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Resumo 
 

O objetivo principal deste trabalho é a investigação e obtenção dos estados 

topologicamente protegidos de superfície em nano-fitas criadas a partir das folhas de 

Germaneno e Siliceno.  Estas folhas pertencem a classe dos Isolantes Topológicos e 

correspondem a monocamadas de átomos de Germânio e Silício, em um arranjo hexagonal 

que se assemelha a folha do Grafeno.  Para esta investigação, realizamos um estudo das 

propriedades eletrônicas e estruturais destas folhas, bem como de suas respectivas nano-fitas, 

através de cálculos de primeiros princípios fundamentados na teoria do funcional da 

densidade (DFT).   Nesta metodologia utilizamos a aproximação do gradiente generalizado 

(GGA) para a estimativa do termo de troca e correlação, e o método PAW para o potencial 

efetivo e a expansão em ondas planas dos orbitais de Kohn-Sham.   Realizamos a simulação 

computacional com o auxílio do pacote VASP (Vienna ab-initio Simulation Package).  Como 

ponto de partida para nossa pesquisa, utilizamos a metodologia da física do estado sólido com 

o intuito de descrever a estrutura cristalina das folhas, bem como seu espaço recíproco.  

Posteriormente analisamos as estruturas de bandas, a partir das quais muitas de suas 

propriedades podem ser visualizadas.  Para esta tarefa, inicialmente procedemos à 

investigação da estabilidade destes sistemas via cálculos de energia total, obtendo o parâmetro 

de rede a que minimiza a energia do sistema. Obtivemos também a energia de corte ECUT 

utilizada em nossos cálculos, ou em outras palavras, a determinação do número de ondas 

planas necessárias para expandir as funções de onda eletrônicas no formalismo da DFT. 

Prosseguimos nosso estudo, com a criação e análise de duas distintas configurações de nano-

fitas, uma que corresponde a um corte simples e direto da folha com terminação no padrão 

armchair, e a outra baseada em uma reconstrução destas bordas, que acaba por fornecer um 

sistema mais estável energeticamente.  Posteriormente obtivemos as estruturas eletrônicas, e 

realizamos um estudo de sua variação em função da alteração da largura da nano-fita e a 

relaxação iônica de suas bordas.  De certa maneira, modificamos os parâmetros acima, de 

forma a obter um sistema que nos fornecesse um gap nulo, ou pelo menos desprezível, bem 

como uma determinada configuração para a textura de spin, de modo a verificarmos a 

evidência de uma proteção topológica nos estados de superfície nestas nano-fitas. 

Palavras-Chave: isolantes topológicos, estados topologicamente protegidos, proteção 

topológica, siliceno, germaneno, nano-fitas, cálculos de primeiros princípios. 
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Abstract 

 

The main objective of this work is to research and obtain surface protected topological 

states in nano-ribbons created from the leaves of Germanene and Silicene. These sheets 

belong to the class of Topological Insulators and correspond to monolayers of germanium and 

silicon atoms in a hexagonal arrangement that is similar to the graphene sheet. For this 

investigation, we conducted a study of the electronic and structural properties of these sheets, 

as well as their respective nano-ribbons through first-principles calculations based on density 

functional theory (DFT). In this methodology we use the generalized gradient approximation 

(GGA) for estimating the exchange and correlation term, and the PAW method for the 

effective potential and the expansion of plane waves of the Kohn-Sham. We conducted a 

computer simulation with the aid of the package VASP (Vienna ab-initio Simulation 

Package). As a starting point for our research, we used the methodology of solid state physics 

in order to describe the crystalline structure of the leaves as well as their mutual space. 

Subsequently we analyze the band structure, from which many of its properties can be 

visualized. For this task, we initially proceeded to investigate the stability of these systems via 

total energy calculations, in turn obtaining the network parameters that minimizes the energy 

of the system. We also obtained the energy cutoff, ECUT used in our calculations, or in other 

words, determining the number of plane waves needed to expand the electronic wave 

functions on the DFT formalism. We continued our study, with the creation and analysis of 

two different configurations of nano-ribbons, one that corresponds to a straightforward cut of 

the sheet with the armchair termination pattern, and the other based on a reconstruction of 

those edges, which provide an energetically more stable system. Subsequently we obtained 

electronic structures, and conducted a study of its variation due to the change of the width of 

the nano-ribbon and ionic relaxation of its edges. In a way, we modified the above parameters 

in order to obtain a system that would give us a zero gap, or at least insignificant, as well as a 

specific configuration for the spin texture, in order to verify the evidence of surface protected 

topological states in these nano-ribbons.  

Key words: topological insulators, topologically protected states, topological protection, 

silicene, germanene, nano-ribbons, first-principles calculations. 
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Introdução 
 

As folhas de Germaneno e Siliceno, apresentam uma grande similaridade com a folha de 

Grafeno, e se deve ao fato dos átomos de Ge, Si e C pertencerem ao mesmo grupo da tabela 

periódica (Grupo IVA), ou seja, eles apresentam configurações eletrônicas similares[2].   No 

entanto, Ge e Si apresentam um maior raio iônico, além de que estes átomos apresentam 

essencialmente a hibridização sp3, enquanto a sp2 é energeticamente mais favorável para 

átomos de C (mesmo este também apresentando as hibridizações sp e sp3)[3].  Como resultado, 

as camadas atômicas 2D de átomos de Si e Ge, estão previstas para terem uma estrutura 

cristalina de favos de mel (hexagonal) de baixo buckling (flambagem) para as suas estruturas 

mais estáveis, ou seja, são ligeiramente curvadas, com uma das sub-redes do retículo a ser 

deslocada verticalmente em relação à outra, formando uma configuração de treliça, enquanto 

o Grafeno apresenta uma configuração planar[1].  Analogamente ao Grafeno, Siliceno e 

Germaneno também são classificados como semicondutores de gap nulo, com portadores de 

carga que se comportam como férmions de Dirac “sem massa”, uma vez que as bandas de 

valência e condução se cruzam ao nível de Fermi, com uma dispersão de energia linear.    

O interesse em Siliceno e Germaneno iniciou-se justamente devido as pesquisas no 

Grafeno.   Os pesquisadores começaram a questionar, se poderia existir outras estruturas que 

se assemelhassem ao Grafeno, tanto com relação a sua estrutura bidimensional quanto as 

características eletrônicas, e que além disto, poderia ser mais facilmente integrada a indústria 

eletrônica. O caminho mais curto para esta investigação foi à análise de seus parentes 

próximos na tabela periódica, ou seja, o Ge e Si.  E como desejado, estes materiais são mais 

provavelmente favorecidos sobre o Grafeno, com relação a integração teórica em dispositivos 

baseados em Si (componente fundamental da tecnologia eletrônica atual), uma vez que o 

Grafeno é vulnerável a perturbações do substrato de suporte, devido à sua espessura de um 

único átomo[2].  

Além disto, nos últimos anos temos assistido a um grande aumento no estudo dos 

Isolantes Topológicos (IT), uma nova classe de materiais caracterizada por um gap no bulk 

(interior da amostra) e estados superficiais metálicos (sem gap) que não apresentam 

dissipação.   Tanto o Siliceno quanto o Germaneno, foram verificados como pertencentes a 

classe dos Isolantes Topológicos e que descreveremos melhor ao longo desta dissertação.     

Baseado nos IT, muitos fenômenos intrigantes são previstos, tais como os efeitos magneto-
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elétrico gigante e o aparecimento de férmions de Majorana[3], o qual resultam em novos 

paradigmas para futura aplicação em dispositivos relacionados a spintrônica e computação 

quântica.  Embora muitos materiais sejam teoricamente previstos para serem IT 2D, até agora 

somente os poços quânticos de HgTe/CdTe e InAs/GaSb foram verificados por meio de 

experimentos de transporte[3].  Entretanto estes materiais enfrentam desafios particulares, 

como um gap muito pequeno no bulk (interior da amostra) e a incompatibilidade com os 

dispositivos convencionais de semicondutores.  Portanto a pesquisa e desenvolvimento de IT 

2D com gaps maiores do que os materiais comumente usados é indispensável para sua 

utilização prática. 

Neste contexto o Grafeno poderia ser bem empregado, no entanto, sua aplicação prática 

como IT 2D é substancialmente prejudicada pelo seu gap extremamente baixo no bulk        

(10-3 meV).    Enquanto isto, Siliceno e Germaneno se apresentam como melhores alternativas 

para a introdução dos IT na indústria eletrônica, ao apresentarem maiores gaps 

topologicamente não triviais; entretanto estes materiais ainda não foram fabricados 

experimentalmente.   Uma das maneiras de introduzir estes materiais na indústria eletrônica, 

como por exemplo na fabricação de dispositivos integrados é por meio do corte da folha, 

originando as nano-fitas. Este procedimento entretanto, gera o confinamento quântico do 

sistema em uma direção, alterando drasticamente suas propriedades eletrônicas e 

consequentemente topológicas. Desta forma, por meio da análise de seus estados de 

superfície, desejamos verificar se as nano-fitas de Germaneno e Siliceno apresentam estados 

topologicamente protegidos, ou em outras palavras, se as nano-fitas ainda preservam 

características topológicas.  Também desejamos verificar o efeito que modificações 

estruturais no sistema (alteração da largura da nano-fita e deformações da geometria das 

bordas), podem influenciar em suas propriedades. Estas características que são de crucial 

importância para a possível aplicação tecnológica destes materiais em spintrônica ou 

computação quântica. 

Esta dissertação está organizado da seguinte forma, no capítulo 1 abordamos os principais 

conceitos relacionados a teoria envolvida nos isolantes topológicos, necessários para a 

descrição do sistema físico, no capítulo 2 apresentamos a metodologia teórica envolvida na 

descrição computacional do sistema, que é a teoria do funcional da densidade (DFT), nos 

capítulos 3, 4 e 5 efetuamos a análise das propriedades eletrônicas e estruturais dos sistemas 

de interesse neste estudo (folhas de Germaneno e Siliceno, bem como suas nano-fitas), 

cabendo ao capítulo 6 à conclusão e discussão acerca dos resultados obtidos. 
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Capítulo 1:  

Isolantes Topológicos 

 

Começaremos este capítulo fazendo uma revisão sobre a teoria de bandas e o estado 

isolante, e ao longo do capítulo um estudo da diferença entre isolantes triviais e os isolantes 

topológicos dentro do conceito da teoria de bandas. 

 

1.1  Teoria de Bandas e o Estado isolante: 

 

A teoria de bandas descreve os estados eletrônicos, ao explorar a simetria translacional do 

sistema no espaço dos momentos cristalinos 𝑘⃗  (espaço recíproco), ou mais precisamente sobre 

a sua 1º Zona de Brillouin[4]. Esta análise é realizada através da equação de Schrödinger: 

[−
ℏ2

2𝑚
∇2 +  𝑉(r ) ] 𝜓k(r )  =  En,k 𝜓k(r ) 

Por meio de sua resolução, a estrutura de bandas será composta pelos auto-valores En(k⃗ ) 

da função de onda de Bloch; todos os valores distintos de 𝐸𝑛(k) estão localizados dentro da 1º 

zona de Brillouin da rede recíproca. As energias associadas com o índice n variam 

continuamente com o vetor de onda k e formar uma banda de energia. Os auto-estados de 

Bloch 𝜓k(r ), de acordo com o teorema de Bloch (homenagem a Felix Bloch), devem 

correspondem a uma função un,k(r ) que possui a periodicidade da rede cristalina |𝑢𝑛,𝑘(r )⟩ 

= |𝑢𝑛,𝑘(r + 𝐑⃗⃗ )⟩, multiplicada por uma onda plana[4]:  |𝜓𝑛,𝑘(r )⟩ =  𝑒𝑖k.⃗⃗⃗  r⃗  |𝑢𝑛,𝑘(r )⟩ 

Na expressão acima para a equação de Schrödinger, o potencial V(r ) apresenta a simetria 

da rede cristalina a ser analisada (devido a sua invariância translacional), e o termo entre 

colchetes é denominado de operador Hamiltoniano de Bloch H, onde H(r ) = H(r +𝐑⃗⃗ ). 

Na estrutura de bandas, os elétrons irão preencher primeiramente os estados de menor 

energia; o estado ocupado de mais alta energia será chamado de nível ou energia de Fermi.  

Perto do nível de Fermi, se a banda estiver parcialmente ocupada, teremos um estado 

metálico. Neste caso, quando um campo externo é aplicado ao sistema, o campo força os 

elétrons a afastar-se da posição de equilíbrio e ter uma quantidade de movimento total 

diferente de zero, formando um fluxo de corrente elétrica[5].  
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Entretanto caso a banda esteja completamente cheia, e exista uma diferença de energia 

entre a banda de valência preenchida e a banda de condução não preenchida, teremos um 

estado isolante. Neste caso, um campo externo fraco não pode forçar os elétrons a se afastar 

dos estados ocupados para formar um fluxo de corrente elétrica. O tamanho do gap de energia 

serve como uma linha divisória entre materiais semicondutores e isolantes. Se o gap de 

energia for menor do que 4eV (aproximadamente), os elétrons poderão ser facilmente 

excitados da banda de valência para a de condução a temperaturas finitas (embora a banda 

totalmente preenchida não contribua para a condutividade elétrica à temperatura de zero 

absoluto). Assim, um material semicondutor apresenta um gap de energia menor do que um 

material isolante[5]. 

Após caracterizado o estado isolante, daremos prosseguimento ao nosso estudo definindo 

o conceito de invariante topológico. 

 

1.2  Invariante Topológico: 
 

A Topologia é uma área da matemática considerada uma extensão da geometria, onde 

diferentes objetos podem ser agrupados em amplas classes (ou ordens) topológicas que se 

focam em distinções fundamentais entre as formas, sendo o principal conceito para este 

agrupamento a deformação suave do objeto. 

Por exemplo, duas formas geométricas podem ser agrupadas na mesma ordem ou 

classificação topológica, caso sobre uma delas possa ser realizado um processo de deformação 

suave e contínuo, de forma que esta seja deformada na outra forma geométrica, entretanto, 

sem que ocorra o rasgo ou furo da superfície[6]. Cada forma geometria agrupada em uma 

ordem topológica é caracterizada por um invariante topológico. O invariante topológico é uma 

quantidade ou propriedade dos sistemas agrupados em uma mesma classe topológica e que 

permanece invariante durante o processo de deformação, se distinguindo somente para 

sistemas que estejam classificados em outra ordem topológica.  Nesta definição, podemos 

citar que a topologia de superfícies bidimensionais é classificada através da contagem do 

número de buracos que estas possuem, ou seja, o seu genus (G), também chamado de número 

de identificadores (o genus de uma superfície e uma função de sua topologia total), sendo este 

o seu invariante topológico.  
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Como exemplo, temos que a superfície de uma esfera é topologicamente equivalente à 

superfície de um cubo ou de uma pirâmide, pois uma pode ser deformada suave e 

continuamente na outra, sem criar buracos na superfície, e desta forma possuem o mesmo 

invariante topológico, que corresponde a G = 0.   Similarmente temos que uma xícara de café 

é topologicamente equivalente a um toróide, pois ambas podem ser deformadas suavemente 

uma na outra e seu invariante topológico é dado por G = 1 (vide as figuras 1.1 e 1.2). 

 

 

 

 

 

 

 

Figura 1.1: Caracterização topológica de uma forma geométrica de acordo com o seu genus (G). Figuras 

extraídas e adaptadas a partir da página eletrônica: http://upload.wikimedia.org/wikipedia/commons/9/93/Blue-

sphere.png e da referência [7]. 

 

 

 

 

 

 

 

Figura 1.2: Ilustração esquemática do processo de deformação suave de uma xícara em um toróide.  

Figura extraída e adaptada a partir de uma gif encontrada na página eletrônica: 

http://pt.wikipedia.org/wiki/Topologia_(matem%C3%A1tica) 
 

 

 

http://upload.wikimedia.org/wikipedia/commons/9/93/Blue-sphere.png
http://upload.wikimedia.org/wikipedia/commons/9/93/Blue-sphere.png
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A generalização do conceito de topologia para um sistema físico, mais precisamente para 

o estado isolante, apresenta uma modificação conceitual, onde dois estados isolantes que 

sejam descritos por diferentes Hamiltonianos e que apresentem diferentes gaps de energia, 

podem ser classificados na mesma ordem topológica, caso sobre o Hamiltoniano de um destes 

estados isolantes possa ser empregada um processo de deformação adiabática, de forma que 

este seja deformado no Hamiltoniano do outro sistema, entretanto sem que ocorra o 

fechamento do gap de energia.   

Nesta classificação, os materiais isolantes comuns, os semicondutores e até mesmo o 

vácuo (possuindo um gap de energia para a criação de um par elétron-pósitron, de acordo com 

a teoria quântica relativística de Dirac[8]) apresentam uma topológica trivial. Enquanto que os 

estados que posteriormente iremos analisar neste texto, ou seja, o Efeito Hall Quântico (QHE) 

e o Isolante Topológico (IT) apresentam um topologia não trivial, sendo que ambas as 

classificações topológicas são distinguidas em função do seu correspondente invariante 

topológico.  

Com base nesta definição, em uma interface que separe dois estados isolantes com 

diferentes topologias, um trivial e outro não trivial, os operadores Hamiltonianos que 

descrevem ambos os estados isolantes não podem ser conectadas adiabaticamente uma com a 

outra.  Nesta situação deverá ocorrer um processo de fechamento do gap de energia, para que 

ocorra a alteração do seu correspondente invariante topológico, ou em outras palavras, da sua 

ordem topológica, dando origem aos estados condutores de superfície observados tanto no 

QHE como no IT.  

Dando prosseguimento a nossa discussão, iremos traçar um histórico com alguns fatos da 

física que acabaram por cominar na definição e posterior verificação do estado conhecido 

como Isolante Topológico. 
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1.3  Efeito Hall (EH): 
 

Como ponto de partida, mencionaremos o Efeito Hall (EH), descoberto em 1879 por 

Edwin Hall[9]. Neste efeito uma amostra metálica, é submetida à ação de um campo elétrico 

longitudinal 𝑬⃗⃗  e de um campo magnético perpendicular 𝑩⃗⃗ , resultando em uma diferença de 

potencial transversal, chamada de voltagem Hall. Esta voltagem é gerada pela força de 

Lorentz 𝑭⃗⃗  = q(𝑬⃗⃗ +  𝒗⃗⃗ x𝑩⃗⃗ ) experimentada pelos portadores de carga movimentando-se pela 

amostra, e resulta em um deslocamento destes entre suas extremidades, onde os portadores de 

carga com um determinado sinal como por exemplo os elétrons (q = -e) irão se deslocar para 

uma das extremidades, enquanto a outra extremidade apresentara um acumulo de cargas 

opostas (ver figura 1.3). Neste efeito é verificado que a condutividade Hall transversal σxy 

apresenta um comportamento linear em função da variação do campo magnético aplicado. 

 

                                                                              

 

 

 

 

 

 

 

 

 

                      

Figura 1.3: Diagrama da montagem experimental do efeito Hall.  

 

Outra importante fato para nossa análise histórica e que devemos mencionar, refere-se a 

uma tarefa recorrente na Física da Matéria Condensada, que tem sido a descoberta e 

classificação de novas fases da matéria. Durante muito tempo esta classificação foi 

desempenhada por meio do conceito de quebra de simetria, em que uma transição de fase 

ocorre quando uma das simetrias do sistema físico é espontaneamente quebrada[10].    

A teoria que descreve transições de fase como estas, denomina-se teoria de Landau-

Ginzburg[10].   E por meio deste esquema teórico, diversas fases podem ser bem descritas, a 

tornando uma das grandes conquistas da Física da Matéria Condensada. Entretanto apesar de 

bem sucedida, foi descoberto um novo estado da matéria que não apresentava nenhuma 

quebra de simetria e por isso não podia ser descrito por esta teoria. Este é o estado 

característico do Efeito Hall Quântico (QHE)[9]. 
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1.4  Efeito Hall Quântico (QHE): 

 

Um século após a constatação do EH, o QHE foi verificado experimentalmente por Klaus 

von Klitzing, G. Dorda e M. Pepper em 1980, em uma amostra 2D de elétrons (MOSFET: 

Metal-oxide-semiconductor field-effect transistor) submetida a temperaturas do hélio líquido 

(por volta de 4K) e intensos campos magnéticos (variando até a ordem de 15T)[9]. 

Como resultado verificou-se analogamente ao Efeito Hall, que o interior da amostra 

tornou-se isolante, e que uma corrente elétrica passou a ser transportada ao longo de sua 

borda, sendo o fluxo desta corrente unidirecional e não apresentando dissipação.  Entretanto 

neste experimento, constatou-se que diferentemente ao que ocorre no Efeito Hall onde a 

condutividade transversal apresenta um comportamento linear com a variação do campo 

magnético, que no QHE esta passa a ser quantizada em patamares de ℯ2/h (de acordo com a 

expressão abaixo e a figura 1.4), um resultado totalmente inesperado e não previsto 

classicamente. 

σxy = n 
ℯ2

ℎ
, onde n = 0,1,2,3,... 

Esta quantização é uma característica bastante peculiar, pois ocorre em um fenômeno de 

muitos corpos para diferentes materiais, apesar das diferenças que deveríamos esperar entre as 

diversas amostras. 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1.4: Gráfico experimental obtido por Klitzing, que demonstra a quantização da resistência Hall 

(essencialmente a variável recíproca da condutividade) em função do campo magnético aplicado. Os patamares 

correspondem à resistência Hall quantizada, enquanto os picos à resistência longitudinal.  

Figura extraída da página eletrônica: http://www.nobelprize.org/nobel_prizes/physics/laureates/1998/press.html 

http://www.nobelprize.org/nobel_prizes/physics/laureates/1998/press.html
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Além de render a Klaus von Klitzing o prêmio Nobel de Física de 1985, o QHE gerou 

uma demanda por explicações teóricas que englobassem a quantização da condutividade 

transversal e como uma quantização tão robusta poderia se manifestar em experimentos 

realizados em circunstâncias variadas.    

A resposta a este problema se deu justamente com a introdução das noções de topologia, 

ocorrendo inicialmente em 1981, com o experimento mental proposto por Robert Laughlin[11], 

em que os patamares da condutividade Hall transversal foram explicados pelo fato deste 

constituir um invariante topológico do sistema, ou mais precisamente o inteiro n presente na 

sua expressão (σxy = n 
ℯ2

ℎ
), recebendo a denominação de número de Chern-n[12].  

No QHE, a mudança de σxy de um patamar para outro presente na figura 1.4, somente 

ocorre quando o Hamiltoniano do sistema apresenta grandes deformações (em virtude, por 

exemplo de um grande aumento ou diminuição do campo magnético).  Nesta situação o 

estado fundamental pode atravessar outros auto-estados (níveis), quando esta “passagem de 

nível” acontece no sistema Hall quântico, o número de Chern-n deixa de ser bem definido. 

Uma vez que 𝑛 é o invariante topológico do sistema e um número inteiro, ele não pode mudar 

continuamente. Concluímos, portanto, que um gráfico em função do campo magnético, de 𝑛 

ou de alguma variável que seja proporcional a ele, como é o caso da condutividade Hall σxy 

deve apresentar-se estruturado na forma de patamares, sempre que a variação do campo 

magnético seja suficiente para promover uma grande modificação do Hamiltoniano. 

Em 1982, uma explicação equivalente para a quantização de σxy no QHE foi proposta por 

D. J. Thouless, M. Kohmoto, M. P. Nightingale e M. den Nijs, a partir de cálculos baseados 

na fórmula da resposta linear de Nakano-Kubo[14].   

A partir do QHE, uma nova forma de classificação dos materiais baseada no conceito de 

ordem topológica foi desenvolvida, o qual previa também fases da matéria até então não 

conhecidas.  
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1.4.1  Estados de borda no QHE: 
 

 

No QHE a condutividade é representada por um tensor 𝜎̂, dado pela seguinte expressão 

em duas dimensões: 𝜎̂ = (σ𝑥𝑥=σ𝑦𝑦       σ𝑥𝑦
σ𝑦𝑥=−σ𝑥𝑦    σ𝑦𝑦

), onde σyy é a componente longitudinal. 

De acordo com o gráfico da figura 1.4 do experimento de Klitzing, constata-se que 

durante a variação do campo magnético, enquanto o processo de transição entre dois 

patamares de σxy ocorre (que explicamos ser em virtude de uma grande modificação do 

Hamiltoniano do sistema, em função da variação do campo magnético aplicado), tem-se que 

σyy tende a um valor máximo e novamente a zero.  Entretanto, enquanto a condutividade 

transversal σxy apresenta-se quantizada em um determinado patamar, observa-se que o valor 

da condutividade longitudinal σyy anula-se, ou seja, para σxy = n 

ℯ2

ℎ
 com n≠0 tem-se que σyy = 0.  

Desta relação extraímos a informação de que no QHE, o invariante topológico dado pelo 

número de Chern n é finito, ou seja, temos n ≠ 0; em contrapartida, sem a presença do campo 

magnético ou durante o processo de transição entre os patamares de σxy, não ocorre o QHE e 

desta forma a corrente flui longitudinalmente sobre a amostra, de forma que σyy ≠ 0 e σxy = 0. 

Neste caso o invariante topológico é dado por n = 0, assim verificamos que o QHE e o estado 

isolante comum (como o vácuo) apresentam diferentes ordens ou classes topológicas, 

caracterizadas pelo número de Chern n. 

Agora relembremos a definição exposta no início deste capítulo, de que uma classe de 

equivalência topológica entre diferentes estados isolantes é definida por um processo em que 

o Hamiltoniano de um estado seja deformado adiabaticamente no Hamiltoniano do outro sem 

que haja o fechamento do gap.  Como visto a ordem topológica não trivial do QHE é 

caracterizada pelo invariante n, desta forma durante a transição de um estado com topologia 

não trivial do QHE (n ≠ 0) e um estado topologicamente trivial como o vácuo (n = 0), deve 

ocorrer o processo de deformação do Hamiltoniano seguido do fechamento do gap de energia, 

de forma a modificar a classe topológica (ou equivalentemente o invariante topológico).     

Devido a esta necessidade do fechamento do gap para a alteração da ordem topológica é 

que observamos no QHE os estados superficiais (região onde esta modificação ocorre), sendo 

os responsáveis pela condução de corrente nas bordas da amostra, onde σyy ≠ 0. 
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Figura 1.5: Esquema das órbitas de cíclotron dos elétrons, os quais são interrompidos nas bordas da amostra, 

onde os portadores de carga passam a conduzir sem dissipação em sentidos contrários em cada uma das bordas.  

 

 

Podemos também analisar os estados de borda, levando-se em consideração que no 

QHE, a quantização das órbitas circulares dos elétrons, devido ao campo magnético externo 

leva aos níveis de Landau, com energia Em = (m + ½)ℏωC, onde ωC é a frequência cíclotron de 

movimento dos elétrons e m um número inteiro.   Os níveis de Landau podem ser vistos como 

bandas de energia para os elétrons, e se um determinado número destes níveis encontram-se 

preenchidos e os restantes desocupados, um gap de energia irá separar estes estados, como em 

um isolante.    

Utilizando-se uma argumentação clássica, podemos imaginar que nas bordas do 

material os elétrons possuem um movimento que é diferente daquele em seu interior, porque 

suas órbitas de cíclotron encontram a borda e não se fecham “pulando” para outra órbita (veja 

o esquema na figura 1.5).   Estes saltos ou pulos levam a estados eletrônicos metálicos que se 

propagam pela borda do sistema em apenas uma direção.   Desta forma estes estados 

conduzem corrente elétrica sem serem espalhados por impurezas e consequentemente sem 

perda de energia na forma de calor, sendo a única opção para os elétrons propagar no mesmo 

sentido (uma vez que não existem estados propagando-se em sentido contrário).  

Como o QHE ocorre apenas quando um campo magnético intenso é aplicado, como 

veremos adiante, ele pertence a uma categoria topológica que explicitamente quebra a 

simetria de reversão temporal.  Naturalmente, os físicos se perguntaram se a classificação 

topológica poderia ser estendida a sistemas que apresentariam esta simetria.   Em 2004, 

Murakami aliou a simetria de reversão temporal e o acoplamento spin-órbita, gerando o 

conceito de Isolante Hall Quântico de Spin (IQHS), também denominado de Isolante 

Topológico Bidimensional (IT)[13].   
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Os IT são materiais caracterizados pela presença de um gap de energia nos estados de 

bulk (interior da amostra) como um isolante comum, entretanto apresentam estados de 

superfície ou borda que permitem a condução de corrente. Desta forma através da 

classificação topológica, não podem ser conectados adiabaticamente com isolantes triviais ou 

mesmo materiais semicondutores, devido a sua ordem topológica não trivial. 

O conceito proposto por Murakami, inspirou Kane e Mele a aplicarem um modelo deste 

estado ao Grafeno[15], enquanto Bernevig e Zhang passaram a investigar a verificação deste 

efeito em materiais semicondutores, onde os níveis de Landau dos elétrons ocorreriam devido 

a intrínseca interação spin-órbita sem a necessidade de um campo magnético externo[16]. 

Nenhum destes modelos foi realizado experimentalmente, mas tiveram grande importância 

em desenvolvimentos conceituais.  No ano de 2006, Bernevig, Hughes e Zhang predisseram o 

primeiro IT 2D, por meio de poços quânticos de HgTe/CdTe[17;18]. 

Em 2007, Liang Fu e Kane afirmaram que a liga Bi1-xSbx seria um isolante topológico 3D 

em uma faixa especial de x[19], o qual foi confirmado no ano seguinte por M. Z. Hasan, 

através da espectroscopia de foto-emissão com resolução angular (ARPES), uma medida 

experimental que possibilitou a constatação dos estados topológicos de superfície[20].  

Modelos de isolantes topológicos para os compostos Bi2Te3, Bi2Se3 e Sb2Te3 foram 

construídos como generalizações deste modelo de poço quântico tridimensional[21].    

O interessante na teoria envolvida nos Isolantes Topológicos e que permitem a 

verificação de novas propriedades físicas caracterizadas por excitações exóticas, ao se inserir 

termos topológicos nas equações de Maxwell. A compreensão e verificação desta excitações, 

corresponde a grande parte da pesquisa atual em isolantes topológicos.  Por exemplo, no IT 

2D é predito a ocorrência de fracionalização de carga na borda, enquanto uma separação spin-

carga ocorre no seio do material. Verifica-se também que uma carga carregada acima da 

superfície de um IT 3D irá induzir não apenas uma carga elétrica imagem, mas também um 

monopólo magnético imagem, estes dois monopólos formariam um objeto compósito que 

obedece a uma estatística fracionária (anyons)[22;23].  

Uma notável predição teórica relacionada as isolantes topológicos, é que um 

supercondutor colocado sobre sua superfície, possa dar origem ao aparecimento de férmions 

de Majorana (cuja partícula é idêntica à anti-partícula).  Estes férmions previstos teoricamente 

e até o momento não constatados na natureza, são preditos para ocorrerem dentro dos vórtices 

de um supercondutor[24].   
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Todas estas notáveis características relacionadas aos isolantes topológicos, justificam a 

intensa pesquisa que a comunidade científica está empregando no estudo desta nova classe de 

materiais. Neste contexto muitos físicos esperam que este estudo vá aumentar o conhecimento 

fundamental sobre a natureza, além da possibilidade de emprego dos IT no desenvolvimento 

de nano-dispositivos relacionados a spintrônica e a computação quântica. 

Antes de finalmente iniciarmos a análise deste estado, será feita uma revisão sobre uma 

simetria que desempenham um papel fundamental neste novo estado quântico, que é a 

simetria de reversão temporal 𝕴. 

 

1.5  Simetria de Reversão Temporal 𝕴: 
 

O conceito relacionado a simetria de reversão temporal 𝕴 não é tão intuitivo, e por isso 

terá alguns de seus aspectos mais extensivamente revisados nesta dissertação, estando muitas 

de suas demonstrações localizadas no apêndice A. O termo reversão temporal associado a 

esta simetria é enganoso, estando mais apropriadamente relacionado a reversão do movimento 

(momento).   Logo, torna-se evidente porque a ação de seu operador reverta operadores 

relacionados com movimento (S → - S; J → - J; p → - p), enquanto mantém outros 

inalterados (x → x).   Por meio desta relação, esperamos que o produto de dois operadores que 

são revertidos por este operador permaneça invariante (p2 → p2;  J.S → J.S).  

Neste texto, representaremos o operador de reversão temporal pelo símbolo Θ, e para 

analisa-lo, inicialmente consideraremos a sua ação sobre um estado |α〉, dado por |α〉 → Θ|α〉, 

o que equivale a dizer que se |α〉 representa um auto-ket do momento linear |𝐩〉, então Θ|α〉 

corresponderá a um auto-ket de |−𝐩〉. 

O operador de reversão temporal é anti-unitário, ou seja, Θ = UK, em que K é o operador 

de conjugação complexa e U um operador unitário, sendo sua forma funcional para um 

sistema de spin ½ dada por (vide apêndice A)[2;8;23]:      

 Θ = 𝜂𝑒−𝑖𝑺𝒚𝜋/ℏK  = − 𝑖𝜂
2

ℏ
 Sy,  onde Θ2  =  -1                     (1.1)  

Na teoria dos Isolantes Topológicos, o operador de reversão temporal Θ apresenta um 

papel de crucial importância, uma vez que a simetria ao qual é associado está intimamente 

relacionada à proteção dos estados de borda, além de permitir a dedução do teorema de 

Kramers.   
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Este teorema diz que: “Qualquer estado de um sistema cujo momento angular total é 

semi-inteiro (ou seja, um sistema composto por um número ímpar de partículas com spin 

semi-inteiro) e que apresente a simetria de reversão temporal, deve ser degenerado[23;25].” 

A fim de deduzirmos este teorema, consideremos um sistema de spin semi-inteiro cujo 

Hamiltoniano comute com o operador de reversão temporal, ou seja, é invariante por reversão 

temporal: 

[H, Θ]  =  0,  ou  HΘ  =  ΘH                     (1.2)    

Tomemos então um auto-estado arbitrário |𝑛〉 do Hamiltoniano, tal que H |𝑛〉 = En |𝑛〉.  A 

expressão (1.2) implica que Θ|𝑛〉 também será um auto-estado do Hamiltoniano com energia 

En, uma vez que:    HΘ |𝑛〉 = ΘH |𝑛〉 = ΘEn|𝑛〉 = EnΘ|𝑛〉. 

O que devemos nos perguntar é se os vetores dados pelo |𝑛〉 e Θ|𝑛〉 correspondem ao 

mesmo estado físico, ou estados degenerados. Responderemos a esta pergunta via absurdo, e 

comecemos considerando a hipótese de que estes sejam o mesmo estado físico, ou em outras 

palavras, que Θ|𝑛〉 se diferencie do |𝑛〉 por no máximo um fator de fase:  Θ|𝑛〉  =  𝑒𝑖𝛿 |𝑛〉, 

aplicando novamente o operador Θ nós obtemos que: 

 Θ2|𝑛〉  =  ΘΘ|𝑛〉  =  Θ𝑒𝑖𝛿 |𝑛〉  =  𝑒−𝑖𝛿Θ|𝑛〉  =  𝑒−𝑖𝛿𝑒𝑖𝛿 |𝑛〉  =  +1|𝑛〉  ∴   Θ2  =  +1 

 

O que está em contradição com a expressão (1.1).  Portanto, a hipótese inicial estava 

errada, e chegamos à conclusão de que qualquer estado que apresenta a simetria de reversão 

temporal e cujo momento angular total seja semi-inteiro, deve ser degenerado. Este é o 

enunciado do teorema de Kramers. 

Na ausência da interação spin-órbita a degenerescência de Kramers é simplesmente a 

degenerescência entre as componentes up ↑ e down ↓ do spin[22].   Entretanto na presença 

desta interação, ocorre uma interessante consequência para a estrutura de bandas de um 

sistema que seja invariante sob ℑ, e apresente momento angular total semi-inteiro 

(fermiônico), podendo ser verificado pela seguinte analise do Hamiltoniano de Bloch:             

H |𝜓𝑛k〉 =  Enk |𝜓𝑛k〉 ,  onde  |𝜓𝑛k〉  =  𝑒𝑖k.⃗⃗⃗  r⃗  |𝑢𝑛k〉 é o auto-estado de bloch, o que nos permite 

utilizar a seguinte forma reduzida para a equação de Schrödinger:  H |𝑢𝑛k〉 =  Enk |𝑢𝑛k〉,  onde  

H  =  𝑒−𝑖k.⃗⃗⃗  r⃗  H 𝑒𝑖k.⃗⃗⃗  r⃗ .  Como H preserva a simetria de reversão temporal, então [𝐇, Θ] = 0, e 

podemos escrever[23]:  ΘH(𝑘⃗ )Θ-1 = H(−𝑘⃗ ) 
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O significado físico desta expressão é que a energia das bandas de um sistema com 𝕴 

ocorrem aos pares, ou seja, estados localizados em +k e -k possuem à mesma energia (são 

degenerados), sendo chamados de pares de Kramers. Os pares de Kramers ocorrem em torno 

dos momentos (pontos k) que são invariantes sobre 𝕴 e denominados de TRIM[19;26], 

consequentemente temos que a estrutura de bandas em tornos destes pontos é simétrica.  Os 

TRIM são definidos a partir da relação:  𝜦𝒊 = 
1

2
 (v1.b1 + v2.b2 + v3.b3), devendo corresponder 

a um ponto situado no interior da 1º Zona de Brillouin.  Na figura 1.6, exemplificamos os 

TRIM para uma rede recíproca hexagonal e outra retangular, bidimensionais. 

 

 

 

 

 

 

 

 

 
 

Figura 1.6: Momentos Invariantes por Reversão Temporal (TRIM) para uma Zona de Brillouin Hexagonal 

(esquerda) e outra Retangular (direita). A estrutura de bandas em torno destes pontos são simétricas e juntamente 

com a simetria de reversão temporal, garante que estados localizados em +k e –k em torno dos TRIM sejam 

degenerados (pares de Kramers). 

 

Como exemplo de aplicação da simetria de reversão temporal, analisemos 

qualitativamente a situação em que um campo magnético externo B é aplicado sobre elétrons.  

Neste caso, o Hamiltoniano que descreve o sistema conterá termos como:  S.B, p.A + A.p                           

 

Considerando que a simetria de reversão temporal reverte p e S, mas não os elementos 

externos ao sistema, como campo externo B e nem o potencial vetor A, verificamos que estes 

fatores serão ímpares em relação à reversão temporal.  Portanto, para um sistema que interage 

com um campo magnético externo, o Hamiltoniano deixará de comutar com o operador Θ, e 

concluímos que a ação do campo magnético externo promove a quebra desta simetria. 

No caso do Efeito Hall Quântico (QHE), um campo externo bastante intenso é aplicado 

sobre o material, logo se revertermos o movimento eletrônico (ou seja, se aplicarmos o 
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operador de reversão temporal), iremos alterar o estado do sistema. Como mencionado, uma 

das questões que iniciaram a busca por IT era a possibilidade da existência de materiais com 

estados de borda topologicamentte não triviais, mas que preservassem esta simetria.  

 

1.6  IT e o seu Invariante Topológico: 
 

O Efeito Hall Quântico foi o primeiro estado topológico da matéria a ser descoberto, 

entretanto um novo estado exibindo ordem topológica foi encontrado, e nomeado de Isolante 

Hall Quântico de Spin ou simplesmente Isolante Topológico Bidimensional (IT).   

O Isolante Topológico corresponde a uma nova fase quântica, caracterizada pela inversão 

da paridade das bandas de valência e condução em função da intrínseca interação spin-órbita 

do sistema. Estes são materiais que apresentam um gap de energia nos estados de bulk 

(interior da amostra) como um isolante convencional, mas possuem estados de borda, 

compostos por dois canais de elétrons spin-polarizados e que se deslocam em sentidos 

opostos entre si[27]. Nestes materiais é a interação spin-órbita quem possibilita a existência das 

fases topologicamente não triviais e que ainda preservam a simetria de reversão temporal 

ℑ[27].  

O estado de IT é observado em materiais que apresenta um forte acoplamento spin-órbita 

Este acoplamento é de origem relativística, estando associado à interação entre o momento de 

dipolo magnético de spin do elétron e o campo magnético interno do próprio átomo (o qual é 

uma consequência do momento angular orbital do elétron). 

Vimos que o QHE viola a simetria de reversão temporal ℑ, ao apresentar um campo 

magnético externo B, e desta forma o seu invariante topológico (número de Chern - 𝑛) anula-

se em sistemas que são invariantes sobre esta simetria.  Desta forma os Isolantes Topológicos 

devem ser classificados por um novo invariante topológico υ. A obtenção deste invariante 

ocorre por meio da análise dos estados de Bloch das bandas ocupadas, e será brevemente 

descrita a seguir. 

Existem várias formulações matemáticas para o invariante topológico 𝜐[28;29;30]. A forma 

mais simples de se obter este invariante é por meio da análise da estrutura de bandas, ou mais 

precisamente, dos estados de Bloch ocupados de uma sistema que apresente a simetria de 

paridade, ou inversão espacial[19].  
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Desta forma, em um sistema que além da simetria de reversão temporal, apresente a 

simetria de Paridade, observa-se que nos TRIM (𝜦i), os auto-estados de Bloch |𝑢𝑚(𝜦𝐢). 〉 

também serão auto-estados da Paridade (𝒫) com auto-valores 𝜉m(𝜦i) = ± 1[19].  

O invariante topológico 𝜐, de classificação Z2 é obtido por meio da relação:                        

(−1)𝜐  =  ∏ 𝛿i
4
i=1 , onde 𝛿i = ∏ 𝜉𝑚(𝜦𝐢)

.
𝑚 , corresponde a um produto feito sobre todos os 

pares de Kramers das bandas ocupadas. 

Por meio da análise da paridade das funções de onda de Bloch dos estados ocupados, nos 

momentos invariantes por reversão temporal (TRIM), teremos que 𝜐 = 0 irá corresponder a 

um estado com topologia trivial (como o vácuo), enquanto 𝜐 = 1 a um material com topologia 

não trivial, ou seja, um isolante topológico[19].  

Para materiais que não apresentam a simetria de Paridade, o cálculo do invariante 

topológico 𝜐 é mais complexo, e baseado na análise da seguinte matriz:                               

𝑤mn(𝑘⃗ ) = 〈.𝑢𝑚(𝑘⃗ )| Θ |𝑢𝑛(−𝑘⃗ ). 〉, que corresponde a representação matricial do operador de 

reversão temporal na base das funções de onda de Bloch dos estados ocupados |𝑢𝑚(𝑘⃗ ). 〉, aqui 

m e n são os índices da banda.  Esta matriz relaciona dois estados de Bloch, por meio da 

relação: |𝑢𝑛(−𝑘⃗ )〉  =  ∑ 𝑤𝑚𝑛
∗ (𝑘⃗ ) .

𝛽 Θ |𝑢𝑚(𝑘⃗ ). 〉. 

𝑤mn(𝑘⃗ ) correspondendo a uma matriz unitária [𝑤nm (−𝑘⃗ )  =  − 𝑤mn (𝑘⃗ )], o que significa 

que em um TRIM, esta matriz torna-se anti-simétrica, ou seja, 𝑤nm (Λi)  =  − 𝑤mn (Λi).   Para a 

determinação do invariante, utiliza-se o fato que o determinante de uma matriz anti-simétrica 

é o quadrado de seu Pfaffian, e desta forma é possível determinar a quantidade 𝛿i, que da 

mesma forma que os auto-valores dos auto-estados da paridade, somente podem fornecer dois 

valores:   𝛿i  =  
Pf [𝑤(𝛬i)]

√Det [𝑤(𝛬i)]
  =   

Pf [𝑤(𝛬i)]

√Pf2 [𝑤(𝛬i)]
  =    

Pf [𝑤(𝛬i)]

± Pf [𝑤(𝛬i)]
  =   ± 1  

Novamente o invariante topológico 𝜐, é obtido por meio da relação:  (−1)𝜐  =  ∏ 𝛿i
4
i=1 , 

onde 𝜐 = 0 irá corresponder a um estado com topologia trivial, enquanto 𝜐 = 1 a um material 

topologicamente não trivial.  
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1.6.1  Estados de borda topologicamente protegidos: 

 

Os IT ou sistemas que apresentam o EHQS podem ser visualizados como duas cópias do 

QHE, onde estados com spin opostos contra propagam na borda do material. De forma 

análoga ao QHE, em regiões onde o invariante topológico muda, devem existir estados 

metálicos condutores. Tais estados, são chamados de hélicos[31] (uma analogia com a 

correlação entre spin e o momento de partículas com massa nula que é chamada de 

helicidade[32]), e podem ser considerados como metade de um condutor ordinário.  

Condutores ordinários como os que ocorrem no QHE, possuem elétrons com spin-up ↑ e 

down ↓ propagando-se em ambas as direções e são frágeis, pois os estados são susceptíveis a 

localização de Anderson mesmo na presença de desordem fraca.  Em contraste a isto no IT os 

estados de borda não podem ser localizados nem na presença de desordem forte devido à 

simetria de reversão temporal 𝕴, desta forma os estados de superfície são protegidos por esta 

simetria (situação não válida para a presença de uma impureza magnética)[23,28]. 

 

 

 

 

 

 

 

 

 

Figura 1.7: Estados de borda, à esquerda no QHE, e a direita no IT (EHQS) mostrando a polarização de spin em 

cada uma das bordas do material. 

 

Uma forma de entender esta proteção e considerar a situação em que uma impureza não 

magnética reside na borda do Isolante Topológico[22]. A princípio esta impureza pode causar o 

espalhamento dos portadores em sentido contrário à sua propagação inicial, contudo, 

considere um portador com spin-up ↑. Para ser espalhado em sentido oposto a sua propagação, 

ele pode contornar a impureza de duas formas distintas e como apenas spin-down ↓ pode 

propagar no sentido oposto, seu spin tem que rodar adiabaticamente de 𝜋 ou –𝜋 em cada um 

dos casos. Consequentemente, os dois caminhos para o espalhamento diferem por uma 

rotação do spin dos elétrons de 𝜋 − (−𝜋) = 2𝜋, como mostrado na figura 1.8. 
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Figura 1.8: Um portador de carga em um estado de borda do EHQS pode ser espalhado em duas direções por 

uma impureza não magnética. Indo no sentido horário, o spin gira por π; enquanto que no sentido anti-horário, o 

spin gira por -π. Figura extraída e modificada a partir da referência [22]. 

 

 

Para analisarmos esta situação, observemos que o operador para uma rotação de 2𝜋 em 

torno de um eixo na direção do vetor normal 𝐧̂, é dado pela expressão Rn(2𝜋) = 𝑒
−2𝜋𝑖𝐣.𝐧

ℏ .           

A ação deste operador sobre os auto-vetores de momento angular é                                         

Rn(2𝜋) |j, m⟩ = (−1)2j |j, m⟩, de forma que para partículas com momento angular semi-inteiro, 

este operador reverte a função de onda Rn(2𝜋) |j, m⟩ = − |j, m⟩, levando a uma completa 

interferência destrutiva entre os dois caminhos espalhados.  Entretanto, caso a impureza 

apresente um momento magnético, como vimos, a simetria 𝕴 será violada e as duas ondas 

refletidas não irão mais interferir destrutivamente. Neste sentido a proteção dos estados de 

borda é protegida por esta simetria[22;33]. 

A explicação física aplicada até aqui só é válida caso haja um número ímpar de estados 

superficiais que apresentem degenerescência de Kramers, ou em outras palavras, um número 

ímpar de cones de Dirac atravessando o nível de Fermi.  Caso houvesse, por exemplo, dois 

estados com a mesma orientação de spin, um se movendo para frente e o outro para trás, então 

um elétron poderia ser retroespalhado sem a necessidade de inverter seu spin, desta forma a 

interferência destrutiva caracterizada anteriormente não ocorreria, permitindo a dissipação 

nestes estados. 
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 Baseado nesta argumentação, para que os estados superficiais do IT sejam protegidos é 

necessário que eles sejam formados por um número ímpar de estados que se movam em um 

sentido, e o mesmo número de estados na direção oposta.  Este efeito, dado pelo fato dos 

estados ocorrerem em um número par ou ímpar, está relacionado ao seu invariante topológico 

(𝜐)[23].   

Qual das alternativas acima ocorre (par ou ímpar) é devido à correspondência entre o 

bulk e o contorno do material.  Se o isolante possuir NK par, onde NK representa o número de 

parceiros de Kramers que cruzam a EF da borda do material, ele se encontrará em uma fase 

topologicamente trivial e representado pelo invariante topológico (𝜐 = 0), entretanto se ele 

possuir NK ímpar, então estará no EHQS, que é um estado não trivial, representado por            

(𝜐 = 1)[23], o qual possui estados de borda topologicamente protegidos. Desta forma existe 

uma correspondência entre o invariante topológico 𝜐 e o número de pares de Kramers que 

cruzam a EF. 

Nos isolantes comuns a reorganização dos átomos na superfície, ou então a modificação 

das ligações químicas podem introduzir estados superficiais que possuem sua energia no gap 

da banda, mas estes são restritos a se moverem em torno da superfície bidimensional. Estes 

estados geralmente são frágeis e sua existência depende dos detalhes da geometria e química 

da superfície[34].   Em contraste a isto no Isolante Topológico, os estados de superfície são 

protegidos, isto é, sua existência não depende em como a superfície do material é organizada 

(sua geometria ou química) e a explicação é matemática baseando-se no fato que o 

Hamiltoniano descrevendo os estados da superfície é invariante sobre pequenas 

perturbações[34]. 
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Capítulo 2: 

Teoria do Funcional da Densidade - DFT 

 

2.1  Equação de Schrödinger: 
 

Em 1926, Erwin Schrödinger propôs a mecânica quântica ondulatória, teoria baseada em 

uma equação diferencial para a onda de Luis de Broglie[35], apresentada abaixo: 

{- 
ħ

2𝑚
∇2 + V(q,t)}Ψ(q,t) = iħ 

𝜕

𝜕𝑡
 Ψ(q,t) 

Denominada de equação de Schrödinger dependente do tempo, onde o termo contido 

entre chaves designa o Hamiltoniano dependente do tempo H(t) ou operador energia total, e 

que descreve o sistema estudado. Ψ(q,t) é a função de onda do sistema o qual não possuía um 

significado físico definido, imaginava-se que representava uma vibração onde a partícula seria 

seu guia, cabendo a Max Born interpretar seu significado físico, enunciado da seguinte 

maneira: 

“A probabilidade de obter no decorrer de uma observação e em um dado instante t, a 

partícula no interior de um elemento de volume d 3q em torno do ponto q é igual a:” 

P(q)d 3q = Ψ*(q,t)Ψ(q,t)d 
3q   ou   P(q) = Ψ*(q,t)Ψ(q,t) 

Assim, se cada elétron está associado a uma dada função de onda Ψ, o produto Ψ*Ψ será 

igual à amplitude da probabilidade de localizar este elétron em uma unidade de volume em 

torno de um ponto q.  

Um ano antes de Erwin Schrödinger, Werner Heisenberg introduziu uma formulação 

matricial para a mecânica quântica.  Mesmo que os formalismos de Heisenberg e 

Schrödinger sejam distintos e independentes, ambos apresentam a mesma interpretação física. 

No formalismo de Schrödinger, as Ψ permaneceram fixas no espaço enquanto as coordenadas 

variam, já no formalismo de Heisenberg as coordenadas são fixas, enquanto as Ψ é que 

variam. 
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A equação de Schrödinger permite descrever analiticamente com exatidão unicamente o 

átomo de hidrogênio, prevendo suas raias espectrais a menos dos efeitos oriundos de origem 

relativística.   Para a análise de sistemas contendo muitos elétrons através desta equação faz-

se necessário de um maior poder de processamento computacional, além da inserção de 

aproximações e técnicas que viabilizem sua solução. 

No presente trabalho será utilizada simultaneamente a notação tradicional de Schrödinger 

para a mecânica quântica conjuntamente com a notação de Dirac: 

 ∫.Ψ*(q,t)Ψ(q,t)d 
3q  =  〈.Ψq|Ψq. 〉 

Como neste estudo, consideramos que o potencial de nosso sistema permaneça fixo no 

tempo, utilizaremos à equação de Schrödinger com Hamiltoniano independente do tempo. O 

que nos permite proceder à separação de variáveis e desacoplar a parte temporal da parte 

espacial da função de onda Ψ, que pode ser escrita da seguinte forma: |Ψ(t). 〉 = ∑ .𝑗 Cj 

|ψj(t=0)〉ϕj(t), a solução da parcela espacial é obtida pela resolução: H |ψj. 〉 = Ej |ψj. 〉, 

enquanto a parcela temporal possui a solução trivial dada por: ϕj(t) = exp(
−𝑖𝐸jt

ħ
⁄ ).. 

A equação espacial do sistema fornecerá as funções de onda independentes do tempo, 

também denominadas de auto-estados ou estados estacionários |ψj. 〉, sendo seus respectivos 

valores de energia Ej chamadas de auto-valores.  Após obtida a solução espacial da equação 

de Schrödinger, a solução completa do sistema pode ser expressa da seguinte forma:  |Ψ(t). 〉 

= ∑ .𝑗 Cj |ψj. 〉 exp(- 𝑖 ħ⁄ .Ej.t), onde |Cj|
2 fornece a probabilidade de encontrar a partícula no 

estado ψj com energia Ej. 

Para solucionar a equação espacial, necessitamos conhecer o operador Hamiltoniano que 

descreve o sistema.  Em nosso estudo analisamos um sistema de muitos corpos, contendo N 

elétrons e M núcleos, de forma que o operador Hamiltoniano possa ser escrito como[36]: 

H = –  ∑
ħ2

2𝑚𝑎

𝑀
𝑎=1 ∇𝑎

2  – 
1

2
∑

ħ2

2𝑚𝑒
∇𝑖

2𝑁
𝑖=1

 – e2 ∑ .𝑀
𝑎=1 ∑ .𝑁

𝑖=1
𝑍𝑎

|𝒓𝑖−𝑹𝑎|
 + 

e2

2
∑ .𝑁

𝑗=1 ∑ .𝑁
𝑖≠𝑗

1

|𝒓𝑖−𝒓𝑗|
 + 

e2

2
∑ .𝑀

𝑎=1 ∑ .𝑀
𝑏≠𝑎

𝑍𝑎𝑍𝑏

|𝑹𝑎−𝑹𝑏|
 

A fim de simplificar a notação utilizada na expressão acima aplicaremos unidades 

atômicas, ou seja: a carga do elétron (e), sua massa (me) e a constante de Planck dividida por 

2π (ħ) foram igualadas a 1.  
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Para simplificação, o primeiro termo que corresponde ao operador referente a energia 

cinética dos núcleos será representado por TN; o segundo termo (energia cinética dos elétrons) 

por Te ; o terceiro termo (atração núcleo-elétron) por VNe; o quarto termo (energia potencial 

repulsiva entre os elétrons) por Vee; e o quinto termo (energia potencial repulsiva entre os 

núcleos) por VNN, desta forma o operador Hamiltoniano pode ser reescrito como: 

H = TN + Te + VNe + Vee + VNN 

Como exposto anteriormente, este sistema composto por elétrons interagentes e descrito 

pelo Hamiltoniano acima não pode ser resolvido analiticamente, ou seja, não é possível obter 

a solução da equação de Schrödinger para este sistema. Uma vez que se trata de um problema 

de muitos corpos, torna-se necessário a utilização de aproximações a fim de tornar o problema 

solúvel. 

 

2.2  Aproximação de Born-Oppenheimer: 
 

Esta aproximação desacopla a parte eletrônica da parte nuclear na expressão do 

Hamiltoniano[37]. Ela se baseia no fato da massa do elétron ser cerca de 2000 vezes inferior à 

massa do núcleo; assim considera-se que a energia cinética do núcleo (inversamente 

proporcional à massa) seja muito menor que a energia cinética do elétron. Portanto este termo 

será desprezado na expressão do Hamiltoniano, ou em outras palavras, admite-se que para 

cada variação nas coordenadas nucleares, os elétrons se ajustam simultaneamente a essa nova 

posição, logo os elétrons estariam se movendo num referencial de núcleos fixos (ma → ∞ 

levando a TN → 0).  

H = Te + VNe + Vee + VNN 

Esta forma para o operador Hamiltoniano, torna possível desacoplar a parte eletrônica da 

nuclear:  H = Helet + HNucl,    onde:  Helet = Te + VNe + Vee    e    HNucl  = VNN 

Os auto-valores da parcela eletrônica do Hamiltoniano Helet podem ser obtidos para um 

auto-estado que seja função da posição nuclear |ψj(𝐑). 〉, uma vez que Helet comuta com as 

coordenadas das posições nucleares, [Helet , R] = 0  ou  RHelet = Helet R, logo:   

Helet |ψj(R). 〉 = Eelet
j(R) |ψj(R). 〉 
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Desta forma, a energia dos estados eletrônicos Eelet
j(R) dependerá das coordenadas 

nucleares, e para obter-se a energia total do sistema ETotal
j(R) que corresponde ao auto-valor de 

H para um sistema de núcleos fixos, será necessário adicionar aos valores da energia 

eletrônica Eelet
j(R) o termo correspondente à repulsão nuclear VNN: 

ETotal
j(R) = Eelet

j(R) + VNN 

ETotal
j(R) = Eelet

j(R)  +  ∑ .𝑀
𝑎=1 ∑ .𝑚

𝑏≠𝑎
𝑍𝑎𝑍𝑏

|𝑹𝑎−𝑹𝑏|
 

Mesmo a aproximação de Born-Oppenheimer sendo útil, a equação de Schrödinger com 

Helet ainda se apresenta impossível para ser resolvida numericamente, sendo necessárias 

outras aproximações.   Um dos métodos melhor sucedidos e mais utilizados para a solução do 

problema de muitos corpos é a teoria do funcional da densidade, em inglês Density Functional 

Theory (DFT). 

 

2.3  DFT – Teoria do Funcional da Densidade: 
 

O aspecto fundamental da DFT é que esta teoria descreve a energia do sistema em termos 

da densidade de carga ρ(r) uma grandeza fisicamente observável, em contraste com o 

formalismo padrão da mecânica quântica em que toda a informação do sistema está contida na 

função de onda Ψ, que não é fisicamente observável. 

A DFT originou-se a partir de dois teoremas propostos por Hohenberg e Kohn[38] na 

década de 1960.   Este é um método bem sucedido em relação ao seu emprego em cálculos de 

primeiros princípios (ab-initio) para a descrição e entendimento das propriedades dos 

materiais no seu estado fundamental, sendo uma teoria de muitos corpos para sistemas 

quânticos. 

 

2.3.1  Teoremas de Hohenberg e Kohn (HK): 
 

No ano de 1964, Pierre Hohenberg e Walter Kohn apresentaran sua teoria, mais 

conhecida por Teoria do Funcional da Densidade (DFT)[38]. Como exposto anteriormente, 

nesta teoria deseja-se obter a densidade eletrônica ρ(r), grandeza fisicamente observável e que 

contém toda a informação do sistema, em oposição ao formalismo de Schrödinger onde é 



Dissertação: Investigação dos Estados Topologicamente Protegidos em Siliceno e Germaneno. 

Autor: Augusto de Lelis Araújo – Universidade Federal de Uberlândia/MG 

34 

obtida a função de onda Ψ(q,t), que entretanto não constitui uma grandeza fisicamente 

observável. O DFT fundamenta-se nos seguintes teoremas[39]: 

Teorema I: Para todo sistema de partículas interagentes que estão sobre a influência de um 

potencial externo Vext(r), este potencial é determinado unicamente (funcional único) exceto 

por uma constante, pela densidade eletrônica de partículas no estado de menor energia (estado 

fundamental) ρ0(r). 

Teorema II: A energia como um funcional da densidade E(ρ) pode ser definida e é válida 

para qualquer potencial externo Vext(r). Para um determinado potencial, o valor exato da 

energia no estado fundamental E0(ρ) é o mínimo global do funcional energia, sendo a 

densidade que minimiza este funcional a densidade exata do estado fundamental ρ0(r). 

 

Prova do Teorema I: 
 

Segundo o teorema I, no campo gerado pelo potencial externo Vext(r) (o qual corresponde 

ao potencial que os núcleos exercem sobre os elétrons VNe) a densidade eletrônica ρ(r) 

determina univocamente este potencial, ou seja, Vext(r) = Vext(ρ).  Logo é este teorema que 

introduz o fato de toda a informação do sistema estar contida na densidade eletrônica ρ(r), a 

prova do teorema I se dará por absurdo. 
 

Inicialmente será suposto que dois potenciais externos (V’ e V”) são originados da 

mesma densidade eletrônica ρ(r), assim cada um destes potenciais externos definiram um 

operador V ’ e V ” e por conseguinte um operador Hamiltoniano H ’ e H ”. Sendo que cada 

um destes Hamiltoniano irão corresponder a uma determinada função de onda |𝜓’〉 e |𝜓”〉, aos 

quais devem resultar na mesma densidade eletrônica ρ(r), como esquematizado a seguir: 

H = Hele = Te + Vee + VNe = Te + Vee + Vext 

H ’ = Te + Vee + V ’    e    H ” = Te + Vee + V ” 

Hele |𝜓〉 = Ej(R) |𝜓〉 

H ’ |𝜓′〉 = E’(R) |𝜓′〉      e     H ” |𝜓′′〉 = E”(R) |𝜓′′〉 

|𝜓′〉 → ρ(r) ← |𝜓′′〉 

V’ → H ’→ |𝜓′〉 → ρ(r) ← |𝜓′′〉 ← H ” ← V” 
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A energia é definida na notação de Dirac, da seguinte forma:  E = 〈𝜓|H|𝜓〉                       

Supõe-se que a energia do estado fundamental é dada por: E’0 = 〈𝜓’|H ’|𝜓’〉, utilizando-se o 

teorema variacional, tem-se: 

𝐸0
′  < 〈𝜓”|H ’|𝜓”〉, ou seja, qualquer energia determinada por ψ ≠ ψ’ será maior que a energia 

do estado fundamental. 

Somando-se e subtraindo-se H” da expressão acima, tem-se: 

𝐸0
′  < 〈𝜓”|H ’ + H ”’ – H ”|𝜓”〉 

𝐸0
′  < 〈𝜓” |H ”|𝜓”〉 + 〈𝜓”|H ’ – H ”|𝜓”〉 

𝐸0
′  < 𝐸0

′′ + 〈𝜓”|Te + Vee + V ’ – Te – Vee – V ”|𝜓”〉 

𝐸0
′  < 𝐸0

′′ + 〈𝜓”|V ’ – V ”|𝜓”〉     ou     𝐸0
′  < 𝐸0

′′ + ∫ρ(𝐫) [V ’ – V ”]d3r     (A) 

Repetindo-se os procedimentos acima, mas trocando-se os termos de linha por duas linhas, e 

vice-versa. 

𝐸0
′′ = 〈𝜓”|H ”|𝜓”〉 

𝐸0
′′ < 〈𝜓′|H ”|ψ’𝜓′〉 

𝐸0
′′ < 〈𝜓′|H ”+ H ’ - H ’|𝜓′〉 

𝐸0
′′ < 〈𝜓′|H ’|𝜓′〉 + 〈𝜓′|H ” - H ’|𝜓′〉 

𝐸0
′′ < 𝐸0

′
 + 〈𝜓′|H ” - H ’|𝜓′〉    ou    𝐸0

′′ < 𝐸0
′
 + ∫ρ(𝐫) [V ” – V ’]d3r       (B) 

Reagrupando e somando-se as expressões (A) e (B), obtém-se: 

𝐸0
′  < 𝐸0

′′ + ∫ρ(𝐫) [V ’ – V ”]d3r    →    𝐸0
′  – 𝐸0

′′ < ∫ρ(𝐫)[V ’ – V ”]d3r 

𝐸0
′′ < 𝐸0

′
 + ∫ρ(𝐫) [V ” – V ’]d3r    →    𝐸0

′′ – 𝐸0
′  < −∫ρ(𝐫)[V ’ – V ”]d3r 

𝐸0
′  – 𝐸0

′′  <  − (𝐸0
′′ – 𝐸0

′)  

𝐸0
′  – 𝐸0

′′  <  𝐸0
′  – 𝐸0

′′    (Absurdo) 
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Desta forma concluímos, que a hipótese original de que dois potenciais externos 

diferentes fornecendo a mesma densidade de carga, leva a um absurdo, ou seja, potenciais 

externos distintos devem levar a distintas densidades eletrônicas.  Confirmando o 1° teorema 

de HK de que o potencial externo é um funcional único da densidade, logo cada densidade é 

determinada por apenas um potencial externo. 

Como o Hamiltoniano H do sistema fica definido ao se conhecer o potencial Vext(r) que 

é devido aos núcleos, então se torna possível determinar a função de onda Ψ do sistema; desta 

forma existe uma relação direta entre a densidade eletrônica do estado fundamental ρ0(r) com 

a função de onda neste estado Ψ0.  Logo, ρ0(r) deve conter as informações do sistema assim 

como a função de onda, ao menos para o estado fundamental para o qual é válida, ou seja, a 

função de onda é um funcional da densidade no estado de menor energia Ψ(ρ0).  Conclui-se 

consequentemente que o funcional de qualquer observável físico será um funcional único da 

densidade ρ0(r), onde a relação entre o observável físico e seu operador é dado por: 

X = X(ρ) = 〈.ψ|X|ψ. 〉, sendo X o observável físico e X o operador deste observável. 

 

Prova do Teorema II: 

O teorema II de HK introduz que o valor exato da densidade eletrônica no estado 

fundamental ρ0(r) fornece o menor valor de energia, ou seja, a energia do estado fundamental 

do sistema E0[ρ(r)]; para realizar a prova, a expressão da energia será dividida em duas partes.  

A primeira parte será comum a qualquer sistema que contenha muitos átomos em interação 

coulombiana sendo chamada de funcional universal F(ρ)[40], a segunda parte caracteriza o 

sistema, ou seja, refere-se ao potencial externo Vext ao qual o sistema está exposto. 

E[ρ(r)] = 〈𝜓 |Hele|𝜓〉 

E[ρ(r)] = 〈𝜓|Te + Vee + VNe|𝜓〉 = 〈𝜓|Te + Vee + Vext|𝜓〉 

E[ρ(r)] = 〈𝜓|Te + Vee|𝜓〉 + 〈𝜓|Vext|𝜓〉  =  F[ρ(r)] + 〈𝜓|Vext|𝜓〉 
 

Escrevendo-se esta equação para o estado fundamental (menor energia), tem-se: 

E[ρ0(r)] = F[ρ0(r)] + 〈𝜓
0
|Vext|𝜓0

〉,  onde |𝜓
0
〉 é a função de onda do estado fundamental. 
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Relembrando que a prova do teorema I de HK demonstrou que a densidade eletrônica 

determina unicamente a função de onda, e aplicando o teorema do variacional na energia: 

E0 = E[ρ0(r)] = E[𝜓
0
]        “Energia do estado fundamental” 

E[𝜓
0
] < E[𝜓]     “Teorema do variacional, onde 𝜓 ≠ 𝜓

0
” 

Reescrevendo a expressão acima: 

〈𝜓
0
|Hele|𝜓0

〉  <  〈𝜓|Hele|𝜓〉 

〈𝜓
0
| Te + Vee + Vext |𝜓0

〉  <  〈𝜓| Te + Vee + Vext |𝜓〉 

〈𝜓
0
| Te + Vee |𝜓0

〉 + 〈𝜓
0
|Vext |𝜓0

〉   <   〈𝜓| Te + Vee |𝜓〉 + 〈𝜓|Vext |𝜓〉 

F[ρ0(r)] + 〈𝜓
0
|Vext |𝜓0

〉   <   F[ρ(r)] + 〈𝜓|Vext |𝜓〉 

E[ρ0(r)]  <  E[ρ(r)] 

Conclui-se desta forma que qualquer densidade ρ(r) que seja distinta da ρ0(r), irá 

fornecer um maior valor para a energia do sistema, provando desta forma o 2° teorema de 

HK. 

Ambos os teoremas de HK evidenciam que a menor energia do sistema (energia do 

estado fundamental) pode ser determinada através da expressão correta da densidade de carga 

ρ0(r), obtida por meio do potencial externo Vext(r).   Ou seja, o DFT corresponde a uma teoria 

que fornece o valor exato para a energia do estado fundamental E0, entretanto esta teoria não 

nos fornece uma maneira (método) de obtermos tal energia, método este que posteriormente 

fora proposto por Kohn e Sham. Uma consequência importante destes teoremas é que sua 

utilização reduz o cálculo computacional necessário para resolver o sistema, uma vez que 

deixa-se de lidar com 3N variáveis (x,y e z de cada um dos N elétrons) para trabalhar apenas 

com 3 variáveis referente à densidade de carga (sem a perda de informação do sistema), outra 

importante consequência é a inserção do conceito dos funcionais da densidade eletrônica. 

 

2.4  Equações de Kohn-Sham (KS):  
 

As equações de Kohn-Sham (KS)[41] constituem um método sistemático para a obtenção 

da energia do estado fundamental E0 através da determinação da densidade eletrônica exata do 

sistema neste estado ρ0(r).    Nestas equações se assume que o sistema composto por muitas 
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partículas interagentes possa ser substituído por outro sistema de partículas não interagentes, 

ou seja, transformando o problema inicial de N corpos interagentes em N problemas de um 

único corpo, onde a densidade eletrônica do estado fundamental de ambos os sistemas devem 

ser iguais[42].  Para esta tarefa, escrevemos a energia como um funcional da densidade, na 

seguinte forma já expressa anteriormente:    

E(ρ) = F(ρ) + 〈.ψ|Vext|ψ. 〉  =  F(ρ) + Vext.(ρ) 

O funcional universal F(ρ) é comum a todos os sistemas multi-eletrônicos é de acordo 

com o formalismo empregado por Kohn-Sham, ele é analisado como composto por três partes 

integrantes. Sendo estas a energia cinética de um gás de elétrons não interagentes com 

densidade eletrônica ρ(r), denominada de T0(ρ); a interação Coulombiana clássica entre os 

elétrons do sistema J(ρ) também conhecida como energia de Hartree; e a energia de troca e 

correlação Exc(ρ).    Este último termo contém a parte da energia cuja forma não é conhecida 

explicitamente, sendo oriundo da interação entre as partículas e correspondendo à diferença 

entre as energias cinética real e do sistema auxiliar não interagente, além de estar relacionado 

a correlação proveniente da interação coulombiana.    Na correlação a dinâmica de um elétron 

irá influenciar na dinâmica dos demais. Caso a forma ou valor do termo Exc(ρ) seja conhecido, 

torna-se possível obter a energia total e a densidade eletrônica fundamental do sistema.   

Desta forma E(ρ) é reescrito da seguinte forma: 

E(ρ) = T0(ρ) +  J(ρ) + Exc(ρ) + Vext.(ρ) 

Onde:  T0(ρ) = - 
1

2
∑ ∫.N

𝑖 ϕ*
i∇2ϕi 𝑑3r, é a energia cinética de um gás de elétrons não 

interagentes, onde os ϕi são denominados de orbitais de KS de partícula única, representando 

as funções de onda dos elétrons não interagentes. Enquanto, J(ρ) = 
1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
𝑑3r 𝑑3r’ é a 

energia de Hartree (interação coulombiana clássica entre os elétrons).  De forma que 

escrevemos:  E(ρ) = - 
1

2
∑ ∫.N

𝑖 ϕ*
i∇2ϕi 𝑑3r   +   

1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
𝑑3r 𝑑3r’  +   Exc(ρ)  +  Vext.(ρ) 

De acordo com o teorema II de HK, a energia do estado fundamental E0(ρ) será obtida ao 

aplicarmos o princípio variacional, onde minimizaremos o funcional E(ρ) em relação à 

densidade ρ(𝐫). Como o estado fundamental é o menor valor de energia possível, neste 

processo obtém-se uma condição de extremo para esta minimização, observada a condição de 

vínculo onde o número total de partículas N, ou equivalentemente, a carga total do sistema 

deve permanecer fixo. 
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δ

δρ
{𝐸(ρ)  −  μ ∫ ρ(𝐫) 𝑑3𝐫} = 0,  onde Q = Ne = N = ∫.ρ(r)d 3r  (Lembrando-se que assumimos e = 1) 

δ𝐸(ρ)

δρ
 = μ 

δ𝐸[ρ(𝐫)]

δρ
   =    

δ

δρ
   - 

1

2
∑ ∫..

𝑖 ϕ*
i∇2ϕi d 3r   +   

1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’  +   Exc[ρ]  +  Vext.[ρ]      =  μ 

μ =   
δ

δρ(𝐫)
 T0[ρ]   +  

δ

δρ(𝐫)
 J[ρ(r)]  +  

δ

δρ(𝐫)
 Exc[ρ]  +   

δ

δρ(𝐫)
 Vext [ρ] 

Onde: 

δ

δρ(𝐫)
 T0[ρ]  =  

δ

δρ(𝐫)
 - 

1

2
∑ ∫..

𝑖 ϕ*
i∇2ϕi d 3r   =   

δ

δρ(𝐫)
 - 

1

2
∑ ∫∇𝑖

2ρ(r)d 3r  =  - 
1

2
∇2 

δ

δρ(𝐫)
 J[ρ]  =   

δ

δρ(𝐫)

1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’  =  ∫

ρ(𝐫′)

|𝒓−𝒓′|
d 3r’ 

δ

δρ(𝐫)
 Exc[ρ]   =   Vxc[ρ]       “Este é a definição do potencial de troca e correlação” 

δ

δρ(𝐫)
 Vext.[ρ]  =   

δ

δρ(𝐫)
∫. vext(r)ρ(r)d 3r  =  vext(r) 

Obtendo-se a seguinte forma para a equação de Euler: 

μ = - 
1

2
∇2  +  ∫

ρ(𝐫′)

|𝒓−𝒓′|
d 3r’  +  Vxc(ρ)  +  vext(r) 

 

Agora definimos o potencial efetivo de Kohn-Sham: VKS(ρ) = ∫
ρ(𝐫′)

|𝒓−𝒓′|
d 3r’ + Vxc(ρ) + vext(r)   

Desta forma, temos que:   μ = - 
1

2
∇2  +  VKS(ρ),  onde   - 

1

2
∇2  +  VKS(ρ) = HKS 

Aqui percebemos que o Hamiltoniano do sistema auxiliar não interagente, possui um 

operador energia cinética usual e um potencial efetivo VKS atuando sobre cada elétron do 

sistema. Obtendo-se uma equação do tipo de Schrödinger:  HKSϕi(r) = 𝜖iϕi(r)          

        A partir desta equação, obtém-se os orbitais de Kohn-Sham ϕi(r) de partícula única, 

tornando-se possível a obtenção da densidade de carga ρ(r) do sistema, da seguinte forma:   

ρ(r) = ∑ .N
𝑖 |ϕi(r)|2   = ∑ .N

𝑖 ϕi
*(r)ϕi(r) = ∫.ϕi

*(r)ϕi(r) d3r    

As duas expressões anteriores compõem as equações de Kohn-Sham, que irão nos 

fornecer a densidade do estado fundamental de um sistema de elétrons interagentes através da 

densidade do estado fundamental de um sistema de elétrons não interagentes submetidos a um 
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potencial efetivo VKS, ao se resolver estas equações em um processo auto-consistente. Neste 

processo inicialmente inserimos uma densidade de carga tentativa ρ’(r), calculamos o 

potencial efetivo de Kohn-Sham VKS, e resolvemos a equação HKSϕi(r) = 𝜖iϕi(r) determinando 

os orbitais de KS de partícula única ϕi(r).  

De posse destes orbitais determina-se uma nova densidade eletrônica ρ”(r); caso as 

densidades sejam iguais então ρ”(r) será a densidade correta do sistema.  Mas caso as 

densidades sejam distintas então ρ’(r) = ρ”(r) e o ciclo será reiniciado, até que as densidades 

de entrada e saída sejam iguais dentro de um critério de convergência estabelecido.  Obtidos 

os auto-valores 𝜖i das equações KS, podemos obter o valor de energia do sistema E(ρ): 

𝜖i = 〈.ϕi|HKS|ϕi. 〉 = ∫.ϕi
*(r) HKS ϕi(r) d3r,  onde HKS ϕi(r)  = 𝜖i ϕi(r), logo: 

ϕi
*(r)HKSϕi(r)  =  ϕi

*(r)𝜖iϕi(r) ,    relembrando que HKS   =   - 
1

2
∇2  +  VKS(ρ), teremos: 

ϕi
*(r)[− 

1

2
∇2   +   𝐕𝑲𝑺(ρ)]ϕi(r)  =  ϕi

*(r)𝜖iϕi(r) ,    onde VKS   =  ∫
ρ(𝐫′)

|𝒓−𝒓′|
d 3r’ + Vxc(ρ) + vext(r)   

ϕi
*[− 

1

2
∇2   +   ∫

ρ(𝐫′)

|𝒓−𝒓′|
𝑑3𝐫’  +  VXC(ρ)   +   𝑣ext(𝐫)]ϕi   =   ϕi

*(r)𝜖iϕi(r) 

− ϕi
*1

2
∇2 ϕi   +   ϕi

*∫
ρ(𝐫′)

|𝒓−𝒓′|
d 3r’ϕi   +   ϕi

*Vxc(ρ)ϕi   +   ϕi
*vext(r)ϕi   =   ϕi

*(r)𝜖iϕi(r) 

Integrando-se em todo o espaço: 

−∫.ϕi
*ϕi 

1

2
∇2 d3r  +  ∬

ρ(𝐫′)

|𝒓−𝒓′|
.ϕi

*ϕid3r’ d3r   +   ∫.ϕi
*ϕiVxc(ρ)d3r   +   ∫.ϕi

*ϕivext(r)d3r    =   ∫.ϕi
*ϕi𝜖id3r 

- 
1

2
∫. ∇ρ(r)d3r  +  ∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
.d3r’d3r  +  ∫.Vxc(ρ)ρ(r)d3r  +  ∫.vext(r)ρ(r)d3r =   ∫. 𝜖iρ(r)d3r 

T0(ρ) + ∬
ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
.d 3r’d3r + ∫.Vxc(ρ)ρ(r)d3r  +  ∫.vext(r)ρ(r)d3r   =  ∑ .𝑜𝑐𝑢𝑝𝑎𝑑𝑜𝑠

𝑖 𝜖i                        

___ ∑ .𝑜𝑐𝑢𝑝𝑎𝑑𝑜𝑠
𝑖 𝜖i = T0(ρ) + ∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
.d3r’d3r + ∫.Vxc(ρ)ρ(r)d3r + Vext.(ρ)                  (A)                                                                                                                                                                                                                                                                   

Lembrando-se que:  

E(ρ) = - 
1

2
∑ ∫..

𝑖 ϕ*
i∇2ϕi d 3r   +   

1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’  +   Exc(ρ)  +  Vext.(ρ) 

E(ρ) = - 
1

2
∫ρ(𝐫) ∇2 d3r  +   

1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’  +  Exc(ρ)  +  Vext.(ρ)  

___E(ρ) = T0(ρ) +  
1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’ +  Exc(ρ)   +  Vext.(ρ)                                    (B) 
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Comparando-se as expressões (A) e (B), Obtemos: 

T0(ρ)  +  Vext.(ρ)   =   ∑ .𝑜𝑐𝑢𝑝𝑎𝑑𝑜𝑠
𝑖 𝜖i   -   ∫.Vxc(ρ)ρ(r)d3r   -    ∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
.d 3r’d 3r   

T0(ρ)  +  Vext.(ρ)  =  E(ρ)  -  
1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’  -  Exc(ρ)   

Portanto: 

E(ρ)  - 
1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’  -  Exc(ρ)   =   ∑ .

𝑜𝑐𝑢𝑝.
𝑖 𝜖i  -  ∫.Vxc(ρ)ρ(r)d3r  -  ∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
.d 3r’d 3r 

E(ρ)   =   ∑ .
𝑜𝑐𝑢𝑝.
𝑖 𝜖i  -  ∫.Vxc(ρ)ρ(r)d3r  +  Exc(ρ)  -  ∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
.d 3r’d 3r + 

1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
d 3r d 3r’ 

    E(ρ)   =   ∑ .
𝑜𝑐𝑢𝑝.
𝑖 𝜖i   +   Exc(ρ)  - ∫.Vxc(ρ)ρ(r)d3r  -  

1

2
∬

ρ(𝐫)ρ(𝐫′)

|𝒓−𝒓′|
.d 3r’d 3r 

Esta expressão permite obter o valor de energia do sistema E(ρ) através das equações de 

Kohn-Sham, ou seja, através da Teoria do Funcional da Densidade (DFT) do qual extraímos 

os auto-valores de KS (𝜖i).  Pela expressão acima percebe-se que o DFT obtém E(ρ) não 

somente através da soma dos auto-valores 𝜖i, fazendo-se necessário conhecer a priori os 

valores da energia e do potencial de troca e correlação, respectivamente Exc(ρ)  e Vxc(ρ).  

Entretanto estes termos não possuem uma forma exata conhecida, fazendo-se necessário a 

utilização de aproximações para a estimativa destes termos[43]; no estudo que fora realizado 

através da ferramenta computacional VASP, utilizamos para sua determinação, à aproximação 

do gradiente generalizado em inglês General Gradient Approximation (GGA). 

 

2.5  Aproximações para o termo de troca e correlação: 
 

A aproximação utilizada para a determinação dos termos de troca e correlação                  

é muito importante, uma vez que este ira determinar a precisão do cálculo a ser realizado.    

No presente trabalho é utilizado à aproximação do gradiente generalizado (GGA), entretanto 

para sua melhor compreensão será discutido inicialmente a aproximação da densidade local 

(LDA)[39] do qual o GGA é derivado. 

 

2.5.1  Aproximação da Densidade Local - LDA: 
 

Nesta aproximação assume-se que a energia de troca e correlação por elétron exc(ρ) em 

um dado ponto r, seja igual à energia de troca e correlação por elétron de um gás homogêneo 
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de elétrons que possua a mesma densidade eletrônica ρ(𝐫) neste ponto[42].  A ideia básica do 

LDA é que pode-se tratar um sistema não homogêneo como sendo dividido em N volumes 

homogêneos, em cada um destes volumes calcula-se a energia considerando sua densidade 

eletrônica como sendo igual à densidade eletrônica do gás homogêneo. Desta forma 

transforma-se um sistema que não é homogêneo em um sistema localmente homogêneo e 

podem-se tratar sólidos como um sistema que em seu limite tendem a um gás homogêneo de 

elétrons. 

Com base neste raciocínio, a energia de troca e correlação do sistema poderá ser obtida 

caso seja somado à energia por elétron correspondente a cada volume, assim tem-se:         

Exc(ρ) = ∑ .𝑖 exc
homog(ρ).ρi(r),  onde ρi(r) = 

Vi

Ni
.   No limite em que o número de volumes 

tenda ao infinito (Ni → ∞) e consequentemente o volume tenda a zero (Vi → 0), tem-se que a 

expressão acima se torna uma integração:  Exc(ρ) = ∫.exc
homog(ρ) ρ(𝐫)d 3r.  Onde o 

potencial de troca e correlação Vxc[ρ(r)] é obtido da seguinte forma:                                 

Vxc(ρ) =  
𝛿

𝛿ρ
 Exc(ρ) =  

𝛿

𝛿ρ
 ∫.exc

homog(ρ)ρ(𝐫)d 3r 

A energia de troca e correlação por elétron exc(ρ) pode ainda ser tratada separadamente, 

ou seja, dividida em um termo correspondente a troca e outro termo correspondente à 

correlação exc(ρ) = ex(ρ) + ec(ρ).  Onde o termo correspondente a troca ex(ρ) é bem 

conhecido, entretanto o termo da correlação ec(ρ) é muito complexo, não possuindo uma 

forma exata para um gás de elétrons homogêneo.   Todavia ele pode ser estimado por 

algumas aproximações, sendo as mais utilizadas a teoria da perturbação é a parametrização de 

Perdew e Zunger[44], sendo está construída com resultados oriundos de cálculos de Monte 

Carlo quântico propostos por Ceperley e Alder[45;64] para um gás de elétrons homogêneo. 

Esta aproximação possui bons resultados para sistemas cujas densidades eletrônicas 

variam lentamente (aproximadamente uniforme), visto que ignora correções devido à falta de 

homogeneidade da densidade eletrônica nos pontos vizinhos ao ponto r. Como ponto 

negativo, a LDA subestima a energia de correlação ec(ρ), enquanto supervaloriza a energia de 

troca ex(ρ), não fornecendo bons resultados para sistemas onde a densidade eletrônica 

ρ(𝐫) seja fortemente não uniforme.      Uma solução para este problema é expressar a energia 
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de troca e correlação por elétron exc
homog(ρ) em termos do gradiente da densidade ∇ρ(𝐫), 

originando desta forma a aproximação do gradiente generalizado - GGA. 

 

2.5.2  Aproximação do Gradiente Generalizado – GGA: 
 

A fim de melhorar a aproximação do LDA, no raciocínio exposto anteriormente utiliza-se 

uma função que não dependa apenas da densidade local ρ(𝐫), mas que também dependa do 

gradiente desta densidade ∇ρ(𝐫).  Assim a expressão para a energia de troca e correlação 

Exc(ρ) assume a seguinte forma:   Exc(ρ) = ∫𝑓(ρ, ∇ρ)𝑑3r, ou seja, a energia de troca e 

correlação por elétron exc
homog(ρ) do sistema homogêneo é substituída por uma função local 

da densidade eletrônica e do gradiente da densidade. Esta função f (ρ, ∇ρ) é escolhida através 

da análise do comportamento da energia por elétron exc(ρ) em determinadas situações, sendo 

uma das propostas mais utilizadas à parametrização de Perdew, Burke e Ernzerhof (PBE)[47]. 

 

2.6  Funções de Base – Expansão dos Orbitais de Kohn-Sham ϕi(r): 

 

Anteriormente, obtivemos as equações de Kohn-Sham: HKSϕi(r)=𝜖iϕi(r) e ρ(r)=∑ .𝑁
𝑖 |ϕi(r)|2.  

Durante a resolução destas equações pelo DFT, as funções de onda de KS ϕi(r) são 

expandidas em uma determinada base.   Atualmente existem inúmeras formas de realizar esta 

expansão, cada uma variando com relação ao tipo de base escolhida.  Para funções de base 

que sejam fixas, as expansões usuais são a expansão em ondas planas e a combinação linear 

de orbitais atômicos (LCAO)[48]. A escolha da base utilizada para a expansão dos ϕi(r) é de 

crucial importância para a precisão do cálculo. 

Para um sistema periódico, como o do presente trabalho a expansão em ondas planas dos 

orbitais ϕi(r), se fundamenta na teoria de Bloch. 

Esta teoria se baseia no fato de que um cristal é composto por um arranjo simétrico e 

infinito de pontos que estão distribuídos sobre todo o espaço, cada um destes pontos define 

um célula unitária, sendo que sua translação através do vetor T = n1a1 + n2a2 + n3a3, para 

todos os valores possíveis dos nº inteiros n1, n2 e n3 irá compor todo o cristal.   Com base na 

periodicidade da rede cristalina, tem-se que os elétrons irão interagir com um potencial 
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periódico que se repete por todo o cristal, e por consequência as auto-funções que descrevem 

estes elétrons também possuíram a mesma periodicidade do potencial. 

Basicamente o teorema de Bloch afirma[4], que o efeito desta periodicidade é mudar a      

auto-função de onda progressiva da partícula livre ψk(r) = A.eik.r , de tal forma que em vez 

deste possuir uma amplitude constante A, ele possuirá uma amplitude variável uk(r) que muda 

com a periodicidade T da rede, isto é:  ψk(r) = uk(r).eik.r,  onde uk(r) representa a 

periodicidade da rede cristalina, dependendo do vetor de onda k, onde:                                    

uk(r) = uk(r+T) = uk(r + nT),  sendo n um número inteiro. 

O efeito desta periodicidade é então modular de forma periódica a amplitude da solução 

de partícula livre, sendo ψk(r) = uk(r).eik.r conhecido como função de onda de Bloch.              

A função uk(r) se assemelha a auto-função de um íon isolado, onde sua forma exata depende 

do potencial particular considerado e do valor de k; uma consequência destas equações é que: 

ψk(r+T) = uk(r+T).eik.(r+T) = uk(r).eik.r.eik.T = ψk(r).eik.T 

Conclui-se que a menos da diferença de fase eik.T, as funções de onda ψk(r) são idênticas 

dentro de um período T, e que o teorema de Bloch propõe, que a solução da equação de 

Schrödinger para um potencial periódico V(r) = V(r + T) também deva ser periódica. 

Assim percebe-se que neste teorema, as auto-funções ψk(r) são escritas como um produto 

de ondas planas vezes uma função uk(r) que respeita a periodicidade do cristal, entretanto 

uk(r) também pode ser expandida utilizando-se um conjunto de ondas planas. Com base 

nestas informações e na metodologia empregada neste trabalho (DFT), as auto-funções 

descritas pelos orbitais ϕi,k(r) de KS, serão expandidas da seguinte forma:  ϕi,k(r) = fi(r).e|ik.r|,  

onde fi(r) é o termo que carrega a periodicidade da rede (similar a uk), sendo expandido em 

um conjunto de ondas planas[53], da seguinte forma:  fi(r) = ∑ .𝐺 Ci,G e
iG.r, logo: 

ϕi,k(r) = ∑ .𝐺 Ci,G eiG.r.e|ik.r| = ∑ .𝐺 Ci,(k+G) e|i(k+G).r|, G é um vetor de translação da rede recíproca. 

Nesta expansão, alguns coeficientes Ci,(k+G) serão mais importantes que os demais, sendo 

aqueles que fornecem as ondas planas cuja energia são menores do que uma determinada 

energia de corte; e somente estes coeficientes irão formar a base. Assim a expansão na base de 

ondas planas poderá ser truncada, de acordo com a seguinte condição: 
1

2
 |k+G|2 < Ecorte, onde 

Ecorte é definida como a energia de corte na base de ondas planas. 
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Este método possui algumas vantagens, por constituir uma base relativamente simples, 

flexível e de fácil utilização computacional, e em virtude de que o único parâmetro que a 

controla é a energia de corte. 

 

2.7  Método do Pseudo-potencial: 
 

Os cálculos do DFT demandam um alto custo computacional para sua realização, além 

disto existem algumas dificuldades apresentadas pelas equações de Kohn-Sham em descrever 

a região próxima ao núcleo atômico, uma vez que as funções de onda nesta região sofrem 

rápidas oscilações espaciais devido à presença de uma grande energia cinética (ou potencial 

de atração nuclear).  Por outro lado, nas regiões intersticiais entre os átomos, onde ocorrem as 

ligações químicas, a energia cinética dos elétrons é pequena, resultando em pequenas 

variações espaciais na função de onda. 

O método do pseudo-potencial[49] trata-se de uma aproximação empregada para obtenção 

do potencial externo Vext(ρ) (potencial efetivo), presente na expressão da energia como um 

funcional da densidade E(ρ). Sendo desta forma uma aproximação do potencial real sentido 

pelos elétrons num sólido ou molécula.   Neste método, como discutido acima, a carga do 

átomo é analisada como sendo dividida em duas partes, uma correspondendo à carga dos 

elétrons presentes nas camadas internas em conjunto com a carga do núcleo, constituindo o 

que se chama de caroço.   Enquanto a outra corresponde à carga dos elétrons de valência, ou 

seja, dos elétrons mais afastados do núcleo, encontrando-se nas camadas externas do átomo e 

sendo os principais responsáveis pelas ligações químicas em virtude de estarem fracamente 

ligados ao núcleo, sendo bem conhecido que a maioria das propriedades físicas dos sólidos é 

dependente dos elétrons de valência. 

A introdução deste método simplifica o custo computacional para a realização do DFT, 

ao substituir o potencial iônico do núcleo e dos elétrons de caroço pelo pseudo-potencial 

atômico, ou em outras palavras, a função de onda na região de caroço que apresenta uma 

grande oscilação e substituída por uma pseudo-função de onda que seja suave (dentro de um 

raio rc chamando de raio de corte).    Este método descreve explicitamente o comportamento 

eletrônico apenas dos elétrons de valência por meio de ondas planas, ignorando a fraca 

contribuição do potencial devido ao caroço; como resultado a obtenção dos auto-estados de 

Kohn-Sham 𝜖i torna-se mais fácil.     
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Atualmente para o cálculo do pseudo-potencial existem basicamente os métodos dos 

pseudo-potenciais empíricos os quais envolvem um conjunto de parâmetros de origem 

experimental, e os pseudo-potenciais ab-initio (primeiros princípios) que são construídos de 

forma a obter a solução da equação de Schrödinger e das equações de Dirac para o átomo. 

Neste metodologia, o pseudo-potencial é construído de forma que o potencial obtido seja 

igual ao potencial real, acima do raio de corte rc (raio de uma esfera centrada no átomo). Para 

a utilização deste método as seguintes condições devem ser obedecidas: 

1) Os auto-valores 𝜖i (KS) obtidos para os estados de valência atômicos devem ser por 

construção idênticos aos autovalores 𝜖ps-p
i obtidos com o pseudo-potencial (𝜖ps-p

i = 𝜖i). 

2) As auto-funções relativas à solução exata (caroço + elétrons valência) e as auto-funções 

obtidas com o pseudo-potencial devem ser iguais a partir do raio de corte rc; 

𝜓ps-p
i(r) = 𝜓i(r)    para r > rc  

3) As integrais de 0 a r com r > rc, das densidades de carga da solução exata devem ser iguais 

ás das soluções obtidas com o uso do pseudo-potencial, esta condição é chamada de 

conservação da norma; ∫ .
𝐫

0
|𝜓i(r)|2dr = ∫ .

𝐫

0
|𝜓ps-p

i(r)|2dr    ou    〈. ψi|ψi. 〉rc  =   〈. 𝜓ps-p
i |𝜓ps-p

i. 〉rc    

4) A derivada logarítmica da pseudo-função (função de onda obtida com o pseudo-potencial) 

deve convergir para a derivada logarítmica da função de onda exata; 

2π [.(r.ψps-p)2 𝑑

𝑑𝜖

𝑑

𝑑𝐫
 ln ψps-p. ]  =  4π∫ .

𝐫

0
|ψ(r)|2dr       para r > rc 

5) As pseudo-funções 𝜓ps-p
i(r) não devem possuir nós nem singularidades e que sejam 

contínuas assim como devem ser suas derivadas primeira e segunda; está pseudo-função deve 

descrever corretamente os estados eletrônicos dos elétrons de valência. 

Para valores de r < rc, as pseudo-funções 𝜓ps-p
i(r) devem ser modificadas de forma que 

todas as condições acima sejam satisfeitas, havendo certa flexibilidade para sua obtenção, de 

modo que seja possível otimizar a convergência do pseudo-potencial para bases de interesse, 

onde o melhor pseudo-potencial escolhido será aquele que minimizará o número de funções 

base necessárias para se encontrar a meta desejada.  

A geração do pseudo-potencial para um determinado átomo é feita através de um cálculo 

ab-initio, onde através do DFT serão resolvidas as equações de Kohn-Sham. Inicialmente 

resolve-se de forma auto-consistente a equação de Dirac com o potencial Vxc(ρ) e a 

Exc(ρ) dados pela teoria do LDA ou GGA, obtendo-se assim o potencial, as auto-funções e os 
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seus respectivos auto-valores. Entretanto, o método do pseudo-potencial apresenta a 

desvantagem da perda de informação a respeito da densidade de carga e a função de onda nas 

regiões próximas ao núcleo.  

 

2.8  Método PAW: 
 

Em 1994, Peter E. Blöchl desenvolveu uma nova metodologia para a resolução das 

equações de Kohn-Sham, o qual denominou de PAW (Projector Augmented-Wave 

method)[50]. Diferentemente ao método dos pseudo-potenciais, durante o cálculo são levados 

em consideração todos os elétrons do sistema (incluindo os da região de caroço), desta forma 

o PAW corresponde a um método ab-initio apelidado de all-electron (AE). O PAW é 

essencialmente uma unificação das ideias dos métodos do pseudo-potencial[51] e o de Ondas 

Aumentadas (Augmented Wave - AW)[52], combinando partes de ambas as aproximações em 

um único método para o tratamento da estrutura eletrônica. 

O método de Ondas Aumentadas (AW) mencionado acima, analisa a região de caroço, 

por meio de uma expansão em orbitais atômicos d as funções de onda, enquanto que na região 

intersticial (elétrons de valência) é utilizado uma base de ondas planas.   Cada uma das 

regiões irá obter uma solução parcial, entretanto este método estabelece uma interface entre as 

duas, de modo a garantir a continuidade e linearidade das funções de onda. 

Desta forma o PAW analisa a função de onda em duas distintas regiões: A primeira situa-

se no interior de uma esfera de raio rc (raio de corte), escolhido de modo que não existam 

mais nodos na função de onda radial a partir deste valor de raio; nesta região as funções de 

onda são expandidas em orbitais atômicos.   A segunda corresponde a região de valência, ou 

seja, fora da esfera de raio rc, e a função de onda é substituída por uma pseudo-função suave 

expandida sobre uma base de ondas planas.  Analogamente ao método AW, na interface entre 

ambas as região, as funções de onda devem ser iguais, devido a sua continuidade. 

O método PAW, apresenta uma base completa composta pelas expansões em orbitais 

atômicos e ondas planas, o que reduz os erros que costumam ser gerados pela escolha do 

conjunto de base. Desta forma, este constitui numa poderosa ferramenta para a investigação 

de estruturas complexas, como moléculas, superfícies e sólidos. 
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Capítulo 3:  

Análise da Estrutura Cristalina do Siliceno e Germaneno 

 

3.1  Descrição da Estrutura Cristalina: 
 

Tanto o Germaneno quanto o Siliceno, correspondem respectivamente, a folhas 

(monocamadas) de átomos de Germânio e Silício, cuja estrutura cristalina compõe uma rede 

hexagonal bidimensional (2D) denominada de “honeycomb” ou “Favos de Mel”, de forma 

análoga a folha de Grafeno, apresentando entretanto, um configuração de fivela 

perpendicularmente ao plano x-y da folha, conforme ilustrado nas figuras 3.1A e 3.1C.   Esta 

rede hexagonal pode ser vista como sendo composta por duas sub-redes triangulares, que 

estão deslocadas uma em relação à outra, como esquematizado na figura 3.1B, onde cada cor 

de átomo (preta ou azul) representa uma das sub-redes. 

 

 

  

 

  

           

 

Figura 3.1A (Esquerda): Representação dos átomos, compondo o arranjo hexagonal das folhas.   

Figura 3.1B (Direita Superior): Representação das duas sub-redes triângulares que compõem as folhas.   

Figura 3.1C (Direita Inferior): Representação da configuração de fivela (flambagem), em relação as sub-redes, Δ 

representa a distância no eixo z das duas sub-redes e d a separação entre os átomos na estrutura. Nestes sistemas 

o parâmetro de rede é dado por a = d√3. 

                                                     
Durante a análise de uma rede cristalina conta-se com diversas possíbilidades de escolha 

para os seus sítios ou pontos da rede (pontos verdes na fígura 3.2) e por conseguinte diversas 

opções para a base, a célula unitária e os vetores primitivos (a1, a2 e a3) a serem utilizados.     

O ponto inicial deste estudo fora justamente a determinação dos parâmetros acima 

mencionados, para descrever a rede cristalina das folhas de Germânio e Silicio, onde as 

diversas opções possíveis de escolha, foram ilustradas na figura 3.2, sendo a demarcada pela 

caixa amarela à adotada neste estudo. 
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Figura 3.2: Opções para os sítios da rede cristalina (pontos verdes), para a base e a célula primitiva.  

Percebe-se que independentemente da escolha da base, qualquer célula unitária possuirá 

sempre dois átomos não equivalentes (pertencentes a cada uma das duas sub-redes).   

Na figura 3.3, apresentamos a célula primitiva escolhida, destacando os dois átomos não 

equivalentes que a compõem, os vetores primitivos da rede cristalina, além  de algumas 

escalas de medidas que serão utilizadas posteriormente, como o parâmetro d que corresponde 

a distância entre dois átomos adjacentes na estrutura. 

 

 

 

 

 

 

 

Figura 3.3: Célula unitária, escalas de medida e vetores da folha de Germaneno ou Siliceno. 
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Utilizando-se coordenadas cartesianas, os vetores primitivos da rede cristalina, são 

expressos como (espaço real):   

 a1 = 
3

2
 d i  +  

d

2
 √3 j,    a2 = −

3

2
 d i  +  

d

2
 √3 j    e    a3 = 5 d k  

Enquanto a posição dos átomos no inteior da célula unitária, podem ser expressos em 

função destes vetores primitivos a1, a2 e a3 (vide figura 3.4), da seguinte forma:   
 

Átomo (1) =  
1

6
 a1 + 

5

6
 a2 + 0 a3   e   Átomo (2) =  

5

6
 a1 + 

1

6
 a2 + Δ a3     

                 

Deve ser ressaltado, que nas figuras apresentadas até o momento com relação a rede 

cristalina das folhas, estamos a tomar os atomos da sub-rede “preta” como sendo os atomos 

inferiores, adotando que estes se localizam em Z=0, já os atomos da sub-rede “azul”, 

correspondem aos atomos superiores, e sua altura no eixo Z com relação a sub-rede “preta”, 

será inicialmente denominada por Δ e posteriormente determinada para cada um dos sistemas 

(Germaneno e Siliceno).  

 

 

 

 

            

Figura 3.4: Posição dos atómos da célula unitária, em função dos vetores primitvos.  

Se definirmos a posição dos sítios da rede real como função dos vetores primitivos, 

vemos que estes sítios são determinados por todos os valores possíveis do vetor translação da 

rede  T = n1.a1 + n2.a2 + n3.a3   para  ni = 0, ±1, ±2, ... (Como estamos analisando o caso de 

uma monocamada, todos os sítios possuiram a mesma coordenada no eixo Z, logo por 

conveniência adotaremos n3=0). 

T1 = d √3 j = a1 + a2;                    T2 = 
3

2
 d i  +  

d

2
 √3 j = a1 

T3 = 
3

2
 d i  −  

d

2
 √3 j = − a2;          T4 = −d √3 j = − (a1 + a2) 

T5 = −
3

2
 d i  −  

d

2
 √3 j = −a1;       T6 = −

3 

2
d i  +  

d

2
 √3 j = a2  

                

Figura 3.5: Posição dos sítios na rede real 

(pontos verdes), em função do vetor translação 

T. 
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Para a construção da rede recíproca das folhas, devemos antes definir seus vetores 

primitivos (b1, b2 e b3) por meio das seguintes relações: 

Construção dos vetores primitvos da Rede Recíproca: 

b1 = 2π.     a2 X a3     ;                  b2 = 2π.     a3 X a1     ;                  b3 = 2π.    a1 X a2     ,             

              a1.[a2 X a3]                             a1.[a2 X a3]                             a1.[a2 X a3] 

 

a2 X a3 =        i            j         k            i             j          

                 −
3

2
 d       

d

2
 √3      0        −

3

2
 d        

d

2 
√3    =    

5

2
 d2 √3 i  +  

5

2
 3d2 j 

                      0         0        5d            0           0 

a1.[a2 X a3]  =  (
3

2
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d

2
√3 𝐣).(−

5

2
d2√3 𝐢  +   

5

2
3d2 𝐣)  =   

5

2
 3√3d3 

a3 X a1 =        i            j         k        i             j          

                     0          0       5d       0            0     =    − 
5

2
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2
 3d2 j 

                 −
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 d        
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2
 √3 

a1 X a2 =        i            j         k        i             j          

                     
3

2
 d       
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2 
√3     0       
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 d        
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 √3     0       

3

2
 d        
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Assim obtemos:  b1 = 
2π

3d
 i   +   

2π

d√3
  j,   b2 = −

2π

3d
 i  +  

2π

d√3
  j   e  b3 = 

2π

5d
 k    

Na figura 3.6 apresentamos a rede recíproca do Germaneno ou Siliceno, os circulos 

pretos nesta figura não representam os átomos como na rede cristalina, mas os “sítios” da rede 

recíproca. Sendo suas posições definidas por meio do vetor G de translação da rede, onde:     

G = v1.b1 + v2.b2 + v3.b3, para vi = 0, ±1, ±2, ...; novamente tomamos b3 = 0. Nesta figura são 

expostas ainda algumas escalas de medidas. 

 

 

         

            

          

 

Figura 3.6: Rede Recíproca, vetores primitivos (b1, b2 e b3) e escalas de medida. 
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Se fizermos uma comparação, observamos que a direção dos vetores b1 e b2 da rede 

recíproca estão rotacionadas em 30° em relação aos vetores a1 e a2 no espaço real, como 

ilustrado na figura 3.7 que compara lado a lado as rede direta e reciproca da folhas de 

Germânio e Silicio:     

 

 

 

 

 

 

Figura 3.7: Os pontos pretos e verdes, representam respectivamente os atómos e os sítios da rede real, enquanto 

os pontos azuis representam os sítios da rede recíproca.  

 

Agora iremos obter a 1° Zona de Brillouin (1ºZB), 

utilizando-se a definição da célula de Wigner-Seitz. Na 

figura 3.8, o círculo preto central representa a origem 

adotada para o sistema de coordenadas, as retas laranjas 

que unem a origem aos demais sítios da rede recíproca 

são os vetores G definidos por G = v1.b1 + v2.b2 + v3.b3. 

A 1ºZB, representada como a área roxa é definida como 

sendo a menor região do espaço delimitada pelos vetores 

bissetores é perpendiculares aos vetores G. 

Figura 3.8: Construção da 1° Zona de 

Brillouin das folhas de Ge ou Si.                                             

 Para a análise da estrutura eletrônica no espaço recíproco, sobre a 1° zona de Brillouin, 

define-se alguns pontos denominados de pontos de alta simetria ou pontos de Dirac, que para 

a Zona de Brillouin exposta acima, corresponde aos pontos Γ, K e M; sendo respectivamente 

o centro, o vértice e a aresta do hexágono (vide figura 3.9). Nesta zona há dois pontos não 

equivalentes em sua borda, denominados K e K’, estando localizados nos vértices do 

hexágono e são de grande importância para a maioria dos fenômenos físicos observados 

experimentalmente. Como um vetor de onda K no espaço recíproco é para todos os efeitos 

aqui estudados, simétrico a um vetor –K, desta forma ficamos reduzidos a estudar apenas os 
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efeitos no triângulo KΓMK e em seu interior, já que os outros quatro vértices podem ser 

obtidos através de uma translação por um vetor da rede recíproca. 

 

 

 

 

 

 

Figura 3.9: Pontos de alta simetria da 1° Zona de Brillouion e algumas escalas de medida. 

Agora expressemos as coordenadas cartesianas destes pontos de alta simetria:   

Γ  =  0 i  +  0 j ;  M  =  
π

3d
 i  +  

π

d√3
  j;   K  =  0 i  +  

4π

3d√3
  j  e  K’  =  

2π

3d
 i  +  

2π

3d√3
  j             

E as suas posições em função dos vetores primitivos b1 e b2 (vide a figura 3.10): 

Γ  =  0.b1  +  0.b2;   M  =  
1

2
.b1  +  0.b2;   K  =  

1

3
.b1  +  

1

3
.b2  e  K’  =  

2

3
.b1  −  

1

3
.b2 

 

 

 

 

 

 

 

 

 

 

Figura 3.10: Pontos de alta simetria da 1° Zona de.Brillouion, em função dos vetores b1 e b2. 
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Capítulo 4: 

Estrutura de Bandas do Siliceno e Germaneno 

 

4.1  Parâmetros utilizados pelo código computacional VASP: 

 

Todos os cálculos apresentados nesta dissertação utilizaram o código VASP (Vienna Ab-

initio Simulation Package)[55]. Este programa realiza cálculos de estrutura eletrônica e 

dinâmica molecular, baseados na teoria do funcional da densidade (DFT), onde a resolução 

das equações de Kohn-Sham é feita no espaço recíproco, tomando uma base de ondas planas 

(utilizou-se o método PAW – Projector Augmented-Wave) para expandir as funções de onda; 

pseudo-potenciais para tratar os elétrons de caroço e condições periódicas de contorno. Os 

núcleos são tratados classicamente, através da aproximação de Born-Oppenheimer.  

Os testes de convergência, realizados para a escolha dos parâmetros computacionais dos 

cálculos, serão descritos na próxima seção. Neste trabalho o funcional escolhido como padrão, 

em todos os sistemas investigados fora o GGA (funcional densidade do gradiente 

generalizado) no formalismo de Perdew-Burke-Ernzerhof (PBE); este funcional tem como 

função estimar a energia de troca e correlação. 

O programa VASP foi escolhido por ser altamente confiável e pela utilização de ondas 

planas como base, o que elimina certos problemas, como erros de superposição de base ao se 

calcular energias de formação, embora por outro lado, eleve o custo computacional para 

descrever regiões de vácuo. 

Abaixo estão listados os quatro principais arquivos de entrada que o VASP necessita para 

iniciar os cálculos, bem como uma descrição das variáveis que foram utilizadas neste estudo e 

seus respectivos significados físicos. 
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INCAR:  Define o que o VASP irá executar; abaixo seguem alguns parâmetros utilizados: 

 NELMIN=4, define o número mínimo de passos eletrônicos utilizados no cálculo 

auto-consistente. 

 EDIFF=1E-5, define o critério de convergência para o cálculo da energia no processo 

auto-consistente. 

 EDIFFG=1E-4, corresponde à diferença de energia entre dois passos iônicos, para 

que o cálculo auto-consistente seja interrompido (condição de ruptura). 

 ISMEAR= -1, determina como serão realizadas as ocupações das funções de onda de 

Fermi-Dirac fnk para cada função de onda; o valor -1 define a utilizado da distribuição 

de Fermi. 

 NSW, define o número máximo de passos iônicos utilizados no cálculo auto-

consistente. 

 NBANDS, determina o número de bandas de energia que serão calculadas. 

 ISIF=2, determina quais graus de liberdade podem ser alterados durante o cálculo 

(íons, volume e forma da célula); o valor 2 determina que o VASP irá calcular as 

forças, o tensor de stress e irá relaxar os átomos, entretanto não alterando o volume e 

nem a forma da célula unitária. 

 IBRION=2, define como os átomos são movidos para suas novas posições; o valor 2 

corresponde a utilização do algoritmo do gradiente conjugado (CG). 

 LREAL=.FALSE., determina se os operadores de projeção são avaliados no espaço 

real ou recíproco, neste caso a projeção se dará no espaço recíproco. 

 ENCUT, determina o valor da energia de corte para a base de ondas planas. 

 ENAUG, define a energia de corte, que por sua vez define a malha para o cálculo das 

transformadas de Fourier quando o pseudo-potencial é utilizado, em resumo define o 

número de onda planas utilizadas no cálculo. 

As opções de cálculo, critérios de convergências e outras variáveis que não estiverem 

presentes explicitamente no arquivo INCAR, o programa usará o padrão de sua programação 

(default).  

POSCAR: Contém os vetores primitivos que definem o tamanho e forma da célula unitária, o 

número e a posição dos átomos no interior desta célula (coordenadas); suas posições podem 

ser expressas em coordenadas cartesianas ou diretas. No arquivo POSCAR utilizamos a 

célula unitária em forma de losango escolhida e ilustrada na figura 3.2. Este arquivo estrutura-

se da seguinte forma, na primeira linha é definido o tipo de átomo utilizado, no exemplo 

abaixo (figura 4.1) o átomo de Germânio; a segunda linha o parâmetro de rede do sistema     

(a = d√3); as linhas 3 a 5 contém as coordenadas dos vetores primitivos da rede real (a1, a2 e 

a3) e que definem o formato da célula unitária; a sexta linha define o número de átomos que 

estão contidos no interior desta célula, enquanto a 7º linha determina como as suas 
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coordenadas serão escritas (forma cartesiana ou direta); e por final as últimas linhas expressão 

as coordenadas dos átomos. 

 

 

 

 

Figura 4.1: Estrutura do arquivo POSCAR utilizado no VASP. 

POTCAR: Define os pseudo-potenciais usados, como exposto na introdução teórica, neste 

trabalho utilizou-se o método PAW: 

 

 

 

 

 

 

Figura 4.2: Parte inicial do arquivo POTCAR. 

KPOINTS: Define os pontos da rede recíproca que serão analisados. Em nosso estudo, mais 

precisamente durante a determinação da densidade de carga de nossos sistemas, será utilizado 

o método de Monkhorst-Pack[56] para gerar a malha de pontos k da rede recíproca, o qual gera 

um conjunto de pontos k contidos na primeira zona de Brillouin, que são os melhores pontos 

para o cálculo das integrais de funções periódicas no espaço recíproco. 

 

             

 

Figura 4.3: Estrutura do arquivo KPOINTS. 
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4.2  Testes de Convergência: 

 

Dois importantes parâmetros que devem ser inicialmente estimados para o cálculo 

computacional, são o parâmetro de rede a (d√3) do sistema que fornece a configuração 

estrutural mais estável, ou seja, que minimiza a energia do sistema; e a energia de corte ECUT, 

que como visto anteriormente, define o número de ondas planas necessárias para a realização 

dos cálculos (vide tópico 2.6).   

Estes dois parâmetros são de crucial importância, uma vez que todo sistema físico tende a 

caminhar para a configuração mais estável (menor energia); e com relação à energia de corte 

ECUT, um valor muito baixo deste parâmetro irá fornecer cálculos pouco precisos, enquanto 

que altos valores, mesmo que forneçam resultados com excelente precisão, demandariam um 

alto e demorado custo computacional. Desta forma faz-se necessário estimar um valor 

adequado para ECUT, de forma que se possa obter um cálculo preciso e com menor custo.    

 Para calcular o parâmetro de rede a que minimiza a energia das folhas de Germânio e 

Silício, necessitamos estabelecer inicialmente os valores de alguns parâmetros de entrada no 

pacote VASP, tais como, a energia de corte das ondas planas ECUT, o tamanho e forma da 

célula unitária utilizada, a distância de separação (flambagem) entre as duas sub-redes que 

compõem a folha, e a quantidade de pontos 𝑘⃗  tomados para a integração na primeira zona de 

Brillouin (1ºZB).    Para um ponto de partida estrutural, utilizamos valores extraídos da 

referência [1] para os parâmetros acima mencionados, tais como ECUT = 500eV para ambos os 

sistemas (valor elevado, mas que irá nos fornecer uma boa precisão); malha de pontos 𝑘⃗  de 

25x25x1 (Monkhorst Pack), e para a flambagem das folhas (separação no eixo Z das duas 

sub-redes) tomamos os valores de 0.44Å para a folha de Germânio e 0.64Å para a folha de 

Silício[1].  

Durante o cálculo computacional, para a construção das folhas infinitas de Germaneno e 

Siliceno, a célula unitária escolhida é repetida infinitamente em todas as direções, desta forma 

adotamos uma distância no eixo Z de aproximadamente 20Å entre as “imagens”, para evitar a 

interação entre elas. Em ambos os testes realizados, efetuamos a relaxação dos íons da 

estrutura, a fim de obter a configuração mais estável para o sistema, neste caso o critério de 

convergência adotado fora EDIFFG=1E-4. 
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Para a determinação do parâmetro de rede a, que irá minimizar a energia total da rede 

cristalina, plotamos um gráfico da energia total E versus o parâmetro de rede. Neste estudo 

tomamos as energias para 20 valores distintos do parâmetro, onde a maioria destes encontra-

se perto da região de interesse (energia mínima).  Os resultados encontram-se ilustrados nas 

figuras 4.4 e 4.5.   Para aferir com melhor precisão qual parâmetro corresponde ao mínimo de 

energia, procedemos a uma regressão polinomial de terceira ordem sobre os dados obtidos 

pelo VASP.  

Obtivemos como resultado para a o valor aproximado de 4.0636Å para o Germaneno e 

3.8675Å para o Siliceno. Com relação à flambagem ∆ das folhas, obteve-se o resultado de 

0.688Å para o Germaneno e 0.450Å para o Siliceno, que apresentam uma boa concordância 

com a referência utilizada [1]. 

 

 

 

 

 

 

 

 

 

Figuras 4.4 (esquerda) e 4.5 (direita): Curva da energia E(eV) versus o parâmetro de rede a(Å) para o 

Germaneno e Siliceno, utilizando-se o funcional PBE. 
 

Para a determinação da energia de corte ECUT, ou em outras palavras, a determinação do 

número de ondas planas necessárias para expandir as funções de onda eletrônicas, realizou-se 

um teste, que consiste na variação da energia total E do sistema em função da energia de corte 

ECUT, de acordo com os gráficos abaixo. 

 

 

 

 

 

 

Figuras 4.6 (esquerda) e 4.7 (direita): Curva da energia total E(eV) versus a energia de corte ECUT(eV) para o 

Germaneno e Siliceno, utilizando-se o funcional PBE. 
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Através destes gráficos, observa-se que em ambos os sistemas, para uma ECUT na faixa de 

300 a 600 eV, a energia total E sofre pequenas variações, logo a adoção de uma valor nesta 

faixa, não compromete a precisão dos cálculos.  Entretanto deve ser relembrado que quanto 

maior for a ECUT, maior será o número de ondas planas utilizadas e consequentemente um 

maior esforço computacional.   Desta forma, a energia de corte padrão escolhida, foi de 

300eV para Germaneno e 400eV para Siliceno, uma vez que estes são valores suficientes para 

se obter cálculos precisos, mas com um tempo computacional satisfatório.  

4.3  Estrutura de Bandas das Folhas de Ge e Si: 
 

     4.3.1  Introdução – Estrutura de Bandas: 
 

Na mecânica clássica a energia dos sistemas é tratada como sendo contínua, entretanto na 

mecânica quântica isto não ocorre.  Por exemplo, a função de onda para o caso de elétrons 

livres é representada por uma onda progressiva que respeita o teorema de Bloch; sobre estes 

elétrons caso sejam impostas condições periódicas de contorno, haverá uma restrição sobre os 

possíveis valores de k e uma restrição sobre os valores de energia, que por este motivo 

deixam de ser contínuas e passam a ser discretas, ou seja, ocorre a quantização da energia. 

Este modelo do elétron quase livre nos ajuda a compreender melhor a estrutura de bandas 

em cristais. Em um cristal as ondas progressivas sofrem reflexões de Bragg quando a 

condição (K - G)2 = K2 é satisfeita, sendo G um vetor da rede recíproca. Tais reflexões lavam 

a regiões de energia proibida, para os quais a equação de Schrödinger não possui solução, 

definindo assim os chamados gaps ou lacunas de energia. Na estrutura de bandas, os gaps de 

energia apresentam importantes significados físicos, contendo informações que determinam 

se um dado material é isolante, semicondutor ou metálico, além da determinação de inúmeros 

outros parâmetros.  

Os cristais apresentam um grande número de partículas (elétrons) interagindo entre si e 

com o núcleo de cada átomo. Tal característica acaba por originar no sólido, regiões onde 

praticamente existe um contínuo na energia, o qual é denominado de Banda, esta região é 

acessível aos elétrons, e entre as bandas existem as regiões não acessíveis (gap).  Desta forma 

as bandas são formadas por um conjunto de níveis de energia, cada nível apresentando 

“infinitos” estados acessíveis, onde cada um destes estados está associado a um determinado 

valor de pontos k que podem ser reproduzidos dentro da 1° zona de Brillouin. 
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4.3.2  Procedimentos para o Cálculo (VASP): 

 

Para calcular a estrutura de bandas com o código computacional VASP, os seguintes 

procedimentos devem ser seguidos: 

Inicialmente, iremos obter a densidade de carga dos nossos sistemas (Germaneno e 

Siliceno), referente à estrutura energeticamente mais estável. Para esta tarefa devemos utilizar 

no arquivo INCAR o parâmetro de rede obtido que minimiza a energia do sistema, além da 

ECUT estipulada para cada caso. No arquivo KPOINTS, definimos uma malha de 25x25x1 

pontos k pelo método de Monkhorst-Pack[56]. Ao final do processo auto-consistente, a 

densidade de carga total multiplicada pelo volume da célula unitária é escrita no arquivo 

CHGCAR. 

Após este procedimento, procedemos à obtenção da estrutura de bandas, ou seja, aos 

valores de energia das bandas, principalmente das bandas de condução e valência da estrutura 

sobre análise. Para isso devemos salvar os arquivos obtidos no cálculo anterior (CHGCAR, 

CONTCAR, INCAR, KPOINTS, POSCAR e POTCAR) em um diretório a parte e alguns 

parâmetros contidos nos arquivos INCAR, KPOINTS e POSCAR deveram ser alterados.  

INCAR: 

 NSW=0, este valor determina que o cálculo da estrutura de bandas seja feito de forma 

estática, uma vez que já analisamos a convergência das posições atômicas. 

 ICHARG=11, este parâmetro informa como será construída a densidade de carga 

inicial, no caso o VASP irá ler o arquivo CHGCAR mantendo seu valor fixo durante 

todo o cálculo. 

 LCHARG=.FALSE., o arquivo CHGCAR não será reescrito após o cálculo ser 

efetuado. 

KPOINTS: 

Neste arquivo serão definidos os pontos da rede recíproca (pontos k) contidos no interior 

da 1° zona de Brillouin (região de interesse), para os quais a estrutura de bandas será 

calculada, logo não utilizaremos o método de Monkhorst-Pack para a geração da malha. 

Analisando o arquivo de exemplo (figura 4.8), vê-se que a terceira linha do arquivo determina 

a forma como os pontos k serão gerados, no caso o código Line-mode informa que eles serão 
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construídos ao longo de uma reta, cujas extremidades serão dadas pelo par de pontos 

definidos nas linhas 5 e 6 do arquivo. Na linha 4, define-se a forma como estes pontos serão 

escritos, no caso eles foram tomados na forma recíproca, ou seja, escritos como uma função 

dos vetores primitivos da rede recíproca (b1, b2 e b3); e pôr fim a linha 2 determina a 

quantidade de pontos gerados uniformemente ao longo de cada reta. 

 

 

 

Figura 4.8: Estrutura do arquivo KPOINTS para a geração das bandas. 

POSCAR: 

No arquivo POSCAR serão inseridas as coordenadas dos átomos no interior da célula 

unitária que correspondem à configuração mais estável, para tal o arquivo POSCAR deve ser 

excluído e tomar-se o arquivo CONTCAR como sendo o novo arquivo POSCAR, uma vez 

que ele contém as coordenadas atômicas convergidas em um processo de relaxação iônica de 

em um cálculo anteriormente realizado. 
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4.3.3  Determinação das Bandas: 

 

Inicialmente analisaremos a estrutura de bandas sobre os principais pontos de alta 

simetria da 1° zona de Brillouin (pontos Γ, K e M, descritos ao final do capítulo 3). Estes 

pontos são de grande importância para a maioria dos fenômenos físicos observados 

experimentalmente, desta forma geramos as bandas para o triângulo KΓMK, ilustrado na 

figura 4.9.  

 

 

 

 

 

 

Figura 4.9: Triângulo composto pelos pontos de alta simetria KΓMK. 

Abaixo seguem as coordenadas destes pontos de alta simetria, em função dos vetores da rede 

recíproca: Γ  =  0 b1  +  0 b2;   M  =  
1

2
 b1  +  0 b2   e   K  =  

1

3
 b1  +  

1

3
 b2 

Após a realização do cálculo pelo VASP, onde empregamos o formalismo exposto na 

seção anterior, os valores de energia das bandas por ponto k que constituem a estrutura de 

bandas do material são escritos no arquivo de saída EINGENVAL.                                                                                             

Para a visualização das bandas de energia faz-se necessário da utilização de um algoritmo 

que leia o arquivo EINGENVAL e reescreva os dados de forma a serem visualizados por 

programas gráficos; no presente estudo utilizamos um algoritmo baseado na linguagem de 

programação FORTRAN 90 e o programa base para a plotagem fora o Mathematica 8. 

Desta forma, obtemos as seguintes estruturas de bandas para o triângulo KΓMK da        

1° zona de Brillouin do Germaneno e Siliceno. 
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Figura 4.10 e 4.11: Estrutura de Bandas das folhas de Germânio e Silício para o triângulo KΓMK. 

 

Como evidenciado pelos gráficos das figuras 4.10 e 4.11, em ambos os sistemas, as 

bandas de condução e valência se cruzam ao nível de Fermi no ponto de alta simetria K.  

Nesta interseção a energia é degenerada apenas sobre este ponto, sendo melhor visualizado 

nas figuras 4.12 e 4.13, que mostram o seu comportamento em torno do ponto K.  

 

 

 

 

 

Figura 4.12 e 4.13: Comportamento das bandas de valência e condução do Germaneno e Siliceno em torno do 

ponto K. 

 

Abaixo mostramos à densidade de estados (DOS) de ambas as folhas. 

 

 

 

 

 

 

 

 

Figuras 4.14 e 4.15: Densidade de estados das folhas de Germânio e Silício. 
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Observando-se as figuras 4.12 a 4.15, percebemos que tanto o Germaneno quanto o 

Siliceno, apresentam uma dispersão de energia com comportamento linear em torno do ponto 

K de alta simetria para o limite de baixa energia (nível de fermi), além de uma pequena 

densidade de portadores nesta região. Estas características nos permitem classificar tanto o 

Germaneno quanto o Siliceno como semicondutores de gap nulo nos vértices de sua zona de 

Brillouin (pontos K e K’), além de implicar em uma alta mobilidade eletrônica para os seus 

portadores de carga nesta região (onde a inclinação da curva de dispersão corresponde à 

velocidade de Fermi dos elétrons).  

Em analogia com o modelo de Tight-Binding para o Grafeno, temos que os portadores de 

carga podem ser comparados a partículas relativísticas possuindo uma massa de repouso nula, 

também denominados de férmions de Dirac.  Isto se deve ao fato do modelo de Tight-binding, 

fornecer uma expressão para a dispersão de energia que no limite de baixa energia, apresenta 

um comportamento linear semelhante ao apresentado por partículas relativísticas ao se 

considerar o limite de massa nula (m=0), de acordo com as expressões abaixo. 

EGrafeno(k) = ± ħVf |k|                                             “Expressão obtida pelo modelo de Tight-Binding” 

E = √(c2ħ2k2 + m2c4)  →  para m=0  →  E =  ± cħ|k|       “Expressão para partículas relativísticas” 

 

Com o intuito de estimarmos o efeito que a interação spin-órbita tem sobre o Siliceno e 

Germaneno, principalmente sobre a região de maior interesse em nosso estudo, ou seja, o 

ponto K de alta simetria, onde as bandas de valência e condução se cruzam linearmente ao 

nível de fermi.  Decidimos plotar para ambos os sistemas, duas estruturas de bandas em torno 

deste ponto, em um regime de baixa energia, onde na primeira desconsideramos a interação 

spin-órbita e na segunda levamos em conta esta interação. Os resultados seguem nas figuras 

abaixo. 

 

 

 

 

 

Figuras 4.16 e 4.17: Aproximação da região próxima ao nível de fermi, em torno do ponto K. 
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Figuras 4.18 e 4.19: Aproximação da região próxima ao nível de fermi, em torno do ponto K, na estrutura de 

bandas do Germaneno e do Siliceno, levando-se em consideração a interação spin-orbita. 

 

 

Observando-se ambas as estruturas de bandas (com e sem o acoplamento spin-órbita), 

verificamos que o principal efeito desta interação sobre a estrutura eletrônica de ambos os 

sistemas é promover uma abertura do gap de energia no ponto K.  De acordo com o esperado, 

o sistema composto por átomos de Ge apresenta uma maior interação spin-órbita em relação 

ao sistema composto por átomos de Si, evidenciado pela maior abertura do seu gap de 

energia, 24 meV para Germaneno contra 1.5 meV do Siliceno.  Uma vez, que a interação 

spin-órbita tende a ser mais intensa em átomos com um maior número atômico, e o número 

atômico do Ge (32) é maior do que o do Si (14). 

Em nossa investigação por um estado topologicamente protegido, em nano-fitas criadas a 

partir das folhas de Germaneno e Siliceno, daremos uma maior atenção as nano-fitas de 

Germaneno.  Em virtude principalmente pelo resultado obtido, de que o Germaneno 

apresentar uma maior interação spin-órbita do que o Siliceno. Uma vez, que o estado de 

Isolante Topológico é privilegiado em sistemas que apresentam um acoplamento spin-órbita 

mais intenso. 
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Capítulo 5:  

Estados Topologicamente Protegidos em nano-fitas 

de Siliceno e Germaneno 

 

5.1  Nano-fitas de Siliceno e Germaneno: 
 

Para a construção das nano-fitas, que correspondem a cortes das folhas de Germaneno e 

Siliceno, optamos por analisar duas distintas configurações de fita com relação à estrutura de 

suas bordas. A primeira configuração analisada, que ao longo desta dissertação 

denominaremos de nano-fita não reconstruída, corresponde a um corte simples e direto da 

folha, onde optamos por bordas com configuração armchair. Uma vez que a configuração Zig-

zag apresenta propriedades magnéticas[1] que não desejamos obter, devido ao fato de estarmos 

investigando um possível estado topológico. Como discutido na seção 1.6.1, o campo 

magnético quebra a simetria de reversão temporal, fundamental a este estado.  Abaixo, temos 

uma figura que ilustra as configurações armchair e zig-zag, e o correspondente corte a ser 

promovido sobre as folhas de forma a gerar nano-fitas com estas configurações de borda.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 5.1: Ilustração esquemática para o procedimento de corte das folhas infinitas de modo a obter nano-fitas 

cujas bordas apresentem configuração armchair ou zig-zag. 
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A segunda configuração analisada e que denominaremos por nano-fita reconstruída, 

apresenta uma reconstrução das bordas da 1º configuração adotada (não reconstruída), onde 

os átomos da primeira e última fileira (bordas) são deslocados de forma a originar a 

reconstrução desejada, estando exemplificada na figura 5.3. Esta configuração extraída da 

referência [1] foi tomada para análise, por ser energeticamente mais estável que a anterior e 

não poder ser obtida por meio da relaxação iônica auto-consistente do sistema, além de 

possuir propriedades interessantes para nossa investigação, como um baixo gap de energia. O 

sentido de crescimento adotado em ambas as nano-fitas ocorre no eixo X. Abaixo 

apresentamos as duas configurações de nano-fitas tomadas para análise neste estudo.  

 

 

  

 

 

 

 

 

 

 

Figura 5.2 (esquerda): Nano-fita não reconstruída, obtida pelo corte da folha com terminação Armchair. 

Figura 5.3 (meio): Nano-fita reconstruída, seguindo o modelo presente na referência [1]. 

Figura.5.4.(direita):.Ilustração esquemática, demonstrando como a largura da nano-fita pode ser determinada 

pela contagem do número de “camadas atômicas - n” que a compõem.    

 

Agora iremos introduzir a definição de camadas atômicas que será utilizada a partir de 

agora. Observando-se a figura 5.2, percebe-se que para uma determinada altura no eixo Y, 

existem 4 átomos, desta forma definimos estes como constituindo uma “camada atômica”.  

Com esta notação, uma forma de aumentar a largura da nano-fita e aumentar a quantidade de 

camadas atômicas que a compõem; como exemplo tem-se a figura 5.4 que é composta por 17 

camadas atômicas ou abreviadamente n17. A única diferença entre as configurações não 

reconstruída e reconstruída, e que na segunda configuração dois átomos de n=1 (camada 

inicial) se deslocam para cima, enquanto que dois átomos da última camada (n=17) se 

deslocam para baixo, podendo ser visualizado por comparação das figuras 5.2 e 5.3. 
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5.1.1  1º Zona de Brillouin das nano-fitas: 
 

Para a obtenção da 1ª Zona de Brillouin (1ºZB) correspondente as nano-fitas de Siliceno e 

Germaneno, utilizaremos o mesmo procedimento efetuado para a obtenção da 1ºZB das folhas 

(seção 3.1). Abaixo encontram-se os vetores primitivos (a1 e a2) da célula unitária no espaço 

real e os correspondentes vetores primitivos da rede recíproca (b1 e b2). 

a1  =  6d i  =  2a√3 i,     a2  =  (𝜆
d√3

2
 + 2.vácuo) j  =  (𝜆

𝑎

2
 + 2.vácuo) j     

b1  =  2π
1

6d
 i  =  

π

a

1

√3
 i,   b2  =  2π

1

(𝜆
d√3

2
 + 2.vácuo)

 j  =  2π
1

(𝜆
a

2
 + 2.vácuo)

 j 

Aqui 𝜆 = (n-1), onde n denota o número de camadas atômicas que compõem a nano-fita. 

 

Nas figuras abaixo, demonstramos a 1ºZB para duas nano-fitas com diferentes larguras, 

compostas por 3 e 17 camadas atômicas, respectivamente n3 e n17 (figura 5.5).   De acordo 

com a figura 5.6, observa-se que quanto mais larga for a nano-fita no espaço real,  menor será 

a sua correspondente 1ºZB no espaço recíproco. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 5.5 (esquerda): Exemplo de célula unitária no espaço real de uma nano-fita. 

Figura.5.6.(direita): Exemplos de Zonas de Brillouin no espaço recíproco de nano-fitas com diferentes larguras.  
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Durante o processo de criação das nano-fitas, o processo de corte das folhas infinitas, 

acaba por originar um confinamento quântico dos estados eletrônicos, na direção 

perpendicular ao sentido de crescimento da nano-fita (eixo y no espaço real). Desta forma, 

nesta direção, sua estrutura eletrônica não apresenta dispersão, o qual pode ser verificado pela 

figura 5.7(a), que corresponde ao plote da banda de valência e condução de uma nano-fita 

reconstruída de Germaneno (composta por 9 camadas atômicas), sobre toda a sua 1ºZB.   

Devido a este confinamento, durante a análise da estrutura de bandas das nano-fitas, 

iremos investigar o seu comportamento na direção de crescimento da nano-fita (eixo x no 

espaço real).  Desta forma todas as estruturas de bandas que iremos obter com relação as 

nano-fitas irão corresponder a um caminho atravessa o ponto Γ (centro da 1ºZB) na direção de 

crescimento, como exemplificado na figura 5.7(b) pela região demarcada em amarelo, que se 

estende de – ½b1 a + ½b1 sobre a 1ºZB (região roxa).  

 

 

 

 

 

 

Figura 5.7a (esquerda): Bandas de valência e condução, sobre a 1ºZB de uma nano-fita de Germaneno 

reconstruída, mostrando a ausência de dispersão entre as bordas da nano-fita em função do confinamento 

quântico.  Figura 5.7b (direita): Ilustração da região na 1ºZB (região roxa), onde será analisado a estrutura de 

bandas das nano-fitas (reta amarela), o qual se estende de – ½b1 a + ½b1. 

Durante a obtenção da estrutura de bandas das nano-fitas, constataremos que elas 

apresentam um comportamento periódico do gap em função da largura da nano-fita, o que já 

fora observado em outros trabalhos[1]. Para uma melhor compreensão ou visualização deste 

comportamento, classificaremos as nano-fitas com diferentes larguras em 3 grupos 

denominados de 3p, 3p+1 e 3p+2[1], onde estes termos na verdade representam números 

inteiros (uma vez que p = 1,2,3,...).   
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Como dito anteriormente o número de camadas atômicas n, determina a largura da nano-

fita, desta forma para um dado n (largura), a nano-fita correspondente será classificada da 

seguinte forma: 

n = 8, classifica-se como 3p+2,  pois para p = 2 temos que 3p+2=8 

n = 9, classifica-se como 3p,  pois para p = 3 temos que 3p=9 

n = 10, classifica-se como 3p+1,  pois para p = 3 temos que 3p+1=10 

n = 11, classifica-se como 3p+2,  pois para p = 3 temos que 3p+2=11 

n = 12, classifica-se como 3p,  pois para p = 4 temos que 3p=12 

n = 13, classifica-se como 3p+1,  pois para p = 4 temos que 3p+1=13 

Logo, as nano-fitas cuja largura são dadas por: 

n = 3,6,9,12,15,18,21,24,...  classificam-se com 3p 

n = 4,7,10,13,16,19,22,25,...  classificam-se com 3p+1 

n = 5,8,11,14,17,20,23,26,...,53,56,...  classificam-se como 3p+2 

 

A razão para esta classificação será compreendida depois de obtida a estrutura de bandas 

das nano-fitas para diversas larguras.   

Durante nossa análise da estrutura de bandas das nano-fitas de Siliceno e Germaneno, 

variamos dois parâmetros do sistema, que são a largura da nano-fita e a sua relaxação iônica.  

Com relação ao processo de relaxação, optamos por efetuar um cálculo “duro”, ou seja, sem 

relaxar nenhum íon da estrutura, e também um cálculo baseado na relaxação das camadas 

atômicas que compõem as bordas.   

Para a relaxação iônica das bordas, inicialmente realizamos um teste com o intuito de 

estabelecer um número padrão de camadas atômicas que irá sofrer o processo de relaxação. 

Para esta tarefa analisamos as duas configurações de nano-fita (não reconstruída e 

reconstruída), e variamos o número de camadas atômicas a partir da camada atômica inicial 

(n=1) e final que irá ser relaxada. Este procedimento fora realizado com o intuito de observar 

o efeito que a relaxação progressiva da borda, tem sobre as propriedades eletrônicas e 

estruturais de ambas as configurações de nano-fita. 
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5.1.2  Relaxação das bordas: 

 

Para esta tarefa, inicialmente investigamos o efeito que a relaxação das bordas tem sobre 

uma nano-fita reconstruída de Ge de largura dada por n=26 (classificação 3p+2).  Para esta 

estrutura, efetuamos 4 distintas relaxações: os quais correspondem ao sistema sem relaxação 

“duro”, com o relaxamento da 1 camada atômica a partir das bordas, e relaxações de 2 e 4 

camadas atômicas, os quais denotamos respectivamente por n26.0, n26.1, n26.2 e n26.4.  

Abaixo segue uma tabela com os gaps no ponto Γ e a variação da energia total do sistema com 

relação à energia do sistema duro, ou seja, n26.0: 

Relaxamento GAP Energia de Relaxação 

n26.0 9.7 meV 0.0 eV 

n26.1 6.8 meV - 3,256 eV 

n26.2 55.1 meV - 3,516 eV 

n26.4 59.4 meV - 3,691 eV 

Tabela 1: Gap e Variação da energia com relação ao sistema duro, para a nano-fita reconstruída de Ge (n=26), 

submetida a diferentes relaxações iônicas de suas bordas. 

 

A partir destas informações, concluímos que quanto maior for a relaxação das bordas, ou 

seja, quanto maior for o número de camadas atômicas que sofrem o processo de relaxação 

iônica, maior será o gap de energia no ponto Γ.   Entretanto, verificamos que do sistema duro 

para o que apresenta a relaxação de apenas 1 camada atômica, houve uma pequena 

diminuição do gap de energia.  Mas para relaxações maiores, como de 1 para 2 camadas, o 

gap no ponto Γ aumentou mais de 8X (800%), enquanto que a relaxação de 2 para 4 camadas, 

o aumento do gap não foi tão considerável (8%). Verifica-se também que à medida que a 

relaxação do sistema aumenta, mais estável energeticamente este sistema se torna, uma vez 

que a energia do sistema tende a diminuir.  

Na próxima página, apresentamos figuras que ilustram as correspondentes deformações 

estruturais nas bordas, oriundas dos processos de relaxação iônica mencionados acima.        

Em todas as figuras (A) denota a vista lateral da borda composta pelos átomos e suas ligações, 

em (B) apresentamos somente as ligações de forma a visualizar melhor a deformação 

estrutural que ocorre, e (C) corresponde a uma vista de cima da borda da nano-fita. 
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Figuras 5.8 a 5.11: Respectivamente esquerda e direita superior e esquerda e direita inferior; estas figuras 

apresentam a estrutura cristalina das bordas das nano-fitas de Ge reconstruídas de largura dada por n=26, 

submetidas a diferentes processos de relaxação iônica de suas bordas. 

Observando-se as figuras, verificamos que a relaxação sobre as camadas atômicas que 

constituem a borda da nano-fita, tem como consequência principal o deslocamento de alguns 

átomos em relação ao eixo Z, ou seja, perpendicularmente ao plano da folha. Entretanto a 

extremidade mais superficial da borda sofre o processo inverso, tendendo a uma configuração 

mais planar.  Agora realizaremos a mesma análise, entretanto considerando uma nano-fita não 

reconstruída de Ge de largura dada por n=11 (classificação 3p+2). Para esta estrutura, 

analisamos o sistema para 3 distintas relaxações, os quais correspondem ao sistema sem 

relaxação “duro”, e com a relaxação de 1 e 2 camadas atômicas, que serão denotadas 

respectivamente por n11.0, n11.1 e n11.2.  Abaixo seguem os gaps de energia e a variação da 

energia total do sistema com relação à energia do sistema duro, ou seja, n11.0:  

Relaxamento GAP Energia de Relaxação 

n11.0 (estado metálico) 0.0 eV 

n11.1 30.3 meV - 1,582 eV 

n11.2 48.8 meV - 1,656 eV 

Tabela 2: Gap e Variação da energia com relação ao sistema duro, para a nano-fita não reconstruída de Ge 

(n=11), submetida a diferentes relaxações iônicas de suas bordas. 
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Abaixo, apresentamos figuras que ilustram a deformação estrutural nas bordas, oriundas dos 

processos de relaxação iônica acima mencionados. 

 

 

 

 

 

 

 

 

Figuras 5.12 a 5.14: Respectivamente esquerda e 

direita superior e esquerda inferior; estas figuras 

apresentam a estrutura cristalina das bordas das nano-

fitas de Ge não reconstruídas de largura dada por 

n=11, em (A) observamos a borda da nano-fita em 

vista lateral composta pelos átomos e suas ligações 

químicas, em (B) apresentamos somente as ligações 

de forma a visualizar melhor a deformação no eixo Z 

criada pela relaxação iônica, e finalmente em (C) 

apresentamos uma vista por cima da borda da nano-

fita. 

 

 

Verificamos que da mesma forma que para as nano-fitas reconstruídas, quanto maior for 

à relaxação das bordas das nano-fitas não reconstruídas, maior será o gap de energia no ponto 

Γ, além de mais estável energeticamente. Entretanto o sistema “duro” não apresenta gap de 

energia, estando em um estado metálico, que desaparece com a relaxação do sistema 

(verificado ao plotar a estrutura de bandas, e que será apresentado adiante). 

Como estamos interessados em uma nano-fita com caráter topológico, o qual seja 

caracterizado por um cruzamento linear das bandas de valência e condução ao nível de fermi, 

optamos por definir com padrão de relaxação das bordas, a relaxação de apenas 1 camada 

atômica, uma vez que este nos fornece o menor gap de energia para ambas as configurações 

de nano-fita (reconstruída e não reconstruída). 

Prosseguimos agora com o nosso estudo, obtendo-se as estruturas de bandas das nano-

fitas de Germaneno e Siliceno. 
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5.2  Estrutura de Bandas das Nano-fitas de Germaneno e Siliceno: 

 

Nesta dissertação, à análise da estrutura de bandas das nano-fitas foi realizada levando-se 

em consideração a interação spin-órbita, com o intuito de estimar o efeito que esta interação 

tem sobre os sistemas analisados, além da posterior investigação de um sistema que possa 

apresentar um estado topológico.  Neste contexto estamos à procura de uma nano-fita que no 

ponto Γ (ponto de alta simetria de interesse) apresente um gap nulo, ou então muito pequeno, 

além de uma determinada textura de spin, cujas bandas de valência e condução sejam spin 

polarizadas, ou seja, enquanto uma delas apresente somente spin-down à outra deva 

apresentar spin-up. Esta configuração para os estados superficiais e característica de um 

estado topológico que queremos verificar nas nano-fitas. 

Nesta análise, desejamos ainda que a contribuição para cada par de bandas superficiais 

(cone de Dirac), seja proveniente essencialmente de um dos lados (borda) da nano-fita e cada 

par apresente uma polarização invertida em relação à outra. Este comportamento para a 

textura de spin é necessária para a obtenção de um estado topologicamente protegido.  

Como já discutimos, a proteção topológica dos estados de borda em um IT, somente é 

válida caso haja em cada borda do material um número ímpar de estados que apresentem 

degenerescência de Kramers, ou em outras palavras, um número ímpar de cones de Dirac 

atravessando o nível de Fermi.  Os estados de borda do IT são spin polarizados, logo se 

ambos os cones de Dirac apresentarem contribuições dos dois lados da nano-fita, isto significa 

que cada lado apresenta 4 estados (dois estados com spin-up e dois com spin-down, onde os 

estados com a mesma orientação de spin se deslocam em sentidos opostos na superfície da 

nano-fita), desta forma um portador de carga pode ser retroespalhado sem reverter seu spin, 

violando a proteção topológico do estado. 

Abaixo apresentamos as correspondentes estruturas de bandas das nano-fitas de 

Germaneno e Siliceno, tanto para as configuração reconstruída quanto a não reconstruída. 

As estruturas de bandas apresentadas à esquerda da página correspondem ao sistema cujas 

bordas não são relaxadas, ou seja, o sistema “duro”, enquanto que as estruturas a direita 

correspondem as que passaram pelo processo de relaxação iônica das bordas definido 

anteriormente. Como mencionado, todas as estruturas de bandas plotadas a seguir, 

corresponderam a um caminho sobre a 1ºZB que atravessa o ponto Γ na direção de 

crescimento da nano-fita e que se estende de – ½b1 a + ½b1  e exemplificado na figura 5.7. 
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Siliceno: nano-fitas não reconstruídas 
 

N=8 (3p+2) – sem relaxação:                     N=8 (3p+2) – relaxada na bordas:            

 

 

 

 

 

(estado metálico)                                                       GAP = 0,2626  /  GAP (SO) = 0,2626 

E = -141,872 eV                                                         E = -143,899 eV                                                                                                                                                                                                                                                                                                                                                               
 

N=9 (3p) – sem relaxação:                          N=9 (3p) – relaxada na bordas:         

 

 

 

 

 

(estado metálico)                                                        GAP = 0,3248  /  GAP (SO) = 0,3233 

E = -160,974 eV                                                          E = -163,019 eV 
 
                                                                                                                                                                                                                                                                                                                          

N=10 (3p+1) – sem relaxação:                   N=10 (3p+1) – relaxada na bordas:   

 

 

 

 

 

(estado metálico)                                                       GAP = 0,0142  /  GAP (SO) = 0,0141 

E = -180,153 eV                                                          E = -182,152 eV 
                                                                                                                                                                                                                                                                                                                             

Figura 5.15: Estrutura de bandas para as nano-fitas de Siliceno não reconstruídas (bordas armchair), para diversas 

larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as 

estrutura a direita correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas 

da nano-fita. 
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N=11 (3p+2) – sem relaxação:                    N=11 (3p+2) – relaxada na bordas: 

 

 

 

 

    

(estado metálico)                                                         GAP = 0,2197  /  GAP (SO) = 0,2198 

E = -199,281 eV                                                           E = -201,314 eV 
                                                                                                                                                                                                                                                                                                                         

 

N=12 (3p) – sem relaxação:                         N=12 (3p) – relaxada na bordas: 

 
 

 

 

 

(estado metálico)                                                         GAP = 0,2658  

E = -218.399 eV                                                           E = -220.449 eV 
 

N=13 (3p+1) – sem relaxação:                     N=13 (3p+1) – relaxada na bordas: 

 

 

 

 

 

(estado metálico)                                                          GAP = 0,0198  

E = -237,548 eV                                                            E = -239,572 eV 
 

Figura 5.16: Estrutura de bandas para as nano-fitas de Siliceno não reconstruídas (bordas armchair), para diversas 

larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as 

estrutura a direita correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas 

da nano-fita. 
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Com base nas estruturas de bandas das nano-fitas de Siliceno não reconstruídas, 

percebemos que as nano-fitas cujas bordas não são relaxadas apresentam um caráter metálico 

independente da largura da nano-fita, entretanto a simples relaxação das bordas do material 

modifica drasticamente sua estrutura eletrônica.  

As nano-fitas que sofreram a relaxação das bordas, cuja largura se classificam como 3p e 

3p+2, apresentam um elevado gap de energia no ponto Γ, ao se comparado com os gaps 

obtidos para as nano-fitas que se classificam como 3p+1. Estas apresentam um gap muito 

menor que as demais, além de que suas bandas de valência e condução apresentam uma 

dispersão bastante linear nas proximidades do nível de Fermi (limite de baixa energia). 
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Siliceno: nano-fitas reconstruídas 
 

N=8 (3p+2) – sem relaxação:                     N=8 (3p+2) – relaxada nas bordas:            

   

 

 

 

 

 

GAP (SO) = 0,0599                                                   GAP = 0,0937  /  GAP (SO) =  0,0936 

E = -140,515 eV                                                         E = -145,062 eV 
                                                                                                                  
 

N=9 (3p) – sem relaxação:                         N=9 (3p) – relaxada nas bordas:            

 

 

 

 

 

GAP (SO) = 0,3713                                                  GAP = 0,3382  /  GAP (SO) =  0,3381 

E = -159,709 eV                                                        E = -164,239 eV 
 
                                                                                                              

N=10 (3p+1) – sem relaxação:                   N=10 (3p+1) – relaxada nas bordas:            

 

 

 

 

 

 

GAP = 0,2811                                                            GAP = 0,204  /  GAP (SO) =  0,204 

E = -178,810 eV                                                         E = -183,343 eV       

          

Figura 5.17: Estrutura de bandas para as nano-fitas de Siliceno reconstruídas, para diversas larguras de nano-fita. As 

estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as estrutura a direita 

correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas da nano-fita.                                                                

 



Dissertação: Investigação dos Estados Topologicamente Protegidos em Siliceno e Germaneno. 

Autor: Augusto de Lelis Araújo – Universidade Federal de Uberlândia/MG 

79 

 

 

N=11 (3p+2) – sem relaxação:                     N=11 (3p+2) – relaxada nas bordas:            

 

                                                                                           

 

 

 

 

GAP = 0,0243 / GAP (spin) =  0,0244                        GAP = 0,0351 / GAP (SO) =  0,0352 

E = -196,906 eV                                                           E = -201,984 eV 
 

                                                                

Figura 5.18: Estrutura de bandas para a nano-fita de Siliceno reconstruída, de largura correspondente a 11 camadas 

atômicas. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as estrutura a 

direita correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas da nano-

fita. 

 

Com base nas estruturas de bandas das nano-fitas de Siliceno reconstruídas, percebemos 

que as nano-fitas cujas bordas não são relaxadas, apresentam um comportamento distinto ao 

observado para as nano-fitas não reconstruídas. Estas apresentavam um comportamento 

metálico, enquanto que agora passam a apresentar um comportamento isolante. E também de 

forma distinta ao que ocorria anteriormente (nano-fita não reconstruída), durante a relaxação 

das bordas, não ocorre uma alteração significativa em sua estrutura eletrônica.  

As nano-fitas reconstruídas independentemente da relaxação, cuja largura classifica-se 

como 3p e 3p+1, apresentam um elevado gap de energia no ponto Γ, ao ser comparado com as 

que se classificam como 3p+2. As nano-fitas 3p+2, apresentam um menor gap de energia, 

contrastando com as nano-fitas não reconstruídas onde o menor gap ocorria para a 

configuração 3p+1, e além disso apresentavam uma dispersão mais linear em torno de Γ, do 

que o apresentado agora, principalmente para as parcelas das bandas que se encontram acima 

do nível de Fermi. 

Com esta última informação, concluímos que o processo de reconstrução da borda da 

nano-fita de Siliceno (vide figura 5.3), promove uma diminuição da velocidade de fermi de 

seus portadores de carga (o qual é estimada pela inclinação das bandas em torno do nível de 

fermi), ou seja, seus portadores de carga tornam-se mais massivos. 
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Germaneno: nano-fitas não reconstruídas 
 

 

N=9 (3p) - sem relaxação:                           N=9 (3p) – relaxação nas bordas: 

 

 

 

 

 

GAP ≈ 0,04477                                                                GAP = 0,3854 

E = -136,542 eV                                                               E = -137,831 eV 
 

N=10 (3p+1) - sem relaxação:                    N=10 (3p+1) – relaxação nas bordas: 

 

 

 

 

 

GAP = # (estado metálico)                                       GAP = 0,235 

E = -152,521 eV                                                         E = -153,885 eV 

 

N=11 (3p+2) - sem relaxação:                    N=11 (3p+2) – relaxação nas bordas: 

 

 

 

 

 

GAP = # (estado metálico)                                       GAP = 0,0476 

E = -168,582 eV                                                         E = -169,932 eV 

 
Figura 5.19: Estrutura de bandas para as nano-fitas de Germaneno não reconstruídas (bordas armchair), para diversas 

larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as 

estrutura a direita correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas 

da nano-fita. 
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N=12 (3p) - sem relaxação:                         N=12 (3p) – relaxação nas bordas:                                 

 

 

 

 

 

GAP = 0,0025 / GAP (spin) ≈ 0,0126                       GAP = 0,2987 

E = -184,667 eV                                                         E = -186,014 eV 

 

N=13 (3p+1) - sem relaxação:                    N=13 (3p+1) – relaxação nas bordas: 

 

 

 

 

 

(estado metálico)                                                        GAP = 0,1926 

E = -200,663 eV                                                          E = -202,057 eV 

 

N=14 (3p+2) - sem relaxação:                    N=14 (3p+2) – relaxação nas bordas: 

 

 

 

 

 

 

(estado metálico)                                                       GAP = 0,0375 

E = -216,729 eV                                                         E = -218,127 eV 

                                                                      

Figura 5.20: Estrutura de bandas para as nano-fitas de Germaneno não reconstruídas (bordas armchair), para diversas 

larguras de nano-fita. As estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as 

estrutura a direita correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas 

da nano-fita. 
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Observando-se as estruturas de bandas das nano-fitas de Germaneno não reconstruídas, 

percebemos que as nano-fitas cujas bordas não são relaxadas apresentam um caráter metálico 

independentemente da largura da nano-fita, entretanto a simples relaxação das bordas do 

material modifica drasticamente sua estrutura eletrônica, de forma similar ao que ocorreu para 

as nano-fitas de Siliceno não reconstruídas. 

As nano-fitas cujas bordas foram relaxadas, e com larguras que se classificam como 3p e 

3p+1 apresentam um elevado gap de energia no ponto Γ, ao ser comparadas com as que se 

classificam como 3p+2.  Estas possuem um gap muito menor, e uma dispersão linear de suas 

bandas de valência e condução em torno do ponto Γ próximo ao nível de Fermi. 

Em comparação com as nano-fitas de Siliceno não reconstruídas, as nano-fitas 3p e 3p+2 

é quem apresentavam um gap elevado, enquanto a com configuração 3p+1 é quem possuía 

um pequeno gap. O comportamento acima somente ocorreu para as nano-fitas de Siliceno 

reconstruídas. 
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Germaneno: nano-fitas reconstruídas 
 

   

N=9 (3p) - sem relaxação:                           N=9 (3p) - relaxada nas bordas: 

 

 

 

 

 

GAP =  0,2257 / GAP (SO) = 0,2258                        GAP  = 0,2643 /  GAP (SO) = 0,2639 

E = -135,491 eV                                                          E = -138,531 eV 

 

N=10 (3p+1) - sem relaxação:                    N=10 (3p+1) - relaxada nas bordas: 

 

 

 

 

 

GAP = 0,2758 / GAP (SO) = 0,2735                        GAP  = 0,3003 /  GAP (SO) = 0,2951 

E = -151,514 eV                                                         E = -154,573 eV 

 

N=11 (3p+2) - sem relaxação:                    N=11 (3p+2) - relaxada nas bordas: 

 

 

 

 

 

GAP = 0,0242 / GAP (SO) = 0,0231                         GAP  = 0,0157 /  GAP (SO) = 0,0161 

E = -167,557 eV                                                         E = -170,612 eV 

 
Figura 5.21: Estrutura de bandas para as nano-fitas de Germaneno reconstruídas, para diversas larguras de nano-fita. As 

estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as estrutura a direita 

correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas da nano-fita. 
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N=12 (3p) - sem relaxação:                       N=12 (3p) - relaxada nas bordas: 

 

 

 

 

 

GAP = 0,1736  /  GAP (SO) = 0,1734                      GAP  = 0,2184 /  GAP (SO) = 0,2222 

E = -183,622 eV                                                        E = -186,679 eV 

                                                                                 

N=13 (3p+1) - sem relaxação:                   N=13 (3p+1) - relaxada nas bordas: 

 

 

 

 

 

GAP = 0,229 / GAP (SO) = 0,223552                     GAP  = 0,2267 /  GAP (SO) = 0,2240 

E = -199,678 eV                                                        E = -202,732 eV 

 

N=14 (3p+2) - sem relaxação:                   N=14 (3p+2) – relaxada nas bordas: 

 

 

 

 

 

GAP =  0,0187  /  GAP (SO) =  0,0179                    GAP  = 0,0111 /  GAP (SO) = 0,0115 

E = -215,722 eV                                                         E = -218,778 eV 

                                                                                 

Figura 5.22: Estrutura de bandas para as nano-fitas de Germaneno reconstruídas, para diversas larguras de nano-fita. As 

estruturas a esquerda correspondem aos sistemas fixos (sem relaxação iônica), enquanto que as estrutura a direita 

correspondem aos sistemas que sofreram a relaxação iônica da 1º camada atômica a partir das bordas da nano-fita. 
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Com base nas estruturas de bandas das nano-fitas de Germaneno reconstruídas, 

percebemos que as nano-fitas cujas bordas não são relaxadas apresentam um comportamento 

distinto ao observado para as nano-fitas não reconstruídas. Estas apresentavam um 

comportamento metálico, enquanto que agora passam a apresentar um comportamento 

isolante.  E também de forma distinta ao que ocorria anteriormente, durante a relaxação das 

bordas, não ocorre uma alteração significativa em sua estrutura eletrônica.  

As nano-fitas independentemente da relaxação, cuja largura classificam-se como 3p e 

3p+1, apresentam um elevado gap de energia no ponto Γ, ao se comparar com as que se 

classificam como 3p+2, sendo este comportamento semelhante ao que ocorre para as nano-

fitas de Siliceno reconstruídas. 

Outra característica que podemos observar, ao comparar as estruturas de bandas das 

nano-fitas de Germaneno não reconstruída e reconstruída, e que a configuração de borda 

reconstruída, promove sobre as nano-fitas de classificação 3p+2, uma dispersão mais linear de 

energia, do que a observada para as nano-fitas não reconstruídas.   Em outras palavras, para as 

nano-fitas de Germaneno, a reconstrução de suas bordas, promove um aumento da velocidade 

de fermi de seus portadores de carga, para o regime de baixa energia. Esta situação contrasta 

com a observada para as nano-fitas de Siliceno, onde o processo de reconstrução das bordas, 

promovia uma diminuição da velocidade de fermi dos portadores de carga.  

 

Discussão: 
 

Analisando-se as estruturas de bandas para os quatro tipos de nano-fitas de Germaneno e 

Siliceno: não reconstruída com bordas não relaxadas; não reconstruída com relaxação nas 

bordas; reconstruída sem relaxação nas bordas e reconstruída com relaxação nas bordas.  

Concluímos que das nano-fitas de Siliceno e Germaneno analisadas, as mais estáveis 

energeticamente correspondem à configuração dada pela reconstruída com relaxação nas 

bordas. Também percebemos que a interação spin-órbita nestes sistemas, não altera 

significativamente sua estrutura eletrônica, uma vez que a única contribuição que sentimos 

fora a de um leve aumento ou diminuição do gap de energia, da ordem de poucos mili eV. 

Quanto à relaxação das bordas das nano-fitas, verificamos que quando aplicada a 

configuração não reconstruída ela tende a modificar drasticamente sua estrutura eletrônica. 

Entretanto, aplicada a configuração reconstruída, uma modesta alteração ocorre, estando mais 
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relacionada à magnitude do gap de energia no ponto Γ, que em alguns casos sofre um ligeiro 

aumento e em outros uma pequena diminuição.  

Ressaltando, verificamos que com a variação da largura da nano-fita (exceto para a 

configuração não reconstruída e não relaxada que apresenta estados metálicos), a largura do 

gap de energia apresenta um comportamento periódico, oscilando entre valores elevados ou 

pequenos para as seguintes classificações de largura (3p, 3p+1 e 3p+2).  Por final, verificamos 

que com o aumento da largura da nano-fita, o gap tende a diminuir independente de sua 

classificação, o qual é um resultado da diminuição do confinamento quântico aplicado ao 

sistema.  Esta característica esta ilustrada na figura abaixo, que demonstra este 

comportamento para as nano-fitas reconstruídas de Ge com relaxação aplicada as bordas. 

 

 

 

 

 

 

 

Figura 5.23: Variação do gap das nano-fitas de Ge reconstruídas e com relaxação iônica aplicada as bordas, 

demonstrando o seu caráter periódico. 

 

5.3  Textura de Spin: 
 

Uma importante etapa na busca por um estado topologicamente protegido nas nano-fitas 

de Siliceno e Germaneno é a análise da textura de spin destes sistemas. Como discutido 

anteriormente, um isolante topológico bidimensional deve ter em cada uma de suas bordas, 

dois canais de condução com spins opostos (up e down).  De forma que em sua estrutura 

eletrônica possamos visualizar dois cones de Dirac, cada um proveniente de um dos lados da 

nano-fita e com textura de spin invertida um em relação ao outro. É justamente este 

comportamento que desejamos obter para as nano-fitas analisadas, dois cones de Dirac, 

formados pelo cruzamento das bandas de valência e condução no ponto Γ, onde cada uma das 

bandas apresente spins opostos entre si, e com relação às bandas oriundas de lados opostos da 

nano-fita. 
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Para a busca por este estado topologicamente protegido, decidimos analisar uma 

determinada configuração de nano-fita, o qual corresponde a uma nano-fita larga de 

Germaneno, composta por 56 camadas atômicas (n56 de classificação 3p+2), o que equivale a 

aproximadamente 11.6nm de largura, cujas bordas sejam reconstruídas e sofra o processo de 

relaxação iônica.   

Esta configuração de nano-fita foi escolhida em função dos resultados obtidos 

anteriormente, que nos mostraram que o Germaneno possui uma maior interação spin-órbita 

em relação ao Siliceno, em virtude deste promover uma maior abertura do gap de energia.  

Devemos no lembrar que uma das principais características que dão origem aos isolantes 

topológicos é justamente a interação spin-órbita.   Além disso, constatamos que o aumento da 

largura da nano-fita tende a diminuir o gap de energia, e que de todas as configurações de 

nano-fitas de Germaneno analisadas a que apresentou o menor valor de gap, além de ser a 

mais estável energeticamente, foi a nano-fita reconstruída com relaxação iônica das bordas, 

cuja classificação seja 3p+2.  

 

5.3.1  Textura de Spin para a nano-fita de Germaneno: 

 

Agora analisaremos a textura de spin da nano-fita reconstruída de Germaneno, de largura 

dada por n=56 (aproximadamente 11,6 nm), que classifica-se como 3p+2. De acordo com a 

análise feita anteriormente, esta nano-fita deve apresentar um baixo valor de gap em relação 

às nano-fitas classificadas como 3p (n=55) e 3p+1 (n=54).   

Como definimos anteriormente, a relaxação padrão das nano-fitas corresponde à 

relaxação da 1º camada atômica a partir das bordas.  Entretanto, também investigaremos a 

textura de spin referente à relaxação de 2 camadas atômicas; mesmo este sistema 

apresentando um maior gap de energia, ele será analisado pelo fato de ser mais estável 

energeticamente e a fim de avaliarmos o efeito que a relaxação do sistema tem sobre a textura 

de spin. 
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n56: Relaxação de 1 camada atômica 
 

   

Para analisarmos a textura de spin desta nano-fita, inicialmente faremos uma observação 

do comportamento das componentes de spin (Sx, Sy e Sz) das bandas de valência e condução, 

que se cruzam linearmente ao nível de Fermi em torno do ponto Γ.  Desta forma, iremos 

determinar qual destas componentes de spin predominam na sua estrutura de bandas.  Para 

esta observação plotamos o gráfico abaixo, que demonstra as intensidades de cada uma das 

três componentes, de um ponto afastado de Γ à medida que caminhamos em direção a este 

ponto. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 5.24: Comportamento das componentes de spin (Sx, Sy e Sz) das bandas de valência e condução, nas 

proximidades do ponto Γ.   
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Observando-se a figura 5.24, observamos que nas proximidades do ponto Γ, tanto para as 

bandas de valência quanto as de condução, a componente de spin que predomina é Sz, 

enquanto as demais componentes (Sx e Sy) são desprezíveis, logo analisaremos a componente 

Sz.  Antes de plotarmos a textura de spin da componente Sz, devemos nos lembrar que devido 

ao teorema de Kramers, as bandas de valência e condução são degeneradas. Desta forma para 

uma melhor visualização da textura, optamos por plotar dois gráficos, cada um 

correspondendo a um par de bandas spin polarizadas que constituem um cone de Dirac.  

Abaixo segue as texturas da componente Sz. 

   
 

 

 

 

  

 

 

Figura 5.25 (esquerda): Textura de spin (Sz) em torno do ponto Γ, ao nível de Fermi, de um cone de Dirac. 

Figura 5.26 (direita): Textura de spin (Sz) em torno do ponto Γ, ao nível de Fermi, do outro cone. 

Através das figuras 5.25 e 5.26, percebemos que esta nano-fita claramente apresenta um 

comportamento que desejamos observar de um estado topologicamente protegido, ou seja, as 

bandas de valência e condução são spin polarizadas e se cruzam linearmente ao nível de 

Fermi.  Entretanto não observamos um fechamento efetivo do gap, que para esta configuração 

equivale a 2.6 meV. E também como será verificado a diante, cada um dos estados 

superficiais que compõem os cruzamentos acima, não estão se originando exclusivamente de 

cada uma das bordas da nano-fita, mesmo que apresentem uma contribuição predominante de 

uma das bordas.  

A seguir, iremos repetir a análise feita acima para o mesmo sistema (nano-fita de Ge 

reconstruída e de largura dada por n=56), entretanto apresentando uma maior relaxação de 

suas bordas (2 camadas atômicas).  
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n56: Relaxação de 2 camadas atômicas 
 

Da mesma forma que o caso anterior, inicialmente analisaremos o comportamento das 

componentes de spin (Sx, Sy e Sz) das bandas de condução e valência que se cruzam 

linearmente ao nível de Fermi, a fim de determinar qual componente predomina e que será 

levada em consideração durante a análise da textura de spin. Abaixo apresentamos o 

comportamento obtido para esta nova configuração. 

 

 

 

 

 

 

 

 
 

 

  

 

 

 

Figura 5.27: Comportamento das componentes de spin (Sx, Sy e Sz) das bandas de valência e condução, nas 

proximidades do ponto Γ.   

 
 

Observando-se a figura 5.27, observamos que da mesma forma que para o sistema 

anterior, a componente predominante é Sz, o qual se intensifica à medida que nos 

aproximamos de Γ. Entretanto, neste caso todas as componentes apresentam um 

comportamento linear, tanto para as bandas de valência quanto para as de condução, a 

despeito do caso anterior em que o comportamento não era muito linear e chegava mesmo a 

ser oscilatório, como para a componente Sy das bandas de condução. Aqui observamos que 

Sy é nulo enquanto Sx decai linearmente a medida que nos aproximamos de Γ; abaixo segue a 

textura de Sz. 
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Figura 5.28 (esquerda): Textura de spin (Sz) em torno do ponto Γ, ao nível de Fermi, de um cone de Dirac. 

Figura 5.29 (direita): Textura de spin (Sz) em torno do ponto Γ, ao nível de Fermi, do outro cone. 

A textura de Sz desta configuração, apresenta a mesmo comportamento observado para o 

caso anterior, onde as bandas de valência e condução são spin polarizadas e se cruzam 

linearmente ao nível de Fermi.  A única diferença, corresponde a um grande aumento do gap 

de energia, que agora vale 26.7 meV, ou seja, um aumento de 1 ordem de grandeza, mas que 

já era esperado. 

Agora iremos demonstrar uma característica mencionada anteriormente, que é o fato das 

bandas de valência e condução que se cruzam, não estarem localizadas exclusivamente em 

uma das bordas da nano-fita, o que geraria a quebra da proteção dos estados pela simetria de 

reversão temporal.   Para efetuar esta verificação, iremos plotar um gráfico para cada uma das 

quatro bandas que se cruzam ao nível de Fermi, que demonstra a contribuição que cada 

camada atômica (n) tem para o spin da banda, ou em outras palavras, os átomos que 

contribuem para aquele estado.  Entretanto, este comportamento se modifica à medida que nos 

afastamos do ponto Γ, logo iremos analisa-lo em dois distintos pontos, um ponto próximo (1) 

a Γ e um afastado (2); estes correspondem aos pontos destacados na figura abaixo. 

 

 

 

 

 

 

Figura 5.30: Pontos K a serem analisados, quanto à contribuição de cada borda da nano-fita para os estados que 

se cruzam linearmente ao nível de Fermi. 
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Realizamos esta análise para algumas larguras de nano-fitas de Germaneno, com o intuito 

de demonstrar como a contribuição das bordas para os estados superficiais, se modifica em 

função da variação da largura. As nano-fitas analisadas, correspondem a configuração 

reconstruída com a relaxação de 1 camada atômica das bordas, e cuja classificação seja 3p+2.  

Novamente, devido ao fato desta configuração ser a mais favorável para se observar um 

estado topológico.  As larguras analisadas foram n14, n26 e n56. 

n14: 

 

 

 

 

Figura 5.31 (esquerda): Contribuição das camadas atômicas para as bandas de um ponto k (1) afastado de Γ para 

a nano-fita n14.  Figura 5.32 (direita): Contribuição das camadas atômicas para as bandas de um ponto k (2) 

próximo a Γ para a nano-fita n14.    
 

 

n26: 

  

 

 

 

 

 

Figura 5.33 (esquerda): Contribuição das camadas atômicas para as bandas de um ponto k (1) afastado de Γ para 

a nano-fita n26.  Figura 5.34 (direita): Contribuição das camadas atômicas para as bandas de um ponto k (2) 

próximo a Γ para a nano-fita n26.    
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n56: 

 

  

 

 

 

 

 

Figura 5.35 (esquerda): Contribuição das camadas atômicas para as bandas de um ponto k (1) afastado de Γ para 

a nano-fita n56.  Figura 5.36 (direita): Contribuição das camadas atômicas para as bandas de um ponto k (2) 

próximo a Γ para a nano-fita n56.    

 

Observando-se os resultados acima, concluímos que para as três configurações de nano-

fita analisadas, somente a nano-fita com largura correspondente a 56 camadas atômicas, 

apresenta estados superficiais que se originam predominantemente de uma das bordas da 

nano-fita, principalmente para pontos afastados de Γ. Entretanto para as nano-fitas mais 

estreitas, observamos que os estados superficiais, apresentam uma forte contribuição de 

ambas as bordas, não apresentando efetivamente um estado de borda topologicamente 

protegido.   

Desta forma, estes resultados evidenciam, que o aumento da largura da nano-fita reforça a 

localização dos estados superficiais em um dos lados da nano-fita. Desta forma esperamos 

que para uma nano-fita extremamente larga irá ocorrer um gradual fechamento do gap e 

também a completa dependência destas bandas com relação a uma das bordas da nano-fita. 

Este comportamento, juntamente com o caráter da textura de spin evidenciado pela nano-fita 

de largura n56, irá constituir uma nano-fita com estados de borda topologicamente protegidos. 
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Capítulo 6:  

Conclusões 
 

Neste trabalho, utilizamos cálculos de primeiros princípios fundamentados na teoria do 

funcional da densidade, para a análise das propriedades eletrônicas e estruturais do Siliceno e 

Germaneno. Também estudamos suas respectivas nano-fitas com relação a duas 

configurações de borda, uma com terminação armchair e a outra correspondendo a uma 

reconstrução desta borda. 

 Ao longo de nosso estudo, verificamos que as nano-fitas, tanto de Siliceno quanto as de 

Germaneno, cuja configuração corresponde a bordas no padrão armchair não relaxadas, 

apresentam estados metálicos.  Estes estados provem das ligações pendentes nas bordas da 

nano-fita, oriundas do processo de corte da folha infinita para sua criação.   Constatamos que 

a relaxação iônica dos íons presentes nas bordas das nano-fitas com terminação armchair, bem 

como a reconstrução desta borda, abrem um gap de energia no ponto Γ, dando origem a um 

estado isolante.  Este estado é caracterizado por uma largura de gap que varia em função do 

número de camadas atômicas que compõem a nano-fita, ou em outras palavras, varia em 

função de sua largura.  

Verificamos que as nano-fitas podem ser classificadas entre três configurações padrões 

(3p, 3p+1 e 3p+2). Onde cada padrão corresponde a um valor típico para a largura do gap de 

energia; os menores gaps ocorrem para uma determinada configuração (3p+2 para a nano-fita 

de Germaneno), enquanto as demais configurações apresentam valores mais elevados.            

Ainda com relação ao gap de energia, constatamos que este tende a aumentar com a 

diminuição da largura da nano-fita (devido ao aumento do confinamento eletrônico) e com o 

emprego de uma maior relaxação iônica de suas bordas.   

Neste trabalho, verificamos que os estados topologicamente protegidos ficam melhor 

descritas para nano-fitas largas, principalmente para nano-fitas compostas a partir de 56 

camadas atômicas, o que corresponde aproximadamente a uma largura de 12 nm. Para esta 

situação, os estados que se cruzam ao nível de Fermi são spin polarizadas. Além disto eles 

passam a se originar predominantemente de uma das bordas da nano-fita, evitando desta 

forma a quebra da proteção topológica pela simetria de reversão temporal e nos permitindo 

classificar estas estruturas como um isolante topológico com estados protegidos. 
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Em contraste, nano-fitas menores apresentam uma forte interação entre os seus estados de 

borda, e desta forma não apresentam efetivamente um estado topologicamente protegido.     

Como discutido no capítulo 1, este fato permite o retroespalhamento de um portador de carga 

e desta forma a quebra do estado protegido.   Para estas nano-fitas, sua textura de spin não é 

bem definida, em virtude de apresentarem um gap de energia não desprezível, apresentando 

desta forma estados massivos. 

 Como perspectiva de continuação do trabalho apresentado nesta dissertação, queremos 

analisar com uma maior profundidade a textura de spin que realizamos para a nano-fita de Ge 

(reconstruída e relaxada, de largura n56), para larguras ainda maiores deste sistema, bem 

como o estudo da nano-fita reconstruída de Siliceno.  Esperamos reforçar o resultado 

encontrado nesta dissertação, de que as nano-fitas tendem a apresentar um estado 

topologicamente protegido para grandes larguras, bem como evidenciar a formação de um 

efetivo estado topológico para a nano-fita, caracterizado pelo fechamento do gap e o 

aparecimento de estados spin polarizados de uma única borda. 
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Apêndice A: Operador de Reversão Temporal 
 

 

 

A1: Demonstração que Θ, deve ser um operador anti-unitário: 
 

Inicialmente avaliemos a evolução temporal de um estado |α〉, sob a influência do 

operador Hamiltoniano H do sistema, através da equação de Schrödinger: 

iℏ
𝜕

𝜕𝑡
|α〉  =  H|α〉 

Após um tempo infinitesimal 𝛿t, o sistema se encontrará em um novo estado dado por: 

|α, t0 = 0; t = 𝛿t〉  =  (1 − 𝑖
H

ℏ
𝛿𝑡)|α〉,  onde (1 − 𝑖

H

ℏ
𝛿𝑡) é o operador de evolução 

temporal infinitesimal.     

 

Agora analisemos dois conjuntos de operações (A) e (B) que levam ao mesmo estado:  

 

(A) Aplicamos o operador de reversão temporal Θ, no estado |α〉 para t=0 (estado inicial), e 

em seguida deixamos o sistema evoluir no tempo sob a influência do Hamiltoniano H: 

∴ 

(1 − 𝑖
H

ℏ
𝛿𝑡)Θ|α〉 

Para o estado inicial (t=0), temos que Θ|α〉 = |α〉, uma vez que –t = t. 

∴ 

(1 − 𝑖
H

ℏ
𝛿𝑡)Θ|α〉  =  (1 − 𝑖

H

ℏ
𝛿𝑡)|α〉  =  |α, t0 = 0; t = 𝛿t〉 

 

 

(B) Consideremos agora, um estado ket no instante t = - 𝛿𝑡, e em seguida aplicamos o 

operador de reversão temporal Θ, cuja ação seja é a de reverter 𝛿𝑡, ou seja, −𝛿𝑡 → 𝛿𝑡: 

Θ|α, t0 = 0; t = −𝛿t〉  =  |α, t0 = 0; t = 𝛿t〉 

 

Desta forma, matematicamente temos que (A) = (B): 

 

  (1 − 𝑖
H

ℏ
𝛿𝑡)Θ|α〉  =  Θ|α, t0 = 0; t = −𝛿t〉   

 

mas  |α, t0 = 0; t = −𝛿t〉  =  (1 − 𝑖
H

ℏ
(−𝛿𝑡)) |α〉  =  (1 + 𝑖

H

ℏ
𝛿𝑡) |α〉 
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∴ 

(1 − 𝑖
H

ℏ
𝛿𝑡)Θ|α〉  =  Θ(1 + 𝑖

H

ℏ
𝛿𝑡)|α〉 

Logo: 

Θ|α〉 −  𝑖H
𝛿𝑡

ℏ
 Θ|α〉  =  Θ|α〉  +  Θ𝑖H

𝛿𝑡

ℏ
|α〉 

−𝑖H
𝛿𝑡

ℏ
 Θ|α〉  =  Θ𝑖H

𝛿𝑡

ℏ
|α〉 

 

ou 

 

 − 𝑖HΘ  =  Θ𝑖H 

 

Agora iremos argumentar, porque o operador Θ não pode ser unitário; um operador 

unitário possui a seguinte propriedade: UU* = I, ou U-1 = U*.   Suponhamos que Θ fosse 

unitário, desta forma poderíamos reescrever a expressão acima (−𝑖HΘ = Θ𝑖H) da seguinte 

forma:  

− 𝑖HΘ = Θ𝑖H 

− 𝑖HΘ = 𝑖ΘH,  uma vez que i é apenas um número imaginário. 

− HΘ = ΘH,  nesta situação o Hamiltoniano do sistema anti-comuta com Θ. 

Consideremos que o auto-estado |α〉 possua auto-energias dadas por En, logo: 

H|α〉  =  En|α〉 
∴ 

− HΘ|α〉  =  ΘH|α〉  =  ΘEn|α〉 

HΘ|α〉  =  −EnΘ|α〉 
 

Esta equação no diz que o auto-estado Θ|α〉, corresponde a um auto-estado negativo do 

Hamiltoniano do sistema com energia dada por – En, entretanto isto se configura como um 

absurdo, pois mesmo para o caso mais elementar de uma partícula livre, sua energia é definida 

no intervalo de 0 até + ∞, logo um espectro de energia de - ∞ a 0 é completamente inaceitável. 

 

A única forma de que Θ seja um o operador de simetria útil, é que ele seja unitário 

antilinear, isto é, um operador anti-unitário. Uma operador anti-unitário, pode ser escrito da 

seguinte forma: 

 

Θ  =  UK,  em que K é o operador de conjugação complexa e U um operador unitário. 

∴ 

Θ𝑖 = UK 𝑖  =  U(−𝑖)K  =  − 𝑖UK 

∴ 
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Θ𝑖  =  − 𝑖Θ 

Desta forma podemos reescrever: 

 

− 𝑖HΘ  =  Θ𝑖H  =  − 𝑖ΘH 

HΘ  =  ΘH    ou    HΘ  −  ΘH  =  0 

∴ 

[H,Θ] = 0,  agora o Hamiltoniano do sistema comuta com Θ. 

 

Concluímos que os operadores Hamiltoniano e de reversão temporal comutam, ou em 

outras palavras, que o Hamiltoniano seja invariante sobre reversão temporal. 

 

Voltando na expressão das auto-energias, agora teremos: 

HΘ|α〉   =  ΘH|α〉    =  ΘEn|α〉  =  En Θ|α〉   

HΘ|α〉   =  En Θ|α〉   

Agora obtivemos que Θ|α〉, corresponde a um auto-estado positivo do Hamiltoniano do 

sistema com energia dada por En, em contraste com o absurdo obtido anteriormente.  Desta 

forma demonstramos que o operador de reversão temporal deve ser anti-unitário.  

 

A2: Forma funcional do operador Θ, para sistemas de spin ½: 
 

Iremos obter a forma do operador de reversão temporal para sistemas de spin ½, para esta 

tarefa faremos uma breve revisão sobre o operador de rotação ℝ.  Este operador realiza uma 

rotação do sistema por um ângulo infinitesimal 𝑑𝜙, em torno de um eixo que é caracterizado 

pelo versor 𝐧̂.  Para uma rotação infinitesimal o operador ℝ, apresenta a seguinte forma[8]: 

ℝ(𝐧̂, 𝑑𝜙) = 1 – i(
𝐉.𝐧̂

ℏ
), na mecânica clássica o momento angular J é o gerador de rotações. 

Já a rotação finita, em torno de um dado eixo, por exemplo, o eixo z, é dado pela expressão: 

ℝz (𝑑𝜙) = lim
𝑛→∞

(1 –  𝑖 (
JZ

ℏ
) (

𝜙

𝑛
))

𝑛

 =  exp(– 𝑖
JZ𝜙

ℏ
) 

Na mecânica quântica os Sk (Sx,Sy,Sz), no sistema de spin ½ também satisfazem as 

relações de comutação do momento angular, de forma que podemos escrever o operador de 

rotação da seguinte forma: 

ℝz (𝑑𝜙)  =  𝑒(–𝑖SZ𝜙/ℏ) 

Após uma rotação, um estado dado pelo |α〉 passa a ser dado por: 
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|α〉R  =  ℝz (𝑑𝜙) |α〉  =  𝑒(–𝑖SZ𝜙/ℏ)|α〉 
 

Relembremos algumas notações da mecânica quântica: 

Sx  =  
ℏ

2
 { ( |+〉〈−| )  + ( |−〉〈+| ) } 

Sy  =  
ℏ

2
 { ( |+〉〈−| )  − ( |−〉〈+| ) } 

Sz  =  
ℏ

2
 { ( |+〉〈+| )  − ( |−〉〈−| ) } 

Onde: 

|+〉 = (1
0
);     〈+| = (1, 0);     |−〉 = (0

1
);     〈−| = (0, 1) 

 

As matrizes de Pauli, são escritas da seguinte forma: 

σx = (0  1
1  0

);      σy = (0 −𝑖
𝑖   0

);      σz = (1    0
1 −1

) 

De forma que podemos escrever: 

S = 
ℏ

2
𝛔; onde  S = S (Sx,Sy,Sz)  e  𝛔 = 𝛔(σx,σy σz) 

 

Continuemos agora nossa análise, consideremos que o sistema esteja no estado inicial 

dado pelo |+〉, e em seguida aplicamos sobre este duas rotações, uma em torno do eixo Y por 

um ângulo 𝛽, e a outra em sequência em torno do eixo Z por um ângulo α; desta forma o 

estado resultante pode ser escrito como[8]: 

|𝐧̂; +〉  =  ℝz (𝐧̂, α) ℝY (𝐧̂, 𝛽) |+〉 

|𝐧̂; +〉  =  𝑒(–𝑖𝐒𝐙α/ℏ)𝑒(–𝑖𝐒𝐘𝛽/ℏ) |+〉 

Onde |𝐧̂; +〉, corresponde a um auto-estado de S.𝐧̂ 

 

Agora sobre este estado, apliquemos o operador de reversão temporal Θ: 

Θ|𝐧̂; +〉 = Θ(𝑒(–𝑖𝐒𝐙α/ℏ)𝑒(–𝑖𝐒𝐘𝛽/ℏ) |+〉)  

Θ|𝐧̂; +〉 = Θ 𝑒(–𝑖𝐒𝐙α/ℏ)Θ-1
 Θ 𝑒(–𝑖𝐒𝐘𝛽/ℏ)Θ-1

 Θ|+〉 

Θ|𝐧̂; +〉 = 𝑒(−𝑖(−𝐒𝐙)α/ℏ)* 
 𝑒(−𝑖(−𝐒𝐘)𝛽/ℏ)* 

 Θ|+〉,    onde * é o complexo conjugado 

Θ|𝐧̂; +〉 = 𝑒(−𝑖𝐒𝐙α/ℏ) 𝑒(−𝑖𝐒𝐘𝛽/ℏ)
 Θ|+〉 

 

Visto que o operador Θ, promove tanto a inversão de Sz, quanto a conjugação complexa, uma 

vez que Θ = UK. 
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Sabemos o resultado da aplicação do operador Θ no ket |𝐧̂; +〉, uma vez que ΘJΘ-1 = - J, logo 

teremos que: Θ|𝐧̂; +〉 = 𝜂|𝐧̂;−〉, sendo 𝜂 uma fase arbitrária (número complexo de módulo 1). 

∴ 

Θ|𝐧̂; +〉  = 𝑒(−𝑖𝐒𝐙α/ℏ)  𝑒(−𝑖𝐒𝐘𝛽/ℏ)
 Θ|+〉  = 𝜂|𝐧̂; −〉    

 

Por outro lado, podemos escrever |𝐧̂, −〉 da mesma forma que escrevemos |𝐧̂, +〉, utilizando-se 

o ângulo de (𝛽 + 𝜋) na rotação sobre o eixo Y: 

|𝐧̂; −〉  =  ℝz (𝐧̂, α) ℝY (𝐧̂, 𝛽 + 𝜋) |+〉 

|𝐧̂, −〉  =  𝑒(−𝑖𝐒𝐙α/ℏ)𝑒−𝑖𝑆𝑦
(𝛽+𝜋)

ℏ  |+〉 

Desta forma, temos que: 

Θ|𝐧̂; +〉  = 𝑒(−𝑖𝐒𝐙α/ℏ)  𝑒(−𝑖𝐒𝐲𝛽/ℏ)
 Θ|+〉  =  𝜂|𝐧̂; −〉  =  𝜂𝑒(−𝑖𝐒𝐙α/ℏ)𝑒−𝑖𝑆𝑦

(𝛽+𝜋)

ℏ  |+〉 

∴ 

𝑒(−𝑖𝐒𝐙α/ℏ) 𝑒(−𝑖𝐒𝐲𝛽/ℏ)
 Θ|+〉  = 𝜂𝑒(−𝑖𝐒𝐙α/ℏ) 𝑒(−𝑖𝐒𝐲𝛽/ℏ)𝑒−𝑖𝑺𝒚𝜋/ℏ |+〉 

Θ|+〉  = 𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ |+〉 
 

Já vimos que para o operador Θ ser anti-unitário, ele deve possuir a seguinte forma            

Θ = UK, em que K é o operador de conjugação complexa e U um operador unitário.   Na 

expressão acima, podemos tomar o termo 𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ, como sendo um operador unitário, uma 

vez que (𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ)(𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ)*  =  𝜂*𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ𝑒+𝑖𝑺𝒚𝜋/ℏ  = 1. 

Para obtermos o segundo termo que corresponde ao operador de conjugação complexa K, 

podemos utilizar a seguinte relação: K |+〉 = |+〉, uma vez que |+〉 = (1
0
), desta forma podemos 

escrever: 

Θ|+〉  = 𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ |+〉  =  𝜂𝑒−𝑖𝑺𝒚𝜋/ℏK |+〉  

Obtendo a seguinte expressão para o operador de reversão temporal: 

 Θ  =  𝜂𝑒−𝑖𝑺𝒚𝜋/ℏK   

 

Agora, iremos analisar a expressão acima, para o caso em que o spin esteja orientado sobre o 

eixo y, neste caso devemos tomar: 

𝐧̂  =  𝐲̂,  𝜙  =  π  e  𝛔. 𝐧̂  =  𝛔y. 𝐲̂  =  σy  =  
2

ℏ
 Sy,   ( pois Sy = 

ℏ

2
σy ) 

Utilizando-se a seguinte relação:  

𝑒−𝑖𝛔.𝐧̂𝜙/2  =  cos(
𝜙

2
) − 𝑖𝛔. 𝐧̂ sen (

𝜙

2
) 
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Teremos que: 

𝑒−𝑖𝑺𝒚𝜋/ℏ  =  𝑒−𝑖
ℏ

2
σ𝒚 𝜋/ℏ

  =  𝑒−𝑖σ𝒚𝜋/2  =   𝑒−𝑖𝛔𝒚.𝐲̂𝜋/2  =  cos(
π

2
) − 𝑖𝛔y. 𝐲̂ sen (

π

2
) 

𝑒−𝑖𝑺𝒚𝜋/ℏ  =  − 𝑖𝛔y. 𝐲̂  =  − 𝑖σy  =  − 𝑖
2

ℏ
Sy 

Logo, podemos reescrever a expressão para o operador de reversão temporal: 

Θ   =  𝜂𝑒−𝑖𝑺𝒚𝜋/ℏK   =  − 𝑖𝜂
2

ℏ
 Sy 

 

 

A3: Demonstração que Θ2 =  − 1: 
 

 

Observemos que: 

𝑒−𝑖𝑺𝒚𝜋/ℏ|+〉  =  − 𝑖
2

ℏ
 Sy |+〉  =   − 𝑖

2

ℏ
 
ℏ

2
σy |+〉 =  − 𝑖 σy |+〉  =  − 𝑖(0 −𝑖

𝑖   0
)(1

0
)  =  − 𝑖(0

𝑖
)  =  (0

1
)   

𝑒−𝑖𝑺𝒚𝜋/ℏ|+〉  =  + |−〉   

Enquanto: 

𝑒−𝑖𝑺𝒚𝜋/ℏ|−〉  =  − 𝑖
2

ℏ
 Sy |−〉  =  − 𝑖

2

ℏ
 
ℏ

2
σy |−〉 = − 𝑖 σy |−〉  =  − 𝑖(0 −𝑖

𝑖   0
)(0

1
)  =  − 𝑖(−𝑖

0
)  =  (1

0
)   

𝑒−𝑖𝑺𝒚𝜋/ℏ|−〉  =  − |+〉   

 

Agora, iremos aplicar o operador Θ, a um estado geral dado por C+|+〉 + C-|−〉. 

Θ(C+|+〉 + C-|−〉)  =  𝜂𝑒−𝑖𝑺𝒚𝜋/ℏK(C+|+〉 + C-|−〉) = 𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ(C+
*|+〉 + C-

*|−〉)   

=  𝜂(C+
*|−〉 − C-

*|+〉)  

 

Aplicando-se novamente o operador Θ: 

Θ 𝜂 ( C+
*|−〉 − C-

*|+〉 )  =   𝜂𝑒−𝑖𝑺𝒚𝜋/ℏK {𝜂( C+
*|−〉 − C-

*|+〉 )}     

=   𝜂𝑒−𝑖𝑺𝒚𝜋/ℏ{𝜂*( C+|−〉 − C-|+〉 )}  =   𝜂{𝜂*( − C+|+〉 − C-|−〉 )}        

=   − 𝜂𝜂*C+|+〉 − 𝜂𝜂*C-|−〉  =  − |𝜂|2C+|+〉 − |𝜂|2C-|−〉  =   − ( C+|+〉 + C-|−〉 )    

 

Ao final obtivemos o seguinte resultado: Θ2 ( C+|+〉 + C-|−〉 )  =  − ( C+|+〉 + C-|−〉 )  

Ou seja,  Θ2 =  −1   

 

Este resultado na verdade é generalizável; pode-se demonstrar que em qualquer sistema 

descrito por momento angular total semi-inteiro Θ2 = −1. 
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