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Resumo

O objetivo principal deste trabalho é a investigagdo e obtencdo dos estados
topologicamente protegidos de superficie em nano-fitas criadas a partir das folhas de
Germaneno e Siliceno. Estas folhas pertencem a classe dos Isolantes Topologicos e
correspondem a monocamadas de atomos de Germanio e Silicio, em um arranjo hexagonal
que se assemelha a folha do Grafeno. Para esta investigacdo, realizamos um estudo das
propriedades eletrnicas e estruturais destas folhas, bem como de suas respectivas nano-fitas,
através de calculos de primeiros principios fundamentados na teoria do funcional da
densidade (DFT). Nesta metodologia utilizamos a aproximacdo do gradiente generalizado
(GGA) para a estimativa do termo de troca e correlacdo, e 0 método PAW para o potencial
efetivo e a expansdo em ondas planas dos orbitais de Kohn-Sham. Realizamos a simulagéo
computacional com o auxilio do pacote VASP (Vienna ab-initio Simulation Package). Como
ponto de partida para nossa pesquisa, utilizamos a metodologia da fisica do estado s6lido com
o0 intuito de descrever a estrutura cristalina das folhas, bem como seu espaco reciproco.
Posteriormente analisamos as estruturas de bandas, a partir das quais muitas de suas
propriedades podem ser visualizadas. Para esta tarefa, inicialmente procedemos a
investigacdo da estabilidade destes sistemas via calculos de energia total, obtendo o parametro
de rede a que minimiza a energia do sistema. Obtivemos também a energia de corte Ecur
utilizada em nossos calculos, ou em outras palavras, a determinacdo do nimero de ondas
planas necessarias para expandir as funcGes de onda eletrénicas no formalismo da DFT.
Prosseguimos nosso estudo, com a criagdo e analise de duas distintas configuragdes de nano-
fitas, uma que corresponde a um corte simples e direto da folha com terminacdo no padréo
armchair, e a outra baseada em uma reconstrucao destas bordas, que acaba por fornecer um
sistema mais estavel energeticamente. Posteriormente obtivemos as estruturas eletrénicas, e
realizamos um estudo de sua variagdo em fungdo da alteracdo da largura da nano-fita e a
relaxacdo ionica de suas bordas. De certa maneira, modificamos os parametros acima, de
forma a obter um sistema que nos fornecesse um gap nulo, ou pelo menos desprezivel, bem
como uma determinada configuracdo para a textura de spin, de modo a verificarmos a

evidéncia de uma protecdo topoldgica nos estados de superficie nestas nano-fitas.

Palavras-Chave: isolantes topologicos, estados topologicamente protegidos, protecdo

topologica, siliceno, germaneno, nano-fitas, calculos de primeiros principios.
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Abstract

The main objective of this work is to research and obtain surface protected topological
states in nano-ribbons created from the leaves of Germanene and Silicene. These sheets
belong to the class of Topological Insulators and correspond to monolayers of germanium and
silicon atoms in a hexagonal arrangement that is similar to the graphene sheet. For this
investigation, we conducted a study of the electronic and structural properties of these sheets,
as well as their respective nano-ribbons through first-principles calculations based on density
functional theory (DFT). In this methodology we use the generalized gradient approximation
(GGA) for estimating the exchange and correlation term, and the PAW method for the
effective potential and the expansion of plane waves of the Kohn-Sham. We conducted a
computer simulation with the aid of the package VASP (Vienna ab-initio Simulation
Package). As a starting point for our research, we used the methodology of solid state physics
in order to describe the crystalline structure of the leaves as well as their mutual space.
Subsequently we analyze the band structure, from which many of its properties can be
visualized. For this task, we initially proceeded to investigate the stability of these systems via
total energy calculations, in turn obtaining the network parameters that minimizes the energy
of the system. We also obtained the energy cutoff, Ecur used in our calculations, or in other
words, determining the number of plane waves needed to expand the electronic wave
functions on the DFT formalism. We continued our study, with the creation and analysis of
two different configurations of nano-ribbons, one that corresponds to a straightforward cut of
the sheet with the armchair termination pattern, and the other based on a reconstruction of
those edges, which provide an energetically more stable system. Subsequently we obtained
electronic structures, and conducted a study of its variation due to the change of the width of
the nano-ribbon and ionic relaxation of its edges. In a way, we modified the above parameters
in order to obtain a system that would give us a zero gap, or at least insignificant, as well as a
specific configuration for the spin texture, in order to verify the evidence of surface protected

topological states in these nano-ribbons.

Key words: topological insulators, topologically protected states, topological protection,

silicene, germanene, nano-ribbons, first-principles calculations.
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Introducao

As folhas de Germaneno e Siliceno, apresentam uma grande similaridade com a folha de
Grafeno, e se deve ao fato dos atomos de Ge, Si e C pertencerem a0 mesmo grupo da tabela
periodica (Grupo IVA), ou seja, eles apresentam configuracdes eletronicas similares?.  No
entanto, Ge e Si apresentam um maior raio idnico, além de que estes atomos apresentam
essencialmente a hibridizacdo sp® enquanto a sp? é energeticamente mais favoravel para
atomos de C (mesmo este também apresentando as hibridizaces sp e sp®)[El. Como resultado,
as camadas atdbmicas 2D de atomos de Si e Ge, estdo previstas para terem uma estrutura
cristalina de favos de mel (hexagonal) de baixo buckling (flambagem) para as suas estruturas
mais estaveis, ou seja, sdo ligeiramente curvadas, com uma das sub-redes do reticulo a ser
deslocada verticalmente em relacdo a outra, formando uma configuracdo de trelica, enquanto
o Grafeno apresenta uma configuragdo planarfyl. Analogamente ao Grafeno, Siliceno e
Germaneno também sdo classificados como semicondutores de gap nulo, com portadores de
carga que se comportam como férmions de Dirac “sem massa”, uma vez que as bandas de

valéncia e conducdo se cruzam ao nivel de Fermi, com uma dispersdo de energia linear.

O interesse em Siliceno e Germaneno iniciou-se justamente devido as pesquisas no
Grafeno. Os pesquisadores comegaram a questionar, se poderia existir outras estruturas que
se assemelhassem ao Grafeno, tanto com relagcdo a sua estrutura bidimensional quanto as
caracteristicas eletronicas, e que além disto, poderia ser mais facilmente integrada a industria
eletronica. O caminho mais curto para esta investigacdo foi a analise de seus parentes
préximos na tabela periddica, ou seja, 0 Ge e Si. E como desejado, estes materiais sao mais
provavelmente favorecidos sobre o Grafeno, com relacdo a integragdo tedrica em dispositivos
baseados em Si (componente fundamental da tecnologia eletrénica atual), uma vez que o
Grafeno é vulneravel a perturbacdes do substrato de suporte, devido a sua espessura de um

Unico atomol2l.

Além disto, nos Gltimos anos temos assistido a um grande aumento no estudo dos
Isolantes Topoldgicos (IT), uma nova classe de materiais caracterizada por um gap no bulk
(interior da amostra) e estados superficiais metalicos (sem gap) que ndo apresentam
dissipacdo. Tanto o Siliceno quanto o Germaneno, foram verificados como pertencentes a
classe dos Isolantes Topoldgicos e que descreveremos melhor ao longo desta dissertagéo.

Baseado nos IT, muitos fendmenos intrigantes sdo previstos, tais como os efeitos magneto-

Autor: Augusto de Lelis Aradjo — Universidade Federal de Uberlandia/MG
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elétrico gigante e o aparecimento de férmions de Majoranal®l, o qual resultam em novos
paradigmas para futura aplicacdo em dispositivos relacionados a spintrénica e computagédo
quantica. Embora muitos materiais sejam teoricamente previstos para serem IT 2D, até agora
somente 0s pogos quanticos de HgTe/CdTe e InAs/GaSb foram verificados por meio de
experimentos de transportel®l. Entretanto estes materiais enfrentam desafios particulares,
como um gap muito pequeno no bulk (interior da amostra) e a incompatibilidade com os
dispositivos convencionais de semicondutores. Portanto a pesquisa e desenvolvimento de IT
2D com gaps maiores do que os materiais comumente usados é indispensavel para sua

utilizagdo prética.

Neste contexto o Grafeno poderia ser bem empregado, no entanto, sua aplicacdo préatica
como IT 2D é substancialmente prejudicada pelo seu gap extremamente baixo no bulk
(10 meV). Enquanto isto, Siliceno e Germaneno se apresentam como melhores alternativas
para a introducdo dos IT na industria eletrbnica, ao apresentarem maiores gaps
topologicamente ndo triviais; entretanto estes materiais ainda ndo foram fabricados
experimentalmente. Uma das maneiras de introduzir estes materiais na industria eletrénica,
como por exemplo na fabricacdo de dispositivos integrados é por meio do corte da folha,
originando as nano-fitas. Este procedimento entretanto, gera o confinamento quéntico do
sistema em uma direcdo, alterando drasticamente suas propriedades eletronicas e
consequentemente topoldgicas. Desta forma, por meio da anélise de seus estados de
superficie, desejamos verificar se as nano-fitas de Germaneno e Siliceno apresentam estados
topologicamente protegidos, ou em outras palavras, se as nano-fitas ainda preservam
caracteristicas topoldgicas. Também desejamos verificar o efeito que modificacGes
estruturais no sistema (alteracdo da largura da nano-fita e deformacgdes da geometria das
bordas), podem influenciar em suas propriedades. Estas caracteristicas que sdo de crucial
importancia para a possivel aplicacdo tecnoldgica destes materiais em spintrénica ou

computacdo quantica.

Esta dissertacdo esta organizado da seguinte forma, no capitulo 1 abordamos os principais
conceitos relacionados a teoria envolvida nos isolantes topoldgicos, necessarios para a
descri¢do do sistema fisico, no capitulo 2 apresentamos a metodologia teorica envolvida na
descricdo computacional do sistema, que ¢é a teoria do funcional da densidade (DFT), nos
capitulos 3, 4 e 5 efetuamos a analise das propriedades eletronicas e estruturais dos sistemas
de interesse neste estudo (folhas de Germaneno e Siliceno, bem como suas nano-fitas),
cabendo ao capitulo 6 a conclusdo e discussdo acerca dos resultados obtidos.

Autor: Augusto de Lelis Aradjo — Universidade Federal de Uberlandia/MG
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Capitulo 1:

Isolantes Topoldgicos

Comecaremos este capitulo fazendo uma revisdo sobre a teoria de bandas e o estado
isolante, e ao longo do capitulo um estudo da diferenga entre isolantes triviais e os isolantes
topoldgicos dentro do conceito da teoria de bandas.

1.1 Teoria de Bandas e o Estado isolante:

A teoria de bandas descreve os estados eletronicos, ao explorar a simetria translacional do

sistema no espaco dos momentos cristalinos k (espaco reciproco), ou mais precisamente sobre

a sua 1° Zona de Brillouin!l. Esta anélise é realizada através da equacdo de Schrodinger:
[—%VZ + V(@) ] Yi(®) = Enk Yr(r)

Por meio de sua resolucdo, a estrutura de bandas serd composta pelos auto-valores En(ﬁ)
da funcéo de onda de Bloch; todos os valores distintos de E,(K) estdo localizados dentro da 1°
zona de Brillouin da rede reciproca. As energias associadas com o indice n variam
continuamente com o vetor de onda k e formar uma banda de energia. Os auto-estados de
Bloch (), de acordo com o teorema de Bloch (homenagem a Felix Bloch), devem

correspondem a uma funcdo unk(f) que possui a periodicidade da rede cristalina Iun,k(F))

= |un (% + R)), multiplicada por uma onda planal: |4,, , (%)) = ekt Ui (D))

Na expressdo acima para a equacdo de Schrddinger, o potencial V(T) apresenta a simetria

da rede cristalina a ser analisada (devido a sua invariancia translacional), e o termo entre

colchetes é denominado de operador Hamiltoniano de Bloch H, onde H(F) = H(F+ﬁ).

Na estrutura de bandas, os elétrons irdo preencher primeiramente os estados de menor
energia; o estado ocupado de mais alta energia serd chamado de nivel ou energia de Fermi.
Perto do nivel de Fermi, se a banda estiver parcialmente ocupada, teremos um estado
metalico. Neste caso, quando um campo externo é aplicado ao sistema, o campo forca 0s
elétrons a afastar-se da posicdo de equilibrio e ter uma quantidade de movimento total

diferente de zero, formando um fluxo de corrente elétrical®l.

Autor: Augusto de Lelis Aradjo — Universidade Federal de Uberlandia/MG
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Entretanto caso a banda esteja completamente cheia, e exista uma diferenga de energia
entre a banda de valéncia preenchida e a banda de condugdo ndo preenchida, teremos um
estado isolante. Neste caso, um campo externo fraco ndo pode forcar os elétrons a se afastar
dos estados ocupados para formar um fluxo de corrente elétrica. O tamanho do gap de energia
serve como uma linha diviséria entre materiais semicondutores e isolantes. Se o gap de
energia for menor do que 4eV (aproximadamente), os elétrons poderdo ser facilmente
excitados da banda de valéncia para a de conducdo a temperaturas finitas (embora a banda
totalmente preenchida ndo contribua para a condutividade elétrica a temperatura de zero
absoluto). Assim, um material semicondutor apresenta um gap de energia menor do que um

material isolantel®].

Ap0s caracterizado o estado isolante, daremos prosseguimento ao nosso estudo definindo

0 conceito de invariante topologico.

1.2 Invariante Topoldgico:

A Topologia é uma &rea da matematica considerada uma extensdo da geometria, onde
diferentes objetos podem ser agrupados em amplas classes (ou ordens) topoldgicas que se
focam em distingbes fundamentais entre as formas, sendo o principal conceito para este

agrupamento a deformacéo suave do objeto.

Por exemplo, duas formas geométricas podem ser agrupadas na mesma ordem ou
classificacdo topoldgica, caso sobre uma delas possa ser realizado um processo de deformacao
suave e continuo, de forma que esta seja deformada na outra forma geométrica, entretanto,
sem que ocorra o rasgo ou furo da superficiels]. Cada forma geometria agrupada em uma
ordem topoldgica é caracterizada por um invariante topolégico. O invariante topoldgico é uma
quantidade ou propriedade dos sistemas agrupados em uma mesma classe topoldgica e que
permanece invariante durante o processo de deformacdo, se distinguindo somente para
sistemas que estejam classificados em outra ordem topoldgica. Nesta definicdo, podemos
citar que a topologia de superficies bidimensionais é classificada através da contagem do
numero de buracos que estas possuem, ou seja, 0 seu genus (G), também chamado de nimero
de identificadores (o genus de uma superficie e uma funcdo de sua topologia total), sendo este

0 seu invariante topologico.
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Como exemplo, temos que a superficie de uma esfera é topologicamente equivalente a
superficie de um cubo ou de uma piramide, pois uma pode ser deformada suave e
continuamente na outra, sem criar buracos na superficie, e desta forma possuem o mesmo
invariante topoldgico, que corresponde a G = 0. Similarmente temos que uma Xxicara de café
é topologicamente equivalente a um torodide, pois ambas podem ser deformadas suavemente

uma na outra e seu invariante topoldgico e dado por G = 1 (vide as figuras 1.1 e 1.2).

G=0 G=1

Figura 1.1: Caracterizacdo topoldgica de uma forma geomeétrica de acordo com o seu genus (G). Figuras
extraidas e adaptadas a partir da pagina eletronica: http://upload.wikimedia.org/wikipedia/commons/9/93/Blue-
sphere.png e da referéncia [7].

Figura 1.2: llustracdo esquematica do processo de deformacao suave de uma xicara em um toroide.
Figura extraida e adaptada a partir de wuma gif encontrada na pagina eletronica:
http://pt.wikipedia.org/wiki/Topologia_(matem%C3%Altica)
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A generalizacdo do conceito de topologia para um sistema fisico, mais precisamente para
0 estado isolante, apresenta uma modificacdo conceitual, onde dois estados isolantes que
sejam descritos por diferentes Hamiltonianos e que apresentem diferentes gaps de energia,
podem ser classificados na mesma ordem topologica, caso sobre o Hamiltoniano de um destes
estados isolantes possa ser empregada um processo de deformacgdo adiabética, de forma que
este seja deformado no Hamiltoniano do outro sistema, entretanto sem que ocorra 0

fechamento do gap de energia.

Nesta classificacdo, os materiais isolantes comuns, 0s semicondutores e até mesmo o
vacuo (possuindo um gap de energia para a criacdo de um par elétron-pdsitron, de acordo com
a teoria quantica relativistica de Diracl®l) apresentam uma topoldgica trivial. Enquanto que os
estados que posteriormente iremos analisar neste texto, ou seja, o Efeito Hall Quéntico (QHE)
e o Isolante Topoldgico (IT) apresentam um topologia ndo trivial, sendo que ambas as
classificacbes topoldgicas sdo distinguidas em funcdo do seu correspondente invariante

topoldgico.

Com base nesta definicdo, em uma interface que separe dois estados isolantes com
diferentes topologias, um trivial e outro ndo trivial, os operadores Hamiltonianos que
descrevem ambos os estados isolantes ndo podem ser conectadas adiabaticamente uma com a
outra. Nesta situacao devera ocorrer um processo de fechamento do gap de energia, para que
ocorra a alteracdo do seu correspondente invariante topoldgico, ou em outras palavras, da sua
ordem topoldgica, dando origem aos estados condutores de superficie observados tanto no
QHE como no IT.

Dando prosseguimento a nossa discussao, iremos tracar um historico com alguns fatos da
fisica que acabaram por cominar na definicdo e posterior verificacdo do estado conhecido

como Isolante Topoldgico.
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1.3 Efeito Hall (EH):

Como ponto de partida, mencionaremos o Efeito Hall (EH), descoberto em 1879 por

Edwin Halll®l. Neste efeito uma amostra metalica, é submetida a acdo de um campo elétrico
longitudinal E e de um campo magnético perpendicular B, resultando em uma diferenca de
potencial transversal, chamada de voltagem Hall. Esta voltagem é gerada pela forca de

Lorentz F = q(E + UxB) experimentada pelos portadores de carga movimentando-se pela
amostra, e resulta em um deslocamento destes entre suas extremidades, onde os portadores de
carga com um determinado sinal como por exemplo os elétrons (q = -e) irdo se deslocar para

uma das extremidades, enquanto a outra extremidade apresentara um acumulo de cargas
opostas (ver figura 1.3). Neste efeito é verificado que a condutividade Hall transversal oxy

apresenta um comportamento linear em funcao da variacdo do campo magnético aplicado.

F=gqg(E + viB)

B

+++++++++++++

l

Voltagem Hall

Figura 1.3: Diagrama da montagem experimental do efeito Hall.

Outra importante fato para nossa analise historica e que devemos mencionar, refere-se a
uma tarefa recorrente na Fisica da Matéria Condensada, que tem sido a descoberta e
classificacdo de novas fases da matéria. Durante muito tempo esta classificacdo foi
desempenhada por meio do conceito de quebra de simetria, em que uma transicdo de fase

ocorre quando uma das simetrias do sistema fisico é espontaneamente quebradalt©l.,

A teoria que descreve transi¢0es de fase como estas, denomina-se teoria de Landau-
Ginzburg™®, E por meio deste esquema tedrico, diversas fases podem ser bem descritas, a
tornando uma das grandes conquistas da Fisica da Matéria Condensada. Entretanto apesar de
bem sucedida, foi descoberto um novo estado da matéria que ndo apresentava nenhuma
quebra de simetria e por isso ndo podia ser descrito por esta teoria. Este é o estado
caracteristico do Efeito Hall Quantico (QHE)[I.
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1.4 Efeito Hall Quéantico (QHE):

Um século apds a constatacdo do EH, o QHE foi verificado experimentalmente por Klaus
von Klitzing, G. Dorda e M. Pepper em 1980, em uma amostra 2D de elétrons (MOSFET:
Metal-oxide-semiconductor field-effect transistor) submetida a temperaturas do hélio liquido

(por volta de 4K) e intensos campos magnéticos (variando até a ordem de 15T)[.

Como resultado verificou-se analogamente ao Efeito Hall, que o interior da amostra
tornou-se isolante, e que uma corrente elétrica passou a ser transportada ao longo de sua
borda, sendo o fluxo desta corrente unidirecional e ndo apresentando dissipagdo. Entretanto
neste experimento, constatou-se que diferentemente ao que ocorre no Efeito Hall onde a
condutividade transversal apresenta um comportamento linear com a variagdo do campo
magnético, que no QHE esta passa a ser quantizada em patamares de e2/h (de acordo com a
expressao abaixo e a figura 1.4), um resultado totalmente inesperado e ndo previsto

classicamente.

2
Oxy =N % onden=0,1,23,..

Esta quantizacdo é uma caracteristica bastante peculiar, pois ocorre em um fenémeno de
muitos corpos para diferentes materiais, apesar das diferencas que deveriamos esperar entre as

diversas amostras.

ke § i=2

B

10

Figura 1.4: Grafico experimental obtido por Klitzing, que demonstra a quantizacdo da resisténcia Hall
(essencialmente a variavel reciproca da condutividade) em funcéo do campo magnético aplicado. Os patamares
correspondem a resisténcia Hall quantizada, enquanto os picos a resisténcia longitudinal.

Figura extraida da pagina eletrénica: http://www.nobelprize.org/nobel_prizes/physics/laureates/1998/press.html
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Além de render a Klaus von Klitzing o prémio Nobel de Fisica de 1985, o QHE gerou
uma demanda por explicacBes tedricas que englobassem a quantizacdo da condutividade
transversal e como uma quantizacdo tdo robusta poderia se manifestar em experimentos

realizados em circunstancias variadas.

A resposta a este problema se deu justamente com a introdugéo das nogdes de topologia,
ocorrendo inicialmente em 1981, com o experimento mental proposto por Robert Laughlin[1],
em que os patamares da condutividade Hall transversal foram explicados pelo fato deste

constituir um invariante topolégico do sistema, ou mais precisamente o inteiro n presente na

o 2 . ~ -
sua expressao (ox =n %), recebendo a denominacdo de nimero de Chern-nlt2,

No QHE, a mudanca de oxy de um patamar para outro presente na figura 1.4, somente
ocorre quando o Hamiltoniano do sistema apresenta grandes deformac6es (em virtude, por
exemplo de um grande aumento ou diminuicdo do campo magnético). Nesta situacdo o
estado fundamental pode atravessar outros auto-estados (niveis), quando esta “passagem de
nivel” acontece no sistema Hall quantico, o nimero de Chern-n deixa de ser bem definido.
Uma vez que n é o invariante topolégico do sistema e um namero inteiro, ele ndo pode mudar
continuamente. Concluimos, portanto, que um grafico em funcdo do campo magnético, de n
ou de alguma variavel que seja proporcional a ele, como é o caso da condutividade Hall oxy
deve apresentar-se estruturado na forma de patamares, sempre que a variacdo do campo

magnético seja suficiente para promover uma grande modificacdo do Hamiltoniano.

Em 1982, uma explicagéo equivalente para a quantizacdo de oxy no QHE foi proposta por
D. J. Thouless, M. Kohmoto, M. P. Nightingale e M. den Nijs, a partir de calculos baseados

na formula da resposta linear de Nakano-Kubol41,

A partir do QHE, uma nova forma de classificacdo dos materiais baseada no conceito de
ordem topoldgica foi desenvolvida, o qual previa também fases da matéria até entdo nao
conhecidas.
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1.4.1 Estados de borda no QHE:

No QHE a condutividade é representada por um tensor &, dado pela seguinte expressdo

em duas dimensoes: G = (""x:"w ""y), onde oyy € a componente longitudinal.

Oyx=—Oxy Oyy

De acordo com o grafico da figura 1.4 do experimento de Klitzing, constata-se que
durante a variacdo do campo magnético, enquanto o processo de transicdo entre dois
patamares de oxy ocorre (que explicamos ser em virtude de uma grande modificagdo do
Hamiltoniano do sistema, em funcdo da variacdo do campo magnético aplicado), tem-se que
oyy tende a um valor maximo e novamente a zero. Entretanto, enquanto a condutividade

transversal oxy apresenta-se quantizada em um determinado patamar, observa-se que o valor

.. . . . 2
da condutividade longitudinal oyy anula-se, ou seja, para oy, = n% com n=0 tem-se que oyy = 0.

Desta relacdo extraimos a informacao de que no QHE, o invariante topolégico dado pelo
namero de Chern n é finito, ou seja, temos n # 0; em contrapartida, sem a presenca do campo
magnético ou durante o processo de transi¢do entre os patamares de oxy, Nd0 ocorre 0 QHE e
desta forma a corrente flui longitudinalmente sobre a amostra, de forma que oyy # 0 e oxy = 0.
Neste caso o invariante topoldgico € dado por n = 0, assim verificamos que o QHE e o estado
isolante comum (como o Vvacuo) apresentam diferentes ordens ou classes topologicas,

caracterizadas pelo numero de Chern n.

Agora relembremos a definicdo exposta no inicio deste capitulo, de que uma classe de
equivaléncia topoldgica entre diferentes estados isolantes é definida por um processo em que
0 Hamiltoniano de um estado seja deformado adiabaticamente no Hamiltoniano do outro sem
que haja o fechamento do gap. Como visto a ordem topoldgica ndo trivial do QHE é
caracterizada pelo invariante n, desta forma durante a transicdo de um estado com topologia
ndo trivial do QHE (n # 0) e um estado topologicamente trivial como o vacuo (n = 0), deve
ocorrer o processo de deformacdo do Hamiltoniano seguido do fechamento do gap de energia,

de forma a modificar a classe topol6gica (ou equivalentemente o invariante topolégico).

Devido a esta necessidade do fechamento do gap para a alteracdo da ordem topoldgica é
que observamos no QHE os estados superficiais (regido onde esta modifica¢do ocorre), sendo

os responsaveis pela conducdo de corrente nas bordas da amostra, onde cyy # 0.
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B En=(m+ %)hoc

+++++++++++++

Figura 1.5: Esquema das Orbitas de ciclotron dos elétrons, os quais sao interrompidos nas bordas da amostra,

onde os portadores de carga passam a conduzir sem dissipa¢do em sentidos contrarios em cada uma das bordas.

Podemos também analisar os estados de borda, levando-se em consideracdo que no
QHE, a quantizacdo das Orbitas circulares dos elétrons, devido ao campo magnético externo
leva aos niveis de Landau, com energia Em = (m + %2) hwc, onde oc € a frequéncia ciclotron de
movimento dos elétrons e m um nimero inteiro. Os niveis de Landau podem ser vistos como
bandas de energia para os elétrons, e se um determinado ndmero destes niveis encontram-se
preenchidos e os restantes desocupados, um gap de energia ira separar estes estados, como em

um isolante.

Utilizando-se uma argumentacdo classica, podemos imaginar que nas bordas do
material os elétrons possuem um movimento que é diferente daquele em seu interior, porque
suas Orbitas de ciclotron encontram a borda e ndo se fecham “pulando” para outra orbita (veja
0 esquema na figura 1.5). Estes saltos ou pulos levam a estados eletrénicos metalicos que se
propagam pela borda do sistema em apenas uma direcdo.  Desta forma estes estados
conduzem corrente elétrica sem serem espalhados por impurezas e consequentemente sem
perda de energia na forma de calor, sendo a Unica opcéao para os elétrons propagar no mesmo
sentido (uma vez que ndo existem estados propagando-se em sentido contrario).

Como o QHE ocorre apenas quando um campo magnético intenso é aplicado, como
veremos adiante, ele pertence a uma categoria topoldgica que explicitamente quebra a
simetria de reversdo temporal. Naturalmente, os fisicos se perguntaram se a classificacdo
topoldgica poderia ser estendida a sistemas que apresentariam esta simetria. Em 2004,
Murakami aliou a simetria de reversdo temporal e o acoplamento spin-6rbita, gerando o
conceito de Isolante Hall Quéntico de Spin (IQHS), também denominado de Isolante

Topoldgico Bidimensional (1T)[2],
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Os IT sdo materiais caracterizados pela presenca de um gap de energia nos estados de
bulk (interior da amostra) como um isolante comum, entretanto apresentam estados de
superficie ou borda que permitem a conducdo de corrente. Desta forma atraves da
classificacdo topologica, ndo podem ser conectados adiabaticamente com isolantes triviais ou

mesmo materiais semicondutores, devido a sua ordem topoldgica néo trivial.

O conceito proposto por Murakami, inspirou Kane e Mele a aplicarem um modelo deste
estado ao Grafeno®], enquanto Bernevig e Zhang passaram a investigar a verificacdo deste
efeito em materiais semicondutores, onde os niveis de Landau dos elétrons ocorreriam devido
a intrinseca interacdo spin-Orbita sem a necessidade de um campo magnético externol*®l,
Nenhum destes modelos foi realizado experimentalmente, mas tiveram grande importancia
em desenvolvimentos conceituais. No ano de 2006, Bernevig, Hughes e Zhang predisseram o

primeiro IT 2D, por meio de pogos quanticos de HgTe/CdTel!7:18],

Em 2007, Liang Fu e Kane afirmaram que a liga Bi1xSbx seria um isolante topolégico 3D
em uma faixa especial de x°1, o qual foi confirmado no ano seguinte por M. Z. Hasan,
através da espectroscopia de foto-emissdo com resolucdo angular (ARPES), uma medida
experimental que possibilitou a constatacdo dos estados topoldgicos de superficiel2%,
Modelos de isolantes topologicos para os compostos Bi>Tes, BixSez e Sh,Tes foram
construidos como generalizagGes deste modelo de pogo quantico tridimensionall?1,

O interessante na teoria envolvida nos lIsolantes Topoldgicos e que permitem a
verificacdo de novas propriedades fisicas caracterizadas por excitacdes exoéticas, ao se inserir
termos topoldgicos nas equacBes de Maxwell. A compreenséo e verificacdo desta excitacoes,
corresponde a grande parte da pesquisa atual em isolantes topoldgicos. Por exemplo, no IT
2D € predito a ocorréncia de fracionalizagdo de carga na borda, enquanto uma separagao spin-
carga ocorre no seio do material. Verifica-se também que uma carga carregada acima da
superficie de um IT 3D ira induzir ndo apenas uma carga elétrica imagem, mas também um
monopo6lo magnético imagem, estes dois monop6los formariam um objeto compoésito que

obedece a uma estatistica fracionaria (anyons)[?%23],

Uma notavel predicdo teorica relacionada as isolantes topologicos, é que um
supercondutor colocado sobre sua superficie, possa dar origem ao aparecimento de férmions
de Majorana (cuja particula € idéntica a anti-particula). Estes fermions previstos teoricamente
e até 0 momento ndo constatados na natureza, sdo preditos para ocorrerem dentro dos vortices

de um supercondutor!?41,
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Todas estas notaveis caracteristicas relacionadas aos isolantes topoldgicos, justificam a
intensa pesquisa que a comunidade cientifica esta empregando no estudo desta nova classe de
materiais. Neste contexto muitos fisicos esperam que este estudo va aumentar o conhecimento
fundamental sobre a natureza, além da possibilidade de emprego dos IT no desenvolvimento

de nano-dispositivos relacionados a spintronica e a computagdo quantica.

Antes de finalmente iniciarmos a analise deste estado, sera feita uma revisdo sobre uma
simetria que desempenham um papel fundamental neste novo estado quéntico, que € a

simetria de reversao temporal 3.

1.5 Simetria de Reversdo Temporal J:

O conceito relacionado a simetria de reversao temporal J ndo é tdo intuitivo, e por isso
tera alguns de seus aspectos mais extensivamente revisados nesta dissertacao, estando muitas
de suas demonstracdes localizadas no apéndice A. O termo reversdo temporal associado a
esta simetria € enganoso, estando mais apropriadamente relacionado a reversao do movimento
(momento).  Logo, torna-se evidente porque a acdo de seu operador reverta operadores
relacionados com movimento (S -» - S; J - - J; p — - p), enquanto mantém outros
inalterados (X = x). Por meio desta relacdo, esperamos que o produto de dois operadores que

s&o revertidos por este operador permaneca invariante (p? — p?; J.S — J.S).

Neste texto, representaremos o0 operador de reversao temporal pelo simbolo ®, e para
analisa-lo, inicialmente consideraremos a sua ac¢ao sobre um estado |a), dado por |a) — O|a),
0 que equivale a dizer que se |a) representa um auto-ket do momento linear |p), entdo ®|a)

correspondera a um auto-ket de |—p).

O operador de reversdo temporal € anti-unitario, ou seja, ® = UK, em que K € o operador
de conjugacdo complexa e U um operador unitério, sendo sua forma funcional para um

sistema de spin % dada por (vide apéndice A)[%&2:
@ =ne Sy"/K = — in% Sy, onde ® = -1 (1.1)

Na teoria dos Isolantes Topologicos, o operador de reversdo temporal ® apresenta um
papel de crucial importancia, uma vez que a simetria ao qual é associado estd intimamente
relacionada a protecdo dos estados de borda, além de permitir a deducdo do teorema de

Kramers.
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Este teorema diz que: “Qualquer estado de um sistema cujo momento angular total é
semi-inteiro (ou seja, um sistema composto por um numero impar de particulas com spin

semi-inteiro) e que apresente a simetria de reversdo temporal, deve ser degeneradol?%:23] >

A fim de deduzirmos este teorema, consideremos um sistema de spin semi-inteiro cujo
Hamiltoniano comute com o operador de reversao temporal, ou seja, € invariante por reversdo

temporal:
[H,®] = 0, ou H® = OH (1.2)

Tomemos entdo um auto-estado arbitrario |[n) do Hamiltoniano, tal que H|n) = En|n). A
expressdo (1.2) implica que ®|n) também sera um auto-estado do Hamiltoniano com energia
En, umavez que: HO|n) = OH|n) = OEq|n) = EnO|n).

O que devemos nos perguntar € se os vetores dados pelo |n) e ®|n) correspondem ao
mesmo estado fisico, ou estados degenerados. Responderemos a esta pergunta via absurdo, e
comecemos considerando a hipotese de que estes sejam 0 mesmo estado fisico, ou em outras
palavras, que ®|n) se diferencie do |n) por no méaximo um fator de fase: ©n) = e|n),

aplicando novamente o operador ® nds obtemos que:
@?ln) = OB[n) = Oe¥n) = e ¥OIn) = e ¥e¥n) = +1jn) ~ O = +1

O que estd em contradicdo com a expressdo (1.1). Portanto, a hipotese inicial estava
errada, e chegamos a conclusdo de que qualquer estado que apresenta a simetria de reversao
temporal e cujo momento angular total seja semi-inteiro, deve ser degenerado. Este é o

enunciado do teorema de Kramers.

Na auséncia da interacdo spin-Orbita a degenerescéncia de Kramers é simplesmente a
degenerescéncia entre as componentes up T e down | do spinf??l.  Entretanto na presenca
desta interacdo, ocorre uma interessante consequéncia para a estrutura de bandas de um
sistema que seja invariante sob J, e apresente momento angular total semi-inteiro

(fermidnico), podendo ser verificado pela seguinte analise do Hamiltoniano de Bloch:

H |[Ynk) = Enk [Ynk), onde |Ypni) = e kT |u,) é 0 auto-estado de bloch, o que nos permite

utilizar a seguinte forma reduzida para a equacao de Schrodinger: H |u,x) = Enk |u,k), onde
H = e kf 4 k¥ Como H preserva a simetria de reversao temporal, entdo [H,0] =0, e

podemos escrever(23: ©H(k)®™ = H(—k)
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O significado fisico desta expressdo € que a energia das bandas de um sistema com
ocorrem aos pares, ou seja, estados localizados em +k e -k possuem a mesma energia (sdo
degenerados), sendo chamados de pares de Kramers. Os pares de Kramers ocorrem em torno
dos momentos (pontos k) que sdo invariantes sobre e denominados de TRIMI%26]

consequentemente temos que a estrutura de bandas em tornos destes pontos € simétrica. Os
TRIM s&o definidos a partir da relagdo: A; = %(Vl.bl + V2.b2 + v3.b3), devendo corresponder

a um ponto situado no interior da 1° Zona de Brillouin. Na figura 1.6, exemplificamos 0s
TRIM para uma rede reciproca hexagonal e outra retangular, bidimensionais.

L ] +
Hexagonal [Pt Retangular
b2 b1+b2
b; A b1
11 \/\m -
An Ato
/\]ﬂ b_l

/

Figura 1.6: Momentos Invariantes por Reversao Temporal (TRIM) para uma Zona de Brillouin Hexagonal
(esquerda) e outra Retangular (direita). A estrutura de bandas em torno destes pontos sdo simétricas e juntamente
com a simetria de reversdo temporal, garante que estados localizados em +k e —k em torno dos TRIM sejam
degenerados (pares de Kramers).

Como exemplo de aplicacio da simetria de reversdo temporal, analisemos
qualitativamente a situacdo em gue um campo magnético externo B ¢é aplicado sobre elétrons.

Neste caso, 0 Hamiltoniano que descreve o sistema contera termos como: S.B, p.A+ A.p

Considerando que a simetria de reversdo temporal reverte p e S, mas ndo os elementos
externos ao sistema, como campo externo B e nem o potencial vetor A, verificamos que estes
fatores serdo impares em relacdo a reversdo temporal. Portanto, para um sistema que interage
com um campo magnético externo, o Hamiltoniano deixara de comutar com o operador ©, e

concluimos que a agdo do campo magnético externo promove a quebra desta simetria.

No caso do Efeito Hall Quantico (QHE), um campo externo bastante intenso é aplicado

sobre o material, logo se revertermos o movimento eletrénico (ou seja, se aplicarmos o
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operador de reversdo temporal), iremos alterar o estado do sistema. Como mencionado, uma
das questdes que iniciaram a busca por IT era a possibilidade da existéncia de materiais com

estados de borda topologicamentte néo triviais, mas que preservassem esta simetria.

1.6 IT e o seu Invariante Topologico:

O Efeito Hall Quantico foi o primeiro estado topoldgico da matéria a ser descoberto,
entretanto um novo estado exibindo ordem topoldgica foi encontrado, e nomeado de Isolante

Hall Quéantico de Spin ou simplesmente Isolante Topologico Bidimensional (IT).

O Isolante Topolégico corresponde a uma nova fase quéantica, caracterizada pela inverséo
da paridade das bandas de valéncia e conducdo em funcédo da intrinseca interagdo spin-Orbita
do sistema. Estes sdo materiais que apresentam um gap de energia nos estados de bulk
(interior da amostra) como um isolante convencional, mas possuem estados de borda,
compostos por dois canais de elétrons spin-polarizados e que se deslocam em sentidos
opostos entre sil?7]. Nestes materiais é a interacdo spin-orbita quem possibilita a existéncia das

fases topologicamente ndo triviais e que ainda preservam a simetria de reversao temporal
R120

O estado de IT é observado em materiais que apresenta um forte acoplamento spin-orbita
Este acoplamento é de origem relativistica, estando associado a interacdao entre 0 momento de
dipolo magnético de spin do elétron e 0 campo magnético interno do préprio atomo (o qual é

uma consequéncia do momento angular orbital do elétron).

Vimos que o QHE viola a simetria de reversdo temporal J, ao apresentar um campo
magnético externo B, e desta forma o seu invariante topolégico (nimero de Chern - n) anula-
se em sistemas que sdo invariantes sobre esta simetria. Desta forma os Isolantes Topoldgicos
devem ser classificados por um novo invariante topologico v. A obtencdo deste invariante
ocorre por meio da analise dos estados de Bloch das bandas ocupadas, e sera brevemente
descrita a seguir.

Existem varias formulagdes matematicas para o invariante topoldgico vl?%:2%:30 A forma
mais simples de se obter este invariante € por meio da analise da estrutura de bandas, ou mais
precisamente, dos estados de Bloch ocupados de uma sistema que apresente a simetria de

paridade, ou inversdo espacialll.
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Desta forma, em um sistema que além da simetria de reversdo temporal, apresente a
simetria de Paridade, observa-se que nos TRIM (4i), os auto-estados de Bloch |u,,(4;) )

também serdo auto-estados da Paridade () com auto-valores &m(Ai) = + 1019,

O invariante topoldgico v, de classificacgho Z> € obtido por meio da relacdo:

(—1)? = [, 8;, onde 8i = [1;, Em (A;), corresponde a um produto feito sobre todos os

pares de Kramers das bandas ocupadas.

Por meio da andlise da paridade das funcGes de onda de Bloch dos estados ocupados, nos
momentos invariantes por reversdo temporal (TRIM), teremos que v = 0 ira corresponder a
um estado com topologia trivial (como o vacuo), enquanto v = 1 a um material com topologia

nao trivial, ou seja, um isolante topoldgicol®l.

Para materiais que ndo apresentam a simetria de Paridade, o célculo do invariante
topoldégico v € mais complexo, e baseado na analise da seguinte matriz:
wm(k) = (u,, (k)] ® |lu,(—k) ), que corresponde a representacdo matricial do operador de

reversdo temporal na base das func6es de onda de Bloch dos estados ocupados |um(E) ), aqui

m e n sdo os indices da banda. Esta matriz relaciona dois estados de Bloch, por meio da

relagio: fun(—K)) = X Winn(K) © [um (K) ).

Wmn(E) correspondendo a uma matriz unitaria [wnm (—E) = — Wm (E)], 0 que significa
que em um TRIM, esta matriz torna-se anti-simétrica, ou seja, wnm (4i) = — wmn (4;). Paraa
determinacdo do invariante, utiliza-se o fato que o determinante de uma matriz anti-simétrica
é o quadrado de seu Pfaffian, e desta forma é possivel determinar a quantidade &, que da
mesma forma que os auto-valores dos auto-estados da paridade, somente podem fornecer dois

Pflw(4)] _  Pflwa)]l _  Pflw(4)] _
= = o = Tl
JDet [w(4))] JVPE2 [w(4)] + Pf[w(4))]

valores: ;i =

Novamente o invariante topolégico v, é obtido por meio da relagio: (—1)Y = T[], i,

onde v = 0 ira corresponder a um estado com topologia trivial, enquanto v = 1 a um material

topologicamente nao trivial.
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1.6.1 Estados de borda topologicamente protegidos:

Os IT ou sistemas que apresentam o EHQS podem ser visualizados como duas cépias do
QHE, onde estados com spin opostos contra propagam na borda do material. De forma
anédloga ao QHE, em regides onde o invariante topolégico muda, devem existir estados
metalicos condutores. Tais estados, sdo chamados de hélicos® (uma analogia com a
correlacdo entre spin e 0 momento de particulas com massa nula que € chamada de

helicidadel®?), e podem ser considerados como metade de um condutor ordinario.

Condutores ordinarios como 0s que ocorrem no QHE, possuem elétrons com spin-up T e
down | propagando-se em ambas as direcdes e sdo frageis, pois os estados sdo susceptiveis a
localizag&o de Anderson mesmo na presenca de desordem fraca. Em contraste a isto no IT os
estados de borda ndo podem ser localizados nem na presenca de desordem forte devido a
simetria de reversdo temporal J, desta forma os estados de superficie sdo protegidos por esta
simetria (situacdo néo valida para a presenca de uma impureza magnética)[23.28],

3
+ H +—4

Efeito Hall Quantico

A8

Efeito Hall Quéntico

—+ tH- +——

Figura 1.7: Estados de borda, a esquerda no QHE, e a direita no IT (EHQS) mostrando a polarizacdo de spin em
cada uma das bordas do material.

Uma forma de entender esta protecdo e considerar a situacdo em que uma impureza nao
magnética reside na borda do Isolante Topoldgicol?2. A principio esta impureza pode causar o
espalhamento dos portadores em sentido contrério a sua propagacao inicial, contudo,
considere um portador com spin-up T. Para ser espalhado em sentido oposto a sua propagacéo,
ele pode contornar a impureza de duas formas distintas e como apenas spin-down | pode
propagar no sentido oposto, seu spin tem que rodar adiabaticamente de m ou —w em cada um
dos casos. Consequentemente, os dois caminhos para o espalhamento diferem por uma

rotacdo do spin dos elétrons de m — (—m) = 2, como mostrado na figura 1.8.
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Figura 1.8: Um portador de carga em um estado de borda do EHQS pode ser espalhado em duas dire¢fes por
uma impureza ndo magnética. Indo no sentido horario, o spin gira por 7; enquanto que no sentido anti-horério, o
spin gira por -n. Figura extraida e modificada a partir da referéncia [22].

Para analisarmos esta situagdo, observemos que o operador para uma rotacdo de 2w em

—2mij.a

torno de um eixo na dire¢cdo do vetor normal fi, é dado pela expressdo Rn(2m) = e =

A acdo deste operador sobre os auto-vetores de momento angular ¢é
Rn(2m) |j, m) = (1)@ |j, m), de forma que para particulas com momento angular semi-inteiro,

este operador reverte a fungdo de onda Rn(2m) [j, m) = — [j, m), levando a uma completa
interferéncia destrutiva entre os dois caminhos espalhados. Entretanto, caso a impureza
apresente um momento magnético, como vimos, a simetria ¥ sera violada e as duas ondas
refletidas ndo irdo mais interferir destrutivamente. Neste sentido a protecdo dos estados de

borda é protegida por esta simetrial?2:33],

A explicagdo fisica aplicada até aqui s6 é valida caso haja um numero impar de estados
superficiais que apresentem degenerescéncia de Kramers, ou em outras palavras, um nimero
impar de cones de Dirac atravessando o nivel de Fermi. Caso houvesse, por exemplo, dois
estados com a mesma orientacdo de spin, um se movendo para frente e o outro para tras, entao
um elétron poderia ser retroespalhado sem a necessidade de inverter seu spin, desta forma a
interferéncia destrutiva caracterizada anteriormente ndo ocorreria, permitindo a dissipacéo

nestes estados.
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Baseado nesta argumentacdo, para que os estados superficiais do IT sejam protegidos é
necessario que eles sejam formados por um nimero impar de estados que se movam em um
sentido, e 0 mesmo numero de estados na direcdo oposta. Este efeito, dado pelo fato dos
estados ocorrerem em um ndmero par ou impar, esta relacionado ao seu invariante topologico
(v)[2l,

Qual das alternativas acima ocorre (par ou impar) € devido a correspondéncia entre o
bulk e o contorno do material. Se o isolante possuir Nk par, onde Nk representa o nimero de
parceiros de Kramers que cruzam a Er da borda do material, ele se encontrara em uma fase
topologicamente trivial e representado pelo invariante topologico (v = 0), entretanto se ele
possuir Nk impar, entdo estara no EHQS, que é um estado ndo trivial, representado por
(v = 1)1, o0 qual possui estados de borda topologicamente protegidos. Desta forma existe
uma correspondéncia entre o invariante topoldgico v e o nimero de pares de Kramers que

cruzam a Er.

Nos isolantes comuns a reorganizacdo dos atomos na superficie, ou entdo a modificacdo
das ligacdes quimicas podem introduzir estados superficiais que possuem sua energia no gap
da banda, mas estes sdo restritos a se moverem em torno da superficie bidimensional. Estes
estados geralmente sdo frageis e sua existéncia depende dos detalhes da geometria e quimica
da superficie®*. Em contraste a isto no Isolante Topoldgico, os estados de superficie sdo
protegidos, isto €, sua existéncia ndo depende em como a superficie do material é organizada
(sua geometria ou quimica) e a explicacdo é matematica baseando-se no fato que o
Hamiltoniano descrevendo o0s estados da superficie € invariante sobre pequenas
perturbacdes®*l.
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Capitulo 2:

Teoria do Funcional da Densidade - DFT

2.1 Equacdo de Schrodinger:

Em 1926, Erwin Schrddinger propds a mecénica quantica ondulatoria, teoria baseada em
uma equacéo diferencial para a onda de Luis de Brogliel*®, apresentada abaixo:

{- - V2 + V(@0} ¥ = ih - P(a

Denominada de equacdo de Schrodinger dependente do tempo, onde o termo contido
entre chaves designa o Hamiltoniano dependente do tempo JH(t) ou operador energia total, e

que descreve o sistema estudado. W(q,t) ¢ a fun¢do de onda do sistema o qual nao possuia um
significado fisico definido, imaginava-se que representava uma vibracdo onde a particula seria
seu guia, cabendo a Max Born interpretar seu significado fisico, enunciado da seguinte

maneira:

“A probabilidade de obter no decorrer de uma observagdo e em um dado instante t, a

particula no interior de um elemento de volume d 3g em torno do ponto g é igual a:”
P(@)d°q ="¥*@)¥@nd>q ou P(g)="¥*@n¥@b

Assim, se cada elétron estd associado a uma dada func¢do de onda ¥, o produto Y*W¥ sera
igual a amplitude da probabilidade de localizar este elétron em uma unidade de volume em

torno de um ponto g.

Um ano antes de Erwin Schrodinger, Werner Heisenberg introduziu uma formulagéo
matricial para a mecanica quantica. Mesmo que os formalismos de Heisenberg e
Schrddinger sejam distintos e independentes, ambos apresentam a mesma interpretacao fisica.
No formalismo de Schrddinger, as ¥ permaneceram fixas no espago enquanto as coordenadas
variam, ja no formalismo de Heisenberg as coordenadas sao fixas, enquanto as ¥ é que

variam.
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A equacdo de Schrodinger permite descrever analiticamente com exatiddo unicamente o
atomo de hidrogénio, prevendo suas raias espectrais a menos dos efeitos oriundos de origem
relativistica. Para a analise de sistemas contendo muitos elétrons atraves desta equacéo faz-
se necessario de um maior poder de processamento computacional, além da insercdo de

aproximacoes e técnicas que viabilizem sua solucéo.

No presente trabalho serd utilizada simultaneamente a notacéo tradicional de Schrédinger

para a mecanica quantica conjuntamente com a notacao de Dirac:
J¥*@¥@nd®g = (¥¥q )

Como neste estudo, consideramos que o potencial de nosso sistema permaneca fixo no
tempo, utilizaremos a equacdo de Schrodinger com Hamiltoniano independente do tempo. O

que nos permite proceder a separacdo de variaveis e desacoplar a parte temporal da parte
espacial da fungéo de onda ¥, que pode ser escrita da seguinte forma: [¥(t) ) = X;Cj
lwi(t=0))¢j(t), a solucdo da parcela espacial é obtida pela resolugdo: H |y ) = Ej |y ),

enquanto a parcela temporal possui a solucdo trivial dada por: ¢j(t) = exp(_iEit/h) :

A equacdo espacial do sistema fornecera as fungdes de onda independentes do tempo,
também denominadas de auto-estados ou estados estacionarios |wj ), sendo seus respectivos

valores de energia Ej chamadas de auto-valores. Apds obtida a solucdo espacial da equacgao
de Schrédinger, a solugdo completa do sistema pode ser expressa da seguinte forma: [¥(t) )
=2 Cjly ) exp(- i/h E;j t), onde |Cj* fornece a probabilidade de encontrar a particula no
estado yj com energia E;.

Para solucionar a equacdo espacial, necessitamos conhecer o operador Hamiltoniano que

descreve o sistema. Em nosso estudo analisamos um sistema de muitos corpos, contendo N

elétrons e M nucleos, de forma que o operador Hamiltoniano possa ser escrito comol=®!:

M= ym Mgz Iyn B gp aym gN_Za oy SyN gy 1
azlzma a 2 l=12me L a=1 &Li=1 [ri—Rq| 9 Lj=1 Li#] |ri_rj|

fZM M ZaZp
2 a=1 b+a |Ra_Rb|

A fim de simplificar a notacdo utilizada na expressdo acima aplicaremos unidades
atdbmicas, ou seja: a carga do elétron (e), sua massa (me) e a constante de Planck dividida por

2w (h) foram igualadas a 1.
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Para simplificagdo, o primeiro termo que corresponde ao operador referente a energia

cinética dos nlcleos sera representado por In; 0 segundo termo (energia cinética dos elétrons)
por T¢ ; 0 terceiro termo (atragdo nucleo-elétron) por Vie; 0 quarto termo (energia potencial
repulsiva entre os elétrons) por Vee; € 0 quinto termo (energia potencial repulsiva entre os

nticleos) por Van, desta forma o operador Hamiltoniano pode ser reescrito como:
H=T+ Te+ Ve + Vee + VN

Como exposto anteriormente, este sistema composto por elétrons interagentes e descrito
pelo Hamiltoniano acima ndo pode ser resolvido analiticamente, ou seja, ndo é possivel obter
a solucdo da equacdo de Schrodinger para este sistema. Uma vez que se trata de um problema
de muitos corpos, torna-se necessario a utilizacdo de aproximacoes a fim de tornar o problema

soltvel.

2.2 Aproximacao de Born-Oppenheimer:

Esta aproximacdo desacopla a parte eletronica da parte nuclear na expressdo do
Hamiltonianol®*7]. Ela se baseia no fato da massa do elétron ser cerca de 2000 vezes inferior a
massa do nuacleo; assim considera-se que a energia cinética do nucleo (inversamente
proporcional a massa) seja muito menor que a energia cinética do elétron. Portanto este termo
sera desprezado na expressdao do Hamiltoniano, ou em outras palavras, admite-se que para
cada variacdo nas coordenadas nucleares, 0s elétrons se ajustam simultaneamente a essa nova

posicdo, logo os elétrons estariam se movendo num referencial de nucleos fixos (ma — o

levando a In — 0).
H=Te+ Ve + Vee + Van

Esta forma para o operador Hamiltoniano, torna possivel desacoplar a parte eletrénica da

nuclear: H = Helet + Huuel, onde: Heet=Te + Ve + Vee € FHnuel = Van

Os auto-valores da parcela eletronica do Hamiltoniano FHeiet podem ser obtidos para um
auto-estado que seja fungdo da posicdo nuclear |wj(R) ), uma vez que FHelet cOmuta com as

coordenadas das posicdes nucleares, [FHeiet, R] =0 ou RHeiet = Heet R, logo:

Heret |pi(R) ) = E¥¥(R) |yi(R) )
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Desta forma, a energia dos estados eletronicos EeIEtj(R) dependera das coordenadas

nucleares, e para obter-se a energia total do sistema E™#(R) que corresponde ao auto-valor de
H para um sistema de nucleos fixos, sera necessario adicionar aos valores da energia

eletrbnica EEIEtj(R) o termo correspondente & repulsdo nuclear “Van:
Ereai(R) = E¥*(R) + Van

— ZaZp
Erai(R) = E*Y(R) + Xaby Xika 1o
|Ra_Rb|
Mesmo a aproximagdo de Born-Oppenheimer sendo Util, a equacdo de Schrodinger com

FHeier ainda se apresenta impossivel para ser resolvida numericamente, sendo necessérias

outras aproximagdes. Um dos métodos melhor sucedidos e mais utilizados para a solugdo do
problema de muitos corpos € a teoria do funcional da densidade, em inglés Density Functional
Theory (DFT).

2.3 DFT - Teoria do Funcional da Densidade:

O aspecto fundamental da DFT é que esta teoria descreve a energia do sistema em termos
da densidade de carga p(r) uma grandeza fisicamente observavel, em contraste com o
formalismo padrdo da mecanica quantica em que toda a informacéo do sistema esta contida na

fun¢do de onda W, que nao ¢ fisicamente observavel.

A DFT originou-se a partir de dois teoremas propostos por Hohenberg e Kohnl38l na
década de 1960. Este € um método bem sucedido em relacdo ao seu emprego em célculos de
primeiros principios (ab-initio) para a descricdo e entendimento das propriedades dos
materiais no seu estado fundamental, sendo uma teoria de muitos corpos para sistemas

quanticos.

2.3.1 Teoremas de Hohenberg e Kohn (HK):

No ano de 1964, Pierre Hohenberg e Walter Kohn apresentaran sua teoria, mais
conhecida por Teoria do Funcional da Densidade (DFT)[®8. Como exposto anteriormente,
nesta teoria deseja-se obter a densidade eletrénica p(r), grandeza fisicamente observavel e que

contém toda a informacdo do sistema, em oposicdo ao formalismo de Schrédinger onde é
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obtida a fungdo de onda W¥(q,t), que entretanto ndo constitui uma grandeza fisicamente

observavel. O DFT fundamenta-se nos seguintes teoremas!39l:

Teorema I: Para todo sistema de particulas interagentes que estdo sobre a influéncia de um
potencial externo Vex(r), este potencial & determinado unicamente (funcional Unico) exceto
por uma constante, pela densidade eletronica de particulas no estado de menor energia (estado

fundamental) po(r).

Teorema Il: A energia como um funcional da densidade E(p) pode ser definida e é valida
para qualquer potencial externo Vex(r). Para um determinado potencial, o valor exato da
energia no estado fundamental Eo(p) € o minimo global do funcional energia, sendo a

densidade que minimiza este funcional a densidade exata do estado fundamental po(r).

Prova do Teorema I:

Segundo o teorema I, no campo gerado pelo potencial externo Vex(r) (o qual corresponde
ao potencial que os nucleos exercem sobre os elétrons Vine) a densidade eletrénica p(r)

determina univocamente este potencial, ou seja, Vext(r) = Vext(p). Logo é este teorema que
introduz o fato de toda a informacdo do sistema estar contida na densidade eletrdnica p(r), a

prova do teorema | se dara por absurdo.

Inicialmente sera suposto que dois potenciais externos (V’ e V”) sdo originados da

mesma densidade eletronica p(r), assim cada um destes potenciais externos definiram um
operador 'V’ e 'V e por conseguinte um operador Hamiltoniano HH” ¢ . Sendo que cada

um destes Hamiltoniano irdo corresponder a uma determinada funcéo de onda [y)’) e [t)”), aos

quais devem resultar na mesma densidade eletrénica p(r), como esquematizado a seguir:

H=Hee=Te+ Veet Ve =Te+ Vee + Vext

H =T+ VetV e H =T+ VetV
Heie [Y) = E(R) [1P)

HWY=ER)WY) e IHFP)=E(R)[Y")
') — p(r) < ")

V> H - ) > p(r) — ") < H" < V”
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A energia é definida na notagdo de Dirac, da seguinte forma: E = (Y|H[Y)

Supde-se que a energia do estado fundamental é dada por: E’% = (’|H [’), utilizando-se o

teorema variacional, tem-se:

Ey < (”|H "), ou seja, qualquer energia determinada por y # y° serd maior que a energia

do estado fundamental.

Somando-se e subtraindo-se JH” da expressdo acima, tem-se:
By < (|3 + 3 — 3Hy)

Ey < (9" |3L") + |30 — A7)

Eg <Ey + (Y| Te+ Vee + V' = Te — Vee = V7[y")

By < By + @[V = VW) ou B <E+[p@ [V -VIdr (A)

Repetindo-se 0s procedimentos acima, mas trocando-se o0s termos de linha por duas linhas, e

vice-versa.

B = (W3 )
B{ < W1y w)

Ey < (Y/|H™+ 3H* - H[y')

By < a0 + W13t - 1)

By < Ey+ (W13 - 30ly) ou By <E+ [pm) [V -VIdr  (B)
Reagrupando e somando-se as expressdes (A) e (B), obtém-se:

Eg<Ey+ [p(®) [V -V 1dr - E—E' <[p®[V -V’]dr

Ef <Eyg+ [p() [V’ -V - Ej-E;<—[p@®[V -V’]dr
Eo—Ey < — (Eo— Ep)

Ey,—E) < E,—E) (Absurdo)
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Desta forma concluimos, que a hipétese original de que dois potenciais externos
diferentes fornecendo a mesma densidade de carga, leva a um absurdo, ou seja, potenciais
externos distintos devem levar a distintas densidades eletronicas. Confirmando o 1° teorema
de HK de que o potencial externo é um funcional Unico da densidade, logo cada densidade é

determinada por apenas um potencial externo.

Como o Hamiltoniano 4 do sistema fica definido ao se conhecer o potencial Vex(r) que

¢ devido aos nucleos, entdo se torna possivel determinar a fungdo de onda V¥ do sistema; desta
forma existe uma relacgdo direta entre a densidade eletrénica do estado fundamental po(r) com
a funcédo de onda neste estado Wo.  Logo, po(r) deve conter as informagdes do sistema assim
como a funcdo de onda, ao menos para o estado fundamental para o qual é valida, ou seja, a
funcdo de onda é um funcional da densidade no estado de menor energia ¥(po). Conclui-se

consequentemente que o funcional de qualquer observavel fisico serd um funcional Unico da

densidade po(r), onde a relacdo entre o observavel fisico e seu operador é dado por:

X =X(p) = (w|X]w ), sendo X o observavel fisico e X o operador deste observavel.

Prova do Teorema Il:

O teorema Il de HK introduz que o valor exato da densidade eletrdnica no estado
fundamental po(r) fornece o menor valor de energia, ou seja, a energia do estado fundamental
do sistema Eo[p(r)]; para realizar a prova, a expressdo da energia sera dividida em duas partes.
A primeira parte serd comum a qualquer sistema que contenha muitos &tomos em interacdo
coulombiana sendo chamada de funcional universal F(p)*’l, a segunda parte caracteriza o

sistema, ou seja, refere-se ao potencial externo Vex: a0 qual o sistema esta exposto.

Elp(N] = (W |FHeielh)
Elp(N] = (|Te + Vee + Wielth) = (Y[ Te + Vee + Vexih)

E[p(N)] = (W|Te + Veelh) + ([ Vexdth) = Fp(r)] + ()| Vexlth)

Escrevendo-se esta equacgéo para o estado fundamental (menor energia), tem-se:

E[po(n] = Fpo(r)] + (¢0|Vext|z/)0), onde |1/JO) é a funcéo de onda do estado fundamental.
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Relembrando que a prova do teorema | de HK demonstrou que a densidade eletronica

determina unicamente a funcédo de onda, e aplicando o teorema do variacional na energia:

Eo = E[po(r)] = E[),] = “Energia do estado fundamental”

E[Y,] <E[Y] “Teorema do variacional, onde 3 # 3"

Reescrevendo a expressao acima:

(Wo|FHeelp ) < (Y|Heielh)
(7,00| Te + Vee + Vext |1/J0> < (Y| Te + Vee + Vext )

Wyl Te + Veeth) + W[ Ve [} < (Y] Te + Vee [th) + (Y[ Vext [1h)
Elpo(N] + (| Vext [p ) < Flp(r)] + (| Vext [¥h)

E[po(r)] < E[p(r)]

Conclui-se desta forma que qualquer densidade p(r) que seja distinta da po(r), ird
fornecer um maior valor para a energia do sistema, provando desta forma o 2° teorema de
HK.

Ambos os teoremas de HK evidenciam que a menor energia do sistema (energia do
estado fundamental) pode ser determinada através da expressdo correta da densidade de carga
po(r), obtida por meio do potencial externo Vex(r). Ou seja, o DFT corresponde a uma teoria
que fornece o valor exato para a energia do estado fundamental Eo, entretanto esta teoria ndo
nos fornece uma maneira (método) de obtermos tal energia, método este que posteriormente
fora proposto por Kohn e Sham. Uma consequéncia importante destes teoremas € que sua
utilizacdo reduz o calculo computacional necessario para resolver o sistema, uma vez que
deixa-se de lidar com 3N variaveis (X,y e z de cada um dos N elétrons) para trabalhar apenas
com 3 variaveis referente a densidade de carga (sem a perda de informacdo do sistema), outra

importante consequéncia é a insercéo do conceito dos funcionais da densidade eletronica.

2.4 Equacdes de Kohn-Sham (KS):

As equacdes de Kohn-Sham (KS)*! constituem um método sistematico para a obtengdo
da energia do estado fundamental Eo através da determinacédo da densidade eletronica exata do

sistema neste estado po(r). Nestas equagdes se assume que 0 sistema composto por muitas
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particulas interagentes possa ser substituido por outro sistema de particulas ndo interagentes,
ou seja, transformando o problema inicial de N corpos interagentes em N problemas de um
unico corpo, onde a densidade eletrénica do estado fundamental de ambos os sistemas devem
ser iguaist*?l. Para esta tarefa, escrevemos a energia como um funcional da densidade, na

seguinte forma ja expressa anteriormente:

E(p) = F(p) + (y| Vexly ) = F(p) + Vext.(p)

O funcional universal F(p) € comum a todos os sistemas multi-eletrénicos é de acordo
com o formalismo empregado por Kohn-Sham, ele é analisado como composto por trés partes
integrantes. Sendo estas a energia cinética de um gas de elétrons ndo interagentes com
densidade eletronica p(r), denominada de To(p); a interacdo Coulombiana cléssica entre os
elétrons do sistema J(p) também conhecida como energia de Hartree; e a energia de troca e
correlacdo Exc(p). Este ultimo termo contém a parte da energia cuja forma ndo é conhecida
explicitamente, sendo oriundo da interacdo entre as particulas e correspondendo a diferenca
entre as energias cinética real e do sistema auxiliar ndo interagente, além de estar relacionado
a correlagdo proveniente da interacdo coulombiana. Na correlacdo a dindmica de um elétron
ird influenciar na dindmica dos demais. Caso a forma ou valor do termo Exc(p) seja conhecido,
torna-se possivel obter a energia total e a densidade eletrénica fundamental do sistema.

Desta forma E(p) € reescrito da seguinte forma:
E(p) = To(p) + J(p) *+ Exc(p) + Vext.(p)

Onde: To(p) = - %Z{-"fqi*ivngi d3r, é a energia cinética de um gas de elétrons néo
interagentes, onde o0s ¢i sdo denominados de orbitais de KS de particula Unica, representando
as funcdes de onda dos elétrons ndo interagentes. Enquanto, J(p) = ff p(r)p(r')d3r d3r’ é a

energia de Hartree (interagdo coulombiana classica entre os elétrons). De forma que

escrevemos: E(p):-gzyquivz(éi d3r + ff PWRED g3r @31 + Exe(p) + Ve (p)

[r—7']

De acordo com o teorema Il de HK, a energia do estado fundamental Eo(p) sera obtida ao
aplicarmos o principio variacional, onde minimizaremos o funcional E(p) em relagao a
densidade p(r). Como o estado fundamental & o menor valor de energia possivel, neste
processo obtém-se uma condicdo de extremo para esta minimizacgdo, observada a condi¢éo de
vinculo onde o nimero total de particulas N, ou equivalentemente, a carga total do sistema

deve permanecer fixo.
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%{E(p) - uf p(Tr) d3l'} = 0, ondeQ=Ne=N= f p(r)d 3r (Lembrando-se que assumimos e = 1)

SE(P) _
8p
TRl = L IR SWad ¢ LIEG d% + Elp] + Vealp] = W
)
H = 8p(r) To[p] + 8_() Jp(n] + EXC[p] ()Vext [p]
Onde:
0 . 243 = 2.1 2 3 = _ 12
- Tolp] = S(r) =Y [ der 5() ¥ [ V2p(r)d3r = -=V
5 — 1 e pMp0) 3. 43,0 — (PO 3p
= - ’ r =
n Pl = gz I SEEerae = [
5 ( ) ——Ex[p] = Vx[p] “Este ¢ a definicdo do potencial de troca e correlagdo”
_8 - 3 —
5p(0) Vext[p] = 3 ()f Vext(Np(Nd>r = Vex(r)

Obtendo-se a seguinte forma para a equacao de Euler:

1 r
w= -EVZ + f %d " + Vielp) + Vex(r)

Agora definimos o potencial efetivo de Kohn-Sham: VES(p) = | %d 3 + Vie(p) + Vexi(r)

1
Desta forma, temos que: W = - EVZ + VES(p), onde -%VZ + VES(p) = HKS

Aqui percebemos que o Hamiltoniano do sistema auxiliar ndo interagente, possui um
operador energia cinética usual e um potencial efetivo VKS atuando sobre cada elétron do

sistema. Obtendo-se uma equacdo do tipo de Schrodinger: HKSi(r) = €idi(r)

A partir desta equacdo, obtém-se os orbitais de Kohn-Sham ¢i(r) de particula Unica,

tornando-se possivel a obtengdo da densidade de carga p(r) do sistema, da seguinte forma:

p(r) = XN 10i(NP = XN 47 (NGi(r) = [ ¢ (n)i(r) b

As duas expressOes anteriores compdem as equagbes de Kohn-Sham, que irdo nos
fornecer a densidade do estado fundamental de um sistema de elétrons interagentes através da

densidade do estado fundamental de um sistema de elétrons ndo interagentes submetidos a um
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potencial efetivo VKS, ao se resolver estas equacdes em um processo auto-consistente. Neste
processo inicialmente inserimos uma densidade de carga tentativa p’(r), calculamos o
potencial efetivo de Kohn-Sham VXS, e resolvemos a equacdo HXSgi(r) = €igi(r) determinando

os orbitais de KS de particula tnica ¢i(r).

De posse destes orbitais determina-se uma nova densidade eletronica p”(r); caso as
densidades sejam iguais entdo p”(r) serd a densidade correta do sistema. Mas caso as
densidades sejam distintas entdo p’(r) = p”(r) e o ciclo sera reiniciado, até que as densidades
de entrada e saida sejam iguais dentro de um critério de convergéncia estabelecido. Obtidos

0s auto-valores €; das equacgdes KS, podemos obter o valor de energia do sistema E(p):

€i = ( gilHsli ) = [ ¢'(r) His gi(r) d°r, onde Hs ¢i(r) = €igi(r), logo:

¢ (NHESHi(r) = ¢i"(Neigi(r), relembrando que Hks = -%VZ + VKS(p), teremos:
#0372 + Vis(@]gi(n) = ¢/ (Dedi(r), onde Vis = [ 220 + Via(p) + Ve(r)
=57+ TESET + Veep) + vea®]di = ¢ (eidi(r)

— IV G+ g p(”d3 Pé + 6 Viep)gi + F Ve = T (eidi(r)

r—r|

Integrando-se em todo o0 espago:

—[#oVEEr + R B+ [ GNP + [ Ve = [ g predn

L1 T + [ g 4 [Vi(ppdr + [ vedp)Pr= [ ep(rdr

Top) + [IEEEd Sdr + [Viep)p(DEr  + [ VeuDp(dr = TP €

B €= Talp) + [ drd+ [ Valp)p(ndT + Ve () ‘ (A)

Lembrando-se que:
E(p)=- 3% [ ¢ V2gidr + 2 [[EZECA%r d% + Exlp) + Vex(p)

E(p) =- %f p(T) V2 der + f P(I‘)p(r/)d 3rd3 + Exc(p) + Vex.(p)

|[r=7"|

E(p) = To(p) + ff P(r)P(r')d rddr + Exc(p) + Vext(p) ‘ (B)
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Comparando-se as expressodes (A) e (B), Obtemos:
TO(p) + Vext (P) Ocupados i - foc(p)p(r)d3r - _U p(r)p(r) d3 ’ds
To(p) + Vex(p) = E(p) - 3 Jf "“)"“’)d?’r d3 - Ex(p)

Portanto:

p(r)p(r!) 3 3 ocup 3 pmp(r) 13 53
f ————=d% d° - Ex(p) = - [ Vilp)p(n)dr - [f =] drd°r

[r—7'|

E() = 27" € - [Valp)p()r + Eue(p) - [ 2220 drdr + 3 [ BT o

E(p) = Zocup €i + Ex(p) - foc(p)p(r)d3r - %ff% d3r’d3r

Esta expressdo permite obter o valor de energia do sistema E(p) atraves das equacdes de
Kohn-Sham, ou seja, atraves da Teoria do Funcional da Densidade (DFT) do qual extraimos
os auto-valores de KS (e€i). Pela expressdo acima percebe-se que o DFT obtém E(p) ndo
somente através da soma dos auto-valores ei, fazendo-se necessario conhecer a priori 0s

valores da energia e do potencial de troca e correlagéo, respectivamente Exc(p) € Vxc(p).

Entretanto estes termos ndo possuem uma forma exata conhecida, fazendo-se necessario a
utilizacdo de aproximagGes para a estimativa destes termost*3l; no estudo que fora realizado
através da ferramenta computacional VASP, utilizamos para sua determinacado, a aproximacao

do gradiente generalizado em inglés General Gradient Approximation (GGA).

2.5 Aproximac0es para o termo de troca e correlacao:

A aproximacdo utilizada para a determinacdo dos termos de troca e correlagdo
é muito importante, uma vez que este ira determinar a precisdo do célculo a ser realizado.
No presente trabalho é utilizado a aproximacdo do gradiente generalizado (GGA), entretanto
para sua melhor compreensao sera discutido inicialmente a aproximacdo da densidade local
(LDA)B do qual o GGA é derivado.

2.5.1 Aproximacéo da Densidade Local - LDA:

Nesta aproximagdo assume-se que a energia de troca e correlagdo por elétron ex(p) em

um dado ponto r, seja igual a energia de troca e correlagdo por elétron de um gas homogéneo
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de elétrons que possua a mesma densidade eletronica p(r) neste pontol*?l. A ideia basica do
LDA é que pode-se tratar um sistema ndo homogéneo como sendo dividido em N volumes
homogéneos, em cada um destes volumes calcula-se a energia considerando sua densidade
eletronica como sendo igual a densidade eletrdnica do gas homogéneo. Desta forma
transforma-se um sistema que ndo é homogéneo em um sistema localmente homogéneo e
podem-se tratar s6lidos como um sistema que em seu limite tendem a um gas homogéneo de

elétrons.

Com base neste raciocinio, a energia de troca e correlacdo do sistema podera ser obtida

caso seja somado a energia por elétron correspondente a cada volume, assim tem-se:
Exc(p) = 2i exc°™%p).pi(r), onde pi(r) = % No limite em que o nimero de volumes
tenda ao infinito (Ni — o) e consequentemente o volume tenda a zero (Vi— 0), tem-se que a
expressdo acima se torna uma integragio: Exc(p) = [ &c"°™9(p) p(r)d r. Onde o

potencial de troca e correlagdo  Vie[p(r)] € obtido da seguinte forma:

VxC(P) = %EXC(P) = %f &chom()g(p)p(l‘)d SI’

A energia de troca e correlagdo por elétron exc(p) pode ainda ser tratada separadamente,
ou seja, dividida em um termo correspondente a troca e outro termo correspondente a

correlacdo exc(p) = ex(p) + ec(p). Onde o termo correspondente a troca ex(p) € bem

conhecido, entretanto o termo da correlagdo ec(p) é muito complexo, ndo possuindo uma

forma exata para um gas de elétrons homogéneo.  Todavia ele pode ser estimado por
algumas aproximacdes, sendo as mais utilizadas a teoria da perturbacédo € a parametrizacdo de
Perdew e Zunger, sendo esta construida com resultados oriundos de calculos de Monte

Carlo quantico propostos por Ceperley e Alder>:641 para um gas de elétrons homogéneo.

Esta aproximacdo possui bons resultados para sistemas cujas densidades eletrénicas
variam lentamente (aproximadamente uniforme), visto que ignora correcdes devido a falta de

homogeneidade da densidade eletrdnica nos pontos vizinhos ao ponto r. Como ponto

negativo, a LDA subestima a energia de correlacdo ec(p), enquanto supervaloriza a energia de
troca ex(p), ndo fornecendo bons resultados para sistemas onde a densidade eletrénica

p(r) seja fortemente ndo uniforme. Uma solucdo para este problema é expressar a energia
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de troca e correlagio por elétron ex."°™9(p) em termos do gradiente da densidade Vp(r),

originando desta forma a aproximacéo do gradiente generalizado - GGA.

2.5.2 Aproximacdo do Gradiente Generalizado — GGA:

A fim de melhorar a aproximagdo do LDA, no raciocinio exposto anteriormente utiliza-se

uma funcdo que ndo dependa apenas da densidade local p(r), mas que também dependa do

gradiente desta densidade Vp(r). Assim a expressdo para a energia de troca e correlagdo
Exc(p) assume a seguinte forma: Exc(p) = ff(p, Vp)d3r, Ou seja, a energia de troca e
correlagdo por elétron ex"™9(p) do sistema homogéneo é substituida por uma funcéo local
da densidade eletronica e do gradiente da densidade. Esta funcéo f (p, Vp) é escolhida através

da anélise do comportamento da energia por elétron exc(p) em determinadas situacdes, sendo

uma das propostas mais utilizadas a parametrizagdo de Perdew, Burke e Ernzerhof (PBE)71.

2.6 Funcodes de Base — Expanséo dos Orbitais de Kohn-Sham ¢;(r):

Anteriormente, obtivemos as equagdes de Kohn-Sham: HESgi(r)=€igi(r) e p(r)=XY |4i(r)|*.
Durante a resolugdo destas equacBes pelo DFT, as funcGes de onda de KS ¢i(r) séo
expandidas em uma determinada base. Atualmente existem inumeras formas de realizar esta
expansdo, cada uma variando com relacdo ao tipo de base escolhida. Para funcbes de base
que sejam fixas, as expansdes usuais sdo a expansao em ondas planas e a combinacéo linear
de orbitais atbmicos (LCAO)M“8l. A escolha da base utilizada para a expansdo dos ¢i(r) é de
crucial importancia para a precisao do calculo.

Para um sistema periddico, como o do presente trabalho a expansdo em ondas planas dos

orbitais ¢i(r), se fundamenta na teoria de Bloch.

Esta teoria se baseia no fato de que um cristal € composto por um arranjo simétrico e
infinito de pontos que estdo distribuidos sobre todo o espaco, cada um destes pontos define
um ceélula unitaria, sendo que sua translacdo através do vetor T = nia; + nzaz + nsas, para
todos os valores possiveis dos n° inteiros ny, n2 e n3 ira compor todo o cristal. Com base na

periodicidade da rede cristalina, tem-se que os elétrons irdo interagir com um potencial
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periodico que se repete por todo o cristal, e por consequéncia as auto-funcgdes que descrevem
estes elétrons também possuiram a mesma periodicidade do potencial.

Basicamente o teorema de Bloch afirmal¥, que o efeito desta periodicidade é mudar a
auto-funcio de onda progressiva da particula livre wi(r) = A.e’r | de tal forma que em vez
deste possuir uma amplitude constante A, ele possuira uma amplitude variavel uk(r) que muda
com a periodicidade T da rede, isto é: wi(r) = uk(r).e’®", onde uk(r) representa a
periodicidade da rede cristalina, dependendo do vetor de onda Kk, onde:

uk(r) = uk(r+T) = ukx(r + nT), sendo n um namero inteiro.

O efeito desta periodicidade é entdo modular de forma periodica a amplitude da solucéo
de particula livre, sendo wk(r) = uk(r).e’*" conhecido como funcio de onda de Bloch.
A funcéo uk(r) se assemelha a auto-funcdo de um ion isolado, onde sua forma exata depende
do potencial particular considerado e do valor de k; uma consequéncia destas equacdes é que:

y/k(r+T) — uk(r+T).e‘k-(r+T) - uk(r).eik.r.eik.T - l//k(r).eik'T

Conclui-se que a menos da diferenca de fase e'kT, as funcdes de onda w«(r) sdo idénticas
dentro de um periodo T, e que o teorema de Bloch propde, que a solucdo da equacdo de

Schrodinger para um potencial periddico V(r) = V(r + T) também deva ser periddica.

Assim percebe-se que neste teorema, as auto-fungdes wk(r) séo escritas como um produto
de ondas planas vezes uma funcdo uk(r) que respeita a periodicidade do cristal, entretanto
uk(r) também pode ser expandida utilizando-se um conjunto de ondas planas. Com base
nestas informacGes e na metodologia empregada neste trabalho (DFT), as auto-funcbes
descritas pelos orbitais ¢ix(r) de KS, serdo expandidas da seguinte forma: gik(r) = fi(r).el*",
onde fi(r) é o termo que carrega a periodicidade da rede (similar a uk), sendo expandido em

um conjunto de ondas planast®3, da seguinte forma: fi(r) = ¥, Cice'", logo:
gix(r) = ¥ Cice'Crelkr = ¥ - Cj pc) k@)1 G é um vetor de translacio da rede reciproca.

Nesta expansdo, alguns coeficientes Ci c) Serdo mais importantes que os demais, sendo
aqueles que fornecem as ondas planas cuja energia sdo menores do que uma determinada

energia de corte; e somente estes coeficientes irdo formar a base. Assim a expanséo na base de
3 . R |
ondas planas podera ser truncada, de acordo com a seguinte condicao: > [k+GJ? < Ecorte, ONde

Ecorte € definida como a energia de corte na base de ondas planas.
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Este método possui algumas vantagens, por constituir uma base relativamente simples,
flexivel e de facil utilizacdo computacional, e em virtude de que o Unico parametro que a

controla € a energia de corte.

2.7 Meétodo do Pseudo-potencial:

Os célculos do DFT demandam um alto custo computacional para sua realizagdo, além
disto existem algumas dificuldades apresentadas pelas equacdes de Kohn-Sham em descrever
a regido proxima ao ndcleo atbmico, uma vez que as funcdes de onda nesta regido sofrem
rapidas oscilaces espaciais devido a presenca de uma grande energia cinética (ou potencial
de atracdo nuclear). Por outro lado, nas regides intersticiais entre os &tomos, onde ocorrem as
ligacbes quimicas, a energia cinética dos elétrons é pequena, resultando em pequenas

variacdes espaciais na funcdo de onda.

O método do pseudo-potenciall*! trata-se de uma aproximagdo empregada para obtencéo
do potencial externo Vexi(p) (potencial efetivo), presente na expressdo da energia como um
funcional da densidade E(p). Sendo desta forma uma aproximagéo do potencial real sentido
pelos elétrons num solido ou molécula. Neste método, como discutido acima, a carga do
atomo é analisada como sendo dividida em duas partes, uma correspondendo a carga dos
elétrons presentes nas camadas internas em conjunto com a carga do nucleo, constituindo o
que se chama de caroco. Enquanto a outra corresponde a carga dos elétrons de valéncia, ou
seja, dos elétrons mais afastados do ndcleo, encontrando-se nas camadas externas do atomo e
sendo os principais responsaveis pelas ligacbes quimicas em virtude de estarem fracamente
ligados ao nucleo, sendo bem conhecido que a maioria das propriedades fisicas dos solidos é
dependente dos elétrons de valéncia.

A introducdo deste método simplifica o custo computacional para a realizagcdo do DFT,
ao substituir o potencial idnico do nucleo e dos elétrons de caroco pelo pseudo-potencial
atdbmico, ou em outras palavras, a funcdo de onda na regido de caroco que apresenta uma
grande oscilagdo e substituida por uma pseudo-funcdo de onda que seja suave (dentro de um
raio rc chamando de raio de corte). Este método descreve explicitamente 0 comportamento
eletrénico apenas dos elétrons de valéncia por meio de ondas planas, ignorando a fraca
contribuicdo do potencial devido ao carogo; como resultado a obtencdo dos auto-estados de

Kohn-Sham e¢j torna-se mais facil.
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Atualmente para o calculo do pseudo-potencial existem basicamente 0os métodos dos
pseudo-potenciais empiricos 0s quais envolvem um conjunto de parédmetros de origem
experimental, e os pseudo-potenciais ab-initio (primeiros principios) que sdao construidos de

forma a obter a solucdo da equacao de Schrodinger e das equacgdes de Dirac para o &tomo.

Neste metodologia, 0 pseudo-potencial é construido de forma que o potencial obtido seja
igual ao potencial real, acima do raio de corte rc (raio de uma esfera centrada no 4tomo). Para
a utilizacdo deste método as seguintes condi¢des devem ser obedecidas:

1) Os auto-valores €; (KS) obtidos para os estados de valéncia atbmicos devem ser por
construcéo idénticos aos autovalores €rs?; obtidos com o pseudo-potencial (€ P; = €;)).

2) As auto-funcdes relativas a solucdo exata (caro¢o + elétrons valéncia) e as auto-funcdes

obtidas com o pseudo-potencial devem ser iguais a partir do raio de corte r¢;

YPPi(r) = i(r) parar>re

3) As integrais de 0 a r com r > r¢, das densidades de carga da solucdo exata devem ser iguais
as das solugdes obtidas com o uso do pseudo-potencial, esta condicdo € chamada de
conservacao da norma; for [i(r)|Adr = for PPN Pdr  ou  ( wilwi Yre = PPSP PSP e
4) A derivada logaritmica da pseudo-funcao (funcéo de onda obtida com o pseudo-potencial)

deve convergir para a derivada logaritmica da fungdo de onda exata;

21 [(I’.l//'[’s"“)Zii In PP ] = 47[f0r lw(r)|’dr  parar>r.

de dr

5) As pseudo-fungdes y™Pi(r) ndo devem possuir nds nem singularidades e que sejam
continuas assim como devem ser suas derivadas primeira e segunda; esta pseudo-funcdo deve

descrever corretamente os estados eletronicos dos elétrons de valéncia.

Para valores de r < r¢, as pseudo-funcdes yPPi(r) devem ser modificadas de forma que
todas as condi¢des acima sejam satisfeitas, havendo certa flexibilidade para sua obtencao, de
modo que seja possivel otimizar a convergéncia do pseudo-potencial para bases de interesse,
onde o melhor pseudo-potencial escolhido sera aquele que minimizara o namero de funcdes

base necessérias para se encontrar a meta desejada.

A geracdo do pseudo-potencial para um determinado atomo é feita através de um célculo
ab-initio, onde através do DFT serdo resolvidas as equacbes de Kohn-Sham. Inicialmente

resolve-se de forma auto-consistente a equagdo de Dirac com o potencial Vic(p) € a

Exc(p) dados pela teoria do LDA ou GGA, obtendo-se assim o potencial, as auto-funcées e o0s
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seus respectivos auto-valores. Entretanto, o meétodo do pseudo-potencial apresenta a
desvantagem da perda de informacé&o a respeito da densidade de carga e a funcdo de onda nas

regides proximas ao nucleo.
2.8 Método PAW:

Em 1994, Peter E. Blochl desenvolveu uma nova metodologia para a resolucdo das
equacbes de Kohn-Sham, o qual denominou de PAW (Projector Augmented-Wave
method)®%. Diferentemente ao método dos pseudo-potenciais, durante o calculo sdo levados
em consideracgdo todos os elétrons do sistema (incluindo os da regido de carogo), desta forma
o PAW corresponde a um método ab-initio apelidado de all-electron (AE). O PAW ¢
essencialmente uma unificacéo das ideias dos métodos do pseudo-potencial® e o de Ondas
Aumentadas (Augmented Wave - AW)52, combinando partes de ambas as aproximacdes em

um Unico método para o tratamento da estrutura eletronica.

O método de Ondas Aumentadas (AW) mencionado acima, analisa a regido de caroco,
por meio de uma expansao em orbitais atdmicos d as funcdes de onda, enquanto que na regido
intersticial (elétrons de valéncia) € utilizado uma base de ondas planas. Cada uma das
regides ira obter uma solucdo parcial, entretanto este método estabelece uma interface entre as
duas, de modo a garantir a continuidade e linearidade das fungGes de onda.

Desta forma o PAW analisa a funcdo de onda em duas distintas regides: A primeira situa-
se no interior de uma esfera de raio rc (raio de corte), escolhido de modo que ndo existam
mais nodos na funcdo de onda radial a partir deste valor de raio; nesta regido as fungdes de
onda sdo expandidas em orbitais atbmicos. A segunda corresponde a regido de valéncia, ou
seja, fora da esfera de raio rc, e a funcdo de onda é substituida por uma pseudo-funcédo suave
expandida sobre uma base de ondas planas. Analogamente ao método AW, na interface entre

ambas as regido, as funcbes de onda devem ser iguais, devido a sua continuidade.

O método PAW, apresenta uma base completa composta pelas expansdes em orbitais
atdbmicos e ondas planas, o que reduz os erros que costumam ser gerados pela escolha do
conjunto de base. Desta forma, este constitui numa poderosa ferramenta para a investigacdo

de estruturas complexas, como moléculas, superficies e solidos.

Autor: Augusto de Lelis Aradjo — Universidade Federal de Uberlandia/MG



Dissertacdo: Investigagdo dos Estados Topologicamente Protegidos em Siliceno e Germaneno. 48

Capitulo 3:

Analise da Estrutura Cristalina do Siliceno e Germaneno

3.1 Descricdo da Estrutura Cristalina:

Tanto o Germaneno quanto o Siliceno, correspondem respectivamente, a folhas
(monocamadas) de atomos de Germanio e Silicio, cuja estrutura cristalina comp6e uma rede
hexagonal bidimensional (2D) denominada de “honeycomb” ou “Favos de Mel”, de forma
anadloga a folha de Grafeno, apresentando entretanto, um configuracdo de fivela
perpendicularmente ao plano x-y da folha, conforme ilustrado nas figuras 3.1A e 3.1C. Esta
rede hexagonal pode ser vista como sendo composta por duas sub-redes triangulares, que
estdo deslocadas uma em relacdo a outra, como esquematizado na figura 3.1B, onde cada cor

de atomo (preta ou azul) representa uma das sub-redes.

Figura 3.1A (Esquerda): Representacdo dos atomos, compondo o arranjo hexagonal das folhas.

Figura 3.1B (Direita Superior): Representacdo das duas sub-redes tridngulares que compdem as folhas.

Figura 3.1C (Direita Inferior): Representacdo da configuracdo de fivela (flambagem), em relacdo as sub-redes, A
representa a distancia no eixo z das duas sub-redes e d a separacdo entre 0s atomos na estrutura. Nestes sistemas

o parametro de rede é dado por a = dv/3.

Durante a analise de uma rede cristalina conta-se com diversas possibilidades de escolha
para 0s seus sitios ou pontos da rede (pontos verdes na figura 3.2) e por conseguinte diversas
opcOes para a base, a célula unitaria e os vetores primitivos (a1, az e as) a serem utilizados.
O ponto inicial deste estudo fora justamente a determinacdo dos pardmetros acima
mencionados, para descrever a rede cristalina das folhas de Germanio e Silicio, onde as
diversas opcdes possiveis de escolha, foram ilustradas na figura 3.2, sendo a demarcada pela

caixa amarela a adotada neste estudo.
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e 9 e 9 L L -
Figura 3.2: Opgoes para os sitios da rede cristalina (pontos verdes), para a base e a célula primitiva.

Percebe-se que independentemente da escolha da base, qualquer célula unitaria possuira
sempre dois &tomos ndo equivalentes (pertencentes a cada uma das duas sub-redes).

Na figura 3.3, apresentamos a célula primitiva escolhida, destacando os dois atomos néo
equivalentes que a compdem, os vetores primitivos da rede cristalina, além de algumas
escalas de medidas que serdo utilizadas posteriormente, como o parametro d que corresponde
a distancia entre dois atomos adjacentes na estrutura.

® ®

® o4\3 > e o
j(d\/’j)/z R X
® o ! @ 3d/2

Figura 3.3: Célula unitaria, escalas de medida e vetores da folha de Germaneno ou Siliceno.
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Utilizando-se coordenadas cartesianas, 0s vetores primitivos da rede cristalina, séo

expressos como (espaco real):
ar=2di + 3V3j, a=-3di+3V3j e as=5dk
2 2 2 2

Enquanto a posi¢do dos dtomos no inteior da célula unitaria, podem ser expressos em
funcdo destes vetores primitivos a1, a2 as (vide figura 3.4), da seguinte forma:

Atomo (1) = %a1+%az+0a3 e Atomo (2) = §a1+%az+Aa3

Deve ser ressaltado, que nas figuras apresentadas até o momento com relacdo a rede
cristalina das folhas, estamos a tomar os atomos da sub-rede “preta” como sendo os atomos
inferiores, adotando que estes se localizam em Z=0, ja os atomos da sub-rede “azul”,
correspondem aos atomos superiores, e sua altura no eixo Z com relagdo a sub-rede “preta”,
sera inicialmente denominada por A e posteriormente determinada para cada um dos sistemas

(Germaneno e Siliceno).

Figura 3.4: Posicao dos atdmos da célula unitaria, em fungdo dos vetores primitvos.

Se definirmos a posicdo dos sitios da rede real como fungdo dos vetores primitivos,
vemos que estes sitios sdo determinados por todos os valores possiveis do vetor translacdo da
rede T =nia1+ a2 +nzas para ni =0, 1, £2, ... (Como estamos analisando o caso de

uma monocamada, todos os sitios possuiram a mesma coordenada no eixo Z, logo por

conveniéncia adotaremos n3=0). e e g © e o o o
T1
_ s 4 e o o e 9 o o o
Ti=d\V3j=ai+a Tz:;d|+;\/3jza1
e o )
3 . d . _ P
T3—Edl—5\/3j——a2; Ta=—dV3j=— (ar+ar) e o
Ts=—2di - S3j=-ay Te=-ldi+S\3j=a ° o o
e o o e & o o
T4 I
o e o e ®

Figura 3.5: Posicdo dos sitios na rede real
(pontos verdes), em funcdo do vetor translacdo
T.
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Para a construcdo da rede reciproca das folhas, devemos antes definir seus vetores

primitivos (b1, b2 e bs) por meio das seguintes relacoes:

Construcdo dos vetores primitvos da Rede Reciproca:

bi1=2n.__ _arxas__: b2=2n. asxair b3=2n. aixaz
ai[azx as] a1.[azx as] ar[az x as]
azxasz= i j k i j
“2d 23 o] -3d &3 o= 230+ 23]
2 2 2 2 2 2
0 0 5d 0 0

afazxas] = (3di + $v3j).(-2d2V3i + 23d%j) = 23vad?

azxai= i ] k i j
0 o sdf o 0 = —2d™3i+ 23]
34 S0 |-3d <3
2 2 2 2
ai1xaz= i j k i j
350 3 o] 24 g3 = Epgek
2 2 2 2 2
~3d4 %v3 ol 24 %3
2 2 2 2

. 2T . 2T - 2T . 2T - 2T
" = — + — = —_ — + — = —
Assim obtemos: b1 i VRl b2 ) T asd € bs 5dk

Na figura 3.6 apresentamos a rede reciproca do Germaneno ou Siliceno, os circulos
pretos nesta figura ndo representam os &tomos como na rede cristalina, mas os “sitios” da rede
reciproca. Sendo suas posicdes definidas por meio do vetor G de translacdo da rede, onde:
G =vi1.b1 + vo.b2 + v3.bs, para vi = 0, £1, £2, ...; novamente tomamos bz = 0. Nesta figura sdo

expostas ainda algumas escalas de medidas.

—9 o o e o °
27/(dV3) b by bi+b,

R ] [ ] [ o [ ] [
47/3d
o o o [

E— L L L

4m/idV3) e @ @

— o o [
_bl_b2 kx

[ ] [ ] @ @ [ ] ® [ ) o ®
Figura 3.6: Rede Reciproca, vetores primitivos (bz, b2 e b3) e escalas de medida.
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Se fizermos uma comparacdo, observamos que a direcdo dos vetores b1 e b2 da rede
reciproca estdo rotacionadas em 30° em relagdo aos vetores a1 € a2 no espaco real, como
ilustrado na figura 3.7 que compara lado a lado as rede direta e reciproca da folhas de

Germanio e Silicio:

Rede Real Rede Reciproca
o o ® ® ® [ [
o b2 bl °
o o ° °
L L ®
] L ky
o o
° ) ® ° ° ° ™ ® L [ ] ® [ ] .

Figura 3.7: Os pontos pretos e verdes, representam respectivamente os atomos e 0s sitios da rede real, enquanto
0S pontos azuis representam os sitios da rede reciproca.

Agora iremos obter a 1° Zona de Brillouin (1°ZB), . .
utilizando-se a definicdo da célula de Wigner-Seitz. Na | o o o o
figura 3.8, o circulo preto central representa a origem
. . e o Gl ' o °
adotada para o sistema de coordenadas, as retas laranjas
gue unem a origem aos demais sitios da rede reciproca * Gse °:2 o
séo os vetores G definidos por G = vi.b1 + v2.b2 + v3.bs.
° ° G4® .. ] o
A 1°ZB, representada como a area roxa é definida como
‘n _ ® ® ] ° ° by
sendo a menor regido do espaco delimitada pelos vetores
kx

bissetores € perpendiculares aos vetores G. ° °

Figura 3.8: Construcdo da 1° Zona de
Brillouin das folhas de Ge ou Si.

Para a analise da estrutura eletrénica no espaco reciproco, sobre a 1° zona de Brillouin,
define-se alguns pontos denominados de pontos de alta simetria ou pontos de Dirac, que para
a Zona de Brillouin exposta acima, corresponde aos pontos I', K e M; sendo respectivamente
0 centro, o Vértice e a aresta do hexagono (vide figura 3.9). Nesta zona ha dois pontos ndo
equivalentes em sua borda, denominados K e K’, estando localizados nos vértices do
hexagono e sdo de grande importéncia para a maioria dos fendmenos fisicos observados
experimentalmente. Como um vetor de onda K no espaco reciproco é para todos os efeitos
aqui estudados, simétrico a um vetor —K, desta forma ficamos reduzidos a estudar apenas 0s
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efeitos no triangulo K'MK e em seu interior, ja que os outros quatro vértices podem ser

obtidos atraves de uma transla¢do por um vetor da rede reciproca.

® ® o ®
K
M
Kl
® @ 4m/(d 3\3)
4n/(d 3V3)
o ® i L o
ky
27/3d
EEEEE— kx
o o o

Figura 3.9: Pontos de alta simetria da 1° Zona de Brillouion e algumas escalas de medida.

Agora expressemos as coordenadas cartesianas destes pontos de alta simetria:

2T

TC TC -
3dv3 J

_ . . _ . -, _ . 4T . ,_2_1-[.
F—OI+0],M—§I+d—\/3j, K—0|+T\/3]eK—3d|+

E as suas posi¢oes em fungéo dos vetores primitivos bz e bz (vide a figura 3.10):

I =0b1 +0b2 M=2Xb1+0bx K=2b1+2beK =2b — Lhy
2 3 3 3 3

/

ky

kx

Figura 3.10: Pontos de alta simetria da 1° Zona de Brillouion, em funcéo dos vetores b e ba.
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Capitulo 4:

Estrutura de Bandas do Siliceno e Germaneno

4.1 Parametros utilizados pelo cédigo computacional VASP

Todos os calculos apresentados nesta dissertacao utilizaram o codigo VASP (Vienna Ab-
initio Simulation Package)®. Este programa realiza calculos de estrutura eletronica e
dindmica molecular, baseados na teoria do funcional da densidade (DFT), onde a resolugéo
das equacdes de Kohn-Sham é feita no espaco reciproco, tomando uma base de ondas planas
(utilizou-se o método PAW — Projector Augmented-Wave) para expandir as funcGes de onda;
pseudo-potenciais para tratar os elétrons de caroco e condicGes periddicas de contorno. Os
ndcleos séo tratados classicamente, atraves da aproximagéo de Born-Oppenheimer.

Os testes de convergéncia, realizados para a escolha dos parametros computacionais dos
calculos, serdo descritos na proxima secdo. Neste trabalho o funcional escolhido como padréo,
em todos os sistemas investigados fora o GGA (funcional densidade do gradiente
generalizado) no formalismo de Perdew-Burke-Ernzerhof (PBE); este funcional tem como

funcdo estimar a energia de troca e correlagéo.

O programa VASP foi escolhido por ser altamente confiavel e pela utilizacdo de ondas
planas como base, o que elimina certos problemas, como erros de superposic¢ao de base ao se
calcular energias de formacédo, embora por outro lado, eleve o custo computacional para

descrever regides de vacuo.

Abaixo estdo listados os quatro principais arquivos de entrada que o VASP necessita para
iniciar os calculos, bem como uma descricdo das variaveis que foram utilizadas neste estudo e

seus respectivos significados fisicos.
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INCAR: Define 0 que o VASP ira executar; abaixo seguem alguns pardmetros utilizados:

e NELMIN=4, define 0o numero minimo de passos eletronicos utilizados no célculo
auto-consistente.

e EDIFF=1E-5, define o critério de convergéncia para o calculo da energia no processo
auto-consistente.

e EDIFFG=1E-4, corresponde a diferenca de energia entre dois passos idnicos, para
que o calculo auto-consistente seja interrompido (condigéo de ruptura).

e ISMEAR= -1, determina como seréo realizadas as ocupagdes das funcbes de onda de
Fermi-Dirac fnk para cada fungdo de onda; o valor -1 define a utilizado da distribuicao
de Fermi.

e NSW, define 0 nidmero maximo de passos ibnicos utilizados no célculo auto-
consistente.

e NBANDS, determina o numero de bandas de energia que serdo calculadas.

e ISIF=2, determina quais graus de liberdade podem ser alterados durante o célculo
(ions, volume e forma da célula); o valor 2 determina que o VASP ira calcular as
forcas, o tensor de stress e ira relaxar os atomos, entretanto ndo alterando o volume e
nem a forma da célula unitéaria.

e IBRION=2, define como os 4&tomos sdo movidos para suas novas posicdes; o valor 2
corresponde a utilizacao do algoritmo do gradiente conjugado (CG).

e LREAL=.FALSE., determina se os operadores de projecdo séo avaliados no espaco
real ou reciproco, neste caso a projecdo se dara no espago reciproco.

e ENCUT, determina o valor da energia de corte para a base de ondas planas.

e ENAUG, define a energia de corte, que por sua vez define a malha para o célculo das
transformadas de Fourier quando o pseudo-potencial € utilizado, em resumo define o
namero de onda planas utilizadas no célculo.

As opcdes de calculo, critérios de convergéncias e outras variaveis que ndo estiverem

presentes explicitamente no arquivo INCAR, o programa usara o padrdo de sua programacao
(default).

POSCAR: Contém os vetores primitivos que definem o tamanho e forma da célula unitaria, o
nimero e a posi¢do dos atomos no interior desta célula (coordenadas); suas posi¢cdes podem
ser expressas em coordenadas cartesianas ou diretas. No arquivo POSCAR utilizamos a
célula unitaria em forma de losango escolhida e ilustrada na figura 3.2. Este arquivo estrutura-
se da seguinte forma, na primeira linha é definido o tipo de atomo utilizado, no exemplo
abaixo (figura 4.1) o tomo de Germanio; a segunda linha o pardmetro de rede do sistema
(a = dv3); as linhas 3 a 5 contém as coordenadas dos vetores primitivos da rede real (a1, a2 e
as) e que definem o formato da célula unitaria; a sexta linha define o nimero de atomos que

estdo contidos no interior desta célula, enquanto a 7° linha determina como as suas
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coordenadas serdo escritas (forma cartesiana ou direta); e por final as Gltimas linhas expressao

as coordenadas dos 4tomos.

Ge

4.

06363

1.7320508075688772
-1.7320508075688772
0.0000000000000000

1.0000000000000000
1.0000000000000000
0.0000000000000000

0.0000000000000000
0.0000000000000000
5.0000000000000000

8
Cartesian
0.5773502691896257 0.5000000000000000 0.0000000000000000
-0.5773502691896257 0.5000000000000000 0.2041241452319315
-1.4433756729740644 1.0000000000000000 0.2041241452319315
-0.2886751345948128 1.0000000000000000 0.0000000000000000
0.2886751345948128 1.0000000000000000 0.2041241452319315
1.4433756729740644 1.0000000000000000 0.0000000000000000
-0.5773502691896257 1.5000000000000000 0.2041241452319315

0.5773502691896257 1.5000000000000000 0.0000000000000000
Figura 4.1: Estrutura do arquivo POSCAR utilizado no VASP.

POTCAR: Define os pseudo-potenciais usados, como exposto na introducdo teorica, neste

trabalho utilizou-se o método PAW:

PAW _PBE Ge 05Jan2001
4.00000000000000000

parameters from PSCTR are:
VRHFIN =Ge: s52p2
LEXCH = PE
EATOM = 104.99%960 ev, 7.7170 Ry
TITEL = PAW PBE Ge 05Jan2001
LULTRA = F use ultrasoft PP ?
IUNSCR = 1 unscreen: 0-lin l-nonlin 2-no
RPACOR = 2.170 partial core radius
PCMASS = 72.610; ZVAL = 4.000 mass and valenz
RCORE = 2.300 outmost cutoff radius
RWIGS = 2.300; RWIGS = 1.217 wigner-seitz radius (au A)
ENMRY = 173.807; ENMIN = 130.355 eV
ICORE = 3 local potential
LCOR = T correct aug charges
LPAW = T paw PP
EAUG = 385.843
DEXC = -.138
RMAX = 3.497 core radius for proj-oper
RAUG = 1.300 factor for augmentation sphere
RDEP = 2.318 radius for radial grids
QCUT = -3.574; QGAM = 7.148 cptimization parameters

Figura 4.2: Parte inicial do arquivo POTCAR.

KPOINTS: Define os pontos da rede reciproca que serdo analisados. Em nosso estudo, mais
precisamente durante a determinacdo da densidade de carga de nossos sistemas, sera utilizado
0 método de Monkhorst-Pack!®8] para gerar a malha de pontos k da rede reciproca, o qual gera
um conjunto de pontos k contidos na primeira zona de Brillouin, que s&o os melhores pontos

para o calculo das integrais de funcgdes periddicas no espaco reciproco.

PONTOS 25X25X1

0

Monkhorst Pack
25 25 1

0.0 0.0 0.0

Figura 4.3: Estrutura do arquivo KPOINTS.
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4.2 Testes de Convergéncia:

Dois importantes pardmetros que devem ser inicialmente estimados para o calculo
computacional, sdo o pardmetro de rede a (dv3) do sistema que fornece a configuracéo
estrutural mais estavel, ou seja, que minimiza a energia do sistema; e a energia de corte Ecur,
que como visto anteriormente, define o nimero de ondas planas necessarias para a realizacdo

dos calculos (vide tdpico 2.6).

Estes dois parametros sdo de crucial importancia, uma vez que todo sistema fisico tende a
caminhar para a configuracdo mais estavel (menor energia); e com relagéo a energia de corte
Ecut, um valor muito baixo deste parametro ira fornecer célculos pouco precisos, enquanto
que altos valores, mesmo que fornecam resultados com excelente precisdo, demandariam um
alto e demorado custo computacional. Desta forma faz-se necessario estimar um valor

adequado para Ecur, de forma que se possa obter um célculo preciso e com menor custo.

Para calcular o parametro de rede a que minimiza a energia das folhas de Germéanio e
Silicio, necessitamos estabelecer inicialmente os valores de alguns parametros de entrada no
pacote VASP, tais como, a energia de corte das ondas planas Ecur, 0 tamanho e forma da

célula unitéria utilizada, a distancia de separacdo (flambagem) entre as duas sub-redes que

compdem a folha, e a quantidade de pontos k tomados para a integracdo na primeira zona de
Brillouin (1°ZB). Para um ponto de partida estrutural, utilizamos valores extraidos da

referéncia [1] para os parametros acima mencionados, tais como Ecut = 500eV para ambos 0s

sistemas (valor elevado, mas que ira nos fornecer uma boa precisdo); malha de pontos k de
25x25x1 (Monkhorst Pack), e para a flambagem das folhas (separacdo no eixo Z das duas
sub-redes) tomamos os valores de 0.44A para a folha de Germéanio e 0.64A para a folha de

Siliciof!,

Durante o célculo computacional, para a construcdo das folhas infinitas de Germaneno e
Siliceno, a célula unitaria escolhida é repetida infinitamente em todas as dire¢des, desta forma
adotamos uma distancia no eixo Z de aproximadamente 20A entre as “imagens”, para evitar a
interacdo entre elas. Em ambos os testes realizados, efetuamos a relaxacdo dos ions da
estrutura, a fim de obter a configuracdo mais estavel para o sistema, neste caso o critério de

convergéncia adotado fora EDIFFG=1E-4.
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Para a determinacdo do pardmetro de rede a, que ird minimizar a energia total da rede
cristalina, plotamos um gréfico da energia total E versus o parametro de rede. Neste estudo
tomamos as energias para 20 valores distintos do parametro, onde a maioria destes encontra-
se perto da regido de interesse (energia minima). Os resultados encontram-se ilustrados nas
figuras 4.4 e 4.5. Para aferir com melhor precisdo qual parametro corresponde ao minimo de
energia, procedemos a uma regressédo polinomial de terceira ordem sobre os dados obtidos
pelo VASP.

Obtivemos como resultado para a o valor aproximado de 4.0636A para 0 Germaneno e
3.8675A para o Siliceno. Com relagio & flambagem A das folhas, obteve-se o resultado de
0.688A para o Germaneno e 0.450A para o Siliceno, que apresentam uma boa concordancia

com a referéncia utilizada [1].

Germaneno Siliceno
—_ a=4.0636A o~ 38221 a=3.8675A
> 12 Eo=-32.1106eV . % Fo=-38.2795¢V .
2 d(Ge-Ge) = 2.3461A / N 38234 d(Si-Si) =2.2329A '
R 14 . AGe =0.6881A ) = im0 '\ Agi= 0.4501A
\ ’ ” ’
-3164 @q, -38,25 4 \ /
\ / \ //
-31.84 /' -38,26 \
3204 \\- -38,27 X x
e -38,28 \l\'\'*"'/l/
-32,2 T T T T T 1 T T T T T T
38 3.9 4.0 41 4.2 43 4.4 3,82 384 3,86 3,88 3,90 3,92
a(A) a(A)

Figuras 4.4 (esquerda) e 4.5 (direita): Curva da energia E(eV) versus o pardmetro de rede a(A) para o
Germaneno e Siliceno, utilizando-se o funcional PBE.

Para a determinagdo da energia de corte Ecut, ou em outras palavras, a determinagéo do
numero de ondas planas necessarias para expandir as funcbes de onda eletronicas, realizou-se
um teste, que consiste na variacdo da energia total E do sistema em funcéo da energia de corte

Ecur, de acordo com os graficos abaixo.

Germaneno Siliceno
—
% s90] . A~ 375+ .
— ' o ey |
Lu -31,95 4 et 37,74 "‘.
\ m ‘I‘u
w0l "t a=4.0636A Nt
k = 25x25x1 s Y a=3.8675A
o] 80l k = 25x25x1
.""-.\ -38,1 "\.
-32,10] .y N Em e E-m--m-mwEE-E 38,2 \"\.
383 .""l'-- - E-E-E-E-E-E-E-E-E
-32,15 T T T T T T T T T T T T
100 200 300 400 500 600 100 200 300 400 500 800
Ecur(eV) Ecur(eV)

Figuras 4.6 (esquerda) e 4.7 (direita): Curva da energia total E(eV) versus a energia de corte Ecur(eV) para o
Germaneno e Siliceno, utilizando-se o funcional PBE.
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Atraves destes gréaficos, observa-se que em ambos os sistemas, para uma Ecur na faixa de
300 a 600 eV, a energia total E sofre pequenas variagoes, logo a ado¢do de uma valor nesta
faixa, ndo compromete a precisdo dos calculos. Entretanto deve ser relembrado que quanto
maior for a Ecur, maior sera o nimero de ondas planas utilizadas e consequentemente um
maior esforgo computacional.  Desta forma, a energia de corte padrdo escolhida, foi de
300eV para Germaneno e 400eV para Siliceno, uma vez que estes sdo valores suficientes para

se obter calculos precisos, mas com um tempo computacional satisfatorio.

4.3 Estrutura de Bandas das Folhas de Ge e Si:

4.3.1 Introducédo — Estrutura de Bandas:

Na mecanica classica a energia dos sistemas € tratada como sendo continua, entretanto na
mecanica quantica isto ndo ocorre. Por exemplo, a fungdo de onda para o caso de elétrons
livres € representada por uma onda progressiva que respeita o teorema de Bloch; sobre estes
elétrons caso sejam impostas condi¢es periddicas de contorno, haverd uma restricao sobre 0s
possiveis valores de k e uma restricdo sobre os valores de energia, que por este motivo

deixam de ser continuas e passam a ser discretas, ou seja, ocorre a quantizacdo da energia.

Este modelo do elétron quase livre nos ajuda a compreender melhor a estrutura de bandas
em cristais. Em um cristal as ondas progressivas sofrem reflexdes de Bragg quando a
condicdo (K - G)? = K? é satisfeita, sendo G um vetor da rede reciproca. Tais reflexdes lavam
a regides de energia proibida, para os quais a equacdo de Schrédinger ndo possui solucéo,
definindo assim os chamados gaps ou lacunas de energia. Na estrutura de bandas, os gaps de
energia apresentam importantes significados fisicos, contendo informacGes que determinam
se um dado material é isolante, semicondutor ou metalico, além da determinacdo de inUmeros

outros parémetros.

Os cristais apresentam um grande nimero de particulas (elétrons) interagindo entre si e
com o nucleo de cada atomo. Tal caracteristica acaba por originar no sélido, regides onde
praticamente existe um continuo na energia, o qual € denominado de Banda, esta regido é
acessivel aos elétrons, e entre as bandas existem as regies ndo acessiveis (gap). Desta forma
as bandas sdo formadas por um conjunto de niveis de energia, cada nivel apresentando
“infinitos” estados acessiveis, onde cada um destes estados esta associado a um determinado

valor de pontos k que podem ser reproduzidos dentro da 1° zona de Brillouin.
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4.3.2 Procedimentos para o Calculo (VASP):

Para calcular a estrutura de bandas com o cddigo computacional VASP, os seguintes

procedimentos devem ser seguidos:

Inicialmente, iremos obter a densidade de carga dos nossos sistemas (Germaneno e
Siliceno), referente a estrutura energeticamente mais estavel. Para esta tarefa devemos utilizar
no arquivo INCAR o parametro de rede obtido que minimiza a energia do sistema, além da
Ecur estipulada para cada caso. No arquivo KPOINTS, definimos uma malha de 25x25x1
pontos k pelo método de Monkhorst-Pack®®l, Ao final do processo auto-consistente, a
densidade de carga total multiplicada pelo volume da célula unitéria é escrita no arquivo
CHGCAR.

Apbs este procedimento, procedemos a obtencdo da estrutura de bandas, ou seja, aos
valores de energia das bandas, principalmente das bandas de conducéo e valéncia da estrutura
sobre andlise. Para isso devemos salvar os arquivos obtidos no célculo anterior (CHGCAR,
CONTCAR, INCAR, KPOINTS, POSCAR e POTCAR) em um diretorio a parte e alguns
parametros contidos nos arquivos INCAR, KPOINTS e POSCAR deveram ser alterados.

INCAR:

e NSW-=0, este valor determina que o célculo da estrutura de bandas seja feito de forma
estatica, uma vez que ja analisamos a convergéncia das posi¢Ges atbmicas.

e ICHARG=11, este pardmetro informa como sera construida a densidade de carga
inicial, no caso o VASP ira ler o arquivo CHGCAR mantendo seu valor fixo durante
todo o calculo.

e LCHARG=.FALSE., o arquivo CHGCAR ndo sera reescrito apés o calculo ser

efetuado.
KPOINTS:

Neste arquivo serdo definidos os pontos da rede reciproca (pontos k) contidos no interior
da 1° zona de Brillouin (regido de interesse), para 0s quais a estrutura de bandas sera
calculada, logo nédo utilizaremos o método de Monkhorst-Pack para a geracdo da malha.
Analisando o arquivo de exemplo (figura 4.8), vé-se que a terceira linha do arquivo determina

a forma como os pontos k serdo gerados, no caso o codigo Line-mode informa que eles serdo
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construidos ao longo de uma reta, cujas extremidades serdo dadas pelo par de pontos
definidos nas linhas 5 e 6 do arquivo. Na linha 4, define-se a forma como estes pontos serdo
escritos, no caso eles foram tomados na forma reciproca, ou seja, escritos como uma funcgéo
dos vetores primitivos da rede reciproca (b1, b2 e bs); e por fim a linha 2 determina a
quantidade de pontos gerados uniformemente ao longo de cada reta.

Bandas

100

Line-mode

Reciprocal

0.300000000 0.300000000
0.333333333 0.333333333 0.0

(@]
(@]
.

(@]

0.333333333 0.333333333 0.0
0.306666666 0.3666066666 0.0

Figura 4.8: Estrutura do arquivo KPOINTS para a geragdo das bandas.

POSCAR:

No arquivo POSCAR serdo inseridas as coordenadas dos atomos no interior da célula
unitaria que correspondem a configuracdo mais estavel, para tal o arquivo POSCAR deve ser
excluido e tomar-se o arquivo CONTCAR como sendo o novo arquivo POSCAR, uma vez
que ele contém as coordenadas atbmicas convergidas em um processo de relaxagdo i6nica de

em um calculo anteriormente realizado.
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4.3.3 Determinacédo das Bandas:

Inicialmente analisaremos a estrutura de bandas sobre os principais pontos de alta
simetria da 1° zona de Brillouin (pontos I', K e M, descritos ao final do capitulo 3). Estes
pontos sdo de grande importancia para a maioria dos fendmenos fisicos observados

experimentalmente, desta forma geramos as bandas para o tridngulo KI'MK, ilustrado na

figura 4.9.

® L ® ® ®
® ® ® o ® ®

K
M

® o ® ®

e ® ® e ® o Ky
kx
[ ] [ ] { ] [ ] [ ]

Figura 4.9: Triangulo composto pelos pontos de alta simetria KI'MK.

Abaixo seguem as coordenadas destes pontos de alta simetria, em funcdo dos vetores da rede

reciproca:T’ = Ob1 + Obz; M :§b1+0bz e K:§b1+§bz

Apos a realizacdo do célculo pelo VASP, onde empregamos o formalismo exposto na
secdo anterior, os valores de energia das bandas por ponto k que constituem a estrutura de

bandas do material sdo escritos no arquivo de saida EINGENVAL.

Para a visualizacdo das bandas de energia faz-se necessario da utilizacdo de um algoritmo
que leia o arquivo EINGENVAL e reescreva os dados de forma a serem visualizados por
programas graficos; no presente estudo utilizamos um algoritmo baseado na linguagem de

programacdo FORTRAN 90 e o programa base para a plotagem fora o Mathematica 8.

Desta forma, obtemos as seguintes estruturas de bandas para o tridngulo KI'MK da

1° zona de Brillouin do Germaneno e Siliceno.
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Germaneno Siliceno

-
5

Energia (eV)

Energia (eV)

............ ivel de Fermi

Nivel de Fermi

Pontos k

Figura 4.10 e 4.11: Estrutura de Bandas das folhas de Germanio e Silicio para o tridngulo KTMK.

Como evidenciado pelos gréaficos das figuras 4.10 e 4.11, em ambos 0s sistemas, as
bandas de conducdo e valéncia se cruzam ao nivel de Fermi no ponto de alta simetria K.
Nesta intersecdo a energia é degenerada apenas sobre este ponto, sendo melhor visualizado

nas figuras 4.12 e 4.13, que mostram o seu comportamento em torno do ponto K.

= 2 Germaneno ..o S, Siliceno
e e S’ -

E1 S

?5' Nivel de Fermi é; - Nivel de Fermi
= - = I

= =

Pontos k
e~
Figura 4.12 e 4.13: Comportamento das bandas de valéncia e conducéo do Germaneno e Siliceno em torno do

ponto K.

Abaixo mostramos a densidade de estados (DOS) de ambas as folhas.

Germaneno Siliceno

Densidade de Estados
Densidade de Estados

B / I
r/
2,
S
pe
Nivel de Fermi

4

)

-]
!

=)

Energia (eV)

Figuras 4.14 e 4.15: Densidade de estados das folhas de Germanio e Silicio.
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Observando-se as figuras 4.12 a 4.15, percebemos que tanto o Germaneno quanto o
Siliceno, apresentam uma dispersdo de energia com comportamento linear em torno do ponto
K de alta simetria para o limite de baixa energia (nivel de fermi), além de uma pequena
densidade de portadores nesta regido. Estas caracteristicas nos permitem classificar tanto o
Germaneno quanto o Siliceno como semicondutores de gap nulo nos vértices de sua zona de
Brillouin (pontos K e K’), além de implicar em uma alta mobilidade eletronica para os seus
portadores de carga nesta regido (onde a inclinacdo da curva de dispersdo corresponde a

velocidade de Fermi dos elétrons).

Em analogia com o modelo de Tight-Binding para o Grafeno, temos que os portadores de
carga podem ser comparados a particulas relativisticas possuindo uma massa de repouso nula,
também denominados de férmions de Dirac. Isto se deve ao fato do modelo de Tight-binding,
fornecer uma expresséo para a dispersao de energia que no limite de baixa energia, apresenta
um comportamento linear semelhante ao apresentado por particulas relativisticas ao se

considerar o limite de massa nula (m=0), de acordo com as expressdes abaixo.

EGrafeno(k) =t hM ||$| “Expressao obtida pelo modelo de Tight-Binding”

E=V (c*h?k? + m%c*) — param=0 — E = + chlK| “Expressdo para particulas relativisticas”

Com o intuito de estimarmos o efeito que a interacdo spin-drbita tem sobre o Siliceno e
Germaneno, principalmente sobre a regido de maior interesse em nosso estudo, ou seja, 0
ponto K de alta simetria, onde as bandas de valéncia e conducéo se cruzam linearmente ao
nivel de fermi. Decidimos plotar para ambos os sistemas, duas estruturas de bandas em torno
deste ponto, em um regime de baixa energia, onde na primeira desconsideramos a interacdo

spin-orbita e na segunda levamos em conta esta interacdo. Os resultados seguem nas figuras

abaixo.

% 006 ", ) Germaneno = % oo Siliceno

& 0004 T ' : 0.0010

L o

= 0.002 20 o000

: Q ., 0

= 5 .:::.:::.

Pontos k <K .~ Pontosk

-0.0005
-0.002

------ -0.0010
0004 T e
-0.0015

-0.006 .

Figuras 4.16 e 4.17: Aproximagao da regido proxima ao nivel de fermi, em torno do ponto K.
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Figuras 4.18 e 4.19: Aproximacao da regido proxima ao nivel de fermi, em torno do ponto K, na estrutura de
bandas do Germaneno e do Siliceno, levando-se em consideracdo a interacéo spin-orbita.

Observando-se ambas as estruturas de bandas (com e sem o acoplamento spin-orbita),
verificamos que o principal efeito desta interagdo sobre a estrutura eletrénica de ambos 0s
sistemas é promover uma abertura do gap de energia no ponto K. De acordo com o esperado,
0 sistema composto por atomos de Ge apresenta uma maior interacdo spin-orbita em relacéo
ao sistema composto por atomos de Si, evidenciado pela maior abertura do seu gap de
energia, 24 meV para Germaneno contra 1.5 meV do Siliceno. Uma vez, que a interacdo
spin-Orbita tende a ser mais intensa em atomos com um maior nimero atémico, e 0 numero

atdbmico do Ge (32) é maior do que o do Si (14).

Em nossa investigacdo por um estado topologicamente protegido, em nano-fitas criadas a
partir das folhas de Germaneno e Siliceno, daremos uma maior atencdo as nano-fitas de
Germaneno. Em virtude principalmente pelo resultado obtido, de que o Germaneno
apresentar uma maior interacdo spin-orbita do que o Siliceno. Uma vez, que o estado de
Isolante Topoldgico é privilegiado em sistemas que apresentam um acoplamento spin-orbita

mais intenso.
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Capitulo 5:
Estados Topologicamente Protegidos em nano-fitas

de Siliceno e Germaneno

5.1 Nano-fitas de Siliceno e Germaneno:

Para a construcdo das nano-fitas, que correspondem a cortes das folhas de Germaneno e
Siliceno, optamos por analisar duas distintas configuracdes de fita com relacdo a estrutura de
suas bordas. A primeira configuracdo analisada, que ao longo desta dissertacdo
denominaremos de nano-fita ndo reconstruida, corresponde a um corte simples e direto da
folha, onde optamos por bordas com configuracdo armchair. Uma vez que a configuracdo Zig-
zag apresenta propriedades magnéticas!*! que ndo desejamos obter, devido ao fato de estarmos
investigando um possivel estado topoldgico. Como discutido na secdo 1.6.1, o campo
magnético quebra a simetria de reversdo temporal, fundamental a este estado. Abaixo, temos
uma figura que ilustra as configura¢bes armchair e zig-zag, e 0 correspondente corte a ser

promovido sobre as folhas de forma a gerar nano-fitas com estas configuracdes de borda.

onoBA

vacuo vacuo

sentido de cresciment( s

Borda Zig-Zag

Y

4—,(

Figura 5.1: llustragdo esquematica para o procedimento de corte das folhas infinitas de modo a obter nano-fitas
cujas bordas apresentem configuragdo armchair ou zig-zag.

Borda Armchair

sentido de CcreSciment)

onagA
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A segunda configuracdo analisada e que denominaremos por nano-fita reconstruida,
apresenta uma reconstrucdo das bordas da 1° configuracdo adotada (n&o reconstruida), onde
0s atomos da primeira e UGltima fileira (bordas) sdo deslocados de forma a originar a
reconstrucdo desejada, estando exemplificada na figura 5.3. Esta configuracdo extraida da
referéncia [1] foi tomada para anélise, por ser energeticamente mais estavel que a anterior e
ndo poder ser obtida por meio da relaxacdo ibnica auto-consistente do sistema, além de
possuir propriedades interessantes para nossa investigacdo, como um baixo gap de energia. O
sentido de crescimento adotado em ambas as nano-fitas ocorre no eixo X. Abaixo

apresentamos as duas configurac@es de nano-fitas tomadas para analise neste estudo.

a
I vacuo

I vacuo

ai

— X

Figura 5.2 (esquerda): Nano-fita ndo reconstruida, obtida pelo corte da folha com terminagao Armchair.

Figura 5.3 (meio): Nano-fita reconstruida, seguindo o0 modelo presente na referéncia [1].

Figura.5.4.(direita): llustracdo esquematica, demonstrando como a largura da nano-fita pode ser determinada
pela contagem do numero de “camadas atbmicas - n” que a compdem.

Agora iremos introduzir a definicdo de camadas atdbmicas que sera utilizada a partir de
agora. Observando-se a figura 5.2, percebe-se que para uma determinada altura no eixo Y,
existem 4 atomos, desta forma definimos estes como constituindo uma “camada atémica”.
Com esta notacdo, uma forma de aumentar a largura da nano-fita e aumentar a quantidade de
camadas atbmicas que a compdem; como exemplo tem-se a figura 5.4 que é composta por 17
camadas atbmicas ou abreviadamente nl7. A unica diferenca entre as configuracbes néo
reconstruida e reconstruida, e que na segunda configuracdo dois 4tomos de n=1 (camada
inicial) se deslocam para cima, enquanto que dois atomos da ultima camada (n=17) se
deslocam para baixo, podendo ser visualizado por comparagéo das figuras 5.2 e 5.3.
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5.1.1 1° Zona de Brillouin das nano-fitas:

Para a obtencdo da 12 Zona de Brillouin (1°ZB) correspondente as nano-fitas de Siliceno e
Germaneno, utilizaremos o0 mesmo procedimento efetuado para a obtencéo da 1°ZB das folhas
(secdo 3.1). Abaixo encontram-se 0s vetores primitivos (a1 e a2) da célula unitaria no espago

real e os correspondentes vetores primitivos da rede reciproca (b1 e b2).
_ . . dv3 ; . a . .
ar = 6di = 2aV3i, a (A== +2Vécuo) j = (A5 +2.vécuo) j
- ot =L = L i = L i
bs = 21-[6d I a3 I, b2 Zﬁ(lﬂ + 2.v4cuo) J 21-[(/1% + 2.vacuo) J
2

Aqui A = (n-1), onde n denota 0 nimero de camadas atdmicas que compdem a nano-fita.

Nas figuras abaixo, demonstramos a 1°ZB para duas nano-fitas com diferentes larguras,
compostas por 3 e 17 camadas atdmicas, respectivamente n3 e n17 (figura 5.5). De acordo
com a figura 5.6, observa-se que quanto mais larga for a nano-fita no espaco real, menor sera

a sua correspondente 1°ZB no espaco reciproco.

Largura da nano-fita (n)
a= d\/ 3

n=3 n=17
a2 ,
vacuo b, b,
Y ® .
;E%é b1

-%
= * o b
> o)

2|

Ky

2d al [ vacuo ® X
a] )

Figura 5.5 (esquerda): Exemplo de célula unitaria no espaco real de uma nano-fita.
Figura.5.6.(direita): Exemplos de Zonas de Brillouin no espaco reciproco de nano-fitas com diferentes larguras.

Autor: Augusto de Lelis Aradjo — Universidade Federal de Uberlandia/MG



Dissertacdo: Investigagdo dos Estados Topologicamente Protegidos em Siliceno e Germaneno. 6 9

Durante o processo de criagdo das nano-fitas, o processo de corte das folhas infinitas,
acaba por originar um confinamento quéntico dos estados eletronicos, na direcéo
perpendicular ao sentido de crescimento da nano-fita (eixo y no espaco real). Desta forma,
nesta direcao, sua estrutura eletrénica ndo apresenta dispersao, o qual pode ser verificado pela
figura 5.7(a), que corresponde ao plote da banda de valéncia e condugdo de uma nano-fita
reconstruida de Germaneno (composta por 9 camadas atémicas), sobre toda a sua 1°ZB.

Devido a este confinamento, durante a andlise da estrutura de bandas das nano-fitas,
iremos investigar o seu comportamento na diregdo de crescimento da nano-fita (eixo X no
espaco real). Desta forma todas as estruturas de bandas que iremos obter com relacdo as
nano-fitas irdo corresponder a um caminho atravessa o ponto I' (centro da 1°ZB) na direcao de
crescimento, como exemplificado na figura 5.7(b) pela regido demarcada em amarelo, que se
estende de — %2b1 a + Y2b1 sobre a 1°ZB (regido roxa).

ky
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WY 1

‘
-0.4 £

. __\.‘\ | F

0.2 0.4

b1

Figura 5.7a (esquerda): Bandas de valéncia e condugdo, sobre a 1°ZB de uma nano-fita de Germaneno
reconstruida, mostrando a auséncia de dispersdo entre as bordas da nano-fita em fun¢fo do confinamento
guantico. Figura 5.7b (direita): llustragdo da regido na 1°ZB (regido roxa), onde serd analisado a estrutura de
bandas das nano-fitas (reta amarela), o qual se estende de — %2b; a + %b;.

Durante a obtencdo da estrutura de bandas das nano-fitas, constataremos que elas
apresentam um comportamento periodico do gap em funcdo da largura da nano-fita, o que ja
fora observado em outros trabalhos(!l. Para uma melhor compreensdo ou visualizacdo deste
comportamento, classificaremos as nano-fitas com diferentes larguras em 3 grupos
denominados de 3p, 3p+1 e 3p+2[l, onde estes termos na verdade representam nimeros

inteiros (umavez que p =1,2,3,...).
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Como dito anteriormente o nimero de camadas atémicas n, determina a largura da nano-
fita, desta forma para um dado n (largura), a nano-fita correspondente sera classificada da
seguinte forma:

n = 8, classifica-se como 3p+2, pois para p = 2 temos que 3p+2=8

n =9, classifica-se como 3p, pois para p = 3 temos que 3p=9

n = 10, classifica-se como 3p+1, pois para p = 3 temos que 3p+1=10
n = 11, classifica-se como 3p+2, pois para p = 3 temos que 3p+2=11

n = 12, classifica-se como 3p, pois para p = 4 temos que 3p=12
n = 13, classifica-se como 3p+1, pois para p =4 temos que 3p+1=13

Logo, as nano-fitas cuja largura sdo dadas por:

n=3,6,9,12,15,18,21,24,... classificam-se com 3p
n=4,7,10,13,16,19,22,25,... classificam-se com 3p+1
n=5,8,11,14,17,20,23,26,...,53,56,... classificam-se como 3p+2
A razdo para esta classificacdo sera compreendida depois de obtida a estrutura de bandas

das nano-fitas para diversas larguras.

Durante nossa analise da estrutura de bandas das nano-fitas de Siliceno e Germaneno,
variamos dois parametros do sistema, que séo a largura da nano-fita e a sua relaxacao ionica.
Com relagdo ao processo de relaxagédo, optamos por efetuar um calculo “duro”, ou seja, sem
relaxar nenhum ion da estrutura, e também um calculo baseado na relaxacdo das camadas

atdbmicas que compdem as bordas.

Para a relaxacdo i6nica das bordas, inicialmente realizamos um teste com o intuito de
estabelecer um numero padrdo de camadas atdmicas que ira sofrer o processo de relaxacéo.
Para esta tarefa analisamos as duas configuragdes de nano-fita (ndo reconstruida e
reconstruida), e variamos o nimero de camadas atdmicas a partir da camada atdmica inicial
(n=1) e final que ira ser relaxada. Este procedimento fora realizado com o intuito de observar
o efeito que a relaxacdo progressiva da borda, tem sobre as propriedades eletrdnicas e

estruturais de ambas as configuragdes de nano-fita.
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5.1.2 Relaxacao das bordas:

Para esta tarefa, inicialmente investigamos o efeito que a relaxacao das bordas tem sobre
uma nano-fita reconstruida de Ge de largura dada por n=26 (classificacdo 3p+2). Para esta
estrutura, efetuamos 4 distintas relaxagdes: 0s quais correspondem ao sistema sem relaxagédo
“duro”, com o relaxamento da 1 camada atdmica a partir das bordas, e relaxacdes de 2 e 4
camadas atbmicas, 0s quais denotamos respectivamente por n26.0, n26.1, n26.2 e n26.4.
Abaixo segue uma tabela com 0s gaps no ponto I" e a varia¢ao da energia total do sistema com

relagdo a energia do sistema duro, ou seja, n26.0:

Relaxamento GAP Energia de Relaxacéo
n26.0 9.7 meV 0.0eV

n26.1 6.8 meV - 3,256 eV

n26.2 55.1 meV - 3,516 eV

n26.4 59.4 meV -3,691eV

Tabela 1: Gap e Variagdo da energia com relagdo ao sistema duro, para a nano-fita reconstruida de Ge (n=26),
submetida a diferentes relaxagdes idnicas de suas bordas.

A partir destas informacdes, concluimos que quanto maior for a relaxacdo das bordas, ou
seja, quanto maior for o nimero de camadas atdmicas que sofrem o processo de relaxacdo
ibnica, maior sera 0 gap de energia no ponto I'.  Entretanto, verificamos que do sistema duro
para 0 que apresenta a relaxacdo de apenas 1 camada atbmica, houve uma pequena
diminuicdo do gap de energia. Mas para relaxages maiores, como de 1 para 2 camadas, 0
gap no ponto I aumentou mais de 8X (800%), enquanto que a relaxacéo de 2 para 4 camadas,
0 aumento do gap nao foi tdo consideravel (8%). Verifica-se também que a medida que a
relaxacdo do sistema aumenta, mais estavel energeticamente este sistema se torna, uma vez

que a energia do sistema tende a diminuir.

Na proxima pagina, apresentamos figuras que ilustram as correspondentes deformacdes
estruturais nas bordas, oriundas dos processos de relaxacdo idnica mencionados acima.
Em todas as figuras (A) denota a vista lateral da borda composta pelos atomos e suas ligacoes,
em (B) apresentamos somente as ligagdes de forma a visualizar melhor a deformacdo

estrutural que ocorre, e (C) corresponde a uma vista de cima da borda da nano-fita.

Autor: Augusto de Lelis Aradjo — Universidade Federal de Uberlandia/MG



Dissertacdo: Investigagdo dos Estados Topologicamente Protegidos em Siliceno e Germaneno. 7 2

8666868888 | BBRBw

< TV ——
(©) (©)

Figuras 5. : Respectivamente esquerda e direita superior e esquerda e direita inferior; estas figuras
apresentam a estrutura cristalina das bordas das nano-fitas de Ge reconstruidas de largura dada por n=26,
submetidas a diferentes processos de relaxacdo idnica de suas bordas.

Observando-se as figuras, verificamos que a relaxacdo sobre as camadas atdmicas que
constituem a borda da nano-fita, tem como consequéncia principal o deslocamento de alguns
atomos em relagdo ao eixo Z, ou seja, perpendicularmente ao plano da folha. Entretanto a
extremidade mais superficial da borda sofre o processo inverso, tendendo a uma configuracao
mais planar. Agora realizaremos a mesma andlise, entretanto considerando uma nano-fita ndo
reconstruida de Ge de largura dada por n=11 (classificagdo 3p+2). Para esta estrutura,
analisamos o sistema para 3 distintas relaxaces, 0os quais correspondem ao sistema sem
relaxacdo “duro”, ¢ com a relaxagdo de 1 e 2 camadas atdbmicas, que serdo denotadas
respectivamente por n11.0, n11.1 e n11.2. Abaixo seguem o0s gaps de energia e a variacdo da

energia total do sistema com relagdo a energia do sistema duro, ou seja, n11.0:

Relaxamento GAP Energia de Relaxacédo
n11.0 (estado metélico) 0.0eV

nil.l 30.3 meV - 1,582 eV

nl1.2 48.8 meV - 1,656 eV

Tabela 2: Gap e Variagdo da energia com relacdo ao sistema duro, para a nano-fita ndo reconstruida de Ge
(n=11), submetida a diferentes relaxac¢des idnicas de suas bordas.
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Abaixo, apresentamos figuras que ilustram a deformacéo estrutural nas bordas, oriundas dos
processos de relaxagdo idnica acima mencionados.

&-8-8-8-8-888888
(B)

b

nl11.0

nll.2

nll.1

L
Figuras 5.12 a 5.14: Respectivamente esquerda e
direita superior e esquerda inferior; estas figuras
apresentam a estrutura cristalina das bordas das nano-
fitas de Ge ndo reconstruidas de largura dada por
n=11, em (A) observamos a borda da nano-fita em
vista lateral composta pelos atomos e suas ligacdes
quimicas, em (B) apresentamos somente as ligacfes
de forma a visualizar melhor a deformagéo no eixo Z
criada pela relaxacdo ibnica, e finalmente em (C)
apresentamos uma vista por cima da borda da nano-
fita.

Verificamos que da mesma forma que para as nano-fitas reconstruidas, quanto maior for

a relaxacdo das bordas das nano-fitas ndo reconstruidas, maior serd o gap de energia no ponto

I', além de mais estavel energeticamente. Entretanto o sistema “duro” ndo apresenta gap de

energia, estando em um estado metélico, que desaparece com a relaxacdo do sistema

(verificado ao plotar a estrutura de bandas, e que sera apresentado adiante).

Como estamos interessados em uma nano-fita com carater topologico, o qual seja

caracterizado por um cruzamento linear das bandas de valéncia e conducéo ao nivel de fermi,

optamos por definir com padrdo de relaxacdo das bordas, a relaxacdo de apenas 1 camada

atdbmica, uma vez que este nos fornece o menor gap de energia para ambas as configuracoes

de nano-fita (reconstruida e ndo reconstruida).

Prosseguimos agora com 0 nosso estudo, obtendo-se as estruturas de bandas das nano-

fitas de Germaneno e Siliceno.
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5.2 Estrutura de Bandas das Nano-fitas de Germaneno e Siliceno:

Nesta dissertacdo, a analise da estrutura de bandas das nano-fitas foi realizada levando-se
em consideracdo a interacdo spin-Orbita, com o intuito de estimar o efeito que esta interacdo
tem sobre os sistemas analisados, além da posterior investigacdo de um sistema que possa
apresentar um estado topoldgico. Neste contexto estamos a procura de uma nano-fita que no
ponto I" (ponto de alta simetria de interesse) apresente um gap nulo, ou entdo muito pequeno,
além de uma determinada textura de spin, cujas bandas de valéncia e condugdo sejam spin
polarizadas, ou seja, enquanto uma delas apresente somente spin-down a outra deva
apresentar spin-up. Esta configuracdo para os estados superficiais e caracteristica de um

estado topologico que queremos verificar nas nano-fitas.

Nesta analise, desejamos ainda que a contribuicdo para cada par de bandas superficiais
(cone de Dirac), seja proveniente essencialmente de um dos lados (borda) da nano-fita e cada
par apresente uma polarizagdo invertida em relacdo a outra. Este comportamento para a

textura de spin é necessaria para a obtencdo de um estado topologicamente protegido.

Como ja discutimos, a protecdo topoldgica dos estados de borda em um IT, somente é
valida caso haja em cada borda do material um nimero impar de estados que apresentem
degenerescéncia de Kramers, ou em outras palavras, um numero impar de cones de Dirac
atravessando o nivel de Fermi. Os estados de borda do IT séo spin polarizados, logo se
ambos os cones de Dirac apresentarem contribui¢6es dos dois lados da nano-fita, isto significa
que cada lado apresenta 4 estados (dois estados com spin-up e dois com spin-down, onde 0s
estados com a mesma orientacdo de spin se deslocam em sentidos opostos na superficie da
nano-fita), desta forma um portador de carga pode ser retroespalhado sem reverter seu spin,

violando a protecéo topoldgico do estado.

Abaixo apresentamos as correspondentes estruturas de bandas das nano-fitas de
Germaneno e Siliceno, tanto para as configuracdo reconstruida quanto a ndo reconstruida.
As estruturas de bandas apresentadas a esquerda da pagina correspondem ao sistema cujas
bordas ndo sdo relaxadas, ou seja, o sistema “duro”, enquanto que as estruturas a direita
correspondem as que passaram pelo processo de relaxacdo i6nica das bordas definido
anteriormente. Como mencionado, todas as estruturas de bandas plotadas a seguir,
corresponderam a um caminho sobre a 1°ZB que atravessa o ponto I' na direcdo de

crescimento da nano-fita e que se estende de — %2b1 a + “2b1 e exemplificado na figura 5.7.
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Siliceno: nano-fitas ndo reconstruidas

N=8 (3p+2) — sem relaxagao: N=8 (3p+2) - relaxada na bordas:
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N=10 (3p+1) — sem relaxagao: N=10 (3p+1) — relaxada na bordas:
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Figura 5.15: Estrutura de bandas para as nano-fitas de Siliceno ndo reconstruidas (bordas armchair), para diversas
larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxagdo idnica), enquanto que as
estrutura a direita correspondem aos sistemas que sofreram a relaxacdo i6nica da 1° camada atdmica a partir das bordas
da nano-fita.
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N=11 (3p+2) — sem relaxagao: N=11 (3p+2) — relaxada na bordas:
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N=12 (3p) — sem relaxagdo: N=12 (3p) - relaxada na bordas:
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N=13 (3p+1) — sem relaxagao: N=13 (3p+1) — relaxada na bordas:
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Figura 5.16: Estrutura de bandas para as nano-fitas de Siliceno ndo reconstruidas (bordas armchair), para diversas
larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxacdo ibnica), enquanto que as
estrutura a direita correspondem aos sistemas que sofreram a relaxacdo i6nica da 1° camada atdmica a partir das bordas
da nano-fita.
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Com base nas estruturas de bandas das nano-fitas de Siliceno ndo reconstruidas,
percebemos que as nano-fitas cujas bordas ndo sdo relaxadas apresentam um carater metalico
independente da largura da nano-fita, entretanto a simples relaxacdo das bordas do material

modifica drasticamente sua estrutura eletrénica.

As nano-fitas que sofreram a relaxacdo das bordas, cuja largura se classificam como 3p e
3p+2, apresentam um elevado gap de energia no ponto I', a0 se comparado com 0s gaps
obtidos para as nano-fitas que se classificam como 3p+1. Estas apresentam um gap muito
menor que as demais, além de que suas bandas de valéncia e conducdo apresentam uma

dispersdo bastante linear nas proximidades do nivel de Fermi (limite de baixa energia).
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Siliceno: nano-fitas reconstruidas

N=8 (3p+2) — sem relaxagao: N=8 (3p+2) — relaxada nas bordas:
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Figura 5.17: Estrutura de bandas para as nano-fitas de Siliceno reconstruidas, para diversas larguras de nano-fita. As
estruturas a esquerda correspondem aos sistemas fixos (sem relaxacdo ibnica), enquanto que as estrutura a direita
correspondem aos sistemas que sofreram a relaxacéo i6nica da 1° camada atdmica a partir das bordas da nano-fita.
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N=11 (3p+2) — sem relaxagao: N=11 (3p+2) — relaxada nas bordas:
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Figura 5.18: Estrutura de bandas para a nano-fita de Siliceno reconstruida, de largura correspondente a 11 camadas
atdmicas. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxacdo ibnica), enquanto que as estrutura a
direita correspondem aos sistemas que sofreram a relaxagéo idnica da 1° camada atdmica a partir das bordas da nano-
fita.

Com base nas estruturas de bandas das nano-fitas de Siliceno reconstruidas, percebemos
que as nano-fitas cujas bordas ndo séo relaxadas, apresentam um comportamento distinto ao
observado para as nano-fitas ndo reconstruidas. Estas apresentavam um comportamento
metalico, enquanto que agora passam a apresentar um comportamento isolante. E também de
forma distinta ao que ocorria anteriormente (nano-fita ndo reconstruida), durante a relaxagédo

das bordas, ndo ocorre uma alteracdo significativa em sua estrutura eletrénica.

As nano-fitas reconstruidas independentemente da relaxacdo, cuja largura classifica-se
como 3p e 3p+1, apresentam um elevado gap de energia no ponto I', ao ser comparado com as
que se classificam como 3p+2. As nano-fitas 3p+2, apresentam um menor gap de energia,
contrastando com as nano-fitas ndo reconstruidas onde o menor gap ocorria para a
configuragdo 3p+1, e além disso apresentavam uma dispersdo mais linear em torno de I', do
gue o apresentado agora, principalmente para as parcelas das bandas que se encontram acima

do nivel de Fermi.

Com esta Ultima informagdo, concluimos que o processo de reconstru¢do da borda da
nano-fita de Siliceno (vide figura 5.3), promove uma diminuicdo da velocidade de fermi de
seus portadores de carga (o qual é estimada pela inclinagdo das bandas em torno do nivel de

fermi), ou seja, seus portadores de carga tornam-se mais massivos.
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Germaneno: nano-fitas nao reconstruidas

N=9 (3p) - sem relaxagao: N=9 (3p) — relaxagao nas bordas:
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Figura 5.19: Estrutura de bandas para as nano-fitas de Germaneno ndo reconstruidas (bordas armchair), para diversas
larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxacdo iénica), enquanto que as

estrutura a direita correspondem aos sistemas que sofreram a relaxacéo idnica da 1° camada atémica a partir das bordas
da nano-fita.
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Figura 5.20: Estrutura de bandas para as nano-fitas de Germaneno ndo reconstruidas (bordas armchair), para diversas
larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxacdo iénica), enquanto que as
estrutura a direita correspondem aos sistemas que sofreram a relaxacéo iénica da 1° camada atémica a partir das bordas
da nano-fita.
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Observando-se as estruturas de bandas das nano-fitas de Germaneno néo reconstruidas,
percebemos que as nano-fitas cujas bordas ndo sdo relaxadas apresentam um carater metalico
independentemente da largura da nano-fita, entretanto a simples relaxacdo das bordas do
material modifica drasticamente sua estrutura eletronica, de forma similar ao que ocorreu para

as nano-fitas de Siliceno ndo reconstruidas.

As nano-fitas cujas bordas foram relaxadas, e com larguras que se classificam como 3p e
3p+1 apresentam um elevado gap de energia no ponto I', ao ser comparadas com as que se
classificam como 3p+2. Estas possuem um gap muito menor, e uma disperséo linear de suas

bandas de valéncia e conducao em torno do ponto I" proximo ao nivel de Fermi.

Em comparagdo com as nano-fitas de Siliceno ndo reconstruidas, as nano-fitas 3p e 3p+2
é quem apresentavam um gap elevado, enquanto a com configuracdo 3p+1 é quem possuia
um pequeno gap. O comportamento acima somente ocorreu para as nano-fitas de Siliceno

reconstruidas.
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Germaneno: nano-fitas reconstruidas

N=9 (3p) - sem relaxagao:

N=9 (3p) - relaxada nas bordas:
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Figura 5.21: Estrutura de bandas para as nano-fitas de Germaneno reconstruidas, para diversas larguras de nano-fita. As
estruturas a esquerda correspondem aos sistemas fixos (sem relaxacdo ibnica), enquanto que as estrutura a direita
correspondem aos sistemas que sofreram a relaxacdo iénica da 1° camada atdmica a partir das bordas da nano-fita.
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Figura 5.22: Estrutura de bandas para as nano-fitas de Germaneno reconstruidas, para diversas larguras de nano-fita. As
estruturas a esquerda correspondem aos sistemas fixos (sem relaxacdo idnica), enquanto que as estrutura a direita
correspondem aos sistemas que sofreram a relaxacéo i6nica da 1° camada atdmica a partir das bordas da nano-fita.
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Com base nas estruturas de bandas das nano-fitas de Germaneno reconstruidas,
percebemos que as nano-fitas cujas bordas ndo sdo relaxadas apresentam um comportamento
distinto ao observado para as nano-fitas ndo reconstruidas. Estas apresentavam um
comportamento metalico, enquanto que agora passam a apresentar um comportamento
isolante. E também de forma distinta ao que ocorria anteriormente, durante a relaxagdo das

bordas, ndo ocorre uma alteracéo significativa em sua estrutura eletronica.

As nano-fitas independentemente da relaxagédo, cuja largura classificam-se como 3p e
3p+1, apresentam um elevado gap de energia no ponto I', a0 se comparar com as que se
classificam como 3p+2, sendo este comportamento semelhante ao que ocorre para as nano-

fitas de Siliceno reconstruidas.

Outra caracteristica que podemos observar, ao comparar as estruturas de bandas das
nano-fitas de Germaneno ndo reconstruida e reconstruida, e que a configuracdo de borda
reconstruida, promove sobre as nano-fitas de classificacdo 3p+2, uma dispersdo mais linear de
energia, do que a observada para as nano-fitas ndo reconstruidas. Em outras palavras, para as
nano-fitas de Germaneno, a reconstrucdo de suas bordas, promove um aumento da velocidade
de fermi de seus portadores de carga, para o regime de baixa energia. Esta situacdo contrasta
com a observada para as nano-fitas de Siliceno, onde o processo de reconstrucdo das bordas,
promovia uma diminuigdo da velocidade de fermi dos portadores de carga.

Discussao:

Analisando-se as estruturas de bandas para o0s quatro tipos de nano-fitas de Germaneno e
Siliceno: ndo reconstruida com bordas ndo relaxadas; ndo reconstruida com relaxacdo nas
bordas; reconstruida sem relaxagdo nas bordas e reconstruida com relaxacdo nas bordas.
Concluimos que das nano-fitas de Siliceno e Germaneno analisadas, as mais estaveis
energeticamente correspondem a configuracdo dada pela reconstruida com relaxacdo nas
bordas. Também percebemos que a interacdo spin-Orbita nestes sistemas, ndo altera
significativamente sua estrutura eletrénica, uma vez que a Unica contribuicdo que sentimos

fora a de um leve aumento ou diminuicdo do gap de energia, da ordem de poucos mili eV.

Quanto a relaxacdo das bordas das nano-fitas, verificamos que quando aplicada a
configuragdo nédo reconstruida ela tende a modificar drasticamente sua estrutura eletronica.

Entretanto, aplicada a configuracdo reconstruida, uma modesta alteracdo ocorre, estando mais
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relacionada & magnitude do gap de energia no ponto I', que em alguns casos sofre um ligeiro

aumento e em outros uma pequena diminuicao.

Ressaltando, verificamos que com a variacdo da largura da nano-fita (exceto para a
configuracdo ndo reconstruida e ndo relaxada que apresenta estados metalicos), a largura do
gap de energia apresenta um comportamento periddico, oscilando entre valores elevados ou
pequenos para as seguintes classificagdes de largura (3p, 3p+1 e 3p+2). Por final, verificamos
que com o aumento da largura da nano-fita, o gap tende a diminuir independente de sua
classificacdo, o qual é um resultado da diminuicdo do confinamento quantico aplicado ao
sistema.  Esta caracteristica esta ilustrada na figura abaixo, que demonstra este
comportamento para as nano-fitas reconstruidas de Ge com relaxacéo aplicada as bordas.

N 04 ® 3p
> e 3p+1
+P] —e— 3p+2
S’

0,3 - .
=5 .
< «o
S o ‘.o

* 9
*

01|

0.0 ¢ * L] .

0.1 I T T T —T T L L T T T —T T T

Largura n da nano-fita

Figura 5.23: Variagdo do gap das nano-fitas de Ge reconstruidas e com relaxagdo idnica aplicada as bordas,
demonstrando o seu carater periddico.

5.3 Textura de Spin:

Uma importante etapa na busca por um estado topologicamente protegido nas nano-fitas
de Siliceno e Germaneno € a analise da textura de spin destes sistemas. Como discutido
anteriormente, um isolante topoldgico bidimensional deve ter em cada uma de suas bordas,
dois canais de conducdo com spins opostos (up e down). De forma que em sua estrutura
eletronica possamos visualizar dois cones de Dirac, cada um proveniente de um dos lados da
nano-fita e com textura de spin invertida um em relacdo ao outro. E justamente este
comportamento que desejamos obter para as nano-fitas analisadas, dois cones de Dirac,
formados pelo cruzamento das bandas de valéncia e condugdo no ponto I', onde cada uma das
bandas apresente spins opostos entre si, e com relacdo as bandas oriundas de lados opostos da

nano-fita.
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Para a busca por este estado topologicamente protegido, decidimos analisar uma
determinada configuracdo de nano-fita, o qual corresponde a uma nano-fita larga de
Germaneno, composta por 56 camadas atémicas (n56 de classificacdo 3p+2), o que equivale a
aproximadamente 11.6nm de largura, cujas bordas sejam reconstruidas e sofra o processo de

relaxacéo ionica.

Esta configuracdo de nano-fita foi escolhida em funcdo dos resultados obtidos
anteriormente, que nos mostraram que o Germaneno possui uma maior interacdo spin-oOrbita
em relacdo ao Siliceno, em virtude deste promover uma maior abertura do gap de energia.
Devemos no lembrar que uma das principais caracteristicas que ddo origem aos isolantes
topoldgicos é justamente a interacao spin-Orbita. Além disso, constatamos que o0 aumento da
largura da nano-fita tende a diminuir o gap de energia, e que de todas as configuracdes de
nano-fitas de Germaneno analisadas a que apresentou o menor valor de gap, além de ser a
mais estavel energeticamente, foi a nano-fita reconstruida com relaxacao ionica das bordas,

cuja classificacdo seja 3p+2.
5.3.1 Textura de Spin para a nano-fita de Germaneno:

Agora analisaremos a textura de spin da nano-fita reconstruida de Germaneno, de largura
dada por n=56 (aproximadamente 11,6 nm), que classifica-se como 3p+2. De acordo com a
andlise feita anteriormente, esta nano-fita deve apresentar um baixo valor de gap em relacdo

as nano-fitas classificadas como 3p (n=55) e 3p+1 (n=54).

Como definimos anteriormente, a relaxacdo padrdo das nano-fitas corresponde a
relaxacdo da 1° camada atbmica a partir das bordas. Entretanto, também investigaremos a
textura de spin referente a relaxacdo de 2 camadas atbmicas; mesmo este sistema
apresentando um maior gap de energia, ele serd analisado pelo fato de ser mais estavel
energeticamente e a fim de avaliarmos o efeito que a relaxacdo do sistema tem sobre a textura

de spin.
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Para analisarmos a textura de spin desta nano-fita, inicialmente faremos uma observacéo

do comportamento das componentes de spin (Sx, Sy e Sz) das bandas de valéncia e condugéo,

que se cruzam linearmente ao nivel de Fermi em torno do ponto I'. Desta forma, iremos

determinar qual destas componentes de spin predominam na sua estrutura de bandas. Para

esta observacdo plotamos o grafico abaixo, que demonstra as intensidades de cada uma das

trés componentes, de um ponto afastado de I' @ medida que caminhamos em direcdo a este

ponto.
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Figura 5.24: Comportamento das componentes de spin (Sx, Sy e Sz) das bandas de valéncia e condugdo, nas

proximidades do ponto I'.
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Observando-se a figura 5.24, observamos que nas proximidades do ponto I', tanto para as
bandas de valéncia quanto as de conducdo, a componente de spin que predomina é Sz,
enguanto as demais componentes (Sx e Sy) sdo despreziveis, logo analisaremos a componente
Sz. Antes de plotarmos a textura de spin da componente Sz, devemos nos lembrar que devido
ao teorema de Kramers, as bandas de valéncia e conducdo sdo degeneradas. Desta forma para
uma melhor visualizagdo da textura, optamos por plotar dois gréaficos, cada um
correspondendo a um par de bandas spin polarizadas que constituem um cone de Dirac.

Abaixo segue as texturas da componente Sz.

- —~
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Figura 5.25 (esquerda): Textura de spin (Sz) em torno do ponto I', ao nivel de Fermi, de um cone de Dirac.
Figura 5.26 (direita): Textura de spin (Sz) em torno do ponto I', ao nivel de Fermi, do outro cone.

Através das figuras 5.25 e 5.26, percebemos que esta nano-fita claramente apresenta um
comportamento que desejamos observar de um estado topologicamente protegido, ou seja, as
bandas de valéncia e conducdo sdo spin polarizadas e se cruzam linearmente ao nivel de
Fermi. Entretanto ndo observamos um fechamento efetivo do gap, que para esta configuracéo
equivale a 2.6 meV. E também como serd verificado a diante, cada um dos estados
superficiais que compdem 0s cruzamentos acima, ndo estdo se originando exclusivamente de
cada uma das bordas da nano-fita, mesmo que apresentem uma contribuicdo predominante de

uma das bordas.

A seguir, iremos repetir a anélise feita acima para o mesmo sistema (nano-fita de Ge
reconstruida e de largura dada por n=56), entretanto apresentando uma maior relaxagdo de

suas bordas (2 camadas atbmicas).
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n56: Relaxacao de 2 camadas atbmicas

Da mesma forma que o caso anterior, inicialmente analisaremos o comportamento das
componentes de spin (Sx, Sy e Sz) das bandas de conducdo e valéncia que se cruzam
linearmente ao nivel de Fermi, a fim de determinar qual componente predomina e que sera
levada em consideracdo durante a analise da textura de spin. Abaixo apresentamos o

comportamento obtido para esta nova configuracéo.
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Figura 5.27: Comportamento das componentes de spin (Sx, Sy e Sz) das bandas de valéncia e condu¢do, nas
proximidades do ponto I'.

Observando-se a figura 5.27, observamos que da mesma forma que para o sistema
anterior, a componente predominante € Sz, o qual se intensifica a medida que nos
aproximamos de [I'. Entretanto, neste caso todas as componentes apresentam um
comportamento linear, tanto para as bandas de valéncia quanto para as de condugdo, a
despeito do caso anterior em que o comportamento ndo era muito linear e chegava mesmo a
ser oscilatério, como para a componente Sy das bandas de condugdo. Aqui observamos que
Sy é nulo enquanto Sx decai linearmente a medida que nos aproximamos de I"; abaixo segue a

textura de Sz.
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Figura 5.28 (esquerda): Textura de spin (Sz) em torno do ponto I', ao nivel de Fermi, de um cone de Dirac.
Figura 5.29 (direita): Textura de spin (Sz) em torno do ponto I, ao nivel de Fermi, do outro cone.

A textura de Sz desta configuracdo, apresenta a mesmo comportamento observado para o
caso anterior, onde as bandas de valéncia e conducdo sdo spin polarizadas e se cruzam
linearmente ao nivel de Fermi. A Unica diferenca, corresponde a um grande aumento do gap
de energia, que agora vale 26.7 meV, ou seja, um aumento de 1 ordem de grandeza, mas que

ja era esperado.

Agora iremos demonstrar uma caracteristica mencionada anteriormente, que é o fato das
bandas de valéncia e conducdo que se cruzam, nao estarem localizadas exclusivamente em
uma das bordas da nano-fita, o que geraria a quebra da protecdo dos estados pela simetria de
reversao temporal. Para efetuar esta verificacdo, iremos plotar um grafico para cada uma das
quatro bandas que se cruzam ao nivel de Fermi, que demonstra a contribuicdo que cada
camada atdbmica (n) tem para o spin da banda, ou em outras palavras, os aomos que
contribuem para aquele estado. Entretanto, este comportamento se modifica a medida que nos
afastamos do ponto I, logo iremos analisa-lo em dois distintos pontos, um ponto proximo (1)

a T e um afastado (2); estes correspondem aos pontos destacados na figura abaixo.

L] 2‘. L]
[ ] L[]
[ ] [ ]
[.
® ®
[ ] o
[ [ ]
o o ©® .'?o

=

(1) (2)

Figura 5.30: Pontos K a serem analisados, quanto a contribuicao de cada borda da nano-fita para os estados que
se cruzam linearmente ao nivel de Fermi.
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Realizamos esta analise para algumas larguras de nano-fitas de Germaneno, com o intuito
de demonstrar como a contribuicdo das bordas para os estados superficiais, se modifica em
funcdo da variacdo da largura. As nano-fitas analisadas, correspondem a configuracédo
reconstruida com a relaxacdo de 1 camada atémica das bordas, e cuja classificacdo seja 3p+2.
Novamente, devido ao fato desta configuracdo ser a mais favordvel para se observar um
estado topologico. As larguras analisadas foram n14, n26 e n56.
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a nano-fita n14. Figura 5.32 (direita): Contribuicdo das camadas atbmicas para as bandas de um ponto k (2)
proximo a I para a nano-fita n14.
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Figura 5.33 (esquerda): Contribuicdo das camadas atdmicas para as bandas de um ponto k (1) afastado de I' para
a nano-fita n26. Figura 5.34 (direita): Contribuicdo das camadas atbmicas para as bandas de um ponto k (2)
proximo a I' para a nano-fita n26.
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Figura 5.35 (esquerda): Contribuicdao das camadas atdbmicas para as bandas de um ponto k (1) afastado de T para

a nano-fita n56. Figura 5.36 (direita): Contribuicdo das camadas atbmicas para as bandas de um ponto k (2)
proximo a I para a nano-fita n56.

Observando-se os resultados acima, concluimos que para as trés configuragdes de nano-
fita analisadas, somente a nano-fita com largura correspondente a 56 camadas atdémicas,
apresenta estados superficiais que se originam predominantemente de uma das bordas da
nano-fita, principalmente para pontos afastados de I'. Entretanto para as nano-fitas mais
estreitas, observamos que os estados superficiais, apresentam uma forte contribuicdo de

ambas as bordas, ndo apresentando efetivamente um estado de borda topologicamente
protegido.

Desta forma, estes resultados evidenciam, que o aumento da largura da nano-fita reforca a
localizagdo dos estados superficiais em um dos lados da nano-fita. Desta forma esperamos
que para uma nano-fita extremamente larga ira ocorrer um gradual fechamento do gap e
também a completa dependéncia destas bandas com relacdo a uma das bordas da nano-fita.
Este comportamento, juntamente com o carater da textura de spin evidenciado pela nano-fita

de largura n56, ird constituir uma nano-fita com estados de borda topologicamente protegidos.
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Capitulo 6:
Conclusoes

Neste trabalho, utilizamos célculos de primeiros principios fundamentados na teoria do
funcional da densidade, para a analise das propriedades eletronicas e estruturais do Siliceno e
Germaneno. Tambeém estudamos suas respectivas nano-fitas com relacdo a duas
configuraces de borda, uma com terminagdo armchair e a outra correspondendo a uma

reconstrucdo desta borda.

Ao longo de nosso estudo, verificamos que as nano-fitas, tanto de Siliceno quanto as de
Germaneno, cuja configuracdo corresponde a bordas no padrdo armchair ndo relaxadas,
apresentam estados metalicos. Estes estados provem das ligacGes pendentes nas bordas da
nano-fita, oriundas do processo de corte da folha infinita para sua criagdo. Constatamos que
a relaxacdo idnica dos ions presentes nas bordas das nano-fitas com terminacdo armchair, bem
como a reconstrucdo desta borda, abrem um gap de energia no ponto I', dando origem a um
estado isolante. Este estado é caracterizado por uma largura de gap que varia em funcdo do
nimero de camadas atdbmicas que compdem a nano-fita, ou em outras palavras, varia em

funcgéo de sua largura.

Verificamos que as nano-fitas podem ser classificadas entre trés configuracGes padrbes
(3p, 3p+1 e 3p+2). Onde cada padréo corresponde a um valor tipico para a largura do gap de
energia; 0S menores gaps ocorrem para uma determinada configuracdo (3p+2 para a nano-fita
de Germaneno), enquanto as demais configuracdes apresentam valores mais elevados.
Ainda com relacdo ao gap de energia, constatamos que este tende a aumentar com a
diminuigéo da largura da nano-fita (devido ao aumento do confinamento eletrénico) e com o

emprego de uma maior relaxacéo idnica de suas bordas.

Neste trabalho, verificamos que os estados topologicamente protegidos ficam melhor
descritas para nano-fitas largas, principalmente para nano-fitas compostas a partir de 56
camadas atdbmicas, 0 que corresponde aproximadamente a uma largura de 12 nm. Para esta
situacdo, os estados que se cruzam ao nivel de Fermi sdo spin polarizadas. Além disto eles
passam a se originar predominantemente de uma das bordas da nano-fita, evitando desta
forma a quebra da protecdo topoldgica pela simetria de reversdo temporal e nos permitindo

classificar estas estruturas como um isolante topolégico com estados protegidos.

Autor: Augusto de Lelis Aradjo — Universidade Federal de Uberlandia/MG



Dissertacdo: Investigagdo dos Estados Topologicamente Protegidos em Siliceno e Germaneno. 9 5

Em contraste, nano-fitas menores apresentam uma forte interacdo entre os seus estados de
borda, e desta forma ndo apresentam efetivamente um estado topologicamente protegido.
Como discutido no capitulo 1, este fato permite o retroespalhamento de um portador de carga
e desta forma a quebra do estado protegido. Para estas nano-fitas, sua textura de spin nédo é
bem definida, em virtude de apresentarem um gap de energia ndo desprezivel, apresentando

desta forma estados massivos.

Como perspectiva de continuagdo do trabalho apresentado nesta dissertacdo, queremos
analisar com uma maior profundidade a textura de spin que realizamos para a nano-fita de Ge
(reconstruida e relaxada, de largura n56), para larguras ainda maiores deste sistema, bem
como o estudo da nano-fita reconstruida de Siliceno. Esperamos reforcar o resultado
encontrado nesta dissertacdo, de que as nano-fitas tendem a apresentar um estado
topologicamente protegido para grandes larguras, bem como evidenciar a formacdo de um
efetivo estado topoldgico para a nano-fita, caracterizado pelo fechamento do gap e o

aparecimento de estados spin polarizados de uma Unica borda.
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Apéndice A: Operador de Reversédo Temporal

Al: Demonstracio que 0O, deve ser um operador anti-unitario:

Inicialmente avaliemos a evolucdo temporal de um estado |a), sob a influéncia do

operador Hamiltoniano H do sistema, através da equacao de Schrodinger:

.. 0 _

ih Ekx) = Hlo)

Apo6s um tempo infinitesimal &t, o sistema se encontrara em um novo estado dado por:

lo,tg = 0;t = 6t) = (1 — l;(?t)kx), onde (1 - i%&) é o operador de evolugéo

temporal infinitesimal.

Agora analisemos dois conjuntos de operacoes (A) e (B) que levam ao mesmo estado:

(A) Aplicamos o operador de reversdo temporal ®, no estado |«) para t=0 (estado inicial), e

em seguida deixamos o sistema evoluir no tempo sob a influéncia do Hamiltoniano H:

(1-i%6t)elo)

Para o0 estado inicial (t=0), temos que ®|a) = |a), uma vez que —t =t.

(1- i%5t)®|a) = (1 - i%6t)|a) = |o,ty = 0;t = &t)

(B) Consideremos agora, um estado ket no instante t = - §t, e em seguida aplicamos o

operador de reversao temporal ©, cuja acdo seja é a de reverter 6t, ou seja, —6t — St

Ola,ty = 0;t = =6t) = |a,ty = 0;t = 6t)

Desta forma, matematicamente temos que (A) = (B):

(1 - i%&)@m) = o, ty = 0;t = —5t) |

mas |ty = 0;t = —8t) = (1 - i%(—&)) o) = (1 + i%(St) o)
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. H . H
(1 - lz5t)®|0ﬁ) = @(1 + lzé\t)'(l)
Logo:
Ola) — iHZOla) = Bla) + OIHa)

—iH %@kx) = ®iH %a)

ou

—iHO® = OiH

Agora iremos argumentar, porque o operador ® nao pode ser unitario; um operador
unitario possui a seguinte propriedade: UU* = I, ou U = U*. Suponhamos que ® fosse
unitario, desta forma poderiamos reescrever a expressao acima (—iH® = ®iH) da seguinte
forma:

— iH® = ®iH

— (H® = i®H, uma vez que i é apenas um ndmero imaginario.

— HO = ®H, nesta situacdo o Hamiltoniano do sistema anti-comuta com ©.
Consideremos que o auto-estado |o) possua auto-energias dadas por En, logo:

H|o) = En|a)

— HB|o) = OH|a) = OF|a)
HO|a) = —E.B|a)

Esta equacdo no diz que o auto-estado ®|a), corresponde a um auto-estado negativo do
Hamiltoniano do sistema com energia dada por — En, entretanto isto se configura como um
absurdo, pois mesmo para o0 caso mais elementar de uma particula livre, sua energia é definida

no intervalo de 0 até + oo, logo um espectro de energia de - 0 a 0 é completamente inaceitavel.

A Unica forma de que ® seja um o operador de simetria util, & que ele seja unitario
antilinear, isto é, um operador anti-unitario. Uma operador anti-unitario, pode ser escrito da

seguinte forma:

® = UK, em que K é o operador de conjugacdo complexa e U um operador unitario.

@i=UKi = U(=i)K = —iUK
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Qi = —i0
Desta forma podemos reescrever:

—{H® = ®iH = — i®H
H® = O®H ou HO — ®GH =0

[H,®] = 0, agora o Hamiltoniano do sistema comuta com @.

Concluimos que os operadores Hamiltoniano e de reversdo temporal comutam, ou em

outras palavras, que 0 Hamiltoniano seja invariante sobre reversao temporal.

Voltando na expressdo das auto-energias, agora teremos:
HO|a) OH|a) = OE)a) = E.O|a)
HB|o) = E,B|a)

Agora obtivemos que O®|a), corresponde a um auto-estado positivo do Hamiltoniano do

sistema com energia dada por En, em contraste com o absurdo obtido anteriormente. Desta

forma demonstramos que o operador de reversdo temporal deve ser anti-unitario.

A2: Forma funcional do operador O, para sistemas de spin %::

Iremos obter a forma do operador de reversdo temporal para sistemas de spin %, para esta
tarefa faremos uma breve revisdo sobre o operador de rotacdo R. Este operador realiza uma
rotacdo do sistema por um angulo infinitesimal d¢, em torno de um eixo que é caracterizado

pelo versor fi. Para uma rotacéo infinitesimal o operador R, apresenta a seguinte formal®l:
“~ (11 . . . N

R(n,d¢) =1 - I(]?) na mecanica classica o0 momento angular J é o gerador de rotaces.

Ja a rotacdo finita, em torno de um dado eixo, por exemplo, 0 eixo z, é dado pela expressao:

R, (d9) = lim (1 (%) (2)) = exp(-i22)

Na mecénica quéntica 0s Sk (Sx,Sy,Sz), no sistema de spin % também satisfazem as
relagbes de comutacdo do momento angular, de forma que podemos escrever o operador de

rotacdo da seguinte forma:
R, (d¢) = e(-iSz¢/h)
ApO6s uma rotacdo, um estado dado pelo |a) passa a ser dado por:
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0k = Ry (dg) |a) = e(E520/M)]q)
Relembremos algumas notaces da mecanica quantica:
Se = S{(IH+X=1) + (I=X+1)}
Sy = S{(1H+X=1) = (I=X+1)}

S, = Z{(1+X+) = (I-X-1)}
Onde:
=0 =@ 9= (-1=01

As matrizes de Pauli, sdo escritas da seguinte forma:
—_ (0 1Y. _ (0 -0Y. _ (1 0

GX_(10’ Oy=1\i o)y 0z=\1-1

De forma que podemos escrever:

S=20;0nde S=5(545,,S) € 6= 0(0x0y )

Continuemos agora nossa analise, consideremos que o sistema esteja no estado inicial
dado pelo |+), e em seguida aplicamos sobre este duas rota¢cdes, uma em torno do eixo Y por
um angulo S, e a outra em sequéncia em torno do eixo Z por um angulo o; desta forma o

estado resultante pode ser escrito comol8!:
n; +) = R, (0, a) Ry (1, B) |[+)
I +) = e (-iSza/h) o (~iSyB/h) |+)

Onde |1i; +), corresponde a um auto-estado de S.i

Agora sobre este estado, apliquemos o operador de reversao temporal ©:
Ofi; +) = @(e(—isza/h)e(—isvﬁ/h) |+))

O|fi; +) = @ e[S/ @le o ((SvF/N@lE|+)
Oln; +) = e (Ti=S)a/M)* o (=i(=Sy)B/M)* ®|+), onde * & o complexo conjugado

@lﬁ’ -|-) = e(_isla/h) e(_iSYB/h)®|+)

Visto que o operador ®, promove tanto a inversdo de Sz, quanto a conjugacdo complexa, uma

vez que ® = UK.
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Sabemos o resultado da aplicacdo do operador ® no ket |fi; +), uma vez que ®JO* = - J, logo

teremos que: ®|fi; +) = n|fi; —), sendo n uma fase arbitraria (nimero complexo de médulo 1).

OIfi; +) = eCiSza/M) (-ISYB/M@|4) = n|fi; —)

Por outro lado, podemos escrever |, —) da mesma forma que escrevemos |ii, +), utilizando-se
0 angulo de (B + m) na rotagéo sobre o eixo Y:
I, —) = R (0, 0) Ry (W, B + 70) [+)

, .o C )
o) = e

Desta forma, temos que:
(B+m)

O|fi; +) :e(—iSza/h)e(—iSyB/h)®|_|_> = n|fi; =) = neCiSz/M =Sy 5 |4)

e (=iSza/h) e(—iSyﬁ/h)G)l_l_) = ne(~iSza/M) o (ZiSyB/h) o —iSym/h l+)

Ol+) =ne™Sm/h |+

Ja vimos que para o operador ® ser anti-unitario, ele deve possuir a seguinte forma
® = UK, em que K é o operador de conjugacdo complexa e U um operador unitario. Na
expressdo acima, podemos tomar o termo ne ™" como sendo um operador unitario, uma
vez que (ne—isyn/h)(ne—isyﬂ/h)* = n'pe Sym/hetiSym/h = 1

Para obtermos o segundo termo que corresponde ao operador de conjugacdo complexa K,
podemos utilizar a seguinte relacdo: K|+) = |+), uma vez que |+) = ((1)) desta forma podemos
escrever:

Of+) =ne ™R 4) = ne”HT/IK|+)
Obtendo a seguinte expresséo para o operador de reversdo temporal:

® = ne—iSch/hK

Agora, iremos analisar a expressao acima, para 0 caso em que o spin esteja orientado sobre o

eiXo Yy, neste caso devemos tomar:

~ A ~ ~ 2 .
n=y ¢=mneoh=o.y=oy=:5, (p0|sSy=§cy)
Utilizando-se a seguinte relacgdo:

e~lonig/2 — COS(%) — [o.1 sen (%)
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Teremos que:
] LR , N
e—zSyn/h — e_lgcy”/h — e—leT[/Z — e—wy.yn/z — COS(E) —ioy.frsen (g)

—iSym/h —

N : .2
e —10y.Yy = —ioy = _lESy

Logo, podemos reescrever a expressao para o operador de reversio temporal:
— pe-iSym/h = _ a2
® = ne K = —insS,

A3: Demonstracio que @*= — 1:

Observemos que:

eTSHME) = —i2Sy ) = —itZoylH) = —ioylt) = —i(§)(E) = —i() = ()
e~ S/h|+) = +|-)

Enquanto:

ey = —i2§)|-) = —i2Zoy|-)=—ioy|-) = —i(P () = —i(P) = ()
e /M=) = —|+)

Agora, iremos aplicar o operador ®, a um estado geral dado por C+|+) + C|—).
O(C+|+) + C|=)) = ne Y™ K(Ci|+) + C|=)) = ne "™/ M(C."|+) + C"|-))
= n(C+|-) — C+)

Aplicando-se novamente o operador ©:

07 (C=) = CIH)) = ne ™MK {n(C+"=) — C1+) )}

= e ST Cid=) = CI} = n{r*(= Col+) = CI=) )}

—*Col) = m*Cl=) = = [nfCil+) = InPCl=) = —(Cil+) +C|-))

Ao final obtivemos o seguinte resultado: ® ( C+|+) + C.|=)) = — (C4|+) + C|-))
Ou seja, @2 = —1

Este resultado na verdade € generalizavel; pode-se demonstrar que em qualquer sistema

descrito por momento angular total semi-inteiro ®2 = —1.
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