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SILVA, O. N. A cota de Andersen-Geil para distancia minima de cédigos e aplicagoes. 2013.
43 p. Dissertacao de Mestrado, Universidade Federal de Uberlandia, Uberlandia-MG.

Resumo

Neste trabalho, estudamos a teoria dos dominios de ordem com aplicacoes nos cddigos linea-
res, em particular; nos cédigos de Goppa de um ponto. Também estudamos algumas teorias
que nos serviram como base tedrica tais como: a teoria de corpos de funcoes algébricas, a
teoria das bases de Grobner e uma breve introducao sobre geometria algébrica. Este trabalho
tem por objetivo apresentar uma cota para a distancia minima de um cédigo linear dada por
Andersen-Geil na referéncia [1], além de apresentar uma maneira de construir cédigos usando
a teoria dos dominios de ordem. Para finalizar, trabalhamos com alguns exemplos de codigos
de comprimentos maiores, neste caso; usamos a teoria das bases de Grobner como ferramenta.

Palavras-chave: Bases de Grébner; Cédigos de Avaliacao; Cédigos de Goppa; Distancia minima;
Dominio de Ordem; Pegada.
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SILVA, O. N. The Andersen-Geil bound for minimum distance of codes and applications. 2013.
43 p. M. Sc. Dissertation, Federal University of Uberlandia, Uberlandia-MG.

Abstract

In this work, we study the theory of order domains with applications in linear codes, in par-
ticular; in one-point Goppa codes. We also studied some theories that served as the basis
theoretical such as the theory of algebraic function fields, the theory of Grobner bases and
a brief introduction about algebraic geometry. This work aims to introduce a bound for the
minimum distance of a linear code givem by Andersen-Geil in reference [1], and present a way
to construct codes using the theory of order domains. Finally, we work some examples of codes
with longer lengths, in this case; we use the theory of Grobner bases as a tool.

Keywords:Evaluation Codes; Footprint; Goppa codes; Grobner bases; Minimum distance; Order
Domain.
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Introducao

Este trabalho trata de codigos corretores de erros, em particular, de cotas para distancia minima
de um cédigo. Os cddigos corretores de erros participam da vida moderna de inimeras formas
como, por exemplo, nas comunicagoes via satélite, na telefonia celular e na comunicacao entre
computadores. Um dos fundadores da teoria dos cédigos corretores de erros foi o matemaéatico
americano Claude Elwood Shannon. Em 1948, Shannon publicou um importante artigo cientifico
(que é a referéncia [12]) que tinha como titulo: “A Mathematical Theory of Communication”,
enfocando o problema de qual é a melhor forma para codificar uma informagao que um emissor
queira transmitir para um receptor. Inicialmente, os maiores interessados na teoria dos cédigos
foram os matematicos que a desenvolveram consideravelmente nas décadas de 50 e 60. A partir
da década de 70, com as pesquisas espaciais e a grande popularizacao dos computadores, essa
teoria comegou a interessar também aos engenheiros, e desde entao tem sido muito estudada.

Este trabalho esta dividido em quatro capitulos. No primeiro capitulo, veremos apenas
alguns conceitos e resultados basicos da teoria de codigos corretores de erros tais como: distancia
minima, dimensao e comprimento de um codigo. Apresentamos também a cota de Singleton
que é um resultado classico da teoria de cédigos, e apresentamos os codigos de Reed-Solomon
para introduzirmos a primeira se¢ao do proximo capitulo. No segundo capitulo, apresentamos
um exemplo motivador e obtemos nesse exemplo a distancia minima dos codigos de Reed-
Solomon de uma forma nao tradicional, em seguida apresentamos o método de Andersen-
Geil para obter uma cota para a distancia minima de codigos. Ainda no segundo capitulo,
trabalhamos com pesos generalizados de Hamming, apresentamos a cota de Feng-Rao para os
pesos generalizados de Hamming e mostramos que a cota de Shibuya e Sakaniwa pode ser vista
como uma consequéncia da cota de Andersen-Geil.

O método apresentado no capitulo 2 nao é muito pratico se estivermos tratando de cédigos
no contexto geral, por esse motivo na construcao de cédigos precisamos de uma certa estrutura
algébrica para aplicarmos o método de Andersen-Geil, assim no capitulo 3 introduzimos o
conceito de dominios de ordem e estrutura de ordem, e construimos os cédigos da teoria dos
dominios de ordem. Ainda no capitulo 3, mostramos que todo cédigo de Goppa de um ponto
pode ser visto como sendo um cédigo da teoria dos dominios de ordem.

Para codigos de grandes comprimentos precisamos usar um método mais sofisticado, assim
no capitulo 4 trabalhamos com as bases de Grobner em conjunto com o método de Andersen-
Geil. Para finalizar, colocamos alguns exemplos que ilustram como o método de Andersen-Geil
funciona.

Otoniel Nogueira da Silva
Uberlandia-MG, 25 de fevereiro de 2013.



Capitulo 1

Preliminares

1.1 Cébdigos Lineares

Vamos introduzir algumas nogoes basicas da teoria de codigos, o leitor menos familiarizado com
estes conceitos pode consultar qualquer livro sobre cédigos corretores de erros, uma sugestao é
a referéncia [11]. Seja IF, um corpo finito com ¢ elementos. Consideramos o espago vetorial Fy
de dimensao n, cujo os elementos sao n-uplas a = (ay, - - ,a,) com a; € F,.

Definicao 1.1.1 Para a = (ay, -+ ,a,) e b= (by,--- ,b,) € F definimos
d(a,b) .= §({z; a; # bi}).

Esta fungao d € chamada de distancia de Hamming sobre Fy. O peso de um elemento a € Fy
¢ definido como

w(a) == d(a,0) = 1({i;a; # 0}).

A distancia de Hamming é uma métrica sobre [, em particular a desigualdade triangular
ocorre.

Definigao 1.1.2 Um cddigo C (sobre o alfabeto F} ) ¢ um subespago linear de Fy; os elementos
de C sdo chamados de palavras. Chamamos de n o comprimento de C' e dim(C) (como Fy-
espago vetorial) a dimensdo de C. Um cddigo [n, k| é um cddigo de comprimento n e dimensdo
k. A distancia minima d(C) de um cédigo C # 0 é definida como

d(C) := min{d(a,b) | a,b € C e a# b} =min{w(c) | ¢ #0¢€ C}.
Um [n,k,d] é um cédigo de comprimento n, dimensao k e distancia minima d.

Uma maneira simples de descrever um codigo C' explicitamente € por meio de uma base de
C' (como F-espago vetorial).

Definicao 1.1.3 Seja C' um [n, k| codigo sobre F,. Uma matriz geradora de C' é uma matriz
k x n cujas as linhas formam uma base para C'.

Definigao 1.1.4 O produto interno canonico sobre Fy € definido por
(a,b) :=>""  ab;,

para a = (ay, -+ ,a,) eb=(by, -+ ,b,) € Fy.



Definigao 1.1.5 Se C' C Fy é um cddigo, entdo
C+:={ueF} | (u,c) =0 para todo c € C}
¢ chamado de dual de C'.

Observagao 1.1.6 Sabemos da dlgebra linear que o dual de um [n, k] cédigo é um [n,n — k]
cédigo, e (CH)+ =C.

Definicao 1.1.7 Uma matriz geradora H de C* é chamada de matriz checagem de paridade

de C'.

Observagao 1.1.8 Claramente uma matriz checagem de paridade H de um [n, k| cddigo € uma
matriz (n — k) x (n), e ainda temos que

C={uelF}| Hu' =0}

(onde u' denota a matriz(vetor) transposta de u). Logo, uma matriz checagem de paridade
“checa”quando um vetor u € Fy € uma palavra do cédigo ou nao.

Um dos problemas cldssicos da teoria dos cddigos corretores de erros é construir (sobre um
alfabeto F,, fizado) um codigo cuja a dimensdo e a distancia minima sejam grandes em com-
paracao com seu comprimento. Contudo, existem algumas restri¢oes. Falando a grosso modo,
se a dimensao do codigo € grande (com rela¢io ao seu comprimento), entio a sua distancia
minima € pequena, € vice-versa. A proxima proposi¢do mostrard este fato.

Proposicao 1.1.9 (A cota de Singleton). Para um [n,k,d] cddigo C' o sequinte acontece:
k+d<n+1

Demonstracao. Uma prova desta proposicao podera ser encontrada no capitulo 2 da referéncia
[5]. m

1.2 Cébdigos de Reed-Solomon

Como uma motivacao para o préximo capitulo, iremos apresentar agora os cddigos de Reed-
Solomon sobre F,. Esta importante classe de cédigos é bem conhecida na teoria dos codigos
corretores de erros hd um bom tempo. Vamos entao a construcao desses codigos:

Sejan = g —1 e seja B € F; um elemento primitivo do grupo multiplicativo F, =
{8,32%,--+,8" = 1}. Para um inteiro k, com 1 < k < n, consideramos o espago vetorial
de dimensao k:

Ly ={feF,J[X]|grau(f) <k-—1}
e a aplicagao de avaliagao ev : L — [ dada por:

GU(f) = (f(ﬂ)af(ﬁ%a e a.f(@n)) € IFZ

Obviamente esta aplicagdo é F,-linear, e ela é injetora pois um polinémio nao nulo f € F,[X]
de grau menor que n tem no maximo n zeros. Portanto,



Cr = {(f(B), f(B%),---, f(B") | | € Ly}

¢ um [n, k| cédigo sobre F; e ele é chamado de cédigo de Reed-Solomon.

O peso de uma palavra do cédigo 0 # ¢ = ev(f) € Cy é dado por:

w(e) =n—{({i €{1,--- ,n}; f(B") =0})
>n—grau(f) >n—(k—1).

Logo, a distancia minima d de CY, satisfaz a inequacao d > n+1—k. Por outro lado, d < n+1—k
pela cota de Singleton, assim d =n + 1 — k.



Capitulo 2

A cota de Andersen-Geil

2.1 Um exemplo motivador

Nesta secao obtemos a conhecida distancia minima dos cédigos de Reed-Solomon de uma forma
nao tradicional, diferente daquela que fizemos no capitulo 1. O seguinte exemplo nos ajudard a
ter uma nocao do método usado por Andersen-Geil para encontrar uma cota para a distancia
minima de um cédigo. Usaremos também este mesmo exemplo para introduzir e motivar a
préxima secao. O texto apresentado neste e nos demais capitulos tem como principal referéncia
um artigo de Henning E. Andersen e Olav Geil que é a nossa referéncia [1].

Exemplo 2.1.1 Sejam Py, P,,--- , P, 0s elementos de um corpo F,. Definan := q e considere
a aplicagao de avaliagdo ev : Fy[X] — F7 dada por:

ev(F) = (F(P), -, F(F))

Efcicil ver que ev € uma aplicagao F,-linear.
O conjunto:

B ={b; =ev(l),by = ev(X), -+ ,b, = ev(X" 1)}
€ uma base para Iy, como um espago vetorial sobre .
De fato, considere a combinagdao linear nula abaizo:

Aev(1) + Asev(X) + -+ + Apev(X"H) =0

Definindo F(X) := A + Mo X + -+ + X, X" e como ev € linear, entdo:

Aev(1) + Asev(X) + -+ Apev(X"H) =0 <= ev(A + X + -+ 1, X" =0 <=
ev(F(X)) =0 <= (F(P), -, F(P,)) = (0,---,0)

Mas grau(F) < n, logo F' tem no mdzimo n —1 raizes distintas em F,. Logo, como Py,--- , P,
sao distintos seque que os elementos by, - -+ , b, sdo linearmente independentes. Como dim(Fy) =
n, seque que B € uma base para Fy.

Para k=1,--- n, o cédigo de Reed-Solomon ¢é dado por:

Cy = spang {b; |i=1,--- k}

5



Agora, vamos obter a cota d(Cy) > n —k+ 1 de uma maneira ndao tradicional.

Considere uma palavra do cédigo ¢ = (¢, ,¢,) € Cy, digamos:

i
c:Zatbt, comay, -0 €EFy, 0 #0 et < k.
t=1

Observe que:

c= Zatbt = Zatev(Xt_l) =ev (Z atXt_1>
t=1 t=1 =1

Para estimar o peso de Hamming de ¢, faremos uso do sequinte produto em Iy :
Sejam h = (hy,--- ,hn), f = (f1,---, fn) € Fy, definimos o produto de Hadamard de h e
f como:

h*f: (hlflv"' 7hnfn)

Agora, observe que:

c*xb = ev (Z Otit1> € C\Ci_1

t=1

Da mesma forma, temos:

c* by = ev (Z atXt_1> xev(X) =ev (Z Otit) € Cit1\ C;

t=1

c* by =ev (Z otit1> * ev(X?) = ev (Z OétXHl) € Cipa \ Cina

t=1 t=1
(2.1)
i i
C*by_jp1 = ev <Z atXt_1> * ev(X"Y) = ev (Z atX"_”t_l) € C,\Ch
t=1 t=1
Consequentemente, os vetores ¢ x by,c * by, --- ,c % b,_;11 sao linearmente independentes, e
portanto:
spang, {c*by,c* by, c*by_iy1} (2.2)

¢ um espaco de dimensaon —1i+ 1.

Agora denote por ey := (1,0,---,0),e2 := (0,1,0,---,0),--- ,e, := (0,---,0,1) e seja | o
peso de Hamming de ¢, e digamos que Supp(c) = {iy,i2,- - ,4}, onde Supp(c) € o conjunto
{i | ¢; #0}. Entao:

spang, {c*xd|d € Fy} = spang, {e;, - e} (2.3)

De fato, seja d = (di,--- ,d,) € Fy e denote ¢ = (ay,--- ,an), onde g, quy, -+ a5 # 0 e
a; =0, V5 #iy,19,- -+ 1. Assim:



cxd= (aldb T aandn) = (aldl)el + -+ (Oéndn)en =
(aildh)eil +-+ (&ildil)eil € SpanFq{eiU to ,6@}

Logo, toda combinagao linear de elementos de {cxd | d € Fy} estd em spang,{e;, - e}, e
logo temos:
spang,{c*xd|d € Fy} C spang, {ei, - e} (2.4)
Por outro lado, temos que Fy é corpo e que oy, -+ ,a; # 0, logo para cada s =1,--- |1 existe
-1
o

Losgo, c* ((ag,)Yer) = (g, -+ ) * (0,0, ,a;l,O,--- ,0) =(0,0,---,1,0,---,0) = ¢;, €
spang, {c*d | d € Fy}, para Vs = 1,--- 1. Assim, dim (spang,{c*d | d € F}) > 1 mas por
(2.4), temos que:

dim (spang, {c*d|d € Fy}) < dim (spang,{ei,, - ,e;,}) =1
Logo, seque o que queriamos provar.

E claro que o espaco de dimensdon —i+ 1 em (2.2) estd contido no espago de dimensao | em
(2.3) e portanto wy(c) =1>n—i+ 1.
Assim, como d(Cy) = min {wg(c) | 0 # ¢ € Cy}, temos que:

d(Cy) >min{n—i+1|i=1,--- k}=n—k+1
Mas pela cota de Singleton, temos o resultado usual para os codigos de Reed-Solomon.:

Observacao 2.1.2 No exemplo anterior usamos fortemente a estrutura algébrica do anel de
polinomios F,[X]. Sem isto, deveria ser bastante dificil concluirmos as inclusoes cruciais em

(2.1).

Portanto, quando olhamos para as classes de codigos para os quais o método anterior pode
ser aplicado de uma maneira praticdvel, deveriamos procurar por codigos definidos sobre al-
gumas estruturas algébricas. Apesar disso, continuamos a descri¢cao da cota de Andersen-Geil
considerando que ela se aplica no caso geral de qualquer codigo linear. Neste contexto, o método
de Andersen-Geil realmente ndao é muito praticavel.

Contudo, mas a frente no texto, veremos como a cota de Andersen-Geil se aplica muito
naturalmente no caso dos codigos vindos da teoria de dominios ordem. Neste contexto, a cota
serd tao praticdvel quanto a cota de Feng-Rao, que discutiremos em uma se¢ao posterior.

2.2 A cota de Andersen-Geil para a distancia minima

Esta secao contém uma descrigao do método de Andersen-Geil no contexto geral dos cédigos li-
neares. O método tem como objetivo nao somente encontrar uma cota para a distancia minima,
mas também encontrar uma cota para todos os pesos generalizados de Hamming. Falaremos
dos pesos generalizados de Hamming na préxima segao. Usaremos o exemplo motivador da
secao anterior como uma diretriz.

Considere a seguinte definicao de um cédigo linear:



Definigao 2.2.1 Seja B = {by,-- ,b,} uma base para Fy e seja G C B. Definimos o
#G—codigo dimensional C(B,G) por C(B,G) = spang, {b | b € G}. O cddigo dual (de
dimensao n — #G) serd denotado por C*+(B,G).

Usaremos o seguinte conjunto de espacos:
Definigao 2.2.2 Seja L_y := 0, Ly := {0} e L; := spang, {b1, - b} paral=1,--- n.
E claro que temos uma cadeia de espacos:

{O}ZLO;L1;C¢"-;L7L_1;L”:]FZ

Consequentemente, podemos definir uma fungao, apresentada a seguir.
Definicao 2.2.3 Definimos p: Fy — {0,1,--- ,n} por p(v) =1 se v € L)\ L.

Relembre do exemplo motivador que dado uma palavra cédigo ¢ € C(B, G), gostariamos
de encontrar tantos diferentes nimeros s quantos possiveis tais que existe um elemento b; com
cxb; € Ly \ Ls_1. Isto ird permitir darmos uma boa estimativa para o peso de c¢. Expressando
na linguagem da func@o p, olhamos para os valores s tais que um b, existe com p(c * b;) = s.

Em geral, ndo é uma tarefa facil encontrar p(c * b;). Isto é o motivo para definirmos agora
o conceito de pares bem comportados.

Definigao 2.2.4 Seja I,, :={1,2,--- ,n}. Um par ordenado (i,j) € I> € dito ser bem compor-
tado (WB) se p(by, x b,) < p(b; *b;) para todou ev com1 <u<i,1<wv<je(uwv)#(,j).
Um pouco menos restritivo, um par ordenado (i,7) € I? € dito ser fracamente bem comportado
(WWB) se p(b, *b;) < p(b; *b;) para w < i e p(b; *b,) < p(b; *b;) para v < j.

E claro que se (i,4) € I? ¢ WB, entao (i, 7) também ¢ WWB. Existe um outra formulagao ”mais
fraca”da definicao acima, onde dizemos que um par (i,7) € I é fracamente bem comportado
por apenas um lado (OWB) se p(by, * b;) < p(b; * b;) para v < . No enunciado do teorema
da cota de Andersen-Geil que ainda veremos, pode-se trocar a hipétese de (i, j) ser WWB por
OWRB, porém vamos manter a hipdtese de (i, j) ser WWB na cota de Andersen-Geil por causa
dos demais resultados que iremos ver.

Exemplo 2.2.5 Seja B = {by, by} wma base para F2 com by = (1,2) e by = (3,4). E fdcil ver
que o par (1,1) € o unico par WB(e também o inico par WWB).

Observacao 2.2.6 Considere uma palavra do codigo,

v
c= g by, comig < - <y e, #0
t=1

Se (iy,j) € WWB entao por definigao temos que:
ﬁ(bh *b]) <ﬁ(biu *bj) p(lT’(lt: 1,2,"' , U — 1

e portanto podemos concluir que:
pest=r <<Z O‘tbit) ’ bj) = p((onbi, + by, + -+ + ayby,) x bj) =
t=1

plar (i, % bj) + -+ (b, #0)) =P [ > au(by, * bj)) = p(bs, *bj)
t=1



Entao, para estimar o nimero de s's tais que existe um elemento b; da base com p(cx*b;) = s,
podemos simplesmente calcular (ou contar) o tamanho do seguinte conjunto (aqui ¢ deve ser
trocado por i,):

Definicao 2.2.7
N ={lel, | plbixb;) =1 para algum b; com (i,j) WWB }

Observagao 2.2.8 Se darmos dois diferentes nimeros ji e jo tais que ambos os pares (i, j1) e
(1,72) sao WWB, entao:

p(b; x b,) < p(b; *bj,) para Vv < j; e
p(bi % by) <p(bs * bj,) para Vv < ja
Suponha sem perda de generalidade que j; < ja, logo p(b; * b;,) < p(b; * bj,), e portanto:
p(bi * bj,) 7 p(bi * bjy)

Consequentemente, para um niumero fizo i, contar o tamanho do conjunto A; é o mesmo que
contar o nimero de pares (i,7), j € I,, que sao WWB.

Agora, estamos em condi¢oes de enunciar a cota de Andersen-Geil para a distancia minima de
um coédigo linear.

Teorema 2.2.9 (A cota de Andersen-Geil) A distancia minima de C(B,G) satisfaz:
d(C(B,G)) > min { #\; | b; € G }

Demonstracao. Seja ¢ € C(B,G)\{0}, entdo ¢ ¢é da forma:

v
c= E agb;, com iy < - <y e, #0
t=1

com i; satisfazendo b;, € G, paratodot =1,--- ,v.

Agora, considere o conjunto A;,, e suponha que A;, seja nao vazio, caso contrario #A;, = 0 e
como d(C(B,G)) > 1, terfamos que:

Supondo que A;, nao seja vazio, logo existem 1 <[y < --- <lyu, < n e os indices correspon-
dentes ji,- -+, jua,, € I tais que:

p(bi, *bj,) =1y, com (iy,7:) WWB

p(bi, x bj,) = Iy, com (i, jo) WWB

p(bi, xbj,, ) =lun, , com (iy, juar, ) WWB

4,
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Mas pela observagao 2.2.6 temos que p(c* b;,) = p(b;, * b;,), para todo s = 1,--- | #A,; .

E assim:
c* bjl € Lll \ Lll—l
C * bj#/\iv € Ll#Aiv \ Ll#Aivfl
Consequentemente, ¢ x b; -+ ,c*bj, As, sao linearmente independentes, e logo o espaco:
spang,{c* b, - - ,c*bj#AiU} (2.5)

tem dimensao #A;,. Como no exemplo motivador, o espago:

spang,{ cxd | d€Fy } (2.6)

tem dimensao igual ao peso de Hamming de ¢. E como o espago em (2.5) esta contido no espago
em (2.6) concluimos que:

wi(c) = #M,
Mas entao, é claro que também temos wy(c) > min { #A; | b; € G }, e logo:
d(C(B,G)) > min { #A, | b; € G }

como queriamos demonstrar. m

2.3 Uma cota para os pesos Generalizados de Hamming

Veremos nesta se¢ao que o teorema 2.2.9 pode ser extendido com o objetivo de achar uma
cota nao somente para a distancia minima, mas também para todos os pesos generalizados de
Hamming.

O teorema 2.2.9 também pode algumas vezes ser melhorado levemente. A pequena melhoria
serd importante quando em uma se¢ao posterior compararmos a cota de Andersen-Geil com a
cota dada por Shibuya e Sakaniwa.

Antes de dar a versao extendida do teorema 2.2.9, vamos lembrar ao leitor a defini¢ao dos
pesos generalizados de Hamming.
Definigao 2.3.1 (a) O suporte de um conjunto S, com S C T} € definido por:
Supp(S) :={i | ¢ # 0 para algum ¢ = (¢1,-+- ,c,) €S}
(b) O t-ésimo peso generalizado de Hamming de um cddigo C' é definido por:

di(C) := min{ #Supp(S) | S € um subcidigo de C' de dimensao t}
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Para enunciarmos a extensao do teorema 2.2.9, precisaremos da seguinte defini¢ao:

Defini¢ao 2.3.2 Para {iy,--- ,i;} C I, definimos

Glin, - yig) = # ((UA) U {iy, - -- ,m)

Em particular, 5(i1) = #(A; U {i})
Observacao 2.3.3 Seja C' um codigo e considere o 1° peso generalizado de Hamming:
di(C) :=min{ #Supp(S) | S é um subcédigo de C' de dimensao 1}

Seja S um subespaco linear de C' de dimensdo 1, e sejac # 0 € G. E’fdcil ver que #Supp(S) =
w(c).

Assim, como d(C) = min{w(c) | c#0€ C } e di(C) := min{ #Supp(S) = w(c) com ¢ #0 €
S| onde S é um subcddigo de C de dimensao 1}, seque que d(C) = di(C).

Observagao 2.3.4 Seja G C B, com G = {by,by,--- ,b;}, e seja D C C(B,G) um subespago
de dimensdao t, com t < k. FEntao, usando o método de Gauss da dlgebra linear (conhecido

também como elimina¢do gaussiana), sempre € possivel encontrar uma base {c1,--- , ¢} para
D tal que:

Cy = zk:ozg“)bs, comu=1,2,---t e mdr{s|al” £0} % md{s]|al £0},
= para Yv,w € {1,--- [t} com v # w
Enfim, a extensao do teorema 2.2.9 para os pesos generalizados de Hamming é:
Teorema 2.3.5 Seja G C B com #G = k firada. Entdo, parat =1, ---  k:
di(C(B,G)) > min{ 7(ay, a9, ,a;) | 1 <ay <+~ <ay<ne {by,bay, -+ ,ba,} TG }.

Em particular, a distancia minima de C(B,G) satisfaz:

d(C(B,G)) > min{ a(i) | b € G } = min{ #(A\; U{i}) | b; € G}
Demonstracao. Denote G = {b;,, b;,, -+ ,b;, } onde iy < iy < -+ <'ig.
Seja D C C(B,G) um subespago de dimensao t, com t < k. Considere {d;,ds, -+ ,d;} como

sendo uma base de D. Assim, podemos escrever cada vetor da base de D como uma combinacao
linear dos vetores da base de G, isto é:

d, = Zagu)bis, comu=1,2,---,t.

s=1

Vamos assumir que:

max{ s | ozgv)#()};éméx{s | ozsw)%O},
para Yo,w € {1,--- ,t} com v # w.
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Se este nao for o caso, pela observagao (2.3.4) podemos aplicar o método de Gauss no inicio
para achar a partir da base {d;,dy, - ,d;}, uma outra base com esta propriedade.

Por definigao, temos que:
p(d,) = max{ i, | ol #£0}
Logo a afirmagao anterior corresponde a assumir que p(d,) # p(d,) para v # w. Seja a, :=

p(d,) para uw =1,2,--- ,t. Observe que se (a,,j) ¢ WWB para algum
jeA{1,2,--- ,n} e p(ba, *b;) =1, entao:

p(du*bj) =p ((Z 04?%) * bj) =p (Z ag (b, * bj)) = P(ba, *bj) =1

Consequentemente, o conjunto

t
Se=J{duxb; | (au,j)é WWB }

u=1

contém pelo menos # (' _, Aa,) vetores L.I.

Considere agora os nimeros a,, com u = 1,--- ,t. Temos que a,, = p(d,) = p(d, *(1,1,--- 1)),
e portanto o conjunto:

S = (O{du*bj | (au, ) WWB})U{du*(l,l,---,l) | u=1,---,t}

u=1
contém pelo menos # ((U'_, Au,)U{as, -+ ,a;}) = (ays, - ,a;) vetores linearmente indepen-
dentes.
Consequentemente,
o(ay, - ,a;) < dim(spang,{ f | [ € S . (2.7)

Considere a seguir o conjunto:
T:={dyxe | u=1,---t comeclFy}

({dlv“’ 7dt})

Veja que o espaco spang,{ f | f € T } é isomorfo ao espago Fiour , e como Supp(D) =

Supp({dy,--- ,d;}) temos que:

#Supp(D) = dim(spang,{ f | f €T }) (2.8)
Mas S" C T, o que implica:

dim(spang { f | f € S} < dim(spang { f| f€T})
e usando (2.7) e (2.8), temos:
E(Gla e 7at) S #Supp(D)

assim, a prova esta concluida. m
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Exemplo 2.3.6 Seja B = {by,bs} uma base para F2 com by = (1,2). O dnico par WWB ¢
(1,1) e p(by * by) = 2. Consequentemente, Ay = {2}. Escolha G = {b1} e considere o cddigo
C(B,G). O teorema 2.2.9 nos diz que:

d(C(B,G)) > 1
enquanto que o teorema 2.3.5 nos diz que:

d(C(B,G)) =2

Pela cota de Singleton temos que:

d+k<n+1
d+1<2+1
d(C(B,G)) <2

Logo d(C(B,G)) =2, e a cota do teorema 2.53.5 € atingida.

Definicao 2.3.7 Seja B = {by,ba,--- ,b,} uma base para F,. Para s = 1,2,---,n e § =
0,1,---,n definimos:

e(s) = spang,{b1, bz, , by}
£(0) == spang,{ b | o(i) > ¢ }

Do nosso exemplo motivador podemos ver que é bem natural considerarmos os codigos de
Reed-Solomon como sendo c6digos da forma £(s).

Veremos a frente que também sera natural considerarmos os cédigos geométricos de Goppa
como sendo da forma £(s). A seguir, temos o seguinte teorema:

Teorema 2.3.8 A distancia minima de €(s) e a distancia minima de £(8) satisfazem:
d(e(s)) >min{a@i)|i=1,---,s }
(=

Demonstracao. Temos que £(s) = C(B,G) com G = {by, -+ ,bs} e temos que £(6) = C(B, G)
com G ={b;|7(i) >0 }. O resultado agora segue pelo teorema 2.3.5. m

2.4 A cota de Feng-Rao para os pesos generalizados de
Hamming

A cota no teorema 2.3.5 é semelhante a cota de Feng-Rao para os cédigos C+(B, G). Veremos
isto, mas antes precisaremos de algumas definicoes.

Definicao 2.4.1 Paral=1,--- ,n seja
Vii={iel, | p(b;xb;) =1 para algum b; € B com (i,7) WWB }

Para {ly,ls,--- ,l;} C I, definimos
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ﬁ(lhl% e alt) = ﬁ ((UZ:l Vls) U {lh e alt})

Em particular, definimos

al) = (Vi u{l})

Exemplo 2.4.2 Considere B = {b; = (1,0,2,4,3) ; by =(2,1,3,0,1) ; b3=(0,2,1,2,4) ;
by =(1,3,0,1,2) ; bs=(1,2,4,3,0)} como uma base de F:. Depois de alguns cdlculos, temos
que os unicos pares (i,7) WWB sao:

(1,1), (1,2), (1,3), (2,1), (3,1)
e ainda temos que

ﬁ(bl * bl) =3
p(b1 % by) = p(ba x b1) = 4
ﬁ(bl * bg) = ﬁ(bg * b1> =5

Assim, temos por exemplo que:
Vi={iel | p(bi*xb;) =4 para algum b; € B com (i,j) WWB } = {1,2}
Da mesma forma:

Vi=Vo=10
e Va={1}eVs={1,3}

Logo temos que

A(1.4,5) = § ((Uicraa Vi) U{L45) = 5({1.2,3,4,5)) =5

Podemos agora enunciar a cota de Feng-Rao para os pesos generalizados de Hamming. Esta
formulagao é relativamente parecida com a formulagao original dada por Feng e Rao com relacao
a distancia minima.
Teorema 2.4.3 (A cota de Feng-Rao) O t-ésimo peso generalizado de Hamming d,(C*(B, G))
satisfaz:

dt(CL(BvG)) Z mln{ ﬁ( Qg, -« ’at) | a; 7é a; para [ 7&] € {bau"' 7bdt} g B\G}
Em particular,
d(CH(B,G)) > min { fi(a) | b, € B\ G}

Demonstracao. Uma prova deste teorema pode ser encontrada na referéncia [10]. m

Nas secoes que virao a seguir vamos precisar dos seguintes codigos:
Definigao 2.4.4 Dada uma base B = {by,--- ,b,}, definimos

C(s) == CH(B,G), com G ={by, - ,b,}
C(8) := CH(B,G), com G = { b; € B | (i) < 6}

Podemos aplicar a cota de Feng-Rao nos cédigos C(s) e C(9).

Em particular,

d(C(6)) = min { (a) | ba € B\{ b; | (i) <6 }} =20

Assim, os codigos (,7(5) sao frequentemente chamados cddigos duais melhorados ou cddigos
melhorados de Feng-Rao.
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2.5 Uma conexao com o trabalho de Shibuya e Sakaniwa

Na referéncia [7], Shibuya e Sakaniwa encontraram uma cota para a distancia minima para os
codigos C(B,G). Vamos ver a seguir que existe uma forte conexao entre o teorema 2.3.5 e a
cota de Shibuya e Sakaniwa.

Recorde que
A ={lel, | p(b*b;) =1 para algum b; com (i,j) WWB }
Vamos enunciar a cota de Shibuya e Sakaniwa.

Teorema 2.5.1 (A cota de Shibuya e Sakaniwa). Dada uma base B = {by,by,--- ,b,}
eGCB,sejal;, ={vell|b € B\G}\A;, parai = 1,2,--- ,n. Definimos t(B,G) =
max{ §(T;) | b € G}. A distancia minima de C(B,G) satisfaz:

d(C(B,G))>n—k+1—1tB,G)

Demonstracao. Uma prova deste resultado pode ser encontrada na referéncia [7]. m

Vamos mostrar agora como a cota de Shibuya e Sakaniwa pode ser vista como uma con-
sequéncia do teorema 2.3.5.

Teorema 2.5.2 A cota da distancia minima de C(B,G) no teorema 2.53.5 € maior ou igual &
cota de Shibuya e Sakaniwa.

Demonstracao. Seja B = {by,by,--- ,b,} e G = {by,,b,,--- ,b,} € B. Parai =1,--- F,
temos que:

a(ls) = 4(Ay, U{L})
Para cada l; € {l},ls, - ,lx}, o conjunto T;, consiste de todos os nimeros v € I, tais que
b, € B\ G e que nao contribuem para a contagem dos elementos do conjunto A;, U {l;}.

Consequentemente, a quantidade de nidmeros de elementos v € [, com b, € B\ G e que nao
contribuem para a contagem dos elementos do conjunto A;, U {l;} é n —k —4(7},).

Para cada [; € {l1,l3,- -+ ,l;}, o nimero de elementos v € I com b, € G e que contribuem para
a contagem dos elementos do conjunto A;; U {l;} é maior ou igual a §({/;}) = 1.

Assim, n — k+ 1 —#(T;) < 4(A; U{i}) = 7(i) para todo i com b; € G, e o resultado segue. m

Observagao 2.5.3 Note que T; depende da escolha de G. Isto significa que os cdlculos feitos
para uma escolha de G nao podem ser reutilizados para outra escolha de G. Em particular,
dada uma base B nao € tao facil ver qual deve ser a melhor escolha de G. As vantagens do
teorema 2.3.5 em comparag¢ao com a cota de Shibuya e Sakaniwa sao as sequintes:

Primeiramente, o teorema 2.5.5 € muito mais simples de implementar, e no caso da distancia
minima a prova € quase trivial.

Depois, os cdlculos feitos para uma escolha de G podem ser reusados para outras escolhas de
G. Como uma consequencia, o teorema 2.53.5 nos permite construir cddigos melhorados (§).

Ainda temos que o teorema 2.3.5 trata nao somente da distancia minima mas também de
todos os pesos generalizados de Hamming. Finalmente, usando o teorema 2.3.5 podemos definir
e lidar com codigos vindos da teoria de dominios de ordem.



Capitulo 3

Dominios de Ordem

3.1 Cdbdigos da teoria de dominios de ordem

Nas secoes anteriores vimos como estimar os parametros de qualquer cédigo linear, mas para
que esse método seja realmente pratico precisaremos de bases B = {by, -+ , b, } para [F} tais que
seja facil decidir se um dado par (i,5) ¢ WB(ou WWB) e também seja facil calcular p(b; * b;).

Uma maneira de encontrar tais bases ¢ usando a teoria de dominios de ordem que vamos
apresentar a seguir. Recorde do exemplo motivador como os cédigos de Reed-Solomon foram
vistos como a imagem de um subespago do anel de polinémios R = F,[X] pela aplicacdo de
avaliagao ev : IFy[X] — Fy. Recorde também como usamos a fungao grau em F,[X] para decidir
o valor de p(c* b;). A idéia da teoria dos dominios de ordem ¢ generalizar este contexto para
uma classe maior de estruturas algébricas chamadas dominios de ordem.

Vamos enunciar o conceito de ordem monomial sobre F[X,--- | X,,].
Defini¢ao 3.1.1 Uma ordem monomial sobre F[ Xy, -, X,]| é uma relagio < sobre Njj, ou
equivalentemente, uma relacao sobre o conjunto de todos 0os monomios nas variaveis Xy, - -+ , Xy,

que satisfaz:

(a) < € uma ordem total sobre Nj.

(b) Sea < ey eNp, entao a+v < B +1.

(c) < € uma boa-ordem sobre Ni,. Isto significa que todo subconjunto nao vazio de N} possui
um menor elemento em relacao a <.

Definicao 3.1.2 Seja R uma F-dlgebra e seja I' um subsemigrupo de Ni para algum r. Seja
=< uma ordem monomial sobre Nij. Uma aplicagao sobrejetora p: R — T'_ :=T'U{—00} que
satisfaz as seis sequintes condigcoes € dita ser uma fun¢ao peso.

(W.0) p(f) = —o0 = f =0.

(W.1) p(af) = p(f) para todo a € F; ndo nulo.

(W.2) p(f +g) = maz{p(f),p(g)} e a igualdade ocorre quando p(f) < p(g).

(W.8) Se p(f) < p(g) e h # 0, entao p(fh) < p(gh).

(W.4) Se f e g sao nao nulos e p(f) = p(g), entdo existe um a € F, ndo nulo, tal que

p(f —ag) < p(g).
(W.5) Se f e g sao nao nulos, entio p(fg) = p(f)+ p(g).

Uma F-dlgebra com uma fungao peso € chamada de dominio de ordem sobre [F,. A terna
(R, p,T) € chamada de estrutura de ordem, e I' é chamado de semigrupo de valores de

p.

16
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Teorema 3.1.3 Seja (R, p,I') uma estrutura de ordem sobre F,. Seja = {fo | @ € I'} uma
sequéncia de elementos em R tais que p(fo) = a para todo a € I'. Entao {f, | a« € '} é uma
base para R como espago vetorial sobre F,. Em particular, {f, € B | o X v} € uma base para

Ry :={feR|p(f) 21}

Demonstracao. Seja {fu,; fass s fam ) C {fa | @« € '} com «; # «a; para i # j. Considere
uma F,—combinagao linear a; fo, +- - -+ asm fa,, = 0. Aplicando a fungao p temos que p(ay fa, +
ot amfa,,) = p(0) = —00, mas como fo,, -, fa, sao distintos temos que p(ajfo, + - +

amfam) - ma’x{p<a1fa1)u e 7p<amfozm)} = p(ajfa]-) para algum ] L0g07 p(ajfa]-) = —00 1nos
diz que a; = 0. Repetindo este processo, temos que a; = 0 para ¢ = 1,--- ,m, e portanto
{fors fags s fan } € linearmente independente.

Agora seja f # 0 € R, logo existe fo, € {fa | @ € I'} tal que p(fa,) = p(f). Por (W.4) existe
a1 # 0 € F, tal que p(f — afa,) < p(far).- Se p(f — a1fa,) = —o0 acabou. Caso contrério,
existe fo, € {fa | @ € T'} tal que p(fa,) = p(f — a1 fa,), mas por (W.4) existe as # 0 € F, tal
que p((f - alfm) - a2fa2) < p(faz)' Se p(f — a1 fa, — a2fa2) = —0o0 acabou.

Caso contrario, repetimos este processo novamente. Agora note que a sequéncia:
(Ot) =Qp - Qg -y o

¢ uma sequéncia (nao necessariamente infinita) estritamente decrescente de elementos de I' C
Nj. Como < é uma ordem monomial sobre Nj, logo < é uma boa ordem sobre Nj, entao segue
que a sequéncia («) eventualmente termina, isto é; existe m € N tal que (o) = ag = ag > -+ >
Q.-

Assim, apds repetirmos este processo m vezes, obtemos:

p(f - &1fa1 - a2fa2 - = amfam) = —0OQ.

o que nos diz que f =ayfo, + -+ amfa,, B

Uma base 8 como no teorema acima, ¢ chamada de base bem-comportada.

Exemplo 3.1.4 Considere o anel quociente R := Fo[X,Y]/I onde I € o ideal gerado pelo
polinémio Hermitiano X* — Y3 —Y . Mais adiante, vamos ver que o conjunto:

{XYP4+T|0<a, 0<B<3}
¢ uma base para R como espaco vetorial sobre Fy.

Agora, vamos definir p(X°YP + 1) := 3a+ 48 para 0 < a e 0 < B < 3. Assim, p estd
definida sobre todo elemento de nossa base. Usando as propriedades (W.0),(W.1) e (W.2) p é
extendida para todo R. Temos que I' = (3,4) (aqui (s1,--- ,S,) significa o semigrupo gerado

por Sy, 787")'

A base no exemplo 3.1.4 é um exemplo de uma base bem comportada para o dominio de ordem
R.

Segue abaixo uma tabela (tabela 3.1) mostrando os valores de p para alguns elementos de
{(XYP+T|0<a, 0<B<3}.
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Y2 XYZ [ X2YZ ] X3Y2 | XTY?2 [ XOYZ [ XOv2 [ X7Y?2 | X8YZ2 | X9Y?2
Y XY X2y X3Y Xty X5y X0y XY X3y X9y
1 X X2 X3 X1 XP X6 X7 X8 X9
8 11 14 17 20 23 26 29 32 35
4 7 10 13 16 19 22 25 28 31
0 3 6 9 12 15 18 21 24 27

Tabela 3.1: Valores de p do exemplo 3.1.4.

Definigao 3.1.5 Seja R uma F-dlgebra. Uma aplicagao sobrejetora p : R — Fy € chamada de
homomorfismo de F,-dlgebras se p é F -linear e p(fg) = o(f) * ¢(g) para todo f,g € R.

Agora é natural tomar elementos na base B = {by,--- ,b,} para [y, como sendo da forma
©(fr) para n diferentes valores de A.

Vamos ver que os valores «(1),- -+, «(n) na préxima definicao serdao uma boa escolha para
os N's.
Definicao 3.1.6 Seja a(1) := 0. Para i = 2,3,--- ,n definimos «(i) recursivamente como
sendo o menor elemento em I' que é maior que a(l),(2),--- , (i — 1) e satisfaz p(R,) &

©(Ra)) para todo v < o).
Notagao: {a(1),a(2),--- ,a(n)} = A(R, p,¥).

Observagao 3.1.7 Veja que a definicio de A(R, p,p) acima estd bem definida, isto é; dado
um homomorfismo de F-dlgebras p : R — Ty existem realmente n elementos em A(R, p, p).

De fato, como ¢ € sobrejetora podemos considerar o sequinte conjunto nao vazio abaizo:
Ay ={a el |0<ae{p(fam), ¢(fa)} € L.1}
(onde L.1. significa linearmente independente).
Veja que As Q/Ng, e como < € uma ordem monomial sobre Njj logo existe cs € Ay tal que ay =
o, Yo € Ay. E ficil ver que oy € 0 menor elemento em T' que é maior que 0 e (R,) & ¢(Ra,)

para todo v < .

Assim, as = a(2) € A(R, p, ). Novamente, podemos considerar o conjunto:

As={a el [0=< a2 < ae{o(fam) ¢(fa@) v(fa)} € L1 }
E novamente existe ag € Az tal que az = a, Ya € Az, e sequindo o mesmo raciocinio temos
que ag = a(3) € A(R, p,p). Assim, podemos repetir este processo criando recursivamente 0s
conjuntos Ag,--- , A, e obtendo a(4),--- ,a(n) € AR, p, ).

O seguinte teorema é facilmente provado.

Teorema 3.1.8 Seja A(R, p,¢) = {a(1),a(2),--- ,a(n)} como na defini¢io 3.1.6. O conjunto

B:= { bl = 90<f04(1))7 b2 = Qo(fa(Q))a T bn = Sp(foz(n))}
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¢ uma base para Fy como espaco vetorial sobre F,.

Para qualquer ¢ € Fy existe um dnico conjunto ordenado (B1, B2y, Bn), com B; € Fy para

1=1,---.n tal que c = <Zﬁ¢fa(i))
i=1

A fungio p: Fy — {0,1,--- ,;z} correspondente a base B ¢ dada por:

.\ _ |0, se c=0,
ple) = max{i | f; #0}, sec#0

Demonstracao. Como dim (IFZ) = n, s6 precisaremos mostrar que B é um conjunto linear-
mente independente. Para cada i =1,--- ,n temos que:

p(fa:) € p(Ra) \ p(Ra; 1)

Logo,

b € @(Ra(l)) - @(RO)
b2 € @(Ra(z))\@(Ra(l))

bn € @(Ram) )\@(Ra(nq) )

e como p(Ra,) &+ & ¢(fa,,) = Fy, segue que {by,--- ,b,} ¢ linearmente independente. As
demais afirmacoes sao facilmente mostradas. m

Proposigao 3.1.9 Seja P o conjunto formado pelos distintos pontos Py,---, P, em Fi'. Seja
R=F,Xy, - ,X,]. Considere a aplicagio de avaliagdo:

evp:R—>FZ

definida por evy(f) = (f(P1), -+, f(P,)). Entdo a aplica¢io evp é um homomorfismo de F, -
algebras.

Demonstracao. Vamos mostrar que evp é sobrejetora. Seja P; = (xj1,- -, Zjm). Seja Ay =
{zji|7=1,--- ,n} \ {z4}. Defina o polinomio G; por:

Gi = H;ll Ha:eAil (Xi —2)

Entao G;(P;) = 0 para todo i # j. Ainda mais, G;(P;) # 0, ja que Py,---, P, sao distintos.
G;
G(F)
Consequentemente evp é sobrejetora. E facil ver que evp é linear e que evp(fg) = evp(f)xevp(g)

para Vf,g € R, logo evp é um homomorfismo. m

O polinémio é levado pela aplicagdo evp no i-ésimo elemento da base canonica de [y .

Observagao 3.1.10 Suponha que I € um ideal no anel F [ Xy, -+, X,,]. SejaV ={P,---,P,}
o conjunto de zeros de I com coordenadas em Fy, isto é; V ={P € Fy | f(P) =0 paraVf € I.
Entao a aplicacao evp acima induz uma outra aplicagao linear bem definida:

o :FoXy, - X /T — T
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definida por o(f + 1) = (f(P1), -, f(P,)) que também é um homomorfismo de F, - dlgebras.

Exemplo 3.1.11 Vamos continuar o exemplo 3.1.4. O polinomio hermitiano X* — Y3 —Y
tem 27 zeros Py, .-+, Poy.

Denotando Fg = {0,1,2,a,1 + o, 2 + «, 2, 1 + 20, 2 + 2a} onde o® + 1 = 0, temos que os
27 zeros sao:

P1 = (0,0) P2 = (0,0é) P3 = (0,204)

P4=(1,2) P5:(1,2+O() P6=(172+205)

Pr=(2,2) Ps=(2,2+4a) Py = (2,2 + 2a)

P10 = (04,2) P11 = (Oz,2+a) P12 = (a,2+2a)

P35 = (2a,2) Py = (20,24 ) P15 = (20,2 + 2a)

P16:(1+Oé,1) P17:(1—|—a,1+a) Plg:(1+a71—|—204)

P19:(2+Oé,1) P20:(2+Oé,1+04) P21:(2+O(,1—|—204)

P22:(1+2Ot71) P23:(1+20t,1+04) P24:(1+2a,1—|—2a)
_P25:(2+20z,1) P26:(2+20[,1+Oé) P27:(2+204,1+20[)_

Definindo uma fungdo ¢ : R — F37 por
e(F(X,Y) + 1) :=(F(P), - F(Px)).
Pela observacao 3.1.10, temos que ¢ € um homomorfismo de F, - dlgebras.
Por inspecao, temos que para 0 < a<9e0< g <3
P(XYP +1) € p(Rsarap) \ p(Rzatap—1)
Portanto
AR, p, ) ={3a+46 | 0<a <9, 0<3<3}.

Denotando para i =1,---,27, fou) = F(i) + I, temos a tabela abaizo:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a(i) 0 3 4 6 7 8 9 10 11 12 13 14 15 16
F(4) 1 X Y X2 Xy Y? X3 X2y  XYy? x4 X3y  X2y? X5 X4y

i 15 16 17 18 19 20 21 22 23 24 25 26 27
a(i) 17 18 19 20 21 22 23 24 25 26 28 29 32
F@) Xx%y? X6 X% X4y? X7 XSy X%v? X% X7v X6Yv? X8y X7y? X8y?

Tabela 3.2: Valores de «(3).
Mas adiante, vamos ver uma outra maneira de encontrar o conjunto A(R, p, ) sem reco-
rermos a fazer a inspecao acima, o que é de fato um arduo trabalho.

De agora em diante, vamos assumir sempre que a base B = {b,--- ,b,} é da mesma forma
da base B no teorema 3.1.8.

Gostarfamos de saber quais pares (i,5) € I? sao WB e de encontrar qual ¢ o valor de
p(b; % b;). As duas proposi¢oes seguintes vao nos ajudar a responder em parte estas questoes.

Proposigao 3.1.12 Seja B = {by, -+ ,b,} uma base como em 3.1.8. Se af(i),a(j),a(l) €
A(R, p, ) sao tais que a(i) + a(j) = a(l), entdo p(b; xb;) =1 e (i,7) € I? é WB.
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Demonstracao. Vamos mostrar primeiro que p(b; * b;) = [. Temos por hipdtese que:

a(i) + a(j) = al) = p(fam) + p(fai)) = all)

Por (W.5) temos que
a(l) = p(fa@) + p(fai) = p(fa@) * faii)

Logo faw) fa) €E{f € R | p(f) < a(l)} = Rag) € faw) fa) E{f € R|p(f) <7} =R, V7 <
a(l). Assim o(fa@) - fai) € P(Ray) = ¢({f € R | p(f) < a(D)}) = Li e ¢(fati) * fati) & Lw
para Yw < [. Logo, ©(fa@) - fa) € L\ Li—1. Mas ©(faq) - fa) = ©(fa@) * ©(fai)) = bi * b;.
Assim, b; xb; € Ly \ Li_y = p(b; * b;) = L.

Agora vamos mostrar que (i,7) ¢ WB. Sejam u,v € I, taisque 1 < u <i, 1 <v < je
(u,v) # (i,7). Temos que a(u) < a(i) ou a(v) < a(j). Suponha que a(u) < a(i), o outro caso
é andlogo. Logo, p(faw)) < p(fa@)) € como fo) # 0, por (W.3) temos que:

P(faw) * faw) < p(faw) - faw) = p(fat)) + p(faw))
< plfaw) + p(fai)) = p(fag) fai) = a(l)

Logo, pelas definicoes 3.1.5 e 3.1.6 temos:

by * by = @(faw) * P(faw) = P(faw faw) € p(R,) para algum v < a(l).

Logo b, * b, € p(R,) C L;_y. Isto implica que p(b, * b,) < — 1 e consequentemente (,7) é
WB. m

Proposicao 3.1.13 Considere a(l) € A(R,p, ) e assuma que existem (1,Ps € T tais que
Br+ B2 = a(l). Entao By, B2 € A(R, p, ¢).

Demonstragao. Temos que i + f; = p(f,Bl) + p(fﬁ2) = p(fﬁlfﬁz)a logo f51fﬂ2 € Ra(l) €
fa. fa, ¢ R, para qualquer v < «(l). Vamos mostrar que 1 € A(R, p, ¢), a demonstragao para

[y sera anéloga.

Suponha por absurdo que 81 ¢ A(R, p, ), isto é, que existe w € I" tal que w < B e p(Ry,) =
©(Rp,). Em particular, temos que ¢(f3,) € p(R,). Assim, existe g € R, com p(g) = ¢(fs,) 0

que implica ©(gfs,) = ©(f3, fs,)-

Como g € Ry, logo p(g) < w < f31, o que nos diz que p(g) < p(fs ). Como [z, # 0, por (W.3)
temos que

p(Qfﬁz) < p(fﬁ1f52> = Oé(l)

Denotando por vy = p(gfs,), note que gfs, € R, e logo ¢(g9fs,) € w(R,,), mas p(gfsz,) =
©(fs, f3,) logo ©(fs, fs,) € ¢(Ry,) € Yo < «(l), o que é uma contradicao pois fz, fz, € Raq) €
fa fa, ¢ R, para qualquer v < a(l). m

Note que com as duas proposicoes acima em maos podemos estimar facilmente os valores
de 7(i) e (i) parai =1,--- n.

Definicao 3.1.14 (a) Paran € A(R, p,p) ={a(l), - ,a(n)} definimos:



22

M(n) :={y € A(R,p,¢) | 3B € A(R,p, ) comn+ =}
=+ D)NA(R, p,p).

onde n + T significa {n+ X | X € T}.

Seja o(n) = ¢M(n). Para { m,ne, -~ } S AR, p, ) definimos o(ny, 1, -+ 1) =
A(Uizy M (m:)).-

(b) Para X € T, definimos:
NN :={nel' |3l comn+p5=A}
Seja (X)) :==4N(N). Para { Ay, , A\ } C T definimos (A, -+, \) =14 (U§:1 N(N\)).

Proposigao 3.1.15 Considere o conjunto A(R, p,p) = {a(1),--- ,a(n)} e a base correspon-
dente B = {by, -+ ,b,}. Parai = 1,--- ,n temos que p(i) > o(a(i)), e para l = 1,--- n
temos que (1) > p(a(l)). Mais geral ainda, para {ay,--- ,a;} C I temos que p(ay,--- ,a;) >
U(a(a1)> T aa(at)) € ﬁ(ab T ’at) = M(a(al)’ U 7a(at))'

Demonstragao. Considere o conjunto {l | «(l) € M(« z)) Seja l; € {l | a(l) € M(a(d))},
assim existe «a(j) € A(R,p,p) tal que a(i) + a(y ) = «a(ly), e pela proposicao 3.1.12 temos

}
lh),
que (i,7) ¢ WB e p(b; x b;) = 1y, desta forma {l | a(l) € M(a(i))} € A;. E como #{l | a(l) €
M(a(i))} =4 M(a(z)) = o(a(i)), segue que o(z) = §(A; U {i}) > o(a(z)).

Agora considere o conjunto N(a(l)). Seja n € N(a(l)), logo existe § € I" tal que n+ 5 = a(l),
e logo pela proposigao 3.1.13 temos que existem «(i), a(j) € A(R, p, @) tais que n = (i) e f =
a(7). Como a(i)+a(j) = a(l), segue da proposicao 3.1.12 que (i, j) ¢ WB e p(b;*b;) = [. Assim,
{i|a(i) € N(a(l))} S Vionde V; = {i € I | p(bi*b;) =l para algum b; € B com (i,j) WW B}.
Logo,

al) =g(Viu{l}) = H{i | @) € N(a(l)} = N (a(l)) = pla(l)).
Para a segunda parte da proposicao, precisamos mostrar que:
f((Aay U{ar}) U+ U (Ag, U{ar})) = §(M (afar)) U--- U M(a(ar)))

Note que £ (Ui, M(alas))) =t (Ui {l | a(l) € M(a(as))}), e pelo que fizemos acima, temos
que:

{l [ a(l) € M(a(ar))} € Ag,
{l | a(l) € M(afaz))} C A,

{11 () € M(afa))} € A,
Logo, U\_ {1 | a(l) € M(a(as)} €U, Aw, €U (Aa, U{as}). E assim,

o(a(ar), - (Ui M(a(ay))) = ¢ (UL {1 | a(l) € M(a(ay))}) <
(A, u{as}»—ﬁ(al,--- ).

f
(U
Agora precisamos mostrar que:

#((Vay Ufan ) U--- U (Vo Ufar})) = (N (afar)) U-- - U N(a(ar)))
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Note que se n € N(a(as)) onde s € {1,--- ,t}, entdo existe § € I' com n + 8 = a(as) e pela
proposigao 3.1.13 temos que n € A(R, p,¢). Assim:

ﬁ(Ui:l N(a(as))) = (Us 1{Z | a(i) € N(a(a ))})

Pelo que fizemos acima, temos que:

{i | a(i) € N(a(ar))} C V.
{i [ ai) € N(afa ))} cV.

{i ] ali) € N(a(a)} € Vi
Assim, UL {i | a(i) € N(a(as))} € U'_, Vo, € Uy (Va, U {a,}). Logo,

(Us | N(a(a ))):Ij(Us i | ai) € N(a(a ))})S

M(a(al)a T 70(((115)) -
( s=1 V;ls U{CL })) :H(alv : )at)~
como queriamos concluir. m

Exemplo 3.1.16 Vamos continuar o exemplo 3.1.11. Para estimar, por exemplo 5(21), temos
que encontrar o(a(21)). Primeiro, observamos que a(21) = 23. Agora veja que:

M(23)={te A(R,p,¢) | 3s€ AR, p,p) com 23+ s =1}
Logo olhamos para os valores s, t em A(R, p, @) tais que 23 + s =t. Temos que:
2340 =23, 23+3=26,23+6=29 ¢23+9=32.

Assim, M(«(21)) = {23,26,29,32}, e logo o(«(21)) = 4. Pela proposicio 3.1.15 temos que
(21) > 4.

Recorde que introduzimos anteriormente os codigos £(s) e os cddigos melhorados £(d). Seme-
lhantemente, introduzimos os cédigos C(s) e os cddigos melhorados C(d). Agora consideraremos
os codigos correspondentes no contexto da teoria dos dominios de ordem.

Definigao 3.1.17 Considere o conjunto A(R, p,¢) = {a(1l),--- ,a(n)} e a base correspondente
B ={by, - ,b,}. Definimos

E(X) = ¢(Ry)
=C(B,G) onde G ={b; | a(i) X A}

E(8) := spang, {p(faw) | i) € A(R, p,¢) e a(ali) > 6}
=C(B, Q) onde G={b; | o(afi)) > d}

C\) :=={ceFy | c-o(fy) =0 para todo v < A}
= C*(B, G) onde G = {b; | a(i) < A}

C(6) :={ce F2 | ¢ p(fa@) = 0 para todo a(i) € A(R, p,¢) com p(a(i)) < 6}
= C*H(B,G) onde G = {b; | pu(a(i)) < 6}

O seguinte teorema é uma consequéncia da teoria desenvolvida até agora.

Teorema 3.1.18 A distancia minima dos cddigos na defini¢cao 3.1.17 é cotada por:
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d(E(N)) = min{o(n) | n € A(R, p, ), com n < A},
d(E(9)) = 6,
d(C(X)) = min{p(n) | A <n, en € AR, p,¢)}
d(C(6)) > 6.

Mais geral ainda, o t-ésimo peso generalizado de Hamming (t sendo no mdzximo igual a dimensao
do cddigo) satisfaz:

di(E(N) = min{o(ny,--- ,ne) | {m, -+ ,m} € AR, p, @)
n; #nj para i # j, ns < Apara s=1,--- t}

di(E(0)) = min{o(m, -+ ,m)

| {n, - me} ©A(R, p, )
ni #ny para i # j, o(n,) >4

para s =1,--- t},

di(CN) > min{pu(A, -, N) | X = A, A € A(R, p, ¢)
parai=1,--- t}

(O = min{uhn 3 | HN) = 6, € AR p.)
para i=1,---,t}

Demonstracao. Pelo teorema 2.3.5 e proposigao 3.1.15 temos que

d(E(0)) > min{z(i) | b; € G} > min{o(a(i)) | by € G} > 6
Pelo teorema 2.4.3 e proposicao 3.1.15 temos que

d(C(N) > min{ u(l) | b € B\ G} > min{u(a(l)) | a(l) > A}
=min{u(n) | A <n, n€ AR, p,¢)}

d(C(8)) = min{m(l) | by € B\ G} = min{u(a(l)) | pla(l)) = 0} < 4.
Pelo teorema 2.3.5 e proposicao 3.1.15 segue que:

di(E(N) > min{a(ay, -+ ,a¢) | a; # a; para i # j e {bqy, -+ b, } C G} >

min{a<a(a1>7 U va(at)) | {a(al)’ Y ,Oz(as)} - A(R7 Ps 90)’ a(ai> 7£ a(aj) para t 7£
jealas) X Apara s=1,---,t}

:min{a(m,~-- 777t) ’ {7713"' 77775} gA(R>p>S@) i _\<77j parai#i; Ms S )\para s = 17 7t}

dy(E(0)) > min{c(as,--- ,a;) | a; # a; para i # j {ba,, - ,ba,} T G} >

min{o(a(a), - .a(@)) | {a(ar). - a(a)} € AR p,¢). ala) # ala;) para i £
jeo(alas)) >d paras=1,---t}

- min{O-(T]l?' o 777t) ‘ {7717’ o 777t} g A(R7p7 @)7 i 7é 77] para { 7é.]7 0(775) 2 (5pCLTCL S =
. ,t}

E pelo teorema 2.4.3 e proposicao 3.1.15 segue que:
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di(C(N) > min{p(ar, - ,a¢) | a; # aj para i # j e {bal, <o be, } CB\ G} >
mmmmmm~»a<»rm>#m%nmumw,mmn sa(a)} € AR, pp) e alas) -
Aparas=1,--- t}
=min{u(A1, -, ) | A = A, )\GA(Rp, ) parai=1,--- t}

At)
di(C(9)) > mm{u(al, yap) | aip #a;paraiF#je {by, - by, } C B\G} >
min{p(afar), - alw)) | ala) # ala;) para i # j, {alar), - ala)} ©

Wp,)u((D>5mms—1‘mﬂ
=min{u(A, - M) | w(Ni) >0, N € A(R, p, o) parai=1,--- t}

como queriamos demonstrar. m

E facil ver que com relacio as cotas acima a construcao de C'(8) é um melhoramento de C/(\)
e E(5) é um melhoramento de E()). Os resultados sobre d(C()\)) e d(C(6)) sdo conhecidos
como a cota da ordem e sdo da referéncia [8]. Os resultados sobre d;(C'()\)) vem da referéncia
[9] e os resultados sobre dy(C(8)) vem da referéncia [110]. Os resultados sobre E()\) eE(\) sdo
de Andersen-Geil, referéncia [1].

Exemplo 3.1.19 Isto é uma continuacao do exemplo 3.1.16. Na tabela 3.3 abaixo, listamos
todos os valores de o(a(i)), parai=1,--- ,27.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ai) |0 3 4 6 7 8 9 10 11 12 13 14 15 16

o(a(i)) |27 24 23 21 20 19 18 17 16 15 14 13 12 11
i 15 16 17 18 19 20 21 22 23 24 25 26 27
a(i) |17 18 19 20 21 22 23 24 25 26 28 29 32
ola@))|10 9 8 7 6 6 4 3 4 3 2 2 1

Tabela 3.3: Valores de o(a(7)).

Note que €(21) = spang, {b1,--- ,ba1} = E(23) € um cddigo com parametros n =27, k = 21
ed> 4.

E temos também que £(22) = spang, {b1,--- by} = E(24) ¢ um cddigo com parametros
n=27,k=22ed?>3.

Agora veja que E(4) = spang, {b; | 7(i) > 4} = spang, {b1,--- by, ba1,ba3} € um codigo
com parametros n = 27, k =22 ed > 4, e portanto é um cédigo melhor que os cédigos E(23) e
E(24), isto é, E(4) é um cddigo melhorado. Abaizo, seque uma tabela (tabela 3.4) com exemplos
de cédigos da forma E()\) e E(8) usando-se a tabela 3.3, a cota que aparece na tabela 3.4 € a
cota fornecida pelo teorema 3.1.18.
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Cadigo Base Cota Cadigo Base Cota
E(0) {or} d(E(0) =27 | EQA7) | {b, - bis} | d(E(17)) = 10
E(1) {01} d(E(1) =27 | E(18) | {bi,---,bie} | d(E(18)) =9
E(2) {01} d(E(2) =27 | E(19) | {b, -, bir} | d(E(19)) =8
E(3) {b1, b2} d(EB3))>24 | EQ20) | {by, - b} | d(E(20)) >7
E(4) {b1, b2, b3} d(E(4)) 223 | E@21) | {bi, - ,bio} | d(E(21)) 26
E(5) {b1, b2, b3} d(E(5)) =223 | E(22) | {br, - b} | d(E(22)) 26
E(6) {by,-- b} | d(E®6))>21 | E23) | {b1,-- .bu} | d(E(23)) >4
E(7) {br,- b5} | d(E(T)>20 | E24) | {br, - .bn} | d(E(22)) >3
E(8) (b1, b} | d(E®)>19 | E(25) | {b1,-- by} | d(E(25)) >3
E(9) {by,---,b;} | d(E(9))>18 | E(26) | {by,--- by} | d(FE(26)) >3
E(10) {01, bs} | d(E(10)) 217 || E(27) | {br,-- ,baa} | d(E(27)) 23
E(11) {by,-- by} | d(EAL)>16| E(28) |{b,--- by} | d(E(28)) >2
E(12) {by,-- by} | d(E(12)) > 15| E(29) | {by,--- by} | d(E(29)) > 2
EQ13) | {by,---,bu} | d(E(13)>14| EB30) | {b1,-- by} | d(E(30)) > 2
E(14) {by, - ,bie} | d(E(14)) > 13| E(31) | {b1,--- by} | d(E(31))>2
E(15) {br, - bzt | d(E(15) >12| E32) | {by, - by} | d(E(32))>1
E(16) {by,-- b} | d(E(16)) > 11

Cdédigo Base Cota Cédigo Base Cota
E(0) {br, -+, bar} d(E(0) =0 || E(15) | {bi,--- ,bio} | d(E(15)) = 15
B(1) {b1, -+ bar} d(E(1)) > 1 E(16) | {by,--- ,bo} | d(E(15)) > 16
E(2) {by, - by} d(E(2)>2 | EQ7) | {by,---,bs} | d(EQT)) > 17
E(3) {by,-- by} d(EB3) >3 | EA8) | {by,---,b;} | d(E(18)) > 18
E(4) | {b1,--- ,bar,bas} | d(E4) >4 || EQ9) | {b1,---,bs} | d(E(19)) > 19
EG) | Abi,- b} | d(E(G) =5 | EQ0) | {by,---,bs} | d(E(20)) > 20
E(6) {by, -+ by} d(E6))>6 | E@21) | {b,---,b} | d(E(21)) > 21
E(7) {b1,--+  bis} d(E(T) >7 | B(22) | {bi,by,bs} | d(E(22)) > 22
E®) | {bi,-birk | d(E®)>8 | E@23) | {bi,bybs} | d(E(23)) > 23
E(9) {b1,- -+, b} d(E£(9) 29 | E(24) {b1, b2} d(E(24)) > 24
E(10) {by,--- b5} | d(E(10)) > 10 || E(25) {b,} d(E(25)) > 25
E(11) {by,-- b} | d(E(11)) > 11| E(26) {b,} d(E(26)) > 26
E(12) {by, - ,bis} | d(E(12)) >12| E(27) {b,} d(E(27)) > 27
E(13) {by,-- b} | d(E(13)) > 13
E(14) {by,---,bu} | d(E(14)) > 14

Tabela 3.4: Exemplos de Cédigos F(\) e E(J)

3.2 C(Cdbdigos de Goppa de um ponto melhorados

Nesta secao, mostraremos que todo cédigo de Goppa de um ponto pode ser visto como sendo
um cédigo da forma E(A) em relacdo a alguma estrutura de ordem, assim podemos usar os
resultados da se¢ao anterior para estimar a distancia minima.

A seguir, iremos usar alguns conceitos da teoria de corpos de fungoes algébricas e codigos
de Goppa, o leitor que nao esteja familiarizado com tais conceitos pode consultar os capitulos
1 e 2 da referéncia [5]. Usaremos a mesma notacao da referéncia [5].

O seguinte exemplo é bastante conhecido:
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Exemplo 3.2.1 Seja P um lugar racional no corpo de funcgoes F de uma varidvel com corpo
de constantes F,. Seja vp a valorizag¢ao correspondente a P. Considere a estrutura algébrica:

R = Ufnozo L(mP)

e considere a fungdo p: R — I'U{—o0}, definida por p(f) = —vp(f) onde " € o semigrupo de
Weierstrass correspondente a P.

Vamos ver que p estd bem definida. Seja z # 0 € R, se () € um pdlo de z, entao () = P.
Suponha que vp(z) > 0, entao z € P, mas F,NP = {0}, logo z € transcendente sobre F,, assim
z tem pelo menos um pélo Q). Mas @ nao pode ser P pois vp(z) > 0, o que € uma contradi¢do.
Portanto vp(z) < 0. Agora sabemos que vp € uma valorizagdo discreta, logo tem as sequinte
propriedades:

(1) vp(f) =00 f=0

(2) vp(f.g9) = vp(f) +vp(g) para todo f,g € F

(3) vp(f + g) > min{vp(f),vp(g)} para todo f,g € F com a igualdade ocorrendo se vp(f) #
vp(g).

(,143) vp(A) =0 para todo X\ # 0 € IF,,.

(5) Ezxiste um elemento z € F com v,(z) = 1.

Desta forma p estd de fato bem definida. E ainda mais, R é uma Fy-dlgebra e seque das
propriedades (1) a (5) que p satisfaz as propriedades (W.0) a (W.5), logo p € uma fungdo peso.

Agora sejam Py, --- | P, lugares distintos de grau 1 em T, todos eles diferentes de P, e
considere a aplicagio » : R — Fy, definida por o(f) = (f(P1), -, f(Pn)). Veja que se
f € R entao vp,(f) > 0 para i = 1,--- ,n, pois P, # P. A classe de residuos f(P;) de f
mddulo P; é um elemento do corpo de classes de residuos de P, isto é, f(P;) € Op, /P;. Como
grau(P;) = [Op, /P : Fj| = 1, este corpo de residuos € isomorfo a F,, entio f(P;) € F, e ¢
estd bem definida.

Vamos mostrar que ¢ é um homomorfismo de F,-dlgebras, para isto precisaremos do sequinte
teorema cuja demonstragao pode ser encontrada em [5].

Teorema 3.2.2 (Teorema da Aproximacao Forte). Seja S ?Cﬁ Pr um subconjunto proprio
de Pp e Py,---, P, € S. Dados ¢g1,---,9, € F e inteiros ay,--- ,a, € Z, entao exriste um
elemento f € F tal que:

v (f —g;) = aj para (j =1,---,n), e
UQ(f)ZoparatOdOQES\{Pla"' 7Pn}

Agora vamos mostrar que p € sobrejetora.

Denote por e; := (1,0,---,0),e3 := (0,1,0,---,0),--- ,e, := (0,---,0,1) € Fy. Tomando
S=Pr\{P} eg1=go="--= g, =0 no teorema acima, temos que para cada i existe f; € F
tal que:

vp,(fi) = 1 para todo j #i , vp,(fi) =0 e
v(fi) >0, para todo @ € S\ {Py,---, P.}.
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Veja que S\ {Py,--- ,P,} =Pp \ {P1,---, Py, P} e logo vo(fi) > 0 para todo Q # P.

Como vp,(fi) = 1 > 0 para j # i, entdo cada f; € transcendente sobre F, e logo f; tem pelo
menos um pdlo que nesse caso tem que ser necessariamente P. Logo vp(f;) < 0.

Assim, f; € R e o(fi) = fi(Pi)es, e temos que fi(FP;) # 0 pois vp,(f;) =0= f; € Op, e f & P;.

E fdcil ver que ¢ € linear e o(fg) = o(f) * ©(g) para todo f,g € R e pelo que fizemos acima
@ € sobrejetora, logo ¢ € um homomorfismo de Fy-dlgebras.

Assim (R, p,p) € uma estrutura de ordem sobre F,.

Observacdo 3.2.3 Como (R, p, ) € uma estrutura de ordem sobre F,, podemos considerar
os subespacos Ry = {f € R | p(f) <A} de R.

Note que se f € Ry, entao:
p(f) < A= —vp(f) < A= vp(f) > -A= fe LP)CR.

Por outro lado, se f € L(AP), entdo vp(f) > —X e vg(f) > 0 para todo Q) # P € Pr o que
nos diz que p(f) < Xe f € R, elogo f € Ry. Assim, Ry = L(AP), para todo A € Ny.

Considere a aplicagio v : R — Ty, definida anteriormente por o(f) = (f(P1), -, f(Pn)).
Como Py,---, P, sao lugares distintos de grau 1 em [, todos eles diferentes de P, podemos
considerar o codigo de goppa Cp(Py + -+ -+ P,, AP), logo temos:

={(f(P), -, f(P) | f € Ra} = (Ry) = E(})

Os cddigos de Goppa da forma Cr(D,G), onde G = AP com A € Nge D =P +---+ P,
com Py, --- | P, lugares de grau 1 distintos e P; # P para todo i = 1,--- ,n sao chamados de
codigos de goppa de um ponto.

Consequentemente, cddigos de goppa de um ponto sao cddigos de goppa da forma E(N), e os
codigos duais dos cddigos de goppa de um ponto sao cddigos da forma C(N).

Vamos mostrar a seguir que a cota dos c6digos E(\) no teorema 3.1.18 é um melhoramento
da cota de goppa, para isto precisaremos do seguinte lema:

Lema 3.2.4 Seja I' um semigrupo numérico com um nimero finito de lacunas, isto é; Ng \ T’
um conjunto finito. Entao o nimero de elementos de '\ (i + T') € igual a i.

Demonstracao. Uma demonstragao deste lema pode ser encontrada na referéncia [4]. m

Proposigao 3.2.5 A cota dos cddigos E(X) no teorema 3.1.18 é um melhoramento da cota de
Goppa.

Demonstracao. Temos que:
A(EMN) = min{4((i + A)NA(R.p, ) | i €A, i < A).

E pelo lema anterior temos que:
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B8+ A)NAR, p,p)) 2 n—i
com igualdade se, e somente se A\ (i + A) C A(R, p, ¢). De fato, temos que:
A=(G+ANUA\(G+AN))

e essa uniao é disjunta. Além disso, A(R, p, ) C (i+A)U(A\(i+A)). Agorase (A\ (i+A)) C
A(R, p,p), entao A(R, p, ) N (i +A) =n —1i.

Reciprocamente, se A(R, p, ) N (i +A) = n — i, entdo existem ¢ elementos de A(R, p, ) que
nao estao em (i + A), logo esses i elementos estao em A\ (i + A), pelo lema 3.2.4 temos que
8(A\ (i 4+ A)) =1, segue que A\ (i +A) CA(R,p,¢). m

A seguir, apenas para ilustracdo do fato de que a cota de Andersen-Geil (A-G) tem um
desempenho melhor ou igual que a cota de Goppa (G), colocamos na tabela abaixo os cédigos
E(X), A=3,---,30, baseados no exemplo 3.1.11 da curva hermitiana X*—Y? —Y. Na tabela,

k siginifica a dimensao do codigo E(N).

Cédigo | k | Cota A-G | Cota G | Cédigo | k | Cota A-G | Cota G
E(3) 2 24 24 E(17) |15 10 10
E(4) 3 23 23 E(18) | 16 9 9
E(5) 3 23 22 E19) |17 8 8
E(6) 4 21 21 E(20) |18 7 7
E(7) 5 20 20 E(21) |19 6 6
E(8) 6 19 19 E(22) |20 6 5
E(9) 7 18 18 E23) |21 4 4
E(10) | 8 17 17 E(24) |22 3 3
E11) | 9 16 16 E(25) |23 3 2
E(12) |10 15 15 E(26) |24 3 1
E(13) |11 14 14 E27) |24 3 1
E(14) |12 13 13 E(28) |25 2 1
E(15) |13 12 12 E(29) | 26 2 1
E(16) | 14 11 11 E(30) |26 2 1

Tabela 3.5: Comparagao entre as cotas de Andersen-Geil(A-G) e Goppa (G)



Capitulo 4

Bases de Grobner

4.1 Uma abordagem por bases de Grobner

Nas secoes anteriores descrevemos as ferramentas necessarias para trabalharmos com cédigos
da teoria dos dominios de ordem; as ferramentas importantes sao: a base bem ordenada B =
{fx | p(fa) = Afrer, o homomorfismo ¢ : R — F e o conjunto A(R, p, ). Lembrando que
A(R,p,p) = {a(l), -+ ,a(n)}, onde a(l) = 0 e (i) (para i = 2,---,n) é definido como

sendo o menor elemento em I' que é maior que a(l), (2),---,a(i — 1) e satisfaz p(R,) &
©(Raiy) para todo v < a(i). Com estas ferramentas em maos construimos a base B = {b; =
©(fa@))s > bn = ©(fam))} & qual é muito interessante para a construgao de cédigos.

Para um cédigo de pequeno comprimento, normalmente encontrar o conjunto A(R, p, ¢)
é uma tarefa facil, bastando usar somente métodos de algebra linear bésica. Contudo, para
c6digos de comprimentos maiores precisaremos de um método mais sofisticado. Na teoria a
seguir iremos usar varios conceitos tais como: base de Grobmer, o algoritmo da divisao para
polinémios em varias variaveis, e o algoritmo de Buchberger. Assumimos que o leitor tenha
familiaridade com tais conceitos, e indicamos uma leitura da referéncia [2] para maiores detalhes.

Definigao 4.1.1 Denote por M(X;, Xo, -+, X)) 0 conjunto de todos os monomios em
X1, Xo, -+, Xpn. Dada uma ordem monomial < sobre M(Xy, X, -+, X,;) e um ideal L C
F[X1, -+, Xm| a pegada de L € o conjunto:

AL(L) :={M e M(X1,Xs, -+, X}») | M ndo é um mondémio lider de nenhum polinémio em
L}.

Observacao 4.1.2 O nome “pegada’foi sugerido por D.Blahut em 1991. A pegada foi anteri-
ormente chamada de “delta-set”, entre outros nomes.

Somente em raros casos a pegada de um ideal L pode ser encontrada diretamente dos po-
linomios que definem L. Contudo, podemos sempre extender uma base qualquer de L para uma
base de Grobner de L usando o conhecido algoritmo de Buchberger , e depois podemos encontrar
a pegada de L facilmente.

Definigao 4.1.3 (a) Seja F um corpo e seja J C F[Xy, -, X,,] um ideal. Sejam f,g €
F[Xy,- -+, Xm]. Dizemos que f e g sio congruentes médulo J, escrevendo f = g mod J se

f—geJ.

(b) Seja G uma base de Grobner para J. Escreveremos f rem G como o resto da divisao de f

pela base G, e vamos escrever 7g ou simplesmente f _(quando nao houver risco de confusao)
para denotar a classe de f em F[Xy,--- X,,]/J, onde f =< f—g € J.

30
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(¢)Vamos usar a nota¢io multi-indice para monomios. Escreveremos X = [ X" onde
a=(a, -, an).
Proposicao 4.1.4 Sejam F um corpo. Fize uma ordem de mondémios < sobre M| Xy, -+, Xp)

e seja I CTF[Xy,- -, X;n] um ideal.

(a) Todo f € F[Xy,---,X.] € congruente mddulo I a um unico polinémio v que € uma
combinagio F — linear de monémios em A-(I).

(b) Os elementos de AL(I) sdo linearmente independentes mddulo I, isto €, se Y c, X =
0 mod I, onde X* € AL(I) e ¢, € F para todo «, entao c, = 0 para todo c.

Demonstracao. (a) Seja G uma base de Grobner para I e seja f € F[Xy,---,X,,]. Pelo
algoritmo da divisao, o resto r = f rem G satisfaz f = q¢+r,ondeq e I. Entao f—r=qgele
temos que f =7 mod I. O algoritmo da divisao também diz que r é uma combinacao F —linear
de monomios de AL(]), e a unicidade de r segue do fato de que tomamos G como sendo uma
base de Grobner.

(b) Seja G uma base de Grébner para I. Entaose ) co X® = 0mod I temos que ), ¢, X* € [
elogo > cacoXrem G =0. Como X* € AL(I), Va, temos que:

caXrem G =c, X% Va

Consequentemente, Y c, Xrem G = Y ¢, X% Assim, de ) coX%rem G = 0, segue que
Y uCaX* =0, elogo ¢, =0, para todo «. m

Observacao 4.1.5 Historicamente, a proposicao anterior foi na verdade uma das primeiras
aplicagoes da teoria das bases de Grobner.

Como consequéncia da proposicao anterior temos o seguinte resultado:

Proposicao 4.1.6 Seja F um corpo e seja L C F[X,,---, X,,] um ideal. Entio {M | M €
AZ(L)} € uma base para F[ Xy, -+, X,,]/L como espago vetorial sobre F.

Uma outro resultado muito 1til é a seguinte proposicao que é conhecida como Cota da
Pegada.

Proposigao 4.1.7 (a) Sejam F um corpo e J C F[Xy, -+, X;,] um ideal. Se AL(J) € finito
entao §(Ve(J)) < #(A<(J])).

(b) Se AL(J) € finito, J € um ideal radical e F € algebricamente fechado, entao #(Vy(J)) =
1(A<(J)).

Demonstragao. Primeiro mostraremos que dados pontos distintos Py, Ps, - -- , P. € F™, existe
um polinémio f; € F[Xy, -+, X,,] com fi(P) =1, e fi(P2) =--- = fi(P.) = 0. Para provar
isto, observe que dados dois pontos A = (a1, ,am), B = (b1, -+ ,by) € F™ com A # B, entao

X; — b,

eles diferem em pelo menos uma coordenada, digamos a j-ésima, e assim tomando g =

a; — bj
temos que g satisfaz g(A) =1 e g(B) = 0. Aplicando esta observacao para cada par P;, P; com
Py # P, i > 2, obtemos polinomios gy tais que g;(P1) = 1 e ¢g;(P;) = 0 para i > 2. Entao
f1 = g2.93 - g, tem a propriedade desejada.
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Neste argumento que acabamos de dar, nao existe nada em especial com P;. Se aplicarmos
o mesmo argumento com cada P;, i > 1, teremos polinoémios fi,--- , f. tais que f;(P;) = 1e
fi(P;) = 0 para ¢ # j. Agora, podemos provar o teorema.

(a) Seja G uma base de Grobner e seja V := {Py,---,P.} C Vg(J), onde os Py, sdo todos
distintos. Entao temos fi,- -, f, como acima, isto é; f;(P;) =1 e f;(P;) = 0 para i # j. Seja
> (aif; rem G) = 0 uma combinacao linear em F[X3,---, X,,]/J, onde a; € F. Voltando em
F[Xy, -+, Xp], como > (a;f; rem G) =0, entdo h:= Y., a;fi € J, e como Vg(J) = {P €
F™ | f(P)=0VYf € J}, segue que h se anula em todos os pontos de Vp(J), em particular; h
se anula em V C Vg(J). Entao, para 1 < j < r, temos:

0="nh(P;) =3, afi(P) = a;fj(P) = a;

e temos que f; rem G,--- , f. rem G sao r elementos linearmente independentes em

F[ Xy, -, Xml/J.

Assim, para cada r pontos em Vp(J) existem 7 elementos linearmente independentes em
F[Xq, -+, Xm|/J. Agora, A(J) forma uma base para F[X, .-, X,,]/J como espaco veto-
rial, e AL(J) é finito; seja s := §(A<(J)), assim pelo que fizemos acima existem no maximo s
pontos distintos em Vg(J), e segue o que queriamos provar.

(b)Suponha que J é radical. Para mostrarmos que §(Vg(J)) = #(A<(J)) basta mostrarmos que
B = {fi remG,--- | f, remG} é uma base para F[Xy,---,X,,]/J. No item (a) ja provamos
a independéncia linear, precisamos entao mostrar apenas que B gera F[ Xy, -+, X,,]/J. Seja
g € F[Xy,---,X,]/J, e denote a; := g(P;) e considere h := g — Y "'_, a;f;. Note que h(P;) =0
para todo j, assim h € [(V(J)) ={f € F[ Xy, -, Xn] | f(P)=0VP e V(J)}.

Agora temos que F é algebricamente fechado e J é radical, logo pelo teorema (forte) de zeros
de Hilbert, I(V(J)) =+/J = J, e assim h € J. Logo h = 0 em F[Xy,--- , X,n]/J, o que implica

queg=7>; ,a;f;. m

Agora vamos introduzir as ordens que serao importantes para nds. Elas sao as ordens grau
com pesos generalizadas.

Defini¢ao 4.1.8 Dados pesos w(Xy), -+ ,w(X,,) € Nj {0}, seja N ordenado por alguma
ordem monomial <y firada e seja <p uma ordem monomial fivada sobre M(Xy,---, Xp,).
Os pesos se extendem para um mondmio pela funcdo w : M(Xy,---, X,,) — Ny definida por
w(X{X5? - X)) = 3" apw(X;). Para um monémio M dizemos que w(M) € o peso de
M. Definimos o grau com pesos wdeg(F') de um polinomio F como sendo o maior peso
(com relagao a <N6) que aparece como peso de um monomio no suporte de F. Agora, a ordem
grau com pesos generalizada <., induzida por w, <y € <np € a ordem monomial definida
a sequir. Dados My, My € M(Xy, -+, X,,), entao My <, My se e somente se uma das duas
sequintes condigcoes ocorrem:

(1) w(My) <ny w(Ma), — (2) w(My) =w(Mz) e My < M.

Estamos agora em condicoes de dar uma descricao til para os dominios de ordem finita-
mente gerados.

Teorema 4.1.9 Seja <, uma ordem grau com pesos generalizada e assuma que

I C F[Xy, -+, X € um ideal com uma base de Grébner G com relagio a <,. Suponha
que os elementos da pegada A, (I) tem distintos pesos e que todo elemento de G tem exa-
tamente dois monomios de maior peso (com relagio a <n;) em seu suporte. Entio R =
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F[Xy, -+, X/ € um dominio de ordem com uma fun¢do peso definida a sequir: Dado um
f#0eF[Xy, -, X,]/I escreva f = F + 1 onde F € spang{M | M € A_ (I)}. Temos que
p(f) = wdeg(F) e p(0) = —oo. E ainda mais, qualquer dominio de ordem finitamente gerado
pode ser descrito desta forma.

Demonstracao. A demonstragao deste teorema pode ser encontrada na referéncia [3, teoremas
9.1e10.4]. m

Exemplo 4.1.10 Neste exemplo mostramos como o dominio de ordem e a func¢ao peso descrita
no exemplo 3.1.16 podem ser facilmente explicados pelo teorema 4.1.9. Os pesos das varidveis
sio w(X) =3 ew(Y) =4, a ordem monomial <y, € a usual (que € a Unica ordem monomial
sobre Ny e a ordem < sobre M(X,Y) é a ordem lexicogrdfica com X <y Y. A ordem grau
com pesos generalizada <, resultante nos dd a sequinte pegada:

AL, (I)={X*YP|0<a, 0<B<3}

Apenas para ilustragao, podemos fazer uma correspondéncia dos pontos em N2 com 0s mondomios
em M(X,Y) da sequinte maneira: a cada ponto (m,n) € N2 associamos o monomio X™Y™" €
M(X,Y) e vice-versa. Desta forma a pegada acima pode ser representada como os pontos que
nao estao na faiza (infinita) hachurada na figura abaizo.

nt

* * L * L *

-+ L] . - . -

(0,30 ® * + s ®

m

(m,n) <> X"Y"

Figura 4.1: A pegada A ([)

E fécil ver que a aplicagdo w AL, (1) — (3,4) dada por w(X'Y7) = 3i+4j € uma bijegdo.
Logo, os elementos de A, (I) tem pesos distintos. Note que G = {X* —Y? —Y} ¢ uma base
de Gréobner para I, e que w(Y3) = w(X?) = 12, isto é; X* — Y3 —Y tem dois monomios
de maior grau. Assim, a pegada A (I) satisfaz as condi¢oes do teorema 4.1.9, e note que a
fung¢ao peso dada no teorema 4.1.9 € exatamente a mesma descrita no exemplo 3.1.16. A base
bem comportada do exemplo 3.1.16 é encontrada usando-se a proposicao 4.1.6 sobre a pegada
acima.

Agora, precisamos escolher um homomorfismo ¢ : R — I} sobre o dominio de ordem
R =TF,[X1,---,X,]/I. A escolha mais 6bvia de homomorfismo ¢ a aplicagao de avaliacao sobre
a variedade afim Vg (I) = {P,---, P,}. Em outras palavras, o homomorfismo ¢ : R — F}
dado por o(F + 1) := (F(Py), -+ ,F(P,)).
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Uma pergunta natural neste momento seria: o que acontece se escolhermos um outro ho-
momorfismo ¢ : R — Fy sobre o dominio de ordem R = Fy[Xy, -+, X,,]/I, que nao seja a
aplicacao de avaliacao ¢?

O préximo resultado nos ajudara a responder esta pergunta.

Teorema 4.1.11 Seja ¢ : Fo[Xy, -, X, ]/ — FY uma aplicagdo sobrejetora Fy-linear sa-
tisfazendo ©(fg) = ¢(f) * ¢(g) para todo f,g € F,[X1, -+, Xu]/I. Entao existe um conjunto
{Plv'” JPH} - VFQ(I)v B 7£ F)jparai#j talqueg&(F(Xl,--~ 7Xm>+l) = (F<P1)7 7F(PTL>>
ocorre para todo F'(Xq,-- , Xp) € F[ X1, -, Xl

Demonstragao. Seja m; : Fy — F, a aplicagao de projecao na i-é¢sima coordenada, isto
é; mi(ay,as, -+ ,a,) = a;. Como ¢ é uma aplicagdo F -linear sobrejetora, entdo para cada
i=1,---,naaplicacdo ¢; : F (X1, -, X,,]/I — F, definida por p;(F + I) = mi(p(F + 1)) é
[F,-linear e sobrejetora, além disso essas aplicagoes sao todas distintas.

Seja a = (a1,as,-- - ,a,) € Fy tal que p(1 + 1) = a, e sejam b = (b1, by, -+ ,b,) € Fy com
b; #0 paratodot =1,--- ,ne F+1 € F[Xy,---,Xp,]/I tal que o(F + 1) = b. Veja que
O F+1)=o((1+1)F+1)=el+1)x@o(F+1)=(aiby, - ,anb,) = (b1, - ,b,), assim
e(14+1)=(1,1,---,1), e logo ¢ é um homomorfismo de anéis. E como ¢ é F,-linear segue que
p(c+1) = (c,c,--- ,c) para todo ¢ € F,. Assim, cada ¢; é um homomorfismo com ¢;(c+1) = c
para todo ¢ € F,. Sejam

PIZ(P1(1)7P1(2)7"' 7P1(m))€FtT1n
PQZ(P2(1)7P2(2)a"' 7P2(m))€]an

Pn:(PT(Ll)v‘PT(LQ)a >P75m))€an

tais que
PO = (X 4+ 1), PP =) (Xo+ 1), P'™ = 0 ( X + 1
5 ©1( Xy + 1), ) pr(Xog+1),--- P 01(Xm +1)
BV = oo(Xi + 1), B = oa(Xp + 1), B = a(Xy + 1)
PY = (X1 + 1), PP = 0i(Xo 4+ 1), -+, P = i X + 1)
PO = Xy 4+ 1), P2 = on(Xy 4+ 1)y, P™ = (X + T
n SOTL( 1+ )7 n <';On( 2 1 )7 y4n Son( m T )
Seja < uma ordem monomial sobre o conjunto de todos os monémios em Xy, ---, X,,. Temos

que o conjunto {M + 1 | M € A_(I)} é uma base para F,[X;,---,X,,]/] como F,-espaco
vetorial, seja M = X{"' X352 --- X € A_(I), e seja G = cM, onde ¢ € IF,, logo temos que
G(P) = G((PZ-(I), Pi(2)7 . 7]:)i(m))) _ C(Pi(l))oq(Pi(Q))aQ . (P‘(m))am —

1

pile+ Do X[ + D X52 + 1) (X + 1) = puleX{IX5? - Xom + 1) = ifeM + 1),

Assim, ¢;(cM + I) = cM(FP;) para todo M € A.(I), ce F,ei=1,--- ,n. Como qualquer
feF,[Xy,---,X,]/I pode ser escrito como f = F' + I onde F' € spang {M | M € A_(I)} e
@; ¢ F -linear, segue que @;(F' + 1) = F(P;) paratodoi=1,--- ,n.

Assim, o(F +I) = (F(P),F(P,), - ,F(P,)). Agora, vamos mostrar que P, € Vg _(I) para
todoi=1,--- ,n. Para todo H(Xy,---,X,,) € I temos que
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P(H(Xqy, - X)) +1) = 0(0+1) = (0,0,---,0) = (H(P), -+, H(Fy)).
Logo H(P,) = H(P,) = --- = H(P,) = 0 para todo H € I, assim P, P, --- ,P, € Vg (/). m
Definicao 4.1.12 Dado um ideal I CF,[Xy, -+, X, escrevemos
L= T+ (X0 — X1, X0 — Xo, -+, X0 — X,).

Observagao 4.1.13 Sejam F =F,, I, C F,[Xy, -, X,,] como na definicao acima, e seja <
uma ordem sobre M(Xy,---, X,,). Entao 4(Vr, (1)) = (A<(1y))-

Proposicao 4.1.14 Considere uma estrutura de ordem (R, p,T') como descrita no teorema
4.1.9. Seja ¢ o homomorfismo ¢ : R — Fy dado por o(F + 1) := (F(P), F(P),---, F(P,))
onde Vg,(I) = {P1,--- , P,}. Temos que

A(R,p,0) ={ w(M) | M € AL, (1) }

Demonstracao. Uma das condigoes no teorema 4.1.9 e que os pesos dos monomios em
A, (I) sejam todos distintos. Como I C I, logo AL (I,) € AL, (I) e os pesos de todos os
monomios em A_  (I,) também sdo todos distintos. Consequentemente, o niimero de elementos
de {w(M) | M € A, (I,)} ¢ igual ao nimero de elementos de A, (I,). Mas pela observagao
4.1.13 temos que §(A<, (I;) = #(Vr,(Iy)) = #(Vr, (1)), logo t({w(M) | M € AL, (I,)}) =n. E
ainda temos que §(A(R, p, ) = n, pois ¢ é sobrejetora. Assim,

HAR, p, @) = t{w(M) | M € A, (1,)})

A proposicao portanto estara provada se mostrarmos que a(s) € {w(M) | M € AL, (1,)}
para s = 1,2,--- n. Fixe a(s) € A(R,p,I") e seja f € R tal que p(f) = a(s). Pela cons-
trucao do teorema 4.1.9 podemos escrever f = F 4+ [ onde F = 2221 nM;, t > 1, M; €
AL, (I), ni € Fo\ {0} para i = 1,2,--- ¢, w(M;) <ny w(My_1) <nz -+ <y w(My), e onde
a(s) = p(f) = wdeg(F) = w(M).

Seja G’ uma base de Grobner para I, com relacao a <,,. Agora, reduzindo F' médulo G’ usando

o algoritmo da divisao para polinomios, obtemos um resto 22:1 B;N; (que vamos mostrar ser
diferente de zero) onde N; € AL (I,), B € Fg\ {0} para i = 1,2,--- .1 e onde w(N;) <n;

w(Ni—1) <ngp -+ <ny; w(Np). Temos que F — SYBN; € 1, e como Vg, (1) = Vg,(I) =
{Py,---,P,}, entao o(F — 22:1 BiN; + I) = 0. Logo,

PF) = olF 4 1) = p(F + 1)~ olF = 3 BN+ 1) = (4.1
=(F — (F - ZﬁiNi) +1) = SD(Z BiN; + 1) (4.2)

Note que pela definigdo de a(s) temos que p(f) # 0. Portanto, por 4.2 temos que Zizl BiN; #
0. Este fato e o fato de que A ({,) € A, (I) implicam que:

p(3L_ BiN; + 1) = w(]Vy).

Agora, observe que pela natureza do algoritmo da divisao e pela definicao de <,,, temos que
wdeg(F') = wdeg(Zizl BiN;). Isto é o mesmo que dizer que:
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a(s) = p(f) = wdeg(F) = w(M) =y w(N1) = wdeg(i_, BiN:) = p(Xi_, BiVi +1).
Pela definicao de A(R, p, ), temos que p(Ry) & ©(Ra(s)) para todo A <yr a(s). Em particular,
isto implica que p(g) # (f) paratodo g € R com p(g) <n; p(f). Suponha que w(Ny) <nz p(f),
como p(Zizl BiN; + I) = w(Ny), entao @(Zézl BLBiN; + I) # o(f). Uma contradicao. Logo,
a(s) = w(Ny) € Ax,(I,) e segue que a proposigao estd provada. m
Exemplo 4.1.15 Isto € uma continuacao do exemplo 4.1.10. Podemos mostrar que:

AL (I)={XY?P|0<a<9, 0<fB<3}

Consequentemente, temos que A(R, p,p) = {XY? |0<a <9, 0< S <3} que por inspecao,
nos fornece exatamente a base B encontrada no exemplo 3.1.11.

Esta pegada € particulamente simples no sentido em que dizemos que ela tem o formato de uma
“caiza”. Por inspe¢ao, temos como uma consequéncia deste fato o sequinte:

H(p(XOY? 4 1)) = o(p(X3-2Y 24 4 1))

para todo o, 8 com X°Y? na pegada de I,.

Como exemplo podemos citar:
p(X°Y+1)=19 e p(X®°YV?>141)=13
Logo,

p(19) = 4(N(19)) =t({n e ' [ I € T com n+ f =19}) =
£({0,3,4,6,7,8,9,10,11,12,13,15,16,19}) = 14

o(13) = 8(M(13)) = 4({v € A(R,p, ) | IB € A(R,p, ) com 13+ =1~}) =
8({13,16,17,19,20, 21, 22, 23,24, 25, 26, 28,29, 32}) = 14

Portanto, em particular a cota de Feng-Rao nos fornece a mesma estimativa para a distancia
minima do cédigo c(a(s)) que a cota de Andersen-Geil fornece para o cédigo E(a(n — s)),
s=1,---,n—1.

Podemos provar este fato no seguinte resultado:

Proposicao 4.1.16 : Seja R um dominio de ordem sobre IF, descrito como no teorema 4.1.9.
Seja Vg, (I;) = {P1,--, Pa} e considere a aplicagio de avaliagao ¢ : R — Ty dada por
O(F+1)=(F(P), - ,F(F,)). Seja A(R,p,¢) ={a(l),a(2), - ,a(n)} definido como ante-
riormente. Se A<, (1,) € da forma:

A<w(jq) = {X§1X2ﬁ2 o Xﬁzm | 61 S 71a52 S Y2, aﬁm S ’Ym}
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para algum (y1,%2, -, Ym) € N™, entao:

(a) p(p(X7H - XPm 4+ 1)) = a(p(XP P - Xgm=Pm 1)), ocorre para qualquer XP'--- XPm €
AL, (1)

(b) a(n) —a(l) = a(n —1+1), para todo l =1,--- | n.

(¢) Para qualquer s com 1 < s < n, os cidigos C(a(s)) e E(a(n—s)) sao de mesma dimensao.
(d) Para qualquer s com 1 < s < n, a cota de Feng-Rao fornece exatamente as mesmas esti-
mativas para o t-ésimo peso generalizado de Hamming de C(a(s)) que a cota de Andersen-Geil
fornece para o t-ésimo peso generalizado de Hamming de E(a(n — s)).

(¢) Para qualquer § a dimensio de C(8) ¢ igual a dimensdo de E(0).

(f) Para qualquer t (no mdzimo igual a dimensao de C(9)), a cota de Feng-Rao fornece exa-
tamente as mesmas estimativas sobre o t-ésimo peso generalizado de Hamming de C(8) que a
cota de Andersen-Geil fornece para o t-ésimo peso generalizado de Hamming de E((S)

Demonstracao. (a) Seja a(l) € A(R,p,¢) ={w(M) | M € AL, (I,)}. Por hipdtese, existem
Wy, Wa, -+, Wy, € Ny com wy <y, w9 < oy e v, Wy < Yy tals que w( X X572 X)) = al).
Também por hipotese temos que:

w(X{TX e X ) € A(R, p, ).
Consequentemente, se eSCrevermos g, := w(X;* X3? -+ X™) entao temos que:
a(l) € A(R, p,p) € amaz — a(l) € A(R, p, p).
Note que p(a(l)) = o(ama: — a(l)). De fato, veja que:

pla(l)) =4(N(a(l)) =t{neT | IBel comn+p=a(l)} =
tH{n € A(R,p,p) | 38 € A(R, p,¢) comn+ = a(l)} e
U(O‘maw - Oz(l)) = Jj(M<O‘maﬂc - a(l))) =
Hy € A(R,p, @) | 30 € A(R, p, 0) com (e — (1)) + 0 =7}

Defina g : N(a(l)) = M(cmaz — (1)) por g(n) = qmaez — 1. Veja que g estd bem definida pois
sen € N(a(l)) logon € A(R, p,p) (e 10ogo amar —n € A(R, p,p)) € existe § € A(R, p,¢) com

n+8=a(l) (4.3)
De 4.3 segue que (naz — (1)) 45 = Qnaz—1, € portanto apae —1n € M (e —a(l)). Temos que
g é injetora, agora seja y € M (maz — (1)), entdo v € A(R, p, ) (€ 10go amaz —7 € A(R, p, )
e existe 0 € A(R, p, p) tal que

(Qmaz —a(l)) +0 =7~ (4.4)

De 4.4 segue que (e — 77) + 60 = a(l), € 10g0 Qpmez — 7 € N«

l)), e ainda temos que
9(Qmaz — ) = 7, logo g é sobrejetora. Portanto, p(a(l)) = o(amar — (1

)) e logo

p(p(XT - X+ 1)) = o (p(X 7 - X0 =Pm 4 1)) (4.5)
para qualquer X{' - XPm e AL (I,).

(b) Para cada a(s) € A(R,p, ) temos por hipdtese que a(n) — a(s) € A(R,p,p). Sejam
a(ly),a(ly) € A(R, p, ) como a(n) —a(ly) = a(n) — a(ls) se, e somente se a(ly) = a(ly), entdo
para cada «a(s) € A(R, p,p) existe um unico a(l) € A(R, p, ) tal que a(n) — a(l) = a(s).
Temos que a(n) — a(l) = a(n — 1+ 1) = a(n). Suponha que a(n) — a(2) # a(n — 1), logo
temos que:
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a(n) —a(2) <a(n—1) (4.6)

Temos que existe um unico a(l) € A(R, p, ) tal que a(n) — a(l) = a(n —1), logo de 4.6 temos
que a(l) < a(2) o que é uma contradi¢do. Suponha agora que a(n) — a(i) = a(n — i+ 1) para
i=1,---,k, e vamos mostrar por indugao que a(n) —a(k+1) = a(n — (k+1) +1). Suponha
que a(n) —a(k+1) # a(n— (k+1) + 1), entdo temos que:

an)—ak+1) <an—(k+1)+1) (4.7)

Temos que existe um tnico a(s) € A(R, p, ) tal que a(n) — a(s) = a(n — (k+ 1) + 1), logo
por 4.7 temos que a(s) < a(k + 1), isto & a(s) € {a(1),a(2),---,a(k)}, o que é uma con-
tradicao pois a(n) —a(i) = a(n —i+1) > a(n — (k+ 1) + 1) para todo i = 1,--- , k. Logo,
an)—ak+1)=an—(k+1)+1).

(c) Seja s tal que 1 < s < n, veja que:

C(a(s)) = CH(B,Q), onde G = {b; | a(i) < a(s)} e
E(a(n —s)) =C(B,G), onde G ={b; | a(i) < a(n—s)}

Veja que dim(E(a(n — s))) = n —s. Como C(a(s)) é o cédigo dual de E(a(s)) segue que
dim(C(a(s))) =n—dim(E(a(s))) = n—s. Assim, dim(C(a(s))) = dim(E(a(n—s))) =n—s.

(d) Para a(ly),a(ls), - ,a(ly) € A(R, p, ) defina:

h:N(a(ly))U---UN(a(ly)) = M(a(n) —a(ly))U---UM(a(n) — a(ly))
n—ra(n) —n

Seja n € N(a(l;) U---UN(a(ly))), logo n € N(«(l;) para algum j € {1,2,--- ,t}, logo pela
definicao da funcao g do item (a) temos que a(n) —n € M(a(n) —a(l;)) € M(a(n) —aly)) U
U M(a(n) — a(l)), logo h estd bem definida. Se a(n) —m = a(n) — 7o entdo 7 = 79
logo h ¢ injetora. Seja v um elemento do contradominio de h, logo v € M(a(n) — a(ly))
para algum s € {1,2,--- ¢}, novamente pela definicdo da fungdo g do item (a) temos que
a(n) —v € N(a(ls)) e h(a(n) — ) = 7, logo h é sobrejetora, e portanto uma bijegdo. Assim,

pla(ly), - a(ly)) =ola(n)—a(ly), - ,a(n)—a(ly)) = o(a(n—11+1), - ,a(n—1;+1)) (4.8)
Veja que dy(C(a(s))) > min{u(a(iy), - ,aiy)) | aliy) > afs) para oo te ali) #

[ =1
a(iy) para i # j}. Entdo a(i) € {a(s +1),-- (s +n —s)} para I = 1,--- 1.(Veja que
t<k=n-—s).

E d(E(a(n — ) = minfo(a(i), -, a()) | a() < an —s) VI = 1,---,t e a(j) #
a(js) para l # s}. Logo a(j;) € {a(1), -+ ,a(n —s)}, paral=1,--- t. Sejam

A={(a(s+1i1), - ,a(s+i)) | i €{1,2,--+ ,n— s} eis #ix para s # k} e
B:={(a(j), - ,a() | 41 €{1,2,--- ,n—s} e js # jx para s # k}.

Definindo

v:A— B
(a(s+i1), - ,a(s+1i)) — (a(n—(s+i1)+ 1), - ,a(n—(s+ i) + 1)).
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Para cada s+, com 4, € {1,2,--- ,n—s} temos que s+1 < s+14; < n,logo 1 <n—(s+i)+1 <
n — s e assim 1 estd bem definida. Veja que se a(n — (s+4;) +1),--- ,a(n—(s+4) + 1)) =
aln—(s+i)+1), - ,a(n—(s+1i;) +1)) entdo (iy,--- i) = (i}, - ,4;), assim ¢ é injetora.
Como #(A) = 4(B) segue que ¥ é sobrejetora, e logo é uma bijecao. Por 4.8 e pela construcao
de ¢ temos que:

min{p(a(iy), -, a(iy) | (i) > a(s) para l=1,--- ,t e a(iy) # a(ij) para i # j} =
min{a<a(j1)v T 7a<jt)) | a(jl) < a(n - 3) Vi=1,---,te a(ﬁ) # a(jS) para l # S}‘

(e) Temos que:

(0) = C(B,Gy), onde Gy = {b; | o(a(i)) > 0}
i)) <0

E
C(6) = CH(B,Gs), onde Gy = {b; | p(c(i))

e
}
Suponha que dim(E(5)) = k, logo existem «a(iy), - - -, a(ix) € A(R, p, @) tais que o(a(i)) > 6
para l = 1,--- k. E ainda, o(a(i)) < d para l ¢ {1,--- ,k}. Como para cada a(s) existe
um tnico a(l) tal que a(n) — a(l) = a(s) e u(a(l)) = o(a(n) — «a(l)), existe uma bije¢do
entre os conjuntos {u(a(l)) | I = 1,--- ,n} e {o(a(y)) | 7 = 1,---,n}. Assim, existem
a(jr), a(j2), -+, a(je) € A(R, p, ¢) tais que p(a(fi)) = d paral=1,--- k. Eainda, u(a(j)) <
dparal ¢ {1,2,---  k}. Assim, dim(C(B,Gs)) =n—k, logo dim(C+(B,Gs)) =n—n+k=k.

(f)Temos que

dy(E(0)) > min{o(a(ir), -, a(i)) | o(a(iy)) > dparas=1,--- ,teali;) # a(iy) para j # s}
di((C)(6)) = minfu(a(i), -, alj)) | M(Oé(jz))}Z o paral=1,---tealj)# aj) paral #

Por 4.8, existe uma bijecao entre

{o(a(ir), - ali)) | ai) € A(R,p,p) L=1,--- ,t} ¢
{M(a(jl)a T 7a(jt)) ‘ a(jl) S A(Rv P @) [=1,-- 7t}

Assim, segue o resultado. m

4.2 Exemplos

Nesta se¢ao usaremos a notacao (---) com dois sentidos. Primeiramente, dados Fy,--- , Fg €
F,[X1,- -+, X, denotamos por (Fy,---, Fs) o ideal gerado pelos polinémios Fj.---, Fs. Em
segundo lugar, dados elementos wy, - -+ ,w, € Nj denotamos por (wy,--- ,w,) 0 semigrupo
gerado por wi, - - , Wy,

Exemplo 4.2.1 Considere o anel R := Fo[X,Y]|/I onde I € o ideal gerado pelo polinémio
hermitiano X* — Y3 — Y. Sejam w(X) = 3,w(Y) = 4 € Ny, e considere a ordem usual (e
inica) <, sobre Ny, e ainda considere < a ordem grau-lezicogrifica sobre M(X,Y) com
X <m Y. A ordem generalizada grau com pesos resultante <, nos fornece a sequinte pegada
para 1:

A (D) ={XYP|0<a, 0<B<3}.

Agora, € facil ver as condi¢oes do teorema 4.1.9 sao satisfeitas com a base de Gréobner G =
{X*—Y3—-Y}. Assim, como
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G ={X'—Y3 -V, X X}

¢ uma base de Grobner para Iy, temos que Vg, (Ig) = 27, onde Iy = {X* — V3 - Y, X? —
X,Y? —Y}. Logo podemos escrever Vg,(Ig) = {Pi,---, Py} e definir ¢ : R — F37 por
o(F +1) = (F(P), -, F(Px)).

AL, () ={XYP|0<a<8 0<pB<2}
Logo, as hipdtese da proposicao 4.1.16 sao satisfeitas e veja que:

A(R, p, ) ={0,3,4,6,7,8,9,10,11,12,13, 14, 15, 16, 17, 18, 19,
20,21,22,23, 24, 25, 26, 28, 29, 32}.

Vamos ver outro exemplo:

Exemplo 4.2.2 Seja [ := (X° + Y4+ Y, Y® + Z* + Z) C Fi4[X,Y, Z]. Definimos a ordem
generalizada com pesos <., sobre M(X,Y, Z) a sequir. Considere os pesos w(X) = 16, w(Y) =
20, w(Z) = 25 € Ny. Seja <y, a ordem monomial usual(e inica) sobre Ny e seja <pr a ordem
lezicografica sobre M(X,Y, Z) dada por X <y Y <pr Z. Com relagdo a ordem resultante <.,
temos que { X5+ Y4+ Y, Y5+ Z* + Z} € uma base de Grobner e por verificagdo observamos
que as condigoes do teorema 4.1.9 sao satisfeitas. Pelo teorema 4.1.9 obtemos portanto uma
funcao peso:

p: R:=TFiX,Y,Z]/I — (16,20,25) U {—oo}.

Temos também que o conjunto { X5 +Y*+Y, Y+ 74+ Z X0+ X, Y64V, Z16+ Z} € uma
base de Grébner para Iig com relagdo a <., e portanto §(Vg,,(I16)) = t(A<, (1)) = 256. Seja
¢ a aplicagdo de avaliagio ¢ : R — F2% dada por o(f) = (f(P1), f(P), -+, f(Pass)). Como
AL, (Lig) ={XY°Z¢ | 0<a<16, 0<b<4, 0<c<4} apegada de I s tem o formato de
uma caizra, e portanto pela proposicao 4.1.16 que a dimensdao de C~'(5) ¢ igual a dimensao de

E(0) para todo § =1,2,--- ,256.

Apenas para ilustracao, temos que:

A(R, p,¢) = {0, 16, 20, 25, 32, 36, 40, 41, 45, 48, 50, 52, 56, 57, 60, 61, 64, 65, 66, 68, 70,
72,73,75,76, 77,80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100,

101,102, 104, 105, 106, 107, 108, 109, 110, 111,112, 113, 114, 115, 116, 117, 118,
120,121,122, 123, - - - , 254, 255, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266,
267,268,269, 270, 271, 273, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 290, 291,
293, 204, 295, 208,299, 300, 302, 303, 305, 307, 309, 310, 311, 314, 315, 318, 319, 323, 325, 327,
330, 334, 335, 339, 343, 350, 355, 359, 375}

Exemplo 4.2.3 Considere [ := (X?> +YZ? -Y?*Z - X, U?> - 73+ X? -Y?Z 4+ Y3+ U) C
F4[X,Y, Z, U] e defina a ordem generalizada grau com pesos <, sobre M(X,Y,Z U) como a
sequir. Considere o0s pesos w(X) = (2,1),w(Y) = (0,2),w(Z) = (2,0),w(U) = (3,0) € N2 ¢
seja <nz @ ordem monomial grau-lexicogrdfica, com (0,1) <y (1,0). Por dltimo, seja <pm a
ordem lexicogrdfica com Z <y U <m0 Y < X. Veja que o monoémio lider de X* +Y Z? —
Y27 — X é X2, pois:

w(X?) = w(Y Z2) = (4,2), w(Y2Z) = (2,4), w(X) = (2,1)

e YZ% < X2. O monomio lider de U? — Z3 + X? = Y2Z + Y3+ U é U?, pois
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e 73 <M U2.

Como X? e U? sao relativamente primos, por um resultado da teoria das bases de Grébner
temos que G = {X*+YZ*-Y?Z - X, U? - Z3+ X2 —Y?Z+ Y3+ U} € uma base de Grobner
para 1. E fdcil ver que as condigoes do teorema 4.1.9 sao satisfeitas, e logo obtemos a fungdo
peso

p:R:=TF4X,Y, Z U|/I — ((2,1),(0,2),(2,0),(3,0)) U{—o0}

Usando o algoritmo de Buchberger podemos motrar que
G ={X?+YZ? Y Z-X, UP-2°+X>?-Y?Z+Y*+U, X* - X, Y*-Y,Z* -2 U>-U}
¢ uma base de Grobner para Iy, logo

AL, (1) ={X°YPZU | a,§ <2 e B,y <4}

A pegada de I, tem 64 elementos, cujos pesos sdo:

A, (L) = {(0,0),(0,2),(0,4),(0,6),(2,0),(2,1),(2,2),(2,3), (2, 4),
(2,5),(2,6),(2,7),(3,0),(3,2),(3,4),(3,6),(4,0), (4, 1), (4,2), (4,3), (4,4), (4,5), (4,6), (4, 7),
(5,0),(5,1),(5,2), (5,3), (5,4), (5,5), (5,6), (5,7), (6,0), (6,1), (6, 2), (6,3), (6,4), (6,5), (6,6),
(677)7(77 0)’(77 1)7<77 2)’(773)7(774)7(775)7(776)7(77 7)’(87 1)7<873)7(875)7(877)7(97 0)7(97 1)7

(9,2),(9,3),(9,4),(9,5),(9,6),(9,7), (11,1), (11, 3), (11,5), (11,7)}

Podemos representar graficamente os pesos dos elementos de A~ (Iy) como sendo os pontos
pretos no grafico abaizo:

Ly
sl

7 o . o . . . . . . a .
23 o L 3 . . . . o . o o
5 o . o . . . . . . <} .
ER S o L . . . . . o . o o
3 o . o . . . . . . a .
R o L} . L3 . L . o . o o
1 o L o . . . . 3 . o .

Figura 4.2: Os pesos dos elementos de A, (I4)

Temos que T' = ((2,1),(0,2),(2,0), (3,0)), agora veja que as lacunas de T' sao os pontos do
congunto L definido como:
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Figura 4.3: Os elementos de I

L:={(a,b) eNg | a=1}U{(a,b) eNg |a=0eb=2k+1, com k € Ny}
U{(a,b) eNZ2 |a=3eb=2k+1, com k € Ny}

podemos demonstrar que de fato L € o conjunto de todas as lacunas de I'. Assim, podemos
representar graficamente os pontos de I' como sendo os pontos pretos no grafico da figura 4.3.

Exemplo 4.2.4 Seja I := (X° + Y4+ Y, Y5 + 2% + Z, 75 + U* + U?) C Fy[X,Y, Z,U].
Definimos a ordem generalizada com pesos <, sobre M(X,Y,Z,U) a sequir. Considere os
pesos w(X) = 64, w(Y) = 80,w(Z) = 100, w(U) = 125 € Ny. Seja <y, a ordem monomial
usual(e inica) sobre Ny e seja <pq a ordem lexicogrdfica sobre M(X,Y, Z, U) dada por X <
Y <m Z <=pm U. As condigoes do teorema 4.1.9 sdao sastifeitas com a base de Grobner { X5 +
Y4+ Y, Y5+ Z4+ Z, 75+ U* + U?}. Portanto temos uma fungdo peso:

p: R:=Fy[X,Y,Z U|/I — (64,80,100,125) U {—occ}.

De acordo com o método de Andersen-Geil, deveriamos agora encontrar a pegada de Ig. Pelo
algoritmo de Buchberger encontramos uma base reduzida de Grobner com 21 polinomios, lista-
mos a sequir apenas oS monomios lideres:

{Y4, Z4, U4,XlOYQZQ,XSYQZUQ,X102U2,X5YQZ3,XIOZS,XIOZ?’,XNY?’,X15,XY3Z3U2,
XMy2 X6720%, X6y3 22 X1y, X127, XGYZUQ,XGYZ3,X1°Y2U2,X5YZQU2}

Pela definicao de base de Grobner, a pegada de I1g consiste de todos 0os monomios que nao sao
divisiveis por nenhum dos 21 monémios acima. A pegada € encontrada como sendo de tamanho
n = 512 e portanto temos um homomorfismo ¢ : R — F5L2 para a construcio de cddigos. E
claro que a pegada de I, nao tem o formato de uma caiza.
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