingissem temperatura 

ambiente.  A análise utilizando o picnômetro a gás Hélio da marca MICROMERITICS, 

modelo ACCUPYC 1330 foi realizada após a trituração das sementes em liquidificador.  

 
3.1.4 Massa Específica Aparente dos materiais 

Para determinação da massa específica aparente foram utilizadas as sementes in 

natura. A técnica utilizada foi a picnometria adotando-se éter de petróleo de massa específica 

de 635 kg.m-3.  

 

3.1.5 Diâmetro da Partícula 

Para obtenção do diâmetro médio de Sauter, a amostra in natura foi submetida ao 

peneiramento utilizando o conjunto de peneiras de 3/8, 1/4 e 6 mesh. 

 

3.1.6 Esfericidade 

A esfericidade das sementes de acerola foi calculada utilizando o equipamento 

HAVER-CPA 3-2 (analisador foto-óptico de partículas).  No entanto, para a soja considerou-

se esfericidade de 0,9 (BARROZO, 1995). 

 

3.1.7 Ângulo de repouso estático (�)  

O ângulo de repouso estático foi determinado colocando-se o material em cilindro 

contendo uma das extremidades abertas, apoiando-o em superfície lisa e levantando-o, 

deixando as partículas caírem sob o efeito da gravidade. Após a formação do cone foram 

registradas as imagens, através da máquina fotográfica digital SONY modelo DSC-

W35/W55, sendo então determinados os ângulos de repouso estático por meio de análise das 

imagens obtidas (Figura 3.3). Todos os ensaios foram realizados em triplicata. 

 
Figura 3.3 - Imagem ilustrativa do ângulo de repouso estático de sementes de acerola. 

� 
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3.1.8 Ângulo de repouso dinâmico () 

A metodologia experimental para determinação do ângulo de repouso dinâmico 

empregou tambor rotativo acrílico de formato cilíndrico de 0,1 m de diâmetro, cujo aparato 

experimental é mostrado na Figura 3.4.  

 

                          

Figura 3.4 - Aparato experimental utilizado na determinação do ângulo de repouso dinâmico. 

 
     O ensaio consistiu em preencher 50% do volume do tambor e rotacionar o cilindro à 

velocidade constante, obtendo-se deste modo, o ângulo de repouso dinâmico através da 

análise de imagens obtidas conforme Figura 3.5. Além dos materiais puros, misturas contendo 

frações em massa entre 10 a 90% de acerola foram avaliadas experimentalmente quando 

submetidas à velocidade de rotação de 20,1; 25,2 e 38,1 rpm. Os ensaios experimentais foram 

realizados em triplicata.  

 

 

Figura 3.5 - Esquema ilustrativo para determinação do ângulo de repouso dinâmico. 

Fonte: POZITANO; ROCHA (2011) 

 
3.1.9 Análise dos Compostos  

As análises dos compostos bioativos foram realizadas na ausência de luz reduzindo-

se os riscos de degradação. As amostras in natura foram avaliadas mediante descongelamento 

 
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prévio. No entanto, para caracterização das amostras resultantes da desidratação, procedeu-se 

o acondicionamento dessas em embalagens plásticas envoltas por papel alumínio, seguidas 

por armazenamento em geladeira à ± 8°C, até o momento das análises.  

Para determinação dos teores, as amostras foram previamente trituradas, pesadas em 

balança analítica com precisão de 0,0001 g da SHIMADZU modelo AY220. Para os ensaios 

envolvendo titulação (acidez e ácido ascórbico) o extrato foi obtido por meio da maceração 

com água destilada.  

O metanol foi utilizado como extrator para os ensaios de fenólicos e flavonoides, o 

qual foi colocado com as sementes trituradas em um tubo com tampa e agitado em vortex QL-

901 da BIOMIXER por 3 min. Após a agitação, a mistura foi armazenada em local escuro por 

1 h,  sendo posteriormente  centrifugada  em  centrífuga  KC4  da  KINDLY, a 4000 rpm por 

8 min. Ressalta-se que todas as análises foram realizadas em triplicata. 

 

3.1.9.2  Determinação da acidez titulável total  

O teor de acidez titulável total das amostras foi realizado de acordo com os métodos 

da AOAC (1995), utilizando hidróxido de sódio 0,1 N para as titulações dos extratos. Os 

resultados foram expressos em g de ácido cítrico/100 g amostra seca.  

 

3.1.9.2  Determinação de ácido ascórbico  

O conteúdo de ácido ascórbico foi determinado por titulometria, através da redução 

do 2,6-diclorofenol-indofenol pelo ácido ascórbico. Nesta análise, o extrato dos resíduos 

provenientes da maceração foi misturado com ácido oxálico, na proporção de 50 mL de 

extrato para 50 mL de ácido oxálico. Os resultados foram expressos em mg de ácido 

ascórbico/100 g de amostra seca (AOAC, 1995).  

 

3.1.9.3  Determinação de compostos fenólicos totais  

O teor de fenólicos totais foi determinado pelo método de Folin–Ciocalteu, 

utilizando ácido gálico como padrão (SINGLETON; ROSSI, 1965). O reagente de Folin 

Ciocalteau é uma solução de íons complexos poliméricos que oxida os fenolatos, reduzindo 

os ácidos a um complexo azul Mo-W. A leitura da absorbância foi realizada a 622 nm. A 

curva analítica foi construída utilizando o ácido gálico como padrão. Os resultados foram 

expressos em mg de ácido gálico/100 g de amostra seca.  

 

 



 
 

51 
 

3.1.9.4  Determinação de compostos flavonoides totais 

A extração dos flavonoides foi realizada com metanol de acordo com Yu e Dahegren 

(2000). O conteúdo de flavonoides totais foi determinado pelo método colorimétrico segundo 

Zhishen et al. (1999), com leitura de absorbância a 450 nm.  

Este método utiliza o AlCl3 como agente de deslocamento visando à redução da 

interferência de outros compostos na leitura da absorbância da solução. A rutina foi utilizada 

como padrão para a obtenção da curva de calibração. Os resultados foram expressos em mg 

equivalente de rutina/100 g de amostra seca. 

 
 

3.1.10 Composição Nutricional 

A composição química nutricional realizada através dos parâmetros teor de cinzas, 

proteína e extrato etéreo, foi conduzida no Laboratório de Bromatologia localizado no 

UNIPAM (Centro Universitário de Patos de Minas), sendo as análises realizadas em triplicata.  

 

3.1.10.1  Cinzas 

A determinação do resíduo mineral (cinzas) foi realizada segundo o Instituto Adolfo 

Lutz (1985), pela incineração da amostra em mufla à temperatura de 550oC, seguida pelos 

processos de resfriamento em dessecador e pesagem até obtenção de peso constante.  

  

3.1.10.2 Proteínas 

A concentração de proteína bruta foi determinada pela quantificação de nitrogênio 

total da amostra utilizando método de Kjeldahl, seguindo as normas analíticas do AOAC 

(1990). A análise constitui-se pela pesagem da amostra, adição de mistura catalítica (90% de 

sulfato de potássio e 10% de sulfato de cobre) e 10 mL de ácido sulfúrico, seguida por 

digestão no digestor da MARCONI modelo MA4025.  

Posteriormente, 2 mL de água destilada foram adicionados em cada tubo. As 

amostras foram alcalinizadas com a adição de 25 mL de solução de hidróxido de sódio a 40% 

e destiladas em destilador de nitrogênio da FORLAB modelo FL74. Frascos de erlenmeyer 

contendo 10 mL de solução de ácido bórico receberam a solução destilada até completar um 

volume de 75 mL, sendo esta titulada com solução de ácido clorídrico a 0,1 N. O resultado foi 

multiplicado pelo fator de conversão estabelecido pela Legislação Brasileira (Resolução RDC 

n. 360 de 23 de dezembro de 2003, da ANVISA), correspondentes a 6,2 para proteínas 

vegetais.  
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3.1.10.3  Extrato etéreo (Lipídios) 

A extração dos lipídios totais foi realizada através da extração etérea por fluxo 

intermitente, utilizando o éter etílico como solvente orgânico sob refluxo em aparelho 

Soxhlet, considerando as normas analíticas descritas pela AOAC (1990). A extração foi 

realizada por um período de 3 h. Em seguida, os cartuchos foram removidos do extrator e 

seco em estufa à 105°C, por 30 min.  Logo após, foram acondicionados no dessecador até 

atingirem temperatura ambiente quando então foram pesados. 

 

3.1.10.4  Fibras 

A determinação de fibras se fez por meio de digestão ácido-básica utilizando ácido 

sulfúrico e hidróxido de sódio, ambos a 1,25%. Seguido por filtração e lavagem com água, 

etanol e acetona. A análise baseia-se ainda na secagem e incineração à 250oC do cadinho 

contendo a amostra, conforme metodologia proposta por Silva (2004).  

 

3.1.11 Microscopia Eletrônica de Varredura (MEV)  

 
As análises de microscopia foram realizadas pelo microscópio eletrônico de 

varredura (MEV) da CARLZEISS, modelo EVOMA10, após as amostras terem sido fixadas 

nos stubs e metalizadas com ouro no metalizador LEICA modelo SCD050. O MEV foi 

regulado a uma distância focal de 9,5 mm, voltagem de aceleração de 10 kV e as amostras 

sofreram ampliações entre 36 a 1000 vezes.  

Para conservação do tecido estrutural e fixação das amostras que apresentavam 

elevado teor de umidade (amostras in natura e as submetidas aos pré-tratamentos) realizou-se 

a desidratação prévia utilizando solução Karnovsky constituída por paraformaldeído, 

glutaraldeído e solução tampão de fosfato (pH entre 7,2 e 7,4). 

Em seguida as amostras foram lavadas com água destilada e submetidas a soluções 

de concentração crescente de acetona (30, 50, 70, 90 e 100%) permanecendo cerca de 10 min 

em cada uma. Ao término da desidratação, realizou-se a secagem em ponto crítico utilizando 

para tanto, o dióxido de carbono gasoso. A secagem se fez no aparelho de ponto crítico da 

BALZERS modelo CPD-020.  
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3.2 RESULTADOS E DISCUSSÕES 

3.2.1 Caracterização química do resíduo de acerola 

 Na Tabela 3.1 são apresentados os resultados de caracterizações químicas da 

semente de acerola in natura, parâmetros definidores de sua qualidade nutricional. Destaca-se 

que os resultados são médias aritméticas dos diversos lotes avaliados no decorrer do 

desenvolvimento desta pesquisa. Nota-se pelos desvios padrões que existem diferenças 

significativas entre os lotes. 

 
Tabela 3.1 - Características químicas do resíduo de acerola in natura. 

Propriedades Sementes de acerola in natura 

Umidade (%) 71,8±1,3 

Acidez (mg de ácido cítrico/100 g amostra seca) 1388,1±168,4 

Teor de ácido ascórbico  

(mg de ácido ascórbico/100 g de amostra seca) 
60,2±12,8 

Fenólicos totais (mg de ácido gálico/100 g de 

amostra seca) 
691,7±92,5 

Flavonoides (μg de rutina/100 g amostra seca) 2400±0,5 

  

A determinação de umidade é uma das medidas mais utilizadas na análise de 

alimentos e a partir desta é possível inferir sobre aspectos relacionados à estabilidade, 

qualidade e composição dos produtos. Fatores esses que afetam o armazenamento, as 

embalagens e o processamento industrial (CHAVES et al., 2004).  

O conteúdo de umidade de um alimento possui relevada importância, porém, sua 

determinação precisa é muito difícil, uma vez que a água pode ocorrer nos alimentos de três 

diferentes maneiras: água ligada, água disponível e água livre (ALDRIGUE et al., 2002).  

Verifica-se pela Tabela 3.1 que a semente de acerola possui teores elevados de 

umidade (71,8%±1,3), o que pode favorecer a proliferação microbiana e reações químicas de 

degradação, reduzindo o tempo de vida útil desse resíduo. Ressalta-se que os valores médios 

de umidade são próximos aos obtidos por Sousa (2011a) cerca de, 83,45% ± 0,06.  Entretanto, 

fatores como distinções entre os processamentos industriais podem acarretar em alterações 

significativas deste parâmetro.  

A acidez é um importante parâmetro na apreciação do estado de conservação de um 

produto alimentício. Encontra-se ainda relacionada à adstringência do alimento. O valor 

médio de acidez titulável, em ácido cítrico obtido foi de 1388,1 mg/100 g, indicando baixa 
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acidez e reduzida predisposição ao desenvolvimento de micro-organismos. Análises de acidez 

de polpas de acerola foram realizadas por Oliveira et al. (1999) resultado em teores da ordem 

de 1030  mg/100 g isto é próximos aos obtidos neste estudo.  

Entretanto, valores da ordem de 3000 mg/100 g  e 2564 ± 72,12 mg/100 g foram 

obtidos por Silva (2014) e Silva (2015), respectivamente, em estudos com sementes de 

acerola, superiores aos encontrados nesta pesquisa, provavelmente devido ao estágio de 

maturação e/ou do genótipo do fruto (MATSUURA, 2001). 

O valor de vitamina C (60,2±12,8 mg/100 g) encontra-se ligeiramente inferior ao 

citado por Sousa (2011a) que obteve 89,55 mg de ácido ascórbico/100 g. Apesar do teor de 

ácido ascórbico ser menor quando comparado ao fruto de acerola (1677,59 mg/100 g),  ainda 

assim pode-se utilizar a semente de acerola como fonte complementar  deste nutriente, pois a 

ingestão diária recomendada para adultos (Institute  of Medicine - IOM, 2000) é de 75 mg 

para mulheres e 90 mg para homens. Os valores obtidos são superiores aos encontrados por 

Silva (2014) e Silva (2015). 

A determinação dos compostos bioativos fenólicos mostrou que a semente de acerola 

possui consideráveis teores desse princípio ativo, quando confrontados os valores encontrados 

nas sementes (691,7 mg/100 g) com os obtidos no fruto, cerca de 1063 mg/100 g (RUFINO, 

2008). Valores similares foram obtidos por Silva (2014) cerca de 600 mg/100 g e valores 

inferiores foram obtidos por Sousa (2011b), em torno de 247,62 mg/100 g.  

Quanto aos teores de flavonoides verifica-se que as sementes de acerola possuem 

teores menos expressivos desse composto, 2400±0,5 g/100 g. Os valores obtidos são 

superiores aos encontrados por Sousa (2011) que encontrou teores de 1040±0,30 g/100 g e 

Silva (2015), cerca de 1650 g/100 g. 

As discrepâncias ocorridas entre os teores nutricionais do presente estudo e outros 

autores podem estar relacionadas a fatores como a localização geográfica, práticas de cultivo, 

regime pluvial, exposição à luz do sol, características genéticas e, principalmente, o estágio de 

maturação em que os frutos se encontram (MATSUURA et al., 2001). 

    

3.2.2 Composição química nutricional do Resíduo de Acerola 

Os dados referentes à composição da acerola são apresentados na Tabela 3.2, que se 

constitui por valores médios dos lotes avaliados no presente estudo, bem como as indicações 

do desvio padrão em relação à estimativa da média.  As discrepâncias no valor nutricional e a 

palatabilidade dos resíduos gerados pelas agroindústrias podem depender de inúmeros fatores, 
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dentre eles: a variedade das frutas utilizadas, os métodos de processamento e o tempo de 

armazenamento. 

A avaliação dos resíduos de acerola mostrou que, de forma geral, as sementes deste 

fruto possuem quantidades significativas do macro nutrientes, sendo plausível o seu 

aproveitamento no enriquecimento de outros produtos alimentícios.  

 
Tabela 3.2 - Composição química nutricional do resíduo de acerola. 

Propriedades Sementes de acerola in natura 

Cinzas (%) 1,84±0,60 

Proteínas (%) 12,54±1,20 

Lipídios (%) 4,37±0,34 

Fibra bruta (%) 40,86±6,30 

 

O valor médio encontrado para as cinzas nas sementes de acerola foi de 1,84%, 

próximo ao obtido por Pereira (2014) cerca de 1,41%. Chaves et al. (2004) obtiveram  para 

acerolas frescas valores entre 0,3 a 2,1% de cinzas, ou seja, frações próximas às obtidas neste 

estudo. Sendo assim, as frações de cinzas obtidas podem estar associadas a uma concentração 

significativa de minerais.  

Segundo Chaves et al. (2004) a fração de cinzas, ou seja, quantidade de resíduo 

mineral fixo presente nos alimentos se refere à parcela de resíduo inorgânico, remanescente 

da queima da matéria orgânica. Sendo assim, o conteúdo em cinzas de uma amostra 

alimentícia representa o conteúdo total de minerais podendo, portanto, ser utilizado como 

medida geral da qualidade de alimentos. No entanto, nem sempre esse resíduo representa toda 

a substância inorgânica presente na amostra, pois alguns sais podem sofrer redução ou serem 

volatilizados durante o aquecimento (INSTITUTO ADOLFO LUTZ, 1985).  

As proteínas, moléculas de natureza heteropolimérica, exercem funções importantes 

dentre elas as de catalisadores biológicos (enzimas) e de componentes estruturais da célula.  

De um modo geral, a qualidade da proteína é encontrada, em ordem decrescente, nos 

alimentos zoógenos (animais), sementes oleagionosas, leguminosas, cereais e amiláceos 

(GAVA, 1978). 

O estudo realizado com resíduos desidratados de acerola (LOUSADA et al. 2006) 

mostra  teores de proteínas de 10,5%, valor ligeiramente inferior ao encontrado neste trabalho 
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(12,54%). Resultados inferiores foram obtidos para farinhas de resíduo de acerola por 

Sobrinho (2014) que obteve teores de proteína na faixa entre 6,1 a 8,7%.  

Ressalta-se que a semente de acerola revela-se como uma boa fonte proteica, 

contendo fração de 12,54%, conteúdo superior aos subprodutos de algumas frutas como o 

abacaxi (8,4%) e a goiaba (8,5%) (LOUSADA  et al., 2006). Em média, a proteína bruta da 

semente da acerola ultrapassa valores como o sorgo grão (10,45%), casca de soja (11,94%), 

gérmen de milho (9,31%) (ROCHA JÚNIOR; VALADARES FILHO; BORGES, 2002, 

citados por AGUIAR, 2010).  De acordo com Aguiar (2010) dentre as partes dos frutos 

(casca, semente e pedúnculo) que formam os subprodutos, as sementes são aquelas que 

contêm teores de proteínas mais elevados.  

A determinação do extrato etéreo, método aplicável à determinação de lipídios em 

alimento, fundamenta-se na extração de gorduras e óleo por meio de solventes orgânicos. Os 

lipídios são compostos orgânicos altamente energéticos, contém ácidos graxos essenciais ao 

organismo e atuam no transporte das vitaminas lipossolúveis. São substâncias insolúveis em 

água, solúveis em solventes orgânicos, tais como éter, clorofórmio e acetona, dentre outros 

(INSTITUTO ADOLFO LUTZ,  1985). 

As sementes de acerola apresentaram teores lipídicos expressivos com (4,37±0,34)%. 

Os resultados encontrados neste estudo são ligeiramente superiores aos quantificados por 

Júnior et al. (2008)  e Sousa (2011), que obtiveram para os resíduos de acerola desidratados 

valores de 3,27% e 3,59%, respectivamente. Valores mais elevados que os obtidos nesta 

pesquisa foram determinados por Silva et al. (2012), cerca de 8,92%. 

Teores elevados de fibra bruta foram obtidos nas sementes de acerola, 40,86%. 

Valores superiores foram obtidos por Chiocchetti (2013) em torno de 59%.  

 
3.2.3 A caracterização física do resíduo de acerola e da soja  

A Tabela 3.3 apresenta a caracterização física das partículas de resíduo de acerola e 

soja determinadas por meio de experimentos. Resultados esses utilizados como parâmetros de 

entrada nas simulações computacionais visando o estudo das propriedades fluidodinâmicas 

dos mesmos em leito de jorro.  

Avaliando-se as características da soja, verifica-se que os resultados estão em 

conformidade com a literatura, uma vez que valores similares foram obtidos por Duarte 

(2006), que em estudos com recobrimento da soja obteve diâmetro médio de 6 mm e massa 

específica aparente de 1173 kg/m3. Os resultados também se encontram coerentes aos obtidos 
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por Vieira et al. (1999), o qual obteve para a soja valores de massa específica aparente na 

faixa entre 1159 a 1199 kg/m3. 

 
Tabela 3.3 - Características físicas do resíduo de acerola e da soja. 

Propriedades Soja Resíduo de Acerola 

Diâmetro da partícula dp [mm] 6,30±0,40 7,05 ±0,07 

Massa específica real ρreal [kg/m3] 1232,95±0,60 1344,85±13,86 

Massa específica aparente ρap [kg,/m3] 1188,20± 6,18 677,47 ± 0,45 

Esfericidade Φ 0,90 0,68 

Diâmetro equivalente  Deq [mm] 6,29 8,09 

 

De modo similar, os resultados obtidos para as sementes de acerola são similares aos 

de Alves et al. (2010) e Silva (2014), que obtiveram massa específica real de 1354,7  kg/m3 e 

1427,5 ± 9,4 kg/m3, respectivamente. Quanto à massa específica aparente, determinada por 

picnometria com éter de petróleo, Silva (2014) obteve 860,4±10,6 kg/m3, valor ligeiramente 

superior ao encontrado nesta pesquisa. Variações entre a massa específica real e aparente dos 

materiais se devem à diferença entre os materiais.  

A baixa esfericidade das sementes de acerola era um resultado esperado, pois a 

mesma possui formato de elipse. Em contrapartida, a elevada esfericidade da soja contribui de 

modo favorável no auxílio da escoabilidade dos materiais  no leito de jorro. 

 

3.2.3.1 Avaliação experimental dos ângulos de repouso dinâmico do resíduo de acerola e da 

soja 

 
O ângulo de repouso dinâmico, medida física característica da escoabilidade de um 

material, relaciona-se ao movimento superficial das partículas (JONG et al., 1999). Também 

denominado por ângulo de inclinação, a medida informa sobre o comportamento da partícula 

em movimento lento, por exemplo em tambor rotativo. 

As determinações experimentais do ângulo de repouso dinâmico foram realizadas 

com intuito de avaliar o comportamento fluidodinâmico dos materiais tidos como objeto de 

estudo deste trabalho. De acordo com Chou et al. (2010) a condição de segregação de um 

material pode ser prevista com base no ângulo de repouso dos materiais granulares. 

A Tabela 3.4 apresenta os resultados encontrados para o ângulo de repouso dinâmico 

das sementes de acerola e da soja.  Verifica-se que o resíduo de acerola possui ângulo de 
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repouso dinâmico superior ao dos grãos de soja. O resultado é compatível com a literatura 

que, segundo Medeiros et al. (2001), o ângulo de repouso diminui com o aumento da 

esfericidade. 

 
Tabela 3.4- Ângulos de repouso dinâmico dos resíduos de acerola, da soja e da mistura de 

composição 50% em massa. 

 Materiais   Ângulo de repouso dinâmico (o) 

Resíduo de acerola  52,60 ± 3,80  

Soja  41,10 ±2,00  

Mistura resíduo de acerola e soja (50%)  44,96±2,00 

 

Outro fator importante a destacar é o atrito entre as partículas, fator esse mais 

evidenciado nas sementes de acerola, devido à sua rugosidade e formato. O atrito existente 

entre as partículas pode contribuir para o aumento do ângulo de repouso. 

O termo atrito por fricção é uma designação comum aos fenômenos em que o 

movimento relativo entre duas superfícies em contato é freado pelas forças de coesão 

existentes entre as superfícies.  Silva et al. (2006) destaca que o atrito pode ocorrer de três 

modos: de escorregamento, que ocorre entre duas superfícies sólidas em contato e que 

deslizam uma sobre a outra; o de rolamento, entre uma superfície sólida e outra superfície que 

rola sobre ela; e atrito interno de um fluido, ou seja, a viscosidade. 

A presença de elevado teor de umidade da semente de acerola também contribui para 

o aumento da força de coesão entre as partículas, tendendo a agregar estas partículas e, 

consequentemente, aumentando o atrito interno. Silva e Corrêa (2000) concordam e afirmam 

que o ângulo de repouso é altamente influenciado pelo teor de umidade do produto.  

Após realização dos ensaios experimentais, obteve-se o valor de 44,96o±2,5o para o 

ângulo de repouso dinâmico da mistura de iguais frações mássicas de soja e resíduo de acerola 

(50%). O resultado obtido é compatível com Bortolotti (2012) que para acerola pura obteve o 

valor de 49,29o±4,16o  

A escoabilidade de um material particulado é inversamente proporcional ao ângulo 

de repouso dinâmico portanto, o acréscimo de soja à mistura auxilia na escoabilidade no leito 

de jorro. Fato esse em concordância com as esfericidades e rugosidades dos dois materiais 

(MEDEIROS et al., 2001). A Figura 3.6 ilustra os ângulos de repouso dinâmico dos materiais 

utilizados como objeto de estudo. 
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                  (A)                                          (B)                                           (C) 

Figura 3.6 - Avaliação qualitativa do ângulo de repouso dinâmico (A) resíduo de acerola (B)  

mistura constituída a 50% e (C) soja.  

 

Avaliação do efeito da velocidade de rotação e da fração de acerola sobre o ângulo de 

repouso dinâmico da mistura 

 

A avaliação experimental dos efeitos da velocidade de rotação e da fração de acerola 

sobre o ângulo de repouso dinâmico é apresentada na forma gráfica pela Figura 3.7.   

 

             (A)                                                                             (B) 
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sobre o ângulo de repouso dinâmico da mistura soja/resíduo de acerola. 
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Para verificar a influência dessas variáveis na resposta em questão, os resultados 

foram tratados estatisticamente por meio de análise de variância (Tabela 3.5). Através desta 

infere-se (nível de significância de 5%) que a variável isolada velocidade de rotação não 

exerce efeito significativo sobre o ângulo de repouso dinâmico, na faixa avaliada. Entretanto, 

a variável isolada fração de acerola exerce efeito estatístico sobre a resposta, fato evidenciado 

pela ordem de grandeza do valor numérico da probabilidade.    

 

Tabela 3.5 - Análise de variância  (ANOVA) para a variável resposta o ângulo de repouso 
dinâmico da mistura. 

 
Efeitos Soma dos 

Quadrados 
DF Quadrado 

médio 
F Probabilidade 

(p) 
Média 252435,3 1 252435,3 25414,05 0,0000 

Velocidade de rotação 14,7 2 7,4 0,74 0,4782 

Fração de acerola 251,9 8 31,5 3,17 0,0022 

Erro puro 1817,7 183 9,9   

 

3.2.3.2 Avaliação experimental do ângulo de repouso estático do resíduo de acerola e da 

soja 

O ângulo de repouso estático, outro parâmetro físico determinante da escoabilidade, 

depende das características dos materiais tais como porosidade, tamanho, forma e orientação 

das partículas. De acordo com Dantas et al. (2009), a fluidez de um material e o ângulo de 

repouso estático estão correlacionados à fricção do sólido granular sobre si mesmo, também 

designada como escoabilidade estática.  

A Tabela 3.6 e a Figura 3.8 apresentam os valores obtidos para os ângulos de 

repouso estático das sementes de acerola e dos grãos de soja. Nota-se que a semente de 

acerola possui maior ângulo de repouso estático quando confrontada à soja. As características 

físicas já anteriormente citadas contribuem para esse resultado.  

 

Tabela 3.6 - Medidas do ângulo de repouso estático para os resíduos de acerola e a soja. 

Materiais Ângulo de repouso estático (o) 

Resíduo de acerola  39,20 ± 1,40 

Soja  21,40 ±0,90 
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De acordo com Caravalho (2013), as partículas podem se classificar segundo sua 

escoabilidade, sendo essa inversamente proporcional ao ângulo de repouso (Tabela 3.7). Ou 

seja, quanto maior for o ângulo de repouso de uma partícula, pior será a sua escoabilidade. 

Para as sementes de acerola nota-se que a mesma se classifica como material de difícil 

escoabilidade. Já os grãos de soja devido às suas características (esfericidade elevada e 

superfície lisa) possuem escoablidade fácil, fato esse que contribui para a formação de jorro, 

quando utilizado em mistura com as sementes de acerola durante a secagem. 

 

 

 

 

 

 

 

 

 

 
 

(B) 
Figura 3.8 - Avaliação qualitativa do ângulo de repouso estático (A) do resíduo de acerola e 

(B) da soja. 

 
Tabela 3.7 - Comportamento de escoabilidade de sólidos. 

Ângulo de repouso  (o) Escoabilidade 

< 30 Fácil escoamento 

30 – 50 Difícil escoabilidade 

> 50 Coesivo 

Fonte: Caravalho (2013) 

Dentre os fatores preponderantes sobre o ângulo de repouso estático destaca-se o teor 

de umidade do resíduo de acerola, onde o efeito do teor de água existente na matéria analisada 

também pode influenciar o ângulo de repouso. De acordo com Brito et al. (2012), a 

higroscopicidade é um fator de grande influência em materiais porosos, pois a adsorção de 

água pode ser um fator importante na aglomeração das partículas influenciando a sua 

escoabilidade. Explicações físicas são dadas por Lumay et al. (2012) que afirmam que o 

 
(A)              
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movimento e a interferência dos grãos dentro de uma pilha são influenciados pelas repulsões 

estéricas, forças de atrito e de coesão. Sendo a repulsão estérica relacionada à geometria das 

partículas e as forças de fricção influenciadas pelas propriedades da superfície e pela natureza 

química das partículas. Já as forças de coesão são induzidas pela presença de pontes líquidas, 

cargas elétricas, interações de Van der Waals e interações magnéticas dipolo-dipolo.  

Segundo Lumay et al. (2012), os materiais granulares podem ser divididos em duas 

categorias: coesivos e não coesivos. Em materiais granulares não coesivos, a interação entre 

as partículas está essencialmente relacionada com a repulsão estérica e com as forças de atrito. 

Portanto, as propriedades macroscópicas são regidas pela geometria das partículas (forma e 

distribuição de tamanhos) e por propriedades de superfície. Quando as forças de coesão entre 

as partículas se tornam maiores do que o peso de uma partícula, as propriedades 

macroscópicas são fortemente influenciadas pela coesão. 
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CAPÍTULO 4 

 

A Secagem de Resíduo de Acerola em Leito de Jorro  

e os Pré-Tratamentos 

 

A adoção de pré-tratamentos tem sido objeto de estudo de diversos pesquisadores 

que lidam com a secagem de materiais alimentícios. Dentre os pré-tratamentos destaca-se a 

aplicação de ultrassom, energia limpa que contribui para o aumento da eficiência da 

desidratação. A pulverização de etanol também vem sendo adotada em pesquisas de secagem. 

Ressalta-se que os pré-tratamentos supracitados contribuem também para a sanitização do 

produto. Porém, variabilidades nutricionais podem ocorrer em função do pré-tratamento. 

Sendo assim, o presente capítulo destina-se ao confronto entre as secagens precedidas ou não 

por pré-tratamentos, utilizando para tanto parâmetros como a redução de umidade e a 

qualidade nutricional. Avaliações morfológicas por meio de microscopia eletrônica de 

varredura e análises fluidodinâmicas como porosidade do leito e segregação de mistura, 

também fazem parte do escopo deste capítulo. 

 

4.1 METODOLOGIAS EXPERIMENTAIS DESENVOLVIDAS 

 
4.1.1 A Unidade Experimental 

Os experimentos foram conduzidos em leito de jorro, cuja unidade é composta por: 

(1) compressor centrífugo 7,5 cv, (2) tubulação de aço galvanizado, (3) leito de jorro 

construído em aço inoxidável com sistema de guilhotinas (nas posições axiais) para realização 

de amostragens da mistura em diferentes posições axiais do leito, (4) termoanemômetro para a 

coleta de dados de velocidade do ar na linha e calibração da placa de orifício, (5) medidor de 

vazão do tipo placa de orifício e (6) sistema de aquisição de dados com o auxílio do software 

LabVIEW (Figura 4.1). Os dados referentes à geometria do leito são mostrados na Tabela 4.1. 

 
Tabela 4.1 - Características dimensionais do leito de jorro. 

Dc [m] Diâmetro da coluna 0,210 
Di [m] Diâmetro de entrada 0,035 
  [ º ] Ângulo do cone 60 
H [m] Altura do leito 0,850 
Hc [m] Altura do cone 0,150 
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em que:    ܸ: Volume da mistura  [m3] ܸL : Volume do leito estático  [m3] 

 

4.1.3 Segregação Axial da Mistura  

Para caracterização das condições operacionais e determinação da estabilidade 

fluidodinâmica do leito, mensurou-se a segregação, através do índice de mistura no leito (IM), 

que relaciona a fração mássica final de resíduo de acerola em determinada posição axial com 

a fração mássica inicial de resíduo de acerola na mistura (Equação 4.2).  

A determinação da segregação foi viabilizada pela adaptação realizada no leito de 

jorro, o qual se constitui por um sistema de guilhotinas, que permite a realização de 

amostragens da mistura em diferentes posições axiais no leito.  

�� = ቀ�ௗ௜�௧௜ቁ(�௙௥�௙௧) = ሺݔௗ௜ሻሺݔௗ௧ሻ 
            

(4.2) 

 
em que:  �ௗ௜ : Massa de resíduo de acerola no compartimento i �௙௥:  Massa de resíduo de acerola no final �௙௧:  Massa total final �௧௜:  Massa total inicial ݔௗ௜:  Fração mássica de resíduo de acerola no compartimento i ݔௗ௧   Fração mássica total de resíduo de acerola 

 

Sendo assim, índices de mistura maiores que 1 caracterizam a concentração do leito 

em resíduo de acerola e valores menores que 1 apontam a concentração do leito em soja. 

Valores de índice de mistura iguais a 1 em todas as posições axiais do leito indicam a 

estabilidade do leito. 

 

4.1.4 A Secagem em leito de jorro sem o pré-tratamento  

Os experimentos de secagem em leito de jorro sem a aplicação de tratamento prévio 

foram realizados com tempo de operação de 40 min, e altura de leito estático de 8 cm. 

O jorro foi alimentado em regime batelada com composição variável de acerola, a 

qual foi inserida de forma aleatória e submetida à vazão e temperatura constantes. Para tanto, 
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adotou-se um planejamento experimental, considerando-se as variáveis: relação vazão de 

ar/vazão de ar no jorro mínimo (Q/Qmin), temperatura de ar de entrada (T) e fração de acerola 

(Xd), sendo as variáveis codificadas e na escala original, apresentadas na Tabela 4.2 e pelas 

Equações 4.3.  As vazões de jorro mínimo foram determinadas a partir das curvas 

características (Anexo 1). 

 

Tabela 4.2 - Variáveis codificadas aplicadas ao Planejamento Central Composto. 

Variáveis - * -1 0 +1 + * 

Q/Qmin 1,07 1,10 1,20 1,30 1,33 

Temperatura (oC) 40,0 44,5 60,0 75,5 80,0 

Fração de acerola (Xd) 0,16 0,20 0,35 0,50 0,54 

*=1,287 

 

     ଵܺ = ொ/ொ௠௜௡− ଵ,ଶ଴଴,ଵ                      ܺଶ = TሺoCሻ−଺଴ଵହ,ହ           ܺଷ = ௑೏−଴,ଷହ଴,ଵହ             (4.3)      

 

4.1.5 Os Pré-Tratamentos  

Visando à redução do tempo de exposição a elevadas temperaturas, que podem afetar 

negativamente a qualidade nutricional do produto, foram adotados anteriormente à secagem 

os pré-tratamentos das sementes de acerola, dentre eles a aplicação de ultrassom e a 

pulverização de etanol. 

A aplicação de ultrassom implica na imersão do material em um meio fluido, 

geralmente água. No presente estudo, foram avaliados dois meios de imersão sendo esses a 

água e o etanol comercial (93,2 ºGL).  

 

4.1.5.1 Pré-tratamento com ultrassom utilizando água como meio de imersão 

 Os pré-tratamentos ultrassônicos utilizando água como meio de imersão foram 

realizados em dois banhos ultrassônicos, cujas descrições encontram-se detalhadas na Tabela 

4.3. 

No banho ultrassônico de potência 80 W, as sementes de acerola foram imersas em 

água na proporção de 1 kg de sementes para 4 L de água, descrita como melhor condição 

operacional por Fernandes et al. (2008). No entanto, no banho de 1050 W, as características 

físicas do banho não permitiram a adoção da proporção anteriormente estabelecida, sendo 

portanto, utilizada água em excesso. 
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Tabela 4.3 - Descrição detalhada das características dos banhos ultrassônicos. 

Características Banhos ultrassônicos 

Modelo Ultrassonic Cleaner 
 (UNIQUE- USC 1400) 

Ciencor Scientific 
LS-55DA  

Potência (W) 80 1050 

Capacidade (L) 2,5 55,0  

  

A aplicação de ultrassom se fez com a variação de tempo de sonicação adotando-se o 

intervalo de tempo entre 10 min e 80 min. Após aplicação de ultrassom as sementes foram 

peneiradas e dispostas sobre papel toalha a fim de remover o excesso de água. A desidratação 

em leito de jorro desenvolvida logo após o pré-tratamento foi conduzida nas condições fixas 

de: tempo de secagem de 40 min, temperatura de 60oC, fração de acerola de 45%  e vazão de 

ar 20% acima do jorro mínimo.  

 

4.1.5.2 Pré-tratamento com ultrassom utilizando etanol como meio de imersão 

A sonicação com etanol realizou-se nos banhos ultrassônicos de 80 W e 1050 W, 

depois de realizadas adaptações físicas no banho de maior potência para que se mantivessem 

nos dois banhos proporções semelhantes entre o etanol (93,2 ºGL) e a semente de acerola. As 

condições operacionais foram escolhidas usando um planejamento fatorial (23), adotando-se 

como variáveis independentes o tempo de sonicação, a potência e o volume de etanol (Tabela 

4.4).  Nos ensaios de secagem em leito de jorro, adotou-se o tempo de desidratação de 30 min, 

mantendo-se a temperatura de 60oC e a vazão de ar 20% acima da vazão de ar mínimo e 

fração de acerola de 45%. 

 
Tabela 4.4 - Codificação das variáveis utilizadas no Planejamento Fatorial. 

Parâmetros -1 +1 

Tempo [min]  3 10 

Potência [ܹ] 80 1050 

Proporção entre o volume de etanol e a massa de 
semente de acerola [mL/g de resíduo] 

2:1 4:1 

 

4.1.5.3 Pré-tratamento com pulverização de etanol 

Como pré-tratamento foi também realizada a pulverização de etanol (93,2 ºGL) sobre 

as sementes de acerola, variando-se o volume de etanol para uma massa fixa de sementes de 
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acerola, sendo as mesmas deixadas em repouso por 1,5 h até o momento da secagem, 

condição essa definida por Silva (2014). Os ensaios foram realizados seguindo o 

Planejamento Composto Central, cujas variáveis codificadas e na escala original são 

apresentadas na Tabela 4.5. As desidratações em leito de jorro  foram  realizadas adotando-se 

tempo fixo de secagem de 30 min e fração de acerola de 45%. 

 
Tabela 4.5 - Codificação das variáveis adotadas no Planejamento Central Composto aplicado 

aos ensaios com pré-tratamento utilizando a pulverização de etanol. 

Parâmetros - -1 0 +1 + 

Temperatura [oC] 43,2 50 60 70 76,8 

Q/Qmin 1,07 1,1 1,15 1,20 1,23 

V etanol [mL/g de resíduo] 0,302 0,390 0,520 0,650 0,739 

       =1,68 

 A variável x1 representa a temperatura do ar de secagem, x2 corresponde à relação 

entre a vazão de ar e a vazão de jorro mínimo e x3 o volume de etanol (mL/g de resíduo) 

utilizado durante a pulverização. As Equações apresentadas no item 4.4 representam as 

codificações das variáveis. 

ଵݔ  = Tሺ୭Cሻ−଺଴ଵ଴ ଶݔ     = ொ/ொ௠௜௡− ଵ,ଵହ଴,଴ହ ଷݔ      = Vሺ୫L/௚ ௥௘௦íௗ௨௢ሻ−଴,ହଶ଴,ଵଷ                         (4.4) 

 

4.2 RESULTADOS E DISCUSSÕES  

 

4.2.1 A porosidade do leito  

A secagem em leito de jorro possui fluidodinâmica altamente influenciada pela 

porosidade do leito estático, sendo que um maior empacotamento, ou seja, menor porosidade 

oferece maior resistência à movimentação das partículas, obtendo-se maiores picos de queda 

de pressão na curva característica (SANTOS, 2011).  

A porosidade de um leito não está somente relacionada à composição das misturas 

binárias, mas também às forças de fricção a que as partículas são submetidas e ao método de 

empacotamento das mesmas. Estudos mostram que a relação entre porosidade e esfericidade 

depende da forma de partículas e do método de empacotamento (YU; ZOU, 1996). A 
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literatura apresenta de forma clara que, para partículas de tamanho uniforme, leitos compostos 

por partículas não esféricas tendem a apresentar maior porosidade (YU; ZOU, 1996). 

Os ensaios experimentais resultaram em porosidades maiores para leitos compostos 

apenas por resíduo de acerola (cerca de 0,548) quando confrontado com a soja (0,402), na 

altura de leito estático de 8 cm, o que se deve à esfericidade dos materiais. A Tabela 4.6 

apresenta os resultados de porosidade obtidos para diferentes frações de acerola na altura de 

leito estático de 0,08 m. Percebe-se que o acréscimo de soja reduz a porosidade do leito, o que 

acarreta em alterações da queda de pressão e da vazão de mínimo jorro. Fatores como forma e 

massa específica dos materiais também devem ser levados em consideração. 

 

Tabela 4.6 - Porosidade para difentes frações de acerola na altura de leito estático de 0,08 m. 

Fração em massa de acerola  0,00 0,15 0,25 0,35 0,50 0,75 1,00 

Porosidade () 0,402 0,450 0,460 0,470 0,480 0,490 0,548 

 

Resultados similares foram obtidos por Bortolotti (2012) no estudo da porosidade das 

misturas a diferentes alturas de leito estático (0,06; 0,08 e 0,09 m), onde a autora conclui que 

para todas as alturas estudadas a porosidade aumenta com o aumento da fração mássica de 

resíduo de acerola.  

 

4.2.2 A secagem de resíduo de acerola em leito de jorro utilizando soja como material 

inerte 

As Tabelas 4.7 e 4.8 apresentam, respectivamente, a caracterização do resíduo in 

natura e a avaliação nutricional após a secagem em leito de jorro para o planejamento central 

composto adotado.  

Confrontando-se os valores de umidade do resíduo in natura (Tabela 4.7) e do 

proveniente da secagem (Tabela 4.8) percebe-se que, no tempo de 40 min, a secagem em leito 

de jorro promoveu considerável redução de umidade. Conforme esperado as maiores reduções 

ocorreram na condição de temperatura elevada, apesar da adoção de temperatura de 60oC 

também promover significativa desidratação. De acordo com a Agência Nacional de 

Vigilância Sanitária, que estabelece as diretrizes de padrões de alimentos (Resolução- 

CNNPA nº 12, de 1978), os teores máximos permissíveis de umidade em farináceos são de 

15%. Sendo assim, a desidratação a 60oC também atende aos requisitos legais. 
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Tabela 4.7 - Caracterização do resíduo in natura. 

Propriedades físico-químicas Resíduo in natura 
Umidade (%) 70,2±2,5 
Acidez (mg de ácido cítrico/100 g amostra seca) 2240,8±84,3 
Ácido ascórbico (mg de ácido ascórbico/100 g de 
amostra seca) 

65,4±10,5 

Fenólicos totais (mg de ácido gálico/100 g de 
amostra seca) 

378,5±58,3 

Flavonoides (μg de rutina/100 g amostra seca) 2405,0±152,8 
 
Do ponto de vista nutricional verifica-se que para a maioria das condições 

operacionais a secagem promoveu a redução dos teores de acidez, possivelmente pela 

degradação térmica. Salienta-se que os teores elevados de ácido cítrico podem causar a 

adstringência do alimento, não sendo encontrados na literatura pesquisada, valores limites 

para esse parâmetro (Tabelas 4.7 e 4.8). 

 

Tabela 4.8 - Avaliação das variáveis operacionais e da qualidade  nutricional da acerola após 

a secagem (=1,287). 

 
Ensaios Q/Qmin 

(X1) 
T 

(X2) 
Xd 

(X3) 
Umidade 

 
Acidez 

 

Ácido 
ascórbico 

 
Fenólicos 

 
Flavonoides 

 

Índice 
de 

mistura 
01 -1 (1,10) -1 (44,5) -1 (0,20) 14,4 2150,7 54,2 252,6 3947,3 2,3 

01 -1 (1,10) -1 (44,5) 1 (0,50) 27,1 1810,4 20,7 113,0 3077,7 2,5 

03 -1 (1,10) 1 (75,5)  -1 (0,20) 6,50 817,1 60,4 232,1 3534,6 1,9 

04 -1 (1,10) 1 (75,5) 1 (0,50) 8,10 1046,4 93,7 260,2 4328,8 2,5 

05 1 (1,30) -1 (44,5) -1 (0,20) 20,1 1821,2 62,3 281,1 4208,3 1,7 

06 1 (1,30) -1 (44,5) 1 (0,50) 17,3 1442,8 24,7 264,9 3854,1 2,4 

07 1 (1,30) 1 (75,5) -1 (0,20) 6,1 2275,2 78,2 220,0 3484,6 1,9 

08 1 (1,30) 1 (75,5) 1 (0,50) 4,9 1717,9 85,9 249,1 3941,4 1,8 

09 -  (1,07) 0 (60,0) 0 (0,35) 10,0 1676,8 100,3 219,8 4809,0 1,7 

10 + (1,33) 0 (60,0) 0 (0,35) 12,7 2092,1 71,1 258,2 4562,6 2,4 

11 0 (1,20) -  (40,0) 0 (0,35) 20,1 1817,4 30,0 183,2 2598,2 2,2 

12 0 (1,20) + (80,0) 0 (0,35) 3,1 1384,3 106,2 172,3 2929,1 2,4 

13 0 (1,20) 0 (60,0) -  (0,16) 9,3 1590,5 99,7 110,2 3646,7 2,4 

14 0 (1,20) 0 (60,0) + (1,54) 9,9 1621,5 106,3 70,5 3274,0 1,6 

15 0 (1,20) 0 (60,0) 0 (0,35) 9,1 1058,0 108,3 122,1 3601,7 1,9 

16 0 (1,20) 0 (60,0) 0 (0,35) 9,5 1003,7 112,2 122,2 3349,5 2,0 

Acidez (mg/100 g); ácido ascórbico (mg/100 g); fenólicos (mg ácido gálico/100 g) e  flavonoide (μg de 
rutina/100 g) 
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Para o ácido ascórbico verifica-se o aumento na extração desse nutriente para 

determinadas condições operacionais. Fenômeno semelhante foi observado por Ozgur et al. 

(2011) na desidratação de pimentas. De acordo com Fernandes et al. (2014) o acréscimo de 

vitamina sugere que o tratamento térmico promove alterações químicas do produto as quais 

são capazes de liberar em sua forma livre uma quantidade maior de vitamina, ou seja, na 

forma biodisponível. 

Com relação aos compostos bioativos verifica-se que a secagem reduziu os teores de 

fenólicos. Dentre as causa destaca-se a oxidação enzimática pela polifenoloxidase foi relatada 

(DJENDOUBI et al., 2012; DEVIC et al, 2010) como o principal mecanismo de degradação 

de fenol durante a secagem convectiva.  

Efeito contrário foi observado para os flavonoides, onde acréscimos em sua extração 

foram obtidos. Comportamento similar foi obtido por Chang et al. (2006) em estudos com 

tomates. 

Infere-se pelos valores obtidos na réplica no ponto central do PCC adotado (Tabela 

4.8) a significativa reprodutibilidade dos resultados. Destaca-se que determinadas condições 

operacionais favorecem a extração dos teores de ácido ascórbico (ensaios 09, 14, 15 e 16)  e 

flavonides (ensaios 04, 05, 09 e 10), ao passo que outras contribuem para uma menor 

degradação de fenólicos (ensaios 05 e 06). Em destaque o ensaio 09 (vazão de 7% acima do 

jorro mínimo, temperatura de 60oC e fração de acerola de 35%) que resultou em extrações 

entre as maiores de vitamina C e flavonoides, degradações pouco expressivas de fenólicos, 

sendo essa uma condição favorável de secagem.  

Para avaliar os efeitos das variáveis operacionais Q/Qmin, temperatura, e fração de 

acerola nas variáveis respostas umidade, acidez e teores de ácido ascórbico e compostos 

bioativos, utilizou-se a técnica de regressão múltipla. A Equação 4.5 explicita em forma 

matricial, o comportamento da umidade final do resíduo de acerola frente às variáveis 

estudadas, onde se destaca o significativo efeito negativo da temperatura.  

=݁݀ܽ݀�݉ݑ  ͻ,͵͵ + ܾ′ݔ +  (4.5)                                                                (R2=0,942)      ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [ Ͳ,ͲͲ−͸,͸ͷͲ,ͻͺ ]         � = [ ͳ,͸Ͷ Ͳ,ͲͲ −ʹ,ʹͻͲ,ͲͲ ͳ,ͺͲ −ͳ,ͳͻ−ʹ,ʹͻ −ͳ,ͳͻ Ͳ,ͲͲ ] 
 

Os modelos propostos para os teores nutricionais são apresentados, em forma 

matricial, nas Equações 4.6, 4.7 e 4.8, onde é possível quantificar os efeitos das variáveis 

independentes sobre as respostas. 
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݋ܿ�ܾݎ�ܿݏܽ ݋݀�áܿ ݁݀ ݎ݋݁ݐ = ͳͲ͹,ͺ+ݔ′ܾ +  (4.6)                                     (R2=0,909)    ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [Ͳ,ͲͲʹʹ,ͷͲ,ͲͲ]         � = [−ͳ͹,ʹ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ −ʹ͹,ͺ ͳͶ,ͲͲ,ͲͲ ͳͶ,Ͳ Ͳ,ͲͲ] 
ݏ�ܽݐ݋ݐ ݏ݋ܿ�݈�݂݊݁ ݁݀ ݎ݋݁ݐ  = ͳͲͷ,ͺ + ܾ′ݔ +  (4.7)                                     (R2=0,896)    ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [ͳͺ, ,͵Ͳ,ͲͲͲ,ͲͲ ]         � = [ ͺʹ,ͳ −ʹͷ,ͷ Ͳ,ͲͲ−ʹͷ,ͷ Ͷͷ,ͳ ʹ͸,͸Ͳ,ͲͲ ʹ͸,͸ Ͳ,ͲͲ] 
ݏ݁݀�݋݊݋ݒ݈݂ܽ ݁݀ ݎ݋݁ݐ  = ͵Ͷ͸͸,Ͳ+ݔ′ܾ +  (4.8)                                         (R2=0,938)    ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [Ͳ,ͲͲͲ,ͲͲͲ,ͲͲ]         � = [ ͹Ͷ͵,ʹ −ͳͺͶ,Ͷ Ͳ,ͲͲͲ−ͳͺͶ,Ͷ −Ͷͳ͸,ͻ ͵Ͳͻ,͵Ͳ,ͲͲͲ ͵Ͳͻ,͵ Ͳ,ͲͲͲ] 
 

em que X1 = Q/Qmin, X2= temperatura e X3 = fração de resíduo de acerola, na forma 

codificada. 

A avaliação fluidodinâmica da secagem em leito de jorro sem pré-tratamento  

realizada através do Índice de Mistura é mostrada na Figura 4.2, onde se observa que o índice 

de mistura é maior que 1 para a guilhotina superior, caracterizando, assim a concentração de 

resíduo de acerola no topo do leito. Esta segregação ocorre devido à baixa massa específica e 

à dificuldade de deslocamento do resíduo de acerola no leito de jorro. Já nas guilhotinas 

inferiores, há uma concentração de soja, verificada pelos índices de mistura menores que 1. 
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Figura 4.2 - Avaliação fluidodinâmica da secagem em leito de jorro  (sem pré-tratamento) por 
meio do  índice de mistura. 
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A segregação se deve ao fato de que partículas mais densas (grãos de soja) sobem a 

uma altura menor na região fonte e ao cairem de volta para a zona de jorro, ocupam portanto, 

as posições radiais próximas à interface anular-jorro. Sendo assim, estas partículas descrevem 

uma trajetória mais curta do que as sementes de acerola, que circulam preferencialmente ao 

longo da região periférica exterior da zona anular. 

 
4.2.3 Avaliações de pré-tratamentos na secagem de resíduo de acerola  

 
4.2.3.1 Pré-tratamento ultrassônico em meio aquoso 

O ultrassom representa uma nova forma de exploração de energia limpa, que pode 

ser empregada em diferentes segmentos, dentre os quais, o alimentício. Objetivando-se avaliar 

o efeito do pré-tratamento ultrassônico sobre a secagem e a qualidade nutricional do resíduo 

de acerola, os pré-tratamentos utilizando água como meio de imersão foram conduzidos em 

condições distintas de tempo de sonicação e potência. 

Para fins de comparação, adotou-se como grupo de controle a secagem em leito de 

jorro sem aplicação de ultrassom. Ressalta-se que os experimentos de secagem foram 

realizados à temperatura de 60oC, (condição mais favorável nos ensaios anteriores) na altura 

de leito estático de 10 cm e fração de acerola de 45%. Testes preliminares revelaram que para 

essa composição de mistura a vazão de ar ajustada deveria ser de 20% acima do jorro mínimo. 

Adotou-se tempo de secagem de 40 min. Dentro desse contexto, a  Figura 4.3 apresenta a 

eficácia da desidratação determinada pela redução de umidade, a qual foi calculada em 

relação à umidade inicial do resíduo.  Analisando-se a figura verifica-se que para o grupo de 

controle, ou seja, sem a aplicação de pré-tratamentos (secagem em leito de jorro sem pré-

tratamento) foram obtidoas reduções de  umidade reduções da ordem de 85,2%.  

 

 

 

 

 

 

 

 

 
 

Figura 4.3 – Percentual de redução da umidade em função do tempo de sonicação 
parametrizado na potência aplicada. 
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Os resultados apresentados na Figura 4.3 sugerem que o uso de ultrassom como pré-

tratamento influencia a secagem do produto em leito de jorro, pois para todas as condições 

avaliadas foram obtidas reduções de umidade superiores à do controle. 

Verifica-se que reduções maiores de umidade (89,2%) foram alcançadas na condição 

de sonicação de 50 min à potência de 80 W (Figura 4.3). Atribuem-se esses resultados à 

possível formação de canais microscópicos, causados pela aplicação de ultrassom, decorrentes 

dos fenômenos de cavitação e efeito esponja. Segundo a literatura tais fenômenos se devem à 

ocorrência de uma série rápida de compressões e expansões que aumentam a transferência 

convectiva de massa no fruto, conduzindo a um processo de secagem mais eficiente 

(TARLETON; WAKEMAN, 1998; GARCÍA-PÉREZ et al., 2006).  

Parâmetros como tempo e potência de sonicação podem exercer efeitos significativos 

sobre o processo ultrassônico e consequentemente sobre a secagem. Os resultados apontam 

que, na faixa estudada, a elevação da potência não promove alterações significativas na 

secagem (Figura 4.3). Tal fato confirma-se pela análise de variância a qual indica que, para as 

condições adotadas, o tempo afeta, significativamente, a secagem no entanto, a potência não 

exerce efeito significativo sobre essa resposta. Os resultados apresentados estão em 

concordância com Fernandes e Rodrigues (2007, 2012), o qual afirma que o tempo de 

sonicação afeta o coeficiente difusivo de transferência de massa e consequentemente a 

redução de umidade.  

Entretanto, a pouca influência da redução de umidade com a potência se diverge do 

relatado pela literatura, para outros materiais. Segundo Fuente-Blanco et al. (2006), o 

aumento da potência ultrassônica favoreceu a taxa de secagem de cenouras e de cascas de 

limão. Acredita-se que tais divergências-se devem às características estruturais apresentadas 

pelas sementes de acerola e pelo excesso de água utilizada durante a sonicação em potência 

elevada.  

Os efeitos da sonicação sobre a qualidade nutricional do resíduo desidratado são 

apresentados nas Figuras 4.4 a 4.7.  Cabe ressaltar que as figuras apresentam os desvios 

(reduções ou aumentos) dos teores nutricionais em relação ao resíduo in natura.  De acordo 

com Dorta et al. (2012), a temperatura e o tempo de secagem podem afetar a atividade e 

estabilidade dos compostos nutricionais, sendo essa causada por alteração química e 

enzimática, por volatilização e/ou decomposição térmica. 

Nota-se pela Figura 4.4 que a secagem em leito de jorro sem pré-tratamento 

acarretou reduções de 39% nos teores de ácido cítrico. Resultados similares foram obtidos por 

Silva (2014), com secagem de sementes de acerola em infravermelho, e por Duzzioni et al. 
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(2013), em secador de leito fixo. As reduções ocorridas devem-se possivelmente à baixa 

estabilidade do ácido cítrico em condições operacionais envolvendo temperaturas elevadas 

(PODSEDEK, 2007).  

Verifica-se pela Figura 4.4 que a sonicação quando realizada em condições de baixa 

potência pode ocasionar desvios sobre os teores de ácido cítrico quando confrontados com a 

secagem em leito de jorro sem pré-tratamento. Considerando que o ultrassom degrada a 

matéria orgânica, levando à produção de ácidos, como fórmico e acético (YOUSEF, 1999) era 

de se esperar um aumento de acidez titulável, uma vez que o valor desta se relaciona à 

concentração total de ácidos na amostra (RODRIGUEZ, 2014). Entretanto, o tempo de 

aplicação do ultrassom e a baixa potência (80 W) pode não ser suficiente para que haja 

intensa degradação, com formação de ácidos capazes de alterar a acidez titulável de modo 

apreciável. Cabe ainda ressaltar que o ácido cítrico possui elevada solubilidade em água. 

Sendo assim fatores antagônicos ocorrem quando se aplica o ultrassom em meio aquoso, ou 

seja, a degradação dos compostos orgânicos que pode ocasionar em acréscimo nos teores de 

acidez e a solubilização do ácido cítrico que pode acarretar em reduções desses no resíduo.  
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Figura 4.4 – Desvio percentual da acidez em função do tempo de sonicação, parametrizado na 

potência aplicada. 

 
Após análise de variância verifica-se que as variáveis, tempo e potência exercem 

efeitos sobre os teores de acidez, o que nos permite inferir, com confiabilidade de 95%, que 
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existem diferenças significativas entre os valores obtidos. 

O ácido ascórbico, composto hidrossolúvel, caracteriza-se por ser um nutriente termo 

lábil que pode ser degradado por diversos fatores, dentre eles pH, teor de umidade, oxigênio e 

presença de metais (GREGORY, 1996 citado por SANTOS e SILVA, 2008). Conforme a 

literatura (BOBBIO; BOBBIO, 1992; FELLOWS, 2006), o processamento térmico promove 

perdas importantes no teor de vitamina C dos alimentos, sendo a temperatura e o tempo de 

exposição fatores importantes neste processo. No entanto, analisando-se a Figura 4.5 verifica-

se que a secagem em leito de jorro sem pré-tratamento, ou seja, a exposição à temperatura de 

60oC resultou em extrações maiores de ácido ascórbico, teores superiores ao do resíduo in 

natura foram obtidos  nesta condição. Resultados similares foram obtidos por Duzzioni et al. 

(2013) em estudos com resíduos de acerola em leito fixo e por Ozgur et al. (2011) ao secar 

pimentas. Tal fato deve-se, provavelmente, à desativação de enzimas as quais são 

responsáveis pela degradação do ácido ascórbico. Entretanto, nota-se que a aplicação do 

ultrassom promoveu reduções dos teores de vitamina C. A solubilidade do ácido ascórbico em 

água explica as reduções obtidas em praticamente todos os tratamentos quando comparados à 

secagem sem pré-tratamento (Figura 4.5).  
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Figura 4.5 – Desvio percentual dos teores de ácido ascórbico em função do tempo de 

sonicação, parametrizado na potência aplicada. 

 
As reduções mais acentuadas ocorridas nos tempos de 50 e 80 min para a potência de 

80 W coincidem com as mais relevantes perdas de umidade, causada possivelmente pela 



 
 

77 
 

formação de microcanais ocasionados pela aplicação de ultrassom. Ou seja, os mecanismos 

mostram-se favoráveis no processo de secagem, contudo contribuem com a perda de 

nutrientes, como o ácido ascórbico. Cabe ainda ressaltar que o uso de excesso de água nos 

ensaios em condições de elevada potência podem ter colaborado com a transferência de massa 

devido ao elevado gradiente de concentração entre as sementes e o meio líquido.   

Nota-se que para a maioria dos tratamentos as maiores reduções foram obtidas 

durante a aplicação de potência mais elevada (1050 W), o que sugere a influência desta 

variável sobre as respostas. A análise de variância revela que o tempo e a potência exercem 

efeitos significativos (p<0,05) sobre o teor de ácido ascórbico, ou seja, existem diferenças 

estatísticas entre os valores obtidos. 

Rodrigues et al. (2014) relataram resultados semelhantes em estudos de extração 

assistida por ultrassom de bagaço de caju onde a intensidade da potência exerce efeito 

negativo sobre a extração de ácido ascórbico, ou seja aumentos dessa variável independente 

causam degradações dos teores de vitamina C. Tiwari et al. (2008) afirmam que essa 

degradação, provavelmente, deve-se à termólise ou à combustão que ocorre no interior da 

bolha de cavitação ou ainda pela reação com os radicais hidroxila que conduzem à formação 

de produtos de oxidação que ocorrem na superfície da bolha.  

Os compostos fenólicos são os mais abundantes antioxidantes hidrofílicos da dieta 

humana e por isso vêm recebendo grande interesse, pois, evidências científicas apontam que o 

seu consumo contribui na prevenção de certas doenças crônicas, como câncer, neurológicas e 

cardiovasculares.  

A partir da Figura 4.6 nota-se que a desidratação sem pré-tratamento promoveu uma 

redução dos teores de fenólicos totais das sementes de acerola. Resultado também 

evidenciado nos estudos realizados por M’hiri et al. (2014), durante a secagem de cascas de 

laranja.  De modo similar, Chantaro et al. (2008) observaram durante a secagem convectiva de 

cascas de cenoura perdas de fenólicos da ordem de 64% à 60oC e 26% à 80oC. Já Lopez et al. 

(2010) obtiveram para esse mesmo composto bioativo perdas de 80% à 50oC e 50% à 90°C 

em mirtilos durante a sua secagem convectiva. 

Cabe ressaltar que, segundo Haard e Chism (1996), as frutas e vegetais possuem, 

normalmente, elevado teor de compostos fenólicos, ou seja, ácidos fenólicos que se acumulam 

nos vacúolos. A ruptura da parede celular pode ocasionar a liberação desses compostos, no 

entanto, pode também provocar a liberação de enzimas hidrolíticas e oxidativas que destroem 

os antioxidantes. 
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A oxidação enzimática pela polifenoloxidase foi também relatada (DJENDOUBI et 

al., 2012; DEVIC et al, 2010) como o principal mecanismo de degradação de fenol durante a 

secagem convectiva. Li (2006) explica a redução pela possível destruição de alguns dos fenóis 

ocasionada pela secagem, ou ainda pela aderência celular, ocorrida na ausência de água, o que 

possivelmente dificulta a posterior extração com solvente. Dentro desse contexto, condições 

operacionais, tais como temperatura e vazão de ar, podem ocasionar decréscimos (degradação 

dos componentes nutricionais) ou acréscimos (maiores extrações desses compostos). 
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Figura 4.6 – Desvio percentual dos teores de fenólicos em função do tempo de sonicação, 

parametrizado na potência aplicada. 

 

Constatam-se pela Figura 4.6 que reduções mais expressivas de fenólicos ocorreram 

para todas as desidratações precedidas por ultrassom, o que possivelmente se deve à 

degradação desses compostos. Resultados similares foram obtidos em secagem de maçãs, 

onde perdas significativas de fenólicos foram obtidas nas condições de elevada intensidade de 

ultrassom a 70oC (RODRÍGUEZ, 2014). Por análise de variância (p<0,05) constata-se que 

somente o tempo exerce efeito sobre os teores de fenólicos.  

A Figura 4.7 apresenta os desvios dos teores de flavonoides em relação ao in natura.  

Percebe-se que as condições operacionais adotadas na secagem sem pré-tratamento 

contribuíram para o aumento da extração dos flavonoides, composto bioativo pertencente à 

classe dos fenóis. O mesmo comportamento foi encontrado por Chang et al. (2006) em seus 
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estudos com tomates, em que amostras secas continham teores mais elevados de flavonóides 

totais quando confrontadas com as amostras frescas. Resultados próximos ao da secagem sem 

tratamento foram obtidos nas condições operacionais de: potência de ultrassom de 80 W e 

tempo de 10 min e potência de 1050 W nos tempos de 30 e 60 min.  Análise estatística revela 

que o tempo e a potência não exercem efeitos estatísticos significativos sobre os teores de 

flavonoides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A avaliação fluidodinâmica, realizada através do índice de mistura é apresentada na 

Figura 4.8. Assim como na secagem sem pré-tratamento, o índice de mistura possui valores 

menores que 1 para a guilhotina inferior, caracterizando a concentração de soja. No entanto, 

para guilhotina superior, nota-se a concentração de resíduo de acerola no topo do leito, pois o 

índice de mistura é maior que 1.  Esta variabilidade de segregação ao longo da altura de leito 

estático se deve à baixa massa específica e à dificuldade de deslocamento do resíduo de 

acerola no leito de jorro.   

Através da figura percebe-se ainda que a aplicação de pré-tratamento envolvendo a 

sonicação em meio aquoso não acarretou alterações fluidodinâmicas para baixas alturas de 

leito estático, onde valores próximos de índice de mistura foram obtidos. Discrepâncias 

provenientes dos pré-tratamentos são mais acentuadas na altura de leito estático de 9 cm. 

Percebe-se que, para esta altura de leito axial, leitos mais homogêneos foram obtidos nas 
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Figura 4.7 – Desvio percentual dos teores de flavonoides em função do tempo de sonicação, 

parametrizado na potência aplicada. 
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condições de tempo de sonicação de 10 min e potência de 1050 W. 
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Figura 4.8 – Índice de mistura em função da altura de leito estático, parametrizado na potência 

aplicada. 

 

4.2.3.2 Pré-tratamento ultrassônico em meio etanólico 

As pesquisas da literatura envolvendo pré-tratamento ultrassônico utilizam apenas a 

sonicação em meio aquoso. O presente trabalho avaliou também a eficácia do etanol como 

fluido de imersão durante a sonicação.  A escolha pelo etanol se deve à sua propriedade 

dessecante.  

Testes preliminares utilizando o etanol (93,2ºGL) no pré-tratamento ultrassônico 

resultaram em significativa redução do teor de umidade do produto, após submissão à 

secagem em leito de jorro. Sendo assim, visando obter teores de umidade semelhantes aos 

obtidos anteriormente (quando água era utilizada como meio de imersão na sonicação) 

reduziu-se o tempo de secagem em 25%. Ou seja, os ensaios de desidratação no leito de jorro 

que antes eram de 40 min, passaram a ser conduzidos por 30 min. Mesmo após a redução do 

tempo, teores de umidade menores que 15% foram obtidos, ou seja, dentro do limite máximo 

estabelecido pela legislação vigente para farináceos (Agência Nacional de Vigilância 

Sanitária, Resolução - CNNPA nº 12, de 1978). 

A redução do tempo de secagem objetivou aspectos econômicos, pois estudos 

apontam que a secagem é uma operação industrial de elevado consumo energético. 

Estimativas sugerem que processos térmicos de desidratação correspondam por 

aproximadamente 9% a 25% do consumo industrial de energia (PASSOS; MUJUMDAR, 

2000). Questões ambientais e aspectos nutricionais também foram parâmetros que 
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corroboraram pois, com a redução do tempo de secagem, resultados favoráveis são esperados 

com relação à qualidade nutricional do produto, uma vez que a exposição à elevada 

temperatura, em tempos prolongados, podem contribuir na degradação dos compostos 

bioativos. Entretanto, em estudos de viabilidade econômica deve-se levar em consideração os 

custos com o etanol. 

Os resultados provenientes da secagem precedida por sonicação em meio aquoso 

apontaram que o tempo e a potência podem influenciar a qualidade nutricional das sementes 

de acerola. As análises sugerem que a condição de pré-tratamento (tempo de ultrassom de 10 

min e potência de 80 W) mostrou-se favorável sobre a qualidade nutricional do produto.  

Pesquisas desenvolvidas por Lelas et. al (2006) utilizando cogumelos, couve de Bruxelas e 

couve-flor aponta que resultados satisfatórios de desidratação foram obtidos quando a 

sonicação deu-se por apenas 3 min. Dentro desse contexto tempos menores de sonicação,  3 e 

10 min, foram avaliados no presente estudo. 

 Aliado a esse fato, pesquisas desenvolvidas por Fernandes (2008) indicam que o 

volume do meio de imersão também pode acarretar em alterações do coeficiente difusivo, ou 

seja, na taxa de secagem. Portanto, os ensaios de ultrassom em meio etanólico foram 

conduzidos tendo as condições operacionais escolhidas e usando um planejamento fatorial 23, 

adotando-se como variáveis independentes: tempo de ultrassom, potência e proporção de 

etanol em relação à massa de resíduo.  Os resultados do planejamento são apresentados na 

Tabela 4.9. 

 
Tabela 4.9 - Avaliação do ultrassom em meio etanólico sobre a desidratação do resíduo de 

acerola submetido à secagem 

Tratamento Tempo  
Ultrassom 
(min) X1 

Potência 

 (W)  
X2 

Proporção 
etanol 
(mL/g) 

X3 

Redução 
umidade 

  Acidez Ácido 
ascórbico 

Fenólicos 
totais 

Flavonoides  

1 -1 -1 -1 83,5 990,3±58,3 71,4±4,2 390,2±7,7 4103,4±83,6 
2 +1 -1 -1 87,2 1198,4±33,8 70,5±4,9 554,1±16,2 4845,1±79,0 
3 -1 +1 -1 82,3 859,9±36,6 71,0±2,6 339,5±9,8 2221,1±32,7 
4 +1 +1 -1 83,8 1018,4±64,1 75,3±1,2 342,1±18,6 3256,0±57,9 
5 -1 -1 +1 84,5 1097,6±67,9 64,2±3,2 343,6±27,1 2855,1±56,3 
6 +1 -1 +1 84,4 1008,9±36,4 80,5±6,9 511,2±20,7 3011,5±89,6 
7 -1 +1 +1 83,9 1182,7±38,3 64,5±7,0 329,5±9,7 3239,9±55,0 
8 +1 +1 +1 84,8 1031,9±44,2 75,8±5,7 363,3±3,7 2961,6±49,1 

Secagem convencional 78,0 1055,7±58,7 60,5±4,9 448,2±14,9 4348,5±72,4 
In natura - 1598,5±64,4 65,6±6,1 545,5±22,3 1794,4±107,2 

Acidez (mg/100 g); ácido ascórbico (mg/100 g); fenólicos (mg ácido gálico/100 g) e  flavonoide (μg de 
rutina/100 g) 
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A eficácia da secagem é apresentada na forma gráfica pela Figura 4.9, comparando a 

secagem em leito de jorro com e sem pré-tratamento ultrassônico. Verificam-se nas 

desidratações com pré-tratamentos aumentos das taxas de transferência de massa, tendo como 

consequência o aumento da redução de umidade. Atribuem-se esses resultados à alteração da 

camada limite entre o resíduo de acerola e o meio líquido e à formação de canais 

microscópicos, causados pela aplicação de ultrassom, decorrentes dos fenômenos de cavitação 

e efeito esponja. Deve-se levar em consideração também a propriedade dessecante do etanol, 

o que provavelmente tenha contribuído para a eficácia da secagem.  

  

 

 

 

 

 

Figura 4.9 - Avaliação da redução da umidade proveniente da secagem precedida por 

ultrassom em meio etanólico. 

 
Para avaliar os efeitos das variáveis independentes sobre a desidratação das sementes 

de acerola utilizou-se uma análise estatística, onde verificou-se, no grau de confiança de 95%, 

que as variáveis adotadas não exercem efeitos significativos sobre a redução de umidade, ou 

seja, sobre a taxa de secagem.  

As avaliações de teores de ácido cítrico são apresentadas na Figura 4.10. Percebe-se 

que a sonicação em meio etanólico acarretou, para todos os tratamentos, reduções dos teores, 

fato esse também evidenciado na secagem sem pré-tratamento. Entretanto, em algumas 

condições com pré-tratamento a degradação foi menor do que a sem tratamento. Degradações 

menores ocorreram no ensaio 2 (tempo de sonicação de 10 min, potência de 80 W e proporção 

de etanol de 2:1). Sendo assim essas condições são favoráveis à secagem e aos teores de ácido 
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cítrico. De acordo com a literatura o ultrassom pode degradar a matéria orgânica, levando à 

produção de ácidos, como fórmico e acético (GONZE  et al, 1999; YOUSEF et al., 1999), em 

contrapartida cabe ressaltar que o ácido cítrico possui elevada solubilidade em etanol, o que 

justifica seu decréscimo 

 

 

 

 

 

 

 

Figura 4.10 - Avaliação do desvio de acidez  proveniente da secagem precedida por ultrassom 

em meio etanólico. 

 
Os efeitos estimados das variáveis independentes sobre o teor de ácido cítrico, 

expresso através da acidez, mostram a importância do tempo (X1) e da proporção de etanol 

(X3) (Tabela 4.10).  

 
Tabela 4.10 - Efeitos estatíticos das variáveis dependentes sobre os teores de ácido cítrico 

resultantes de secagens precedidas por sonicação em meio etanólico (<0,10). 

Variáveis Efeitos (R2=0,999) P 
Média +1048,52 0,0009 
X1 +31,80 0,0620 
X2 -50,60 0,0390 
X3 +63,51 0,0311 
X1X2 -27,95 0,0704 
X1X3 -151,54 0,0130 
X2X3 +104,65 0,0188 

X1 (tempo de sonicação), X2 (potência) e X3 proporção de etanol. 
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Estas variáveis (X1 e X3) afetam positivamente o teor de ácido cítrico, ou seja, para a 

faixa estudada, acréscimos destas variáveis contribuem para a menor degradação da acidez. 

Observa-se também uma forte interação entre essas variáveis. Tal efeito sugere que o aumento 

no tempo de sonicação associado à elevada quantidade de etanol contribuíram para a maior 

solubilidade do ácido cítrico. 

Os teores de vitamina C encontrados nas sementes de acerola após desidratação se 

mostraram influenciáveis pelo tratamento adotado (Figura 4.11).  Aumento das extrações dos 

teores de ácido ascórbico após a secagem precedida por ultrassom também foram obtidos por 

Fernandes et al. (2014), o qual afirma que a sonicação pode  promover alterações químicas do 

produto as quais são capazes de liberar em sua forma livre uma quantidade maior de vitamina, 

ou seja, na forma biodisponível. Ressalta-se que o ácido ascórbico é insolúvel em meio 

etanólico.  

. 

 

  

 
 

 

 

 
 

Figura 4.11- Avaliação dos desvios de ácido ascórbico provenientes das secagens precedidas 

por ultrassom em meio etanólico. 

 
Possíveis alterações estruturais podem explicar o aumento das extrações após a 

secagem com este pré-tratamento. Segundo Jin et al. (2014) a degradação/retenção de vitamina 

C pode estar ligada ao colapso da estrutura interna e à liberação de componentes nutricionais 

durante a secagem. Materiais vegetais naturais são muitas vezes bem organizados em 

compartimentos celulares, onde nutrientes e outros componentes (açúcar, amido e proteína) 
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estão localizados em compartimentos celulares naturais. No entanto, a parede da célula torna-

se também um fator de controle na biodisponibilidade de nutrientes. O estado físico da 

estrutura da célula regula a liberação, a transferência de massa, a acessibilidade e a 

estabilidade bioquímica dos componentes. Processos térmicos podem melhorar a 

biodisponibilidade, provavelmente como resultado da ruptura das paredes das células de 

tecidos vegetais, da dissociação dos complexos de nutriente em função da matriz, ou da 

transformação em uma estrutura molecular mais ativa 

As condições experimentais adotadas no ensaio 6 (tempo de sonicação de 10 min, 

potência de 80 W e proporção de etanol de 4:1) favoreceream as extrações de ácido ascórbico. 

O resultado confirma-se pela análise dos efeitos das variáveis independentes, tempo de 

sonicação e proporção de etanol apresentada na Tabela 4.11. Efeitos positivos do tempo de 

ultrassom e da interação entre essa variável e a proporção de álcool foram obtidos.  

 
Tabela 4.10 - Efeitos estatíticos das variáveis dependentes sobre os teores de ácido ascórbico 

resultantes dos ensaios de secagem precedidos por sonicação em meio etanólico (<0,10). 

 

 X1 (tempo) X2 (potência) e X3 proporção de etanol 

 
Resultados similares foram obtidos por Rodrigues (2014) em estudos de ultrassom 

em meio aquoso, onde a fração de água teve o efeito positivo sobre a extração de ácido 

ascórbico. Segundo o autor, uma vez que a velocidade de propagação das ondas de ultrassons 

em um líquido é consideravelmente mais elevada do que no ar, a adição de líquido aumenta o 

efeito de ultrassons fazendo a sua ação mais homogênea.  

 
Tabela 4.11 - Efeitos estatíticos das variáveis dependentes sobre os teores de fenólicos totais 

resultantes dos ensaios de secagem precedidos por sonicação em meio etanólico (<0,10). 
Variável Fenólicos (R2=0,957) P 
Média +396,7 0,000 
X1 +92,0 0,0056 
X2 -106,1 0,0033 
X1X2 -73,8 0,0119 

 X1 (tempo) X2 (potência) e X3 proporção de etanol 

 

Variável Ácido ascórbico (R2=0,900) P 
Média +71,65 0,000 
X1 +7,75 0,0041 
X1X3 +6,05 0,0113 
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A partir dos resultados dos teores de fenólicos apresentados na forma gráfica na 

Figura 4.12 infere-se que para a maioria dos ensaios a sonicação em meio etanólico promoveu 

a degradação desses compostos bioativos, degradações essas superiores à obtida para a 

secagem sem pré-tratamento.  A análise estatística (Tabela 4.12) indica que os decréscimos se 

devem à potência e à interação entre tempo e potência. 

 

 

 

 

 

 

 

Figura 4.12 - Avaliação dos desvios de fenólicos totais provenientes das secagens precedidas 

por ultrassom em meio etanólico. 

 
A oxidação enzimática pela polifenoloxidase foi relatada por Djendoubi (2012) como 

o principal mecanismo de degradação de fenol durante a secagem convectiva. Alterações 

morfológicas ocasionadas pela sonicação, como por exemplo, aderância celular, podem ter 

ocorrido no sentido de dificultar as extrações desse composto, fato esse que contribuiu para os 

decréscimos obtidos.   

Reduções mais expressivas que a resultante da secagem sem pré-tratamento foram 

obtidas para a maioria  dos tratamentos precedidos por sonicação em meio etanólico, para o 

parâmetro teor de flavonoides (Figura 4.13). No entanto,  para duas condições experimentais 

extrações expressivas foram alcançadas, a destacar a apresentada no ensaio 2 (tempo de 

sonicação de de 10 min, potência de 80 W e proporção de etanol de 2:1). Condição esta 

também favorável à umidade, teores de ácido cítrico e fenólicos. 
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Figura 4.13 - Avaliação dos desvios de flavonoides totais provenientes das secagens 

precedidas por ultrassom em meio etanólico. 

 

As análises estatísticas (Tabela 4.13) demonstram que a potência do ultrassom exerce 

efeito desfavorável sobre os compostos bioativos flavonoides, ou seja, acréscimos desta  

variável ocasionam reduções nas extrações de flavonoides. No entanto, destaca-se o 

pronunciado efeito favorável da interação entre a potência e a proporção de etanol. 

 
Tabela 4.12 - Efeitos estatíticos das variáveis dependentes sobre os teores de flavonoides 

resultantes dos ensaios de secagem precedidos por sonicação em meio etanólico (<0,10). 

Variável Flavonoides (R2=0,985) P 
Média +3311,7 0,0004 
X1 +413,7 0,0874 
X2 -784,1 0,0268 
X3 -589,4 0,0461 
X1X3 -474,6 0,0685 
X2X3 +951,6 0,0185 

X1 (tempo) X2 (potência) e X3 proporção de etanol 

 
Em síntese, os resultados sugerem que as condições experimentais adotadas no 

ensaio 2 favoreceram a qualidade nutricional do produto, aliado ao fato de significativa 

redução de umidade, quando confrontado à secagem sem pré-tratamento. Portanto, para fins 

de validação do efeito ultrassônico um grupo de controle foi avaliado. Para esse, adotou-se o 

pré-tratamento constituído por imersão do resíduo em etanol, entretanto, sem a aplicação do 

ultrassom. Utilizou-se como comparativo as condições experimentais adotadas no ensaio 2, 
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consideradas mais favoráveis no presente estudo.  Sendo assim, as condições operacionais do 

ensaio 2 foram reproduzidas, no entanto sem a aplicação de ultrassom (Tabela 4.14). 

A Tabela 4.14 apresenta o estudo comparativo entre os ensaios na condição 2 

realizados na presença e na ausência de ultrassom. Verifica-se que os parâmetros redução de 

umidade, acidez e teores de ácido ascórbico não sofreram alterações expressivas, no entanto,  

o mesmo não ocorre com os teores de fenólicos e flavonoides. Nota-se que a aplicação de 

ultrassom promove à liberação desse compostos bioativos, o que justifica a sua 

implementação como pré-tratamento na secagem de resíduos de acerola.  

 
Tabela 4.13 - Estudo comparativo para validação do efeito ultrassônico. 

Tratamentos Redução 
umidade (%) 

Acidez Ácido 
Ascórbico 

Fenólicos 
Totais 

Flavonoides 
totais 

Ensaio 2 na presença de 
ultrassom. 

87,2 
 

1198,4±33,8 
 

70,5±4,9 
 

554,1±16,2 
 

4845,1±79,0 
 

Ensaio 2 na ausência de 
ultrassom 

86,1 
 

1036,0±49,0 
 

69,0±2,8 
 

428,8±1,4 
 

2088,0±57,3 
 

Secagem sem pré-
tratamento 

78,0 
 

1055,7±58,7 
 

60,5±4,9 448,2±14,9 
 

4348,5±72,4 

Amostra in natura 
- 

1598,5±64,4 65,6±6,1 545,5±22,3 1794,4±107,2 

 

A avaliação fluidodinâmica no leito realizada através do Índice de Mistura, que 

correlaciona a fração em massa final de acerola em cada compartimento do leito com a fração 

mássica inicial de acerola, é apresentada na Figura 4.14.  

 

 

 

 

 
Figura 4.14- Avaliação fluidodinâmica da mistura resíduo de acerola e soja em leito de jorro, 

submetida a tratamento prévio de sonicação em meio etanólico. 
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Por meio desse índice é possível avaliar a segregação ocorrida durante a secagem.  

Para baixas alturas de leito estático existe a concentração de soja (Im<1) e para elevadas 

alturas de leito estático, o leito de concentra em acerola (Im>1). 

Os resultados apontam que existe uma discrepância maior entre os índices de mistura 

obtidos na altura de leito estático de 9 cm, fato esse também evidenciado para os pré-

tratamentos com ultrassom em meio aquoso. Nota-se, nessa altura de leito estático, que os 

tratamentos que resultaram em leitos mais homogêneos foram o T5 e T6, que possuem em 

comum o tempo de sonicação de 10 min e a potência de 80 W. 

 

4.2.3.3. Pré-tratamento com pulverização de etanol 

O etanol é um solvente orgânico que possui elevada aplicabilidade na indústria de 

alimentos devido à sua propriedade sanitizante. Pesquisas envolvendo a aplicação do etanol 

como forma de pré-tratamento durante a desidratação de alimentos são encontradas na 

literatura e vem apresentado resultados satisfatórios (LURIE et al., 2006; BRAGA, 2007;, 

BRAGA e SILVA, 2010 e TOSATO, 2012). 

As condições operacionais dos ensaios com a pulverização de etanol foram 

selecionadas usando um planejamento central composto com três repetições no ponto central, 

utilizando as variáveis independentes: temperatura do ar (X1), vazão de entrada de ar (X2) e 

volume de etanol em mL/g (X3), cuja matriz e resultados obtidos são mostrados na Tabela 

4.15. 

Os resultados sugerem que a pulverização de etanol sobre a superfície das sementes 

de acerola, antes da secagem em jorro, contribui para o aumento de sua desidratação, pois 

para a maioria dos tratamentos, remoções de água maiores que 80% foram obtidas (Figura 

4.15).   Os resultados estão em conformidade com os obtidos por Braga e Silva (2010) que 

realizaram estudos envolvendo a secagem de fatias de abacaxi. Nesta pesquisa foram 

confrontadas as secagens: sem pré-tratamento, sob atmosfera atomizada com etanol e a 

precedida por tratamento com etanol. De modo similar, resultados mais favoráveis foram 

alcançados para as amostras tratadas com etanol, resultando em cinética de secagem mais 

rápida e com menor degradação da cor. Corrêa et al. (2012) em desidratação de bananas 

também obtiveram resultados satisfatórios para amostras pulverizadas com etanol. 
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Tabela 4.14 - Avaliação da secagem e da composição nutricional para os resíduos submetidos 

à pulverização de etanol após a secagem. 

Ensaio Temperatu
ra (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

Umidade 
final 
(%) 

Acidez Ácido 
Ascórbico 

Fenólicos 
totais 

Flavonoi
des 

Proteí
na 

T1 -1 (50) -1  (1,1) -1 (0,390) 20,5 732,48 68,6 1136,9 4550,5 10,64 
T2 -1 (50) -1 (1,1) 1 (0,650) 19,7 788,91 58,0 912,6 3428,0 11,99 
T3 -1 (50) 1 (1,2) -1 (0,390) 24,8 838,97 68,2 1224,7 3340,3 9,88 
T4 -1 (50) 1 (1,2) 1 (0,650) 18,6 772,40 62,7 1171,0 5128,9 11,88 
T5 1 (70) -1 (1,1) -1 (0,390) 9,3 806,14 71,1 1281,1 5383,2 10,56 
T6 1 (70) -1 (1,1) 1 (0,650) 9,2 989,69 77,3 1087,9 4205,5 10,42 
T7 1 (70) 1 (1,2) -1 (0,390) 9,4 813,55 73,4 1259,9 3422,5 8,84 
T8 1 (70) 1 (1,2) 1 (0,650) 8,5 862,18 71,2 853,6 4282,2 7,75 
T9 - (43,2) 0 (1,15) 0 (0,520) 21,1 828,65 67,9 808,7 5459,2 10,73 

T10  (76,8) 0 (1,15) 0 (0,520) 6,6 906,70 85,3 992,1 4604,4 6,91 
T11 0 (60) - (1,07) 0 (0,520) 12,2 782,16 59,7 1466,7 4624,6 10,78 
T12 0 (60)  (1,23) 0 (0,520) 12,9 740,65 59,9 1456,1 3936,4 9,89 
T13 0 (60) 0 (1,15) - (0,302) 13,4 771,49 70,3 1399,4 3103,0 10,36 
T14 0 (60) 0 (1,15)  (0,739) 12,5 863,49 60,6 1168,3 3875,2 11,45 
T15 0 (60) 0 (1,15) 0 (0,520) 11,8 851,21 65,3 1432,0 4702,0 9,2 
T16 0 (60) 0 (1,15) 0 (0,520) 11,5 857,94 65,6 1436,9 4711,0 9,8 
T17 0 (60) 0 (1,15) 0 (0,520) 12,0 854,78 66,5 1430,0 4712,4 9,47 

Acidez (mg/100 g); ácido ascórbico (mg/100 g); fenólicos (mg ácido gálico/100 g) e  flavonoide (μg de 
rutina/100 g) 

 

 
 

 

 

Figura 4.15 – Redução da umidade (%) para diferentes condições operacionais de temperatura 

e Q/Qmin e diferentes condições de pré-tratamento utilizando a pulverização de etanol. 

 

Tratamento Temperatura 
 (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

T1 -1 (50) -1  (1,1) -1 (0,390) 
T2 -1 (50) -1 (1,1) 1 (0,650) 
T3 -1 (50) 1 (1,2) -1 (0,390) 
T4 -1 (50) 1 (1,2) 1 (0,650) 
T5 1 (70) -1 (1,1) -1 (0,390) 
T6 1 (70) -1 (1,1) 1 (0,650) 
T7 1 (70) 1 (1,2) -1 (0,390) 
T8 1 (70) 1 (1,2) 1 (0,650) 
T9 - (43,2) 0 (1,15) 0 (0,520) 
T10  (76,8) 0 (1,15) 0 (0,520) 
T11 0 (60) - (1,07) 0 (0,520) 
T12 0 (60)  (1,23) 0 (0,520) 
T13 0 (60) 0 (1,15) - (0,302) 
T14 0 (60) 0 (1,15)  (0,739) 
T15 0 (60) 0 (1,15) 0 (0,520) 
T16 0 (60) 0 (1,15) 0 (0,520) 
T17 0 (60) 0 (1,15) 0 (0,520) 
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De modo semelhante Tosato (2012) em secagem de maçãs Fuji avaliou os efeitos do 

gotejamento de etanol comercial sobre a superfície das maçãs como forma de tratamento. A 

adição de etanol provocou a aceleração do processo de secagem contribuindo na qualidade 

física do produto, sendo a metodologia adotada considerada viável em termos econômicos. 

Verifica-se que maiores remoções de água (Figura 4.15) ocorreram nos tratamentos, 

T5, T6, T7, T8 e T10, os quais se encontram associados a condições experimentais de maiores 

temperaturas. 

A Figura 4.16 apresenta o diagrama de Pareto, uma das formas de se avaliar 

visualmente a influência dos fatores estudados sobre a resposta. O efeito estimado indica o 

quanto cada fator (variável preditora) influi nas respostas estudadas, onde quanto maior o 

efeito, maior será a sua influência, (BARROS NETO et al., 2001). O diagrama de Pareto 

explicita os significativos efeitos da temperatura sobre a redução de umidade.  

Após análise de regressão, o modelo estatístico ajustado à umidade, considerando-se 

apenas os efeitos significativos, no nível de significância de 20% (p<0,20) é apresentado pela 

Equação 4.9. Foi escolhido o nível de significância de 20%, pois no nível de 5% poucas 

variáveis se mostraram significativas.  

-1,25195

1,298009

-1,47031

1,569204

2,179393

-11,0635

p=,05

Estimativa dos efeitos

2Lby3L

Q/Qmin(Q)

(3)v(L)

v(Q)

T(Q)

(1)T(L)

 

Figura 4.16 - Estimativa dos efeitos das variáveis independentes sobre  a umidade resultante 

da secagem precedida pela pulverização de etanol.   

=݁݀ܽ݀�݉ݑ  ͳͳ,͸ͷ + ܾ′ݔ + ݔ (4.9)                                                                                         ݔ�′ݔ = [ܺଵܺଶܺଷ]           ܾ = [−ͷ,ʹͶͲ,ͲͲ−Ͳ,͸ͻ]         � = [ͳ,ͳͶ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ Ͳ,͸ͺ −Ͳ,͹ͺͲ,ͲͲ −Ͳ,͹ͺ Ͳ,ͺͳ ] 
em que X1=temperatura, X2= vazão de entrada de ar (Q/Qmin) e X3= volume de etanol 
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 Observa-se pela Tabela 4.16 que o valor do coeficiente de determinação R2 foi de 

93,0%, indicando que o modelo quadrático representa bem a relação entre os efeitos e a 

resposta. Entretanto, para se determinar se o modelo quadrático proposto possui significância 

estatística faz-se necessária a realizar a análise de variância (ANOVA). A síntese dos 

resultados da análise de regressão para todas as variáveis respostas analisadas é mostrada na 

Tabela 4.16. 

 
Tabela 4.15 - Análise de regressão para o modelo ajustado à umidade. 

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente da 
correlação 

Fcal Ftab (95%) Fcal/Ftab 

0,930  0,964 22,01 3,22 6,84 
 

De acordo com Barros Neto et al. (2001)  uma regressão, embora significativa do 

ponto de vista do teste F, pode não ser útil para realizar previsões pelo fato de não cobrir uma 

faixa extensa dos fatores estudados. Box e Wetz (1973) concordam e sugerem que, para se 

considerar uma regressão significativa, não apenas estatisticamente, mas também útil para fins 

preditivos, o valor de F calculado para a regressão deve ser, no mínimo, de quatro a cinco 

vezes maiores que o valor de F tabelado.  Dentro desse contexto nota-se a partir da análise de 

variância  (Tabela 4.16) que o modelo proposto possui significância estatística, uma vez que o 

valor de F (calculado) é  6,84 maior que o F(tabelado). A avaliação do modelo proposto pode 

ainda ser realizada através da observação do gráfico dos valores preditos versus os valores 

observados, conforme Anexo 2.  

A Figura 4.17 (A) mostra o comportamento da umidade frente às variações da 

temperatura e da vazão de entrada de ar, para um volume de etanol fixo no ponto central, 

correspondente a 0,520 mL/g resíduo e a Figura 4.17 (B) explicita o comportamento da 

umidade em relação à temperatura e ao volume de etanol.  

A importante influência da temperatura sobre a umidade é evidenciada nas 

superfícies de resposta, confirmada pelos efeitos no diagrama de Pareto (Figura 4.16).  

Portanto, os resultados sugerem que a transferência convectiva de ar não se mostra relevante 

em relação à temperatura, devido ao restrito tempo de contato entre fluido-partícula na região 

de jorro. Resultados similares foram obtidos na Figura 4.17 (B) onde o efeito da temperatura 

se sobrepõe ao de volume de etanol pulverizado.  
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                    (A)                                                                            (B) 

Figura 4.17 - Superfície de resposta ajustada à umidade em função da temperatura e da vazão 

de ar, para a pulverização de 0,520 mL de etanol/g resíduo. 

 
 Considerando-se que as condições operacionais adotadas na secagem podem 

favorecer a degradação dos componentes nutricionais e visando obter as melhores condições 

operacionais foram também avaliados os efeitos dessas variáveis sobre teores nutricionais. 

Dentro desse contexto, a Figura 4.18 ilustra os desvios de acidez, ou seja, as variações obtidas 

em relação à amostra in natura, para todos os tratamentos adotados. Verifica-se que as 

menores degradações ocorreram nos tratamentos T6 e T10, condições essas coincidentes com 

as mais favoráveis à remoção de umidade.  

 

Tratamento  Temperatura 
 (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

T1 -1 (50) -1  (1,1) -1 (0,390) 
T2 -1 (50) -1 (1,1) 1 (0,650) 
T3 -1 (50) 1 (1,2) -1 (0,390) 
T4 -1 (50) 1 (1,2) 1 (0,650) 
T5 1 (70) -1 (1,1) -1 (0,390) 
T6 1 (70) -1 (1,1) 1 (0,650) 
T7 1 (70) 1 (1,2) -1 (0,390) 
T8 1 (70) 1 (1,2) 1 (0,650) 
T9 - (43,2) 0 (1,15) 0 (0,520) 
T10  (76,8) 0 (1,15) 0 (0,520) 
T11 0 (60) - (1,07) 0 (0,520) 
T12 0 (60)  (1,23) 0 (0,520) 
T13 0 (60) 0 (1,15) - (0,302) 
T14 0 (60) 0 (1,15)  (0,739) 
T15 0 (60) 0 (1,15) 0 (0,520) 
T16 0 (60) 0 (1,15) 0 (0,520) 
T17 0 (60) 0 (1,15) 0 (0,520) 
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Figura 4.18 - Variações dos teores de acidez para diferentes condições operacionais de 

temperatura e Q/Qmin e diferentes condições de pré-tratamento utilizando a pulverização de 
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Destaca-se que para todos os tratamentos aplicados foram obtidas reduções dos 

teores de ácido cítrico, ou seja, degradações desse composto. As reduções de ácido cítrico 

podem estar relacionadas à baixa estabilidade frente a tratamentos térmicos ou ainda à 

conversão desse ácido em açúcares ou outros compostos (PODSEDEK, 2007). Reduções de 

acidez também foram obtidas por Silva (2014) em estudos de desidratação de sementes de 

acerola em secador roto-aerado, com tratamento prévio constituído por pulverização de 

etanol. Ressalta-se, entretanto, que acidez em excesso pode causar certa adstringência, o que 

afeta o sabor final do produto.   

O diagrama de Pareto (Figura 4.19) explicita que, na faixa de estudo, a temperatura é 

a variável operacional que exerce maior efeito sobre a acidez. Em concordância Silva (2014) 

também obteve reduções menos expressivas na condição de temperatura de 80oC.  

Acréscimos de volume de etanol contribui para a redução da degradação desse 

composto. Destaca-se ainda que todas as interações entre as variáveis independentes exercem 

efeitos significativos sobre a acidez da amostra, ao nível de confiança de 95%. 
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Figura 4. 19- Estimativa dos efeitos das variáveis independentes sobre os teores de ácido 

cítrico  resultantes da secagem precedida pela pulverização de etanol. 

A Equação 4.10 apresenta o modelo preditivo ajustado aos teores de ácido cítrico 

para as sementes de acerola submetidas à secagem em leito de jorro, as quais foram pré-

tratadas com a pulverização de etanol. 
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ܽܿ�݀݁�= ͺ͸͵,ʹͷ + ܾ′ݔ +  (4.10)                                                                                         ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [͵Ͷ,ͶʹͲ,ͲͲʹ͹,ͷͻ]         � = [ Ͳ,ͲͲͲ −ʹ͸,ʹ͸ ͵Ͳ,ʹͻ−ʹ͸,ʹ͸ −͵ʹ,͵ͻ −͵ʹ,ʹͶ͵Ͳ,ʹͻ −͵ʹ,ʹͶ −ͳʹ,ͷ͸] 
 

em que X1=temperatura, X2= vazão de entrada de ar (Q/Qmin) e X3= volume de etanol 

 

O modelo estatístico exposto para os teores de acidez, de acordo com a Tabela 4.17, 

apresenta uma porcentagem de variação explicada pela regressão de 94,8%. O coeficiente de 

correlação (0,974) indica um ajuste satisfatório entre os valores observados e os preditos pela 

correlação. De acordo com a análise de variância (Tabela 4.17) o modelo apresentado se 

mostra significativo do ponto de vista estatístico, pois o F calculado foi aproximadamente sete 

vezes maior que o F tabelado. Os valores preditos se aproximam dos observados, assim como 

não são perceptíveis alterações significativas no gráfico valor do normal esperado em função 

dos resíduos (Anexo 3).  

 
Tabela 4.16 - Análise de regressão para o modelo ajustado à acidez. 

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab (95%) Fcal/Ftab 

0,948 0,974 23,57 3,29 7,16 
  

A superfície de resposta ilustrada na Figura 4.20  mostra o comportamento da acidez 

frente às variações de temperatura e volume de etanol, quando a vazão de entrada de ar 

encontra-se fixa no ponto central, ou seja, vazão de ar 15% acima do jorro mínimo. 

Confrontando-se com amostra in natura (1424,8±36,8) mg/100 g verifica-se que os maiores 

teores de ácido cítrico encontram-se associados à condição de elevado volume de etanol 

(0,739 mL/g) e elevadas temperaturas (76,8oC), ou seja região de menor degradação 

nutricional para esse composto. Portanto, os resultados apontam os efeitos benéficos da 

pulverização de etanol como forma de pré-tratamento. 

A superfície de resposta apresentada pela Figura 4.21 sugere que a pulverização de 

etanol reduz a degradação da acidez do resíduo de acerola, pois um aumento do volume de 

etanol reduz a degradação desse composto. A condição experimental de baixos volumes de 

etanol (0,302 mL/g) associada a baixas vazões de ar (7% acima do jorro mínimo) contribui 

para o aumento da degradação dos teores de ácido cítrico.  A Figura 4.21 ilustra a interação 
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entre as variáveis em estudo, o que pode ser confirmado pelo diagrama de Pareto (Figura 

4.19) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 4. 20- Superfície de resposta ajustada à acidez em função da temperatura e do volume 
de etanol, para uma vazão de entrada de ar fixa em 15% acima do jorro mínimo. 

 
.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 4.21 - Superfície de resposta ajusta à acidez em função do volume de etanol e da vazão 
de entrada de ar, à temperatura constante de 60oC. 

 

A Figura 4.22 ilustra os resultados dos teores de ácido ascórbico obtidos nos 

experimentos de secagem precedidos por pulverização de etanol. Esses desvios se 
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caracterizam por acréscimos dos teores em relação ao in natura, onde os tratamentos T10 

(T=76,8o, Q/Qmin=1,15, V=0,52 mL/g) e T6 (T=70oC, Q/Qmin=1,1, V=0,65 mL/g) foram 

mais favoráveis à extração, ou seja, as condições operacionais supracitadas disponibilizaram 

teores mais elevados de vitamina C em sua forma livre (biodisponível). Ressalta-se que essas 

mesmas condições operacionais favoreceram a secagem e promoveram as menores 

degradações dos teores de acidez.  

Segundo Fernandes (2014) a secagem pode afetar a química vinculada à vitamina, o 

que contribui para esse acréscimo.  Resultados similares foram obtidos por Fernandes (2014) 

em estudos com maçãs, onde o autor obteve acréscimos dos teores de vitamina B, nos 

experimentos envolvendo a secagem na presença e na ausência de ultrassom. 

 

 

 

 

Figura 4.22 - Variações dos teores de ácido ascórbico para diferentes condições operacionais 

de temperatura e Q/Qmin e diferentes condições de pré-tratamento utilizando a pulverização 

de etanol. 

 

A partir do diagrama de Pareto (Figura 4.23) percebe-se dentro do domínio 

experimental estudado que a temperatura exerce efeito pronunciado sobre a vitamina C, sendo 

esse favorável à resposta, ou seja, acréscimos desse fator geram aumentos na extração de 

vitamina C. Percebe-se também que entre as interações a interação entre a temperatura e o 

volume de etanol é estatisticamente significativa sobre os teores de ácido ascórbico. 

Considerando-se apenas as variáveis significativas do ponto de vista estatístico, o modelo 

Tratamento  Temperatura 
 (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

T1 -1 (50) -1  (1,1) -1 (0,390) 
T2 -1 (50) -1 (1,1) 1 (0,650) 
T3 -1 (50) 1 (1,2) -1 (0,390) 
T4 -1 (50) 1 (1,2) 1 (0,650) 
T5 1 (70) -1 (1,1) -1 (0,390) 
T6 1 (70) -1 (1,1) 1 (0,650) 
T7 1 (70) 1 (1,2) -1 (0,390) 
T8 1 (70) 1 (1,2) 1 (0,650) 
T9 - (43,2) 0 (1,15) 0 (0,520) 
T10  (76,8) 0 (1,15) 0 (0,520) 
T11 0 (60) - (1,07) 0 (0,520) 
T12 0 (60)  (1,23) 0 (0,520) 
T13 0 (60) 0 (1,15) - (0,302) 
T14 0 (60) 0 (1,15)  (0,739) 
T15 0 (60) 0 (1,15) 0 (0,520) 
T16 0 (60) 0 (1,15) 0 (0,520) 
T17 0 (60) 0 (1,15) 0 (0,520) 
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ajustado aos dados experimentais é representado pela equação 4.11, para um nível de 

confiança de 95%.   

 

 

 

 

 

 

 

 

 

 

 

 áܿ�݀݋ܿ�ܾݎ�ܿݏܽ ݋= ͸ͷ,ͻͺ + ܾ′ݔ +  (4.11)                                                                      ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [ Ͷ,͹ͲͲ,ͲͲ−ʹ,Ͳͺ]         � = [Ͷ,Ͳ͸ Ͳ,ͲͲ ʹ,ͷʹͲ,ͲͲ −ͳ,ͺ͹ Ͳ,ͲͲʹ,ͷʹ Ͳ,ͲͲ Ͳ,ͲͲ] 
 

em que X1=temperatura, X2= vazão de entrada  de ar (Q/Qmin) e X3= volume de etanol 

 

Pela Tabela 4.18 é possível inferir que o modelo de regressão aplicado aos teores de 

ácido ascórbico explica 93,7% das variações dos teores de ácido ascórbico em função das 

variáveis estudadas. Ressalta-se ainda o elevado coeficiente de correlação de 98%, indicativo 

de ajuste satisfatório entre os valores preditos e os observados, fato esse também evidenciado 

nos gráficos apresentados no Anexo 4. O anexo compara os pontos experimentais para os 

teores de ácido ascórbico e os valores calculados pelo modelo. Infere-se que existe ajuste 

satisfatório do modelo, confirmando a análise de variância. O anexo 4 explicita a relação entre 

os valores normais esperados e os resíduos, para a resposta teores de ácido ascórbico. 

Pelo teste F da regressão contata-se que o modelo ajustado aos dados experimentais é 

estatisticamente significativo e preditivo, pois o valor da razão para o teste F é de 10,12.  

 

,1082326

,2631001

-,491797

-1,23379

-2,60987

3,057632

-3,29989

5,919968

7,503957

p=,05

Estimativa dos efeitos

(2)Q/Qmin(L)

v(Q)

2Lby3L

1Lby2L

Q/Qmin(Q)

1Lby3L

(3)v(L)

T(Q)

(1)T(L)

Figura 4.23- Estimativa dos efeitos das variáveis independentes sobre  os teores de ácido 

ascórbico  resultantes da secagem precedida pela pulverização de etanol. 
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Tabela 4.17 - Análise de regressão para o modelo ajustado aos teores de ácido ascórbico. 

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab (95%) Fcal/Ftab 

0,937 0,98 32,99 3,20 10,12 
 

A Figura 4.24 apresenta a superfície de resposta ajustada pelo modelo preditivo 

obtido para os teores de ácido ascórbico em função da temperatura e do volume de etanol, 

mantida constante no ponto central a vazão de entrada de ar (15% acima do jorro mínimo).  

 
Figura 4.24 - Superfície de resposta ajustada aos teores de ácido ascórbico em função da 

temperatura e do volume de etanol pulverizado, a uma vazão de ar 15% acima do jorro 

mínimo. 

 
Para todos os tratamentos adotados nota-se que a secagem com pré-tratamento 

promoveu um aumento nos teores de ácido ascórbico, quando comparado ao da amostra in 

natura (53,8±7,4).  Pela Figura 4.24 verifica-se que a pulverização com volumes maiores de 

etanol (0,739 mL/g) associados a temperaturas elevadas (76,8oC) contribuiu para o acréscimo 

da extração dessa vitamina. Percebe-se, também o efeito da interação entre as variáveis 

independentes selecionadas. Resultados similares foram obtidos por Silva (2014) em estudos 

com secagem de resíduo de acerola em leito roto-aerado, onde o efeito benéfico da 

temperatura sobre o teor de ácido ascórbico, em relação ao resíduo in natura, foi obtido para 

todas as secagens realizadas (com ou sem pré-tratamento). Este comportamento também foi 

encontrado por Duzzioni et al. (2013) em estudos com resíduos de acerola em leito fixo e por 

Ozgur et al. (2011) ao secar pimentas. Isto pode ter ocorrido, porque o aumento da 
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temperatura contribui para a desativação de enzimas responsáveis pela degradação do ácido 

ascórbico, promovendo dessa forma a maior extração nesta condição. 

A Figura 4.25 explicita a superfície de resposta ajustada aos teores de ácido 

ascórbico presentes nas sementes de acerola desidratadas em leito de jorro, mantido fixo no 

ponto central o volume de etanol pulverizado (0,520 mL etanol/g resíduo). A partir desta é 

possível inferir que o aumento da temperatura contribui para a extração dos teores de vitamina 

C, independente da vazão de entrada de ar adotada no experimento, o que comprova o efeito 

mais importante da temperatura em relação à vazão de ar de entrada.  

 

Figura 4.25 - Superfície de resposta ajustada aos teores de ácido ascórbico em função da 
temperatura e da vazão de entrada de ar, para um volume de fixo de etanol pulverizado (0,520 

mL etanol/g resíduo). 
 

Analisando-se os teores de compostos fenólicos das sementes de acerola tratadas 

com a pulverização de etanol e desidratadas em leito de jorro, representados na Figura 4.26,  

percebe-se que as variáveis independentes adotadas exercem efeitos diversos sobre os 

fenólicos totais. Ou seja, acréscimos e decréscimos desses compostos foram obtidos, 

dependendo da condição operacional. 

Os resultados sugerem que a secagem a 60oC contribui para a extração de fenólicos, 

fato esse creditado aos tratamentos T11 a T17 (excetuando-se T14) que possuem em comum a 

temperatura de secagem.  Acréscimos em fenólicos também foram obtidos por Silva (2014), 

em estudos de desidratação de sementes de acerola pulverizadas por etanol.  Ressalta-se que 

as condições operacionais adotadas nos tratamentos T8 (T=70oC, Q/Qmin=1,2, V=0,65 mL/g) 
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e T9 (T=43,2oC, Q/Qmin= 1,15, V=0,52 mL/g) acarretaram em maiores decréscimos desses 

compostos (Figura 4.26). 

O diagrama de Pareto representado pela Figura 4.27 apresenta os efeitos da 

temperatura, vazão de entrada de ar e volume de etanol, bem como suas interações, sobre a 

resposta teores de fenólicos totais. Ressalta-se que todas as variáveis estatisticamente 

significativas exercem efeitos negativos sobre o teor de fenólicos. Em destaque o relevante 

efeito da temperatura sobre a resposta.  

 

 

 

 

Figura 4.26 - Variações dos teores de fenólicos totais para diferentes condições operacionais 

de temperatura e Q/Qmin e diferentes condições de pré-tratamento utilizando a pulverização 

de etanol. 

 
O modelo estatístico ajustado por regressão é dado pela Equação 4.12 levando-se em 

consideração apenas as variáveis significativas do ponto de vista estatístico. 

ݏ�ܽݐ݋ݐ ݏ݋ܿ�݈�݂݊݁  = ͳͶʹ͸,ͻͷ + ܾ′ݔ +  (4.12)                                                                      ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [ Ͳ,ͲͲͲ,ͲͲ−ͻʹ,͹ͳ]         � = [−ʹͲͶ,͹͹ −͹ͷ,ʹʹ Ͳ,ͲͲ−͹ͷ,ʹʹ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ −͸ͻ,ͳͷ] 
 

em que X1=temperatura, X2= entrada  de ar (Q/Qmin) e X3= volume de etanol 

 

Tratamento  Temperatura 
 (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

T1 -1 (50) -1  (1,1) -1 (0,390) 
T2 -1 (50) -1 (1,1) 1 (0,650) 
T3 -1 (50) 1 (1,2) -1 (0,390) 
T4 -1 (50) 1 (1,2) 1 (0,650) 
T5 1 (70) -1 (1,1) -1 (0,390) 
T6 1 (70) -1 (1,1) 1 (0,650) 
T7 1 (70) 1 (1,2) -1 (0,390) 
T8 1 (70) 1 (1,2) 1 (0,650) 
T9 - (43,2) 0 (1,15) 0 (0,520) 
T10  (76,8) 0 (1,15) 0 (0,520) 
T11 0 (60) - (1,07) 0 (0,520) 
T12 0 (60)  (1,23) 0 (0,520) 
T13 0 (60) 0 (1,15) - (0,302) 
T14 0 (60) 0 (1,15)  (0,739) 
T15 0 (60) 0 (1,15) 0 (0,520) 
T16 0 (60) 0 (1,15) 0 (0,520) 
T17 0 (60) 0 (1,15) 0 (0,520) 
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O coeficiente de correlação (0,947) aponta o bom ajuste aos dados experimentais. A 

regressão explica 89,6% da variação desta resposta.  A Tabela 4.19 apresenta os resultados da 

análise de variância, a partir da qual se infere que o modelo estatístico proposto possui 

significância, pois pelo teste F de regressão a razão entre o F calculado e o F tabelado possui 

valor maior que 4 a 5 conforme descrito por Box e Wetz (1973). As figuras apresentadas no 

Anexo 5não apresentam significativas discordâncias entre os valores preditos e os obtidos 

experimentalmente. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Tabela 4.18 - Análise de regressão para o modelo ajustado aos teores de fenólicos totais. 

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab (95%) Fcal/Ftab 

0,896 0,947 25,83 3,26 7,92 
 

A representação gráfica do modelo é dada pela Figura 4.28, considerando-se a vazão 

de entrada de ar fixa no ponto central.  A figura apresenta um ponto de máximo situado 

próximo ao ponto central, ou seja, temperatura de 60oC e volume de etanol de 0,520 mL/g 

resíduo.  Determinadas condições operacionais favorecem a extração de fenólicos pois, teores 

maiores que o da amostra in natura  (1196,7±36,4) foram obtidos. Ressalta-se que a adição de 

0,739 mL etanol/g resíduo associada à temperatura extrema (76,8oC) acarretou na máxima 

degradação desse composto. 

-,167014

,2195883

-,338152

1,041952

-1,2651

-2,36743

-2,68352

-3,81255

-7,74903

p=,05

Estimativa dos efeitos

2Lby3L

(2)Q/Qmin(L)

Q/Qmin(Q)

(1)T(L)

1Lby3L

1Lby2L

v(Q)

(3)v(L)

T(Q)

Figura 4.27 - Estimativa dos efeitos das variáveis independentes sobre os teores de fenólicos 

totais  resultantes da secagem precedida pela pulverização de etanol. 
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Figura 4.28 - Superfície de resposta ajustada aos teores de fenólicos totais em função da 

temperatura e do volume de etanol, a uma vazão de ar fixa em 15% acima do jorro mínimo. 

 
A Figura 4.29 exibe os desvios dos teores de flavonoides em relação à amostra in 

natura, onde para todos os tratamentos avaliados a secagem precedida por pulverização de 

etanol promoveu aumentos das extrações deste composto bioativo.   

. 

 

 

Figura 4.29 - Variações dos teores de flavonoides para diferentes condições operacionais de 

temperatura e Q/Qmin e diferentes condições de pré-tratamento utilizando a pulverização de 

etanol. 

 

Tratamento  Temperatura 
 (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

T1 -1 (50) -1  (1,1) -1 (0,390) 
T2 -1 (50) -1 (1,1) 1 (0,650) 
T3 -1 (50) 1 (1,2) -1 (0,390) 
T4 -1 (50) 1 (1,2) 1 (0,650) 
T5 1 (70) -1 (1,1) -1 (0,390) 
T6 1 (70) -1 (1,1) 1 (0,650) 
T7 1 (70) 1 (1,2) -1 (0,390) 
T8 1 (70) 1 (1,2) 1 (0,650) 
T9 - (43,2) 0 (1,15) 0 (0,520) 
T10  (76,8) 0 (1,15) 0 (0,520) 
T11 0 (60) - (1,07) 0 (0,520) 
T12 0 (60)  (1,23) 0 (0,520) 
T13 0 (60) 0 (1,15) - (0,302) 
T14 0 (60) 0 (1,15)  (0,739) 
T15 0 (60) 0 (1,15) 0 (0,520) 
T16 0 (60) 0 (1,15) 0 (0,520) 
T17 0 (60) 0 (1,15) 0 (0,520) 
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Dentre os tratamentos adotados destacam-se os descritos por T9 (T=43,2oC, 

Q/Qmin=1,15 e V=0,52 mL/g), T5 (70oC, Q/Qmin=1,1, V=0,39 mL/g) e T4 (50oC, Q/Qmin=1,2 e 

V=0,39 mL/g), respectivamente. Acréscimos nos teores destes compostos também foram 

obtidos por Silva (2014) para a secagem de sementes de acerola pré-tratadas com etanol em 

secador rotoaerado.  

Analisando-se a Figura 4.30 a qual explicita o diagrama de Pareto, destacam-se os 

efeitos das interações vazão de entrada de ar/volume de etanol e temperatura/vazão de entrada 

de ar, com grau de confiança de 95%.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 4.30 - Estimativa dos efeitos das variáveis independentes sobre  os teores de 

flavonoides totais  resultantes da secagem precedida pela pulverização de etanol.  

 
Desprezando-se as variáveis não significativas e após ajuste aos dados experimentais 

o modelo estatístico preditivo adotado para os teores de flavonoides é apresentado na Equação 

4.12 com R2 de 0,862 e coeficiente de correlação de 0,929.    

=ݏ݁݀�݋݊݋ݒ݈݂ܽ   ͶͺͶͻ,͸ + ܾ′ݔ +  (4.13)                                                                                ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [ Ͳ,ͲͲͲ−ͳͺ͸,͹Ͳ,ͲͲͲ ]         � = [ Ͳ,ͲͲ −ʹͻ͸,ͺ Ͳ,ͲͲ−ʹͻ͸,ͺ −ͳͺͺ,͸ ͸ͳͺ,͸Ͳ,ͲͲ −͸ͳͺ,͸ −Ͷ͸ͺ,Ͷ] 

 
em que  X1=temperatura, X2= entrada  de ar (Q/Qmin) e X3= volume de etanol 
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-1,14714

1,20963

1,469143

-1,73068

-2,27556

-2,76805

-4,82803

5,768058

p=,05

Estimativa dos efeitos

(1)T(L)

1Lby3L

T(Q)

(3)v(L)

Q/Qmin(Q)

(2)Q/Qmin(L)

1Lby2L

v(Q)

2Lby3L



 
 

105 
 

Realizando a análise de variância para os teores de flavonoides com intuito de 

verificar a significância do modelo de regressão (Tabela 4.20) verifica-se que o modelo 

ajustado  a essa possui significância do ponto de vista estatístico. 

 
Tabela 4.20 - Análise de regressão para o modelo ajustado aos teores de flavonoides. 

Variável resposta umidade Teste F (Regressão) 
Qualidade do 

ajuste (%) 
Coeficiente 

da correlação 
Fcal Ftab (95%) Fcal/Ftab 

0,862 0,929 13,78 3,21 4,29 
 

Os gráficos de valores observados versus valores preditos e de valores normais 

esperados em função dos resíduos não possuem discrepâncias (Anexo 6). 

A partir da Figura 4.31, representativa da superfície de resposta ajustada aos teores 

de flavonoides, mantendo-se o volume de etanol pulverizado (0,520 mL etanol/g resíduo), 

constata-se que o aumento da temperatura afeta favoravelmente os teores de flavonoides 

quando baixas vazões de ar são adotadas durante a secagem no leito de jorro. Entretanto, o 

aumento da temperatura associado a elevadas vazões de ar reduzem significativamente os 

teores de flavonoides do resíduo de acerola.   

 
Figura 4.31 - Superfície de resposta ajustada aos teores de flavonoides em função da 

temperatura e da vazão de entrada de ar, para o volume de etanol fixo em 0,520 mL/g resíduo 

 
Extrações superiores foram obtidas para todos os tratamentos quando confrontados 

com a amostra in natura, que possui teor de flavonoides de 2759,3±42,8. No entanto, 
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mantendo-se a temperatura fixa no ponto central (60oC), infere-se, a partir da Figura  4.32, 

que para as duas condições experimentais extremas ocorre degradações desses teores. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figura 4.32 - Superfície de resposta ajustada aos teores de flavonoides em função do volume 

de etanol e da vazão de entrada de ar, para a temperatura fixa a 60oC. 

 
A avaliação do teor proteico das sementes de acerola é apresentada na Figura 4.33 

onde a desidratação acarretou para todos os tratamentos a redução dos teores de proteínas das 

sementes de acerola. 

 Resultados similares foram obtidos por Rosselló et al. (1994), estudando o efeito da 

temperatura de estocagem, luz e conteúdo de sulfito sobre a qualidade de damascos 

branqueados e posteriormente submetidos à desidratação com energia solar, que  observou 

perdas significativas dos teores de proteínas e carboidratos nas amostras estocadas mesmo à 

temperatura ambiente. O autor atribuiu o resultado à ocorrência de reações não enzimáticas, 

desencadeadas durante o processamento e a estocagem. As reações não enzimáticas são 

indesejáveis nas frutas desidratadas, uma vez que causam a desnaturação de proteínas e 

carboidratos, contribuindo, principalmente, para a perda da qualidade total do produto.  

Ressalta-se que as maiores desnaturações ocorreram nos tratamentos T10 (T=76,8oC, 

Q/Qmin= 1,15, V=0,52 mL/g), T8 (T=70oC, Q/Qmin=1,2, V=0,65 mL/g) e T7 (T=70oC, 

Q/Qmin=1,2, V=0,39 mL/g), condições essas relacionadas à associação de temperatura e 

vazões de entrada de ar elevadas. Ou seja, bom contato fluido partícula correlacionado à 

condição de elevada temperatura, contribuem para a redução do teor proteico da semente de 
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acerola.  Segundo Bobbio e Bobbio (1992) a utilização de altas temperaturas promove a 

desnaturação proteica e a oxidação lipídica, conforme também relatado por Leite et al. (2007). 

 

 
 

 

Figura 4.33 - Variações dos teores de proteínas para diferentes condições operacionais de 

temperatura e Q/Qmin e diferentes condições de pré-tratamento utilizando a pulverização de 

etanol. 

 

A análise estatística (ANOVA) realizada com 95% de confiança corrobora com os 

resultados (Figura 4.34). Verifica-se que a temperatura exerce efeito significativo negativo 

sobre os teores de proteínas. Sendo assim, um aumento desse parâmetro acarreta em 

desnaturações do teor proteico da semente de acerola. Fato esse também evidenciado pela 

vazão de ar. Em contrapartida, o acréscimo de etanol adicionado durante a pulverização é 

benéfico na conservação nutricional das sementes, para o caso de proteínas. 

 Para a resposta teores de proteínas, após realização de regressão múltipla, 

considerando apenas os parâmetros significativos, obteve-se o modelo proposto apresentado 

na equação 4.14.  

=í݊ܽ݁ݐ݋ݎ݌   ͻ,ʹ͵ + ܾ′ݔ +  (4.14)                                                                                         ݔ�′ݔ
ݔ  = [ܺଵܺଶܺଷ]           ܾ = [−Ͳ,ͻ͹−Ͳ,ͶͻͲ,ʹͻ ]         � = [ Ͳ,ͲͲ −Ͳ,ͶͶ −Ͳ,ͷ͹−Ͳ,ͶͶ Ͳ,ͶͲ −Ͳ,͹ͺ−Ͳ,ͷ͹ Ͳ,ͲͲ Ͳ,͸Ͳ ] 
 

Tratamento  Temperatura 
 (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

T1 -1 (50) -1  (1,1) -1 (0,390) 
T2 -1 (50) -1 (1,1) 1 (0,650) 
T3 -1 (50) 1 (1,2) -1 (0,390) 
T4 -1 (50) 1 (1,2) 1 (0,650) 
T5 1 (70) -1 (1,1) -1 (0,390) 
T6 1 (70) -1 (1,1) 1 (0,650) 
T7 1 (70) 1 (1,2) -1 (0,390) 
T8 1 (70) 1 (1,2) 1 (0,650) 
T9 - (43,2) 0 (1,15) 0 (0,520) 
T10  (76,8) 0 (1,15) 0 (0,520) 
T11 0 (60) - (1,07) 0 (0,520) 
T12 0 (60)  (1,23) 0 (0,520) 
T13 0 (60) 0 (1,15) - (0,302) 
T14 0 (60) 0 (1,15)  (0,739) 
T15 0 (60) 0 (1,15) 0 (0,520) 
T16 0 (60) 0 (1,15) 0 (0,520) 
T17 0 (60) 0 (1,15) 0 (0,520) 
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em que X1=temperatura, X2= vazão de entrada de ar (Q/Qmin) e X3= volume de etanol 

-,236496

-1,45287

2,385152

2,557116

-2,77489

-3,61051

4,065824

-4,07674

-7,99109

p=,05

Estimativa dos efeitos

2Lby3L

T(Q)

(3)v(L)

Q/Qmin(Q)

1Lby2L

1Lby3L

v(Q)

(2)Q/Qmin(L)

(1)T(L)

 
Figura 4.34 - Estimativa dos efeitos das variáveis independentes sobre  os teores de proteínas  

resultantes da secagem precedida pela pulverização de etanol . 

  

Para verificação da significância e predição do modelo proposto realizou-se a análise 

de variância a qual se encontra descrita na Tabela 4.21. Infere-se, por meio do coeficiente de 

correlação (0,967) que o modelo possui bom ajuste aos dados experimentais e ainda que 

93,6% das variações da resposta foram explicadas pelo modelo proposto. Ressalta-se ainda 

que de acordo com o teste F para a regressão o modelo se mostra significativo 

estatisticamente. Os gráficos apresentados no Anexo 7 apontam as proximidades entre os 

valores observados experimentalmente e os preditos pelo modelo. 

 
Tabela 4.19 - Análise de regressão para o modelo ajustado aos teores de proteínas. 

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab (95%) Fcal/Ftab 

0,936 0,967 18,72 3,29 5,69 
 

Fixando-se a vazão de entrada de ar em 15% acima do jorro mínimo, a superfície de 

resposta ajustada ao modelo preditivo é apresentada pela Figura 4.35, na qual se nota que as 

menores desnaturações proteicas ocorrem na condição de temperatura reduzida e elevada 

adição de etanol. Nessas condições, a interação entre essas variáveis exerce efeito 

significativo sobre a resposta. Portanto, os resultados sugerem que a pulverização de etanol 
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exerce efeito benéfico sobre os teores proteicos da semente de acerola, desde que a baixas 

temperaturas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 4.35 - Superfície de resposta ajustada aos teores de proteínas em função da 

temperatura e do volume de etanol, para a  vazão de entrada de ar fixa em 15% acima do jorro 

mínimo.  

 
Existe um indicativo de presença de um ponto de mínimo quando a superfície de 

resposta é plotada em função da vazão de entrada de ar e do volume de etanol pulverizado, 

mantendo-se a temperatura de 60oC (Figura 4.36).  

 

 

 

 

 

 

 

 
 

 

 

Figura 4.36 - Superfície de resposta ajustada aos teores de proteínas em função da vazão de 

entrada de ar e do volume de etanol, para a temperatura fixa em 60oC.  
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Os resultados obtidos para o índice de mistura (Figura 4.37), por meio do qual se 

avalia a segregação no leito apontam que existe a concentração de acerola, nas regiões mais 

altas do leito (Im>1), em contrapartida, nas regiões mais baixas o índice de mistura é menor 

que 1, indicativo de concentração de soja. Destaca-se que na altura de leito estático de 9 cm 

existe uma variação maior entre os resultados, provavalemente, proveniente da condição 

operacional adotada que contribui para uma maior ou menor redução de umidade do material. 

 

 

 

Figura 4.37 - Avaliação da segregação para ensaios realizados com tratamento prévio de 

pulverização de etanol. 

 

  

Tratamento  Temperatura 
 (X1) 

Q/Qmin 
(X2) 

Volume 
etanol 
(X3) 

T1 -1 (50) -1  (1,1) -1 (0,390) 
T2 -1 (50) -1 (1,1) 1 (0,650) 
T3 -1 (50) 1 (1,2) -1 (0,390) 
T4 -1 (50) 1 (1,2) 1 (0,650) 
T5 1 (70) -1 (1,1) -1 (0,390) 
T6 1 (70) -1 (1,1) 1 (0,650) 
T7 1 (70) 1 (1,2) -1 (0,390) 
T8 1 (70) 1 (1,2) 1 (0,650) 
T9 - (43,2) 0 (1,15) 0 (0,520) 
T10  (76,8) 0 (1,15) 0 (0,520) 
T11 0 (60) - (1,07) 0 (0,520) 
T12 0 (60)  (1,23) 0 (0,520) 
T13 0 (60) 0 (1,15) - (0,302) 
T14 0 (60) 0 (1,15)  (0,739) 
T15 0 (60) 0 (1,15) 0 (0,520) 
T16 0 (60) 0 (1,15) 0 (0,520) 
T17 0 (60) 0 (1,15) 0 (0,520) 
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As alterações celulares provocadas pela secagem sem pré-tratamento foram avaliadas 

pela microscopia como parâmetro de confronto para verificação de possíveis mudanças 

causadas pela aplicação de pré-tratamentos.  

Dentre as alterações celulares, o encolhimento é um dos fenômenos mais importantes 

que ocorrem durante a secagem, o que leva a modificações na estrutura do produto 

(RAMIREZ et al., 2011). As morfologias de amostras de sementes de acerola resultantes de 

secagens convencionais à 60oC e 40oC são apresentadas nos itens A/B e C/D, 

respectivamente, da Figura 4.39. Confrontando-se essas imagens com as obtidas para a 

amostra in natura (Figura 4.38) percebe-se que a secagem promoveu alterações no tecido 

estrutural, onde nota-se o encolhimento celular. No entanto, evidencia-se a ausência de 

espaços intercelulares visíveis. Percebe-se pelas fotomicrografias apresentadas na Figura 4.39 

A, B, C, D e E que a temperatura, na faixa avaliada, exerceu apenas pequenas alterações 

morfológicas no tecido celular, uma vez que imagens similares foram obtidas para 

temperatura distintas.   

   

   

 

poros 

poros 

Figura 4.39 -  Fotomicrografias obtidas por microscópio eletrônico de varredura para 
condições distintas de secagem em leito de jorro (A) e (B) 60oC, nas ampliações de 36 e 

130x, respectivamente e  (C) e (D) a  40oC, nas ampliações de 36x e 130x. 

A B

C D
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Diversos autores (RODRIGUEZ et al., 2014; FERNANDES, 2008; OLIVEIRA, 

2010) destacam mudanças morfológicas provenientes da aplicação de ondas ultrassônicas 

sobre materiais sólidos imersos em meios líquidos. Para se observar as possíveis alterações 

morfológicas causadas pelo tratamento ultrassônico no tecido estrutural das sementes de 

acerola, foram avaliadas as imagens precedidas por tratamento de ultrassônico. 

As imagens explicitadas na Figura 4.40 são provenientes de amostras submetidas ao 

tratamento ultrassônico (potência de 80 W, proporção de volume de água de 2:1), por tempo 

de sonicação de 10 min, sendo essas amostras analisadas morfologicamente antes de serem 

submetidas ao processo de secagem.  

Quando confrontada com a secagem sem pré-tratamento verifica-se que a sonicação 

em meio aquoso por 10 min promoveu severos danos no tecido celular, onde se observam 

alterações morfológicas, tais como rompimento celular e fraturas ocorreram, possivelmente, 

provocadas pela aplicação de ultrassom. Ressalta-se que essas amostras não foram submetidas 

à posterior secagem, no entanto os resultados sugerem que a proporção de volume de 2:1 

contribui favoravelmente para a desidratação de sementes de acerola.  

 

 

Figura 4.40- Fotomicrografia obtida por microscópio eletrônico de varredura de amostras de 
sementes de acerola submetida à sonicação em meio aquoso por 10 min, à potência de 80 W, 

nas ampliações de (A) 1000x, (B) 130x, (C) 36x e (D) 130x. 
 

Rompimento 
celular 

fraturas 

C

B

D

A



 
 

114 
 

A Figura 4.41 (A) e (B) apresenta as fotomicrografias obtidas para as amostras 

submetidas ao pré-tratamento ultrassônico (80 W e proporção de água de 4:1) por tempo de 

30 e 50 min, respectivamente, as quais foram submetidas à secagem em leito de jorro. 

Observam-se nas amostras a presença de distorções das paredes celulares e possíveis 

formações de micro canais, que colaboram com o aumento da desidratação da amostra. 

A Figura 4.41 (B) mostra que a aplicação de 50 min de ultrassom promoveu 

modificações morfológicas visíveis, pois as células presentes começam a obter formato bem 

mais distorcido, evidenciando que o aumento do tempo de ultrassom promove alterações mais 

significativas da estrutura celular. As alterações celulares foram acompanhadas por reduções 

maiores de umidade, quando confrontada com os demais tempos de sonicação aplicados.  

Resultados similares foram obtidos por Fernandes e Rodrigues (2008, 2007) que 

também verificaram a presença de microcanais nos tecidos de todas as frutas submetidas ao 

ultrassom (melão, mamão, abacaxi, morango, maçã e banana). Os autores afirmam que ondas 

de ultrassom causam uma série rápida de compressões e expansões, de forma semelhante a 

uma esponja quando apertada e solta repetidamente. Acredita-se que o alongamento celular  e 

a formação de micro canais sejam  consequências do efeito esponja decorrente da aplicação 

de ultrassom. 

(a) (b) 

                       (A)                                                          (B) 

 
Os canais microscópicos facilitam a difusão de água e sólidos solúveis para dentro e 

fora do material. De acordo com Fernandes e Rodrigues (2007) a quantidade, o comprimento 

e a largura dos canais microscópicos afetam a transferência de massa entre a fruta e o meio 

líquido. Acrescenta-se ainda que o tempo necessário para formar longos canais, o que 

aumenta a taxa de transferência de massa, é dependente do material, ou seja, de sua estrutura 

morfológica. 

Micro canais 

Distorções da 
parede celular 

BA

Figura 4.41 -  Fotomicrografias provenientes da secagem (A) 30 min de ultrassom e (B) 50 min 
de ultrassom em meio aquoso, na ampliação de 130x. 
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A Figura 4.43 explicita a análise morfológica de amostras submetidas à condição 

supracitada anteriormente, no entanto, após a realização de secagem.  

Confrontando as Figuras 4.42 e 4.43 evidenciam-se nas imagens a presença de micro 

canais e trincas, provavelmente ocasionadas pela sonicação realizada. As amostras 

encontram-se correlacionadas às maiores reduções de umidade, menores degradações de ácido 

cítrico e aumentos das  extrações de ácido ascórbico, fenólicos e flavonoides. 

 

  

  

Figura 4.43 -  Fotomicrografia obtida por microscópio eletrônico de varredura de resíduo de 
acerola submetido a ultrassonicação em meio etanólico, após a secagem 

 (Condição experimental: Tratamento 2)  (A) 130x (B) 36x, (C) 130x 3 (D) 130x. 
 

Para validação dos efeitos ultrassônicos sobre a eficácia de secagem e a manutenção 

do teor nutricional, amostras foram apenas imersas em etanol por tempo de 10 min sem a 

aplicação de ultrassom. As imagens representativas desse ensaio experimental são 

apresentadas na Figura 4.44, a qual foi realizada após a secagem. Verifica-se pela Figura 4.44 

a formação homogênea do tecido celular e a inexistência de micro canais. No entanto existem 

indícios de rompimento celular, evidenciado na fotomicrofrafia D.  

 

Micro canais 

Micro canais 
rompimento celular 

Micro canais 
C D

BA
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CAPÍTULO 5 

 
 

Simulações Numéricas para Estudo de Parâmetros 

Fluidodinâmicos 

 

A ausência de uma teoria capaz de predizer de forma geral o comportamento de 

sistemas granulares contribui para o crescente uso das simulações numéricas. Entre as 

variáveis que exercem efeitos sobre a fluidodinâmica no leito de jorro destacam-se os ângulos 

de repouso estático e dinâmico e a porosidade do leito. Nesse contexto, o presente capítulo  

destina-se à obtenção de modelos preditores capazes de avaliar o comportamento 

fluidodinâmico da mistura constituída por resíduo de acerola e soja em leito de jorro. Faz 

ainda parte do escopo deste capítulo a validação dos modelos, utilizando para tanto os 

resultados experimentais.  

 

5.1  AVALIAÇÕES NUMÉRICAS DESENVOLVIDAS 

 
5.1.1 Simulação computacional pelo Método dos Elementos Discretos 

As simulações apresentam vantagens como o armazenamento de informações sobre 

cada elemento em todos os instantes de tempo; a realização de diferentes configurações de 

sistemas através de pequenas modificações; a manipulação e a exploração dos efeitos de 

diversos parâmetros. O método DEM adotado neste trabalho propõe-se a modelar o material 

granular por meio de um conjunto de partículas discretas, cujo comportamento é governado 

por leis físicas e onde os contatos entre elas podem ser criados ou extintos à medida que o 

conjunto de partículas se deforma como um todo.  

O estudo fluidodinâmico computacional foi realizado visando à análise numérica das 

propriedades físicas, ângulos de repouso estático e dinâmico e empacotamento, variáveis 

essas que afetam o comportamento fluidodinâmico durante a secagem em leito de jorro. A 

simulação foi validada por meio de experimentos os quais foram realizados em condições 

similares.  

Como ferramenta computacional foi empregado o EDEM, software comercial que 

utiliza o método dos elementos discretos na simulação de materiais granulares. O software 
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permite a inserção de partículas de formato irregular, no entanto, a mesma pode ser descrita 

por aglomerado de partículas esféricas, reduzindo a complexidade da simulação (Figura 5.1).  

Dentro desse contexto, optou-se pela representação esférica das partículas, levando-

se em consideração parâmetros como forma e tamanho do material granular, onde o formato 

dos grãos de soja foi estabelecido pelo conjunto de três esferas sobrepostas obtendo-se o 

volume médio de 1,69.10-7 m3 e o resíduo de acerola representado por dezessete esferas, com 

volume médio de 3,24.10-7 m3. As representações foram definidas a partir das características 

físicas dos materiais e pelas fotografias provenientes de microscópio eletrônico de varredura 

(Figura 5.2).  

 

                 

 

 

 

 

  

  

  

 

Figura 5.2 - Fotomicrografias da semente de acerola e da soja obtidas pelo MEV e respectivas 

imagens adotadas nas simulações. 

Figura 5.1 - Representação da partícula por meio de coleção de esferas. 
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Cabe ressaltar que o aumento do número de esferas na representação gráfica da 

partícula pode acarretar no aumento da eficiência, entretanto promove acréscimos no tempo 

de simulação ou seja, redução da velocidade computacional.  

Para todas as simulações, adotou-se o mesmo “time step size”, o qual foi fixado em 

20% do intervalo de tempo crítico, aqui descrito como tempo de Rayleigh, calculado pelo 

EDEM a partir da Equação 5.1 (SANTOS, 2013). 

ோܶ = �ோ√��଴,ଵ଺ଷଵ௩+଴,଼଻଺଺                                                                                        (5.1) 

 
Em  que, R é o raio da partícula (m), ρ é a massa específica da partícula (kg/m³), G 

é o módulo de cisalhamento (Pa) e v é o coeficiente de Poisson (adimensional). As unidades 

de medidas podem ser previamente configuradas no EDEM para outra escala.  

As simulações foram desenvolvidas através de ajuste dos coeficientes de Poisson, 

restituição, atrito estático, atrito de rolamento e coesão, onde o estudo se fez através de 

Planejamento Composto Central (PCC), cujos parâmetros codificados e na escala original são 

apresentados nas Tabelas 5.1 a 5.3 e Equações 5.2 a 5.4. A faixa escolhida para estes 

parâmetros foi baseada em levantamento de trabalhos da literatura. Salienta-se que para o 

resíduo de acerola manteve-se para todas as simulações o coeficiente de Poisson constante e 

igual a 0,25, com o intuito de reduzir o número de simulações. As equações apresentadas a 

seguir 

  
Tabela 5.1- Parâmetros codificados adotados nas simulações do PCC do resíduo de acerola. 

Níveis   
 

Módulo de 
Cisalhamento 

(G) [�ܽ] 
Coeficientes 

 
Restituição 

 (e) 
Atrito estático 

 (e)  
Atrito  

Rolamento (r) 

Coesão () [ ௃௠2] 
-1,607 1,18.10

6 
 0,018 0,018  0,005  0,002 

-1,000 3,00.10
6 
 0,200 0,2 00 0,05  0,024 

0,000 6,00.10
6 
 0,500 0,500 0,125 0,060 

1,000 9,00.10
6 
 0,800 0,800 0,200  0,096 

1,607 10,82.10
6 
 0,982 0,982  0,246  0,118  

  ଵܺ = [Pa]ܩ − ͸. ͳͲ଺͵. ͳͲ଺           ܺଶ = ݁ − Ͳ,ͷͲ,͵             ܺଷ = ௘ − Ͳ,ͷͲ,͵             
           ܺସ = ௥ − Ͳ,ͳʹͷͲ,Ͳ͹ͷ                  ܺହ =  [ J/mଶ] − Ͳ,Ͳ͸Ͳ,Ͳ͵͸                                                                  ሺͷ.ʹሻ 
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Tabela 5.2 - Parâmetros codificados adotados nas simulações do PCC da soja. 

Níveis 

Módulo de 
Cisalhamento  

(G) [�ܽ] 
Coeficientes 

Poisson  

() 
Restituição 

(e) 

Atrito estático 

(e)   
Atrito  

Rolamento (r)   

-1,607 1,18.106  0,009  0,018 0,018 0,004 

-1,000 3,00.106  0,100 0,200 0,200 0,050 

0,000 6,00.106  0,250 0,500 0,500 0,125 

1,000 9,00.106  0,400 0,800 0,800 0,200 

1,607 10,82.106  0,490 0,982 0,982 0,246 

 

ଵܺ = [Pa]ܩ − ͸. ͳͲ଺͵. ͳͲ଺           ܺଶ = − Ͳ,ʹͷͲ,ͳͷ            ܺଷ = ݁ − Ͳ,ͷͲ,͵                ܺସ = ௘ − Ͳ,ͷͲ,͵     
          ܺହ = ௥ − Ͳ,ͳʹͷ Ͳ,Ͳ͹ͷ                                                                                                                        ሺͷ.͵ሻ               

 
As forças de contato para partículas de soja foram representadas pelo modelo Hertz-

Mindlin, que envolve o contato elástico, enquanto que os sistemas envolvendo sementes de 

acerola foram representados pela associação entre os modelos de contato de Hertz-Mindlin e o 

modelo de coesão JKR, pois para sistemas constituídos por partículas úmidas, as forças 

coesivas tornam-se cada vez mais relevantes.  

. 

Tabela 5.3 - Parâmetros codificados adotados nas simulações do PCC da mistura constituída 

por sementes de acerola e grãos de soja (50% em massa). 

Níveis 
 

Coeficientes 

Restituição 
(e) 

Atrito estático 

(e)   
Atrito  

Rolamento (r)   

Coesão 

() [ ௃௠2] 
-1,607 0,018 0,018 0,004 0,002 
-,1000 0,200 0,200 0,050 0,024 
0,000 0,500 0,500 0,125 0,060 
1,000 0,800 0,800 0,200 0,096 
1,607 0,982 0,982 0,246 0,118 

    ଵܺ = ݁ − Ͳ,ͷͲ,͵           ܺଶ = ௘ − Ͳ,ͷͲ,͵                ܺଷ = ௥ − Ͳ,ͳʹͷͲ,Ͳ͹ͷ                  ܺସ =  [ J/mଶ] − Ͳ,Ͳ͸Ͳ,Ͳ͵͸      ሺͷ.Ͷሻ 

 

Um estudo preliminar paramétrico foi realizado com intuito de se determinar os 

parâmetros adequados que levariam a melhor concordância entre os dados experimentais e 
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simulados. Deste modo, nem todas as combinações de parâmetros necessariamente conduzem 

a resultados consistentes fisicamente, mas podem contribuir para verificar o efeito do 

parâmetro individual e de suas interações sobre as respostas. 

Cabe ressaltar que para os casos de misturas constituídas por sementes de acerola e 

soja os parâmetros Módulo de Cisalhamento e Razão de Poissson, foram adotados como 

constantes em todas as simulações, sendo o Módulo de Cisalhamento igual a 9.106 para a 

acerola e 3.106 para a soja e, a razão de Poisson, mantida a 0,25  e 0,10 para a acerola e soja, 

respectivamente. Estas escolhas se basearam nos resultados provenientes das simulações 

realizadas para o resíduo de acerola e soja, individualmente. 

 

5.1.2. Simulações computacionais na análise do ângulo de repouso dinâmico 

No presente estudo foram realizadas simulações computacionais visando o estudo do 

ângulo de repouso dinâmico tanto dos componentes puros, como da mistura constituída por 

sementes de acerola e grãos de soja na fração em massa de 50%.  

Para todas as simulações foram adotadas rotações fixas de 25,2 rpm sendo os 

resultados obtidos confrontados com os valores experimentais para validação do estudo 

computacional. 

O número de partículas utilizadas nas simulações foi constante e correspondia ao 

peso total de partículas nas experiências, como mostra a Tabela 5.4. A simulação 

computacional consistiu no preenchimento de 50% do vaso cilíndrico com o material a ser 

avaliado, sendo em seguida submetido à rotação constante. As análises do ângulo de repouso 

dinâmico foram realizadas por meio das imagens obtidas.  

 

Tabela 5.4 - Condições experimentais adotadas na determinação do ângulo de repouso 

dinâmico.  

Propriedades Descrição Especificações 

Número de partículas de resíduo de acerola  

N 

627 

Número de partículas de soja 1552 

Número de partículas da mistura (50%) 427 (resíduo acerola)  e 508 (soja) 

Velocidade de rotação v [rpm] 25,2 

Diâmetro do tambor rotativo D [m] 0,10 
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5.1.3 Simulações computacionais na análise do ângulo de repouso estático 

As simulações para estudo do ângulo de repouso estático foram realizadas apenas 

para os componentes puros, sendo os resultados obtidos confrontados com os experimentais 

em condições similares. Para análise numérica do ângulo de repouso estático utilizou-se 

metodologia similar à experimental, sendo o ângulo de repouso estático avaliado pelas 

imagens medindo-se o raio e a altura do cone formado pelas partículas.  

  

5.1.4 Simulações computacionais na análise da porosidade do leito estático 

(empacotamento) 

O estudo numérico do empacotamento foi desenvolvida para alturas de leito estático 

distintas, sendo essa realizada para os componentes puros e para misturas binárias de 

diferentes frações em massa. Ou seja, foram avaliadas as porosidades dos leitos constituídos 

por misturas de composições distintas, as quais variaram de Xd=0,0 (apenas partículas de 

soja) até Xd=1,0 (apenas partículas de acerola). 

O processo de empacotamento consitiu em preencher gradualmente, o cone até a 

altura de leito estático desejada. Para tanto, as partículas foram dispostas em superfície 

quadrada virtual, inserida na parte superior/interna do cone e gradualmente foram soltas por 

meio da ação da gravidade, até obtenção da altura de leito estático definida.  

A porosidade foi calculada com base no número de partículas presentes. Para tanto, a 

composição da mistura foi expressa em termos de frações volumétricas.  As verificações das 

simulações computacionais foram realizadas através do estudo comparativo entre os valores 

simulados e os experimentais. 

 

5.2 RESULTADOS E DISCUSSÕES 

 
5.2.1. Simulações numéricas adotadas na análise do ângulo de repouso dinâmico do 

resíduo de acerola 

A simulação númérica do ângulo de repouso dinâmico do resíduo de acerola, 

utilizando o método dos elementos discretos foi concretizada visando o estudo deste 

parâmetro físico. A Tabela 5.5 apresenta os resultados das simulações realizadas a partir do 

conjunto de parâmetros definidos pelo planejamento composto central.  

Os valores dos parâmetros basearam-se em parametrizações prévias encontradas na 

literatura. Assim, nem todas as combinações de parâmetros necessariamente conduzem a 
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resultados consistentes fisicamente, mas pode contribuir para verificar o efeito do parâmetro 

individual e de suas interações sobre as respostas. 

 

Tabela 5.5 - Simulações adotadas na análise do ângulo de repouso dinâmico do resíduo de 

acerola. O valor experimental foi de 52,6º. (=1,607) 

 
Corrida 

 Coeficientes Ângulo 
repouso 

Simulado 

Desvio 
(%) Cisalhamento Restituição 

 
Atrito 

estático 
Atrito de 

Rolamento 
Coesão 

 
1 -1 (3,00.106) -1 (0,200) -1 (0,200) -1 (0,050) 1 (0,096) 46,24±0,99 -12,03 
2* -1 (3,00.106) -1 (0,200) -1 (0,200) 1 (0,200) -1 (0,024) 50,53±0,58 -3,87 
3 -1 (3,00.106) -1 (0,200) 1 (0,800) -1 (0,050) -1 (0,024) 49,63±1,95 -5,57 
4 -1 (3,00.106) -1 (0,200) 1 (0,800) 1 (0,200) 1 (0,096) 61,1±4,00 16,27 
5 -1 (3,00.106) 1 (0,800) -1 (0,200) -1 (0,050) -1 (0,024) 40,03 ±1,13 -23,84 
6 -1 (3,00.106) 1 (0,800) -1 (0,200) 1 (0,200) 1 (0,096) 43,67±1,37 -16,92 
7 -1 (3,00.106) 1 (0,800) 1 (0,800) -1 (0,050) 1 (0,096) 47,19 ±1,98 -10,22 
8 -1 (3,00.106) 1 (0,800) 1 (0,800) 1 (0,200) -1 (0,024) 57,67 ±1,52 9,72 
9 1 (9,00x106) -1 (0,200) -1 (0,200) -1 (0,050) -1 (0,024) 42,71 ±2,17 -18,73 

10* 1 (9,00x106) -1 (0,200) -1 (0,200) 1 (0,200) 1 (0,096) 54,29 ±1,82 3,28 
11* 1 (9,00x106) -1 (0,200) 1 (0,800) -1 (0,050) 1 (0,096) 51,22 ±3,67 -2,55 
12 1 (9,00x106) -1 (0,200) 1 (0,800) 1 (0,200) -1 (0,024) 61,27 ±2,98 16,58 
13 1 (9,00x106) 1 (0,800) -1 (0,200) -1 (0,050) 1 (0,096) 47,00 ±3,34 -10,57 
14 1 (9,00x106) 1 (0,800) -1 (0,200) 1 (0,200) -1 (0,024) 55,88 ±1,13 6,32 
15* 1 (9,00x106) 1 (0,800) 1 (0,800) -1 (0,050) -1 (0,024) 53,92 ±1,26 2,58 
16* 1 (9,00x106) 1 (0,800) 1 (0,800) 1 (0,200) 1 (0,096) 52,23 ±3,89 -0,63 
17 - (1,18.106) 0 (0,500) 0 (0,500)  0 (0,125) 0 (0,060) 60,15 ±2,16 14,44 
18  (10,82.106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 57,41 ±2,37 9,22 
19* 0 (6,00x106) - (0,018) 0 (0,500) 0 (0,125) 0 (0,060) 54,91±3,38 4,46 
20* 0 (6,00x106)  (0,982) 0 (0,500) 0 (0,125) 0 (0,060) 52,94 ±0,70 0,73 
21 0 (6,00x106) 0 (0,500) - (0,018) 0 (0,125) 0 (0,060) 6,88 ±0,45 -86,91 
22 0 (6,00x106) 0 (0,500)  (0,982) 0 (0,125) 0 (0,060) 48,68 ±1,54 -7,38 
23 0 (6,00x106) 0 (0,500) 0 (0,500) - (0,005) 0 (0,060) 47,52 ±2,13 -9,59 
24 0 (6,00x106) 0 (0,500) 0 (0,500)  (0,246) 0 (0,060) 63,95 ±1,59 21,68 
25* 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) - (0,002) 52,13 ±3,51 -0,89 
26* 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125)  (0,118) 53,11 ±2,51 -1,05 
27* 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 53,61 ±2,44 1,99 
28* 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 55,16 ±2,30 4,94 

* simulações que resultaram em valores próximos ao experimental 
 

Percebe-se pelos resultados (Tabela 5.5) que existem diferenças entre os ângulos de 

repouso dinâmico simulados, indicativo de que os parâmetros adotados influenciam a 

resposta. Salienta-se que os desvios calculados em percentagem se referem às variações dos 

valores simulados em relação ao experimental. Percebe-se que as parametrizações adotadas 

nas simulações marcadas com asterisco (*)  acarretaram em desvios menores que 5%, ou seja, 
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predições próximas ao valor experimetal de 52,6°. Entretanto, as simulações 4,12, 17, 19, 21, 

24 e 28 resultaram em valores inconsistentes. Salienta-se que as simulações 4 e 12 possuem 

em comum o coeficiente de restituição e os coeficientes de atrito estático e de rolamento, 

respectivamente fixados nos  nos níveis (0,2; 0,8; 0,2), condição essa que possivelmente 

favorece a coesão entre as partículas resultando no aumento do ângulo de repouso dinâmico. 

Já as simulações 17 e 24  possuem coeficientes de cisalhamento e o de rolamento, fixados nas 

condições extremas.  

A parametrização adotada na simulação 21 resultou em ângulo de repouso muito 

baixo, sendo essa corrida eliminada durante a obtenção do modelo por meio de regressão. 

A Figura 5.3 apresenta o estudo comparativo entre (a) o ângulo de repouso 

experimental obtido para a semente de acerola com os melhores valores preditos pela 

simulação. São elas as simulações 16 e 25.  As imagens confirmam que a parametrização 

adequada converge para valores muito próximos ao experimental, ou seja, com pequenos 

desvios. Enquanto que a Figura 5.3 (b) mostra as simulações que apresentam os maiores 

desvios em relação ao dado expeimental.  

Experimental (52,6
o
) (a) Simulação 16 (52,23

 o
) (a) Simulação 25 (52,13

o
) (a) 

  Simulação 12 (61,27
o
) (b) Simulação 21 (6,69

o
) (b) Simulação 24 (63,95

o
) (b) 

Figura 5.3 -  Ângulo de repouso dinâmico da semente de acerola (a) estudo comparativo entre 

o resultado experimental e os melhores valores preditos pela simulação e (b) simulações com 

elevados desvios em relação ao experimental. 
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A análise de regressão múltipla foi realizada para quantificar o efeito dos parâmetros 

dos modelos de Hertz-Mindlin e JKR sobre o ângulo de repouso dinâmico do resíduo de 

acerola. Para obter a equação que descreve a resposta em função das variáveis independentes, 

testes de hipóteses foram realizados utilizando a estatística t de Student para identificar os 

parâmetros significativos. Os parâmetros estimados pelo método dos mínimos quadrados com 

um nível de significância superior a 10% (p>0,1) foram negligenciados. Portanto, 

considerando-se apenas as variáveis significativas, o modelo ajustado aos dados 

experimentais é apresentado na forma matricial (Equação 5.5). 

Verifica-se que o parâmetro coesão não se mostrou estatisticamente significativo, 

entretanto suas interações com outras variáveis promovem alterações no ângulo de repouso 

dinâmico das sementes de acerola. 

Ressalta-se que a variável coesão, no modelo JKR é expressa através da energia de 

superfície. Segundo Schulze (2007) as forças coesivas/adesivas são causadas por diferentes 

mecanismos e influenciam fortemente a escoabilidade de um material granular. Em materiais 

granulares úmidos as forças coesivas são decorrentes principalmente das pontes de líquido 

presentes entre as partículas. Tais forças dependem do grau de umidade e sua importância no 

sistema também está relacionada ao diâmetro das partículas. As forças coesivas alteram 

características importantes como o ângulo de repouso, a segregação de partículas de tamanhos 

diferentes, além de outros fenômenos responsáveis pela escoabilidade do material.  

  ∅஽ா�= ͷͶ,ͳʹ + ܾ′ݔ +  (5.5)                                                                                               ݔ�′ݔ
 

ݔ = [  
  ܺଵܺଶܺଷܺସܺହ]  

            ܾ = [   
 Ͳ,ͺͷ−ͳ,Ͳ͹͵,Ͷ͹Ͷ,ͲʹͲ ]   

         � = [  
  ͳ,͸ͳ ͳ,ͳ͸ −ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲͳ,ͳ͸ Ͳ,ͲͲ Ͳ,ͲͲ −ͳ,ͲͲ −ͳ,͸͵−ͳ,ͲͲ Ͳ,ͲͲ −Ͷ,͸ͷ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ −ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ ͳ,ʹͳͲ,ͲͲ −ͳ,͸͵ Ͳ,ͲͲ ͳ,ʹͳ Ͳ,ͲͲ ]  

  
 

 
em que X1 = cisalhamento.  X2= restituição, X3= atritos estático, X4 = atrito de rolamento e 

X5= coesão. 

  
Pela Equação 5.5 percebe-se que os coeficientes de atrito estático e de rolamento são 

parâmetros que mais exercem alterações sobre o ângulo de repouso dinâmico do resíduo de 

acerola. De acordo com Santos (2013), o atrito estático controla o movimento de translação 

das partículas no escoamento, sendo considerado um parâmetro de resistência. A superfície de 

resposta ajustada ao ângulo de repouso dinâmico em função dos coeficientes de atrito estático 

e de rolamento, mantendo-se as demais variáveis fixas no ponto central é apresentada na 
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Figura 5.4. À medida que o atrito de rolamento diminui, é observada uma redução do ângulo 

de repouso. De um modo geral, verifica-se que o ângulo de repouso pode alcançar valores 

máximos na condição de elevados valores de atrito de rolamento (0,2) associada à condição 

de atritos estáticos intermediários (0,5).  

A partir da análise de variância (Tabela 5.6) ressalta-se o elevado coeficiente de 

correlação de 96,3%. A Tabela 5.6 explicita através do teste F de regressão, o fato de que o 

modelo proposto possui significado estatístico. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 5.4 – Superfície de resposta ajustada ao ângulo de repouso dinâmico simulado para o 

resíduo de acerola em função dos atritos estático e rolamento, mantidos fixos no ponto central 

os demais parâmetros. 

 
Tabela 5.6 - Análise de regressão para o modelo ajustado ao ângulo de repouso dinâmico do 

resíduo de acerola.  
Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab 

(90%) 
Fcal/Ftab 

0,928 0,963 17,65 2,04 8,65 
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5.2.2 Simulação numérica adotada na análise do ângulo de repouso dinâmico da soja 

 A Tabela 5.7 apresenta os valores simulados para estudo do ângulo de repouso 

dinâmico da soja. Confrontando-se os desvios obtidos para a soja (Tabela 5.7) e para os 

resíduos de acerola (Tabela 5.5) verifica-se que, desvios maiores foram obtidos para a soja.  

   
Tabela 5.7 - Simulações adotadas na análise do ângulo de repouso dinâmico da soja (valor 

experimental de 41,10±2,0). (=1,607) 
 

Corrida 
 Coeficientes Ângulo 

repouso 
Simulado 

Desvio 
(%) Módulo 

Cisalhamento 
Poisson 

 
Restituição 

 
Atrito 

Estático 
Atrito 

Rolamento 
1* -1 (3,00.106) -1 (0,100) -1 (0,200) -1 (0,200) 1 (0,200) 39,82±0,79 -3,11 
2 -1 (3,00.106) -1 (0,100) -1 (0,200) 1 (0,800) -1 (0,004) 47,31±0,90 15,11 
3 -1 (3,00.106) -1 (0,100) 1 (0,800) -1 (0,200) -1 (0,004) 38,49±0,34 -6,35 
4 -1 (3,00.106) -1 (0,100) 1 (0,800) 1 (0,800) 1 (0,200) 58,36±0,88 41,99 
5 -1 (3,00.106) 1 (0,400) -1 (0,200) -1 (0,200) -1 (0,004) 38,10±1,42 -7,30 
6 -1 (3,00.106) 1 (0,400) -1 (0,200) 1 (0,800) 1 (0,200) 60,14±2,41 46,33 
7* -1 (3,00.106) 1 (0,400) 1 (0,800) -1 (0,200) 1 (0,200) 39,62±0,61 -3,60 
8 -1 (3,00.106) 1 (0,400) 1 (0,800) 1 (0,800) -1 (0,004) 45,95±1,99 11,80 
9* 1 (9,00x106) -1 (0,100) -1 (0,20) -1 (0,200) -1 (0,004) 39,99±1,29 -4,53 
10 1 (9,00x106) -1 (0,100) -1 (0,200) 1 (0,800) 1 (0,200) 58,01±0,75 41,14 
11* 1 (9,00x106) -1 (0,100) 1 (0,800) -1 (0,200) 1 (0,200) 39,41±2,03 -4,11 
12* 1 (9,00x106) -1 (0,100) 1 (0,800) 1 (0,800) -1 (0,004) 39,24±2,34 -4,53 
13* 1 (9,00x106) 1 (0,400) -1 (0,200) -1 (0,200) 1 (0,200) 39,22±1,12 -4,57 
14 1 (9,00x106) 1 (0,400) -1 (0,200) 1 (0,800) -1 (0,004) 49,47±0,77 20,36 
15 1 (9,00x106) 1 (0,400) 1 (0,800) -1 (0,200) -1 (0,004) 37,41±0,34 -8,97 
16 1 (9,00x106) 1 (0,400) 1 (0,800) 1 (0,800) 1 (0,200) 56,14±1,53 36,59 
17 - (1,18.106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 53,28±1,05 29,64 
18  (10,82.106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 51,82±2,10 26,08 
19 0 (6,00x106) - (0,009) 0 (0,500) 0 (0,500) 0 (0,125) 53,53±1,25 30,24 
20 0 (6,00x106)  (0,490) 0 (0,500) 0 (0,500) 0 (0,125) 53,95±0,89 31,27 
21 0 (6,00x106) 0 (0,250) - (0,018) 0 (0,500) 0 (0,125) 54,52±2,03 32,65 
22 0 (6,00x106) 0 (0,250)  (0,982) 0 (0,500) 0 (0,125) 51,34±2,17 24,91 
23 0 (6,00x106) 0 (0,250) 0 (0,500) - (0,018) 0 (0,125) 10,84±3,25 -73,63 
24 0 (6,00x106) 0 (0,250) 0 (0,500)  (0,982) 0 (0,125) 54,68±2,21 33,04 
25 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) - (0,002) 46,99±2,62 14,33 
26 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500)  (0,246) 61,51±2,46 49,65 
27 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 55,17±2,40 34,23 
28 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 55,02±3,25 33,87 

* simulações que resultaram em valores próximos ao experimental 
 

Ressalta-se que os sistemas envolvendo sementes de acerola foram representados 

pela associação entre os modelos de contato de Hertz-Mindlin e o modelo de coesão JKR, 

devido ao elevado teor de umidade deste material. No entanto, as simulações para estudo do 
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ângulo de repouso dinâmico da soja foram realizadas considerando-se apenas o modelo Hertz-

Mindlin. Fato esse que pode ter contribuído para o aumento dos desvios. 

Observa-se ainda pela Tabela 5.7 que para determinadas corridas, desvios pequenos 

foram obtidos em relação ao valor experimental (41,1o ±2,0), dentre elas as simulações 

maracadas por asterisco (*). São elas as simulações 1, 7, 9 11, 12 e 13, conforme explicitado 

na Figura 5.5. No entanto, para as condições adotadas nas simulações 4, 6, 10, 23 e 26 

obtiveram-se grandes divergências entre os valores simulados e o experimental (Tabela 5.7 e 

Figura 5.5).   

  

 Experimental  (4ϭ,ϭo±Ϯ,ϬͿ ;aͿ Simulação 01 (39,82
o
) (a) Simulação 07(39,62

o
) (a) 

Simulação 04 (58,36
o
) (b) Simulação 10 (58,01

o
) (b) Simulação 23 (10,84

oͿ ;bͿ 
 

Figura 5.5 - Ângulo de repouso dinâmico da soja (a) estudo comparativo entre o resultado 

experimental e os melhores valores preditos pela simulação e (b) simulações com elevados 

desvios em relação ao experimental. 

 

Negligenciando-se, na análise estatística, a simulação 23, devido à sua elevada 

inconsistência numérica, o modelo de regressão proposto para os resultados simulados é 

apresentado pela Equação 5.6, dada na forma matricial.  A Figura 5.6 apresenta a superfície 

de resposta ajustada para o ângulo de repouso dinâmico da soja em função dos atritos, estático 
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e de rolamento, mantendo-se fixos no ponto central os demais parâmetros. Através desta, 

percebe-se que a simulação prediz valores elevados, e portanto elevada coesão entre as 

partículas, quando os coeficientes de atrito estático e de rolamento encontram-se em seus 

valores máximos, 0,8 e 0,2, respectivamente.  

  Segundo Zhou  et al. (2002), o atrito de rolamento e o atrito estático controlam os 

movimentos de translação e rotação e exercem efeitos significativos sobre o ângulo de 

repouso. De acordo com Brilliantov e Pöschel (1998), o atrito de rolamento ou resistência ao 

rolamento, é uma manifestação da perda de energia devido à histerese sobre o material 

forçado ou devido à dissipação viscosa, durante o movimento de rolamento de uma partícula 

sob uma carga normal.  

 
  ∅஽ா�= ͷ͸,Ͷ͹ + ܾ′ݔ +  (5.6)                                                                                    ݔ�′ݔ

ݔ = [  
  ܺଵܺଶܺଷܺସܺହ]  

            ܾ = [  
  Ͳ,ͲͲͲ,ͲͲ−ͳ,Ͳ͵͸,ͷ͹͵,͹ʹ ]  

          � = [  
  −ͳ,͹Ͷ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ −ͳ,ʹͺ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ −ͳ,ͷͻ −Ͳ,ͺ͸ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ −Ͳ,ͺ͸ −ͷ,ʹʹ ʹ,ͺ͹Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ ʹ,ͺ͹ −ͳ,Ͳͺ]  

  
 

  

em que  X1= módulo de cisalhamento;  X2= Poisson;  X3= restituição;  X4= Atrito estático e 

X5= atrito de rolamento. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 5.6 - Superfície de resposta ajustada ao ângulo de repouso dinâmico simulado para a 
soja em função do atrito estático e de rolamento, mantidos fixos no ponto central os demais 

parâmetros. 
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A partir da análise de variância (Tabela 5.8) tem-se que o modelo apresenta elevado 

índice de qualidade de ajuste e ainda expressivo coeficiente de correlação. A partir da razão 

entre os valores de Fcal e Ftab nota-se que o modelo é significativo. E que, de modo similar os 

coeficientes de atrito estático e de rolamento exercem efeitos significativos sobre o ângulo de 

repouso dinâmico da soja. 

 
Tabela 5.8 - Análise de regressão para o modelo ajustado ao ângulo de repouso dinâmico da 

soja. 

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab (95%) Fcal/Ftab 

0,968 0,984 47,96 2,03 23,63 
 

 
5.2.3 Simulação numérica adotada na análise do ângulo de repouso dinâmico da mistura 

constituída por soja e acerola a 50% 

Após realização dos ensaios experimentais, obteve-se o valor de 44,96±2,50 para o 

ângulo de repouso dinâmico da mistura de iguais frações mássicas de soja e acerola. Os 

resultados obtidos nas simulações computacionais conduzidas por meio de planejamento 

experimental envolvendo os parâmetros estabelecidos são apresentados na Tabela 5.9.  

Verifica-se que desvios inferiores a 5% foram obtidos para determinadas 

combinações entre os parâmetros, o que se confirma pelas imagens apresentadas na Figura 

5.7. Nota-se que a maioria destas simulações foram parametrizadas com níveis baixos de 

atrito de rolamento (0,050) e  coeficiente de coesão (0,024).  

Verifica-se pelas imagens simuladas que existe a segregação das partículas de soja 

no centro do cilindro. Segundo Ottino e Khakhar (2002) a segregação por cisalhamento, é 

frequentemente observada em recipientes cilíndricos preenchidos parcialmente com uma 

mistura de diferentes grãos e rotacionados em torno de seu eixo. 

 De acordo com Ottino e Khakhar (2002), na segregação radial, as partículas menores 

ou mais densas migram em direção ao centro do cilindro após poucas rotações. Para baixas 

velocidades de rotação, a percolação domina. Assim, as menores partículas seguem para os 

níveis inferiores da camada e para o interior, formando um aglomerado de pequenas partículas 

no centro do recipiente. No entanto, para altas velocidades de rotação, acontece o contrário, 

com as maiores partículas no centro, e as menores, na periferia do cilindro. 
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Tabela 5.9 - Simulações adotadas na análise do ângulo de repouso dinâmico da mistura 

constituída por resíduo de acerola e soja a 50% (valor experimental de 44,96±2,5). (=1,607) 

Corrida Coeficientes                                                                                                                 Ângulo repouso 
 Simulado 

Desvio 
(%)  Restituição 

 
Atrito 

Estático 
Atrito 

Rolamento 
Coesão 

 
1* -1 (0,200) -1 (0,200) -1 (0,050) -1 (0,024) 45,00±1,56 0,09 
2* -1 (0,200) -1 (0,200) -1 (0,050) 1 (0,096) 43,81±2,43 -2,57 
3 -1 (0,200) -1 (0,200) 1 (0,200) -1 (0,024) 49,68±2,77 10,51 
4 -1 (0,200) -1 (0,200) 1 (0,200) 1 (0,096) 51,34±0,94 14,19 
5* -1 (0,200) 1 (0,800) -1 (0,050) -1 (0,024) 46,35±2,41 3,09 
6 -1 (0,200) 1 (0,800) -1 (0,050) 1 (0,096) 48,10±1,43 6,99 
7 -1 (0,200) 1 (0,800) 1 (0,200) -1 (0,024) 50,52±1,45 12,37 
8 -1 (0,200) 1 (0,800) 1 (0,200) 1 (0,096) 52,05±1,65 15,76 
9* 1 (0,800) -1 (0,200) -1 (0,050) -1 (0,024) 46,20±1,93 2,77 
10* 1 (0,800) -1 (0,200) -1 (0,050) 1 (0,096) 47,20±1,12 4,97 
11 1 (0,800) -1 (0,200) 1 (0,200) -1 (0,024) 51,26±1,82 14,02 
12 1 (0,800) -1 (0,200) 1 (0,200) 1 (0,096) 51,65±0,67 14,88 
13* 1 (0,800) 1 (0,800) -1 (0,050) -1 (0,024) 46,62±2,49 3,69 
14 1 (0,800) 1 (0,800) -1 (0,050) 1 (0,096) 48,32±1,88 7,49 
15 1 (0,800) 1 (0,800) 1 (0,200) -1 (0,024) 48,22±2,06 7,24 
16 1 (0,800) 1 (0,800) 1 (0,200) 1 (0,096) 49,04±2,80 9,07 
17 - (0,018) 0 (0,500) 0 (0,125) 0 (0,060) 49,76±3,57 10,68 
18  (0,982) 0 (0,500) 0 (0,125) 0 (0,060) 50,51±2,10 12,33 
19* 0 (0,500) - (0,018) 0 (0,125) 0 (0,060) 46,95±1,85 4,43 
20 0 (0,500)  (0,982) 0 (0,125) 0 (0,060) 48,80±1,71 8,55 
21* 0 (0,500) 0 (0,500) - (0,004) 0 (0,060) 46,48±2,47 3,39 
22 0 (0,500) 0 (0,500)  (0,246) 0 (0,060) 52,98±1,92 17,83 
23 0 (0,500) 0 (0,500) 0 (0,125) - (0,002) 49,97±4,01 11,15 
24 0 (0,500) 0 (0,500) 0 (0,125)  (0,118) 52,04±2,80 15,75 
25 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 52,43±1,73 16,62 
26 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 51,25±3,42 13,99 
27 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 51,66±3,85 14,90 
28 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 51,67±1,89 14,96 

* simulações que resultaram em valores próximos ao experimental 
 

O modelo proposto ajustado aos dados simulados é apresentado na equação 5.7, na 

sua forma matricial, onde o parâmetro isolado, coeficiente de restituição, não se apresenta 

como significativo do ponto de vista estatístico.  De modo similar as interações da coesão 

com os demais parâmetros também não são consideradas significativas, no nível de 

significância de 5%. 
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                 (A)                                                                                (B) 

 

A análise de variância aponta que o modelo possui bom ajuste aos dados simulados, 

sendo esse significativo estatisticamente com confiabilidade de 95% (Tabela 5.10). 

 

Tabela 5.10 - Análise de regressão para o modelo ajustado ao ângulo de repouso dinâmico da 

mistura constituída por soja e resíduo de acerola.  

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab (95%) Fcal/Ftab 

0,956 0,978 43,59 2,46 17,72 
 

Dentre as simulações realizadas é possível inferir que a simulação 1 caracteriza-se 

pelo menor desvio entre os resultados experimentais e os simulados (Tabela 5.9). Destaca-se, 

no entanto, que apesar da combinação de parâmetros adotada neste experimento ser 

satisfatória, não se pode garantir que os valores individuais estabelecidos para os parâmetros 

sejam os melhores para a mistura resíduo de acerola e soja. No entanto, a combinação entre 

esses parâmetros representa satisfatoriamente o ângulo de repouso da mistura proposta.  

A Tabela 5.11 mostra o estudo comparativo entre os melhores resultados simulados 

obtidos para os componentes puros e para a mistura a 50%. Verifica-se que os parâmetros 

Figura 5.8 - Superfície de resposta ajustada ao ângulo de repouso dinâmico simulado para a 

mistura constituída por soja e resíduo de acerola. 
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propostos para a mistura em questão são inferiores aos obtidos para os componentes puros, 

denotando-se comportamentos fluidodinâmicos distintos.  

 
Tabela 5.11- Estudo comparativo entre os parâmetros aplicados à soja e acerola puros e em 

mistura. 
Parâmetros Resíduo  

Acerola 
Soja Mistura resíduo acerola/soja 

Módulo de Cisalhamento 9,00x106 3,00x106 9,00x106 (acerola)  3x106 (soja) 
Razão de Poisson 0,250 0,10 0,25 (acerola) 0,1 (soja) 
Coeficiente de Restituição 0,800 0,20 0,200 
Coeficiente de Atrito 0,800 0,20 0,200 
Coeficiente de Rolamento 0,200 0,20 0,050 
Coesão [J/m2] 0,096 - 0,024 
Número de partículas 627 1552 427(acerola)  508 (soja) 

 
A Tabela 5.12 apresenta o estudo comparativo entre os valores experimental e 

simulado, em que se verifica que os valores simulados se aproximam muito dos 

experimentais, o que demonstra a eficácia da análise numérica.  

 

Tabela 5.12 - Estudo comparativo entre os valores simulados e os experimentais, para o 
ângulo de repouso dinâmico. 

Material Experimental Simulado 
Resíduo de acerola 52,60±3,8 52,20±3,9 
Soja 41,10±2,0 39,80±0,8 
Mistura resíduo de acerola e soja a 50% 44,96±2,5 45,00±1,6 

  
 

5.2.4  Simulações na análise do ângulo de repouso estático do resíduo de acerola 

O ângulo de repouso estático é um dos principais parâmetros de análise da 

escoabilidade de materiais granulares.  Reimbert e Reimbert (1976) citado por Silva (2003) 

concordam ao afirmar que as principais características de fluxo dos materiais armazenados 

são atrito interno (partícula/partícula), atrito externo (partícula/parede), ângulo de repouso e 

massa específica aparente. Em escoamentos de materiais granulares, o ângulo de repouso 

estático, também conhecido como ângulo da pilha, fornece uma compreensão dos atritos e da 

coesão (SILVA, 2003). 

A análise do ângulo de repouso estático do resíduo de acerola foi realizada por meio 

de avaliação numérica utilizando a metodologia de superfície de resposta, sendo determinados 

os efeitos dos parâmetros dos modelos de Hertz-Mindlin e JKR.  
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A Tabela 5.13 apresenta os ângulos obtidos pela simulação e os desvios desses em 

relação ao experimental (39,20 ± 1,40). Pelos desvios obtidos tem-se que a parametrização 

realizada, para a maioria das simulações, acarretou em valores próximos ao experimental, 

sendo essa satisfatória. Ressalta-se que para as simulações 8, 16, 20, 23 e 27 os desvios em 

relação ao experimental foram menores ou próximos a 5%, sendo essas as melhores 

parametrizações dos modelos propostos.  Em contrapartida, simulações tais como 2, 15, 19 e 

21 não resultaram em estimativas aceitáveis para o ângulo de ângulo de repouso estático 

(Figura 5.9).  

 
Tabela 5.13 - Simulações adotadas na análise do ângulo de repouso estático do resíduo de 

acerola (valor experimental de 39,20 ± 1.4). 

 
Corrida 

 Coeficientes Ângulo 
repouso �DEM 

Desvio 
(%) Cisalhamento Restituição 

 
Atrito 

estático 
Atrito de 

Rolamento 
Coesão 

 
1 -1 (3,00.106) -1 (0,200) -1 (0,200) -1 (0,050) 1 (0,096) 30,78±0,58 -21,41 
2 -1 (3,00.106) -1 (0,200) -1 (0,200) 1 (0,200) -1 (0,024) 28,39±1,89 -27,52 
3 -1 (3,00.106) -1 (0,200) 1 (0,800) -1 (0,050) -1 (0,024) 33,62±0,91 -14,16 
4 -1 (3,00.106) -1 (0,200) 1 (0,800) 1 (0,200) 1 (0,096) 43,41±2,67 10,83 
5 -1 (3,00.106) 1 (0,800) -1 (0,200) -1 (0,050) -1 (0,024) 31,39±3,65 -19,86 
6 -1 (3,00.106) 1 (0,800) -1 (0,200) 1 (0,200) 1 (0,096) 30,76±0,99 -21,45 
7 -1 (3,00.106) 1 (0,800) 1 (0,800) -1 (0,050) 1 (0,096) 42,97±0,87 9,71 
8* -1 (3,00.106) 1 (0,800) 1 (0,800) 1 (0,200) -1 (0,024) 39,89±1,46 1,84 
9 1 (9,00x106) -1 (0,200) -1 (0,200) -1 (0,050) -1 (0,024) 29,99±1,37 -23,44 
10 1 (9,00x106) -1 (0,200) -1 (0,200) 1 (0,200) 1 (0,096) 31,87±1,71 -18,63 
11 1 (9,00x106) -1 (0,200) 1 (0,800) -1 (0,050) 1 (0,096) 35,05±0,24 -10,51 
12 1 (9,00x106) -1 (0,200) 1 (0,800) 1 (0,200) -1 (0,024) 44,92±1,92 14,69 
13 1 (9,00x106) 1 (0,800) -1 (0,200) -1 (0,050) 1 (0,096) 34,69±0,51 -11,44 
14 1 (9,00x106) 1 (0,800) -1 (0,200) 1 (0,200) -1 (0,024) 29,89±0,35 -23,68 
15 1 (9,00x106) 1 (0,800) 1 (0,800) -1 (0,050) -1 (0,024) 49,26±3,07 25,78 
16* 1 (9,00x106) 1 (0,800) 1 (0,800) 1 (0,200) 1 (0,096) 39,75±3,03 1,49 
17 - (1,18.106) 0 (0,500) 0 (0,500)  0 (0,125) 0 (0,060) 33,75±1,45 -13,84 
18  (10,82.106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 35,59±1,15 -9,13 
19 0 (6,00x106) - (0,018) 0 (0,500) 0 (0,125) 0 (0,060) 0,00±0,00 100,00 
20* 0 (6,00x106)  (0,982) 0 (0,500) 0 (0,125) 0 (0,060) 39,09±3,79 -0,20 
21 0 (6,00x106) 0 (0,500) - (0,018) 0 (0,125) 0 (0,060) 24,60±0,15 -37,19 
22 0 (6,00x106) 0 (0,500)  (0,982) 0 (0,125) 0 (0,060) 47,29±5,15 20,74 
23* 0 (6,00x106) 0 (0,500) 0 (0,500) - (0,005) 0 (0,060) 37,15±0,20 -5,14 
24 0 (6,00x106) 0 (0,500) 0 (0,500)  (0,246) 0 (0,060) 34,24±0,26 -12,57 
25 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) - (0,002) 36,00±0,11 -8,09 
26 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125)  (0,118) 36,71±0,20 -6,27 
27* 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 36,97±1,27 -5,61 
28 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 36,56±0,69 -6,65 
* simulações que resultaram em valores próximos ao experimental 
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Experimental (39.2 o) (a) 

 
Simulação 20  (39,09o) (a) 

 
Simulação 16 (39,75º) (a) 

 
Simulação 08 (39,89o) (a) 

 
Simulação 02 (28,39º) (b) 

 
Simulação 15 (49,26º) (b) 

 
Simulação 19 (0,0o) (b) 

 

 Figura 5.9 -  Ângulo de repouso estático para o resíduo de acerola (a) estudo 

comparativo entre o resultado experimental e os melhores valores preditos pela simulação e 

(b) simulações com elevados desvios em relação ao experimental. 
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A adoção de valor próximo de zero para o coeficiente de restituição (simulação 19) 

acarretou na não formação de pilha (Figura 5.9). No entanto, valores elevados do coeficiente 

de restituição (simulação 20) conduziram a valores próximos ao experimental. Segundo 

Bharadwaj et al. (2010) o coeficiente de restituição é uma medida da perda de energia durante 

uma colisão. Por definição, é a razão entre a velocidade relativa de dois corpos antes e após a 

colisão. O coeficiente de restituição é utilizado na simulação para estimar a força de 

amortecimento (normal e tangencial) durante uma colisão.  

Desprezando-se a simulação 19, o modelo proposto para a análise do ângulo de repouso 

estático para o resíduo de acerola é explicitado em sua forma matricial pela Equação 5.8. 

Percebe-se que dentre os parâmetros avaliados o coeficiente de atrito estático exerce efeito de 

elevação sobre essa resposta, ou seja, aumentos desse parâmetro contribuem para o aumento 

do ângulo de repouso estático. 

Nota-se pela Tabela 5.14 que o modelo exibe elevado significado estatístico e possui 

significativa qualidade de ajuste. 

 �஽ா�= ͵͸,Ͳͳ + ܾ′ݔ +  (5.8)                                                                                          ݔ�′ݔ

ݔ = [  
  ଵܺܺଶܺଷܺସܺହ]  

            ܾ = [  
  Ͳ,ͺͳͳ,͵͹ͷ,ͷ͸Ͳ,ͲͲͲ,ͲͲ]  

          � = [  
  Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ −ͳ,͹ͳͲ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ −ʹ,͵ʹ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͺʹ −Ͳ,ͻ͵Ͳ,ͲͲ −ʹ,͵ʹ Ͳ,ͺʹ Ͳ,ͲͲ Ͳ,ͲͲ−ͳ,͹ͳ Ͳ,ͲͲ −Ͳ,ͻ͵ Ͳ,ͲͲ Ͳ,ͲͲ ]  

  
 

 

em que  X1= cisalhamento,  X2= restituição,X3= atritos estático, X4 = atrito de rolamento e X5 = 

coesão. 

  
Tabela 5.14 - Análise de regressão para o modelo ajustado ao ângulo de repouso estático do 

resíduo de acerola.  
Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab 

(95%) 
Fcal/Ftab 

0,956 0,978 59,22 2,54 23,31 
 

A superfície de resposta ajustadas ao modelo proposto é  apresentada na Figura 5.10 

a partir da qual se infere o significativo efeito do atrito estático sobre o ângulo de repouso 

estático do resíduo de acerola. Ou seja, a formação do ângulo de repouso estático depende do 

comportamento do sólido, frente a fatores como atrito estático e de rolamento. Resultados 

similares foram obtidos por Nakashima (2011) em estudos simulacionais de ângulos de 
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repouso estático de areia, onde o mesmo obteve aumentos do ângulos de repouso em função 

do atrito estático. 

A Figura 5.10 expõe ainda a dependência do ângulo de repouso estático com o atrito 

de rolamento, na qual se percebe que esse parâmetro exerce efeito menos pronunciado sobre 

essa resposta.  Nakashima (2011) afirma que o efeito do atrito de rolamento é menos sensível 

do que o acarretado pelo atrito estático, ou seja a formação da pilha depende mais da 

translação de partículas do que de sua rotação.  

 
Figura 5.10 - Superfície de resposta ajustadas ao ângulo de repouso estático simulado para o 

resíduo de acerola. 
 

5.2.5 Simulações numéricas adotadas na análise do ângulo de repouso estático da soja 

Os efeitos dos parâmetros do Modelo Hertz-Mindlin sobre o ângulo de repouso 

estático da soja foram avaliados através da técnica de superfície de resposta, a qual se baseia 

no planejamento composto central. A Tabela 5.15 apresenta o PCC adotado e os ângulo de 

repouso estático simulados, bem como os desvios obtidos entre os valores simulados e  

experimental (21,40º). 

Verifica-se pela Tabela 5.15 uma variabilidade elevada entre os valores dos ângulos 

de repouso simulados, onde dependendo das parametrizações adotadas o mesmo varia entre 0º 

e 34,6º.  A simulação 23 resultou na não formação de pilha de soja, indicativo de que valores 

de coeficiente de atrito estático próximos de zero não permitem o atrito entre as partículas, 

fazendo com que elas deslizem umas sobre as outras com velocidade acima da real. Em 
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contrapartida, o nível mais elevado do coeficiente de atrito de rolamento (0,246) (Simulação 

26) levou ao maior ângulo de repouso simulado. As imagens apresentadas na Figura 5.11 

confirmam os resultados obtidos. 

 
Tabela 5.15 - Simulações adotadas na análise do ângulo de repouso estático da soja (valor 

experimental de 21,40 ±0,9).  
 

Corrida 
 Coeficientes Ângulo 

repouso �DEM 

Desvio 
(%) Módulo 

Cisalhamento 
Poisson 

 
Restituição 

 
Atrito 

Estático 
Atrito 

Rolamento 
1 -1 (3,00.106) -1 (0,100) -1 (0,200) -1 (0,200) 1 (0,200) 13,46±0,15 -37,08 
2* -1 (3,00.106) -1 (0,100) -1 (0,200) 1 (0,800) -1 (0,004) 19,94±1,20 -6,84 
3 -1 (3,00.106) -1 (0,100) 1 (0,800) -1 (0,200) -1 (0,004) 12,99±0,18 -39,29 
4* -1 (3,00.106) -1 (0,100) 1 (0,800) 1 (0,800) 1 (0,200) 23,12±1,07 8,02 
5 -1 (3,00.106) 1 (0,400) -1 (0,200) -1 (0,200) -1 (0,004) 12,78±1,35 -40,28 
6 -1 (3,00.106) 1 (0,400) -1 (0,200) 1 (0,800) 1 (0,200) 33,60±0,29 57,02 
7 -1 (3,00.106) 1 (0,400) 1 (0,800) -1 (0,200) 1 (0,200) 17,89±0,12 -16,42 
8* -1 (3,00.106) 1 (0,400) 1 (0,800) 1 (0,800) -1 (0,004) 21,47±0,40 0,34 
9 1 (9,00x106) -1 (0,100) -1 (0,20) -1 (0,200) -1 (0,004) 14,92±0,04 -30,30 
10 1 (9,00x106) -1 (0,100) -1 (0,200) 1 (0,800) 1 (0,200) 33,03±1,37 54,35 
11 1 (9,00x106) -1 (0,100) 1 (0,800) -1 (0,200) 1 (0,200) 18,47±0,34 -13,69 
12 1 (9,00x106) -1 (0,100) 1 (0,800) 1 (0,800) -1 (0,004) 23,20±1,02 8,40 
13 1 (9,00x106) 1 (0,400) -1 (0,200) -1 (0,200) 1 (0,200) 18,62±0,22 -12,99 
14 1 (9,00x106) 1 (0,400) -1 (0,200) 1 (0,800) -1 (0,004) 32,21±0,10 50,51 
15 1 (9,00x106) 1 (0,400) 1 (0,800) -1 (0,200) -1 (0,004) 14,64±0,43 -31,59 
16 1 (9,00x106) 1 (0,400) 1 (0,800) 1 (0,800) 1 (0,200) 32,12±0,73 50,09 
17 - (1,18.106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 28,33±0,84 32,40 
18  (10,82.106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 29,75±0,71 39,02 
19 0 (6,00x106) - (0,009) 0 (0,500) 0 (0,500) 0 (0,125) 29,84±0,62 39,44 
20 0 (6,00x106)  (0,490) 0 (0,500) 0 (0,500) 0 (0,125) 27,33±0,78 27,71 
21 0 (6,00x106) 0 (0,250) - (0,018) 0 (0,500) 0 (0,125) 26,34±0,39 23,08 
22 0 (6,00x106) 0 (0,250)  (0,982) 0 (0,500) 0 (0,125) 26,73±2,04 24,91 
23 0 (6,00x106) 0 (0,250) 0 (0,500) - (0,018) 0 (0,125) 0,00±0,00 100,00 
24 0 (6,00x106) 0 (0,250) 0 (0,500)  (0,982) 0 (0,125) 26,87±1,43 25,55 
25 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) - (0,002) 17,82±0,94 -16,73 
26 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500)  (0,246) 34,59±0,15 61,63 
27 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 29,42±0,01 37,49 
28 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 29,94±0,08 39,91 

* simulações que resultaram em valores próximos ao experimental 
  

Percebe-se que as condições de parametrização adotadas nas simulações 2, 4 e 

8resultaram em ângulos de repouso estático próximos ao experimental, fato evidenciado pelos 

desvios obtidos e pela Figura 5.11.  Salienta-se que a maioria destas simulações foram 

parametrizadas adotando-se coeficiente de atrito estático no nível +1, ou seja, valor real de 

0,800. 
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Os efeitos dos parâmetros do modelo adotado sobre o ângulo de repouso estático da 

soja foram avaliados por meio de regressão múltipla, utilizando apenas os parâmetros 

significativos no nível de significância de 10%, sendo os demais negligenciados (Equação 

5.9).  

 

 

 

Experimental (21,4o) (a) 

 
Simulação 08 (21,5º) (a) 

 
Simulação 02 (19,9º) (a) 

 
Simulação 04 (23,1º) (a) 

 
Simulação 16 (32,1o) (b) 

 
 Simulação 26 (34,6º) (b) 

 
Simulação 23  (0o)   (b) 

Figura 5.11 -  Ângulo de repouso estático para  a soja (a) estudo comparativo entre o resultado 

experimental e os melhores valores preditos pela simulação e (b) simulações com elevados 

desvios em relação ao experimental. 
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�஽ா�= ʹͻ,ͳ͹ + ܾ′ݔ +  (5.9)                                                                                               ݔ�′ݔ

ݔ = [  
  ܺଵܺଶܺଷܺସܺହ]  

            ܾ = [  
  ͳ,͸ʹͲ,ͻͷͲ,ͲͲ͸,Ͳ͵͵,Ͳ͹]  

          � = [  
  Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ −ͳ,ʹʹ −ͳ,ͶͶ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ −ͳ,ͶͶ −ͷ,ͲͶ Ͳ,ͲͲͲ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ Ͳ,ͲͲ −ͳ,͵ͷ]  

  
 

 

em que X1=cisalhamento, X2=Poisson, X3= restituição, X4 = atrito estático e X5 = atrito de 

rolamento.  

 

A Equação 5.9 explicita que os parâmetros mais significativos foram os coeficientes 

de atrito estático e de rolamento, sendo o coeficiente de restituição não significativo sobre a 

resposta. A razão de Poisson por meio das interações com os demais parâmetros não exerce 

efeito estatístico sobre a resposta, apesar de exercer influência na forma isolada. Ressalta-se 

que o módulo de cisalhamento, a razão de Poisson e o módulo de cisalhamento não são 

significativos na forma quadrática.  

A análise de variância confirma a significância estatística do modelo, onde a razão 

Fcal/Ftab é de 8,26 (Tabela 5.16). 

 
Tabela 5.16 - Análise de regressão para o modelo ajustado ao ângulo de repouso estático da 

soja. 

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab 

(95%) 
Fcal/Ftab 

0,902 0,950 20,74 2,51 8,26 
 

Considerando-se o elevado número de parâmetros do Modelo de Hertz-Mindlin, 

infere-se que existe, portanto uma região envolvendo combinações de parâmetros que levam a 

respostas próximas à experimental, a qual pode ser melhor descrita pelas superfícies de 

resposta. Assim, as superfícies de respostas ajustadas ao modelo proposto são apresentadas na 

Figura 5.12 (A) e (B). 

A Figura 5.12 (A) apresenta o comportamento do ângulo de repouso estático da soja 

em função dos atritos estático e de rolamento, onde se verifica um aumento da resposta em 

função do aumento desses coeficientes. Resultados similares foram obtidos por Santos (2013) 

em estudos que avaliam os efeitos da forma das partículas sobre o ângulo de repouso estático, 

utilizando o método DEM. Segundo o autor observa-se que o ângulo de repouso é diretamente 

proporcional aos atritos estático e de rolamento, ou seja, é possível combinar os atritos 
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estático e de rolamento para se obter valores crescentes do ângulo de repouso (SANTOS, 

2013). Verifica-se pela Figura 5.12 (B) que o ângulo de repouso estático da soja sofre pouca 

influência do coeficiente de restituição.  

 

(A)                                                                                          (B) 

 
O estudo comparativo entre os parâmetros adotados à soja e ao resíduo de acerola é 

apresentado na Tabela 5.17, parametrização essa que conduziu à melhor conformidade entre 

os valores simulados e os experimentais.  Percebe-se que parametrizações distintas conduzem 

a valores próximos aos experimentais, pois os materiais possuem propriedades diferentes, 

dentre elas o formato, a rugosidade e a umidade.  

 
Tabela 5.17 – Parâmetros dos modelos aplicados à soja e acerola que conduziram a menores 

desvios para o ângulo de repouso estático 

Parâmetros Resíduo  
Acerola 

Soja 

Módulo de Cisalhamento 6,00x106 3,00x106 

Razão de Poisson 0,250 0,40 

Coeficiente de Restituição 0,982 0,80 

Coeficiente de Atrito Estático 0,500 0,80 

Coeficiente de Rolamento 0,125 0,05 

Coesão [J/m2] 0,050 - 

Figura 5.12 - Superfícies de resposta ajustadas ao ângulo de repouso estático simulado para 

a soja. 
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A Tabela 5.18 apresenta a análise comparativa entre os valores experimental e 

simulado, onde se verifica que os valores simulados se aproximam dos experimentais, 

resultado da eficácia da análise numérica.  

 
Tabela 5.18 - Comparação entre os valores simulados e os experimentais, para o ângulo de 

repouso estático. 

Material Experimental Simulado 

Resíduo de acerola 39,20 ± 1.4 39,10±3,8 

Soja 21,40 ±0,9 21,50±0,4 

  
 
5.2.6 Avaliação numérica da porosidade do leito estático (empacotamento do leito) 

composto por resíduo de acerola 

Dentre os parâmetros necessários à modelagem e simulação do leito de jorro, a 

velocidade de mínimo jorro se destaca pois, caracteriza o início do regime de fluidização no 

leito. Na prática, é comum operar o leito de jorro com velocidades ligeiramente acima do 

mínimo jorro para garantir a formação de jorro estável.  Parâmetro como a porosidade da 

mistura binária influencia de modo expressivo a velocidade de mínimo jorro, variável 

precípua utilizada na modelagem e simulação do leito de jorro. 

Dentro desse contexto a porosidade do leito estático foi determinada a partir do 

número de partículas presentes na altura de leito estático de 8 cm. O processo de simulação 

consistiu no enchimento gradual do cone de dimensões similares ao do leito de jorro adotado, 

onde a entrada de partículas foi realizada a partir de uma superfície quadrada virtual situada 

na parte superior do vaso. A queda das partículas no cone se fez pela ação da gravidade 

obtendo-se desse modo uma posição estática final. 

Para avaliação dos parâmetros da simulação DEM para a porosidade de leito 

composto por resíduo de acerola, utilizou-se o planejamento composto central tendo-se como 

parâmetros: o módulo de cisalhamento, e os coeficientes de restituição, de atrito estático e de 

rolamento e o módulo da coesão, apresentada na Tabela 5.19. A tabela explicita que as 

simulações adotando-se os modelos de Hertz-Mindlin e JKR resultaram em porosidades do 

leito próximas à experimental (0,548), com desvios pequenos, em destaque as simulações 3, 

6, 7, 10 e 25. Percebe-se ainda a elevada reprodutibilidade das simulações, onde valores 

próximos foram obtidos para as simulações com repetição no ponto central. Em contrapartida, 

as simulações 4, 5, 21 acarretaram em maiores desvios para a análise da porosidade em 

relação aos demais.  
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Tabela 5.19 - Simulações adotadas  na análise da porosidade do leito estático constituído por 

resíduo de acerola (valor experimental de 0,548). 

Simulação 
 
 

Cisalhamento 
 
 

Coeficientes Desvio 
(%) 

 
Restituição 

 
Atrito 

estático 
Atrito de 
rolamento 

Coesão 
 

Porosidade 
() 

1 -1 (3,00.106) -1 (0,200) -1 (0,200) -1 (0,050) 1 (0,096) 0,529 -5,30 
2 -1 (3,00.106) -1 (0,200) -1 (0,200) 1 (0,200) -1 (0,024) 0,533 -2,74 
3* -1 (3,00.106) -1 (0,200) 1 (0,800) -1 (0,050) -1 (0,024) 0,558 1,88 
4 -1 (3,00.106) -1 (0,200) 1 (0,800) 1 (0,200) 1 (0,096) 0,601 9,71 
5 -1 (3,00.106) 1 (0,800) -1 (0,200) -1 (0,050) -1 (0,024) 0,484 -11,59 
6* -1 (3,00.106) 1 (0,800) -1 (0,200) 1 (0,200) 1 (0,096) 0,539 -1,58 
7* -1 (3,00.106) 1 (0,800) 1 (0,800) -1 (0,050) 1 (0,096) 0,544 -0,68 
8 -1 (3,00.106) 1 (0,800) 1 (0,800) 1 (0,200) -1 (0,024) 0,567 3,94 
9 1 (9,00x106) -1 (0,200) -1 (0,200) -1 (0,050) -1 (0,024) 0,501 -8,64 

10* 1 (9,00x106) -1 (0,200) -1 (0,200) 1 (0,200) 1 (0,096) 0,558 1,88 
11 1 (9,00x106) -1 (0,200) 1 (0,800) -1 (0,050) 1 (0,096) 0,574 4,71 
12 1 (9,00x106) -1 (0,200) 1 (0,800) 1 (0,200) -1 (0,024) 0,594 8,43 
13 1 (9,00x106) 1 (0,800) -1 (0,200) -1 (0,050) 1 (0,096) 0,504 -8,00 
14 1 (9,00x106) 1 (0,800) -1 (0,200) 1 (0,200) -1 (0,024) 0,521 -4,92 
15 1 (9,00x106) 1 (0,800) 1 (0,800) -1 (0,050) -1 (0,024) 0,537 -2,09 
16 1 (9,00x106) 1 (0,800) 1 (0,800) 1 (0,200) 1 (0,096) 0,572 4,32 
17 - (1,18.106) 0 (0,500) 0 (0,500)  0 (0,125) 0 (0,060) 0,567 3,42 
18  (10,82.106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 0,570 3,94 
19 0 (6,00x106) - (0,018) 0 (0,500) 0 (0,125) 0 (0,060) 0,580 5,86 
20 0 (6,00x106)  (0,982) 0 (0,500) 0 (0,125) 0 (0,060) 0,535 -2,35 
21 0 (6,00x106) 0 (0,500) - (0,018) 0 (0,125) 0 (0,060) 0,466 -14,93 
22 0 (6,00x106) 0 (0,500)  (0,982) 0 (0,125) 0 (0,060) 0,571 4,19 
23 0 (6,00x106) 0 (0,500) 0 (0,500) - (0,005) 0 (0,060) 0,534 -2,61 
24 0 (6,00x106) 0 (0,500) 0 (0,500)  (0,246) 0 (0,060) 0,575 4,96 
25* 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) - (0,002) 0,543 -0,94 
26 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125)  (0,118) 0,562 2,53 
27 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 0,570 3,94 
28 0 (6,00x106) 0 (0,500) 0 (0,500) 0 (0,125) 0 (0,060) 0,561 2,40 
*Valores simulados próximos ao experimental 

 

A partir da regressão múltipla obteve-se o modelo proposto pela Equação 5.10, onde 

se infere que apenas o parâmetro cisalhamento não exerce efeito sobre a porosidade. 

Entretanto, entre os parâmetros avaliados o coeficiente de atrito estático se destaca sobre a 

porosidade do leito, sendo esse efeito positivo. Portanto acréscimos no coeficiente de atrito 

estático resultam em aumentos da porosidade. Em contrapartida, acréscimos do coeficiente de 

restituição ocasionam decréscimos da porosidade no leito. Salienta-se ainda que apenas as 

interações atrito estático/coesão e atrito estático/restituição se revelaram parâmetros 

significativos, no nível de significância de 10%. 
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 ஽ா�= Ͳ,ͷͷ͹ + ܾ′ݔ +  (5.10)                                                                         ݔ�′ݔ
 

ݔ = [  
  ܺଵܺଶܺଷܺସܺହ]  

            ܾ = [  
  Ͳ,ͲͲͲ−Ͳ,ͲͳͳͲ,Ͳʹ͸Ͳ,Ͳͳ͸Ͳ,ͲͲ͹ ]  

          � = [  
  Ͳ,ͲͲͶ Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲͲ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲͲ,ͲͲͲ Ͳ,ͲͲͲ −Ͳ,Ͳͳ͸ −Ͳ,ͲͲ͵ Ͳ,ͲͲͲͲ,ͲͲͲ Ͳ,ͲͲͲ −Ͳ,ͲͲ͵ Ͳ,ͲͲͲ −Ͳ,ͲͲ͵Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲ −Ͳ,ͲͲ͵ Ͳ,ͲͲͲ ]  

  
 

 
em que X1 = cisalhamento, X2= restituição,  X3= atrito estático,  X4 = atrito de rolamento e X5 = 

coesão. 

 
A análise de variância confirma a significância do modelo proposto e a qualidade do 

ajuste aos dados simulados (Tabela 5.20). 

 
Tabela 5.20 - Análise de regressão para o modelo ajustado a porosidade do leito constituído 

por resíduo de acerola. 
Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab 

(90%) 
Fcal/Ftab 

0,974 0,987 87,81 2,02 43,47 
 

A superfície de resposta ajustada ao modelo proposto (Figura 5.13A) para a análise 

da porosidade do leito de resíduo de acerola expõe o comportamento da resposta frente aos 

coeficientes de atrito estático e de rolamento. Acrescenta-se que não existe interação entre 

esses parâmetros e que apenas o coeficiente de atrito estático contribui de modo expressivo 

sobre a porosidade do leito. Comportamento similar foi obtido para a superfície de resposta 

em função do atrito estático e do coeficiente de restituição (Figura 5.13B). 

 

                         (A)                                                                                            (B) 

Figura 5.13 - Superfície de resposta ajustada à porosidade do leito estático constituído por 

resíduo de acerola. 
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5.2.7 Avaliação numérica da porosidade do leito estático (empacotamento do leito) 

composto por soja 

  O estudo da porosidade do leito estático constituído por soja se fez por meio do 

planejamento composto central apresentado pela Tabela 5.21, que explicita os desvios obtidos 

em relação à porosidade experimental (0,402). Em destaque as simulações 3, 5, 7, 11 e 25, 

que resultaram em desvios menores que 2%, que possuem em comum parametrização do 

atrito estático no nível -1.  No entanto, as parametrizações adotadas para o coeficiente estático 

de +1 conduz a elevados desvios, são elas as simulações 2, 4, 6, 10, 16, 24 e 26.  

 
Tabela 5.21 - Simulações adotadas  na análise da porosidade do leito estático constituído por 

soja (valor experimental de 0,402). 

 
Simulação 

 Coeficientes  
Porosidade 

() 

Desvio 
(%) Módulo 

Cisalhamento 
Poisson 

 
Restituição 

 
Atrito 

Estático 
Atrito 

Rolamento 
1 -1 (3,00.106) -1 (0,100) -1 (0,200) -1 (0,200) 1 (0,200) 0,390 2,84 
2 -1 (3,00.106) -1 (0,100) -1 (0,200) 1 (0,800) -1 (0,004) 0,455 -13,18 
3* -1 (3,00.106) -1 (0,100) 1 (0,800) -1 (0,200) -1 (0,004) 0,398 0,92 
4 -1 (3,00.106) -1 (0,100) 1 (0,800) 1 (0,800) 1 (0,200) 0,452 -12,63 
5* -1 (3,00.106) 1 (0,400) -1 (0,200) -1 (0,200) -1 (0,004) 0,402 -0,09 
6 -1 (3,00.106) 1 (0,400) -1 (0,200) 1 (0,800) 1 (0,200) 0,469 -16,84 
7* -1 (3,00.106) 1 (0,400) 1 (0,800) -1 (0,200) 1 (0,200) 0,406 -1,19 
8 -1 (3,00.106) 1 (0,400) 1 (0,800) 1 (0,800) -1 (0,004) 0,413 -2,93 
9 1 (9,00x106) -1 (0,100) -1 (0,20) -1 (0,200) -1 (0,004) 0,385 4,12 
10 1 (9,00x106) -1 (0,100) -1 (0,200) 1 (0,800) 1 (0,200) 0,460 -14,46 
11* 1 (9,00x106) -1 (0,100) 1 (0,800) -1 (0,200) 1 (0,200) 0,405 -0,73 
12 1 (9,00x106) -1 (0,100) 1 (0,800) 1 (0,800) -1 (0,004) 0,419 -4,39 
13 1 (9,00x106) 1 (0,400) -1 (0,200) -1 (0,200) 1 (0,200) 0,417 -3,75 
14 1 (9,00x106) 1 (0,400) -1 (0,200) 1 (0,800) -1 (0,004) 0,440 -9,61 
15 1 (9,00x106) 1 (0,400) 1 (0,800) -1 (0,200) -1 (0,004) 0,381 5,03 
16 1 (9,00x106) 1 (0,400) 1 (0,800) 1 (0,800) 1 (0,200) 0,456 -13,63 
17 - (1,18.106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 0,430 -7,14 
18  (10,82.106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 0,438 -9,15 
19 0 (6,00x106) - (0,009) 0 (0,500) 0 (0,500) 0 (0,125) 0,441 -9,88 
20 0 (6,00x106)  (0,490) 0 (0,500) 0 (0,500) 0 (0,125) 0,440 -9,43 
21 0 (6,00x106) 0 (0,250) - (0,018) 0 (0,500) 0 (0,125) 0,436 -8,60 
22 0 (6,00x106) 0 (0,250)  (0,982) 0 (0,500) 0 (0,125) 0,420 -4,48 
23 0 (6,00x106) 0 (0,250) 0 (0,500) - (0,018) 0 (0,125) 0,365 9,15 
24 0 (6,00x106) 0 (0,250) 0 (0,500)  (0,982) 0 (0,125) 0,458 -14,09 
25* 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) - (0,002) 0,401 0,18 
26 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500)  (0,246) 0,460 -14,55 
27 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 0,434 -8,05 
28 0 (6,00x106) 0 (0,250) 0 (0,500) 0 (0,500) 0 (0,125) 0,432 -7,60 

*Valores simulados próximos ao experimental 
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O modelo ajustado à porosidade do leito constituído apenas por soja é apresentado 

pela Equação 5.11.  

 
 ஽ா�= Ͳ,Ͷ͵ʹ + ܾ′ݔ +  (5.11)                                                                                    ݔ�′ݔ

 

ݔ = [  
  ܺଵܺଶܺଷܺସܺହ]  

            ܾ = [  
  Ͳ,ͲͲͲͲ,ͲͲͲ−Ͳ,ͲͲͷͲ,ͲʹͷͲ,Ͳͳʹ ]  

          � = [  
  Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͲ Ͳ,ͲͲͶͲ,ͲͲͲ Ͳ,ͲͲͲ −Ͳ,ͲͲͶ Ͳ,ͲͲͲ Ͳ,ͲͲͶͲ,ͲͲͲ −Ͳ,ͲͲͶ Ͳ,ͲͲͲ −Ͳ,ͲͲͷ Ͳ,ͲͲ͵Ͳ,ͲͲͲ Ͳ,ͲͲͲ −Ͳ,ͲͲͷ −Ͳ,ͲͲͻ Ͳ,ͲͲͶͲ,ͲͲͶ Ͳ,ͲͲͶ Ͳ,ͲͲ͵ Ͳ,ͲͲͶ Ͳ,ͲͲͲ]  

  
 

 
em que X1= módulo de cisalhamento;  X2= Poisson;  X3= restituição;  X4= Atrito estático e 

X5= atrito de rolamento. 

 

Observa-se que, apesar da simulação adotada para a soja se basear apenas no Modelo 

de  Hertz-Mindlin tem-se que o comportamento da soja se assemelha muito ao do resíduo de 

acerola, pois o coeficiente de atrito estático exerce efeito significativo sobre a resposta, sendo 

esse efeito positivo. 

De modo similar o coeficiente de restituição reduz a porosidade do leito, fato esse 

também evidenciado para o resíduo de acerola. A Tabela 5.22 evidencia que o modelo 

proposto possui considerável qualidade de ajuste e significância estatística, comprovados pelo 

R2 e pela razão entre o Fcal/Ftab.  

Tabela 5.22 - Análise de regressão para o modelo ajustado à porosidade do leito estático 

constituído por soja.  

Variável resposta umidade Teste F (Regressão) 

Qualidade do 
ajuste (%) 

Coeficiente 
da correlação 

Fcal Ftab 

(90%) 
Fcal/Ftab 

0,959 0,979 40,08 2,00 20,04 
  
 

As superfícies de respostas (Figura 5.14) ajustadas à porosidade do leito constituído 

por soja comprovam as semelhanças com as obtidas para o resíduo de acerola, tendo em vista 

similaridades de comportamento entre essas superfícies.  

Ressalta-se portanto, que a porosidade do leito estático depende dos parâmetros  

coeficientes de atrito estático e de rolamento e do coeficiente de restituição, parâmetros esses 

relacionados aos movimentos de translação e rotação da partícula e ainda da perda de energia 

após a colisão.  
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5.2.8 Avaliação numérica para a porosidade do leito estático constituído por mistura de 

soja e resíduo de acerola. 

As simulações de porosidade do leito estático para as misturas constituídas por 

resíduo de acerola e soja foram realizadas baseando-se nos resultados obtidos para os 

constituintes puros, conforme Tabela 5.23, que apresenta uma das parametrizações adotadas 

que resultaram em valores próximos ao experimental, sendo essa a parametrização escolhida. 

As simulações foram realizadas para alturas de leito estático variando de 0,06 a 0,1 m  e 

frações de acerola entre 0 a 1.  

 
Tabela 5.23 - Estudo comparativo entre os parâmetros aplicados à soja e acerola para a 

porosidade do leito estático. 

 
 

 
Parâmetros 

Porosidade do leito estático 
Resíduo  acerola Soja 

Módulo de Cisalhamento 3,00x106 3,00x106 
Razão de Poisson 0,250 0,40 
Coeficiente de restituição 0,800 0,20 
Coeficiente de atrito estático 0,800 0,20 
Coeficiente de atrito de rolamento 0,050 0,05 
Energia de Interface (coesão) 0,096 - 

Figura 5.14 - Superfícies de respostas ajustadas à porosidade de leito estático constituído por 

soja. 
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A Figura 5.15 apresenta as porosidades simuladas para as misturas constituídas por 

diferentes frações de resíduo de acerola, para a altura de leito estático fixa de 0,08 m. Leitos 

compostos apenas por soja possuem porosidade de 0,402, enquanto que leitos constituídos por 

acerola possuem porosidade de 0,548.  Portanto, a adição de soja a uma matriz composta por 

resíduo acerola tende a reduzir a porosidade do leito estático, caracterizando um 

empacotamento do leito. Santos (2011) obteve comportamento similar, em estudo de uma 

mistura de areia e bagaço de cana de açícar. Salienta-se ainda que os resultados simulados 

sejam próximos aos experimentais para toda a composição de mistura avaliada. 
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Figura 5.15 - Avaliação comparativa entre a porosidade de leito estático simulada e 

experimental, para diversas frações de acerola. 

  
A Figura 5.16 explicita a porosidade simulada para diferentes composições de 

mistura em leito estático em diferentes alturas, isto é, frações em massa variando de 0 a 1.  Os 

resultados apontam a redução da porosidade com o aumento da altura do leito estático, o que 

ocorre para todas as frações avaliadas. A razão para isto é que, quando se reduz a altura de 

leito estático, obtém-se a redução de seu diâmetro superior, deixando uma maior fração de 

vazios próximos à superfície do leito devido ao efeito de parede. Assim, a altura do leito 

estático é uma variável importante na previsão da velocidade de jorro mínima da mistura, uma 

vez que a diminuição da altura estática do leito aumenta a porosidade da mistura. 
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Figura 5.16 - Avaliação do efeito da altura de leito estático sobre a porosidade do leito 

constituído por diversas frações de acerola.   

 

A Figura 5.17 explicita de modo qualitativo, por meio das imagens obtidas pelas 

simulações, as porosidades no leito estático em função das frações de acerola, conforme 

análise gráfica supracitada. 

 

     Xd=0,22                             Xd= 0,46                               Xd=0,62                            Xd=0,83 

Figura 5.17 - Avaliação qualitativa do comportamento da porosidade frente a distintas frações 

de acerola. 
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Conclusões  

 
Os significativos teores de vitamina C e de compostos bioativos, fenólicos e 

flavonoides, obtidos no resíduo de acerola corroboram com a proposição de aproveitamento 

de sementes de acerola na forma de farinha para enriquecimento nutricional de outros 

produtos.  Aliado a esse fato, análises químicas nutricionais de sementes de acerola sugerem 

que o mesmo possui quantidades consideráveis de proteínas, lipídios e fibras, macro 

nutrientes essenciais ao organismo. Ressalta-se a importância dos macro nutrientes e dos 

compostos bioativos na prevenção de doenças. 

O elevado teor de umidade obtido no resíduo justifica a realização de secagem, pois 

o mesmo poderia contribuir para a proliferação microbiana e reações químicas de degradação, 

reduzindo o tempo de vida útil da farinha.  

Conclui-se que o uso de grãos de soja como material inerte na secagem de resíduos 

de acerola em leito de jorro somente foi possível devido às suas caraterísticas físicas (elevada 

esfericidade e ângulos de repouso dinâmico e estático, menores que da semente de acerola). 

Características essas que contribuíram para o auxílio fluidodinâmico no leito, uma vez que o 

acréscimo de soja promoveu a redução da porosidade do leito, acarretando em alterações da 

queda de pressão e da vazão de mínimo jorro. Salienta-se que os grãos de soja possuem ainda 

a vantagem de serem atóxicos. 

O tempo de secagem da mistura de resíduo de acerola e soja em leito de jorro (sem 

pré-tratamentos) mostrou-se satisfatório, para a maioria das condições experimentais 

adotadas. Obtiveram-se, para quase todos os tratamentos, sementes de acerola com teores de 

umidade menores que 15%, dentro dos padrões exigidos para farináceos. Entretanto, levando-

se em consideração os teores nutricionais verifica-se que para a maioria das condições 

operacionais a secagem promoveu a redução dos teores de acidez e de fenólicos e, acréscimos 

na extração de ácido ascórbico e flavonoides. Portanto, os resultados obtidos sugerem que a 

desidratação altera a composição nutricional dos resíduos de acerola, no entanto, efeitos 

benéficos podem ser obtidos dependendo das condições operacionais adotadas. Dentre as 

condições favoráveis destaca-se o ensaio realizado com vazão de ar 7% acima do jorro 

mínimo, temperatura de 60oC e fração de acerola de 35% que resultou em extrações maiores 

de vitamina C e flavonoides e degradações pouco expressivas de fenólicos.  

A partir de tratamentos prévios utilizando sonicação em meio aquoso conclui-se que 

o uso de ultrassom contribuiu para a redução de umidade do resíduo de acerola. Em 
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contrapartida, para todos os tempos e potência de sonicação avaliados obtiveram-se 

degradações dos teores de ácido ascórbico e de fenólicos. 

A troca do meio de imersão de água para etanol mostrou-se favorável, sendo possível 

a redução do tempo de secagem em 25%, o que contribui para a viabilidade econômica, em 

termos de custos energéticos. Extrações maiores foram alcançadas na condição experimental 

de tempo de sonicação de 10 min, potência de 80 W e proporção de etanol de 2:1. Nessas 

condições a aplicação de ultrassom promoveu a liberação de ácido ascórbio, fenólicos e 

flavonoides, o que colabora para a sua implementação como pré-tratamento na desidratação 

de resíduos de acerola. 

A pulverização de etanol, como pré-tratamento na secagem de sementes de acerola  

mostrou-se eficaz na redução de umidade, permitindo o uso de tempo de secagem de apenas 

30 min, ou seja economicamente mais viável. Confrontando-se com os demais tratamentos, 

perecebe-se que a pulverização de etanol foi o único tratamento que resultou em aumentos das 

extrações de ácido ascórbico, fenólicos e flavonoides. A utilização de planejamento central 

composto utilizando as variáveis independentes (temperatura, vazão de ar e volume de etanol) 

permitiu a obtenção de modelos significativos e preditivos do ponto de vista estatístico. Sendo 

assim foi possível obter as superfícies de respostas preditivas. 

Através da superfície de resposta ajustada aos teores de vitamina C, verificou-se que 

a temperatura exerce efeito positivo, ou seja, acréscimos desse fator geram aumentos na 

extração de vitamina C. Infere-se também que apenas a interação entre a temperatura e o 

volume de etanol é estatisticamente significativa. Os resultados sugerem que a secagem à 

60oC contribuiu para a extração de fenólicos.  Ressalta-se que as variáveis temperatura, vazão 

de entrada de ar e volume de etanol, bem como suas interações exercem efeitos negativos 

sobre esse composto bioativo. 

A desidratação precedida por pulverização de etanol acarretou para todos os 

tratamentos a desnaturação proteica das sementes de acerola. Observou-se que elevadas 

temperaturas associadas a altas vazões de ar contribuem para a desnaturação. Em 

contrapartida, o acréscimo de etanol durante a pulverização mostrou-se benéfico na 

conservação nutricional das sementes, quando se trata de proteínas. 

A avaliação fluidodinâmica realizada através do índice de mistura aponta que o uso 

de pré-tratamentos, aplicação de ultrassom ou pulveirização de etanol não exercem efeitos 

significativos sobre o índice de mistura. Desse modo, a segregação da mistura mantém-se ao 

longo do leito independentemente da utilização de tratamento prévio. 
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Com relação à análise morfológica realizada por meio de microscópio eletrônico de 

varredura, é possível inferir que o uso de ultrassom promoveu para determinadas condições 

experimentais alterações morfológicas na estrutura celular (trincas, rompimento celular, 

fraturas), o que pode ter contribuído para o aumento da taxa de secagem. Entretanto, as 

amostras pulverizadas por etanol não sofreram mudanças morfológicas visíveis. 

Entre as variáveis que exercem efeitos sobre a fluidodinâmica no leito de jorro 

destacam-se os ângulos de repouso estático e dinâmico e a porosidade estática do leito. As 

parametrizações adotadas nas simulações numéricas para análise dos ângulos de repouso 

estático e dinâmico tanto do resíduo de acerola quanto da soja se revelaram satisfatórias, pois 

valores próximos aos experimentais foram obtidos para determinadas parametrizações.  

A partir dos modelos preditivos obtidos foi possível avaliar os efeitos dos parâmetros 

e de suas interações sobre as respostas. Confrontados-se as simulações dos ângulos de 

repouso dinâmico para o resíduo de acerola e a soja, infere-se que desvios maiores foram 

obtidos para a soja. Ressalta-se que as simulações para a soja foram realizadas considerando-

se apenas o modelo Hertz-Mindlin, o que pode ter contribuído para o aumento dos desvios. A 

partir dos estudos realizados conclui-se que,  dentre os parâmetros avaliados, os coeficientes 

de atrito estático e de rolamento foram os que mais exerceram alterações sobre o ângulo de 

repouso dinâmico do resíduo de acerola e da soja. Os atritos contribuíram para a dissipação da 

energia cinética, na interação entre partícula/partículas e partícula/parede.  

Efeitos positivos do coeficiente de atrito estático também foram obtidos sobre o 

ângulo de repouso estático do resíduo de acerola e da soja. Ressalta-se que o coeficiente de 

restituição não exerceu efeito estatístico significativo sobre essa resposta.  

Entre os parâmetros que influenciam a fluidodinâmica de misturas binárias em leito 

de jorro, destaca-se a porosidade. A velocidade de mínimo jorro, variável precípua utilizada 

na modelagem e simulação do leito de jorro depende do grau de empacotamento do leito 

estático. Os resultados obtidos comprovam que a adição de soja a uma matriz composta por 

resíduo de acerola tende a reduzir a porosidade do leito estático.   

 Embora modelos distintos tenham sido utilizados na simulação do empacotamento 

do leito constituído apenas por resíduo de acerola e soja, os efeitos das variáveis 

independentes sobre a porosidade foram os mesmos. Entre os parâmetros avaliados o 

coeficiente de atrito estático destaca-se sobre a porosidade do leito, sendo seu efeito positivo. 

Em contrapartida, acréscimos do coeficiente de restituição ocasionam decréscimos da 

porosidade no leito.  
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Através das simulações realizadas constatou-se que a representação esférica das 

partículas mostrou-se viável na análise dos ângulos de repouso estático e dinâmico e da 

porosidade de leito estático, com a vantagem do menor esforço computacional. 

Em síntese, o estudo fluidodinâmico das propriedades físicas das partículas 

contribuiu de modo satisfatório no esclarecimento de problemas correlacionados à 

instabilidade no leito de modo a evitar transtornos durante a desidratação.  

 

. 
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Sugestões para Trabalhos Futuros 

 
Perante os benefícios nutricionais presentes nos resíduos de acerola, aliado ao 

considerável volume de resíduos gerados pelo processamento desse fruto e de outros, o 

presente trabalho poderá ainda ter continuidade em diversos segmentos. Dentre as sugestões 

para trabalhos futuros destacam-se: 

 Avaliar os teores de compostos biativos pela técnica de cromatografia líquida de alta 

eficiência, o que poderia colaborar na quantificação e na identificação de um maior 

número de compostos;  

 Realizar a secagem utilizando a pulverização de etanol dentro do leito de jorro, 

visando à redução do tempo de secagem convectiva e dos custos operacionais sem 

comprometer a composição nutricional do alimento;  

 Realizar a secagem de outros resíduos sólidos provenientes do processamento de 

frutas, visando comprovar a metodologia utilizada nesse trabalho e contribuir para o 

aproveitamento de resíduos sólidos; 

 Investigar experimentalmente possíveis alterações acarretadas pela secagem às 

variáveis, ângulo de repouso e porosidade do leito estático. 

 
 Desenvolver estudos mais detalhados envolvendo a fluidodinâmica de secagem de 

mistura constituída por resíduos de acerola e soja em leito de jorro. Modelagens do 

leito envolvendo os materiais granulares e o fluido, ou seja utilizando os softwares 

FLUENT e EDEM.   
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Apêndices 

 
Anexo 1 

 
 

Curva característica da relação vazão de ar e queda de pressão para a altura de leito estático de 

8cm e fração de sementes de acerola de 35%.  

 
 
 

 

 

Curva característica da relação vazão de ar e queda de pressão para a altura de leito estático de 

8cm e fração de sementes de acerola de 50%.  
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Anexo 2 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 Valores preditos versus valores observados para a umidade resultante da desidratação 

precedida por pulverização de etanol 
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Gráfico de valor normal esperado em função dos resíduos para a umidade resultante da 

desidratação precedida pela pulverização de etanol.   
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Anexo 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valores preditos versus valores observados para a acidez resultante da desidratação precedida 

por pulverização de etanol 

 

 

 

 

 

 

 

 

 

 

 

 

Valor normal esperado em função dos resíduos para a acidez resultante de desidratação 

precedida pela pulverização de etanol 

 
 
 
 

700 750 800 850 900 950 1000 1050

Valores observados

700

750

800

850

900

950

1000

1050

V
alores preditos

-40 -30 -20 -10 0 10 20 30

Resíduos

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0
V

alor norm
al esperado



 

 

178 
 

Anexo 4 
 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Valores preditos versus valores observados para os teores de ácido ascórbico resultantes da 

desidratação precedida por pulverização de etanol 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valor normal esperado em função dos resíduos para os teores de ácido ascórbico resultantes 

de desidratação precedida pela pulverização de etanol 
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Anexo 5 
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Valores preditos versus valores observados para os teores de fenólicos totais resultantes da 

desidratação precedida por pulverização de etanol 

    
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Valores normais esperados em função dos resíduos para os teores de fenólicos totais 

resultantes da desidratação precedida pela pulverização de etanol. 
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Anexo 6 
 

   

 

 

 

 

 

 

 

 

 

 

Valores preditos versus valores observados para os teores de flavonoides resultantes da 

desidratação precedida por pulverização de etanol 
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Valores normais esperados em função dos resíduos para os teores de flavonoides resultantes 

da desidratação precedida por pulverização de etanol. 
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Anexo 7 
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Valores preditos versus valores observados para os teores de proteínas resultantes da 

desidratação precedida por pulverização de etanol 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valores normais esperados em função dos resíduos para os teores de proteínas resultantes da 

desidratação precedida por pulverização de etanol 
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