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RESUMO

A reconstrucdo de superficies tridimensionais pode ser dividida em duas partes: leitura da
superficie do objeto a ser reconstruido e aplicacdo de um algoritmo para reconstruir a superficie
tridimensional. A primeira se refere a leitura do objeto para a obtencdo da nuvem de pontos que
representa a sua superficie que, em geral é constituida por milhares de pontos que se distribuem em
torno da superficie real do objeto. Para esta etapa a dissertacdo apresenta um estudo realizado na leitura
do laser de um digitalizador afim de criar uma nuvem de pontos baseada nas suas caracteristicas de
leitura. A segunda etapa da reconstrucdo € a aplicacdo do algoritmo de reconstrucdo da superficie que
deve, a partir da nuvem de pontos, retirar informacdes da superficie, filtrando possiveis erros, para
realizar a reconstrugdo da superficie. A dissertacdo apresenta uma metodologia que se baseia na divisao
da nuvem em sec¢Oes transversais, a cada secdo € aplicada um método de reducdo de pontos baseado
em defini¢bes de micro-regides e o calculo de centros de massas para cada uma destas, para entdo
realizar uma selecé@o dos centros de massas mais provaveis a pertencerem ao perfil da secéo transversal.
Em seguida é realizado um pré-calculo de parametros para possibilitar o melhor ajuste de uma B-
Spline cubica com peso a saber: clculo dos pesos aplicados a cada ponto a ser ajustado, que é realizado
em funcdo do raio de uma circunferéncia formada a cada trés pontos consecutivos; definicdo dos
melhores pontos de inicio da curva para obtencdo do melhor ajuste de curva; calculo do vetor derivada
no ponto de fechamento da curva para assim proporcionar um fechamento continuo e a defini¢do do
melhor nimero de pontos de controle para 0 melhor ajuste de curva. Uma vez calculados todos 0s
parametros é possivel realizar o ajuste da curva B-Spline cibica com peso pela aplicacdo de um ajuste
com restricdes de interpolacéo e derivada aos pontos de inicio e fim utilizando o método dos minimos
quadrados. Por fim é entdo possivel realizar a interpolacéo das curvas ajustadas as se¢des transversais
na direcdo longitudinal para obtencdo de uma superficie bidirecional suave que melhor represente o

objeto real.

Palavras-chave: Reconstrucéo de superficie. B-Spline com peso. Ajuste de curva. Digitalizador 3D.
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ABSTRACT

The reconstruction of three-dimensional surfaces can be divided into two parts: obtaining the
surface coordinates of the object to be reconstructed and the application of an algorithm to reconstruct
the three-dimensional surface. The first one is to obtain a cloud of points representing the surface which
generally consists of thousands of points distributed around the actual surface of the object. For this
step the dissertation presents a study from a scanner’s laser in order to create a cloud of points based
on its reading features. The second stage of reconstruction consists in the application of the surface
reconstruction algorithm that enable, from the cloud of points, to get the surface information by
filtering out possible errors, to perform the surface reconstruction. This dissertation presents a
methodology which is based on the division of the point cloud into cross sections, where in each section
is applied a method for reducing the points based on definition of micro-regions and the calculation of
their center of mass and then, performing a selection of the center of mass that can be considered as
belonging the surface. Next parameters are obtained to allow the best fitting of a weighted cubic B-
spline namely: calculation of the weights applied to each point to be adjusted, which is performed as a
function of radius of a circle formed by three consecutive points; definition of the best starting points
of the curve to obtain the best curve fitting; calculation of derived vector in the closing point of the
curve so as to provide a continuous closing and the definition of the optimal number of control points
for the best curve fitting. Once all parameters had been obtained is possible to perform the adjustment
of the weighted cubic B-spline curve by applying an adjustment with interpolation and derived
constraints from the beginning and end points using the least squares method. Finally, it is possible to
perform interpolation of the adjusted curves to the cross sections in the longitudinal direction to obtain

a smooth bi-directional surface that best represents the actual object.

Keywords: Surface reconstruction. Weighted B-Spline. Curve fitting. 3D Digitizer.
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CAPITULO |

INTRODUCAO

Nos ultimos anos, as técnicas de digitalizacdo e reconstrucdo de formas complexas de objetos
tridimensionais tém apresentado um grande desenvolvimento. A velocidade e precisdo das técnicas de
digitalizacdo se devem ao avanco nas areas de fisica, engenharia elétrica, o desenvolvimento dos lasers,
CCD’s e as unidades de aquisicdo de dados de altas velocidades. Tais tecnologias tém permitido medir
perfis com preciséo na relagdo de 1 por 1.000 e taxas acima de 20.000 amostragens por segundo.
Dependendo do objeto, milhares ou até milhdes de amostragens podem ser adquiridas. O resultado
consiste em uma “massa” de dados que requerem algoritmos eficientes e confiaveis que possam gerar
modelos computacionais a partir destas amostragens. Estes dados formam, na realidade, uma nuvem
de pontos, nem sempre organizados (CURLESS, 1997).

A reconstrucdo de superficies precisas a partir desta nuvem de pontos desorganizados é um
problema dificil, ndo completamente solucionado e muito problematico nos casos em que os dados
estdo incompletos, com ruidos e/ou esparsos. O objetivo da reconstrugdo consiste sempre em obter um
modelo computacional de um objeto que se assemelhe o mais fielmente possivel ao objeto real.

Apesar dos grandes avangos nesta area, a correta modelagem de superficies fechadas ou de
objetos de formas complexas ndo esta completamente solucionada e ainda constitui uma area de muitas
atividades de pesquisa. A aplicacéo de Splines e NURBS tém sido Uteis na modelagem das superficies.

A grande variedade da origem do objeto das quais os dados podem ser obtidos (fabricacéo,
arquitetura, esculturas pre-historicas, etc.) implica que os dados possuem tantas propriedades
diferentes que todas devem ser consideradas na solu¢do do modelo. Varios métodos tém sido
desenvolvidos na tentativa de criar uma representacdo regular e continua de malha a partir da nuvem
de pontos (MENCL, 2001). Sendo conhecida a superficie poligonal, varias outras técnicas podem ser

usadas para 0 poOs-processamento (suavizacdo, texturizagdo) e para a visualizacdo do modelo 3D



(PATIAS, 2001), com diversos softwares comerciais disponiveis que permitem essa renderizacéo e
visualizacao.

A digitalizacéo de perfis tridimensionais de objetos e sua reconstrucdo podem ser aplicadas em
diversas areas tais como na fabricacdo, na engenharia reversa, na inspecao, entre outros.

Um sistema industrial que permite a reconstrucao de objetos tridimensionais pode ser dividido
em um equipamento eletro-mecénico (normalmente scanners associados a um dispositivo mecanico
de movimentacgdo), que permite a leitura dos dados do objeto, e o software que permite o controle do
scanner e a reconstrucdo do objeto a partir dos dados lidos.

Este projeto d& continuidade aos estudos realizados inicialmente com o apoio financeiro da
FAPEMIG para o desenvolvimento de um sistema eletro-mecéanico, denominado digitalizador de
superficies 3D, para a leitura das coordenadas da superficie de um objeto tridimensional, a validacao
da metodologia de leitura e reconstrucao grafica de superficies tridimensionais a partir dos dados lidos,
que esté na fase final de desenvolvimento.

Essa dissertacdo tem como objetivo propor metodologias de reconstrucdo de superficies a partir
de uma nuvem de pontos, obtida por um digitalizador, utilizando B-Spline com peso. A reconstrugédo
deve ser de forma automatica, sem a interferéncia do operador, cuja funcéo consiste em colocar a peca
no digitalizador e definir a resolucdo requerida para cada eixo coordenado.

A reconstrucdo proposta utiliza B-Splines com peso para definir as se¢Bes transversais do
objeto e, com 0 conhecimento dessas curvas, sdo propostos cinco métodos para obter as curvas
longitudinais a partir da interpolagédo das sec¢des transversais previamente obtidas. A reconstrucdo da
superficie utilizando B-Splines bidirecionais a partir da rede de pontos de controle foi feita para
comparagdo com 0s metodos propostos.

A reconstrucdo proposta considera, nesta etapa, superficies que apresentam curvaturas suaves
sem arestas e/ou mudancas bruscas de direcdo. Este estudo servira como base para o estudo de objetos
que possuem arestas e furos.

A dissertacdo € composta por seis capitulos: o primeiro a introducdo ao projeto; o segundo a
revisao bibliografica onde é apresentado um breve estudo sobre as metodologias de reconstrucao de
superficies atuais; em seguida um capitulo onde sdo apresentados 0s conceitos tedricos das curvas B-
Splines assim como o ajuste de curvas e superficies; o quarto capitulo apresenta a metodologia
desenvolvida para a reconstrucao de superficie; o quinto capitulo apresenta resultados das simula¢des
aplicando a metodologia proposta; e por fim o sexto e Gltimo capitulo onde é concluida a dissertacédo

com a proposicao de trabalhos futuros.



CAPITULO II

REVISAO BIBLIOGRAFICA

2.1. Introducéo

A reconstrucdo de superficies tridimensionais € uma técnica que vem evoluindo muito nos
ultimos anos. A melhoria da capacidade de processamento dos computadores, a melhoria da precisao
dos sensores CCD’s e CMOS, entre muitos outros desenvolvimentos tecnologicos vem
potencializando o seu desenvolvimento (EVERETT, 1995).

E possivel dividir a reconstrucéo de superficies em duas partes: digitalizacio do objeto, onde
é feita a leitura do objeto adquirindo os dados necessarios para que seja possivel a construgdo de uma
superficie digitalizada, e a reconstrucdo da superficie digital, onde é aplicada alguma metodologia
para transformar os dados adquiridos na superficie digitalizada que representa o objeto.

A digitalizag&o de perfis tridimensionais de objetos e sua reconstrucdo podem ser aplicadas em
diversas areas tais como na fabricacdo (fundicdo, estereolitografia, etc.), na engenharia reversa
(reconstrucdo de componentes de maquinas que ndo possuem desenhos), no projeto colaborativo
(permitindo a interacdo entre o modelo real e 0 modelo virtual), na inspecdo (permitindo verificar se o
objeto esta conforme o projetado), simulacdo virtual (efeitos especiais no cinema, jogos), na copia de
pecas disponiveis em museus, na medicina (reconstrucdo de partes do corpo humano), na exploracéo
cientifica e no mercado de consumo (CURLESS, 1997).

As Figs. 2.1 a 2.4 apresentam alguns exemplos de aplicacdo de reconstrucdo digital de

superficies.
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Figura 2.2 - Reconstrucdo de uma superficie de revolucéo a partir de uma nuvem de pontos
utilizando B-Splines calculada pelo método SDM — Squared Distance
Minimization (WANG et al., 2006)

Figura 2.3 - A esquerda uma foto da estatua David de Michelangelo, a direita a renderizacédo
da digitalizacdo da estatua com uma resolucéo de 1 mm e contendo 4 milhGes de
poligonos (LEVOY et al., 2000)



Figura 2.4 - Digitalizacao e reconstrucédo do busto do presidente Barack Obama em dezembro
de 2014 pelo grupo Smithsonian (GRUPO ALUTECH, 2014).

2.2. Digitalizac¢éo do objeto

A digitalizacdo do objeto consiste em realizar a leitura do objeto, ou seja, adquirir as
coordenadas cartesianas tridimensionais dos pontos pertencentes a superficie do objeto. Um sistema
industrial que permite isto pode ser dividido em um equipamento eletro-mecénico (normalmente um
scanner associado a um dispositivo mecanico de movimentacéo), e o software que permite o controle
do scanner e a reconstrugio do objeto a partir dos dados lidos (DIAZ, 2011).

O objetivo da reconstrucdo de uma superficie pode ser definido como: dado um conjunto de
pontos P assumindo definir uma superficie S, criar uma superficie modelo S’ 0 mais proximo possivel
de S. O processo de reconstrucao da superficie ndo garante que ela serd exatamente igual a S, visto que
é conhecida uma quantidade finita de pontos. Um aumento na quantidade de pontos também néo
garante a exatiddo da superficie.

Diversos métodos de aquisi¢cdo de formas tém sido estudados e propostos nas ultimas décadas.
Estes métodos se dividem em: sensoriamento passivo e ativo. A técnica passiva ndo interage com o
objeto ao passo que 0 método ativo tem contato com o objeto ou projeta alguma forma de energia sobre
ele.

Entre os métodos ativos pode-se ainda distinguir duas técnicas: o uso de sensores de contato e

sensores sem contato. Sensores de contato sao tipicamente “pontas de prova”. Quando a ponta de prova



toca a superficie do objeto, os dados de sua posi¢do sdo armazenados. Existe uma grande variedade de
“pontas de prova” tanto no que se refere a precisdo como em prego.

Os métodos ativos sem contato geralmente operam pela projecdo de ondas energéticas sobre o
objeto e registram a energia refletida (método reflexivo) ou a que atravessa o objeto (método
transmissivo). Um exemplo do método transmissivo é a tomografia computadorizada que consiste em
um método em que a energia atravessa 0 objeto e registra sua forma. Quando ocorre a reflexdo, o
método pode ser subdividido em duas categorias: método 6tico e ndo-6tico. O método ndo-6tico inclui,
por exemplo, o sonar. O método Otico inclui, por exemplo, a interferometria (CURLESS, 1997). Uma
boa revisdo deste método € apresentada por (BESL, 1989) e Diaz (2011) apresenta um resumo bem
elaborado que permite verificar a diferenca entre os métodos.

O método 6tico utiliza uma técnica denominada “triangulagdo” para a aquisi¢do dos pontos da
superficie. Este método tem apresentado grande evolucéo tanto em velocidade de aquisi¢do de dados
como em precisdo gragas ao desenvolvimento de sensores geometricamente estaveis tais como CCD’s
e CMOS (CURLESS, 1997), (GINANI, 2008).

A leitura do objeto resulta em uma nuvem de pontos que nem sempre sdo organizados. A
reconstrucdo de superficies precisas a partir desta nuvem de pontos é um problema dificil, ndo
completamente solucionado e muito problemético nos casos em que os dados estdo incompletos, com
ruidos e esparsos (REMONDINO, 2003).

Vaérias publicacdes se dedicam ao estudo da técnica da triangulacdo e sua descricdo foge ao
escopo deste trabalho. Apesar de sua evolucdo, ainda persistem algumas fontes de erro, principalmente
na leitura e interpretagéo do sinal refletido, devido a problemas relacionados com a descontinuidade
de reflexdo, cantos no objeto, descontinuidade do perfil em relacdo a fonte de luz, e ocultagéo do sensor
(CURLESS e LEVOQY, 1995), (ZHANG et al, 2003) e (MOONS et al, 2010). Além destes erros pode

ocorrer que uma certa regido néo receba o foco de luz.

2.3. Reconstrucdo de superficie digital

O processo de reconstrucdo de superficies consiste, em geral, em construir uma superficie
poligonal a partir do conjunto de pontos lidos para um pds-processamento (suavizacgdo, texturizacéo)
e visualizagédo do objeto tridimensional (MENCL, 2001), (PATIAS, 2001).



Nos processos de reconstrucdo 3D, os métodos de tratamento dos pontos, fornecidos pelo
sistema de aquisicao de dados, tém carater determinante sobre o resultado final da superficie e o tempo
de processamento. Além disso, é possivel obter uma superficie aproximada ou interpolada dependendo
do método de construcdo utilizado e do objetivo almejado.

As superficies aproximadas sdo construidas, geralmente, através de poligonos (exemplo:
triangulacdes) ou utilizando fungdes como as B-splines. Os metodos mais conhecidos podem ser
divididos em trés grupos: metodos implicitos, métodos baseados em Delaunay e métodos baseados em
B-Splines.

Métodos implicitos: Através da construcdo de uma funcdo de espaco para as amostras, uma
superficie pode ser implicitamente definida como um nivel de ajuste da funcdo que permite a
reconstrucdo da superficie suave e aproximada (LABATUT et al., 2009). Alguns exemplos deste
grupo, Fig. 2.5:

e Planos tangentes sdo estimados a partir dos k vizinhos mais préximos de cada amostra.
Uma orientacdo consistente é encontrada e a funcdo considerada é a distancia ao plano
tangente do ponto mais proximo no espaco (HOPPE et al., 1992).

e Funcdes de base radial (Radial Basis Functions - RBF): RBFs sdo colocados em pontos
de restrigdo, onde o valor da funcgéo é conhecido e os pesos sdo globalmente resolvidos
para satisfazer as restricGes exatamente ou aproximadamente, e para minimizar uma
medida de suavidade (CARR et al., 2001) e (OHTAKE et al., 2004).

e Particdo unitaria multi-nivel (Multi-level Partition of Unity - MPU) — Este método
permite trabalhar com grande quantidade de pontos. O método é baseado em trés itens:
a) Func¢des quadraticas por partes que capturam a forma local da superficie; b) funcdes
de ponderacao que mistura essas funcdes de forma local; e ¢) um método de subdivisdo
de cubo que se adapta as variacGes de complexidade da forma local (OHTAKE et al.,
2003).

e Minimos quadrados moveis (Moving Least Squares - MLS) — pode lidar com
quantidade moderada de ruido e ser usada para definir funcbes implicitas semelhantes
com a distdncia aos planos locais como aproximacfes locais, produzindo o método
MLS implicito (LANCASTER e SALKAUSKAS, 1981) e (SHEN et al., 2004).
Garantias de reconstrucdo sao fornecidos para nuvens de pontos suficientemente densas
e uniformes (KOLLURI, 2008).



e Poisson - alinha, no sentido dos minimos quadrados, a inclinagdo da funcdo indicadora
com um campo vetorial calculado a partir das amostras de entrada orientada. Isto
conduz a um problema de Poisson: localmente RBFs suportados séo usados ao longo
de um cubo adaptavel para garantir eficiéncia e produzir excelentes resultados, tornando
0 método muito competitivo (KAZHDAN et al., 2006).

e Superficie minima via cortes graficos (Minimal Surfaces via Graph Cuts) - Métodos
baseados na minima superficie estruturada com corte grafico de Boykov e Kolmogorov
(2003), Hornung e Kobbelt (2006) e Lemptsky e Boykov (2007). Também pertencem
a esta categoria: valores da funcédo indicadora sao atribuidas a volumes elementares ao
longo de uma grade regular, de modo a minimizar a energia global com o minimo de
cortes s-t. POs-processamento € necessario para remover artefatos decorrentes da

discretizacdo da grade regular.

(d) (e) (f)
Figura 2.5 - Exemplos da aplicacdo dos métodos implicitos: (a) Planos tangentes (HOPPE,
1996); (b) RBF (OHTAKE et al., 2004); (c) MPU (OHTAKE et al., 2003); (d)



MLS (DEY e SUN, 2005); (e) Poisson (KAZHDAN et al., 2006); (f) Graph Cuts
(LEMPITSKY e BOYKOQV, 2007).

Meétodos baseados em Delaunay: A outra abordagem, que é muito comum para a reconstrucdo

de superficie, € utilizacdo da triangulacdo de Delaunay: a ideia é que quando a amostragem & livre de

ruido e densa o suficiente, pontos proximos na superficie deverdo ser também préximos no espago.

Eliminando as faces dos tetraedros de Delaunay de acordo com alguns critérios, é possivel a
reconstrucdo de uma malha triangular (LABATUT et al., 2009), Fig. 2.6.

Entre os métodos baseados em Delaunay, talvez os algoritmos mais conhecidos séo: o Crust
(AMENTA et al., 1998), (AMENTA et al., 2001) e 0 COCONE (AMENTA et al., 2002), (DEY e
GOSWAMI, 2003), (DEY et al., 2012 e 2013).

Os Algoritmos Crust exploram o fato de que as celulas de pontos VVoronoi na superficie
sdo alongadas numa direcdo perpendicular a superficie em questdo. Os vértices
extremos destas células, denominadas polos, podem ser utilizados para estimar o eixo
mediano e filtrar faces ndo pertencentes a superficie. O mais utilizado destes algoritmos
é o Power Crust (AMENTA et al., 2001), mais robusto para as entradas realistas, que
se baseia no diagrama de Power, um diagrama de Voronoi ponderado dos polos. Uma
modificacdo simples, sugerido em Mederos et al. (2005), melhora a robustez do método
em relacdo aos ruidos.

Algoritmos COCONE usam pélos em uma maneira mais simples para comparar faces
normais com os vetores formados pelos pélos. O COCONE robusto de Dey e Goswami
(2006) generaliza a definicdo de pdlos para lidar com um modelo especifico de ruido.
Enquanto Amenta e Bern (1999) foram os primeiros a prestarem garantias tedricas para
superficies lisas com a nocéo da dimenséo local e e-amostragem. Varios dos algoritmos
mencionados também sdo comprovadamente corretos na auséncia de ruido e outliers ou
sob modelos especificos de ruidos relacionados com a dimensédo local. Em contraste
com estas abordagens de geometria computacional, Chaine (2003) propde traduzir o
esquema de conveccgdo da superficie através da triangulacdo de Delaunay dos pontos de
entrada. Degradacdes dos dados de entrada podem fazer estas técnicas locais falharem.



(a) (b)
Figura 2.6 - Exemplos da aplicacdo do métodos baseados em Delaunay: (a) Power Crust
(AMENTA et al., 2001) e (b) COCONE.(DEY et al., 2012).

Meétodos baseados em B-Splines: As B-splines, originaria das funcdes de Bézier (BARTELS
etal., 1986), (BEZIER, 1987), (CHENIN et al, 1986) e das splines, consistem em segmentos de curvas
cujos coeficientes polinomiais ndo dependem de todos os pontos de controle. Desta forma, ao mover
um ponto de controle, a area afetada da curva € menor e o tempo de calculo dos coeficientes é reduzido.
A continuidade das B-splines € a mesma das splines, mas geralmente ndo interpola seus pontos de
controle.

As superficies interpoladas sdo construidas através da utilizagéo das splines e/ou combinando
métodos especiais de interpolacdo com triangulacGes ou curvas B-splines. Um exemplo é a utilizacdo
das NURBS (Non-Uniform Rational B-Splines) que reproduz com boa exatiddo a forma do modelo
fisico e, ainda, possibilita a alteracdo da forma. Nesses métodos é comum o uso de splines cubicas pela
facilidade do tratamento matematico.

Alguns dos métodos mais atuais que utilizam B-Splines sdo, Fig. 2.7:

e B-Spline triangular (Triangular B-Splines) — Neste método, o usuéario especifica o grau
n da superficie B-spline triangular e o erro de ajuste admissivel e. O procedimento de
reconstrucdo da superficie gera dominios triangulares de B-spline sobre a superficie que
possuem continuidade C™* ao longo da regido lisa e C° sobre as caracteristicas nitidas.
Todos os nos e pontos de controles sdo determinados através da minimizacao de uma
combinacdo linear de funcdes de interpolacdo e equidade (HE e QIN, 2004).

e B-Spline implicita (Implicit B-Splines - IBS) — Utiliza uma func¢éo bivariada do tensor

produto de duas B-Splines para a aproximacao dos pontos da superficie. Este método
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sempre vem em conjunto com outro para otimizar a construcdo da superficie
(ROUHANI et al., 2015).

(a) (b)
Figura 2.7 - Exemplos da aplicacdo dos métodos baseados em B-Splines: (a) Triangular B-
Spline (HE e QIN, 2004) e (b) IBS (ROUHANI et al., 2015).

As técnicas para reconstrugédo grafica de objetos reais sdo muitas, mas todas elas tém aplicagdo
em uma area especifica ou restricbes quanto aos dados. Os problemas de ruido, sombra (falhas de
leitura por detalhes ocultos), arestas e contornos sinuosos restringem cada método tornando dificil a
elaboracdo de um método genérico e eficiente.

A reconstrucdo através de fatias (secBGes transversais), associada a B-Splines, permite
reproduzir com fidelidade a superficie do objeto e os parametros de contornos sdo simples de serem
aplicados (PIEGL e TILLER, 1996), (BOISSONNAT e MEMARI, 2007).

Uma importante aplicacdo da reconstrugdo de superficies a partir de se¢des transversais é na
imagem médica. A tomografia computadorizada gera imagens de secdes transversais de partes do
corpo sendo entdo necessario a utilizacdo deste método para se obter um modelo tridimensional (KELS
e DYN, 2011), Fig. 2.8.

11



(a) (b)
Figura 2.8 - (a) Secdes transversais e (b) imagem renderizada (KELS e DYN, 2011).

2.4. Digitalizadores

Digitalizadores tridimensionais s&o equipamentos construidos com intuito de realizar a analise
do objeto real para obter dados de sua forma e/ou de sua cor, para que com estes dados possam construir
modelos digitais tridimensionais. O objetivo de um digitalizador é de criar uma nuvem de pontos a
partir do procedimento de “leitura” da superficie do objeto fisico. Muitas vezes, o digitalizador é
projetado em funcdo da forma de aquisi¢do dos dados, ou seja, com contato ou sem contato.

Alguns digitalizadores de contato sdo as unidades robotizadas e os sistemas de medicdo de
coordenadas (CMM — Coordinate Measuring Machines). Ja os digitalizadores para os sistemas 6ticos
de aquisicdo, em geral, consistem em projetos especificos para este fim como pode ser visto nas Figs.
2.9a2.13.

Independentemente do tipo de aquisicdo dos dados, e de forma resumida, as caracteristicas
basicas de um digitalizador tridimensional sdo (DIAZ, 2011):

o Flexibilidade para a leitura de qualquer objeto;

e Boa resolucdo para possibilitar a geracdo de uma nuvem de pontos com minimo erro;

e Alta velocidade de aquisi¢do de dados, pois uma digitalizacdo de um objeto trabalha
com milhares ou até mesmo milhGes de pontos;

¢ Insensiveis a pequenas mudancas de iluminacdo e a reflexao de superficies do ambiente;
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e Portabilidade e facilidade no uso;

e Armazenagem automatica dos dados.

A seguir alguns exemplos de digitalizadores encontrados no mercado e em pesquisas, Figs. 2.9
a2.13.

Figura 2.9 - Imagem representativa do scanner da empresa Cyberware Inc e seu espaco de
trabalho (LEVOY et al., 2000)

Figura 2.10 - Scanner VISSCAN-3D projetado pelo GRACO-UnB (GINANI, 2008)
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(@)

Figura 2.13 - SURVEYOR ZS SERIES da empresa Laser Design Inc

(b)
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CAPITULO 1lI

AJUSTE DE CURVAS E SUPERFICIES UTILIZANDO B-SPLINES

3.1. Introducéo

Na matematica séo utilizados dois processos para realizar um ajuste de curva: interpolagéo e
aproximacdo. A interpolacdo tem como caracteristica a curva passar necessariamente por todos 0s
pontos utilizados para o ajuste. J& para a aproximacgao a curva nao necessariamente passa pelos pontos.

A reconstrucédo de superficies digital se resume a duas etapas:

e Leitura do objeto real: é feita a leitura por meio de algum dispositivo robético ou ndo
que vai fazer a leitura das coordenadas da superficie do objeto. Neste trabalho sera
utilizado um scanner 3D construido no laboratorio de Automacéao e Robdtica, que faz a
leitura por meio de um laser, resultando em um conjunto com milhares de pontos lidos
representando toda a superficie. Este conjunto de pontos é conhecido como nuvem de
pontos.

e Reconstrugdo da superficie: a partir da nuvem de pontos é utilizado um algoritmo para
a reconstrucao da superficie, conforme descrito no Capitulo 2. Em geral, os métodos
utilizados efetuam, inicialmente, uma reducdo de quantidade de pontos lidos para
reduzir o tempo de processamento.

Na reconstrucao de uma superficie ndo convem utilizar a interpolacéo devido ao grande numero
de pontos que representam a superficie, necessitando um céalculo computacional muito grande. Por
isso, a utilizacdo de uma aproximacgdo com um baixo nimero de pontos de controle se torna mais
vantajosa. Outro motivo é o fato da presenca de um erro de leitura do digitalizador que est& contido
nas nuvens de pontos. De acordo com (FERREIRA, 2013; OZAKI et al., 2003) os robds industriais

possuem uma boa precisao no controle de posicdo, porém um controle ndo muito preciso de tracking.
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Ou seja, 0 robb passa pelos pontos interpolados com um erro minimo, porém na trajetoria entre estes
pontos o erro se eleva, pois ele ndo consegue seguir a trajetoria planejada. Assim uma aproximacao
poderia resultar em uma minimizacdo deste efeito, j& que ndo forca a curva a passar sobre todos os
pontos, resultando em uma curva suave que melhor se adequa ao conjunto de pontos.

Outra vantagem na utilizacdo da aproximacao é o fato de poder fazer o ajuste de maneira que
a curva passe mais perto ou mais distante de um certo ponto. Isto pode ser feito pela aplicacdo de pesos
no ajuste por B-Splines.

Neste capitulo sera apresentada uma revisdo geral das B-Splines e ainda os métodos de
interpolacdo e aproximacdo via métodos dos minimos quadrados para curvas e superficies. Este
capitulo é a base deste trabalho para a reconstrucdo de superficies a partir de uma nuvem de pontos

ndo organizados.

3.2. B-Splines

A curva B-Spline é uma das curvas paramétricas mais utilizadas para ajustes devido a facilidade
com que se pode fazer alteracGes em partes dela sem que se altere toda a curva. Seu equacionamento
também é definido de maneira simples e conciso, gracas as fungdes base B-Spline que faz a ponderacédo
do efeito de cada ponto de controle para o ponto da curva calculado.

Elas sdo classificadas em dois grupos, Racionais e Ndo-Racionais. As B-Splines Racionais se
diferenciam das Nao-Racionais pela utilizacdo de um valor de peso, diferente de 1, associado a cada
ponto de controle, fazendo com que a curva se aproxime ou afaste mais do ponto de controle em
questao.

A Equacéo 3.1 representa as B-Splines N&o-Racionais.
Cw) =Y Nip@).P, a<u<b (3.1)

A Equacdo 3.2 representa as B-Splines Racionais.

n
Z' Nip (w).P;w;
1=0
n
Z_ Ni,p (u).wi
1=0

Cw) =

as<u<b (3.2)
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Onde: C(u) - ponto pertencente a curva B-Spline calculado para o n6 u;
u —nd limitado entre dois valores a e b;
N;,,(u) - representa a i-ésima funcéo base de grau p;
P; - 0 i-ésimo ponto de controle;
n - nimero total de pontos de controle;

w; — 0 i-ésimo peso associado ao i-ésimo ponto de controle P;.

As B-Splines ainda podem ser classificadas de acordo com a distribuicdo do vetor de nos:
e Uniforme ou ndo-uniforme — Depende da uniformidade do vetor de nds, e que sera
abordado no item 3.2.3;
Particularmente, as B-Splines racionais com vetores de nds ndo uniformes sdo denominadas de
NURBS (Non Uniform Rational B-Spline).

3.2.1. Fungdes base B-Splines

Existem diversas formas de se obter as fungdes base B-Splines, porém sera utilizada a formula
da recorréncia devido a deBoor, Cox e Mansfield (Cox72; DeBoor72; 78), também conhecida como
formula de recorréncia de Cox-deBoor. Este método também é o que apresenta melhor desempenho
computacional (PIEGL; TILLER, 1997).

Dado U = {uy, uy, ..., U, } UMa Sequéncia crescente de numeros reais, denominados de nos. A

i-ésima funcao base B-Spline de grau p, N;,, , € definida por:

1 seu; <u<u;
N: o (u) = { 1= .l+1
ro(W) 0 caso contrario
) — U _ Uitp+1~U ) _ _
N;,(u) — Nip_1(u) + — Niy1p-1(0) i=0,...m-1 (3.3)

Para mostrar como utilizar a equacdo Eq. (3.3), é apresentado um exemplo, (PIEGL; TILLER,
1997).:
Seja 0 vetor n(,) U == {uo, ul, uz, u3, u4, u5, u6, u7, u8, ug, ulo} = {O, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5 } e

p =2, as funcdes bases de grau 0, 1 e 2, sdo representadas nas Figs. 3.1 a 3.3. O eixo vertical
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representa o valor da fungdo base e no eixo horizontal o n6 correspondente. Cada trago neste eixo
representa a quantidade de vezes que o n6 aparece no vetor de nos.

As funcBes base de grau zero sdo:

N0,0:N]_’O:O —OO<t<OO

N :{1 0<st<1

2,0 0 outos casos

N _{1 1<t<?2

3,0 0 outos casos

N :{1 2<t<3

4,0 0 outos casos

N :{1 3<t<4

5,0 0 outos casos

Ngo =0 para — o <t <o

N :{1 4<t<5

70 710 outos casos

N8,0=N9,O=O —OO<t<OO
) )
1_N2,n 1] Ny
01‘23451 512345“

Nio Nso

1 — 1t —_—
01254{5% 012345#

Figura 3.1 - Funcdes base de grau zero, U = {0,0,0,1,2,3,4,4,5,5,5} (PIEGL; TILLER, 1997).

As funces base de grau 1 sdo:

t—-0 0-t
NO,]-:ENO;O-I_ENLO:O —o<t<o
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1 t 1-t 0<t<1
Ny, =0N,  + 55N, = { =
117 55 o+ 1-0 20 0 outos casos
ot t 0<t<1
Nz,lzﬁNzo 21N3,0=‘2—t 1<t<?2
0 outos casos
1 . t—1 1<t<?2
N3,1_;N3,0 2N4,0=‘3—t 2<t<3
0 outos casos
s t t—2 2<t<3
Nyg =5 Nao+ SNso=94—t 3<t<4
0 outos casos
4—t t—3 3<t<4
N N +2N,, = { s
517 50 T 447760 0 outos casos
t—4 5—t 5—t 4<t<5
Ne,=2N,+2EN ::{ S
617 447760 T 547770 0 outos casos
5-t t—4 4<t<5
N,y =22N, + 25N {
74T 5540 T 5580 T 0 outos casos
N8, NSO g ;N9'0=0 _00<t<00
Ny Nz N3\ N N7a
] ]
Ns Ns 1
Ht t T T 1] H i
0 1 2 3 4 5

Figura 3.2 - Funcgdes base do primeiro grau, U = {0,0,0,1,2,3,4,4,5,5,5} (PIEGL; TILLER,

1997).

Funcdes base de grau 2 onde todos os seguintes N; , sdo iguais a zero para os intervalos ndo

especificados:

No,z =

u—0
—N
0—o 01

1-u
+ ITONl’l = (1 - u)z

0<ux<i1
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{Zu—?’/zu2 0<u<l1

B 2'1_1/2(2—11)21Su<2
(l/zu 0<u<l1
NZ,Z > 0N21+3 ?Ng'lz 3/2+3u_u2 1Su<2
/,-w?  2<u<3
1/2(u—1)2 1<u<?2
-1 4— —
N3,2=13LT1N3’1 +£N4'1= 11/2+5u u 2Su<3
1/2(4 u)? 3<u<4
—u 1/, w—2)? 2<su<3
Nyo =~ 1N41‘|‘4 S Ns1 = 3
~16+10u—>/>u®> 3<u<4
B 5-u _((u—=3)* 2<u<3
Nsz = N“ N6'1_{(5—u)2 3<u<4
5—
N6,2:ﬁN61 S ZN7'1:2‘U. 4’)(5_u) 4Su<5
—4 5_
N7,2:151T4N7'1 +£N8‘1:(u_4)2 4Su<5
N, N
1__N0’2 5,2 7.2
Nis N o N3 Nao
Ns o
0 1 2 3 4 5

Figura 3.3 - Funcdo base do segundo grau, U = {0,0,0,1,2,3,4,4,5,5,5} (PIEGL; TILLER,
1997).

3.2.2. Derivada das fun¢des base B-Splines
De acordo com Piegl e Tiller (1997), a derivada da funcédo de base € dada por:

S
Uitp+1~Ui+1

N';

P g Nip-1(w) — Niy1p-1(w) =0 (3.4)
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A diferenciacgdo repetida da Eq. (3.4) permite obter a equacdo geral da k-ésima derivada, ou

seja:

N N
Ni(k)(u) — p( ip-1 i+1,p-1 ) (35)

P Ui+p~Ui  Uitp+1~Ui+1

Outra generalizagdo que permite obter a k-ésima derivada de N;,,(u) em termos das fungdes

N; p—k» -» Nisip—i € dada por:

k
k) _ _p!
Nip™ = —@-k)zzjzoak'f’vww—k (3.6)
Onde,
Qoo =1
ak,o — ak—-1,0

Ui+p—k+1~ Ui

Ak—1,j~Ak—1,j-1

J Uisp+j—k+1~Uitj

Qe = —Ag-1k-1
’ Ui+p+1~ Uitk
Deve-se observar que k ndo deve exceder p (as derivadas de alta ordem sdo nulas) e 0s
denominadores envolvendo as diferencas entre 0s nds podem ser nulos: este caso o quociente é definido
Como zero.
Uma equacdo adicional para o célculo das derivadas das fungdes base B-Splines em func¢éo da

k-ésima derivada de N;,,_q € N1 ,—1 €

NO ) = (2t - St @ ) e=o,.,p -1 (3.7)

P —k \up—tu; WP gy —ugy, LR
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A Figura 3.4b apresenta as derivadas correspondentes das func6es de base da Fig. 3.4a.

e

Figura 3.4 - (a) Funcdo base cubica; (b) derivada das funcdes base cubicas (PIEGL; TILLER,
1997).

Na Figura 3.5 séo apresentadas todas as derivadas ndo nulas de N; 5.

Figura 3.5 - N; 5 e todas suas derivadas ndo nulas (PIEGL; TILLER, 1997).
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3.2.3. Vetor de nés

O vetor de nds U afeta diretamente o perfil da curva como pode ser observado nos exemplos
apresentados na secdo 3.2.1 e pela Eqg. 3.3 que define a funcdo de base B-Spline.

As curvas podem ser classificadas como engastadas (clamped) e livres (unclamped). As curvas
do tipo engastadas (clamped) comecam e(ou) terminam no primeiro e(ou) ultimo ponto de controle,
respectivamente, Fig. 3.7a. No caso das curvas livres (unclamped) a curva tem inicio e(ou) fim
proximos dos pontos de controle inicial e(ou) final, respectivamente, Fig. 3.7b. Isso significa que a
curva pode ser engastada (clamped) ou livre (unclamped) no seu inicio, no seu fim ou em ambos. Nos
dois casos, o vetor de n6s U pode ser uniforme e ndo uniforme como descritos a seguir com exemplos.

e Engastada (Clamped): os vetores de n6s possuem o0s primeiros e Ultimos nds com
multiplicidade igual a p+1, exemplo: U = {0,0,0,1,2,3,4,4,5,5,5 } para p = 2.

e Livre (Unclamped): ndo apresenta multiplicidade para os primeiro e Ultimo nos,
exemplo:
U=1{0123,456,6789}

e Uniforme: o vetor de nos possui a mesma distancia internodal (vao) ou seja, 0 mesmo
espacamento entre nos, exemplo: U = {0,0,0,1,2,3,4,5,5,5 }.

e N&o uniforme: N&o h4 a mesma distancia de védo, exemplo:
U=1{0,0,01,3,4,5777)}

A definicdo de engastada (clamped) /livre (unclamped) podem ser também encontrados como
ndo-periodico (nonperiodic)/periodico (periodic), respectivamente.

Para realizar a conversdo de engastada (clamped) para livre (unclamped) é necessario analisar
0s p vdos iniciais e p finais, e entdo recalcular os p nés a direita e a esquerda. Também € necessario
recalcular os p-1 pontos de controle a esquerda e a direita. (PIEGL; TILLER, 1997).

Para os nos é feito o calculo com as equacdes a seguir, para uma curva aberta:

n=m-p-1 (3.8)
Up—i-1 = Up—i — (Un—is1 — Un—i) i=0.,p-1 (3.9)
Uptitz = Untitr T (up+i+1 - up+i) i=0,..,p—-1 (3.10)

Como exemplo dessa conversdo, considere um vetor de nds U e o grau p:
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U=1{0,0,0,1,2,3,4,4,555}ep = 2:
n=10-2-1=7

Nos a esquerda:

i=0-uy =u,—(ug—u;) =0—1=-1;

i=1l-uy=u—(U;—ug) =—1-0=-1;

Nos a direita:

i=0-ug=ug+Wz—u) =5+1=6;

i=1_)U10=U9+(u4_U3)=6+1=7;

Portanto, o novo vetor de nos fica:
U=1{-1,-1,0,1,2,3,4,4,5,6,7 }

J& para os pontos de controle, o calculo ndo é tdo direto como os nds. E necessario realizar o

calculo dos pontos de controle a cada calculo do n6 realizado anteriormente, mantendo a mesma curva

original. O algoritmo para realizar o calculo dos nos e dos pontos de controle, tomando por base o
algoritmo A12.1 apresentado por Piegl e Tiller (1997) e elaborado no MATLAB é:

function [Pw,U]=UnclampCurve (n,p,U, Pw)

o o

o\°

Algoritmo de transformacdo de curva clamped para unclamped

Algorithm Al2.1 - The NURBS Book Z2nd Edition - PIEGL; TILLER,

for i=0:(p-2) % célculo dos ndés a esquerda
U (p-1)=U(p-i+1)- (U (n-i+1) -U(n-1));
k=p;

for j=i:-1:0
% calculo dos pontos de controle a esquerda
alfa=(U(p+1)-U(k))/ (U(p+3+2)-U(k));

Pw(j+1,:)=(Pw(j+1,:)-alfa*Pw(j+2,:))/(1l-alfa);
k=k-1;
end
end
U(1)=U(2)-(U(n-p+2)-U(n-p+1l)); % calculo do primeiro nd
for i=0:(p-2) % calculo dos nés a direita
U(n+i+2)=U(n+i+1)+ (U (p+i+2)-U(p+i+l));
for j=1i:-1:0
% calculo dos pontos de controle a direita
alfa=(U(n+1l)-U(n-3))/ (U(n-j+i+2)-U(n-3));
Pw(n-j, :)=(Pw(n-3j,:)-(l-alfa)*Pw(n-j-1,:))/alfa;
end
end

U(n+p+1)=U(n+p) + (U (2*p+1) -U(2*p)); % calculo do ultimo néd

1997
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Na Figura 3.6 é apresentado um exemplo da utilizacdo do algoritmo acima para o processo de
unclamping de uma curva de quarto grau, feito apenas para o lado esquerdo da curva.

Figura 3.6 - Processo de unclamping da parte esquerda de uma curva quartica. (a) Curva
“clamped”; (b) para i=0; P{ calculado; (c) i=1; P§ e P calculado; (d) i=2;
P2, P e P} calculado (PIEGL; TILLER, 1997).

3.2.4. Curva aberta ou fechada

As curvas podem ser classificadas como abertas ou fechadas. Uma curva € dita aberta quando
0 seu ultimo ponto é diferente do primeiro ponto, Fig. 3.7. E fechada quando o seu primeiro ponto
coincide com seu ultimo ponto, Fig. 3.9.
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Figura 3.7 - Curvas abertas; (a) Clamped; (b) Unclamped.

Para as curvas fechadas € necessario definir a continuidade no ponto de unido. Existem dois
tipos de continuidade: paramétricas e geométricas:

e Continuidade Paramétrica (C), ¢ uma continuidade matematica, definida pelo parametro
utilizado para tracar as curvas. Este tipo de continuidade é garantida quando as
derivadas sdo iguais em direcdo e magnitude:

o Continuidade C° — O ponto de fim da primeira curva ¢ igual ao ponto de inicio
da segunda curva, ou seja, as duas curvas se encontram.

o Continuidade C! — possui continuidade C°e a primeira derivada no ponto de
juncdo tem a mesma direcdo e 0 mesmo tamanho no ponto de intersecdo. E dito
que as curvas possuem continuidade C1 no parametro t que definem as curvas.

o Continuidade C? — possui continuidade C! e a segunda derivada no ponto de
juncdo é a mesma para as duas curvas, ou seja, elas possuem a mesma curvatura
no ponto de intersecgao.

o Continuidade C¥ — possui continuidade C* e a k-ésima derivada no ponto de
juncéo é a mesma para as duas curvas.

e Continuidade Geométrica (G), é uma continuidade fisica, sendo menos restritiva que a
continuidade paramétrica. Este tipo de continuidade é garantida quando as derivadas
s&o iguais apenas em direcao:

o Continuidade G°— Equivalente a continuidade C°;

o Continuidade G* — Possui continuidade G° e a primeira derivada do ponto de
unido possuem apenas a mesma direcdo, porém valores diferentes para as duas

curvas.

26



o Continuidade G?— Possui continuidade G! e segunda derivada possui a mesma
direcdo, porém valores diferentes para as duas curvas.

o Continuidade G¥ — Possui continuidade G** e a k-ésima derivada possui a
mesma direcdo, porém valores diferentes para as duas curvas.

Na Figura 3.8 sdo apresentados exemplos de continuidade paramétricas e geométricas.

Sem Continuidade
Continuidade Co
Continuidade Continuidade
G1 C1

Figura 3.8 - Exemplos de continuidades geométricas e parametricas

Figura 3.9 - Curvas fechadas; (a) Clamped C° com 9 Pontos de controle; (b) Unclamped C?

com 11 Pontos de controle.
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De acordo com (PIEGL; TILLER, 1997), uma curva na configuracao clamped, pode ser aberta
ou fechada geometricamente. A continuidade C* para uma curva fechada depende das primeiras e
ultimas k distancias entre nds e dos primeiros e Ultimos k+1 pontos de controle.

Portanto, uma curva pode ser continua com o vetor de nés na condicdo de clamped ou
unclamped. E possivel obter o fechamento da curva considerando o vetor nds no formato unclamped,
adicionando pontos de controle ao redor do ponto de fechamento da curva no formato clamped. Esta
técnica tem o nome de wrapping e pode ser feita para os pontos de controle ou para o vetor de nos,
(ALAVALA, 2008).

Wrapping nos pontos de controle ¢ feita da seguinte forma:

1. Definir o vetor de nos unclamped e uniforme;
2. Repetir os primeiros p e os ultimos p pontos de controle, ou seja,
Po=Pnp+1, PL=Pou_pya, s Pyy = Pp_y, P,y = By; Fig. 3.10;

3. A curva construida sera uma B-Spline fechada com continuidade CP,

Figura 3.10 - Wrapping nos pontos de controle (SHENE, 1998).

Wrapping nos nds é feita da seguinte forma:
1. Realizar o fechamento da curva pela repeti¢cdo do primeiro ponto de controle:
Pnyq = Py,
2. Definir uma sequéncia de n+1 nds apropriados, uy,...,u,, N80 necessariamente
uniforme. Essa é uma vantagem com relagcdo ao método apresentado anteriormente;

3. Adicione p+2 n6s ao fim fazendo uma repeticdo dos primeiros p+2:

Upt1 = Ug, Unsz = Up, ) Untpr1 = Up, Unaptz = Uprq, FIQ. 3.115
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4. A B-Spline aberta de grau p definida pelos procedimentos acima com n + 1 pontos de
controle e n + p + 2 nds, é fechada com continuidade CP! e ponto de juncéo

C(ugy) = C(u,4q1), sendo o dominio desta curva o intervalo [ug, Uy, 44].

u

n+l

Figura 3.11 - Wrapping nos nds (SHENE, 1998).

3.2.5. As derivadas de uma curva B-Spline

Seja €U (u) a denotacdo da k-ésima derivada de C(u). Para u fixo, pode-se obter a € ()

pelo célculo da k-ésima derivada da funcédo base, Nl.f';) (u), (PIEGL; TILLER, 1997), ou seja:
"k
cto(y) = z N @). P, a<u<bh (3.11)
i=0

Existem outras maneiras de se calcular a derivada para um ponto da curva, porém neste trabalho
sera utilizada esta equacdo. Outros métodos foram apresentados na secdo 3.2.2 e mais detalhes podem
ser obtidos no livro The NURBS Book, 2nd Edition, pag. 91 (PIEGL; TILLER, 1997).

3.3. Alteracéo geometrica de B-Splines

Nesta secdo sdo apresentados quatro métodos importantes para alteracao de curvas e superficies

B-Splines: insercdo de nds, remocédo de nos, elevacao de grau e redugdo de grau.
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3.3.1. Insercdo de nos

Sejaumacurva C¥ = YiL, N; ,. P com o vetor de nds definido como U = {u,, ..., u,, }. E seja
2 0 no a ser inserido com % € [uy, Ug4+1)- A insercdo do nd no vetor U é feita de modo que o novo

vetor de nés sera:

U' = {uUg, o, Uy Uy Up g1, e U} (3.12)

E o0 novo vetor de pontos de controle sera definido como P’ = {P, ..., P, +1}. Sendo calculados

com as seguintes equagoes:

Pi=a;.PY+(1—a;).P", (3.13)
Onde:
1 i<k-p
@ ={——  k-p+1<i<k (3.14)
Ui+p—Ui
0 i>k+1

A Figura 3.12 representa 0 método de insercdo de n6. No exemplo, foi inserido o n6 P, e,

consequentemente, os nés P; e P, foram realocados passando para P; e Ps.
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R =P R =P

R =R P, R

Figura 3.12 - Exemplo de insercéo de n6 (PIEGL; TILLER, 1997).

Existem mais duas utilidades para insercdo de nds que ndo serdo abordadas aqui: avaliacdo dos
pontos e suas derivadas, e divisdo de curvas, fazendo com que uma B-Spline possa ser dividida em

varias curvas de Bézier.

3.3.2. Remocao de nos

O método de remogéo de nds é o processo inverso do de inser¢do. Seja uma curva

n
Y= _ Nip- P (3.15)
definida com U = {uy, ..., U, }. U; Seré o vetor de nos obtido apos a remocgéo de u,. t vezes para

U(1 <t <s). Dizemos que u, €t vezes removivel se C%(u) possui uma representacdo precisa na

forma:

-t
V=" NpQF (3.16)

onde N, ,(u) € afuncdo base para U, ou seja, as equagOes geometricamente e parametricamente

representam a mesma curva.
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Para que um né possa ser removivel, deve-se ter atencdo quanto a continuidade da curva.
Portanto 0 no6 u, € t vezes removivel se e somente se a curva C% (u) possui continuidade CP=*! para
U= uU,.

Assim o algoritmo de remocéo de nos possui duas funcdes:

e Determinar se 0 n6 é removivel e quantas vezes;
e Calcular os novos pontos de controle Q}”.
Seja u = u, # u,,, um no com multiplicidade s, onde 1 < s < p. As equagdes para calcular

0S novos pontos de controle para uma remocao de u séo:

0_(1—a\pPL

Pi1 — P; (1a(_ZL)Pl_1 r—op < i < %(ZT —p—Ss-— 1) (317)
pl _ PP 2@r—-p-s+2)<j<r-—s (3.18)
J (1—Olj) 2 p =J= .
ay=——=—  k=ij (3.19)

Uk+p+1~ Uk

A Figura 3.13 representa a remocéo de nd. O procedimento é o inverso do apresentado na Fig.

3.12 ou seja, 0 ponto de controle P, foi removido.
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R =P R =P

R =P;

Figura 3.13 - Exemplo de remocéo de no, (PIEGL; TILLER, 1997).

3.3.3. Elevacéo de grau

Para elevar o grau de uma curva B-Spline de grau p é necessario encontrar uma curva de grau

p+1 que possa representar 0s mesmos pontos da de grau menor, ou seja, dado uma curva
C, = XicoNip- P; (3.20)
deseja-se encontrar uma curva com grau p+1 em que
Cp =Cpi1 = Yo Nip+1- Qi (3.21)
Portanto, o problema de elevar grau de uma curva se remete a calcular os pontos de controle e
vetor de nos desconhecidos.

No processo existem trés incognitas: a quantidade de pontos de controle 7, 0 novo vetor de nés

U e os novos pontos de controle Q;. Para determinar 7 e U, tem-se que:

U = {ug, ..., un} = {a, s Gy Uy, ..'.,u],, es s, ..‘.,usyb, ..,b} (3.22)
p+1 ma1 ms p+1
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Onde m;,...,ms representam a multiplicidade dos nds.

Um n6 de multiplicidade mi possui continuidade CP™, dado que a curva Cp+1 deve possuir a

mesma continuidade em todos os nés. Entdo, 0 mesmo no deve ter multiplicidade mi+1. Assim tem-se

que:
n=n+s+1 (3.23)
U={ug .. uz}={a ..,a Ugy oony Uy oeey U,y oony Uy b,...,b} (3.24)
pt2  mia metl  p+2
m=m+s+2 (3.25)

Restando, portanto, os pontos de controle a serem calculados. Uma maneira direta, porém nédo

eficiente, seria resolver o sistema de equacdes lineares a seguir:
i=o Nip+1- Qi = Xito Nip- P; (3.26)

Um método mais simples e mais eficiente é proposto por Piegl e Tiller (2007), que se baseia
em:
e Decompor a B-Spline em i segmentos de curvas de Bézier;

e Elevar o grau dos i segmentos de curvas de Bézier, tal que:

Qi = (1 - ai)'Pi + ai'Pi—l (327)
i .
a = i=0,..,p+1 (3.28)

e Remover 0s nos desnecessarios que separam as curvas de Bézier. Estes da mesma
quantidade que foi inserido na decomposicao.
As aplicacdes do método de elevacao de grau sdo:
e Paraformar uma superficie pelo produto tensor € necessario que todas as curvas estejam

com 0 mesmo grau. Portanto, utiliza-se 0 método para padronizar os graus.
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e Sejam duas curvas onde o ponto de fim de uma é igual ao ponto de inicio da outra. Para
que se possa combina-las e formar uma Unica curva € necessario que as duas tenham o

mesmo grau.

3.3.4. Reducéo de grau

Seja uma curva C(u) = Yi-, N;,(u). Q; de grau p com o vetor de nos:

U={ugy ..Uyt ={a, .., aig,.., U, ., U, ..,U,b, .., b (3.29)

| J | )
p+1 M1 Ms p+1

Esta curva serd de grau reduzivel se e somente se ela possui uma representacdo precisa na
forma:

C@w) = C(w) = Xizo Nip-1(W)- P (3.30)

e vetor de nos:

U={a,..,a,uy, .., U, .., Us, ..,Ug,b, ..., b} (3.31)

E e P ' 1 j
p ma-1 ms-1 p

Como no item anterior, pode-se concluir que:

n=n—s-—1 (3.32)

Pode-se notar que m; pode ser igual a 1, resultando que 0 nd u; ndo estard mais presente no
vetor U.

E sempre possivel elevar o grau de uma curva, porém reduzir o grau de uma curva nem sempre

é possivel. E necessario também calcular um erro entre as duas curvas, E(u) = |C(u) — é(u)|, pois a

curva de grau reduzido nunca serad precisamente igual a anterior. E assim uma curva sera de grau

reduzido somente se:
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max{E (u)} < TOL (3.33)

Onde,

TOL — Tolerancia para que a curva possa ter seu grau reduzido;

O meétodo de reducdo de grau se baseia nas seguintes etapas:
e Decompor a B-Spline em i segmentos de curvas de Bézier;
e Reduzir o grau dos i segmentos de curvas de Bézier;
e Remover 0s n6s desnecessarios que separam as curvas de Bézier para obter a curva de

grau reduzido, se o erro estiver dentro da tolerancia;

Para calcular os pontos de controles € feita uma elevacao de grau de p-1 a p. Assim é possivel

encontrar os pontos de controle, considerando:

r=21 (3.34)

(3.35)

Primeiramente, resolvendo a Eq. (3.27) para p impar obtém:

Py = Qo (3.36)
P, = % i=1,..,r (3.37)
PF%:‘”PM i=p—2,.,r+1 (3.38)
Py =0Q, (3.39)

Agora para p par:

Py = Qo (3.40)
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p,=%lin o o1 (3.41)

pizw i=p—2,.,r+1 (3.42)
Xit+1
Pr — %(PrL + PTR) (343)
P =0, (3.44)
Onde:
p = ety (3.45)
P, = Qr+1=(1=Qr41)Pria (3.46)
Ar+1

3.4. Método dos minimos quadrados

O método dos minimos quadrados se resume a encontrar uma funcao continua que melhor se
ajuste aos pontos que se deseja ajustar, de maneira que a soma do quadrado das diferencas entre os

dados e a funcéo a ser encontrada seja minimo possivel.

3.4.1. Caso discreto

Seja um conjunto de pontos [x, f(x;)], k = 0,1,2, ..., m, onde deseja ajustar uma funcao ¢ (x)
a esse conjunto de pontos de tal maneira que o desvio, d; = f(x,) — @(xx), seja minimo.
Considerando que a funcdo ¢(x) seja uma combinagédo linear de vérias funcgBes continuas

9i(x),i=12,..,n
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0(x) = a;.g1(x) + az. g (%) + - + an. gn(x) (3.47)

As fungdes g;(x) sdo escolhidas de acordo com o conjunto de pontos que se deseja ajustar.

Normalmente se escolhe analisando o diagrama de disperséo dos pontos, Fig. 3.14.

Diagrama de dispercdo
15 T T T T T

.
. .
D5y _ -t : -

01 0.2 03 04 05 06 07 08 0.9 1
X

Figura 3.14 - Exemplo de diagrama de dispersao.

Ja que as fungdes g;(x) sdo escolhidas de acordo com o diagrama de dispersédo, entdo resta
obter os coeficientes ;. Neste caso € dito que o ajuste € linear sob 0s parametros «;.
O método dos minimos quadrados consiste em calcular os parametros «; de maneira a

minimizar F da seguinte equagéo:
Flay, ay, .., o) = R [f (o) — @ (e ]? (3.48)

F(ay, az, ..., an) = 2?:1[]:(361() - (“1-91(xk) + ay. g (xp) + - + an-gn(xk))]z (3.49)

Como F(a) =0, esta possui um limite inferior e portanto um minimo, podendo ser

determinado pela derivada primeira igualada a zero.

Ok —0,i=12..,n (3.50)

6ai
Logo,
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—2-2?=1[f(xk) - (al-gl(xk) +az. gx(xp) + -+ an-gn(xk))] .gi(x) =0,i=12,..,n (3.51)

Reorganizando, tem-se:

( m m m
@) 910092 (00 + @ Z 9106 9o ) + s D 92090 = D g2 (). £ ()
k=1 k=1

=1

=

Ms

92 (i) g1 (i) + . Z 92 (i) g2 () + -+ + an-z 92(x)- gn i) = Z 92 (). f (xx)
k=1 k=1

&
1]
oy

@0 ) 90000920 + ) 9al0-92066) + 4 s ) G- ) = ) gn0-S G
k=1 k=1 k=1 k=1

Fazendo:

{ai,j = Yke1 9i (). g5 (i)
b; = Yk=19:(x)- f (i)

Pode-se escrever o sistema da Eq. (3.51) da seguinte forma:

alll. a’1 + al'z. az + .- al'n. an = bl
a2,1. a’1 + az'z. az + .- az'n. a’n = bz (3 52)

Ap1- 01+ App. 0y + - Apy.ay = by

Fazendo a escolha das fungdes g;(x) de maneira que estas sejam linearmente independentes,
tem-se um sistema linear nxn determinado, ou seja, apresentando apenas uma solucdo para 0s
parametros «;.

O erro do ajuste é o préprio valor de F, também denominado de desvio D, sendo este valor

dependente de sua escolha para as funcdes g;(x), ou seja:

D=y [fa) — ()] (3.53)
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3.4.2. Caso continuo

Neste caso ndo existe mais um conjunto de pontos para ajuste da curva, mas sim uma funcgéo
f(x) em um certo intervalo [a, b]. O procedimento € 0 mesmo que o0 anterior, sendo necessario a

escolha das funges g; (x) e assim calcular os parametros a; de maneira que o desvio se torne minimo,

ou seja:
b
D = [JIf () - p(x)]2dx (3.54)
Da mesma maneira que o caso discreto, o sistema linear pode ser escrito da seguinte forma:

a1’1. al + al‘z. az + .- al‘n. an = b1

az‘l. al + az‘z. az + .- az‘n. an = bz (3 55)

Ap1- 01+ Aoy + - Apy.ay = by

Sendo,
a;; = f: gi(xk)-gj(xk) e,
b; = f; 9: (). f (xe)

3.4.3. Método dos minimos quadrados aplicado a B-Spline

De acordo com Piegl e Tiller (2007), seja uma curva B-Spline C (i), ajustada a um conjunto

de pontos Q. O erro do ajuste pelo método dos minimos quadrados é calculado por:
f=3rC@@) - Qil? (3.56)
f = SHm B o Nep @) P = Q4] (3.57)
Na forma matricial pode ser escrito:
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f=(@'NT-Q"(NP - Q) (3.59)

Derivando e igualando a zero para encontrar 0 minimo, tem-se que:

S—£ = NT(NP— Q)+ (PTNT —QT)N =0 (3.60)
NT.N.P =NTQ (3.61)
Onde:

No,p(ﬁo) Nn,p(ao)
N = : :

NO,p(ﬁm) Nn,p(ﬁm)

Py
P=|:

IEN

Qo
=]

Qn

Para solucdo do sistema de equacgdes 3.61 € necessario definir o vetor de nos u;. De acordo

com Piegl e Tiller (2007), esse pode ser determinado pelo método do comprimento de cordas “d”:

d= ZZ=1|Qk - Qk—1| (3-62)
17,0 = 0
T (3.63)
ﬂk=ﬁk_1+M k=1,,n—1

d

Definido o vetor de nos é entdo possivel a solucdo do sistema de equacdes 3.61 para obter os
pontos de controle que reduz o erro dos minimos quadrados ao minimo, ou seja, 0 melhor ajuste para

esta condicao.
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3.4.4. Método dos minimos quadrados aplicado a B-Spline com restri¢éo

Indo um pouco mais além, em certos ajustes é necessario definir alguns parametros tais como
a interpolacéo de alguns pontos, e/ou a derivada em alguns pontos especificos. Sendo assim, pode-se
transformar o problema de ajuste em um problema de minimizagdo com restricdo de igualdade,
podendo ser representado pelo método de Lagrange da seguinte forma (PIEGL; TILLER, 2007):
Seja:
e S - pontos e derivadas sem restri¢oes;
e T - pontos e derivadas com restri¢oes;
e W - Matriz diagonal com pesos aplicados aos pontos a serem aproximados;
e P - Pontos de controle;
e N - Funcdes bases dos itens sem restricéo;
e M - Funcdes bases dos itens com restricao;
Portanto as equacdes séo:

e Para os pontos sem restri¢do:

NP=S (3.64)

e Para pontos com restri¢ao:

MP

I
ﬂ

(3.65)

Montando a equacédo de Lagrange para avaliacdo do erro pelo método dos minimos quadrados,

tem-se:

f=(ST—PTNT)W(S — NP) + AT(MP —T) (3.66)

Onde:
e A - Representa os multiplicadores de Lagrange;

e Ae P sdo as incognitas;
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Na busca pelo minimo desta funcgéo, a sua derivada primeira deve ser nula. Como se trata de

uma funcdo de duas variaveis, deve-se fazer as derivadas parciais de cada variavel, ou seja:

Z—ﬁ = —2(STWN — PTNTWN) + ATM =0 (3.67)
of _ _ _
S =MP-T=0 (3.68)

Isolando as incdgnitas A e P tem-se que:

A= MNTWN)IMT)"Y(M(NTWN)"INTS — T) (3.69)

P = (NTWN)"INTS — (NTWN)~1MTA (3.70)

Portanto, resolvendo as equacdes matriciais acima, obtém-se aos valores para 0s pontos de

controle que atendem as restri¢cfes e minimizam o erro dos minimos quadrados.

3.5. Superficie

As superficies B-Splines podem ser obtidas através de uma rede bidirecional de pontos de
controle, dois vetores de nds e o produto das funcdes de bases para cada dire¢do. Assim como as
curvas, as superficies também podem ser classificadas como racionais ou ndo-racionais, Eqg. (3.71) e

(3.72), respectivamente.

Yizo 2= Nip(WNjq(w)w; jPyj

S ) = S (3.71)
S(u,v) =X, Z;”:O N; ,(W)N; (V)P (3.72)
Onde:

U= {O, ey O, up+1, ,u,._p_l, 1, . 1}
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V= {0, ey 0, vq+1, ey 'Us_q_l, 1, ey 1}
r=n+p+1
s=m+q+1

As superficies podem ser abertas ou fechadas, dependendo se em uma das direcdes da rede de
pontos de controle existem perfis fechados, como pode ser verificado nos exemplos a seguir, Figs. 3.15
e 3.16.

(a) (b)
Figura 3.15 - Superficie aberta: (a) Rede de pontos de controles; (b) Superficie (Piegl; Tiller,
2007).

(a) (b)
Figura 3.16 - Superficie fechada: (a) Rede de pontos de controles; (b) Superficie B-Spline
(Rogers, 2001).
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Piegl e Tiller (2007) também apresentam trés técnicas avancgadas de construcao de superficies:
Superficies de revolugdo (Swung surfaces); Superficies concordantes (Skinned surfaces) que € um
novo termo para Lofting; e Superficies por varredura (Swept surfaces) que desliza um perfil sobre uma

trajetoria.

3.6. Conclusbes

Neste capitulo foi apresentada uma revisdo geral das curvas B-Spline, onde foi definida a sua
equacdo; a equacdo das funcdes de base B-Spline e a derivada da B-Spline. Também foram
apresentados alguns procedimentos de alteracdo das curvas B-Splines como elevacdo/reducgéo de grau
da curva e inclusao/retirada de pontos de controle da curva.

Com relacdo ao ajustes de curvas, foram apresentados dois métodos de aproximacdo de curva
B-Spline com peso utilizando o método dos minimos quadrados. O primeiro método, o mais simples,
se baseia em definir o conjunto de pontos de controle que reduz o erro de ajuste da curva ao minimo.
Ja o segundo define um problema de otimizagdo com restri¢des, restricdes estas que séo a interpolacao,
a definicdo da derivada nos pontos e pesos associados aos pontos. Este segundo método possibilita um
maior controle sobre o ajuste da curva.

Também foi apresentada uma revisdo das superficies B-Splines, demostrando como sao
definidas a partir da equacdo da superficie B-Spline. Estas equacdes serdo utilizadas em um dos
métodos da reconstrucao de superficie.

Este capitulo é de grande importancia ja que é a base deste trabalho, onde foram apresentadas

todas as ferramentas necessarias para ajustar e alterar uma curva ou superficie B-Spline.
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CAPITULO IV

METODOLOGIA DESENVOLVIDA

Como descrito no Capitulo I, Introducéo, este trabalho tem como objetivo propor metodologias

para reconstrucdo de superficies a partir de uma nuvem de pontos. Para obter as se¢fes transversais do

objeto, aqui considerado paralelos ao plano XY, séo utilizados B-Spline cubicas com peso associado

aos pontos que definem a sec¢do do objeto. Uma vez obtidas, as curvas longitudinais séo definidas a

partir de pontos das se¢Oes transversais justificando, desta forma, a aplicacao de interpolacao.

Neste capitulo todo o processo é detalhado, inclusive com os cinco métodos propostos para

obter a interpolacgdo e, consequentemente, os pontos que definem a superficie.

A metodologia proposta para a reconstrucdo de uma superficie utiliza 0 método das se¢Ges

transversais do objeto e consiste em:

1.

2
3
4.
5

Criacdo da nuvem de pontos

Metodologia para reducdo da nuvem de pontos
Pré-célculo de parametros para ajuste de curva B-Spline
Ajuste de curva B-Spline

Caélculo dos pontos da Superficie B-Spline

4.1. Criacao da nuvem de pontos

Como o digitalizador n&o ficou operacional a tempo de obter uma nuvem de pontos para que

fosse validado o método, foi necessario criar uma nuvem de pontos para representar a superficie a ser

reconstruida.
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Foram realizados estudos da leitura do sensor laser que compde o digitalizador do Laboratério
de Automacdo e Robética para determinar um pardmetro que caracterizasse a distribuicdo dos pontos
lidos pelo digitalizador. Assim, sendo possivel a criacdo de uma nuvem de pontos que se aproxima de
uma leitura real do digitalizador.

A seguir sdo explicados passo a passo a definicdo do parametro e a criagéo da nuvem de pontos.

4.1.1. Estudo da leitura do digitalizador

Dado a necessidade de uma nuvem de pontos para testar a metodologia desenvolvida, foi
necessario criar a nuvem de pontos. Mas esta nuvem nao poderia ser criada de forma aleatoria uma vez
gue a metodologia de reconstrucdo sera um complemento do digitalizador portanto, sendo necessario
realizar o estudo da distribui¢cdo de pontos com base em sua leitura.

O sistema de leitura do digitalizador € composto por um sensor laser modelo ODSL8 V4/45
S12. Suas caracteristicas de medicao sdo apresentados a seguir:

Dados retirados do datasheet:

e Voltagem de alimentagéo: 18 a 30vVDC
e Faixa de operacdo: 25 a 45mm
e Resolugdo: 0.01mm
e Laser com comprimento de onda: 650nm
e Erro absoluto de precisdo: 0.5%
e Erro de repetibilidade: 0.1%
e Tempo de medicdo: 2 a 5ms
Portanto pode-se notar que o laser € um instrumento de medi¢do muito preciso e sensivel, além

de ter comportamento linear da sua faixa de operagdo, Fig. 4.1.
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Figura 4.1 - Curva de sensibilidade do laser LEUZE ELECTRONIC

Lembrando que a leitura do laser é influenciada por diversos fatores tais como:
e Superficie opaca, translucida ou refletiva;
e Qualidade das superficies “Rugosidade”

e Defeitos na superficie.

A influéncia desses fatores é devido a forma como o sensor laser opera, ja que este emite o
feixe de laser refletindo-se no objeto e retornando ao captor do laser. Quanto mais reflexiva a
superficie, maior a quantidade de luz que retorna ao sensor. Caso haja defeitos na superficie, isso faz
com que o feixe de laser seja refletido para outra direcdo que ndo a do seu captor, ocasionando em erro
na leitura. Por isso é necessario o posicionamento do feixe de laser na dire¢cdo perpendicular a
superficie de leitura.

Toda nuvem de pontos é constituida por varios pontos que se distribuem em torno do perfil real
do objeto de forma que, quanto mais preciso o sensor de medic¢ao, menor sera a distribuicao dos pontos.
Dado esta ideia, foram realizadas varias leituras de uma linha (superficie plana em ago e polida) para
assim determinar a distribuicdo da leitura, ou erro aleatorio, que o digitalizador possui, Fig. 4.2. De
posse dessa caracteristica do digitalizador € possivel simular a construgdo de nuvens de pontos
semelhantes a uma secéo transversal do objeto quando obtida pelo proprio digitalizador.

A leitura tomada como base para simular a leitura do digitalizador, estd apresentada na
Fig. 4.2, onde foram lidos 7142 pontos em um perfil linear com 28,34mm de comprimento. A distancia

média de leitura foi de 31,3mm, sendo desprezados 15% de pontos lidos no inicio e no fim.
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Figura 4.2 - Disperséo da leitura do digitalizador

Para analise da leitura do sensor laser foi utilizado o conceito de rugosidade media Ra, a qual
se baseia em calcular a média aritmética dos valores absolutos dos picos e vales de uma distribuicdo
de pontos. Calculado este pardmetro é feito entdo o histograma centrado no valor médio da distribuicéo
e com as faixas de Ra, Fig.4.3.
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Figura 4.3 - Histograma da dispersao da leitura do digitalizador
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A construcdo do histograma mostra que a diferenca dos pontos lidos corresponde a uma
distribuicdo normal de média igual a média da distribuicdo de pontos da leitura e desvio padrdo igual
a Ra, Fig. 4.4.
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Figura 4.4 - Semelhanga entre histograma e distribui¢cdo normal

Calculando a porcentagem das distribuigOes para cada faixa de £n.c da distribui¢cdo normal e

das faixas de £n.Ra do histograma, comn = 1, ...,5, € montada a Tab. 4.1.

Tabela 4.1: Comparativo entre porcentagens para distribuicdo normal e histograma

Faixa Distribuicdo | Histograma Leitura | Erro
Normal [%] | Digitalizador [%] [%0]

+o / tRa 68,27 68,70 0,43
+20 / £2Ra 95,45 89,68 5,77
+3c0 / £3Ra 99,73 97,59 2,14
+46 / +4Ra 99,99 99,57 0,42
+50 / +5Ra 100,00 100,00 0,00
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Pela andlise da Fig.4.4 e da Tab. 1 pode-se perceber que a leitura do digitalizador pode ser
caracterizada por uma distribuicdo normal. Portanto, para a criacdo da nuvem de pontos serda utilizada

a distribuicdo normal com desvio padréo igual a Ra.

4.1.2. Criagao da nuvem de pontos

A criacdo da nuvem de pontos, como mencionado anteriormente, é realizada de maneira a
herdar as caracteristicas da leitura do digitalizador para assim simular uma leitura real. No item 4.1.1
foi mostrado que a leitura do digitalizador pode ser caracterizada por uma distribuicdo normal com
desvio padrdo igual a Ra = 0,1136mm.

Para construir a nuvem de pontos, primeiramente é necessario criar uma curva de referéncia
contida no plano XY. Esta curva é constituida por trechos retilineos e curvas de forma a garantir sua
continuidade. Para o desenvolvimento do trabalho, foi utilizado o perfil representado na Fig. 4.5, sendo
R1, R2 e L varidveis em funcdo da posicdo ao longo do eixo Z. Para a se¢do de base tem-se:
R1=10 mm e R2=L=20 mm..

£,

Figura 4.5 - Perfil no plano XY utilizado para criacdo da nuvem de pontos

O perfil criado é formado por arcos e segmentos de reta devido ao facil equacionamento e

também a facilidade com que € determinada a dire¢do normal em qualquer ponto da curva.
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Para reproduzir a leitura apresentada na Fig. 4.2, a quantidade de pontos por tamanho lido deve
ser a mesma, portanto foi calculada a densidade linear de pontos conforme Eq. (4.1).

7142 pontos
28,34 mm

densidadeLinear = = 252,0113 pontos/mm 4.1)

Este valor é utilizado para definir a quantidade de pontos que €é criado para cada segmento da
curva.

A criacdo da nuvem de pontos se baseia em gerar uma distribuicéo de pontos na dire¢cdo normal
de cada infinitesimal dS ao longo da curva. Como a curva é composta por segmentos, cada segmento
é analisado em separado.

Para os segmentos retos, primeiramente sdo gerados os pontos sobre ele utilizando uma
distribuicdo uniforme conforme as Egs. (4.2) a (4.4). O numero de pontos gerados € calculado

utilizando a densidade linear de pontos calculado na Eq. (4.1).

distUniform = rand(nPts, 1) (4.2)
Xpontos = Xa + (Xp — X,) * distUniform (4.3)
Yoontos = Ya + (Yp — Yy) * distUniform (4.4)
Onde,

distUniform é o vetor contendo os valores da distribuicdo uniforme;

nPts é 0 nimero de pontos a ser criado para 0 segmento reto;

(Xpontos» Ypontos) S30 0S pares ordenados dos pontos gerados sobre o segmento reto;
(X4,Y,) é o par ordenado do primeiro ponto que define o segmento reto;

(Xg, Yg) € 0 par ordenado do segundo ponto que define o segmento reto.

Em seguida sdo gerados os valores da distribuicdo normal para que sejam alteradas as
coordenadas dos pontos obtidos anteriormente de forma a caracterizar a leitura do digitalizador. Esta
alteracéo de coordenadas pode ser facilmente entendida pela Fig. 4.6, que utiliza de trigonometria para
obter as Eqs. (4.5) e (4.7).
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Figura 4.6 - Representacdo da alteracdo das coordenadas dos pontos via trigonometria.

distNorm = randn(nPts, 1) (4.5)
Xnuvem = Xpontos — distNorm = Ra x sin(y) (4.6)
Youvem = Ypontos + distNorm * Ra * cos(y) 4.7)

Para os arcos o processo € semelhante ao dos segmentos retos: sdo gerados pontos ao longo do
arco e em seguida alteradas suas coordenadas na direcdo normal a cada ponto para formar a distribuicéo
normal dos pontos em torno do perfil. As Equacgdes (4.8) a (4.11) resultam diretamente os pontos da
nuvem para 0s arcos.

distNorm = randn(nPts, 1) (4.8)

distUniform = rand(nPts, 1) 4.9

Xonwvem = Xcentro + (r + distNorm * Ra) * cos(@o + distUniform * (6 — 90)) (4.10)

Ynuwvem = Yeentro + (r + distNorm * Ra) x sin(8, + distUniform x (6r — 6,))  (4.11)
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Onde,
nPts € 0 nimero de pontos a serem criados ao longo do arco;
(Xcentro» Yeentro) € 0 par ordenado do centro do arco;
r € o raio do arco;
8, € 65 sdo os angulos de inicio e fim do arco, respectivamente;

Ra € a rugosidade média calculada nos itens 4.1.1 e 4.1.2.

Ao final destes procedimentos é obtida uma nuvem de pontos contida no plano XY.

O digitalizador construido no Laboratorio de Automacao e Robética da FEMEC/UFU quando
“l&¢” a superficie do objeto fornece uma nuvem de pontos na dire¢do do feixe de laser, conforme
apresentado na Fig. 4.2. Para a leitura correta das coordenadas, o feixe do laser deve ser perpendicular
a superficie. Entdo, ao final do processo de leitura, o digitalizador tera varrido toda a superficie do
objeto, criando a nuvem de pontos correspondente.

Para aplicar a metodologia proposta é necessario definir o tamanho de cada faixa de nuvem de
pontos na dire¢do Z que vai fornecer a secdo transversal do objeto. Entdo, neste trabalho é atribuida
uma dispersao na dire¢cdo Z com base nos dados obtidos da Fig. 4.2. Portanto, é admitido que os pontos
possuem uma distribuicdo normal de média zero e desvio padrdo igual a Ra na dire¢do Z conforme Eq.
(4.12). Cabe salientar que outros valores de distribuicdo normal podem ser utilizados. Por exemplo,

quando interessa obter uma nuvem de pontos mais densa na direcéo Z.

Zpuvem = Ra x randn(nPts, 1) (4.12)

Finalmente é construida a nuvem de pontos para um perfil dado. Portanto, para a construcao de
uma nuvem de pontos de um objeto é necessario aplicar o método para todos os perfis (se¢do
transversal) que compdem o objeto. Assim ao final do processo a nuvem de pontos estara criada e
pronta para iniciar a aplicacdo da metodologia de reconstrucao da superficie.

Para aplicar a metodologia que sera apresentada a seguir, foi gerada a superficie formada por

dois troncos de cone representada na Fig. 4.7.
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Figura 4.7 - Nuvem de pontos criada: (a) Nuvem de pontos de objeto cénico gerada para
aplicacdo da metodologia e; (b) Zoom em trecho evidenciando a disperséo dos
pontos em uma secéo transversal.

4.2. Metodologia para redugdo da nuvem de pontos

Uma nuvem de pontos é formada por milhares de pontos que seria praticamente inviavel a
obtencéo direta da superficie do objeto devido ao grande tempo de processamento. Por esta razao é
necessario reduzir esta nuvem de pontos por um novo conjunto menor de pontos que possa representar
com fidelidade a superficie do objeto.

A metodologia de reducao da nuvem de pontos aqui apresentada é feita com base nos trabalhos
realizados no Laboratorio de Automacdo e Robdtica da Faculdade de Engenharia Mecénica da
Universidade Federal de Uberlandia, (FONSECA JR E CARVALHO, 2005), (AQUINO ET AL.,
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2010) e (FANTI E CARVALHO, 2015). Essa metodologia substitui os pontos existentes em uma
determinada regido pelo seu centro de massa (CM), considerando que cada ponto possui massa
unitaria. Este procedimento parte do principio que para uma regido com grande concentracdo de pontos
certamente seu CM pertence a superficie do objeto.
A seguir o procedimento € apresentado em detalhes a partir da definicdo da resolucéo e das
micro-regides.
O célculo dos CM sdo realizados em trés etapas:
e Definicao da resolucédo e das micro-regides
e Calculo dos CM;

e Selecdo dos mais provaveis CM.

4.2.1. Definicao da resolucéo e das micros-regides

Uma micro-regido é definida por uma pequena regido pertencente ao espago que envolve o
volume ocupado pelo objeto. Por razdes de simplicidade e rapidez de processamento elas sdo
consideradas como paralelepipedos com uma base retangular paralela ao plano XY. Isso significa que
o0 volume ocupado pela nuvem de pontos que representa o objeto é dividido em micro-regifes.

Entdo, esta etapa sdo definidos os volumes prismaticos de base retangular por toda a nuvem de
pontos de maneira a delimitar os pontos pertencentes a cada micro-regido. A resolucdo definida pelo
usuario determina as dimens@es destas micro-regides de maneira que, se escolhido uma resolucao
pequena o nimero de CM calculados sera muito grande e assim o ajuste tende a ser sensivel a qualquer
detalhe da superficie ajustada, porém o tempo do processo serd muito grande.

Cabe salientar que um grande nimero de CM corresponde a uma grande quantidade de pontos
de controle necessarios para o ajuste de uma B-Spline.

Em projetos anteriores, varias metodologias para determinar a resolugdo de maneira automatica
foram apresentadas e testadas, ndo sendo possivel a definicdo de uma funcéo geral para definir uma
oOtima resolucdo. Foram utilizados como parametros: a largura da nuvem de pontos, a dimenséo total
da nuvem de pontos e o raio médio de circunferéncias para cada trés pontos consecutivos. Todas as
metodologias em funcdo da nuvem de pontos.

Neste projeto é abordada uma nova metodologia para determinacao automatica da resolucéo na
qual ndo utiliza a nuvem de pontos para calculo da resolucdo, mas sim a caracteristica de leitura do

digitalizador discutida anteriormente.
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O esperado para as micro-regides € que ela consiga limitar um certo nimero de pontos os quais
quando calculado um centro de massa, este possa representar o ponto real da superficie. A Figura 4.8
apresenta a utilizacdo de trés valores para a resolucdo em funcdo de Ra: 5Ra, 8Ra e 10Ra, para o

calculo dos centros de massas.

107 101
9r gr
8r 8¢t
7 [ rds
Secdo transversal Secao transversal
6 * CM-5Ra 6 * CM-8Ra
-18 -16 -14 12 10 -18 -16 -14 12 -10

(a) (b)

Sec&o transversal
* CM-10Ra

12 -10

(©)

Figura 4.8 - Calculo de centros de massa conforme resolucées: (a) 5Ra; (b) 8Ra e; (c) 10Ra.

E possivel verificar que a utilizacdo de um pequeno valor de resolucio faz com que haja uma
maior quantidade de centros de massa criados porém, para este caso, a utilizacao da resolucdo de 10Ra
proporcionou um conjunto de centros de massa que melhor representam o perfil médio da secédo
transversal. Portanto sera utilizado como resolucéo o valor de 10Ra. Este valor fica compativel com
os dados apresentados na Tab. 4.1 onde todos os pontos lidos pelo digitalizador ficam em uma regiao

definida por £5Ra.
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Antes de definir as micro-regides, € necessario selecionar as sec¢bes transversais. A resolucdo
da micro-regido na direcdo Z, considerando as caracteristicas do digitalizador, ndo justifica ser maior
que 10Ra, portanto sera utilizado este valor como resolucéo na direcédo Z.

A selecdo das secdes transversais € realizada selecionando os pontos pertencentes a cada
intervalo de 10Ra, iniciado pelo ponto que apresenta a menor coordenada Z.

Quando a nuvem de pontos apresenta regides vazias na direcao Z significa que o digitalizador
ndo efetuou uma leitura adequada da superficie do objeto. Neste caso, 0 interessante seria repetir o
processo de leitura.

Uma outra alternativa consiste em “eliminar” essas regides vazias visto que, sendo elas
pequenas em relacdo a resolucdo do digitalizador, o processo de reconstrucdo pode ndo acrescentar
grandes imperfei¢bes na superficies reconstruida.

Neste trabalho, devido ao processo de criagdo da nuvem de pontos, a eliminagdo dessas regides
poderia ser feito seja reduzindo a distancia entre as curvas da segdo transversal utilizadas como
referéncia, seja pelo aumento do desvio padrdo utilizado na Eq. (4.12).

Com o objetivo de avaliar a metodologia de reconstrucéo de superficies proposta neste trabalho
é utilizado o procedimento de eliminagdo dos vazios. Para isso, sdo considerados somente 0s pontos
contidos entre o valor minimo e o valor méaximo, eliminando os demais, conforme esquematizado na
Fig. 4.9.
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Figura 4.9 - Selecdo de secdes transversais com presenca de espacos vazios: (a) Selecéo
errdnea das secdes; (b) Correcdo do método pela eliminacao dos vazios.

Em seguida é feito o calculo dos limites para cada micro-regido nas direces X e Y. Para isso
é calculado o nimero de micro-regides possiveis de acordo com a resolucao das direces X e Y. Neste
trabalho as resoluc@es nestas duas dire¢bes sdo consideradas iguais. O processo € aplicado a cada secéo
individualmente, jA& que cada uma possui dimensfes diferentes. As Equacgdes (4.13) a (4.16)
apresentam o procedimento.

Para direcéo X:

max(X;)—-min(X;)

anegiées(i) = resohugao (4.13)
¥ () { nxrsgiées{i} » S8 Mrﬂgiﬁfs{i} é inteiro
NAregidesl) = . : . o
g mten'ﬂ(n}{rﬁ.mﬁﬂ {L]) + 1, senao (4.14)
Para direcdo Y:
nYregi(”)es(i) = masT)-minlyy (4.15)

resolugio
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ﬂyrtg[aes{i) » S8 NYugi505 (1) € inteiro

Vyegises (1) =
Mregides {L} { i?ItEf]’"ﬂ(ﬂYregiées(ﬂ) +1, sendo (4 16)

Sendo: i = [1, Ngeccpes]

Ao fim deste processo esta determinado o numero de regides para as direcdes X e Y de cada
secdo, bastando entdo definir o array contendo os limites de cada micro-regido. Vale ressaltar que a
quantidade de micro-regiGes ndo sdo as mesmas para as secdes, isto devido ao fato que cada secdo

possui dimensdes e formas diferentes.

4.2.2. Calculo dos centros de massa

Para calcular os centros de massa (CM) de um conjunto de pontos no plano Cartesiano, deve
ser realizada uma média ponderada das coordenadas utilizando os pesos atribuidos a cada um destes

pontos, Eq. (4.17).

CM = (Z?=1xi'wi 2?=1Yi'wi Z?:lzi'wi> (417)

Z?=1 wi 2?:1 wi Z?:l wi

Para a metodologia proposta ndo existem pontos com mais importancia que outros, portanto,
cada ponto possui peso unitario. Assim sendo é aplicada a Eq. (4.17) para cada micro-regido presente
na nuvem de pontos.

Com os centro de massa calculados, é entdo possivel prosseguir com a metodologia com um

nimero muito menor de pontos.

4.2.3. Selecdo dos centros de massa

Somente o calculo dos centros de massa das micro-regides nao é suficiente para prosseguir com
a metodologia, uma vez que ndo se verifica exatamente uma sequéncia de pontos que define um

contorno a ser ajustado, como pode ser verificado na regido delimitada pelo retangulo na Fig. 4.10.
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Figura 4.10 - Centros de massa calculados para uma secao.

Portanto, é necessario aplicar uma metodologia para selecionar os pontos que proporcionam o
melhor conjunto para realizar um ajuste de curva o mais préximo possivel do desejado.

A primeira etapa consiste em definir o primeiro CM, ou seja o de referéncia para inicio do
processo de escolha. Varios testes foram realizados e verificado que, dependendo da escolha do
primeiro ponto, o perfil ajustado é diferente, portanto, é necessario escolher um CM que tenha a maior
chance de pertencer & superficie do objeto. E selecionado 0 CM em que sua micro-regio possua a
maior quantidade de pontos, pois ele provavelmente pertence a superficie do objeto.

Definido o primeiro CM, é entdo necessario selecionar os proximos CMs que fardo parte do
contorno e mantendo a sequéncia correta da formacdo da secdo transversal. Para isso foi criado o
método de detecgdo de contorno baseado na avaliagdo de uma macro-regido, que séo regides formadas

pelas micro-regides vizinhas ao CM de referéncia, Fig. 4.11.
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Figura 4.11 - Macro-regides formadas por micro-regides (FONSECA JR e CARVALHO,

2006).

Para selecdo do segundo ponto € feito o produto de dois parametros: a distancia entre 0 CM de

referéncia aos demais CM presentes na macro-regido, e a quantidade de pontos que compde cada

micro-regido. O CM que apresentar o maior resultado do produto € selecionado para ser o préximo

CM de referéncia.

Os CMs e suas respectivas micro-regides analisados na macro-regido sdo desprezados para a

proxima etapa. O procedimento é repetido até que ocorra o fechamento da curva. Ao final do processo

séo obtidos os CM, em ordem de conectividade, que definem o contorno da curva.

Na Figura 4.11 a micro-regido de referéncia esta identificada pelo ntimero “1”. As micro-

regibes em volta dela formam a macro-regido de busca do proximo CM de referéncia.

Este método apresenta a vantagem de eliminar ruidos de leituras do digitalizador, que

correspondem a pontos esparsos, e que nada tem a ver com a superficie do objeto.

A Figura 4.12 apresenta o resultado do método para a mesma regido apresentada na Fig. 4.10.
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Figura 4.12 - Centros de massa selecionados pelo metodo de sele¢éo

4.3. Pré-calculo de parametros para o ajuste de curva B-Spline

Durante varios testes realizados pela equipe do Laboratorio de Automacdo e Robotica da
FEMEC/UFU, diversos tipos de curvas ja foram utilizadas para o ajuste de curva neste projeto tais
como, aproximacao e interpolacdo usando NURBS, e aproximacéo e interpolacdo usando B-Splines
Uniformes. Os melhores resultados foram obtidos com a utilizagdo da aproximacao de B-Spline cubica
com peso e restri¢Oes de derivada do inicio e fim com a mesma direcdo e mddulo, proporcionando uma
continuidade do tipo C? para toda a curva.

Porém, para a realizacdo do ajuste da curva conforme a metodologia proposta neste trabalho, é
necessario o calculo de alguns pardmetros como: peso aplicado a cada ponto ajustado, vetor de diregcdo
tangente do fechamento de curva, nimero de pontos de controle e a selecdo do melhor ponto para
inicio da curva.

Todos estes parametros possuem forte influéncia sobre a forma da curva, portanto sendo de
extrema importancia a boa estimacéo destes valores. Este item apresenta a metodologia proposta neste
trabalho.
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4.3.1. Calculo dos pesos aplicados a cada ponto ajustado

De acordo com Pereira (2014), os pesos aplicados a cada ponto ajustado podem ser definidos
em funcéo do raio de uma circunferéncia formada para cada trés pontos consecutivos.

O raio pode ser obtido por diversas formas mas, com o objetivo de redugdo do tempo de
processamento, neste trabalho é utilizada a lei dos senos, conforme esquematizado na Fig. 4.13, pois

foi verificado que é bem mais rapido que o método das mediatrizes utilizado por Pereira (2014).

BC _ AC _ AB — o
sen(a) ~ sen(B)  sen(d)

Figura 4.13 - Lei dos senos aplicado a trés pontos consecutivos.

A metodologia da defini¢do dos pesos utilizada por Pereira (2014) se baseia no calculo do valor
do raio maximo aceitavel, 7;,,,, @ partir do estimagédo do raio médio, 7, somado a um desvio padréo

amostral do conjunto de raios, s, Egs. (4.18) a (4.20).

_ 1

r = ; ?=1Ti (418)
1 —

s = | X (i —7)? (4.19)

Tmax =T+ (4.20)

64



O célculo do peso é realizado pela razéo entre o valor do 7;,,, € 0 valor de cada raio, como

apresentado na Eq. (4.21).

w; =M =1 . n (4.21)

Como pode ser verificado na Eq. (4.21), peso e raio séo inversamente proporcionais, assim
sendo atribuido maiores valores de pesos as regiGes com menores raios, fazendo com que a curva se
aproxime mais a esses pontos.

Um caso particular em que a curva também deve aproximar dos pontos acontece quando eles
estdo alinhados. Para este caso o método, Fig. 4.21, ndo faz a aplicacdo do maximo peso a estes pontos,
pelo contrério, ele aplica 0 minimo peso ja que o raio tende ao infinito. Assim para os pontos em que
os valores de r; sdo maiores do que o valor de 1,,,, Sao aplicados 0 maximo valor do peso.

Desta forma é obtido o vetor contendo os pesos a serem aplicados aos pontos ajustados.

4.3.2. Calculo do vetor de fechamento de curva

A determinacdo do vetor derivada para o fechamento da curva pode ser realizada de duas
maneiras. A primeira é utilizando os préprios centros de massas vizinhos ao ponto de fechamento para
criacdo de dois vetores que serdo analisados para determinar o provavel vetor tangente ao ponto de
fechamento.

Primeiramente é necessario obter esses dois vetores. Para isso, considere um conjunto de
centros de massas definido por CM = {c¢m,, ... ,cm,} onde cm,; s&o as coordenadas Cartesianas (X,y,z)
do i-ésimo centro de massa, lembrando que o primeiro e o ultimo centro de massa sdo 0s

mesmos, cm; = cm,,. Os vetores sdo obtidos da seguinte forma:
vl = (emyx —cmyx  cmyy —cmyy CmyzZ —Ccm,z)
V2 = (CMux —cmy_1X  Ccmyy —CMy_1y CMuZ — CMy_42)

Geometricamente, os vetores v1e v2 ficam dispostos como representado na Fig. 4.14.
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Figura 4.14 - Representacao dos vetores viev2

Obtido os vetores, é entdo realizada a sua soma e por fim dividido pelo seu médulo para que se

torne um vetor unitario representando a direcdo da tangente no ponto de fechamento da curva, Fig.

4.15.

Curva B-Spline
ajustada

Vetor unitario de direcao
tangencial ao ponto

Figura 4.15 - Representacao do vetor unitario utilizado para o fechamento
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A segunda maneira proposta é de realizar a mudanca do ponto de inicio e fim da curva e por
seguinte realizar o ajuste de uma B-Spline clbica sem restricbes para esta nova configuracdo dos
pontos. A partir disso € entdo realizado o calculo da derivada da B-Spline para o antigo ponto de inicio
da curva, obtendo o vetor derivada para aquele ponto.

Primeiramente é necesséario realizar a mudanca do ponto de inicio do conjunto de centros de
massas. Para isso foi adotado que essa mudanca deve ser feita para o lado oposto do conjunto de pontos,
uma vez que o ajuste de uma B-Spline sem a imposicéo da derivada no inicio gera erros de curvatura
para a regido de inicio da curva, Fig. 4.16. Desta forma, o ponto a ser calculado estara fora desta zona

de erro.

28 7

2.6 Pontos de inicio

24

2.2

18- Curva B-Spline -
—=—Pontos de controle
* Pontos ajustados

16 | | | | I
-1.2 -1 -0.8 -0.6 0.4 0.2
X

Figura 4.16 - Erro de curvatura para regido proxima ao inicio de uma curva B-Spline sem
fechamento com continuidade CP*

Uma vez realizada a mudanca do inicio do conjunto de centros de massas, é entdo possivel

ajustar uma curva B-Spline sem nenhuma imposicao de derivadas ou interpolacao, utilizando o método

dos minimos quadrados apresentado no item 3.4.3, resultando na Fig. 4.17.
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Figura 4.17 - Curva B-Spline com ponto de inicio alterado passando pelo antigo ponto de
inicio

Ajustada a curva é entdo necessario o calculo da derivada no antigo ponto de inicio da curva,
considerando o conjunto inicial dos pontos. Para o célculo da derivada é utilizada a Eq.(3.11), porém
primeiramente é necessario definir a posicdo do ponto no vetor uk para que assim se calcule apenas a
derivada do ponto em questdo. Por fim é realizada a divisdo do vetor pela seu médulo para definir um

vetor unitario que represente a direcdo da tangente para aquele ponto, Fig. 4.18.

n
cOw=>Y NYw.p, a<u<h (3.11)

—B-Spline
—S—Pontos de controle
* Pontos ajustados

= = =Direcao tangente

Figura 4.18 - Representacao da direcao de tangente ao ponto de inicio
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Uma andlise com relagdo aos dois métodos é que o primeiro trabalha com informacdes de dois
pontos vizinhos ao fechamento. J& o segundo método realiza o ajuste de uma B-Spline passando pelo
ponto a ser analisado, portanto utilizando informac@es de todos 0s pontos proximos a sua vizinhanca,
ja que todos os pontos influenciam no perfil desta curva. Mesmo com essas diferencas 0s dois métodos
apresentam resultados muito proximos, sendo ora um melhor ora o outro. Porém, com relag¢do ao tempo
de processamento o primeiro método ndo sofre influéncia da quantidade de pontos, uma vez que
sempre necessitara de trés pontos para realizacdo do calculo, ja o0 segundo método realiza um ajuste de
curva, portanto quanto maior o nimero de pontos maior sera o tempo gasto para o calculo da derivada.

A Unica maneira de avaliar qual dos dois métodos é melhor, seria aplicando ambos e depois
verificando o erro de ajuste para os dois casos, elevando muito o tempo de processamento da
reconstrucdo. Como o primeiro método é o mais simples e ndo ¢ influenciado pela quantidade de

pontos, optou-se pela sua utilizacao.

4.3.3. Calculo do nimero de pontos de controle

O ndmero de pontos de controle utilizados em um ajuste de curvas B-Splines influencia
diretamente no numero de equacdes a ser resolvidos, portanto no tempo de solucdo do método, assim
como no erro de ajuste.

Estas duas influencias citadas séo conflitantes, ou seja, quanto maior o tempo para solugéo das
equacdes menor se torna o erro de ajuste. Assim sendo possivel a definicdo de um problema de
otimizacdo com multi-objetivos, neste caso € utilizado como varidvel de projeto o nimero de pontos
de controle e como objetivos as seguintes consideracdes:

e A minimizacao do tempo de processamento;
e A minimizagdo do nimero de pontos de controle;
e A minimizagéo do erro de ajuste.

De acordo com Vanderplaats (1999), a resolucdo de problemas multi-objetivos é feita
utilizando métodos de otimizacdo para geracao dos resultados a serem analisados, curva de Pareto.
Porém, neste trabalho ndo é necessario utilizar destes métodos, pois 0s objetivos a serem calculados
sdo relativamente faceis de serem obtidos.

Para avaliacdo dos resultados é necessaria a formulacdo de uma funcdo de ponderacao, assim

sendo possivel atribuir valores diferentes de pesos para cada objetivo de acordo com a necessidade do
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usuario. A funcdo de ponderacdo utilizada é a soma ponderada da normalizacdo de cada objetivo,
Eq.(4.22).

w F1-IF1lmin | F2—=IF2lmin F3=IF3lmin
F = VIF1lmax—IFilmin 2 F2lmax—IF2lmin ° IF3lmax—IF3lmin (4 22)
wi+wy+ws '
Sendo:

F — Funcdo objetivo;

F1, F2, F3 — Vetores com resultados para cada objetivo;

W1, W2, W3 — Peso aplicado para cada objetivo.

Para construcdo da curva de Pareto, sera apresentado em um grafico os pontos F em fungéo dos
numeros de pontos de controle utilizados para seu calculo. Estes nimeros de pontos de controle foram
criados iniciando em p+1, uma vez que é a condicdo necessaria para existéncia de uma B-Spline e
também por ndo haver nenhuma restricdo como interpolacdo ou vetores derivadas impostas a algum
ponto, e finalizando no numero total de pontos a ser ajustado.

O primeiro objetivo, tempo de processamento, foi mensurado utilizando as fungdes tic e toc do
Matlab, onde foram posicionadas, respectivamente, no inicio e fim do algoritmo de calculo dos pontos
de controle para assim mensurar o tempo gasto para realizacdo deste calculo.

Para estimar o tempo de processamento seria necessario realizar uma média de um grande valor
de amostras ja que o tempo de processamento depende também do sistema operacional e assim
havendo muita variacdo para cada amostra. No trabalho publicado no COBEM 2015, (FANTI e
CARVALHO, 2015) foi realizada uma estimativa para se aproximar dos valores médios para o tempo
de calculo dos pontos de controle para um certo conjunto de pontos. Foram realizados o calculo de
50000 amostras para cada numero de pontos de controle e entdo obtida a média para cada conjunto,
Fig. 4.19.
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Figura 4.19 - Tempo gasto para ajuste em funcdo do nimero de pontos de controle (FANTI e
CARVALHO, 2015)

Pode-se perceber que realmente o tempo de calculo dos pontos de controle é crescente em
funcdo do nimero de pontos de controle. Porém, a diferenga entre 0 menor e 0 maior valor médio é
muito pequeno, sendo proximo a 2x107° segundos para o conjunto de pontos utilizado no artigo. Sendo
assim aceitavel a ndo inclusdo deste objetivo ao calculo da funcdo de ponderagéo.

O segundo objetivo, nimero de pontos de controle, é 0 mais simples de ser obtido sendo apenas
registrado o nimero de pontos de controle utilizado para o calculo dos pontos de controle. Portanto a
curva deste objetivo é uma reta bissetriz limitada pelo menor e maior nimero de pontos de controle

utilizado para o conjunto de pontos, Fig. 4.20.
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Figura 4.20 - Numero de pontos de controle utilizado a cada calculo.

Finalmente o terceiro e ultimo objetivo, erro de ajuste, é obtido pelo calculo do erro dos

minimos quadrados conforme Eq.(4.23).

Erro = [NP — Q]? (4.23)

Uma vez calculado o resultado para cada objetivo, é necessario obter a funcdo de ponderagédo
e entdo avaliar qual o seu menor resultado.

Considerando o conjunto de pontos representados na Fig. 4.21 para a aplicacdo da metodologia
proposta (FANTI e CARVALHO, 2015) e aplicando o célculo do erro dos minimos quadrados, foi
obtida a curva de resposta representada na Fig. 4.22.
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Figura 4.21 - Sequéncia de pontos a serem ajustados (FANTI e CARVALHO, 2015)
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Number of control points

Figura 4.22 - Erro de ajuste em funcdo do numero de pontos de controle (FANTI e
CARVALHO, 2015)

Por fim ¢ aplicada a fungé@o de ponderacdo, sendo considerados 0s seguintes pesos:
®  WerroAjuste = 0,9
®  WhnumeroPontosControles = 0,1
®  WTempo = 0,0
Como pode-se notar, 0 peso para o tempo de processamento foi utilizado como zero, portanto

este foi desconsiderado. O peso para o erro de ajuste foi 0 mais alto uma vez que representa o objetivo
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principal no ajuste de curva. Vale ressaltar que os valores dos pesos séo utilizados de acordo com o
objetivo do usuério.
Calculada a funcéo de ponderacéo, foi entdo plotada a curva de Pareto e marcando o seu menor

valor, sendo este o resultado para o método, Fig. 4.23.

] wError=0.90 wNumControlPoints=0.10
T T T T

——F
% F minimum ||

20 30 40 50 60 70 80 90 100
Percentage of points

Figura 4.23 - Resultado da funcéo de ponderacéo em funcdo da porcentagem de numero de
pontos de controle (FANTI e CARVALHO, 2015)

Portanto, para o conjunto de pontos representado na Fig. 4.24, o nimero de pontos de controle

que melhor atende os objetivos utilizados é de 60% que equivale a 12 pontos de controle. A B-Spline

cUbica aberta ajustada esta representada na Fig. 4.24.
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Figura 4.24 - Ajuste realizado com o numero 6timo de pontos de controle (FANTI e
CARVALHO, 2015)

4.3.4. Selecdo do melhor ponto de inicio da curva

Neste trabalho sdo utilizados vetores de n6s do tipo clamped onde o primeiro e Gltimo pontos
da B-Spline s&o iguais aos pontos de inicio e fim do conjunto de pontos ajustados e, como neste trabalho
é utilizada a aproximacao, onde nem todos 0s pontos ajustados devem pertencer a curva ajustada, a
escolha dos pontos de inicio e fim da curva deve ser bem realizada uma vez que a escolha de um ponto
0 qual a curva ndo deveria passar sobre ele pode levar a um grande erro de ajuste, como exemplificado
na Fig. 4.25.
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Figura 4.25 - Exemplo de bom e mal ajuste com relacao a passar por um ponto que néo
deveria pertencer a curva

Desta forma é necessario definir um ponto de inicio e fim de maneira que a curva desejada
passe 0 mais proximo possivel dele. Isto acontece para pontos alinhados como pode ser verificado na
Fig. 4.25. Quando os pontos estdo alinhados, estes pontos tendem a representar uma reta e assim a
curva B-Spline tende a passar sobre eles para ajustar a reta.

Porém, ndo necessariamente colocando o inicio da curva nos pontos mais alinhados resulta nos
menores erros, pois isso depende de todo o conjunto de pontos. Portanto, 0 metodo para a selecéo de
pontos consiste em selecionar um certo numero de pontos mais provaveis para inicio e fim da curva, e
por seguinte, testar cada um destes calculando o erro de ajuste. O melhor ponto é o que apresenta o
menor erro de ajuste de curva.

Primeiramente é necessario calcular os angulos formados a cada conjunto de trés pontos
consecutivos, para isso € utilizado o produto escalar entre dois vetores, Eq. (4.24). Quanto mais
alinhados estiverem os pontos, menor o angulo entre eles. Para analise de escolha dos melhores pontos,

séo considerados cinco conjuntos de pontos mais alinhados.

A" B = |Al|B]| cos 6 (4.24)
— cos—1 (AE
6 = cos (IAIIBI) (4.25)
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Os vetores sdo formados no sentido da orientagdo do conjunto de pontos, por exemplo, para 0s

pontos { Q;, Q,, Q5 } 0s vetores ficam da seguinte forma, QTze 073 O angulo calculado para cada
conjunto de trés pontos consecutivos representa o angulo para o ponto intermediario aos trés.

Os cinco menores angulos correspondem aos cinco conjuntos de trés pontos consecutivos mais
alinhados. Isso significa que um deles pode apresentar 0 menor erro no ajuste da curva. Entdo, cinco
sequencias de pontos sdo criadas a partir da reordenacdo dos pontos, sendo o primeiro aquele que
apresenta o menor angulo. Aplicando o ajuste de curva, conforme descrito no item 4.4 a seguir, é
possivel verificar qual dos conjuntos apresenta 0 menor erro de ajuste, sendo o ponto correspondente

escolhido como o melhor ponto de inicio e fim da curva.

4.4. Ajuste de curva B-Spline

Para melhor compreensdo de como determinar o melhor ajuste de uma curva B-Spline para
qualquer conjunto de pontos ordenados, considerando a metodologia aqui proposta, a seguir €
apresentada a sequéncia de procedimentos.

Primeiramente, o procedimento que ndo depende do resultado de outros é o do célculo dos
pesos aplicados a cada ponto ajustado, sendo apenas necessario o conjunto de pontos. Portanto este
método deve ser o primeiro a ser aplicado, conforme item 4.3.1.

O segundo procedimento é o de selegdo do conjunto de pontos que podem ser utilizados como
ponto de inicio da curva, o qual também s6 depende do conjunto de pontos. Como este método e o
anterior dependem do célculo dos angulos, € possivel a implementacdo dos dois algoritmos em uma
unica funcdo. A selecdo do melhor ponto de inicio da curva esta descrita no item 4.3.4. Cabe salientar
gue este procedimento seleciona os cinco possiveis melhores pontos para inicio da curva.

Uma vez definido os cinco provaveis melhores pontos de inicio da curva, deve-se aplicar os
proximos procedimentos a todos 0s cinco, uma vez que 0s proximos procedimentos sao influenciados
diretamente pelo inicio da curva.

O préximo procedimento consiste no calculo do vetor da dire¢do da tangente ao ponto de
fechamento da curva uma vez que, se utilizado o método que considera os pontos vizinhos do ponto
de inicio, é apenas necessario o conjunto de pontos e o ponto de inicio da curva. Caso seja utilizado o

calculo da derivada da curva B-Spline ajustada considerando a troca do inicio da curva, sdo utilizados
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todos os parametros ja calculados e o nimero de pontos de controle, que ainda néo foi calculado. Para
isso € utilizado como um valor préximo a 80% do nimero de pontos ajustados, para assim garantir
uma boa estimativa para o vetor de direcdo tangente ao ponto de fechamento da curva.

Em seguida é feito o calculo do nimero de pontos de controle, ja que este é o ultimo parametro
que falta ser calculado.

Por fim é feito o ajuste da curva B-Spline clbica com peso e restricdo da derivada para 0s
pontos de inicio e fim, obtendo os pontos de controle e o vetor de nés, bem como o célculo do erro dos
minimos quadrados do ajuste. Uma vez calculado o erro, este e as outras informacgdes sdo arquivadas
e entdo repetido os passos para o proximo ponto de inicio selecionado, até que encerre 0s cinco pontos.
De posse dos cinco erros de ajuste, € possivel determinar qual foi o melhor ajuste para os cinco, sendo
entdo o que apresentar menor erro selecionado como ponto de inicio e seus pontos de controle e vetor
de nds a serem utilizados no ajuste final.

A Fig. 4.26 representa um fluxograma dos passos para efetuar o ajuste de curvas a partir de um

conjunto de pontos conhecidos, conforme a metodologia proposta.
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Figura 4.26 - Fluxograma representativo dos passos seguidos para o ajuste das curvas B-
Splines, conforme a metodologia proposta.

4.5. Calculo dos pontos da superficie

Neste item sdo apresentados os métodos desenvolvidos para calcular os pontos para
reconstrucdo da superficie através das curvas ajustadas para cada se¢do transversal. As figuras de cada
método apresentam o tempo gasto para o célculo dos pontos para cada superficie, foi utilizado um
notebook HP DM4-2160SF com processador Intel i5 2430M 2.4GHz e meméria de 6GB DDR3, porém
este tempo é somente para se ter uma nogdo do qudo lento ou rapido é aquele método, ja que para se
estimar um tempo seria necessario a repeticdo do método vérias vezes e por fim o célculo de um

intervalo de confiancga, o que nao sera feito.
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O calculo dos pontos da superficie pode ser realizado de duas maneiras: utilizando as equacgdes
de superficie B-Spline ou através da interpolacdo dos pontos das secOes transversais na direcdo

longitudinal.

4.5.1. Equacdo da superficie B-Spline

Este método utiliza todos os pontos de controle calculados anteriormente para as segdes
transversais, como uma rede de pontos de controle, e entdo é realizado o célculo direto dos pontos
utilizando a equacdo da superficie apresentada no item 3.5. Esta opcdo tem como resultado uma
superficie suave e continua, porém apresenta um problema com relacéo as posicoes de inicio da curva
para cada secdo, causando um efeito de torcdo na superficie calculada, Fig. 4.27, e também necessita

de um grande tempo computacional para seu calculo.

| Tempo gasto = 331.1245 s

10

Figura 4.27 - Superficie reconstruida sem alinhamento dos pontos de inicio

Para contornar o efeito de tor¢éo, a funcdo de selecdo do ponto inicial da curva utilizada no
item 4.3.4, é substituida por uma funcao que seleciona 0 CM mais proximo de um certo referencial
adotado pelo usuario. Neste trabalho foi selecionado o ponto mais préximo da coordenadax=0eo0y
mais negativo, para que se torne o ponto de inicio de cada sec¢do. Este procedimento trouxe uma
melhora com relacdo ao efeito de torcdo apresentado, porém ndo por completo, como visto na Fig.

4.28, onde ainda é possivel notar que as linhas longitudinais ndo sao totalmente lineares.
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Figura 4.28 - Superficie reconstruida com alinhamento dos pontos de inicio

4.5.2. Interpolacdo dos pontos das secGes transversais

Neste método € realizada a interpolagdo na direcdo longitudinal das curvas B-Splines cubicas
ajustadas a cada secéo transversal conforme o método descrito no item 4.4. Para que as se¢fes tenham
0 mesmo ndmero de pontos, as curvas B-Splines sdo calculadas utilizando um vetor @ contendo 200
valores igualmente espacados entre 0 e 1.

Os conjuntos de pontos a serem interpolados possuem um ponto de cada secao transversal,
assim caracterizando uma dire¢&o longitudinal. A unido de todos 0s conjuntos de pontos interpolados
resulta na superficie reconstruida, Fig. 4.29.
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Figura 4.29 - Figura representando a superficie reconstruida com suas se¢@es transversais e,
em vermelho, exemplo da interpolacéo de sec¢des longitudinais

Porém, quais pontos devem ser utilizados para a interpolacdo? Foram realizados diversos testes
para chegar ao método mais adequado para responder essa questao.

O primeiro método que foi testado seleciona os pontos que sao mais proximos para cada se¢ao
consecutiva da seguinte maneira: Primeiramente define-se 0s pontos-base na cota inferior que serdo
tomados como pontos iniciais para busca dos mais proximos pertencentes a secao transversal logo
acima. Com o primeiro ponto da base € entdo realizada a busca pelo ponto mais proximo na cota
seguinte, repetindo-se até que seja selecionado um ponto de cada secdo, sendo entdo realizada a
interpolacdo de uma B-Spline clbica para este conjunto de pontos. Repete-se o procedimento para
todos os pontos da base. O resultado da interpolacdo dos pontos é a superficie ajustada da Fig. 4.30.
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Figura 4.30 - Superficie reconstruida pelo método das distancias a partir da verificagdo dos
pontos mais préximos a cada ponto da base.

Como pode ser verificado, este método possui uma grande instabilidade para suas linhas
longitudinais, apresentando algumas imperfeicGes devido a selecdo de mesmos pontos por diferentes
conjuntos de sele¢des longitudinais.

Para aumentar a precisdo do método, o numero de pontos das curvas das se¢Bes transversais,
exceto a da base, € multiplicado por 10, portanto, se a base possui 200 pontos em sua curva da secéo
transversal, as demais cotas possuirdo 2000 pontos. Esse aumento da quantidade de pontos faz com
que se reduza o numero de selecdo de mesmos pontos por diferentes conjuntos de selecdes
longitudinais e ainda proporciona uma sele¢do de pontos ainda mais alinhados do que antes, como
pode ser verificado na Fig. 4.31.
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| ___|Tempogasto =3.9949 s
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Figura 4.31 - Superficie reconstruida pelo método das distancias com aumento de nimero de
pontos nas sec¢des transversais.

Esta mudanca no método trouxe uma melhoria significativa com relacdo as imperfeigdes na
superficie. Também pode ser notado 0 aumento do tempo de processamento, isto devido ao aumento
do nimero de pontos.

Foi realizado mais um teste aumentando o valor multiplicado de 10 para 100. Porém nao foi
verificado melhora expressiva na superficie reconstruida, e o tempo de processamento sofreu um
aumento de valores proximo a 22 segundos.

Para tentar melhorar os resultados obtidos no método anterior, foi entdo proposto um segundo
método, denominado método das distancias reduzido, onde ndo seria realizada a busca dos pontos mais
préximos em relacdo a todos pontos da base, mas apenas de um ponto de referéncia para cada se¢éo
transversal. Considerando como a referéncia da base o seu ponto inicial, é entdo buscado o ponto de
cada secdo que possua a menor distancia para este ponto da base. A partir deles, os pontos das suas
respectivas secdes sdo reordenados colocando-os como primeiro ponto de referéncia. Desta forma os
demais pontos da base selecionam os pontos de mesmo indice das cotas superiores para entéo realizar
a interpolacdo e célculo dos pontos da superficie. O resultado € apresentado na Fig. 4.32.
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Figura 4.32 - Superficie reconstruida pelo método das distancias reduzido.

Apesar de ser verificado uma melhora com relacdo ao tempo de processamento, este método
ndo trouxe melhoria com relacdo a superficie reconstruida. Sendo possivel ainda verificar certa
instabilidade para as linhas longitudinais.

Quanto mais retilineas as linhas longitudinais, é possivel que a superficie se torne mais suave
e assim proporcione uma reconstrucdo mais proximo do desejado.

Com base nisto foi entdo introduzido mais um parametro na escolha dos pontos: o vetor que
mais se aproxima de uma ortogonal ao plano da base. Este vetor é formado pelo ponto da base e o
ponto da secdo logo acima. Para isso deveria ser calculada a projecéo do vetor formado pelos pontos
em questdo no plano da base e entdo selecionado aquele que apresentasse projecao mais proxima de
zero. Porém, como as secdes sdo paralelas ao plano XY, foi entdo utilizado como parametro a
coordenada Z do vetor unitario formado pelos dois pontos em questdo, onde o vetor com maior valor

para a dire¢do Z é considerado o mais ortogonal. O resultado deste método é apresentado na Fig. 4.33.

85



| ____|Tempo gasto = 2.0957 s

10

Figura 4.33 - Superficie reconstruida utilizando o método da ortogonalidade.

O método da ortogonalidade e o das distancias reduzido apresentaram o mesmo resultado,
portanto ndo trazendo melhorias a superficie reconstruida.
Foi testada a unido dos dois métodos pelo produto da ortogonalidade pelo inverso da distancia,

porém também resultou na mesma superficie reconstruida.

4.5.3. Métodos baseados nos planos longitudinais

Os métodos apresentados obtiveram uma grande melhoria quanto ao tempo gasto para a
reconstrucdo quando comparado aos métodos que utilizam as equacdes das superficies B-Splines.
Porém, o objetivo é buscar um método que seja rapido e também que realize uma reconstrucéo isenta
da instabilidade das linhas longitudinais. Para atingir esse objetivo foi proposto selecionar os pontos
de intersecdo entre as segdes transversais e um plano longitudinal, Fig. 4.34. Assim, quando
interpolados estes pontos, com certeza, ndo havera efeito de zig-zag e muito menos o de tor¢do na
superficie.

As Figuras 4.34 e 4.35 representam uma superficie conica para melhor visualizacdo deste

método.
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Figura 4.34 - Representacdo de um plano longitudinal cortando a superficie

Porém o célculo destes pontos de intersecdo ndo é uma tarefa facil, uma vez que a equacéo de
uma B-Spline se baseia no somatorio do produto entre a funcdo de base de grau p para 0o n6 u e 0s
pontos de controle. As funcdes de base sdo obtidas iterativamente com o célculo de fungdes de base
para graus menores que p, portanto ndo sendo simples determinar uma equacéo direta a ser resolvida.

Desta forma dois métodos numéricos foram desenvolvidos para a solucdo desta tarefa: um

método direto e outro iterativo.

45.3.1. Método direto

O método direto se baseia em determinar uma equagdo que resulta 0 né u que, quando
substituido na equacédo da curva B-Spline, resulta no ponto de interse¢cdo com o plano longitudinal.

Para isso, primeiramente é necessario selecionar um ponto de referéncia, Cg, para o calculo do
angulo de cada ponto da curva, uma vez que sera utilizada a informacéo desse angulo para determinar
se 0 ponto pertence aquele plano. Este ponto de referéncia deve possuir suas projecdes sempre interna
a todas as curvas, para que assim o célculo do angulo resulte sempre em apenas um resultado, Fig.
4.35.

87



Referéncia e sua linha de projegéo{-""”""""-
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Figura 4.35 - Representacdo do ponto de referéncia com suas projec@es internas a todas as
secgdes transversais.

O método proposto sé pode ser utilizado para objetos de um Gnico eixo, ndo podendo apresentar
ramificacdes, ou seja, uma curva por secdo. Assim sendo ele pode iniciar em uma curva ou ponto e
terminar em uma curva ou em um ponto, sendo obrigatdrio a existéncia de um ponto com projecdes
internas a todas as se¢Oes transversais. Portanto, para a selecdo do ponto de referéncia foi utilizada a
menor se¢do e entdo realizado o célculo do seu CM considerando todos os pontos da curva. Caso o
objeto termine ou inicie em um ponto, este ponto foi tomado como referéncia.

Uma vez definido o ponto, é entdo realizado o célculo do &ngulo a, em cada secéo transversal,
que cada ponto da curva faz com relagdo ao vetor 7 = (1,0,0), conforme esquematizado na Fig. 4.36,

sendo o angulo a pertencente ao intervalo de [—m, ].
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Figura 4.36 - Representacao do calculo para determinacdo da equacdo do ponto da curva

Conforme a Figura 4.36 pode-se escrever:

tana = % (4.26)
Cy —tana - Cy = Cgy —tana - Cpy (4.27)
Dado que:

C=2XoNip(w) - P; (4.28)

Pode-se escrever a Eg. (4.27) como:
ieo Nip(u) -Pl-y —tana - Yo N;p(u) - Py, = Cpy —tana: Cpy (4.29)
YicoNip(u) - (P, —tana - P; ) = Cgy — tana - Cpy (4.30)

Do capitulo de ajuste de curvas e superficies, foi visto que as fungdes de base sdo obtidas pela

Eq. (3.3). Verificando que o calculo da N;,, depende do pre-calculo das N;,_; € N;11,_1, €stas por

89



sua vez necessitam das funces de base para grau p-2, assim prosseguindo até que se necessite de N; o,
a qual sé pode assumir valores 0 ou 1.

Desta forma, utilizando a Eq. (4.30), é possivel estabelecer uma equacdo que dependera apenas
dos valores das funcdes de base N; ,. Sabe-se ainda que apenas uma dessas fungdes base N; , assumira
o valor 1, enquanto as demais assumirdo 0. Portanto, uma vez obtida a equacao é possivel testar valores
para cada N; o, até que o no u calculado resulte no ponto desejado.

Para obter a equagéo para calculo de u, em funcéo das fungGes de base N; , e de a, foi utilizado
0 célculo com varidveis simbolicas do Matlab para realizar a montagem do polinémio. Uma vez
montado o polindbmio € necessario realizar os testes de valores para as fungOes de base N; o. Para isso
substitui o valor da primeira como sendo 1 e as demais O e entdo utiliza os coeficientes deste polindmio
para o célculo das raizes; em seguida calcula-se o ponto da curva B-Spline utilizando este resultado de
u e verifica se 0 angulo calculado resulta no mesmo valor de a. Se ndo, continua o teste até que se
obtenha o ponto de intersecdo da curva com o plano. O resultado do método pode ser verificado na
Fig. 4.37.

| | ITempo gasto = 307.3098 s

10

Figura 4.37 - Superficie reconstruida pelo método direto.

4.5.3.2. Método iterativo

O metodo iterativo possui uma boa semelhan¢a ao método direto, porém este realiza o célculo
aproximado do ponto de interse¢do com o plano longitudinal.
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Como o anterior, deve-se determinar o ponto de referéncia para que se calcule o angulo de cada
ponto da secéo transversal da base com relagdo ao vetor © = (1,0,0).

Para determinar os pontos de interse¢cdo com o plano longitudinal, é utilizado o método da
bissecdo para aproximacao do né u. Para isso, primeiramente é necessario determinar em qual intervalo
se encontra este no. Ent&o, foi utilizado o vetor up que representa a posi¢do de cada ponto calculado
da B-Spline. Avaliando os angulos de cada ponto da se¢éo transversal, é possivel encontrar entre quais
pontos deve estar o ponto procurado da secdo longitudinal. Selecionado os limites para u, inicia-se
entdo o método da bissecdo adotando-se como critérios de parada uma tolerancia para o erro e também
um numero maximo de iteragdes. Resultando uma superficie reconstruida bem proxima a anterior, Fig.
4.38.

| ___|Tempogasto = 56255 s

10

5 15 X

Figura 4.38 - Superficie reconstruida pelo método iterativo.

O método direto € um método exato, portanto as linhas se tornam exatamente lineares como
pesquisado com 0s varios testes, porém o seu calculo leva muito mais tempo do que o método iterativo
o0 qual apresentou uma linearidade satisfatoria das linhas.

Os métodos dos planos longitudinais sdo métodos possiveis de serem aplicados para apenas
algumas nuvens de pontos, pois para ser possivel a sua utilizacdo é necessario que exista um ponto
com projecdo interna as curvas das se¢Oes transversais. Caso isto ndo ocorra, 0 método ndo pode ser

utilizado.
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4.5.4. Determinacdo do erro de reconstrucdo

Para poder efetuar uma comparacgdo entre as superficies, foi realizada uma modificacdo no
algoritmo de criacdo da nuvem de pontos para gerar pontos pertencentes a superficie do objeto, Fig.
4.39. Estes pontos serdo utilizados como superficie de referéncia para o calculo do erro de reconstrugédo

da superficie por cada método.

Superficie referéncia
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Figura 4.39 - Superficie referéncia.

Visualmente a superficie € muito préxima da reconstruida a partir da nuvem de pontos. Para a
verificacdo desta afirmacédo foi definido um método para realizar o calculo da diferenca entre elas, uma
vez que as superficies ndo possuem 0s mesmos pontos e tdo pouco possuem a mesma linha longitudinal
de inicio. Assim ha a necessidade de calcular para cada ponto da superficie reconstruida qual o ponto
da superficie referéncia que possui a menor distancia. Esta distancia ¢ adotada como o erro daquele
ponto reconstruido.

Um possivel problema na aplicagdo deste método é o maior nimero de se¢fes transversais na
superficie reconstruida do que na de referéncia, fazendo com que o célculo da distancia para alguns
pontos apresente um valor maior do que realmente é. Portanto, neste caso € realizada uma selecéo das

secOes transversais que possuem coordenadas Z proximas as presentes na superficie de referéncia.
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Calculadas todas as distancias é possivel entdo plotar a figura contendo 0 mapa de erro, onde

pode-se verificar o erro para cada regido da superficie de acordo com a escala de cor a direita. A seguir,

as Figuras 4.40 a 4.46 apresentam 0 mapa de erro para 0s métodos apresentados neste item, sendo o

erro dado em [mm].

Método Rede de pontos
de controle I Mapa de erro
Erro maximo = 0.10982
Erro minimo = 0.0028524
Erro médio = 0.035605

10

-15
-10

-15
-10

0 10
5 15

Figura 4.40 - Mapa de erro do método da rede de pontos de controle.

Método da Distancia 1x

Erro maximo = 0.26788 -Mapa de erro

Erro minimo = 0.0017607
Erro médio = 0.053361

-15

(= ]

-10

-15
-10

Figura 4.41 - Mapa de erro do método das distancias com multiplicador 1x.
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Método da Distancia
aumentado 10x

Erro maximo = 0.14551
Erro minimo = 0.0010175
Erro médio = 0.039166

(= 2]

15
-10 0

Figura 4.42 - Mapa de erro do método das distancias com multiplicador de 10x.

Método da Distancia
reduzido

Erro maximo = 0.11145
Erro minimo = 0.0034016
Erro médio = 0.040861

(= 2]

-15
-10

0 10
5 15

Figura 4.43 - Mapa de erro do método das distancias reduzido.
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Método Ortogonal
Erro maximo = 0.11145
Erro minimo = 0.0034016

I Mapa de erro
Erro médio = 0.040861

A
) J
' -15
-10
o -

Figura 4.44 - Mapa de erro do método da ortogonalidade.

o N B O

Método dos planos:
Direto [ Mapa de erro
Erro maximo = 0.1106
Erro minimo = 0.0012525
Erro médio = 0.036488

-15

o N O

-10
-15

0 10
5 15

Figura 4.45 - Mapa de erro do método dos planos longitudinais - direto.
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Método dos planos: 0.11
lterativo I Mapa de erro
Erro maximo = 0.11089 0.1
Erro minimo = 0.0014424
Erro médio = 0.0365 0.09
0.08
0.07
8 0.06
6 -
N 4 0.05
2 0.04
-15
0 - 10 0.03
-15 0 S 0.02
1 -5 0 10 5 0.01
5 15 X
Y

Figura 4.46 - Mapa de erro do método dos planos longitudinais - iterativo.
Para facilitar a comparacdo dos erros entre os métodos, foi construida a Tab. 4.2. Também
foram adicionadas escalas de cores para cada coluna, sendo vermelho para pior e verde para melhor,

facilitando a identificagdo dos melhores e piores resultados.

Tabela 4.2 — Resumo dos erros de reconstrucdo das superficies.

.- Erro Erro Tempo de
, Média . . -
Método minimo | maximo | reconstrucdo
[mm]
[mm] | [mm] [s]
Rede de pontos de controle 0,00285
Distancias 1x 0,00176
Distancias aumentado 10x | 0,03917 0,14551 3,9949
Distancias reduzido 0,04086 0,11145
Ortogonal 0,04086 0,11145
Planos longitudinais - Direto | 0,03649 | 0,00125 | 0,1106
Planos longitudinais - g n366 | 0 00144 | 0,11089 | 56255
Iterativo

E possivel verificar que todos os métodos apresentaram bons resultados com relagéo ao erro de

reconstrugdo. Ja em relacdo ao desempenho computacional, os métodos da rede de pontos de controle
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e o dos planos longitudinais direto, foram os que obtiveram os piores resultados. Os demais métodos

apresentaram tempos de processamento bons para a reconstrucao.

4.6. Conclusodes

Neste capitulo foi apresentada a metodologia proposta para realizacdo da reconstrucdo da
superficie a partir de uma nuvem de pontos desorganizada. A metodologia primeiramente separa 0s
pontos em secOes transversais e, em seguida, para cada secdo transversal é aplicado um método de
reducdo de pontos para que seja possivel realizar o ajuste de curva B-Spline cibica com peso aplicado
aos pontos ajustados. Apds a obtencdo das curvas ajustadas a cada se¢do transversal, pode ser aplicado
um dos seis métodos de reconstrucao de superficie propostos obtendo uma superficie parametrizada
suave e continua em sua totalidade.

Apesar do digitalizador néo estar operacional para a obtencéo de uma nuvem de pontos para a
validacdo da metodologia, foi possivel elaborar uma metodologia de criacdo de nuvem de pontos de
maneira a simular uma nuvem obtida pelo digitalizador. 1sso foi possivel a partir do estudo realizado
sobre um trecho linear da leitura do sensor laser do digitalizador do Laboratério de Automacéo e
Robotica da FEMEC/UFU.

O método de reducdo de pontos cumpre seu papel fazendo com que o ajuste ganhe em
performance sem a perda de qualidade do ajuste. Este aumento da performance é devido a substituicdo
dos pontos por centros de massa de micro-regides criadas nas sec¢oes transversais.

O método para determinar o melhor nimero de pontos de controle também trouxe uma grande
melhoria, ja que assim ndo ha a necessidade de se fixar um nimero de pontos de controle que pode
ndo proporcionar o melhor ajuste para aquele conjunto de pontos.

Os métodos de fechamento e selecdo do ponto de inicio foram de grande importancia para
garantir a continuidade no ponto de fechamento da curva em uma regido com pontos alinhados.

A aplicacdo dos pesos no ajuste da curva trouxe mais sensibilidade a curva para regides onde
€ necessario maior proximidade da curva aos pontos, Como em curvas com pequenos raios de curvatura
e em trechos retos.

Os métodos de reconstrucdo de superficies propostos se mostraram muito precisos para a
nuvem de pontos utilizada para aplicagdo da metodologia. Alguns deles apresentaram um tempo

computacional muito elevado, devido a complexidade dos mesmos.
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A determinacdo do erro de reconstrucdo € de grande importancia para verificar se a
reconstrucdo foi boa ou ndo, ja que ndo ha como concluir somente com a comparacdo visual entre as

superficies.
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CAPITULO V

SIMULACOES

Neste capitulo sdo apresentadas trés reconstrugdes de superficies com intuito de simular a
aplicacdo da metodologia a superficies com diferentes caracteristicas: uma em forma de cilindro, outra
em forma de um de cone com excentricidade e por fim uma de revolucao.

A sequéncia das etapas realizadas para cada superficie é a mesma que foi detalhada no capitulo
4, ou seja:

e Criacdo da nuvem de pontos e da superficie de referéncia a partir de um perfil de base;

e Aplicagdo da metodologia de reconstrucdo da superficie através da reconstrucdo das
sec¢des transversais com base na nuvem de pontos;

e Calculo do erro e apresentacdao do mapa de erro entre as superficies reconstruida e de

referéncia.

5.1. Superficie cilindrica

5.1.1. Criagéo da nuvem de pontos

Como visto no item 4.1.2, para construir a nuvem de pontos requer um perfil de referéncia
continuo contendo trechos retilineos e curvos. O perfil criado para a simulacdo utiliza de trechos

retilineos e trechos circulares conforme representado na Fig. 5.1.
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Figura 5.1 - Perfil utilizado para construir a nuvem de pontos cilindrica.

Um cilindro é caracterizado por se¢des transversais iguais, portanto para criar a nuvem de

pontos basta utilizar o mesmo perfil para diferentes coordenadas Z, Fig. 5.2.
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* Nuvem de pontos

40

Figura 5.2 - Nuvem de pontos da superficie cilindrica.

Utilizando o perfil de referéncia, foi gerada a superficie de referéncia da mesma maneira como
foi criado a nuvem de pontos, ou seja, 0 mesmo numero de sec¢des transversais. A Figura 5.3 representa

a superficie de referéncia que seré utilizada para construcdo dos mapas de erros.

Superficie Referéncia
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Figura 5.3 - Superficie cilindrica de referéncia.

De posse da nuvem de pontos é entdo possivel aplicar a metodologia de ajuste das curvas B-

Splines com peso a cada sec¢do transversal como descrito no item 4.4. Ao final da aplicacdo do método
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de ajuste é entdo possivel aplicar os métodos de reconstrucdo de superficies. Foram aplicados 0s
métodos apresentados na Fig. 5.4.

‘ [ ITempo gasto = 355.2569 s

40

Y 80 80 X

‘ [ ITempo gasto = 3.9001 s

40

(b)
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‘ [ ITempogasto = 1.8744 s

40

‘ [ ITempo gasto = 56239 s

40

(d)
Figura 5.4 - Superficies cilindricas reconstruidas a partir da nuvem de pontos pelos métodos:
(a) Rede de pontos de controle; (b) Distancia aumentado 10x; (c) Distancia

reduzido; e (d) Planos longitudinais: Iterativo.
E possivel notar visivelmente uma boa aproximagcao das superficies reconstruidas em relagéo a

superficie de referéncia, como pode ser visto na Fig. 5.4. Porém, para a verificacao da boa reconstrucéo

é necessario calcular o mapa de erro para cada superficie reconstruida. A Figura 5.5 apresenta o
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resultado da aplicagdo do célculo do erro de reconstrucdo para cada superficie, sendo o erro dado em

[mm].

Método Rede de pontos
de controle

Erro maximo = 0.30436
Erro minimo = 0.0034996
Erro médio = 0.12255

I Mapa de erro

40

Método da Distancia
aumentado 10x

Erro maximo = 0.24509
Erro minimo = 0.006582
Erro médio = 0.11257

[ Mapa de erro
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Método da Distancia
reduzido

Erro maximo = 0.21302
Erro minimo = 0.0045384

[ (viapa de erro 0.2

Erro médio = 0.088607 018
0.16
40
0.14
0.12
N 20
0.1
0 0.08
0.06
0.04
0.02
Y 80 80 X
(©)
Método dos planos:
lterativo [ Mapa de erro
Erro maximo = 0.21818 0.2
Erro minimo = 0.0066215
Erro médio = 0.11386 0.18
0.16
40
0.14
N 20 0.12
0.1
0 0.08
0.06
0.04
0.02
Y 80 80 X

Figura 5.5 - Mapa de erro para as superficies cilindricas reconstruidas: (a) Rede de pontos de
controle; (b) Distancia aumentado 10x; (c) Distancia reduzido; e (d) Planos

longitudinais: Iterativo.

A Tabela 5.1 resume o resultado dos erros dos métodos aplicados a superficie cilindrica. A cada

coluna é aplicada uma escala de cor para facilitar a verificacdo do melhor e pior método.
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Tabela 5.1 — Resumo dos resultados dos erros para 0s métodos de reconstrucdo aplicados a

superficie cilindrica.

j - Erro Erro Erro Tempo
Métodos de reconstrugao de Ly .. . P
superficie médio | minimo | maximo | gasto

[mm] | [mm] | [mm] [s]

Rede de pontos de controle 0,12255 | 0,00350| 0,30436 | 355,26
Distdncia aumentado 10x 0,11257 |0,00658 | 0,24509 | 3,90
Disténcia reduzido 0,08851 |0,00454|0,21302 | 1,87
Planos longitudinais - Iterativo | 0,11386 |0,00662 | 0,21818 | 5,62

E possivel notar que os erros apresentados por todas as reconstrugdes sdo muito pequenos. O
método da rede de pontos de controle, que utiliza as equacbes de superficie B-Spline, ndo obteve o
melhor resultado para os erros e ainda sendo 0 método mais lento. Dos trés métodos restantes, o método
das Distancias reduzido foi o que apresentou melhor resultado, perdendo apenas para o critério de erro

minimo.

5.2. Superficie conica com excentricidade

Da mesma maneira que para a superficie cilindrica, a superficie cbnica apresenta uma
caracteristica Unica para as suas se¢des transversais, que se baseia na proporcionalidade entre suas
secBes em funcdo da coordenada Z ao longo de sua altura. Assim, sendo possivel a defini¢do de um
perfil base e em seguida a replicacdo proporcional das sec¢des transversais.

O perfil base utilizado para este caso é um circulo de raio igual a 20mm. Para caracterizar a
conicidade do objeto é necessario entdo reduzir o raio a cada acréscimo na coordenada Z, sendo

expresso pela Eq.(5.1).

raio(z) =20 —z (5.1)

Para caracterizar a excentricidade do eixo do cone, foi alterada a coordenada do centro do

circulo conforme a Eq. (5.2).

Xc(z)=2xz (5.2)
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Desta forma sendo entdo criada a nuvem de pontos de um objeto conico com excentricidade,
Fig. 5.6.

20  -20 X

Figura 5.6 - Nuvem de pontos para a superficie conica com excentricidade.

Utilizando o perfil de referéncia, foi gerada a superficie de referéncia da mesma maneira como
foi criada a nuvem de pontos. A Figura 5.7 representa a superficie de referéncia que sera utilizada para

calculo dos mapas de erros.

icie Referéncia
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Figura 5.7 - Superficie de referéncia conica com excentricidade.
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De posse da nuvem de pontos € entdo possivel aplicar a metodologia de ajuste das curvas B-

Splines com peso para cada secdo transversal como descrito no item 4.4. Ao final da aplicacdo do

método de ajuste é entdo possivel aplicar os métodos de reconstrucao de superficies. Foram aplicados

0s métodos apresentados na Fig. 5.8.
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Tempo gasto = 0.91859 s

Figura 5.8 - Superficies conicas com excentricidade reconstruidas a partir da nuvem de pontos
pelos métodos: (a) Rede de pontos de controle; (b) Distancia aumentado 10x; (c)

Distancia reduzido.

N&o é possivel aplicar o método de planos longitudinais, jA que ndo existe um ponto de
referéncia que possua suas projecdes internas a todas as se¢des transversais.

E perceptivel que a superficie reconstruida pelo método das distancias aumentado 10x ndo
obteve sucesso, porém mesmo assim sera calculado o mapa de erro. Alem disso, pode ser verificado
que, pela metodologia da rede de pontos de controle, a superficie fica “torcida”, de forma semelhante
a Fig. 4.27, o que pode ser visto pelo formato das curvas longitudinais. Os mapas de erros podem ser

visualizados na Fig. 5.9.
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Método Rede de pontos de
controle

Erro maximo = 1.2891

Erro minimo = 0.00096768
Erro médio = 0.30014

Método da Distancia
aumentado 10x

Erro maximo = 4.5402
Erro minimo = 0.0013234
Erro médio = 1.1612

__

[ Mapa de erro

I Mapa de erro

108
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0.4

0.2
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Método da Distancia
reduzido

Erro maximo = 3.2799
Erro minimo = 0.0004501
Erro médio = 0.78392

[ Mapa de erro

20 —

.| /////
' ///// |

0.5

(©)

Figura 5.9 - Mapa de erro para as superficies conicas com excentricidade reconstruidas pelos
métodos: (a) Rede de pontos de controle; (b) Distancia aumentado 10x e; (c)
Distancia reduzido.

A Tabela 5.2 resume os resultados dos erros para 0os métodos aplicados a superficie conica com
excentricidade. A cada coluna ¢ aplicada uma escala de cor para facilitar a verificagdo do melhor e
pior método.

Tabela 5.2 — Resumo dos resultados dos erros para os métodos de reconstrucdo aplicados a
superficie cbnica com excentricidade.

Erro Erro Erro Tempo
médio | minimo | maximo | gasto

Métodos de reconstrugao de
superficie

Rede de pontos de controle 0 00097
Distdncia aumentado 10x -
Distdncia reduzido 0,78392 3,27990

Como esperado, o pior resultado para os métodos aplicados a superficie cdnica com

excentricidade foi o método das distancia aumentado 10x por ndo ter reconstruido a superficie conica.
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Dentre os demais, 0 método mais preciso apresentando melhor erro médio foi 0 método da rede de

pontos de controle, porém com um tempo muito acima dos demais. O melhor resultado para os

métodos aplicados a esta superficie foi 0 método das distancia reduzido, porém vale ressaltar que o

erro maximo apresentado por este e 0os demais métodos deve ser melhorado para se considerar uma

boa reconstrucéo da superficie.

5.3. Superficie complexa - Pedo

Neste item é realizada a reconstrucdo de uma superficie de revolucdo com diferentes tamanhos

de secOes transversais. Esta superficie foi criada pelo laboratério para a confec¢do do objeto com

intuito de realizar leituras no digitalizador para a sua validagdo. O objeto foi apelidado de “Pe&o”,

sendo uma superficie de revolucdo criada a partir do giro em torno do eixo Z do perfil conforme a Fig.

5.10.

_ 309

24,41

Figura 5.10 - Perfil a ser revolucionado para criacdo do Pedo.

Ré

12

112



Como a superficie € de revolucdo, suas se¢des transversais sao circulos, assim ha apenas a
necessidade de alterar o raio conforme perfil apresentado na Fig. 5.10. A nuvem de pontos criada é

apresentada na Fig. 5.11.

Nuvem de pontos

Figura 5.11 - Nuvem de pontos criada a partir do perfil do Pedo.

Da mesma forma como foi criada a nuvem de pontos, também foi criada a superficie de

referéncia, Fig. 5.12.

Superficie Referéncia

Figura 5.12 - Superficie referéncia do Pedo.
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De posse da nuvem de pontos é aplicada a metodologia de ajuste das curvas B-Splines com
peso a cada secdo transversal como descrito no item 4.4, para, em seguida, aplicar os métodos de
reconstrucdo de superficies. Foram aplicados os métodos apresentados na Fig. 5.13.

([ ITempo gasto = 1088.8969 5| | Tempo gasto = 6.7494 5

(a) (b)

‘ . |Tempogasto = 3.2266 s ‘ " ITempogasto=9.6753s

(c) (d)

Figura 5.13 - Superficies reconstruidas a partir da nuvem de pontos do Pedo pelos métodos:

() Rede de pontos de controle; (b) Distancia aumentado 10x; (c) Distancia
reduzido e; (d) Planos longitudinais - Iterativo.
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Aplicando o célculo do mapa de erro para as superficies reconstruidas, os resultados sdo

apresentados na Fig. 5.14.

Método Rede de pontos
de controle

Erro maximo = 0.77116
Erro minimo = 0.0037174
Erro médio = 0.092657

~ 20

Meétodo da Distancia
reduzido

Erro maximo = 0.16141
Erro minimo = 0.002196
Erro médio = 0.073725

Il Mapa de erro

[ Mapa de erro

g M
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T

it !
il Ul
i S

(©)

0.7

0.6

0.16

0.14

0.12

Método da Disténcia
aumentado 10x

Erro maximo = 0.36965
Erro minimo = 0.0020717
Erro médio = 0.0752

30

N 20

10

Método dos planos:
lterativo

Erro maximo = 0.16846
Erro minimo = 0.0016704
Erro médio = 0.074866

N 20

I Mapa de erro

[ Mapa de erro

)
o
i

i
| A

(d)

0.35

0.3

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Figura 5.14 - Mapa de erro para as superficies do Pedo reconstruidas pelos métodos: (a) Rede

de pontos de controle; (b) Distancia aumentado 10x; (c) Distancia reduzido e;

(d) Planos longitudinais - Iterativo.

A Tabela 5.3 resume os resultados dos erros para 0s métodos aplicados a superficie do Pedo. A

cada coluna ¢ aplicada uma escala de cor para facilitar a verificacdo do melhor e pior método.
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Tabela 5.3 — Resumo dos resultados dos erros para 0s métodos de reconstrucdo aplicados a

superficie do Pedo.

, - Erro Erro Erro Tempo
Métodos de reconstrugao de Ly .. . P
superficie médio | minimo | maximo | gasto

[mm] | [mm] | [mm] [s]

Rede de pontos de controle 0,09266 |0,00372|0,77116 |1088,90
Distdncia aumentado 10x 0,07520 | 0,00207 | 0,36965 | 6,75
Disténcia reduzido 0,07373 | 0,00220 [ 0,16141 [ 3,23
Planos longitudinais - Iterativo | 0,07487 [0,00167 | 0,16846 | 9,68

Novamente os métodos apresentaram resultados muito precisos, isto ja esperado pela boa
suavidade e proximidade de todas as superficies reconstruidas com relacéo a superficie de referéncia.
O método de rede de pontos de controle foi o de pior desempenho computacional. No geral o melhor
foi o método da distancia reduzido, porém vale ressaltar que o dos planos longitudinais iterativo

apresentou resultados muito proximos.

5.4. Conclusoes

Neste capitulo foram apresentados simulagdes aplicando as metodologias propostas no trabalho
com intuito de verificar a sua robustez. Foram utilizados trés diferentes tipos de superficies para esta
tarefa: uma cilindrica, uma cénica com excentricidade e uma de revolugédo apresentando diferentes
tamanhos de secBes transversais.

Dentre os métodos propostos no trabalho, foram aplicados apenas quatro:

1. Método da rede de pontos de controle;

2. Método da distancia com aumento do numero de pontos nas se¢des em 10x;
3. Método da distancia reduzido a uma selecdo por secdo transversal e;

4. Método dos planos longitudinais — Iterativo.

Para a primeira superficie, cilindrica, foram verificadas boas reconstrucdes da superficie para
0s quatros métodos aplicados.

Para a segunda superficie, conica com excentricidade, as reconstrucdes ndo obtiveram o
resultado esperado, mesmo apresentando erros médios baixos, seus erros maximos foram bastante
elevados.

Para a terceira e ultima superficie, Pedo, os resultados foram satisfatorios. Os erros obtidos

foram muito baixos para todos os métodos, proporcionando uma excelente reconstrucao.

116



Com relagdo ao desempenho computacional dos métodos, o que apresentou piores resultados
foi 0 método da rede de pontos de controle, obtendo resultados muito acima dos demais além de, em
alguns casos, “torcer” a superficic. Os trés outros métodos possuem excelente desempenho
computacional, sendo o melhor o método da distancia reduzido, ja que a selecdo dos pontos das linhas

longitudinais neste método é realizada da maneira mais simples.
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CAPITULO VI

CONCLUSOES

6.1. Conclusdes

A reconstrucdo de superficies tridimensionais pode ser dividida em duas partes: digitalizacdo
da nuvem de pontos e reconstrucdo da superficie tridimensional parametrizada. Nesta dissertacdo foi
dado énfase na segunda parte, onde foi desenvolvido métodos para se chegar a uma superficie
reconstruida que represente o objeto real com minimo erro possivel.

Inicialmente foi realizado um breve estudo sobre o ajuste de curvas e superficies utilizando
B-Splines. Este estudo foi de extrema importancia ja que apresenta a teoria que fundamenta a curva
B-Spline, assim como apresenta fundamentos para alterar formatos da curva e outras caracteristicas.
Também apresenta o ajuste de curva pelo método dos minimos quadrados, o qual faz parte da
metodologia desenvolvida para ajuste das curvas as secOes transversais, bem como as linhas
longitudinais.

Em seguida, é apresentada toda a metodologia de ajuste das se¢des transversais, a qual tem uma
Otima performance devido a reducdo dos pontos através do calculo dos centros de massa das micro-
regides que compdem cada secao transversal.

Os demais métodos de calculo de peso, fechamento de curva, sele¢do de inicio e determinacéo
do nimero de pontos de controle fazem com que o ajuste seja 0 melhor possivel.

Por fim, os métodos de reconstrucdo da superficie, onde primeiramente € definido um método
que utiliza as equacOes tedricas da superficie B-Spline, porém necessitando de um tempo
computacional muito elevado para o seu céalculo. Em seguida sdo definidos os métodos que fazem a
interpolacdo das secOes transversais, dentre eles destacam-se os das distancias, distancia aumentado

10x e o distancia reduzido, e os dos planos longitudinais, direto e iterativo. Os métodos das distancias
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sdo 0s mais simples ja que levam em conta apenas a distancia entre 0s pontos e por isso possui 0 melhor

desempenho computacional perante os outros. J& os dos planos longitudinais possuem certa

complexidade, porém, mesmo assim, o iterativo apresentou um bom desempenho computacional, ja o

direto ndo, devido a solucdo de equacdes para a busca pelo ponto de intersecdo com o plano.

Todos os seis métodos propostos no trabalho apresentaram boas reconstrucdes das superficies

simuladas no trabalho, salvo para a superficie cénica excéntrica, a qual ha a necessidade do

desenvolvimento de um novo método para a boa reconstrucéo deste tipo de superficie, que resulte em

um menor erro.

6.2. Sugestao para trabalhos futuros

As seguintes sugestdes sdo referentes ao projeto do digitalizador de superficies 3D:

Adequacdo da metodologia de leitura do digitalizador para respeitar as limitagfes do
algoritmo de reconstrucéo de superficie;

A introducdo da metodologia de reconstrucdo de superficie ao programa do
digitalizador para que assim um unico programa faca a leitura do objeto e resulte na
superficie reconstruida;

Estudo com relagdo a uma reconstrucao online, onde & medida em que o digitalizador
faz a leitura da superficie do objeto, um algoritmo de reconstru¢do j& inicia a
reconstrucéo do objeto ganhando assim performance.

Estudo com relacdo a utilizagdo de um segundo sensor laser para a busca da direcao

normal a superficie.

Com relacédo a metodologia de reconstrucdo da superficie:

Estudo de uma metodologia para aplicagdo em objetos que possuam arestas e/ou

mudancas bruscas de dire¢des na superficie.

Criacdo de uma metodologia de reconstrucao que seja aplicavel a objetos que possuam

mais de uma curva em uma mesma secao transversal.

Estudar um método que reduza as deformacdes causadas pela interpolacéo.
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