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FACULDADE DE MATEMÁTICA
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UBERLÂNDIA - MG
2013



iii



iv



v

Dedicatória
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momentos de dificuldade sempre me deu forças para continuar, além de muito carinho e amor.
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Resumo

Neste trabalho, estudamos a teoria dos domı́nios de ordem com aplicações nos códigos linea-
res, em particular; nos códigos de Goppa de um ponto. Também estudamos algumas teorias
que nos serviram como base teórica tais como: a teoria de corpos de funções algébricas, a
teoria das bases de Gröbner e uma breve introdução sobre geometria algébrica. Este trabalho
tem por objetivo apresentar uma cota para a distância mı́nima de um código linear dada por
Andersen-Geil na referência [1], além de apresentar uma maneira de construir códigos usando
a teoria dos domı́nios de ordem. Para finalizar, trabalhamos com alguns exemplos de códigos
de comprimentos maiores, neste caso; usamos a teoria das bases de Gröbner como ferramenta.

Palavras-chave: Bases de Gröbner; Códigos de Avaliação; Códigos de Goppa; Distância mı́nima;
Domı́nio de Ordem; Pegada.
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Abstract

In this work, we study the theory of order domains with applications in linear codes, in par-
ticular; in one-point Goppa codes. We also studied some theories that served as the basis
theoretical such as the theory of algebraic function fields, the theory of Gröbner bases and
a brief introduction about algebraic geometry. This work aims to introduce a bound for the
minimum distance of a linear code givem by Andersen-Geil in reference [1], and present a way
to construct codes using the theory of order domains. Finally, we work some examples of codes
with longer lengths, in this case; we use the theory of Gröbner bases as a tool.

Keywords :Evaluation Codes; Footprint; Goppa codes; Gröbner bases; Minimum distance; Order
Domain.
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Introdução

Este trabalho trata de códigos corretores de erros, em particular, de cotas para distância mı́nima
de um código. Os códigos corretores de erros participam da vida moderna de inúmeras formas
como, por exemplo, nas comunicações via satélite, na telefonia celular e na comunicação entre
computadores. Um dos fundadores da teoria dos códigos corretores de erros foi o matemático
americano Claude Elwood Shannon. Em 1948, Shannon publicou um importante artigo cient́ıfico
(que é a referência [12]) que tinha como t́ıtulo: “A Mathematical Theory of Communication”,
enfocando o problema de qual é a melhor forma para codificar uma informação que um emissor
queira transmitir para um receptor. Inicialmente, os maiores interessados na teoria dos códigos
foram os matemáticos que a desenvolveram consideravelmente nas décadas de 50 e 60. A partir
da década de 70, com as pesquisas espaciais e a grande popularização dos computadores, essa
teoria começou a interessar também aos engenheiros, e desde então tem sido muito estudada.

Este trabalho está dividido em quatro caṕıtulos. No primeiro caṕıtulo, veremos apenas
alguns conceitos e resultados básicos da teoria de códigos corretores de erros tais como: distância
mı́nima, dimensão e comprimento de um código. Apresentamos também a cota de Singleton
que é um resultado clássico da teoria de códigos, e apresentamos os códigos de Reed-Solomon
para introduzirmos a primeira seção do próximo caṕıtulo. No segundo caṕıtulo, apresentamos
um exemplo motivador e obtemos nesse exemplo a distância mı́nima dos códigos de Reed-
Solomon de uma forma não tradicional, em seguida apresentamos o método de Andersen-
Geil para obter uma cota para a distância mı́nima de códigos. Ainda no segundo caṕıtulo,
trabalhamos com pesos generalizados de Hamming, apresentamos a cota de Feng-Rao para os
pesos generalizados de Hamming e mostramos que a cota de Shibuya e Sakaniwa pode ser vista
como uma consequência da cota de Andersen-Geil.

O método apresentado no caṕıtulo 2 não é muito prático se estivermos tratando de códigos
no contexto geral, por esse motivo na construção de códigos precisamos de uma certa estrutura
algébrica para aplicarmos o método de Andersen-Geil, assim no caṕıtulo 3 introduzimos o
conceito de domı́nios de ordem e estrutura de ordem, e construimos os códigos da teoria dos
domı́nios de ordem. Ainda no caṕıtulo 3, mostramos que todo código de Goppa de um ponto
pode ser visto como sendo um código da teoria dos domı́nios de ordem.

Para códigos de grandes comprimentos precisamos usar um método mais sofisticado, assim
no caṕıtulo 4 trabalhamos com as bases de Gröbner em conjunto com o método de Andersen-
Geil. Para finalizar, colocamos alguns exemplos que ilustram como o método de Andersen-Geil
funciona.

Otoniel Nogueira da Silva
Uberlândia-MG, 25 de fevereiro de 2013.
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Caṕıtulo 1

Preliminares

1.1 Códigos Lineares

Vamos introduzir algumas noções básicas da teoria de códigos, o leitor menos familiarizado com
estes conceitos pode consultar qualquer livro sobre códigos corretores de erros, uma sugestão é
a referência [11]. Seja Fq um corpo finito com q elementos. Consideramos o espaço vetorial Fn

q

de dimensão n, cujo os elementos são n-uplas a = (a1, · · · , an) com ai ∈ Fq.

Definição 1.1.1 Para a = (a1, · · · , an) e b = (b1, · · · , bn) ∈ Fn
q definimos

d(a, b) := ♯({i; ai ̸= bi}).

Esta função d é chamada de distância de Hamming sobre Fn
q . O peso de um elemento a ∈ Fn

q

é definido como

w(a) := d(a, 0) = ♯({i; ai ̸= 0}).

A distância de Hamming é uma métrica sobre Fn
q , em particular a desigualdade triangular

ocorre.

Definição 1.1.2 Um código C (sobre o alfabeto Fn
q ) é um subespaço linear de Fn

q ; os elementos
de C são chamados de palavras. Chamamos de n o comprimento de C e dim(C) (como Fn

q -
espaço vetorial) a dimensão de C. Um código [n, k] é um código de comprimento n e dimensão
k. A distância mı́nima d(C) de um código C ̸= 0 é definida como

d(C) := min{d(a, b) | a, b ∈ C e a ̸= b} = min{w(c) | c ̸= 0 ∈ C}.

Um [n,k,d] é um código de comprimento n, dimensão k e distância mı́nima d.

Uma maneira simples de descrever um código C explicitamente é por meio de uma base de
C (como Fq-espaço vetorial).

Definição 1.1.3 Seja C um [n, k] código sobre Fq. Uma matriz geradora de C é uma matriz
k × n cujas as linhas formam uma base para C.

Definição 1.1.4 O produto interno canônico sobre Fn
q é definido por

⟨a, b⟩ :=
∑n

i=1 aibi,

para a = (a1, · · · , an) e b = (b1, · · · , bn) ∈ Fn
q .

2
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Definição 1.1.5 Se C ⊆ Fn
q é um código, então

C⊥ := {u ∈ Fn
q | ⟨u, c⟩ = 0 para todo c ∈ C}

é chamado de dual de C.

Observação 1.1.6 Sabemos da álgebra linear que o dual de um [n, k] código é um [n, n − k]
código, e (C⊥)⊥ = C.

Definição 1.1.7 Uma matriz geradora H de C⊥ é chamada de matriz checagem de paridade
de C.

Observação 1.1.8 Claramente uma matriz checagem de paridade H de um [n, k] código é uma
matriz (n− k)× (n), e ainda temos que

C = {u ∈ Fn
q | H.ut = 0}

(onde ut denota a matriz(vetor) transposta de u). Logo, uma matriz checagem de paridade
“checa”quando um vetor u ∈ Fn

q é uma palavra do código ou não.

Um dos problemas clássicos da teoria dos códigos corretores de erros é construir (sobre um
alfabeto Fq fixado) um código cuja a dimensão e a distância mı́nima sejam grandes em com-
paração com seu comprimento. Contudo, existem algumas restrições. Falando a grosso modo,
se a dimensão do código é grande (com relação ao seu comprimento), então a sua distância
mı́nima é pequena, e vice-versa. A próxima proposição mostrará este fato.

Proposição 1.1.9 (A cota de Singleton). Para um [n, k, d] código C o seguinte acontece:

k + d ≤ n+ 1

Demonstração. Uma prova desta proposição poderá ser encontrada no caṕıtulo 2 da referência
[5].

1.2 Códigos de Reed-Solomon

Como uma motivação para o próximo caṕıtulo, iremos apresentar agora os códigos de Reed-
Solomon sobre Fq. Esta importante classe de códigos é bem conhecida na teoria dos códigos
corretores de erros há um bom tempo. Vamos então à construção desses códigos:

Seja n = q − 1 e seja β ∈ Fq um elemento primitivo do grupo multiplicativo F∗
q =

{β, β2, · · · , βn = 1}. Para um inteiro k, com 1 ≤ k ≤ n, consideramos o espaço vetorial
de dimensão k:

Lk := {f ∈ Fq[X] | grau(f) ≤ k − 1}

e a aplicação de avaliação ev : Lk → Fn
q dada por:

ev(f) := (f(β), f(β2), · · · , f(βn)) ∈ Fn
q .

Obviamente esta aplicação é Fq-linear, e ela é injetora pois um polinômio não nulo f ∈ Fq[X]
de grau menor que n tem no máximo n zeros. Portanto,
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Ck := {(f(β), f(β2), · · · , f(βn)) | f ∈ Lk}

é um [n, k] código sobre Fq; e ele é chamado de código de Reed-Solomon.

O peso de uma palavra do código 0 ̸= c = ev(f) ∈ Ck é dado por:

w(c) = n− ♯({i ∈ {1, · · · , n}; f(βi) = 0})
≥ n− grau(f) ≥ n− (k − 1).

Logo, a distância mı́nima d de Ck satisfaz a inequação d ≥ n+1−k. Por outro lado, d ≤ n+1−k
pela cota de Singleton, assim d = n+ 1− k.



Caṕıtulo 2

A cota de Andersen-Geil

2.1 Um exemplo motivador

Nesta seção obtemos a conhecida distância mı́nima dos códigos de Reed-Solomon de uma forma
não tradicional, diferente daquela que fizemos no caṕıtulo 1. O seguinte exemplo nos ajudará a
ter uma noção do método usado por Andersen-Geil para encontrar uma cota para a distância
mı́nima de um código. Usaremos também este mesmo exemplo para introduzir e motivar a
próxima seção. O texto apresentado neste e nos demais caṕıtulos tem como principal referência
um artigo de Henning E. Andersen e Olav Geil que é a nossa referência [1].

Exemplo 2.1.1 Sejam P1, P2, · · · , Pq os elementos de um corpo Fq. Defina n := q e considere
a aplicação de avaliação ev : Fq[X] −→ Fn

q dada por:

ev(F ) := (F (P1), · · · , F (Pn))

É fácil ver que ev é uma aplicação Fq-linear.

O conjunto:

B = {b1 = ev(1), b2 = ev(X), · · · , bn = ev(Xn−1)}

é uma base para Fn
q como um espaço vetorial sobre Fq.

De fato, considere a combinação linear nula abaixo:

λ1ev(1) + λ2ev(X) + · · ·+ λnev(X
n−1) = 0

Definindo F (X) := λ1 + λ2X + · · ·+ λnX
n−1 e como ev é linear, então:

λ1ev(1) + λ2ev(X) + · · ·+ λnev(X
n−1) = 0 ⇐⇒ ev(λ1 + λ2X + · · ·+ λnX

n−1) = 0 ⇐⇒
ev(F (X)) = 0 ⇐⇒ (F (P1), · · · , F (Pn)) = (0, · · · , 0)

Mas grau(F ) < n, logo F tem no máximo n− 1 ráızes distintas em Fq. Logo, como P1, · · · , Pn

são distintos segue que os elementos b1, · · · , bn são linearmente independentes. Como dim(Fn
q ) =

n, segue que B é uma base para Fn
q .

Para k = 1, · · · , n, o código de Reed-Solomon é dado por:

Ck := spanFq{bi | i = 1, · · · , k}

5
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Agora, vamos obter a cota d(Ck) ≥ n− k + 1 de uma maneira não tradicional.

Considere uma palavra do código c = (c1, · · · , cn) ∈ Ck, digamos:

c =
i∑

t=1

αtbt, com α1, · · · , αi ∈ Fq, αi ̸= 0 e i ≤ k.

Observe que:

c =
i∑

t=1

αtbt =
i∑

t=1

αtev(X
t−1) = ev

(
i∑

t=1

αtX
t−1

)
Para estimar o peso de Hamming de c, faremos uso do seguinte produto em Fn

q :
Sejam h = (h1, · · · , hn), f = (f1, · · · , fn) ∈ Fn

q , definimos o produto de Hadamard de h e
f como:

h ∗ f = (h1f1, · · · , hnfn)

Agora, observe que:

c ∗ b1 = ev

(
i∑

t=1

αtX
t−1

)
∈ Ci\Ci−1

Da mesma forma, temos:

c ∗ b2 = ev

(
i∑

t=1

αtX
t−1

)
∗ ev(X) = ev

(
i∑

t=1

αtX
t

)
∈ Ci+1 \ Ci

c ∗ b3 = ev

(
i∑

t=1

αtX
t−1

)
∗ ev(X2) = ev

(
i∑

t=1

αtX
t+1

)
∈ Ci+2 \ Ci+1

...
... (2.1)

c ∗ bn−i+1 = ev

(
i∑

t=1

αtX
t−1

)
∗ ev(Xn−i) = ev

(
i∑

t=1

αtX
n−i+t−1

)
∈ Cn \ Cn−1

Consequentemente, os vetores c ∗ b1, c ∗ b2, · · · , c ∗ bn−i+1 são linearmente independentes, e
portanto:

spanFq{c ∗ b1, c ∗ b2, · · · , c ∗ bn−i+1} (2.2)

é um espaço de dimensão n− i+ 1.

Agora denote por e1 := (1, 0, · · · , 0), e2 := (0, 1, 0, · · · , 0), · · · , en := (0, · · · , 0, 1) e seja l o
peso de Hamming de c, e digamos que Supp(c) = {i1, i2, · · · , il}, onde Supp(c) é o conjunto
{i | ci ̸= 0}. Então:

spanFq{c ∗ d | d ∈ Fn
q } = spanFq{ei1 , · · · , eil} (2.3)

De fato, seja d = (d1, · · · , dn) ∈ Fn
q e denote c = (α1, · · · , αn), onde αi1 , αi2 , · · · , αil ̸= 0 e

αj = 0, ∀j ̸= i1, i2, · · · , il. Assim:



7

c ∗ d = (α1d1, · · · , αndn) = (α1d1)e1 + · · ·+ (αndn)en =
(αi1di1)ei1 + · · ·+ (αildil)eil ∈ spanFq{ei1 , · · · , eil}

Logo, toda combinação linear de elementos de {c ∗ d | d ∈ Fn
q } está em spanFq{ei1 , · · · , eil}, e

logo temos:

spanFq{c ∗ d | d ∈ Fn
q } ⊆ spanFq{ei1 , · · · , eil} (2.4)

Por outro lado, temos que Fq é corpo e que αi1 , · · · , αil ̸= 0, logo para cada s = 1, · · · , l existe
α−1
is
.

Logo, c ∗ ((αis)
−1eis) = (α1, · · · , αn) ∗ (0, 0, · · · , α−1

is
, 0, · · · , 0) = (0, 0, · · · , 1, 0, · · · , 0) = eis ∈

spanFq{c ∗ d | d ∈ Fn
q }, para ∀s = 1, · · · , l. Assim, dim (spanFq{c ∗ d | d ∈ Fn

q }) ≥ l mas por
(2.4), temos que:

dim (spanFq{c ∗ d | d ∈ Fn
q }) ≤ dim (spanFq{ei1 , · · · , eil}) = l

Logo, segue o que queŕıamos provar.

É claro que o espaço de dimensão n− i+ 1 em (2.2) está contido no espaço de dimensão l em
(2.3) e portanto wH(c) = l ≥ n− i+ 1.
Assim, como d(Ck) = min {wH(c) | 0 ̸= c ∈ Ck}, temos que:

d(Ck) ≥ min{n− i+ 1 | i = 1, · · · , k} = n− k + 1

Mas pela cota de Singleton, temos o resultado usual para os códigos de Reed-Solomon:

d(Ck) = n− k + 1

Observação 2.1.2 No exemplo anterior usamos fortemente a estrutura algébrica do anel de
polinômios Fq[X]. Sem isto, deveria ser bastante dif́ıcil concluirmos as inclusões cruciais em
(2.1).

Portanto, quando olhamos para as classes de códigos para os quais o método anterior pode
ser aplicado de uma maneira praticável, deveŕıamos procurar por códigos definidos sobre al-
gumas estruturas algébricas. Apesar disso, continuamos a descrição da cota de Andersen-Geil
considerando que ela se aplica no caso geral de qualquer código linear. Neste contexto, o método
de Andersen-Geil realmente não é muito praticável.

Contudo, mas a frente no texto, veremos como a cota de Andersen-Geil se aplica muito
naturalmente no caso dos códigos vindos da teoria de domı́nios ordem. Neste contexto, a cota
será tão praticável quanto a cota de Feng-Rao, que discutiremos em uma seção posterior.

2.2 A cota de Andersen-Geil para a distância mı́nima

Esta seção contém uma descrição do método de Andersen-Geil no contexto geral dos códigos li-
neares. O método tem como objetivo não somente encontrar uma cota para a distância mı́nima,
mas também encontrar uma cota para todos os pesos generalizados de Hamming. Falaremos
dos pesos generalizados de Hamming na próxima seção. Usaremos o exemplo motivador da
seção anterior como uma diretriz.

Considere a seguinte definição de um código linear:
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Definição 2.2.1 Seja B = {b1, · · · , bn} uma base para Fn
q e seja G ⊆ B. Definimos o

#G−código dimensional C(B,G) por C(B,G) := spanFq{b | b ∈ G}. O código dual (de
dimensão n − #G) será denotado por C⊥(B,G).

Usaremos o seguinte conjunto de espaços:

Definição 2.2.2 Seja L−1 := ∅, L0 := {0} e Ll := spanFq{b1, · · · , bl} para l = 1, · · · , n.

É claro que temos uma cadeia de espaços:

{0} = L0 $ L1 $ · · · $ Ln−1 $ Ln = Fn
q

Consequentemente, podemos definir uma função, apresentada a seguir.

Definição 2.2.3 Definimos ρ : Fn
q −→ {0, 1, · · · , n} por ρ(v) = l se v ∈ Ll\Ll−1.

Relembre do exemplo motivador que dado uma palavra código c ∈ C(B,G), gostaŕıamos
de encontrar tantos diferentes números s quantos posśıveis tais que existe um elemento bj com
c ∗ bj ∈ Ls \ Ls−1. Isto irá permitir darmos uma boa estimativa para o peso de c. Expressando
na linguagem da função ρ, olhamos para os valores s tais que um bj existe com ρ(c ∗ bj) = s.

Em geral, não é uma tarefa fácil encontrar ρ(c ∗ bj). Isto é o motivo para definirmos agora
o conceito de pares bem comportados.

Definição 2.2.4 Seja In := {1, 2, · · · , n}. Um par ordenado (i, j) ∈ I2n é dito ser bem compor-
tado (WB) se ρ(bu ∗ bv) < ρ(bi ∗ bj) para todo u e v com 1 ≤ u ≤ i, 1 ≤ v ≤ j e (u, v) ̸= (i, j).
Um pouco menos restritivo, um par ordenado (i, j) ∈ I2 é dito ser fracamente bem comportado
(WWB) se ρ(bu ∗ bj) < ρ(bi ∗ bj) para u < i e ρ(bi ∗ bv) < ρ(bi ∗ bj) para v < j.

É claro que se (i, j) ∈ I2n é WB, então (i, j) também é WWB. Existe um outra formulação ”mais
fraca”da definição acima, onde dizemos que um par (i, j) ∈ I2n é fracamente bem comportado
por apenas um lado (OWB) se ρ(bu ∗ bj) < ρ(bi ∗ bj) para u < i. No enunciado do teorema
da cota de Andersen-Geil que ainda veremos, pode-se trocar a hipótese de (i, j) ser WWB por
OWB, porém vamos manter a hipótese de (i, j) ser WWB na cota de Andersen-Geil por causa
dos demais resultados que iremos ver.

Exemplo 2.2.5 Seja B = {b1, b2} uma base para F2
5 com b1 = (1, 2) e b2 = (3, 4). É fácil ver

que o par (1, 1) é o único par WB(e também o único par WWB).

Observação 2.2.6 Considere uma palavra do código,

c =
v∑

t=1

αtbit com i1 < · · · < iv e αv ̸= 0

Se (iv, j) é WWB então por definição temos que:

ρ(bit ∗ bj) < ρ(biv ∗ bj) para t = 1, 2, · · · , v − 1

e portanto podemos concluir que:

ρ(c ∗ bj) = ρ

((
v∑

t=1

αtbit

)
∗ bj

)
= ρ((α1bi1 + α2bi2 + · · ·+ αvbiv) ∗ bj) =

ρ(α1(bi1 ∗ bj) + · · ·+ αv(biv ∗ bj)) = ρ

(
v∑

t=1

αt(bit ∗ bj)

)
= ρ(biv ∗ bj)
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Então, para estimar o número de s′s tais que existe um elemento bj da base com ρ(c∗bj) = s,
podemos simplesmente calcular (ou contar) o tamanho do seguinte conjunto (aqui i deve ser
trocado por iv):

Definição 2.2.7

Λi := { l ∈ In | ρ(bi ∗ bj) = l para algum bj com (i, j) WWB }

Observação 2.2.8 Se darmos dois diferentes números j1 e j2 tais que ambos os pares (i, j1) e
(i, j2) são WWB, então:

ρ(bi ∗ bv) < ρ(bi ∗ bj1) para ∀v < j1 e

ρ(bi ∗ bv) < ρ(bi ∗ bj2) para ∀v < j2

Suponha sem perda de generalidade que j1 < j2, logo ρ(bi ∗ bj1) < ρ(bi ∗ bj2), e portanto:

ρ(bi ∗ bj1) ̸= ρ(bi ∗ bj2)

Consequentemente, para um número fixo i, contar o tamanho do conjunto Λi é o mesmo que
contar o número de pares (i, j), j ∈ In que são WWB.

Agora, estamos em condições de enunciar a cota de Andersen-Geil para a distância mı́nima de
um código linear.

Teorema 2.2.9 (A cota de Andersen-Geil) A distância mı́nima de C(B,G) satisfaz:

d(C(B,G)) ≥ min { #Λi | bi ∈ G }

Demonstração. Seja c ∈ C(B,G)\{0}, então c é da forma:

c =
v∑

t=1

αtbit com i1 < · · · < iv e αv ̸= 0

com it satisfazendo bit ∈ G, para todo t = 1, · · · , v.

Agora, considere o conjunto Λiv , e suponha que Λiv seja não vazio, caso contrário #Λiv = 0 e
como d(C(B,G)) ≥ 1, teŕıamos que:

d(C(B,G)) ≥ 0 = Λiv = min { #Λi | bi ∈ G }

Supondo que Λiv não seja vazio, logo existem 1 ≤ l1 < · · · < l#Λiv
≤ n e os ı́ndices correspon-

dentes j1, · · · , j#Λiv
∈ In tais que:

ρ(biv ∗ bj1) = l1, com (iv, j1) WWB

ρ(biv ∗ bj2) = l2, com (iv, j2) WWB

...
...

ρ(biv ∗ bj#Λiv
) = l#Λiv

, com (iv, j#Λiv
) WWB
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Mas pela observação 2.2.6 temos que ρ(c ∗ bjs) = ρ(biv ∗ bjs), para todo s = 1, · · · ,#Λiv .

E assim:

c ∗ bj1 ∈ Ll1 \ Ll1−1

...
...

c ∗ bj#Λiv
∈ Ll#Λiv

\ Ll#Λiv
−1

Consequentemente, c ∗ bj1 , · · · , c ∗ bj#Λiv
são linearmente independentes, e logo o espaço:

spanFq{c ∗ bj1 , · · · , c ∗ bj#Λiv
} (2.5)

tem dimensão #Λiv . Como no exemplo motivador, o espaço:

spanFq{ c ∗ d | d ∈ Fn
q } (2.6)

tem dimensão igual ao peso de Hamming de c. E como o espaço em (2.5) está contido no espaço
em (2.6) conclúımos que:

wH(c) ≥ #Λiv

Mas então, é claro que também temos wH(c) ≥ min { #Λi | bi ∈ G }, e logo:

d(C(B,G)) ≥ min { #Λi | bi ∈ G }

como queŕıamos demonstrar.

2.3 Uma cota para os pesos Generalizados de Hamming

Veremos nesta seção que o teorema 2.2.9 pode ser extendido com o objetivo de achar uma
cota não somente para a distância mı́nima, mas também para todos os pesos generalizados de
Hamming.

O teorema 2.2.9 também pode algumas vezes ser melhorado levemente. A pequena melhoria
será importante quando em uma seção posterior compararmos a cota de Andersen-Geil com a
cota dada por Shibuya e Sakaniwa.

Antes de dar a versão extendida do teorema 2.2.9, vamos lembrar ao leitor a definição dos
pesos generalizados de Hamming.

Definição 2.3.1 (a) O suporte de um conjunto S, com S ⊆ Fn
q é definido por:

Supp(S) := { i | ci ̸= 0 para algum c = (c1, · · · , cn) ∈ S }

(b) O t-ésimo peso generalizado de Hamming de um código C é definido por:

dt(C) := min{ #Supp(S) | S é um subcódigo de C de dimensão t}
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Para enunciarmos a extensão do teorema 2.2.9, precisaremos da seguinte definição:

Definição 2.3.2 Para {i1, · · · , it} ⊆ In definimos

σ(i1, · · · , it) := #

((
t∪

s=1

Λis

)
∪ {i1, · · · , it}

)

Em particular, σ(i) = #(Λi ∪ {i})

Observação 2.3.3 Seja C um código e considere o 1o peso generalizado de Hamming:

d1(C) := min{ #Supp(S) | S é um subcódigo de C de dimensão 1}

Seja S um subespaço linear de C de dimensão 1, e seja c ̸= 0 ∈ G. É fácil ver que #Supp(S) =
w(c).

Assim, como d(C) = min{w(c) | c ̸= 0 ∈ C } e d1(C) := min{ #Supp(S) = w(c) com c ̸= 0 ∈
S | onde S é um subcódigo de C de dimensão 1}, segue que d(C) = d1(C).

Observação 2.3.4 Seja G ⊆ B, com G = {b1, b2, · · · , bk}, e seja D ⊆ C(B,G) um subespaço
de dimensão t, com t ≤ k. Então, usando o método de Gauss da álgebra linear (conhecido
também como eliminação gaussiana), sempre é posśıvel encontrar uma base {c1, · · · , ct} para
D tal que:

cu =
k∑

s=1

α(u)
s bs, com u = 1, 2, · · · , t e máx{ s | α(v)

s ̸= 0 } ̸= máx{ s | α(w)
s ̸= 0 },

para ∀v, w ∈ {1, · · · , t} com v ̸= w

Enfim, a extensão do teorema 2.2.9 para os pesos generalizados de Hamming é:

Teorema 2.3.5 Seja G ⊆ B com #G = k fixada. Então, para t = 1, · · · , k:

dt(C(B,G)) ≥ min{ σ(a1, a2, · · · , at) | 1 ≤ a1 < · · · < at ≤ n e {ba1 , ba2 , · · · , bat} ⊆ G }.

Em particular, a distância mı́nima de C(B,G) satisfaz:

d(C(B,G)) ≥ min{ σ(i) | bi ∈ G } = min{ #(Λi ∪ {i}) | bi ∈ G}

Demonstração. Denote G = {bi1 , bi2 , · · · , bik} onde i1 < i2 < · · · < ik.

Seja D ⊆ C(B,G) um subespaço de dimensão t, com t ≤ k. Considere {d1, d2, · · · , dt} como
sendo uma base de D. Assim, podemos escrever cada vetor da base de D como uma combinação
linear dos vetores da base de G, isto é:

du =
k∑

s=1

α(u)
s bis , com u = 1, 2, · · · , t.

Vamos assumir que:

máx{ s | α(v)
s ̸= 0 } ̸= máx{ s | α(w)

s ̸= 0 },
para ∀v, w ∈ {1, · · · , t} com v ̸= w.
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Se este não for o caso, pela observação (2.3.4) podemos aplicar o método de Gauss no ińıcio
para achar a partir da base {d1, d2, · · · , dt}, uma outra base com esta propriedade.

Por definição, temos que:

ρ(du) = máx{ is | α(u)
s ̸= 0 }

Logo a afirmação anterior corresponde a assumir que ρ(dv) ̸= ρ(dw) para v ̸= w. Seja au :=
ρ(du) para u = 1, 2, · · · , t. Observe que se (au, j) é WWB para algum
j ∈ {1, 2, · · · , n} e ρ(bau ∗ bj) = l, então:

ρ(du ∗ bj) = ρ

((
k∑

s=1

αu
s bis

)
∗ bj

)
= ρ

(
k∑

s=1

αu
s (bis ∗ bj)

)
= ρ(bau ∗ bj) = l

Consequentemente, o conjunto

S :=
t∪

u=1

{ du ∗ bj | (au, j) é WWB }

contém pelo menos # (
∪t

u=1 Λau) vetores L.I.

Considere agora os números au, com u = 1, · · · , t. Temos que au = ρ(du) = ρ(du ∗(1, 1, · · · , 1)),
e portanto o conjunto:

S
′
:=

(
t∪

u=1

{ du ∗ bj | (au, j) WWB}

)
∪ { du ∗ (1, 1, · · · , 1) | u = 1, · · · , t}

contém pelo menos # ((
∪t

u=1 Λau)∪{a1, · · · , at}) = σ(a1, · · · , at) vetores linearmente indepen-
dentes.

Consequentemente,

σ(a1, · · · , at) ≤ dim(spanFq{ f | f ∈ S
′ }). (2.7)

Considere a seguir o conjunto:

T := { du ∗ e | u = 1, · · · , t com e ∈ Fn
q }

Veja que o espaço spanFq{ f | f ∈ T } é isomorfo ao espaço F#Supp({d1,··· ,dt})
q , e como Supp(D) =

Supp({d1, · · · , dt}) temos que:

#Supp(D) = dim(spanFq{ f | f ∈ T }) (2.8)

Mas S
′ ⊆ T , o que implica:

dim(spanFq{ f | f ∈ S
′ }) ≤ dim(spanFq{ f | f ∈ T })

e usando (2.7) e (2.8), temos:

σ(a1, · · · , at) ≤ #Supp(D)

assim, a prova está conclúıda.
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Exemplo 2.3.6 Seja B = {b1, b2} uma base para F2
5 com b1 = (1, 2). O único par WWB é

(1, 1) e ρ(b1 ∗ b1) = 2. Consequentemente, Λ1 = {2}. Escolha G = {b1} e considere o código
C(B,G). O teorema 2.2.9 nos diz que:

d(C(B,G)) ≥ 1

enquanto que o teorema 2.3.5 nos diz que:

d(C(B,G)) ≥ 2

Pela cota de Singleton temos que:

d+ k ≤ n+ 1
d+ 1 ≤ 2 + 1
d(C(B,G)) ≤ 2

Logo d(C(B,G)) = 2, e a cota do teorema 2.3.5 é atingida.

Definição 2.3.7 Seja B = {b1, b2, · · · , bn} uma base para Fn
q . Para s = 1, 2, · · · , n e δ =

0, 1, · · · , n definimos:

ε(s) := spanFq{b1, b2, · · · , bs}

ε̃(δ) := spanFq{ bi | σ(i) ≥ δ }

Do nosso exemplo motivador podemos ver que é bem natural considerarmos os códigos de
Reed-Solomon como sendo códigos da forma ε(s).

Veremos a frente que também será natural considerarmos os códigos geométricos de Goppa
como sendo da forma ε(s). A seguir, temos o seguinte teorema:

Teorema 2.3.8 A distância mı́nima de ε(s) e a distância mı́nima de ε̃(δ) satisfazem:

d(ε(s)) ≥ min{ σ(i) | i = 1, · · · , s }

ε̃(δ) ≥ δ

Demonstração. Temos que ε(s) = C(B,G) com G = {b1, · · · , bs} e temos que ε̃(δ) = C(B,G)
com G = { bi | σ(i) ≥ δ }. O resultado agora segue pelo teorema 2.3.5.

2.4 A cota de Feng-Rao para os pesos generalizados de

Hamming

A cota no teorema 2.3.5 é semelhante a cota de Feng-Rao para os códigos C⊥(B,G). Veremos
isto, mas antes precisaremos de algumas definições.

Definição 2.4.1 Para l = 1, · · · , n seja

Vl := {i ∈ In | ρ(bi ∗ bj) = l para algum bj ∈ B com (i, j) WWB }

Para {l1, l2, · · · , lt} ⊂ In definimos
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µ(l1, l2, · · · , lt) := ♯
((∪t

s=1 Vls
)
∪ {l1, · · · , lt}

)
Em particular, definimos

µ(l) := ♯(Vl ∪ {l})

Exemplo 2.4.2 Considere B = {b1 = (1, 0, 2, 4, 3) ; b2 = (2, 1, 3, 0, 1) ; b3 = (0, 2, 1, 2, 4) ;
b4 = (1, 3, 0, 1, 2) ; b5 = (1, 2, 4, 3, 0)} como uma base de F5

5. Depois de alguns cálculos, temos
que os únicos pares (i, j) WWB são:

(1,1), (1,2), (1,3), (2,1), (3,1)

e ainda temos que

ρ(b1 ∗ b1) = 3
ρ(b1 ∗ b2) = ρ(b2 ∗ b1) = 4
ρ(b1 ∗ b3) = ρ(b3 ∗ b1) = 5

Assim, temos por exemplo que:

V4 = {i ∈ I | ρ(bi ∗ bj) = 4 para algum bj ∈ B com (i, j) WWB } = {1, 2}

Da mesma forma:

V1 = V2 = ∅
e V3 = {1} e V5 = {1, 3}

Logo temos que

µ(1, 4, 5) = ♯
((∪

s=1,4,5 Vls

)
∪ {1, 4, 5}

)
= ♯({1, 2, 3, 4, 5}) = 5

Podemos agora enunciar a cota de Feng-Rao para os pesos generalizados de Hamming. Esta
formulação é relativamente parecida com a formulação original dada por Feng e Rao com relação
à distância mı́nima.

Teorema 2.4.3 (A cota de Feng-Rao) O t-ésimo peso generalizado de Hamming dt(C
⊥(B,G))

satisfaz:

dt(C
⊥(B,G)) ≥ min{ µ( a1, · · · , at) | ai ̸= aj para i ̸= j e {ba1 , · · · , bat} ⊆ B \G}

Em particular,

d(C⊥(B,G)) ≥ min { µ(a) | ba ∈ B \G}

Demonstração. Uma prova deste teorema pode ser encontrada na referência [10].

Nas seções que virão a seguir vamos precisar dos seguintes códigos:

Definição 2.4.4 Dada uma base B = {b1, · · · , bn}, definimos

C(s) := C⊥(B,G), com G = {b1, · · · , bs}
C̃(δ) := C⊥(B,G), com G = { bi ∈ B | µ(i) < δ}

Podemos aplicar a cota de Feng-Rao nos códigos C(s) e C̃(δ).

Em particular,

d(C̃(δ)) ≥ min { µ(a) | ba ∈ B \ { bi | µ(i) < δ }} ≥ δ

Assim, os códigos C̃(δ) são frequentemente chamados códigos duais melhorados ou códigos
melhorados de Feng-Rao.
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2.5 Uma conexão com o trabalho de Shibuya e Sakaniwa

Na referência [7], Shibuya e Sakaniwa encontraram uma cota para a distância mı́nima para os
códigos C(B,G). Vamos ver a seguir que existe uma forte conexão entre o teorema 2.3.5 e a
cota de Shibuya e Sakaniwa.

Recorde que

Λi := { l ∈ In | ρ(bi ∗ bj) = l para algum bj com (i, j) WWB }

Vamos enunciar a cota de Shibuya e Sakaniwa.

Teorema 2.5.1 (A cota de Shibuya e Sakaniwa). Dada uma base B = {b1, b2, · · · , bn}
e G ⊆ B, seja Ti := {v ∈ I | bv ∈ B \ G} \ Λi, para i = 1, 2, · · · , n. Definimos t(B,G) :=
max{ ♯(Ti) | bi ∈ G}. A distância mı́nima de C(B,G) satisfaz:

d(C(B,G)) ≥ n− k + 1− t(B,G)

Demonstração. Uma prova deste resultado pode ser encontrada na referência [7].

Vamos mostrar agora como a cota de Shibuya e Sakaniwa pode ser vista como uma con-
sequência do teorema 2.3.5.

Teorema 2.5.2 A cota da distância mı́nima de C(B,G) no teorema 2.3.5 é maior ou igual à
cota de Shibuya e Sakaniwa.

Demonstração. Seja B = {b1, b2, · · · , bn} e G = {bl1 , bl2 , · · · , blk} ⊆ B. Para i = 1, · · · , k,
temos que:

σ(li) = ♯(Λli ∪ {li})

Para cada li ∈ {l1, l2, · · · , lk}, o conjunto Tli consiste de todos os números v ∈ In tais que
bv ∈ B \G e que não contribuem para a contagem dos elementos do conjunto Λli ∪ {li}.

Consequentemente, a quantidade de números de elementos v ∈ In com bv ∈ B \ G e que não
contribuem para a contagem dos elementos do conjunto Λli ∪ {li} é n− k − ♯(Tli).

Para cada li ∈ {l1, l2, · · · , lk}, o número de elementos v ∈ I com bv ∈ G e que contribuem para
a contagem dos elementos do conjunto Λli ∪ {li} é maior ou igual a ♯({li}) = 1.

Assim, n− k + 1− ♯(Ti) ≤ ♯(Λi ∪ {i}) = σ(i) para todo i com bi ∈ G, e o resultado segue.

Observação 2.5.3 Note que Ti depende da escolha de G. Isto significa que os cálculos feitos
para uma escolha de G não podem ser reutilizados para outra escolha de G. Em particular,
dada uma base B não é tão fácil ver qual deve ser a melhor escolha de G. As vantagens do
teorema 2.3.5 em comparação com a cota de Shibuya e Sakaniwa são as seguintes:

Primeiramente, o teorema 2.3.5 é muito mais simples de implementar, e no caso da distância
mı́nima a prova é quase trivial.

Depois, os cálculos feitos para uma escolha de G podem ser reusados para outras escolhas de
G. Como uma consequencia, o teorema 2.3.5 nos permite construir códigos melhorados ε̃(δ).

Ainda temos que o teorema 2.3.5 trata não somente da distância mı́nima mas também de
todos os pesos generalizados de Hamming. Finalmente, usando o teorema 2.3.5 podemos definir
e lidar com códigos vindos da teoria de domı́nios de ordem.



Caṕıtulo 3

Domı́nios de Ordem

3.1 Códigos da teoria de domı́nios de ordem

Nas seções anteriores vimos como estimar os parâmetros de qualquer código linear, mas para
que esse método seja realmente prático precisaremos de bases B = {b1, · · · , bn} para Fn

q tais que
seja fácil decidir se um dado par (i, j) é WB(ou WWB) e também seja fácil calcular ρ(bi ∗ bj).

Uma maneira de encontrar tais bases é usando a teoria de domı́nios de ordem que vamos
apresentar a seguir. Recorde do exemplo motivador como os códigos de Reed-Solomon foram
vistos como a imagem de um subespaço do anel de polinômios R = Fq[X] pela aplicação de
avaliação ev : Fq[X] → Fn

q . Recorde também como usamos a função grau em Fq[X] para decidir
o valor de ρ(c ∗ bj). A idéia da teoria dos domı́nios de ordem é generalizar este contexto para
uma classe maior de estruturas algébricas chamadas domı́nios de ordem.

Vamos enunciar o conceito de ordem monomial sobre F[X1, · · · , Xn].

Definição 3.1.1 Uma ordem monomial sobre F[X1, · · · , Xn] é uma relação ≺ sobre Nr
0, ou

equivalentemente, uma relação sobre o conjunto de todos os monômios nas variáveis X1, · · · , Xn,
que satisfaz:
(a) ≺ é uma ordem total sobre Nr

0.
(b) Se α ≺ β e γ ∈ Nr

0, então α + γ ≺ β + γ.
(c) ≺ é uma boa-ordem sobre Nr

0. Isto significa que todo subconjunto não vazio de Nr
0 possui

um menor elemento em relação a ≺.

Definição 3.1.2 Seja R uma Fq-álgebra e seja Γ um subsemigrupo de Nr
0 para algum r. Seja

≺ uma ordem monomial sobre Nr
0. Uma aplicação sobrejetora ρ : R → Γ−∞ := Γ ∪ {−∞} que

satisfaz as seis seguintes condições é dita ser uma função peso.

(W.0) ρ(f) = −∞ ⇐⇒ f = 0.
(W.1) ρ(af) = ρ(f) para todo a ∈ Fq não nulo.
(W.2) ρ(f + g) ≼ max{ρ(f), ρ(g)} e a igualdade ocorre quando ρ(f) ≺ ρ(g).
(W.3) Se ρ(f) ≺ ρ(g) e h ̸= 0, então ρ(fh) ≺ ρ(gh).
(W.4) Se f e g são não nulos e ρ(f) = ρ(g), então existe um a ∈ Fq não nulo, tal que
ρ(f − ag) ≺ ρ(g).
(W.5) Se f e g são não nulos, então ρ(fg) = ρ(f) + ρ(g).

Uma Fq-álgebra com uma função peso é chamada de domı́nio de ordem sobre Fq. A terna
(R, ρ,Γ) é chamada de estrutura de ordem, e Γ é chamado de semigrupo de valores de
ρ.
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Teorema 3.1.3 Seja (R, ρ,Γ) uma estrutura de ordem sobre Fq. Seja β = {fα | α ∈ Γ} uma
sequência de elementos em R tais que ρ(fα) = α para todo α ∈ Γ. Então {fα | α ∈ Γ} é uma
base para R como espaço vetorial sobre Fq. Em particular, {fα ∈ β | α ≼ γ} é uma base para
Rγ := {f ∈ R | ρ(f) ≼ γ}.

Demonstração. Seja {fα1 , fα2 , · · · , fαm} ⊂ {fα | α ∈ Γ} com αi ̸= αj para i ̸= j. Considere
uma Fq−combinação linear a1fα1 + · · ·+amfαm = 0. Aplicando a função ρ temos que ρ(a1fα1 +
· · · + amfαm) = ρ(0) = −∞, mas como fα1 , · · · , fαm são distintos temos que ρ(a1fα1 + · · · +
amfαm) = max{ρ(a1fα1), · · · , ρ(amfαm)} = ρ(ajfαj

) para algum j. Logo, ρ(ajfαj
) = −∞ nos

diz que aj = 0. Repetindo este processo, temos que ai = 0 para i = 1, · · · ,m, e portanto
{fα1 , fα2 , · · · , fαm} é linearmente independente.

Agora seja f ̸= 0 ∈ R, logo existe fα1 ∈ {fα | α ∈ Γ} tal que ρ(fα1) = ρ(f). Por (W.4) existe
a1 ̸= 0 ∈ Fq tal que ρ(f − afα1) ≺ ρ(fα1). Se ρ(f − a1fα1) = −∞ acabou. Caso contrário,
existe fα2 ∈ {fα | α ∈ Γ} tal que ρ(fα2) = ρ(f − a1fα1), mas por (W.4) existe a2 ̸= 0 ∈ Fq tal
que ρ((f − a1fα1)− a2fα2) ≺ ρ(fα2). Se ρ(f − a1fα2 − a2fα2) = −∞ acabou.

Caso contrário, repetimos este processo novamente. Agora note que a sequência:

(α) := α1 ≻ α2 ≻ α3 ≻ · · ·

é uma sequência (não necessariamente infinita) estritamente decrescente de elementos de Γ ⊆
Nr

0. Como ≺ é uma ordem monomial sobre Nr
0, logo ≺ é uma boa ordem sobre Nr

0, então segue
que a sequência (α) eventualmente termina, isto é; existe m ∈ N tal que (α) = α1 ≻ α2 ≻ · · · ≻
αm.
Assim, após repetirmos este processo m vezes, obtemos:

ρ(f − a1fα1 − a2fα2 − · · · − amfαm) = −∞.

o que nos diz que f = a1fα1 + · · ·+ amfαm .

Uma base β como no teorema acima, é chamada de base bem-comportada.

Exemplo 3.1.4 Considere o anel quociente R := F9[X, Y ]/I onde I é o ideal gerado pelo
polinômio Hermitiano X4 − Y 3 − Y . Mais adiante, vamos ver que o conjunto:

{XαY β + I | 0 ≤ α, 0 ≤ β < 3}

é uma base para R como espaço vetorial sobre F9.

Agora, vamos definir ρ(XαY β + I) := 3α + 4β para 0 ≤ α e 0 ≤ β < 3. Assim, ρ está
definida sobre todo elemento de nossa base. Usando as propriedades (W.0),(W.1) e (W.2) ρ é
extendida para todo R. Temos que Γ = ⟨3, 4⟩ (aqui ⟨s1, · · · , sr⟩ significa o semigrupo gerado
por s1, · · · , sr).

A base no exemplo 3.1.4 é um exemplo de uma base bem comportada para o domı́nio de ordem
R.

Segue abaixo uma tabela (tabela 3.1) mostrando os valores de ρ para alguns elementos de
{XαY β + I | 0 ≤ α, 0 ≤ β < 3}.



18

Y 2 XY 2 X2Y 2 X3Y 2 X4Y 2 X5Y 2 X6Y 2 X7Y 2 X8Y 2 X9Y 2 · · ·
Y XY X2Y X3Y X4Y X5Y X6Y X7Y X8Y X9Y · · ·
1 X X2 X3 X4 X5 X6 X7 X8 X9 · · ·

8 11 14 17 20 23 26 29 32 35 · · ·
4 7 10 13 16 19 22 25 28 31 · · ·
0 3 6 9 12 15 18 21 24 27 · · ·

Tabela 3.1: Valores de ρ do exemplo 3.1.4.

Definição 3.1.5 Seja R uma Fq-álgebra. Uma aplicação sobrejetora φ : R → Fn
q é chamada de

homomorfismo de Fq-álgebras se φ é Fq-linear e φ(fg) = φ(f) ∗ φ(g) para todo f, g ∈ R.

Agora é natural tomar elementos na base B = {b1, · · · , bn} para Fn
q como sendo da forma

φ(fλ) para n diferentes valores de λ.

Vamos ver que os valores α(1), · · · , α(n) na próxima definição serão uma boa escolha para
os λ′s.

Definição 3.1.6 Seja α(1) := 0. Para i = 2, 3, · · · , n definimos α(i) recursivamente como
sendo o menor elemento em Γ que é maior que α(1), α(2), · · · , α(i − 1) e satisfaz φ(Rγ) &
φ(Rα(i)) para todo γ ≺ α(i).

Notação: {α(1), α(2), · · · , α(n)} = ∆(R, ρ, φ).

Observação 3.1.7 Veja que a definição de ∆(R, ρ, φ) acima está bem definida, isto é; dado
um homomorfismo de Fq-álgebras φ : R → Fn

q existem realmente n elementos em ∆(R, ρ, φ).

De fato, como φ é sobrejetora podemos considerar o seguinte conjunto não vazio abaixo:

A2 := {α ∈ Γ | 0 ≺ α e {φ(fα(1)), φ(fα)} é L.I. }

(onde L.I. significa linearmente independente).

Veja que A2 ⊆ Nr
0, e como ≺ é uma ordem monomial sobre Nr

0 logo existe α2 ∈ A2 tal que α2 ≼
α, ∀α ∈ A2. É fácil ver que α2 é o menor elemento em Γ que é maior que 0 e φ(Rγ) $ φ(Rα2)
para todo γ ≺ α2.

Assim, α2 = α(2) ∈ ∆(R, ρ, φ). Novamente, podemos considerar o conjunto:

A3 := {α ∈ Γ | 0 ≺ α2 ≺ α e {φ(fα(1)), φ(fα(2)), φ(fα)} é L.I. }

E novamente existe α3 ∈ A3 tal que α3 ≼ α, ∀α ∈ A3, e seguindo o mesmo racioćınio temos
que α3 = α(3) ∈ ∆(R, ρ, φ). Assim, podemos repetir este processo criando recursivamente os
conjuntos A4, · · · , An e obtendo α(4), · · · , α(n) ∈ ∆(R, ρ, φ).

O seguinte teorema é facilmente provado.

Teorema 3.1.8 Seja ∆(R, ρ, φ) = {α(1), α(2), · · · , α(n)} como na definição 3.1.6. O conjunto

B := { b1 := φ(fα(1)), b2 := φ(fα(2)), · · · , bn := φ(fα(n))}
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é uma base para Fn
q como espaço vetorial sobre Fq.

Para qualquer c ∈ Fn
q existe um único conjunto ordenado (β1, β2, · · · , βn), com βi ∈ Fq para

i = 1, · · · , n tal que c = φ

(
n∑

i=1

βifα(i)

)
.

A função ρ : Fn
q → {0, 1, · · · , n} correspondente a base B é dada por:

ρ(c) =

{
0, se c = 0,
max{i | βi ̸= 0}, se c ̸= 0

Demonstração. Como dim (Fn
q ) = n, só precisaremos mostrar que B é um conjunto linear-

mente independente. Para cada i = 1, · · · , n temos que:

φ(fαi
) ∈ φ(Rαi

) \ φ(Rαi−1)

Logo,

b1 ∈ φ(Rα(1)
) = φ(R0)

b2 ∈ φ(Rα(2)
)\φ(Rα(1)

)
...

...
bn ∈ φ(Rα(n)

)\φ(Rα(n−1)
)

e como φ(Rα(1)
) & · · · & φ(fα(n)

) = Fn
q , segue que {b1, · · · , bn} é linearmente independente. As

demais afirmações são facilmente mostradas.

Proposição 3.1.9 Seja P o conjunto formado pelos distintos pontos P1, · · · , Pn em Fm
q . Seja

R = Fq[X1, · · · , Xm]. Considere a aplicação de avaliação:

evP : R → Fn
q

definida por evp(f) = (f(P1), · · · , f(Pn)). Então a aplicação evP é um homomorfismo de Fq -
álgebras.

Demonstração. Vamos mostrar que evP é sobrejetora. Seja Pj = (xj1, · · · , xjm). Seja Ail =
{xjl | j = 1, · · · , n} \ {xil}. Defina o polinômio Gi por:

Gi =
∏m

l=1

∏
x∈Ail

(Xl − x)

Então Gi(Pj) = 0 para todo i ̸= j. Ainda mais, Gi(Pi) ̸= 0, já que P1, · · · , Pn são distintos.

O polinômio
Gi

G(Pi)
é levado pela aplicação evP no i-ésimo elemento da base canônica de Fn

q .

Consequentemente evP é sobrejetora. É fácil ver que evP é linear e que evP (fg) = evP (f)∗evP (g)
para ∀f, g ∈ R, logo evP é um homomorfismo.

Observação 3.1.10 Suponha que I é um ideal no anel Fq[X1, · · · , Xm]. Seja V = {P1, · · · , Pn}
o conjunto de zeros de I com coordenadas em Fq, isto é; V = {P ∈ Fn

q | f(P ) = 0 para ∀f ∈ I.
Então a aplicação evP acima induz uma outra aplicação linear bem definida:

φ : Fq[X1, · · · , Xm]�I → Fn
q
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definida por φ(f + I) = (f(P1), · · · , f(Pn)) que também é um homomorfismo de Fq - álgebras.

Exemplo 3.1.11 Vamos continuar o exemplo 3.1.4. O polinômio hermitiano X4 − Y 3 − Y
tem 27 zeros P1, · · · , P27.

Denotando F9 = {0, 1, 2, α, 1 + α, 2 + α, 2α, 1 + 2α, 2 + 2α} onde α2 + 1 = 0, temos que os
27 zeros são: 

P1 = (0, 0) P2 = (0, α) P3 = (0, 2α)
P4 = (1, 2) P5 = (1, 2 + α) P6 = (1, 2 + 2α)
P7 = (2, 2) P8 = (2, 2 + α) P9 = (2, 2 + 2α)
P10 = (α, 2) P11 = (α, 2 + α) P12 = (α, 2 + 2α)
P13 = (2α, 2) P14 = (2α, 2 + α) P15 = (2α, 2 + 2α)
P16 = (1 + α, 1) P17 = (1 + α, 1 + α) P18 = (1 + α, 1 + 2α)
P19 = (2 + α, 1) P20 = (2 + α, 1 + α) P21 = (2 + α, 1 + 2α)
P22 = (1 + 2α, 1) P23 = (1 + 2α, 1 + α) P24 = (1 + 2α, 1 + 2α)
P25 = (2 + 2α, 1) P26 = (2 + 2α, 1 + α) P27 = (2 + 2α, 1 + 2α)


Definindo uma função φ : R → F27

9 por

φ(F (X, Y ) + I) := (F (P1), · · · , F (P27)).

Pela observação 3.1.10, temos que φ é um homomorfismo de Fq - álgebras.

Por inspeção, temos que para 0 ≤ α < 9 e 0 ≤ β < 3

φ(XαY β + I) ∈ φ(R3α+4β) \ φ(R3α+4β−1)

Portanto

∆(R, ρ, φ) = {3α + 4β | 0 ≤ α < 9, 0 ≤ β < 3}.

Denotando para i = 1, · · · , 27, fα(i) = F (i) + I, temos a tabela abaixo:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
α(i) 0 3 4 6 7 8 9 10 11 12 13 14 15 16
F (i) 1 X Y X2 XY Y 2 X3 X2Y XY 2 X4 X3Y X2Y 2 X5 X4Y
i 15 16 17 18 19 20 21 22 23 24 25 26 27

α(i) 17 18 19 20 21 22 23 24 25 26 28 29 32
F (i) X3Y 2 X6 X5Y X4Y 2 X7 X6Y X5Y 2 X8 X7Y X6Y 2 X8Y X7Y 2 X8Y 2

Tabela 3.2: Valores de α(i).

Mas adiante, vamos ver uma outra maneira de encontrar o conjunto ∆(R, ρ, φ) sem reco-
rermos a fazer a inspeção acima, o que é de fato um árduo trabalho.

De agora em diante, vamos assumir sempre que a base B = {b1, · · · , bn} é da mesma forma
da base B no teorema 3.1.8.

Gostaŕıamos de saber quais pares (i, j) ∈ I2 são WB e de encontrar qual é o valor de
ρ(bi ∗ bj). As duas proposições seguintes vão nos ajudar a responder em parte estas questões.

Proposição 3.1.12 Seja B = {b1, · · · , bn} uma base como em 3.1.8. Se α(i), α(j), α(l) ∈
∆(R, ρ, φ) são tais que α(i) + α(j) = α(l), então ρ(bi ∗ bj) = l e (i, j) ∈ I2n é WB.
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Demonstração. Vamos mostrar primeiro que ρ(bi ∗ bj) = l. Temos por hipótese que:

α(i) + α(j) = α(l) ⇒ ρ(fα(i)) + ρ(fα(j)) = α(l)

Por (W.5) temos que

α(l) = ρ(fα(i)) + ρ(fα(j)) = ρ(fα(i) · fα(j))

Logo fα(i) ·fα(j) ∈ {f ∈ R | ρ(f) ≤ α(l)} = Rα(l) e fα(i) ·fα(j) /∈ {f ∈ R | ρ(f) ≤ γ} = Rγ, ∀γ <
α(l). Assim φ(fα(i) · fα(j)) ∈ φ(Rα(l)) = φ({f ∈ R | ρ(f) ≤ α(l)}) = Ll e φ(fα(i) · fα(j)) /∈ Lw

para ∀w < l. Logo, φ(fα(i) · fα(j)) ∈ Ll \ Ll−1. Mas φ(fα(i) · fα(j)) = φ(fα(i)) ∗ φ(fα(j)) = bi ∗ bj.
Assim, bi ∗ bj ∈ Ll \ Ll−1 ⇒ ρ(bi ∗ bj) = l.

Agora vamos mostrar que (i, j) é WB. Sejam u, v ∈ In tais que 1 ≤ u ≤ i, 1 ≤ v ≤ j e
(u, v) ̸= (i, j). Temos que α(u) < α(i) ou α(v) < α(j). Suponha que α(u) < α(i), o outro caso
é análogo. Logo, ρ(fα(u)) < ρ(fα(i)) e como fα(v) ̸= 0, por (W.3) temos que:

ρ(fα(u) · fα(v)) < ρ(fα(i) · fα(v)) = ρ(fα(i)) + ρ(fα(v))
≤ ρ(fα(i)) + ρ(fα(j)) = ρ(fα(i)fα(j)) = α(l)

Logo, pelas definições 3.1.5 e 3.1.6 temos:

bu ∗ bv = φ(fα(u)) ∗ φ(fα(v)) = φ(fα(u)fα(v)) ∈ φ(Rγ) para algum γ < α(l).

Logo bu ∗ bv ∈ φ(Rγ) ⊆ Ll−1. Isto implica que ρ(bu ∗ bv) ≤ l − 1 e consequentemente (i, j) é
WB.

Proposição 3.1.13 Considere α(l) ∈ ∆(R, ρ, φ) e assuma que existem β1, β2 ∈ Γ tais que
β1 + β2 = α(l). Então β1, β2 ∈ ∆(R, ρ, φ).

Demonstração. Temos que β1 + β2 = ρ(fβ1) + ρ(fβ2) = ρ(fβ1fβ2), logo fβ1fβ2 ∈ Rα(l) e
fβ1fβ2 /∈ Rγ para qualquer γ < α(l). Vamos mostrar que β1 ∈ ∆(R, ρ, φ), a demonstração para
β2 será análoga.

Suponha por absurdo que β1 /∈ ∆(R, ρ, φ), isto é, que existe w ∈ Γ tal que w < β1 e φ(Rw) =
φ(Rβ1). Em particular, temos que φ(fβ1) ∈ φ(Rw). Assim, existe g ∈ Rw com φ(g) = φ(fβ1) o
que implica φ(gfβ2) = φ(fβ1fβ2).

Como g ∈ Rw, logo ρ(g) ≤ w < β1, o que nos diz que ρ(g) < ρ(fβ1). Como fβ2 ̸= 0, por (W.3)
temos que

ρ(gfβ2) < ρ(fβ1fβ2) = α(l)

Denotando por γ0 = ρ(gfβ2), note que gfβ2 ∈ Rγ0 e logo φ(gfβ2) ∈ φ(Rγ0), mas φ(gfβ2) =
φ(fβ1fβ2) logo φ(fβ1fβ2) ∈ φ(Rγ0) e γ0 < α(l), o que é uma contradição pois fβ1fβ2 ∈ Rα(l) e
fβ1fβ2 /∈ Rγ para qualquer γ < α(l).

Note que com as duas proposições acima em mãos podemos estimar facilmente os valores
de σ(i) e µ(i) para i = 1, · · · , n.

Definição 3.1.14 (a) Para η ∈ ∆(R, ρ, φ) = {α(1), · · · , α(n)} definimos:
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M(η) := {γ ∈ ∆(R, ρ, φ) | ∃ β ∈ ∆(R, ρ, φ) com η + β = γ}
= (η + Γ) ∩∆(R, ρ, φ).

onde η + Γ significa {η + λ | λ ∈ Γ}.

Seja σ(η) := ♯M(η). Para { η1, η2, · · · , ηt } ⊆ ∆(R, ρ, φ) definimos σ(η1, η2, · · · , ηt) :=
♯(
∪t

i=1M(ηi)).

(b) Para λ ∈ Γ, definimos:

N(λ) := {η ∈ Γ | ∃ β ∈ Γ com η + β = λ}

Seja µ(λ) := ♯N(λ). Para { λ1, · · · , λt } ⊆ Γ definimos µ(λ1, · · · , λt) := ♯
(∪t

i=1N(λi)
)
.

Proposição 3.1.15 Considere o conjunto ∆(R, ρ, φ) = {α(1), · · · , α(n)} e a base correspon-
dente B = {b1, · · · , bn}. Para i = 1, · · · , n temos que ρ(i) ≥ σ(α(i)), e para l = 1, · · · , n
temos que σ(l) ≥ µ(α(l)). Mais geral ainda, para {a1, · · · , at} ⊆ I temos que ρ(a1, · · · , at) ≥
σ(α(a1), · · · , α(at)) e µ(a1, · · · , at) ≥ µ(α(a1), · · · , α(at)).

Demonstração. Considere o conjunto {l | α(l) ∈ M(α(i))}. Seja l1 ∈ {l | α(l) ∈ M(α(i))},
assim existe α(j) ∈ ∆(R, ρ, φ) tal que α(i) + α(j) = α(l1), e pela proposição 3.1.12 temos
que (i, j) é WB e ρ(bi ∗ bj) = l1, desta forma {l | α(l) ∈ M(α(i))} ⊆ Λi. E como ♯{l | α(l) ∈
M(α(i))} = ♯ M(α(i)) = σ(α(i)), segue que σ(i) = ♯(Λi ∪ {i}) ≥ σ(α(i)).

Agora considere o conjunto N(α(l)). Seja η ∈ N(α(l)), logo existe β ∈ Γ tal que η + β = α(l),
e logo pela proposição 3.1.13 temos que existem α(i), α(j) ∈ ∆(R, ρ, φ) tais que η = α(i) e β =
α(j). Como α(i)+α(j) = α(l), segue da proposição 3.1.12 que (i, j) é WB e ρ(bi∗bj) = l. Assim,
{i | α(i) ∈ N(α(l))} ⊆ Vl onde Vl = {i ∈ I | ρ(bi∗bj) = l para algum bj ∈ B com (i, j)WWB}.
Logo,

µ(l) = ♯(Vl ∪ {l}) ≥ ♯{i | α(i) ∈ N(α(l))} = ♯N(α(l)) = µ(α(l)).

Para a segunda parte da proposição, precisamos mostrar que:

♯ ((Λa1 ∪ {a1}) ∪ · · · ∪ (Λat ∪ {at})) ≥ ♯(M(α(a1)) ∪ · · · ∪M(α(at)))

Note que ♯
(∪t

s=1M(α(as))
)
= ♯

(∪t
s=1{l | α(l) ∈M(α(as))}

)
, e pelo que fizemos acima, temos

que:

{l | α(l) ∈M(α(a1))} ⊆ Λa1

{l | α(l) ∈M(α(a2))} ⊆ Λa2
...

...
{l | α(l) ∈M(α(at))} ⊆ Λat

Logo,
∪t

s=1{l | α(l) ∈M(α(as))} ⊆
∪t

s=1 Λas ⊆
∪t

s=1(Λas ∪ {as}). E assim,

σ(α(a1), · · · , α(at)) = ♯
(∪t

s=1M(α(as))
)
= ♯

(∪t
s=1{l | α(l) ∈M(α(as))}

)
≤

♯
(∪t

s=1(Λas ∪ {as})
)
= ρ(a1, · · · , at).

Agora precisamos mostrar que:

♯((Va1 ∪ {a1}) ∪ · · · ∪ (Vat ∪ {at})) ≥ ♯(N(α(a1)) ∪ · · · ∪N(α(at)))
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Note que se η ∈ N(α(as)) onde s ∈ {1, · · · , t}, então existe β ∈ Γ com η + β = α(as) e pela
proposição 3.1.13 temos que η ∈ ∆(R, ρ, φ). Assim:

♯
(∪t

s=1N(α(as))
)
= ♯

(∪t
s=1{i | α(i) ∈ N(α(as))}

)
Pelo que fizemos acima, temos que:

{i | α(i) ∈ N(α(a1))} ⊆ Va1
{i | α(i) ∈ N(α(a2))} ⊆ Va2

...
...

{i | α(i) ∈ N(α(at))} ⊆ Vat

Assim,
∪t

s=1{i | α(i) ∈ N(α(as))} ⊆
∪t

s=1 Vas ⊆
∪t

s=1(Vas ∪ {as}). Logo,

µ(α(a1), · · · , α(at)) = ♯
(∪t

s=1N(α(as))
)
= ♯

(∪t
s=1{i | α(i) ∈ N(α(as))}

)
≤

♯
(∪t

s=1(Vas ∪ {as})
)
= µ(a1, · · · , at).

como queŕıamos concluir.

Exemplo 3.1.16 Vamos continuar o exemplo 3.1.11. Para estimar, por exemplo σ(21), temos
que encontrar σ(α(21)). Primeiro, observamos que α(21) = 23. Agora veja que:

M(23) = {t ∈ ∆(R, ρ, φ) | ∃ s ∈ ∆(R, ρ, φ) com 23 + s = t}

Logo olhamos para os valores s, t em ∆(R, ρ, φ) tais que 23 + s = t. Temos que:

23 + 0 = 23, 23 + 3 = 26, 23 + 6 = 29 e 23 + 9 = 32.

Assim, M(α(21)) = {23, 26, 29, 32}, e logo σ(α(21)) = 4. Pela proposição 3.1.15 temos que
σ(21) ≥ 4.

Recorde que introduzimos anteriormente os códigos ε(s) e os códigos melhorados ε̃(δ). Seme-
lhantemente, introduzimos os códigos C(s) e os códigos melhorados C̃(δ). Agora consideraremos
os códigos correspondentes no contexto da teoria dos domı́nios de ordem.

Definição 3.1.17 Considere o conjunto ∆(R, ρ, φ) = {α(1), · · · , α(n)} e a base correspondente
B = {b1, · · · , bn}. Definimos

E(λ) := φ(Rλ)
= C(B,G) onde G = {bi | α(i) 4 λ}

Ẽ(δ) := spanFq{φ(fα(i)) | α(i) ∈ ∆(R, ρ, φ) e σ(α(i)) ≥ δ}
= C(B,G) onde G = {bi | σ(α(i)) ≥ δ}

C(λ) := {c ∈ Fn
q | c · φ(fγ) = 0 para todo γ 4 λ}

= C⊥(B,G) onde G = {bi | α(i) 4 λ}

C̃(δ) := {c ∈ Fn
q | c · φ(fα(i)) = 0 para todo α(i) ∈ ∆(R, ρ, φ) com µ(α(i)) < δ}

= C⊥(B,G) onde G = {bi | µ(α(i)) < δ}

O seguinte teorema é uma consequência da teoria desenvolvida até agora.

Teorema 3.1.18 A distância mı́nima dos códigos na definição 3.1.17 é cotada por:
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d(E(λ)) ≥ min{σ(η) | η ∈ ∆(R, ρ, φ), com η 4 λ},

d(Ẽ(δ)) ≥ δ,

d(C(λ)) ≥ min{µ(η) | λ ≺ η, e η ∈ ∆(R, ρ, φ)}

d(C̃(δ)) ≥ δ.

Mais geral ainda, o t-ésimo peso generalizado de Hamming (t sendo no máximo igual a dimensão
do código) satisfaz:

dt(E(λ)) ≥ min{σ(η1, · · · , ηt) | {η1, · · · , ηt} ⊆ ∆(R, ρ, φ)
ni ̸= nj para i ̸= j, ηs 4 λ para s = 1, · · · , t}

dt(Ẽ(δ)) ≥ min{σ(η1, · · · , ηt) | {η1, · · · , ηt} ⊆ ∆(R, ρ, φ)
ni ̸= nj para i ̸= j, σ(ηs) ≥ δ para s = 1, · · · , t},

dt(C(λ)) ≥ min{µ(λ1, · · · , λt) | λi ≻ λ, λi ∈ ∆(R, ρ, φ)
para i = 1, · · · , t}

dt(C̃(δ)) ≥ min{µ(λ1, · · · , λt) | µ(λi) ≥ δ, λi ∈ ∆(R, ρ, φ)
para i = 1, · · · , t}

Demonstração. Pelo teorema 2.3.5 e proposição 3.1.15 temos que

d(E(λ)) ≥ min{σ(i) | bi ∈ G} ≥ min{σ(α(i)) | bi ∈ G}
= min{σ(η) | η ∈ ∆(R, ρ, φ), η 4 λ}

d(Ẽ(δ)) ≥ min{σ(i) | bi ∈ G} ≥ min{σ(α(i)) | bi ∈ G} ≥ δ

Pelo teorema 2.4.3 e proposição 3.1.15 temos que

d(C(λ)) ≥ min{ µ(l) | bl ∈ B \G} ≥ min{µ(α(l)) | α(l) > λ}
= min{µ(η) | λ < η, η ∈ ∆(R, ρ, φ)}

d(C̃(δ)) ≥ min{µ(l) | bl ∈ B \G} ≥ min{µ(α(l)) | µ(α(l)) ≻ δ} ≺ δ.

Pelo teorema 2.3.5 e proposição 3.1.15 segue que:

dt(E(λ)) ≥ min{σ(a1, · · · , at) | ai ̸= aj para i ̸= j e {ba1 , · · · , bat} ⊆ G} ≥
min{σ(α(a1), · · · , α(at)) | {α(a1), · · · , α(as)} ⊆ ∆(R, ρ, φ), α(ai) ̸= α(aj) para i ̸=

j e α(as) 4 λ para s = 1, · · · , t}
= min{σ(η1, · · · , ηt) | {η1, · · · , ηt} ⊆ ∆(R, ρ, φ) ηi 4 ηj para i ̸= j, ηs ≤ λ para s = 1, · · · , t}

dt(Ẽ(δ)) ≥ min{σ(a1, · · · , at) | ai ̸= aj para i ̸= j {ba1 , · · · , bat} ⊆ G} ≥
min{σ(α(a1), · · · , α(at)) | {α(a1), · · · , α(as)} ⊆ ∆(R, ρ, φ), α(ai) ̸= α(aj) para i ̸=

j e σ(α(as)) ≥ δ para s = 1, · · · , t}
= min{σ(η1, · · · , ηt) | {η1, · · · , ηt} ⊆ ∆(R, ρ, φ), ηi ̸= ηj para i ̸= j, σ(ηs) ≥ δ para s =

1, · · · , t}

E pelo teorema 2.4.3 e proposição 3.1.15 segue que:
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dt(C(λ)) ≥ min{µ(a1, · · · , at) | ai ̸= aj para i ̸= j e {ba1 , · · · , bat} ⊆ B \G} ≥
min{µ(α(a1), · · · , α(at)) | α(i) ̸= α(aj) para i ̸= j, {α(a1), · · · , α(at)} ⊆ ∆(R, ρ, φ) e α(as) ≻

λ para s = 1, · · · , t}
= min{µ(λ1, · · · , λt) | λi ≻ λ, λi ∈ ∆(R, ρ, φ) para i = 1, · · · , t}

dt(C̃(δ)) ≥ min{µ(a1, · · · , at) | ai ̸= aj para i ̸= j e {ba1 , · · · , bat} ⊆ B \G} ≥
min{µ(α(a1), · · · , α(at)) | α(ai) ̸= α(aj) para i ̸= j, {α(a1), · · · , α(at)} ⊆

∆(R, ρ, φ) e µ(α(as)) ≥ δ para s = 1, · · · , t}
= min{µ(λ1, · · · , λt) | µ(λi) ≥ δ, λi ∈ ∆(R, ρ, φ) para i = 1, · · · , t}

como queŕıamos demonstrar.

É fácil ver que com relação as cotas acima a construção de C̃(δ) é um melhoramento de C(λ)
e Ẽ(δ) é um melhoramento de E(λ). Os resultados sobre d(C(λ)) e d(C̃(δ)) são conhecidos
como a cota da ordem e são da referência [8]. Os resultados sobre dt(C(λ)) vem da referência
[9] e os resultados sobre dt(C̃(δ)) vem da referência [110]. Os resultados sobre E(λ) eẼ(λ) são
de Andersen-Geil, referência [1].

Exemplo 3.1.19 Isto é uma continuação do exemplo 3.1.16. Na tabela 3.3 abaixo, listamos
todos os valores de σ(α(i)), para i = 1, · · · , 27.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
α(i) 0 3 4 6 7 8 9 10 11 12 13 14 15 16

σ(α(i)) 27 24 23 21 20 19 18 17 16 15 14 13 12 11
i 15 16 17 18 19 20 21 22 23 24 25 26 27

α(i) 17 18 19 20 21 22 23 24 25 26 28 29 32
σ(α(i)) 10 9 8 7 6 6 4 3 4 3 2 2 1

Tabela 3.3: Valores de σ(α(i)).

Note que ε(21) = spanFq{b1, · · · , b21} = E(23) é um código com parâmetros n = 27, k = 21
e d ≥ 4.

E temos também que ε(22) = spanFq{b1, · · · , b22} = E(24) é um código com parâmetros
n = 27, k = 22 e d ≥ 3.

Agora veja que Ẽ(4) = spanFq{bi | σ(i) ≥ 4} = spanFq{b1, · · · , b20, b21, b23} é um código
com parâmetros n = 27, k = 22 e d ≥ 4, e portanto é um código melhor que os códigos E(23) e
E(24), isto é, Ẽ(4) é um código melhorado. Abaixo, segue uma tabela (tabela 3.4) com exemplos
de códigos da forma E(λ) e Ẽ(δ) usando-se a tabela 3.3, a cota que aparece na tabela 3.4 é a
cota fornecida pelo teorema 3.1.18.
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Código Base Cota Código Base Cota
E(0) {b1} d(E(0)) = 27 E(17) {b1, · · · , b15} d(E(17)) ≥ 10
E(1) {b1} d(E(1)) = 27 E(18) {b1, · · · , b16} d(E(18)) ≥ 9
E(2) {b1} d(E(2)) = 27 E(19) {b1, · · · , b17} d(E(19)) ≥ 8
E(3) {b1, b2} d(E(3)) ≥ 24 E(20) {b1, · · · , b18} d(E(20)) ≥ 7
E(4) {b1, b2, b3} d(E(4)) ≥ 23 E(21) {b1, · · · , b19} d(E(21)) ≥ 6
E(5) {b1, b2, b3} d(E(5)) ≥ 23 E(22) {b1, · · · , b20} d(E(22)) ≥ 6
E(6) {b1, · · · , b4} d(E(6)) ≥ 21 E(23) {b1, · · · , b21} d(E(23)) ≥ 4
E(7) {b1, · · · , b5} d(E(7)) ≥ 20 E(24) {b1, · · · , b22} d(E(22)) ≥ 3
E(8) {b1, · · · , b6} d(E(8)) ≥ 19 E(25) {b1, · · · , b23} d(E(25)) ≥ 3
E(9) {b1, · · · , b7} d(E(9)) ≥ 18 E(26) {b1, · · · , b24} d(E(26)) ≥ 3
E(10) {b1, · · · , b8} d(E(10)) ≥ 17 E(27) {b1, · · · , b24} d(E(27)) ≥ 3
E(11) {b1, · · · , b9} d(E(11)) ≥ 16 E(28) {b1, · · · , b25} d(E(28)) ≥ 2
E(12) {b1, · · · , b10} d(E(12)) ≥ 15 E(29) {b1, · · · , b26} d(E(29)) ≥ 2
E(13) {b1, · · · , b11} d(E(13)) ≥ 14 E(30) {b1, · · · , b26} d(E(30)) ≥ 2
E(14) {b1, · · · , b12} d(E(14)) ≥ 13 E(31) {b1, · · · , b26} d(E(31)) ≥ 2
E(15) {b1, · · · , b13} d(E(15)) ≥ 12 E(32) {b1, · · · , b27} d(E(32)) ≥ 1
E(16) {b1, · · · , b14} d(E(16)) ≥ 11
Código Base Cota Código Base Cota

Ẽ(0) {b1, · · · , b27} d(Ẽ(0)) ≥ 0 Ẽ(15) {b1, · · · , b10} d(Ẽ(15)) ≥ 15

Ẽ(1) {b1, · · · , b27} d(Ẽ(1)) ≥ 1 Ẽ(16) {b1, · · · , b9} d(Ẽ(15)) ≥ 16

Ẽ(2) {b1, · · · , b26} d(Ẽ(2)) ≥ 2 Ẽ(17) {b1, · · · , b8} d(Ẽ(17)) ≥ 17

Ẽ(3) {b1, · · · , b24} d(Ẽ(3)) ≥ 3 Ẽ(18) {b1, · · · , b7} d(Ẽ(18)) ≥ 18

Ẽ(4) {b1, · · · , b21, b23} d(Ẽ(4)) ≥ 4 Ẽ(19) {b1, · · · , b6} d(Ẽ(19)) ≥ 19

Ẽ(5) {b1, · · · , b20} d(Ẽ(5)) ≥ 5 Ẽ(20) {b1, · · · , b5} d(Ẽ(20)) ≥ 20

Ẽ(6) {b1, · · · , b20} d(Ẽ(6)) ≥ 6 Ẽ(21) {b1, · · · , b4} d(Ẽ(21)) ≥ 21

Ẽ(7) {b1, · · · , b18} d(Ẽ(7)) ≥ 7 Ẽ(22) {b1, b2, b3} d(Ẽ(22)) ≥ 22

Ẽ(8) {b1, · · · , b17} d(Ẽ(8)) ≥ 8 Ẽ(23) {b1, b2, b3} d(Ẽ(23)) ≥ 23

Ẽ(9) {b1, · · · , b16} d(Ẽ(9)) ≥ 9 Ẽ(24) {b1, b2} d(Ẽ(24)) ≥ 24

Ẽ(10) {b1, · · · , b15} d(Ẽ(10)) ≥ 10 Ẽ(25) {b1} d(Ẽ(25)) ≥ 25

Ẽ(11) {b1, · · · , b14} d(Ẽ(11)) ≥ 11 Ẽ(26) {b1} d(Ẽ(26)) ≥ 26

Ẽ(12) {b1, · · · , b13} d(Ẽ(12)) ≥ 12 Ẽ(27) {b1} d(Ẽ(27)) ≥ 27

Ẽ(13) {b1, · · · , b12} d(Ẽ(13)) ≥ 13

Ẽ(14) {b1, · · · , b11} d(Ẽ(14)) ≥ 14

Tabela 3.4: Exemplos de Códigos E(λ) e Ẽ(δ)

3.2 Códigos de Goppa de um ponto melhorados

Nesta seção, mostraremos que todo código de Goppa de um ponto pode ser visto como sendo
um código da forma E(λ) em relação a alguma estrutura de ordem, assim podemos usar os
resultados da seção anterior para estimar a distância mı́nima.

A seguir, iremos usar alguns conceitos da teoria de corpos de funções algébricas e códigos
de Goppa, o leitor que não esteja familiarizado com tais conceitos pode consultar os caṕıtulos
1 e 2 da referência [5]. Usaremos a mesma notação da referência [5].

O seguinte exemplo é bastante conhecido:



27

Exemplo 3.2.1 Seja P um lugar racional no corpo de funções F de uma variável com corpo
de constantes Fq. Seja vP a valorização correspondente a P . Considere a estrutura algébrica:

R =
∪∞

m=0 L(mP )

e considere a função ρ : R → Γ∪ {−∞}, definida por ρ(f) = −vP (f) onde Γ é o semigrupo de
Weierstrass correspondente a P .

Vamos ver que ρ está bem definida. Seja z ̸= 0 ∈ R, se Q é um pólo de z, então Q = P .
Suponha que vP (z) > 0, então z ∈ P , mas Fq∩P = {0}, logo z é transcendente sobre Fq, assim
z tem pelo menos um pólo Q. Mas Q não pode ser P pois vP (z) > 0, o que é uma contradição.
Portanto vP (z) ≤ 0. Agora sabemos que vP é uma valorização discreta, logo tem as seguinte
propriedades:

(1) vP (f) = ∞ ⇔ f = 0
(2) vP (f.g) = vP (f) + vP (g) para todo f, g ∈ F
(3) vP (f + g) ≥ min{vP (f), vP (g)} para todo f, g ∈ F com a igualdade ocorrendo se vP (f) ̸=
vP (g).
(4) vP (λ) = 0 para todo λ ̸= 0 ∈ Fq.
(5) Existe um elemento z ∈ F com vp(z) = 1.

Desta forma ρ está de fato bem definida. E ainda mais, R é uma Fq-álgebra e segue das
propriedades (1) a (5) que ρ satisfaz as propriedades (W.0) a (W.5), logo ρ é uma função peso.

Agora sejam P1, · · · , Pn lugares distintos de grau 1 em F, todos eles diferentes de P , e
considere a aplicação φ : R → Fn

q , definida por φ(f) := (f(P1), · · · , f(Pn)). Veja que se
f ∈ R então vPi

(f) ≥ 0 para i = 1, · · · , n, pois Pi ̸= P . A classe de reśıduos f(Pi) de f
módulo Pi é um elemento do corpo de classes de reśıduos de Pi, isto é, f(Pi) ∈ OPi

�Pi. Como
grau(Pi) = [OPi

�Pi : Fq] = 1, este corpo de reśıduos é isomorfo a Fq, então f(Pi) ∈ Fq e φ
está bem definida.

Vamos mostrar que φ é um homomorfismo de Fq-álgebras, para isto precisaremos do seguinte
teorema cuja demonstração pode ser encontrada em [5].

Teorema 3.2.2 (Teorema da Aproximação Forte). Seja S $ PF um subconjunto próprio
de PF e P1, · · · , Pn ∈ S. Dados g1, · · · , gn ∈ F e inteiros a1, · · · , an ∈ Z, então existe um
elemento f ∈ F tal que:

vPj
(f − gj) = aj para (j = 1, · · · , n), e

vQ(f) ≥ 0 para todo Q ∈ S \ {P1, · · · , Pn}.

Agora vamos mostrar que φ é sobrejetora.

Denote por e1 := (1, 0, · · · , 0), e2 := (0, 1, 0, · · · , 0), · · · , en := (0, · · · , 0, 1) ∈ Fn
q . Tomando

S = PF \ {P} e g1 = g2 = · · · = gn = 0 no teorema acima, temos que para cada i existe fi ∈ F
tal que:

vPj
(fi) = 1 para todo j ̸= i , vPi

(fi) = 0 e
vQ(fi) ≥ 0, para todo Q ∈ S \ {P1, · · · , Pn}.
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Veja que S \ {P1, · · · , Pn} = PF \ {P1, · · · , Pn, P} e logo vQ(fi) ≥ 0 para todo Q ̸= P .

Como vPj
(fi) = 1 > 0 para j ̸= i, então cada fi é transcendente sobre Fq e logo fi tem pelo

menos um pólo que nesse caso tem que ser necessariamente P . Logo vP (fi) < 0.

Assim, fi ∈ R e φ(fi) = fi(Pi)ei, e temos que fi(Pi) ̸= 0 pois vPi
(fi) = 0 ⇒ fi ∈ OPi

e f /∈ Pi.

É fácil ver que φ é linear e φ(fg) = φ(f) ∗ φ(g) para todo f, g ∈ R e pelo que fizemos acima
φ é sobrejetora, logo φ é um homomorfismo de Fq-álgebras.

Assim (R, ρ, φ) é uma estrutura de ordem sobre Fq.

Observação 3.2.3 Como (R, ρ, φ) é uma estrutura de ordem sobre Fq, podemos considerar
os subespaços Rλ = {f ∈ R | ρ(f) ≤ λ} de R.

Note que se f ∈ Rλ, então:

ρ(f) ≤ λ⇒ −vP (f) ≤ λ⇒ vP (f) ≥ −λ⇒ f ∈ L(λP ) ⊆ R.

Por outro lado, se f ∈ L(λP ), então vP (f) ≥ −λ e vQ(f) ≥ 0 para todo Q ̸= P ∈ PF o que
nos diz que ρ(f) ≤ λ e f ∈ R, e logo f ∈ Rλ. Assim, Rλ = L(λP ), para todo λ ∈ N0.

Considere a aplicação φ : R → Fn
q , definida anteriormente por φ(f) := (f(P1), · · · , f(Pn)).

Como P1, · · · , Pn são lugares distintos de grau 1 em F, todos eles diferentes de P , podemos
considerar o código de goppa CL(P1 + · · ·+ Pn, λP ), logo temos:

CL(P1 + · · ·+ Pn, λP ) = {(f(P1), · · · , f(Pn)) | f ∈ L(λP )}
= {(f(P1), · · · , f(Pn)) | f ∈ Rλ} = φ(Rλ) = E(λ)

Os códigos de Goppa da forma CL(D,G), onde G = λP com λ ∈ N0 e D = P1 + · · · + Pn

com P1, · · · , Pn lugares de grau 1 distintos e Pi ̸= P para todo i = 1, · · · , n são chamados de
códigos de goppa de um ponto.

Consequentemente, códigos de goppa de um ponto são códigos de goppa da forma E(λ), e os
códigos duais dos códigos de goppa de um ponto são códigos da forma C(λ).

Vamos mostrar a seguir que a cota dos códigos E(λ) no teorema 3.1.18 é um melhoramento
da cota de goppa, para isto precisaremos do seguinte lema:

Lema 3.2.4 Seja Γ um semigrupo numérico com um número finito de lacunas, isto é; N0 \ Γ
um conjunto finito. Então o número de elementos de Γ \ (i+ Γ) é igual a i.

Demonstração. Uma demonstração deste lema pode ser encontrada na referência [4].

Proposição 3.2.5 A cota dos códigos E(λ) no teorema 3.1.18 é um melhoramento da cota de
Goppa.

Demonstração. Temos que:

d(E(λ)) ≥ min{♯((i+ Λ) ∩∆(R, ρ, φ)) | i ∈ Λ, i ≤ λ}.

E pelo lema anterior temos que:
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♯((i+ Λ) ∩∆(R, ρ, φ)) ≥ n− i

com igualdade se, e somente se Λ \ (i+ Λ) ⊆ ∆(R, ρ, φ). De fato, temos que:

Λ = (i+ Λ) ∪ (Λ \ (i+ Λ))

e essa união é disjunta. Além disso, ∆(R, ρ, φ) ⊆ (i+Λ)∪ (Λ\ (i+Λ)). Agora se (Λ\ (i+Λ)) ⊆
∆(R, ρ, φ), então ∆(R, ρ, φ) ∩ (i+ Λ) = n− i.

Reciprocamente, se ∆(R, ρ, φ) ∩ (i + Λ) = n − i, então existem i elementos de ∆(R, ρ, φ) que
não estão em (i + Λ), logo esses i elementos estão em Λ \ (i + Λ), pelo lema 3.2.4 temos que
♯(Λ \ (i+ Λ)) = i, segue que Λ \ (i+ Λ) ⊆ ∆(R, ρ, φ).

A seguir, apenas para ilustração do fato de que a cota de Andersen-Geil (A-G) tem um
desempenho melhor ou igual que a cota de Goppa (G), colocamos na tabela abaixo os códigos
E(λ), λ = 3, · · · , 30, baseados no exemplo 3.1.11 da curva hermitiana X4−Y 3−Y . Na tabela,
k siginifica a dimensão do código E(λ).

Código k Cota A-G Cota G Código k Cota A-G Cota G
E(3) 2 24 24 E(17) 15 10 10
E(4) 3 23 23 E(18) 16 9 9
E(5) 3 23 22 E(19) 17 8 8
E(6) 4 21 21 E(20) 18 7 7
E(7) 5 20 20 E(21) 19 6 6
E(8) 6 19 19 E(22) 20 6 5
E(9) 7 18 18 E(23) 21 4 4
E(10) 8 17 17 E(24) 22 3 3
E(11) 9 16 16 E(25) 23 3 2
E(12) 10 15 15 E(26) 24 3 1
E(13) 11 14 14 E(27) 24 3 1
E(14) 12 13 13 E(28) 25 2 1
E(15) 13 12 12 E(29) 26 2 1
E(16) 14 11 11 E(30) 26 2 1

Tabela 3.5: Comparação entre as cotas de Andersen-Geil(A-G) e Goppa (G)



Caṕıtulo 4

Bases de Gröbner

4.1 Uma abordagem por bases de Gröbner

Nas seções anteriores descrevemos as ferramentas necessárias para trabalharmos com códigos
da teoria dos domı́nios de ordem; as ferramentas importantes são: a base bem ordenada B =
{fλ | ρ(fλ) = λ}λ∈Γ, o homomorfismo φ : R → Fn

q e o conjunto ∆(R, ρ, φ). Lembrando que
∆(R, ρ, φ) = {α(1), · · · , α(n)}, onde α(1) = 0 e α(i) (para i = 2, · · · , n) é definido como
sendo o menor elemento em Γ que é maior que α(1), α(2), · · · , α(i − 1) e satisfaz φ(Rγ) &
φ(Rα(i)) para todo γ < α(i). Com estas ferramentas em mãos constrúımos a base B = {b1 =
φ(fα(1)), · · · , bn = φ(fα(n))} a qual é muito interessante para a construção de códigos.

Para um código de pequeno comprimento, normalmente encontrar o conjunto ∆(R, ρ, φ)
é uma tarefa fácil, bastando usar somente métodos de álgebra linear básica. Contudo, para
códigos de comprimentos maiores precisaremos de um método mais sofisticado. Na teoria a
seguir iremos usar vários conceitos tais como: base de Gröbner, o algoritmo da divisão para
polinômios em várias variáveis, e o algoritmo de Buchberger. Assumimos que o leitor tenha
familiaridade com tais conceitos, e indicamos uma leitura da referência [2] para maiores detalhes.

Definição 4.1.1 Denote por M(X1, X2, · · · , Xm) o conjunto de todos os monômios em
X1, X2, · · · , Xm. Dada uma ordem monomial ≺ sobre M(X1, X2, · · · , Xm) e um ideal L ⊆
F[X1, · · · , Xm] a pegada de L é o conjunto:

∆≺(L) := {M ∈ M(X1, X2, · · · , Xm) | M não é um monômio ĺıder de nenhum polinômio em
L}.

Observação 4.1.2 O nome“pegada”foi sugerido por D.Blahut em 1991. A pegada foi anteri-
ormente chamada de “delta-set”, entre outros nomes.

Somente em raros casos a pegada de um ideal L pode ser encontrada diretamente dos po-
linômios que definem L. Contudo, podemos sempre extender uma base qualquer de L para uma
base de Gröbner de L usando o conhecido algoritmo de Buchberger , e depois podemos encontrar
a pegada de L facilmente.

Definição 4.1.3 (a) Seja F um corpo e seja J ⊆ F[X1, · · · , Xm] um ideal. Sejam f, g ∈
F[X1, · · · , Xm]. Dizemos que f e g são congruentes módulo J , escrevendo f ≡ g mod J se
f − g ∈ J .

(b) Seja G uma base de Gröbner para J . Escreveremos f rem G como o resto da divisão de f

pela base G, e vamos escrever f
G
ou simplesmente f (quando não houver risco de confusão)

para denotar a classe de f em F[X1, · · · , Xm]/J , onde f = g ⇔ f − g ∈ J .

30
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(c)Vamos usar a notação multi-ind́ıce para monômios. Escreveremos Xα :=
∏m

i=1X
αi
i onde

α = (α1, · · · , αm).

Proposição 4.1.4 Sejam F um corpo. Fixe uma ordem de monômios ≺ sobre M[X1, · · · , Xm]
e seja I ⊆ F[X1, · · · , Xm] um ideal.

(a) Todo f ∈ F[X1, · · · , Xm] é congruente módulo I a um único polinômio r que é uma
combinação F− linear de monômios em ∆≺(I).

(b) Os elementos de ∆≺(I) são linearmente independentes módulo I, isto é, se
∑

α cαX
α ≡

0 mod I, onde Xα ∈ ∆≺(I) e cα ∈ F para todo α, então cα = 0 para todo α.

Demonstração. (a) Seja G uma base de Gröbner para I e seja f ∈ F[X1, · · · , Xm]. Pelo
algoritmo da divisão, o resto r = f rem G satisfaz f = q+ r, onde q ∈ I. Então f − r = q ∈ I e
temos que f ≡ r mod I. O algoritmo da divisão também diz que r é uma combinação F−linear
de monômios de ∆≺(I), e a unicidade de r segue do fato de que tomamos G como sendo uma
base de Gröbner.

(b) Seja G uma base de Gröbner para I. Então se
∑

α cαX
α ≡ 0 mod I temos que

∑
α cαX

α ∈ I
e logo

∑
α cαcαX

αrem G = 0. Como Xα ∈ ∆≺(I), ∀α, temos que:

cαX
αrem G = cαX

α, ∀ α

Consequentemente,
∑

α cαX
αrem G =

∑
α cαX

α. Assim, de
∑

α cαX
αrem G = 0, segue que∑

α cαX
α = 0, e logo cα = 0, para todo α.

Observação 4.1.5 Historicamente, a proposição anterior foi na verdade uma das primeiras
aplicações da teoria das bases de Gröbner.

Como consequência da proposição anterior temos o seguinte resultado:

Proposição 4.1.6 Seja F um corpo e seja L ⊆ F[X1, · · · , Xm] um ideal. Então {M | M ∈
∆≺(L)} é uma base para F[X1, · · · , Xm]/L como espaço vetorial sobre F.

Uma outro resultado muito útil é a seguinte proposição que é conhecida como Cota da
Pegada.

Proposição 4.1.7 (a) Sejam F um corpo e J ⊆ F[X1, · · · , Xm] um ideal. Se ∆≺(J) é finito
então ♯(VF(J)) ≤ ♯(∆≺(J)).

(b) Se ∆≺(J) é finito, J é um ideal radical e F é algebricamente fechado, então ♯(VF(J)) =
♯(∆≺(J)).

Demonstração. Primeiro mostraremos que dados pontos distintos P1, P2, · · · , Pr ∈ Fm, existe
um polinômio f1 ∈ F[X1, · · · , Xm] com f1(P1) = 1, e f1(P2) = · · · = f1(Pr) = 0. Para provar
isto, observe que dados dois pontos A = (a1, · · · , am), B = (b1, · · · , bm) ∈ Fm com A ̸= B, então

eles diferem em pelo menos uma coordenada, digamos a j-ésima, e assim tomando g =
Xj − bj
aj − bj

temos que g satisfaz g(A) = 1 e g(B) = 0. Aplicando esta observação para cada par P1, Pi com
P1 ̸= Pi, i ≥ 2, obtemos polinômios gi′s tais que gi(P1) = 1 e gi(Pi) = 0 para i ≥ 2. Então
f1 = g2.g3 · · · gr tem a propriedade desejada.
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Neste argumento que acabamos de dar, não existe nada em especial com P1. Se aplicarmos
o mesmo argumento com cada Pi, i ≥ 1, teremos polinômios f1, · · · , fr tais que fi(Pi) = 1 e
fi(Pj) = 0 para i ̸= j. Agora, podemos provar o teorema.

(a) Seja G uma base de Gröbner e seja V := {P1, · · · , Pr} ⊆ VF(J), onde os Pi′s são todos
distintos. Então temos f1, · · · , fr como acima, isto é; fi(Pi) = 1 e fi(Pj) = 0 para i ̸= j. Seja∑r

i=1(aifi rem G) = 0 uma combinação linear em F[X1, · · · , Xm]/J , onde ai ∈ F. Voltando em
F[X1, · · · , Xm], como

∑r
i=1(aifi rem G) = 0, então h :=

∑r
i=1 aifi ∈ J , e como VF(J) = {P ∈

Fm | f(P ) = 0 ∀f ∈ J}, segue que h se anula em todos os pontos de VF(J), em particular; h
se anula em V ⊆ VF(J). Então, para 1 ≤ j ≤ r, temos:

0 = h(Pj) =
∑r

i=1 aifi(Pj) = ajfj(Pj) = aj

e temos que f1 rem G, · · · , fr rem G são r elementos linearmente independentes em
F[X1, · · · , Xm]/J .

Assim, para cada r pontos em VF(J) existem r elementos linearmente independentes em
F[X1, · · · , Xm]/J . Agora, ∆≺(J) forma uma base para F[X1, · · · , Xm]/J como espaço veto-
rial, e ∆≺(J) é finito; seja s := ♯(∆≺(J)), assim pelo que fizemos acima existem no máximo s
pontos distintos em VF(J), e segue o que queŕıamos provar.

(b)Suponha que J é radical. Para mostrarmos que ♯(VF(J)) = ♯(∆≺(J)) basta mostrarmos que
B = {f1 remG, · · · , fr remG} é uma base para F[X1, · · · , Xm]/J . No item (a) já provamos
a independência linear, precisamos então mostrar apenas que B gera F[X1, · · · , Xm]/J . Seja
g ∈ F[X1, · · · , Xm]/J , e denote ai := g(Pi) e considere h := g −

∑r
i=1 aifi. Note que h(Pj) = 0

para todo j, assim h ∈ I(V (J)) = {f ∈ F[X1, · · · , Xm] | f(P ) = 0 ∀P ∈ V (J)}.
Agora temos que F é algebricamente fechado e J é radical, logo pelo teorema (forte) de zeros
de Hilbert, I(V (J)) =

√
J = J , e assim h ∈ J . Logo h = 0 em F[X1, · · · , Xm]/J , o que implica

que g =
∑r

i=1 aifi.

Agora vamos introduzir as ordens que serão importantes para nós. Elas são as ordens grau
com pesos generalizadas.

Definição 4.1.8 Dados pesos w(X1), · · · , w(Xm) ∈ Nr
0 {0}, seja Nr

0 ordenado por alguma
ordem monomial ≺Nr

0
fixada e seja ≺M uma ordem monomial fixada sobre M(X1, · · · , Xm).

Os pesos se extendem para um monômio pela função w : M(X1, · · · , Xm) → Nr
0 definida por

w(Xα1
1 .Xα2

2 · · ·Xαm
m ) =

∑m
i=1 αiw(Xi). Para um monômio M dizemos que w(M) é o peso de

M . Definimos o grau com pesos wdeg(F ) de um polinômio F como sendo o maior peso
(com relação a ≺Nr

0
) que aparece como peso de um monômio no suporte de F . Agora, a ordem

grau com pesos generalizada ≺w induzida por w, ≺Nr
0
e ≺M é a ordem monomial definida

a seguir. Dados M1,M2 ∈ M(X1, · · · , Xm), então M1 ≺w M2 se e somente se uma das duas
seguintes condições ocorrem:

(1) w(M1) ≺Nr
0
w(M2), (2) w(M1) = w(M2) e M1 ≺M M2.

Estamos agora em condições de dar uma descrição útil para os domı́nios de ordem finita-
mente gerados.

Teorema 4.1.9 Seja ≺w uma ordem grau com pesos generalizada e assuma que
I ⊆ F[X1, · · · , Xm] é um ideal com uma base de Gröbner G com relação a ≺w. Suponha
que os elementos da pegada ∆≺w(I) tem distintos pesos e que todo elemento de G tem exa-
tamente dois monômios de maior peso (com relação a ≺Nr

0
) em seu suporte. Então R =
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F[X1, · · · , Xm]/I é um domı́nio de ordem com uma função peso definida a seguir: Dado um
f ̸= 0 ∈ F[X1, · · · , Xm]/I escreva f = F + I onde F ∈ spanF{M | M ∈ ∆≺w(I)}. Temos que
ρ(f) = wdeg(F ) e ρ(0) = −∞. E ainda mais, qualquer domı́nio de ordem finitamente gerado
pode ser descrito desta forma.

Demonstração. A demonstração deste teorema pode ser encontrada na referência [3, teoremas
9.1 e 10.4].

Exemplo 4.1.10 Neste exemplo mostramos como o domı́nio de ordem e a função peso descrita
no exemplo 3.1.16 podem ser facilmente explicados pelo teorema 4.1.9. Os pesos das variáveis
são w(X) = 3 e w(Y ) = 4, a ordem monomial ≺N0 é a usual (que é a única ordem monomial
sobre N0 e a ordem ≺M sobre M(X, Y ) é a ordem lexicográfica com X ≺M Y . A ordem grau
com pesos generalizada ≺w resultante nos dá a seguinte pegada:

∆≺w(I) = {XαY β | 0 ≤ α, 0 ≤ β < 3}

Apenas para ilustração, podemos fazer uma correspondência dos pontos em N2
0 com os monômios

em M(X,Y ) da seguinte maneira: a cada ponto (m,n) ∈ N2
0 associamos o monômio XmY n ∈

M(X,Y ) e vice-versa. Desta forma a pegada acima pode ser representada como os pontos que
não estão na faixa (infinita) hachurada na figura abaixo.

Figura 4.1: A pegada ∆≺w(I)

É fácil ver que a aplicação w : ∆≺w(I) → ⟨3, 4⟩ dada por w(X iY j) = 3i+4j é uma bijeção.
Logo, os elementos de ∆≺w(I) tem pesos distintos. Note que G = {X4 − Y 3 − Y } é uma base
de Gröbner para I, e que w(Y 3) = w(X4) = 12, isto é; X4 − Y 3 − Y tem dois monômios
de maior grau. Assim, a pegada ∆≺w(I) satisfaz as condições do teorema 4.1.9, e note que a
função peso dada no teorema 4.1.9 é exatamente a mesma descrita no exemplo 3.1.16. A base
bem comportada do exemplo 3.1.16 é encontrada usando-se a proposição 4.1.6 sobre a pegada
acima.

Agora, precisamos escolher um homomorfismo φ : R → Fn
q sobre o domı́nio de ordem

R = Fq[X1, · · · , Xm]/I. A escolha mais óbvia de homomorfismo é a aplicação de avaliação sobre
a variedade afim VFq(I) = {P1, · · · , Pn}. Em outras palavras, o homomorfismo φ : R → Fn

q

dado por φ(F + I) := (F (P1), · · · , F (Pn)).
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Uma pergunta natural neste momento seria: o que acontece se escolhermos um outro ho-
momorfismo φ̃ : R → Fn

q sobre o domı́nio de ordem R = Fq[X1, · · · , Xm]/I, que não seja a
aplicação de avaliação φ?

O próximo resultado nos ajudará a responder esta pergunta.

Teorema 4.1.11 Seja φ : Fq[X1, · · · , Xm]/I → Fn
q uma aplicação sobrejetora Fq-linear sa-

tisfazendo φ(fg) = φ(f) ∗ φ(g) para todo f, g ∈ Fq[X1, · · · , Xm]/I. Então existe um conjunto
{P1, · · · , Pn} ⊆ VFq(I), Pi ̸= Pj para i ̸= j tal que φ(F (X1, · · · , Xm)+I) = (F (P1), · · · , F (Pn))
ocorre para todo F (X1, · · · , Xm) ∈ Fq[X1, · · · , Xm].

Demonstração. Seja πi : Fn
q → Fq a aplicação de projeção na i-ésima coordenada, isto

é; πi(a1, a2, · · · , an) = ai. Como φ é uma aplicação Fq-linear sobrejetora, então para cada
i = 1, · · · , n a aplicação φi : Fq[X1, · · · , Xm]/I → Fq definida por φi(F + I) = πi(φ(F + I)) é
Fq-linear e sobrejetora, além disso essas aplicações são todas distintas.

Seja a = (a1, a2, · · · , an) ∈ Fn
q tal que φ(1 + I) = a, e sejam b = (b1, b2, · · · , bn) ∈ Fn

q com
bi ̸= 0 para todo i = 1, · · · , n e F + I ∈ Fq[X1, · · · , Xm]/I tal que φ(F + I) = b. Veja que
φ(F + I) = φ((1 + I)(F + I)) = φ(1 + I) ∗ φ(F + I) = (a1b1, · · · , anbn) = (b1, · · · , bn), assim
φ(1+ I) = (1, 1, · · · , 1), e logo φ é um homomorfismo de anéis. E como φ é Fq-linear segue que
φ(c+I) = (c, c, · · · , c) para todo c ∈ Fq. Assim, cada φi é um homomorfismo com φi(c+I) = c
para todo c ∈ Fq. Sejam

P1 = (P
(1)
1 , P

(2)
1 , · · · , P (m)

1 ) ∈ Fm
q

P2 = (P
(1)
2 , P

(2)
2 , · · · , P (m)

2 ) ∈ Fm
q

...
...

...
Pn = (P

(1)
n , P

(2)
n , · · · , P (m)

n ) ∈ Fm
q

tais que

P
(1)
1 = φ1(X1 + I), P

(2)
1 = φ1(X2 + I), · · · , P (m)

1 = φ1(Xm + I)

P
(1)
2 = φ2(X1 + I), P

(2)
2 = φ2(X2 + I), · · · , P (m)

2 = φ2(Xm + I)
...

...
...

P
(1)
i = φi(X1 + I), P

(2)
i = φi(X2 + I), · · · , P (m)

i = φi(Xm + I)
...

...
...

P
(1)
n = φn(X1 + I), P

(2)
n = φn(X2 + I), · · · , P (m)

n = φn(Xm + I)

Seja < uma ordem monomial sobre o conjunto de todos os monômios em X1, · · · , Xm. Temos
que o conjunto {M + I | M ∈ ∆<(I)} é uma base para Fq[X1, · · · , Xm]/I como Fq-espaço
vetorial, seja M = Xα1

1 Xα2
2 · · ·Xαm

m ∈ ∆<(I), e seja G = cM , onde c ∈ Fq, logo temos que

G(Pi) = G((P
(1)
i , P

(2)
i , · · · , P (m)

i )) = c(P
(1)
i )α1(P

(2)
i )α2 · · · (P (m)

i )αm =
φi(c+ I)φi(X

α1
1 + I)φi(X

α2
2 + I) · · ·φi(X

αm
m + I) = φi(cX

α1
1 Xα2

2 · · ·Xαm
m + I) = φi(cM + I).

Assim, φi(cM + I) = cM(Pi) para todo M ∈ ∆<(I), c ∈ Fq e i = 1, · · · , n. Como qualquer
f ∈ Fq[X1, · · · , Xm]/I pode ser escrito como f = F + I onde F ∈ spanFq{M | M ∈ ∆<(I)} e
φi é Fq-linear, segue que φi(F + I) = F (Pi) para todo i = 1, · · · , n.

Assim, φ(F + I) = (F (P1), F (P2), · · · , F (Pn)). Agora, vamos mostrar que Pi ∈ VFq(I) para
todo i = 1, · · · , n. Para todo H(X1, · · · , Xm) ∈ I temos que
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φ(H(X1, · · · , Xm) + I) = φ(0 + I) = (0, 0, · · · , 0) = (H(P1), · · · , H(Pn)).

Logo H(P1) = H(P2) = · · · = H(Pn) = 0 para todo H ∈ I, assim P1, P2, · · · , Pn ∈ VFq(I).

Definição 4.1.12 Dado um ideal I ⊆ Fq[X1, · · · , Xm] escrevemos

Iq := I + ⟨Xq
1 −X1, X

q
2 −X2, · · · , Xq

m −Xm⟩.

Observação 4.1.13 Sejam F = Fq, Iq ⊆ Fq[X1, · · · , Xm] como na definição acima, e seja ≺
uma ordem sobre M(X1, · · · , Xm). Então ♯(VFq(Iq)) = ♯(∆≺(Iq)).

Proposição 4.1.14 Considere uma estrutura de ordem (R, ρ,Γ) como descrita no teorema
4.1.9. Seja φ o homomorfismo φ : R → Fn

q dado por φ(F + I) := (F (P1), F (P2), · · · , F (Pn))
onde VFq(I) = {P1, · · · , Pn}. Temos que

∆(R, ρ, φ) = { w(M) | M ∈ ∆≺w(Iq) }

Demonstração. Uma das condiçoes no teorema 4.1.9 e que os pesos dos monomios em
∆≺w(I) sejam todos distintos. Como I ⊆ Iq, logo ∆≺w(Iq) ⊆ ∆≺w(I) e os pesos de todos os
monômios em ∆≺w(Iq) também são todos distintos. Consequentemente, o número de elementos
de {w(M) | M ∈ ∆≺w(Iq)} é igual ao número de elementos de ∆≺w(Iq). Mas pela observação
4.1.13 temos que ♯(∆≺w(Iq) = ♯(VFq(Iq)) = ♯(VFq(I)), logo ♯({w(M) | M ∈ ∆≺w(Iq)}) = n. E
ainda temos que ♯(∆(R, ρ, φ) = n, pois φ é sobrejetora. Assim,

♯(∆(R, ρ, φ)) = ♯({w(M) | M ∈ ∆≺w(Iq)})

A proposiçao portanto estara provada se mostrarmos que α(s) ∈ {w(M) | M ∈ ∆≺w(Iq)}
para s = 1, 2, · · · , n. Fixe α(s) ∈ ∆(R, ρ,Γ) e seja f ∈ R tal que ρ(f) = α(s). Pela cons-
trução do teorema 4.1.9 podemos escrever f = F + I onde F =

∑t
i=1 ηiMi, t ≥ 1, Mi ∈

∆≺w(I), ηi ∈ Fq \ {0} para i = 1, 2, · · · , t, w(Mt) ≺Nr
0
w(Mt−1) ≺Nr

0
· · · ≺Nr

0
w(M1), e onde

α(s) = ρ(f) = wdeg(F ) = w(M1).

Seja G
′
uma base de Gröbner para Iq com relação a ≺w. Agora, reduzindo F módulo G

′
usando

o algoritmo da divisão para polinômios, obtemos um resto
∑l

i=1 βiNi (que vamos mostrar ser
diferente de zero) onde Ni ∈ ∆≺w(Iq), βi ∈ Fq \ {0} para i = 1, 2, · · · , l e onde w(Nl) ≺Nr

0

w(Nl−1) ≺Nr
0
· · · ≺Nr

0
w(N1). Temos que F −

∑l
i βiNi ∈ Iq e como VFq(Iq) = VFq(I) =

{P1, · · · , Pn}, então φ(F −
∑l

i=1 βiNi + I) = 0. Logo,

φ(f) = φ(F + I) = φ(F + I)− φ(F −
l∑

i=1

βiNi + I) = (4.1)

= φ(F − (F −
l∑

i=1

βiNi) + I) = φ(
l∑

i=1

βiNi + I) (4.2)

Note que pela definição de α(s) temos que φ(f) ̸= 0. Portanto, por 4.2 temos que
∑l

i=1 βiNi ̸=
0. Este fato e o fato de que ∆≺w(Iq) ⊆ ∆≺w(I) implicam que:

ρ(
∑l

i=1 βiNi + I) = w(N1).

Agora, observe que pela natureza do algoritmo da divisão e pela definição de ≺w, temos que
wdeg(F ) ≽Nr

0
wdeg(

∑l
i=1 βiNi). Isto é o mesmo que dizer que:
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α(s) = ρ(f) = wdeg(F ) = w(M1) ≽Nr
0
w(N1) = wdeg(

∑l
i=1 βiNi) = ρ(

∑l
i=1 βiNi + I).

Pela definição de ∆(R, ρ, φ), temos que φ(Rλ) & φ(Rα(s)) para todo λ ≺Nr
0
α(s). Em particular,

isto implica que φ(g) ̸= φ(f) para todo g ∈ R com ρ(g) ≺Nr
0
ρ(f). Suponha que w(N1) ≺Nr

0
ρ(f),

como ρ(
∑l

i=1 βiNi + I) = w(N1), então φ(
∑l

i=1 β
l
iβiNi + I) ̸= φ(f). Uma contradição. Logo,

α(s) = w(N1) ∈ ∆≺w(Iq) e segue que a proposição está provada.

Exemplo 4.1.15 Isto é uma continuação do exemplo 4.1.10. Podemos mostrar que:

∆≺w(Iq) = {XαY β | 0 ≤ α < 9, 0 ≤ β < 3}

Consequentemente, temos que ∆(R, ρ, φ) = {XαY β | 0 ≤ α < 9, 0 ≤ β < 3} que por inspeção,
nos fornece exatamente a base B encontrada no exemplo 3.1.11.

Esta pegada é particulamente simples no sentido em que dizemos que ela tem o formato de uma
“caixa”. Por inspeção, temos como uma consequência deste fato o seguinte:

µ(ρ(XαY β + I)) = σ(ρ(X8−αY 2−β + I))

para todo α, β com XαY β na pegada de Iq.

Como exemplo podemos citar:

ρ(X5Y + I) = 19 e ρ(X8−5Y 2−1 + I) = 13

Logo,

µ(19) = ♯(N(19)) = ♯({η ∈ Γ | ∃β ∈ Γ com η + β = 19}) =
♯({0, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 19}) = 14

σ(13) = ♯(M(13)) = ♯({γ ∈ ∆(R, ρ, φ) | ∃β ∈ ∆(R, ρ, φ) com 13 + β = γ}) =
= ♯({13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 32}) = 14

Portanto, em particular a cota de Feng-Rao nos fornece a mesma estimativa para a distância
mı́nima do código c(α(s)) que a cota de Andersen-Geil fornece para o código E(α(n − s)),
s = 1, · · · , n− 1.

Podemos provar este fato no seguinte resultado:

Proposição 4.1.16 : Seja R um domı́nio de ordem sobre Fq descrito como no teorema 4.1.9.
Seja VFq(Iq) = {P1, · · · , Pn} e considere a aplicação de avaliação φ : R → Fn

q dada por
φ(F + I) = (F (P1), · · · , F (Pn)). Seja ∆(R, ρ, φ) = {α(1), α(2), · · · , α(n)} definido como ante-
riormente. Se ∆≺w(Iq) é da forma:

∆≺w(Iq) = {Xβ1

1 X
β2

2 · · ·Xβm
m | β1 ≤ γ1, β2 ≤ γ2, · · · , βm ≤ γm}
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para algum (γ1, γ2, · · · , γm) ∈ Nm, então:

(a) µ(ρ(Xβ1

1 · · ·Xβm
m + I)) = σ(ρ(Xγ1−β1

1 · · ·Xγm−βm
m + I)), ocorre para qualquer Xβ1

1 · · ·Xβm
m ∈

∆≺w(Iq).
(b) α(n)− α(l) = α(n− l + 1), para todo l = 1, · · · , n.
(c) Para qualquer s com 1 ≤ s < n, os códigos C(α(s)) e E(α(n−s)) são de mesma dimensão.
(d) Para qualquer s com 1 ≤ s < n, a cota de Feng-Rao fornece exatamente as mesmas esti-
mativas para o t-ésimo peso generalizado de Hamming de C(α(s)) que a cota de Andersen-Geil
fornece para o t-ésimo peso generalizado de Hamming de E(α(n− s)).
(e) Para qualquer δ a dimensão de C̃(δ) é igual a dimensão de Ẽ(δ).
(f) Para qualquer t (no máximo igual a dimensão de C̃(δ)), a cota de Feng-Rao fornece exa-
tamente as mesmas estimativas sobre o t-ésimo peso generalizado de Hamming de C̃(δ) que a
cota de Andersen-Geil fornece para o t-ésimo peso generalizado de Hamming de Ẽ(δ).

Demonstração. (a) Seja α(l) ∈ ∆(R, ρ, φ) = {w(M) | M ∈ ∆≺w(Iq)}. Por hipótese, existem
w1, w2, · · · , wm ∈ N0 com w1 ≤ γ1, w2 ≤ γ2, · · · , wm ≤ γm tais que w(Xw1

1 Xw2
2 · · ·Xwm

m ) = α(l).
Também por hipótese temos que:

w(Xγ1−w1

1 Xγ2−w2

2 · · ·Xγm−wm
m ) ∈ ∆(R, ρ, φ).

Consequentemente, se escrevermos αmax := w(Xγ1
1 X

γ2
2 · · ·Xγm

m ) então temos que:

α(l) ∈ ∆(R, ρ, φ) ⇔ αmax − α(l) ∈ ∆(R, ρ, φ).

Note que µ(α(l)) = σ(αmax − α(l)). De fato, veja que:

µ(α(l)) = ♯(N(α(l)) = ♯{η ∈ Γ | ∃β ∈ Γ com η + β = α(l)} =
♯{η ∈ ∆(R, ρ, φ) | ∃β ∈ ∆(R, ρ, φ) com η + β = α(l)} e

σ(αmax − α(l)) = ♯(M(αmax − α(l))) =
♯{γ ∈ ∆(R, ρ, φ) | ∃θ ∈ ∆(R, ρ, φ) com (αmax − α(l)) + θ = γ}

Defina g : N(α(l)) →M(αmax − α(l)) por g(η) = αmax − η. Veja que g está bem definida pois
se η ∈ N(α(l)) logo η ∈ ∆(R, ρ, φ) (e logo αmax − η ∈ ∆(R, ρ, φ)) e existe β ∈ ∆(R, ρ, φ) com

η + β = α(l) (4.3)

De 4.3 segue que (αmax−α(l))+β = αmax−η, e portanto αmax−η ∈M(αmax−α(l)). Temos que
g é injetora, agora seja γ ∈M(αmax−α(l)), então γ ∈ ∆(R, ρ, φ) (e logo αmax−γ ∈ ∆(R, ρ, φ))
e existe θ ∈ ∆(R, ρ, φ) tal que

(αmax − α(l)) + θ = γ (4.4)

De 4.4 segue que (αmax − γ) + θ = α(l), e logo αmax − γ ∈ N(α(l)), e ainda temos que
g(αmax − γ) = γ, logo g é sobrejetora. Portanto, µ(α(l)) = σ(αmax − α(l)) e logo

µ(ρ(Xβ1

1 · · ·Xβm
m + I)) = σ(ρ(Xγ1−β1

1 · · ·Xγm−βm
m + I)) (4.5)

para qualquer Xβ1

1 · · ·Xβm
m ∈ ∆≺w(Iq).

(b) Para cada α(s) ∈ ∆(R, ρ, φ) temos por hipótese que α(n) − α(s) ∈ ∆(R, ρ, φ). Sejam
α(l1), α(l2) ∈ ∆(R, ρ, φ) como α(n)−α(l1) = α(n)−α(l2) se, e somente se α(l1) = α(l2), então
para cada α(s) ∈ ∆(R, ρ, φ) existe um único α(l) ∈ ∆(R, ρ, φ) tal que α(n) − α(l) = α(s).
Temos que α(n) − α(1) = α(n − 1 + 1) = α(n). Suponha que α(n) − α(2) ̸= α(n − 1), logo
temos que:
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α(n)− α(2) < α(n− 1) (4.6)

Temos que existe um único α(l) ∈ ∆(R, ρ, φ) tal que α(n)−α(l) = α(n− 1), logo de 4.6 temos
que α(l) < α(2) o que é uma contradição. Suponha agora que α(n)− α(i) = α(n− i+ 1) para
i = 1, · · · , k, e vamos mostrar por indução que α(n)− α(k+ 1) = α(n− (k+ 1)+ 1). Suponha
que α(n)− α(k + 1) ̸= α(n− (k + 1) + 1), então temos que:

α(n)− α(k + 1) < α(n− (k + 1) + 1) (4.7)

Temos que existe um único α(s) ∈ ∆(R, ρ, φ) tal que α(n) − α(s) = α(n − (k + 1) + 1), logo
por 4.7 temos que α(s) < α(k + 1), isto é; α(s) ∈ {α(1), α(2), · · · , α(k)}, o que é uma con-
tradição pois α(n) − α(i) = α(n − i + 1) > α(n − (k + 1) + 1) para todo i = 1, · · · , k. Logo,
α(n)− α(k + 1) = α(n− (k + 1) + 1).

(c) Seja s tal que 1 ≤ s < n, veja que:

C(α(s)) = C⊥(B,G), onde G = {bi | α(i) ≤ α(s)} e
E(α(n− s)) = C(B,G), onde G = {bi | α(i) ≤ α(n− s)}

Veja que dim(E(α(n − s))) = n − s. Como C(α(s)) é o código dual de E(α(s)) segue que
dim(C(α(s))) = n−dim(E(α(s))) = n− s. Assim, dim(C(α(s))) = dim(E(α(n− s))) = n− s.

(d) Para α(l1), α(l2), · · · , α(lt) ∈ ∆(R, ρ, φ) defina:

h : N(α(l1)) ∪ · · · ∪N(α(lt)) →M(α(n)− α(l1)) ∪ · · · ∪M(α(n)− α(lt))
η 7−→ α(n)− η

Seja η ∈ N(α(l1) ∪ · · · ∪ N(α(lt))), logo η ∈ N(α(lj) para algum j ∈ {1, 2, · · · , t}, logo pela
definição da função g do item (a) temos que α(n)− η ∈M(α(n)− α(lj)) ⊆M(α(n)− α(l1)) ∪
· · · ∪ M(α(n) − α(lt)), logo h está bem definida. Se α(n) − η1 = α(n) − η2 então η1 = η2
logo h é injetora. Seja γ um elemento do contradomı́nio de h, logo γ ∈ M(α(n) − α(ls))
para algum s ∈ {1, 2, · · · , t}, novamente pela definição da função g do item (a) temos que
α(n)− γ ∈ N(α(ls)) e h(α(n)− γ) = γ, logo h é sobrejetora, e portanto uma bijeção. Assim,

µ(α(l1), · · · , α(lt)) = σ(α(n)−α(l1), · · · , α(n)−α(lt)) = σ(α(n−l1+1), · · · , α(n−lt+1)) (4.8)

Veja que dt(C(α(s))) ≥ min{µ(α(i1), · · · , α(it)) | α(il) > α(s) para l = 1, · · · , t e α(il) ̸=
α(ij) para i ̸= j}. Então α(il) ∈ {α(s + 1), · · · , α(s + n − s)} para l = 1, · · · , t.(Veja que
t ≤ k = n− s).

E dt(E(α(n − s))) ≥ min{σ(α(j1), · · · , α(jt)) | α(jl) ≤ α(n − s) ∀l = 1, · · · , t e α(jl) ̸=
α(js) para l ̸= s}. Logo α(jl) ∈ {α(1), · · · , α(n− s)}, para l = 1, · · · , t. Sejam

A := {(α(s+ i1), · · · , α(s+ it)) | il ∈ {1, 2, · · · , n− s} e is ̸= ik para s ̸= k} e
B := {(α(j1), · · · , α(jt)) | jl ∈ {1, 2, · · · , n− s} e js ̸= jk para s ̸= k}.

Definindo

ψ : A −→ B
(α(s+ i1), · · · , α(s+ it)) 7→ (α(n− (s+ i1) + 1), · · · , α(n− (s+ it) + 1)).
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Para cada s+il com il ∈ {1, 2, · · · , n−s} temos que s+1 ≤ s+il ≤ n, logo 1 ≤ n−(s+it)+1 ≤
n− s e assim ψ está bem definida. Veja que se α(n− (s+ i1) + 1), · · · , α(n− (s+ it) + 1)) =
α(n− (s+ i

′
1) + 1), · · · , α(n− (s+ i

′
t) + 1)) então (i1, · · · , it) = (i

′
1, · · · , i

′
t), assim ψ é injetora.

Como ♯(A) = ♯(B) segue que ψ é sobrejetora, e logo é uma bijeção. Por 4.8 e pela construção
de ψ temos que:

min{µ(α(i1), · · · , α(it)) | α(il) > α(s) para l = 1, · · · , t e α(il) ̸= α(ij) para i ̸= j} =
min{σ(α(j1), · · · , α(jt)) | α(jl) ≤ α(n− s) ∀l = 1, · · · , t e α(jl) ̸= α(js) para l ̸= s}.

(e) Temos que:

Ẽ(δ) = C(B,G1), onde G1 = {bi | σ(α(i)) ≥ δ} e
C̃(δ) = C⊥(B,G2), onde G2 = {bi | µ(α(i)) < δ}

Suponha que dim(Ẽ(δ)) = k, logo existem α(i1), · · · , α(ik) ∈ ∆(R, ρ, φ) tais que σ(α(il)) ≥ δ
para l = 1, · · · , k. E ainda, σ(α(il)) < δ para l /∈ {1, · · · , k}. Como para cada α(s) existe
um único α(l) tal que α(n) − α(l) = α(s) e µ(α(l)) = σ(α(n) − α(l)), existe uma bijeção
entre os conjuntos {µ(α(l)) | l = 1, · · · , n} e {σ(α(j)) | j = 1, · · · , n}. Assim, existem
α(j1), α(j2), · · · , α(jk) ∈ ∆(R, ρ, φ) tais que µ(α(jl)) ≥ δ para l = 1, · · · , k. E ainda, µ(α(jl)) <
δ para l /∈ {1, 2, · · · , k}. Assim, dim(C(B,G2)) = n−k, logo dim(C⊥(B,G2)) = n−n+k = k.

(f)Temos que

dt(Ẽ(δ)) ≥ min{σ(α(i1), · · · , α(it)) | σ(α(is)) ≥ δ para s = 1, · · · , t e α(ij) ̸= α(is) para j ̸= s}
e

dt((̃C)(δ)) ≥ min{µ(α(j1), · · · , α(jt)) | µ(α(jl)) ≥ δ para l = 1, · · · , t e α(jl) ̸= α(js) para l ̸=
s}

Por 4.8, existe uma bijeção entre

{σ(α(i1), · · · , α(it)) | α(il) ∈ ∆(R, ρ, φ) l = 1, · · · , t} e
{µ(α(j1), · · · , α(jt)) | α(jl) ∈ ∆(R, ρ, φ) l = 1, · · · , t}

Assim, segue o resultado.

4.2 Exemplos

Nesta seção usaremos a notação ⟨· · · ⟩ com dois sentidos. Primeiramente, dados F1, · · · , FS ∈
Fq[X1, · · · , Xm] denotamos por ⟨F1, · · · , Fs⟩ o ideal gerado pelos polinômios F1. · · · , Fs. Em
segundo lugar, dados elementos w1, · · · , wm ∈ Nr

0 denotamos por ⟨w1, · · · , wm⟩ o semigrupo
gerado por w1, · · · , wm.

Exemplo 4.2.1 Considere o anel R := F9[X,Y ]/I onde I é o ideal gerado pelo polinômio
hermitiano X4 − Y 3 − Y . Sejam w(X) = 3, w(Y ) = 4 ∈ N0, e considere a ordem usual (e
única) ≺N0 sobre N0, e ainda considere ≺M a ordem grau-lexicográfica sobre M(X, Y ) com
X ≺M Y . A ordem generalizada grau com pesos resultante ≺w nos fornece a seguinte pegada
para I:

∆≺w(I) = {XαY β | 0 ≤ α, 0 ≤ β < 3}.

Agora, é fácil ver as condições do teorema 4.1.9 são satisfeitas com a base de Gröbner G =
{X4 − Y 3 − Y }. Assim, como
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G ′ = {X4 − Y 3 − Y,X9 −X}

é uma base de Gröbner para I9, temos que ♯VF9(I9) = 27, onde I9 = {X4 − Y 3 − Y,X9 −
X,Y 9 − Y }. Logo podemos escrever VF9(I9) = {P1, · · · , P27} e definir φ : R → F27

9 por
φ(F + I) = (F (P1), · · · , F (P27)).

∆≺w(I9) = {XαY β | 0 ≤ α ≤ 8, 0 ≤ β ≤ 2}

Logo, as hipótese da proposição 4.1.16 são satisfeitas e veja que:

∆(R, ρ, φ) = {0, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 28, 29, 32}.

Vamos ver outro exemplo:

Exemplo 4.2.2 Seja I := ⟨X5 + Y 4 + Y, Y 5 + Z4 + Z⟩ ⊆ F16[X,Y, Z]. Definimos a ordem
generalizada com pesos ≺w sobre M(X,Y, Z) a seguir. Considere os pesos w(X) = 16, w(Y ) =
20, w(Z) = 25 ∈ N0. Seja ≺N0 a ordem monomial usual(e única) sobre N0 e seja ≺M a ordem
lexicográfica sobre M(X,Y, Z) dada por X ≺M Y ≺M Z. Com relação a ordem resultante ≺w

temos que {X5 + Y 4 + Y, Y 5 + Z4 + Z} é uma base de Gröbner e por verificação observamos
que as condições do teorema 4.1.9 são satisfeitas. Pelo teorema 4.1.9 obtemos portanto uma
função peso:

ρ : R := F16[X,Y, Z]/I → ⟨16, 20, 25⟩ ∪ {−∞}.

Temos também que o conjunto {X5+Y 4+Y, Y 5+Z4+Z,X16+X, Y 16+Y, Z16+Z} é uma
base de Gröbner para I16 com relação a ≺w e portanto ♯(VF16(I16)) = ♯(∆≺w(I16)) = 256. Seja
φ a aplicação de avaliação φ : R → F256

16 dada por φ(f) = (f(P1), f(P2), · · · , f(P256)). Como
∆≺w(I16) = {XaY bZc | 0 ≤ a < 16, 0 ≤ b < 4, 0 ≤ c < 4} a pegada de I16 tem o formato de
uma caixa, e portanto pela proposição 4.1.16 que a dimensão de C̃(δ) é igual a dimensão de
Ẽ(δ) para todo δ = 1, 2, · · · , 256.

Apenas para ilustração, temos que:

∆(R, ρ, φ) = {0, 16, 20, 25, 32, 36, 40, 41, 45, 48, 50, 52, 56, 57, 60, 61, 64, 65, 66, 68, 70,
72, 73, 75, 76, 77, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100,
101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
120, 121, 122, 123, · · · , 254, 255, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266,

267, 268, 269, 270, 271, 273, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 290, 291,
293, 294, 295, 298, 299, 300, 302, 303, 305, 307, 309, 310, 311, 314, 315, 318, 319, 323, 325, 327,

330, 334, 335, 339, 343, 350, 355, 359, 375}

Exemplo 4.2.3 Considere I := ⟨X2 + Y Z2 − Y 2Z − X,U2 − Z3 + X2 − Y 2Z + Y 3 + U⟩ ⊆
F4[X,Y, Z, U ] e defina a ordem generalizada grau com pesos ≺w sobre M(X, Y, Z, U) como a
seguir. Considere os pesos w(X) = (2, 1), w(Y ) = (0, 2), w(Z) = (2, 0), w(U) = (3, 0) ∈ N2

0 e
seja ≺N2

0
a ordem monomial grau-lexicográfica, com (0, 1) ≺Nr

0
(1, 0). Por último, seja ≺M a

ordem lexicográfica com Z ≺M U ≺M Y ≺M X. Veja que o monômio ĺıder de X2 + Y Z2 −
Y 2Z −X é X2, pois:

w(X2) = w(Y Z2) = (4, 2), w(Y 2Z) = (2, 4), w(X) = (2, 1)

e Y Z2 ≺M X2. O monômio ĺıder de U2 − Z3 +X2 − Y 2Z + Y 3 + U é U2, pois
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w(U2) = w(Z3) = (6, 0), w(X2) = (4, 2), w(Y 2Z) = (2, 4),
w(Y 3) = (0, 6), w(U) = (3, 0)

e Z3 ≺M U2.
Como X2 e U2 são relativamente primos, por um resultado da teoria das bases de Gröbner
temos que G = {X2+Y Z2−Y 2Z−X, U2−Z3+X2−Y 2Z+Y 3+U} é uma base de Gröbner
para I. É fácil ver que as condições do teorema 4.1.9 são satisfeitas, e logo obtemos a função
peso

ρ : R := F4[X, Y, Z, U ]/I → ⟨(2, 1), (0, 2), (2, 0), (3, 0)⟩ ∪ {−∞}

Usando o algoritmo de Buchberger podemos motrar que

G ′
= {X2+Y Z2−Y 2Z −X, U2−Z3+X2−Y 2Z +Y 3+U, X4−X, Y 4−Y, Z4−Z,U2−U}

é uma base de Gröbner para I4, logo

∆≺w(I4) = {XαY βZγU δ | α, δ < 2 e β, γ < 4}

A pegada de I4 tem 64 elementos, cujos pesos são:

∆≺w(I4) = {(0, 0), (0, 2), (0, 4), (0, 6), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4),
(2, 5), (2, 6), (2, 7), (3, 0), (3, 2), (3, 4), (3, 6), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),
(6, 7), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (8, 1), (8, 3), (8, 5), (8, 7), (9, 0), (9, 1),

(9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (11, 1), (11, 3), (11, 5), (11, 7)}

Podemos representar graficamente os pesos dos elementos de ∆≺w(I4) como sendo os pontos
pretos no gráfico abaixo:

Figura 4.2: Os pesos dos elementos de ∆≺w(I4)

Temos que Γ = ⟨(2, 1), (0, 2), (2, 0), (3, 0)⟩, agora veja que as lacunas de Γ são os pontos do
conjunto L definido como:
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Figura 4.3: Os elementos de Γ

L := {(a, b) ∈ N2
0 | a = 1} ∪ {(a, b) ∈ N2

0 | a = 0 e b = 2k + 1, com k ∈ N0}
∪{(a, b) ∈ N2

0 | a = 3 e b = 2k + 1, com k ∈ N0}

podemos demonstrar que de fato L é o conjunto de todas as lacunas de Γ. Assim, podemos
representar graficamente os pontos de Γ como sendo os pontos pretos no gráfico da figura 4.3.

Exemplo 4.2.4 Seja I := ⟨X5 + Y 4 + Y, Y 5 + Z4 + Z,Z5 + U4 + U2⟩ ⊆ F16[X, Y, Z, U ].
Definimos a ordem generalizada com pesos ≺w sobre M(X, Y, Z, U) a seguir. Considere os
pesos w(X) = 64, w(Y ) = 80, w(Z) = 100, w(U) = 125 ∈ N0. Seja ≺N0 a ordem monomial
usual(e única) sobre N0 e seja ≺M a ordem lexicográfica sobre M(X, Y, Z, U) dada por X ≺M
Y ≺M Z ≺M U . As condições do teorema 4.1.9 são sastifeitas com a base de Gröbner {X5 +
Y 4 + Y, Y 5 + Z4 + Z,Z5 + U4 + U2}. Portanto temos uma função peso:

ρ : R := F16[X, Y, Z, U ]/I → ⟨64, 80, 100, 125⟩ ∪ {−∞}.

De acordo com o método de Andersen-Geil, deveŕıamos agora encontrar a pegada de I16. Pelo
algoritmo de Buchberger encontramos uma base reduzida de Gröbner com 21 polinômios, lista-
mos a seguir apenas os monômios ĺıderes:

{Y 4, Z4, U4, X10Y 2Z2, X5Y 2ZU2, X10ZU2, X5Y 2Z3, X10Z3, X10Z3, X10Y 3, X15, XY 3Z3U2,
X11U2, X6Z2U2, X6Y 3Z2, X11Y,X11Z,X6Y ZU2, X6Y Z3, X10Y 2U2, X5Y Z2U2}

Pela definição de base de Gröbner, a pegada de I16 consiste de todos os monômios que não são
diviśıveis por nenhum dos 21 monômios acima. A pegada é encontrada como sendo de tamanho
n = 512 e portanto temos um homomorfismo φ : R → F512

16 para a construção de códigos. É
claro que a pegada de Iq não tem o formato de uma caixa.
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