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Figure 4.21: Effect of the density ratio on the trajectory of a wobbling bubble. Green bubble:

density ratio = 10. Grey bubble: density ratio = 100. On the right: The straight line corresponds to

ratio = 10.

Figure 4.22: Streamlines showing a toroidal vortex inside the bubble and another vortex down-

stream. Density ratio λρ = 10.

Sensitivity Analysis - Conclusions

This section has presented a sensitivity study in order to determine the influence of a set of

simulation parameters on the outcome of the flow. Volume recovery and non-physical undulation
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Figure 4.23: Patches of the finest level of the adaptive mesh. Refinement was performed based on

the vorticity magnitude, as well as on the position of the Lagrangian interface.

removal algorithms have shown good results, by maintaining the bubble shape and conserving its

volume.

When studying the influence of the Eulerian domain size on the bubble shape and Re num-

ber, a domain with 8φ between lateral boundaries has shown to be a commitment solution between

computational cost and flow details.

Regarding domain resolution, an Eulerian grid spacing h = φ/32 was chosen along with

a Lagrangian mesh with mean edge length as small as half the Eulerian grid spacing at its finest

level, since no significant gains were found with further refinement.

Therefore, further simulations will adopt the following configuration: Given a bubble with

diameter φ , set to rise in the +z-direction, the dimensions of the Eulerian domain will be (8φ ×

8φ × Lz), and the initial position of the bubble will be (4φ × 4φ × 2φ ). The dimension Lz will
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depend on the case being simulated, but a minimum length Lz = 24φ will be adopted. Since the

ratio between the Eulerian grid spacing and the mean edge length in the Lagrangian mesh was set

to λξ = 2, the Lagrangian mean edge length will be set to ξL = φ/64. In all cases, the volume

recovery algorithm and the non-physical undulation removal will be used. Also, a density ratio

λρ = 100 will be adopted.

4.2.3 Terminal bubble shape and Reynolds number for low Reynolds flows

The ability of the current algorithm for predicting the terminal bubble shape and Reynolds

number was tested against the experimental work of Bhaga and Weber (1981) for a series of low

Re flows in different regimes. Also, two numerical works were used for comparison: Hua and Lou

(2007) developed an axisymmetric algorithm with two volume-recovery steps for the Lagrangian

interface per time step: after remeshing the interface and after the interface advection. Stene

(2010) developed a 3D algorithm based on Berger’s SAMR methodology for the discretization of

the Eulerian domain. The Lagrangian framework, however, followed the approach of Hua and Lou

(2007), requiring two volume-recovery steps per time step.

Table (4.10) shows various bubble regimes, ranging from low Re - low Eo spherical bubbles

to moderate Re - moderate Eo skirted bubbles. A comparison with the experimental results shows

that the present algorithm was able to predict the bubble shape properly. Regarding the terminal

Re number, the maximum error occurred at the creeping flow regime, an so did the work of Hua

and Lou (2007). Stene (2010) reports, for the same case, a relative error ε = 21% and suggests that

the distance between the bubble and the domain boundaries could have influenced the results at

this regime. However, in all cases in this work, the domain size was calculated based on the bubble

initial diameter, as explained in section 4.2.2, and similar approach was also reported in (STENE,

2010).

In the remaining cases, the largest errors occurred for bubbles in the skirted regime, prob-

ably due to the decrease in the bubble thickness in the skirt regions. Possible remedies could be

increasing the Eulerian grid resolution and/or the implementation of an algorithm for dealing with

fragmentation mechanisms.
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Table 4.10: Comparison of terminal shapes and Reynolds number reported by the reference works

(BHAGA; WEBER, 1981; HUA; LOU, 2007) and the present work.

Bhaga and Weber (1981) Hua and Lou (2007) Present Work

Eo = 17.7

M=711

Re=0.232 Re=0.211 Re=0.212

ε = 9.05% ε = 8.62%

Eo = 32.2

M=8.2e-4

Re=55.3 Re = 52.96 Re = 53.2

ε = 4.23% ε = 3.80%

Eo = 243

M=266

Re=7.77 Re = 8.40 Re = 7.61

ε = 8.07% ε = 2.06%

Eo = 115

M=4.63e-3

Re=94.0 Re = 88.70 Re = 90.50

ε = 5.64% ε = 3.73%

Eo = 339

M=43.1

Re=18.3 Re = 17.91 Re = 17.06

ε = 2.13% ε = 6.78%

Eo = 641

M=43.1

Re=30.3 Re = 28.54 Re = 31.47

ε = 1.22% ε = 5.81%

The influence of the Morton number on low Reynolds flows was also studied. Table (4.11)

shows five cases of dimpled spherical cap bubbles at Eo = 116 and Morton number ranging from

M = 848 to M = 1.31. As in the previous case, the results were checked against Bhaga and Weber

(1981) and Hua and Lou (2007). The terminal bubble shape again was well predicted and the

highest relative error on the prediction of the terminal Re number occurred for the case with the

lowest terminal Reynolds.

Regarding the flow pattern around the bubbles, Bhaga and Weber (1981) observed the ex-

istence of a closed toroidal wake through the flow visualization using hydrogen tracers, which

appear as bright lines in the photographs shown in Table (4.12). Results obtained in the present

work and also reported on Hua and Lou (2007) show a secondary wake recirculation just behind

the bubble rim. This could be the reason for the bright spots observed in the lower outside part of
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Table 4.11: Comparison of terminal shapes and Reynolds number reported by the reference works

(BHAGA; WEBER, 1981; HUA; LOU, 2007) and the present work. Influence of the Morton

number on the terminal shapes and Reynolds number.

Bhaga and Weber (1981) Hua and Lou (2007) Present Work

Eo = 116

M=848

Re=2.47 Re=2.317 Re=2.34

ε = 6.18% ε = 5.32%

Eo = 116

M=266

Re=3.57 Re = 3.621 Re = 3.67

ε = 1.45% ε = 2.68%

Eo = 116

M=41.1

Re=7.16 Re = 7.00 Re = 6.97

ε = 2.19% ε = 2.61%

Eo = 116

M=5.51

Re=13.3 Re = 13.17 Re = 12.89

ε = 0.99% ε = 3.11%

Eo = 116

M=1.31

Re=20.4 Re = 19.88 Re = 19.64

ε = 2.56% ε = 3.71%

Eo = 116

M= 8.6×10−4

Re=151 Re = 19.88 Re = 19.64

ε = 2.56%
ver depois

the bubble rim in the first case. Notice that this recirculation becomes bigger in the second case,

which explains the bright region in the photograph of the experimental case. Notice that, for this

case, values for the terminal Reynolds numbers are not available in (HUA; LOU, 2007).

Table 4.12: Comparison of terminal bubble wake observed in experiments (BHAGA; WEBER,

1981) and predicted in simulation (HUA; LOU, 2007) for various Reynolds, Morton and Eotvos

numbers against results obtained in the present work.

Bhaga and Weber (1981) Hua and Lou (2007) Present Work

Eo = 116

M=0.962

Re=22.0 Re=21.37

ε = 2.85%

Eo = 292

M=26.7

Re=22.1 Re = 17.48

ε = 20.56%
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Influence of the initial bubble shape

Studying the experimental setup designed by Bhaga and Weber (1981) shows that the device

used for releasing the bubbles may have influence on the initial bubble shape. The complete appa-

ratus is shown in Fig. (4.24). The bubble release mechanism is based on a dump cup (number 3)

which temporally holds the bubble and then releases it into an inverted funnel (number 5) through

which the bubble (number 16) is then released for ascending through the test column (number 1).

Since this mechanism may lead to different bubble shapes, a study was performed in order to assess

the influence of the initial bubble shape on the outcome of the bubble flow (HUA; LOU, 2007).

Figure 4.24: A simplified schematic drawing of the experimental apparatus utilized by Bhaga and

Weber (1981), showing the bubble release mechanism: 1, test column; 3, dumping cup; 4, air inlet;

5, inverted funnel; 16, rising bubble.

The study was performed by simulating two cases with different initial shapes. In the first

case, the study was performed based on the third case in Tab. (4.11), for which Eo= 116, M = 41.1

and Re = 7.16. Three ellipsoidal bubbles with different aspect ratios but with the same volume

were released, and the temporal evolution of their shape during the flow is shown in Fig. (4.25).

The aspect ratio was defined as the height-to-width ratio, so that the bubble on the left has λH/L =

0.59, the bubble on the center has λH/L = 1.0 (therefore a sphere) and the bubble on the right has

λH/L = 1.31. A comparison between this figure and Fig. (4.26) shows that the initial bubble with

higher aspect ratio has higher initial rising velocity due to the lower drag force. As the bubbles

approach the terminal shape, the terminal velocity converges to the same value in all cases.
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Figure 4.25: Influence of the initial shape on the evolution of the bubble shape. Eo = 116, M =
41.1, Re = 7.16.

Figure 4.26: Influence of the initial shape on the Reynolds profile. Eo= 116, M = 41.1, Re= 7.16.

The second study was performed on a case with low Morton number (Eo = 116, M = 8.6×

10−4 and Re = 151). Four different initial shapes were used for the bubble (the volume was

kept constant):λH/L = 0.59, λH/L = 0.85, λH/L = 1.0 and λH/L = 1.31. As can be seen from Fig.

(4.27), in this case the initial shape plays great influence on the evolution of the bubble shape. As

the aspect ratio increases, the smaller drag force increases the ascending velocity, as can be seen

from Fig. (4.28). These bubble will accelerates as long as the buoyancy force is greater than the

drag force acting on the bubble. This leads to a high pressure gradient at the rear of the bubble,
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which induces an upward liquid jet underneath the bubble. The drag force on the upper surface

of the bubble is relatively steady, while the upward jet pushes the bottom of the bubble upwards,

generating the dimpled shape. Therefore, the final bubble shape will depend on the relative strength

of the upward liquid jet and the surface tension. If the jet is strong enough, the upper surface of

the bubble is pierced by the jet, resulting in a toroidal bubble as seen in Fig. (4.27) for the bubbles

with aspect ratio greater than 0.59.

Figure 4.27: Eo = 116, M = 8.6×10−4, Re = 151. Influence of the initial shape on the evolution

of the bubble shape.

Figure 4.28: Eo = 116, M = 8.6×10−4, Re = 151. Influence of the initial shape on the Reynolds

number profile.
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4.2.4 Wobbling

Two cases were simulated in order to assess the ability of the algorithm for dealing with

bubbles rising in an oscillating path. In the first case, the bubble was characterized by Eo = 10

and M = 9.78× 10−8 and, from the Clift diagram (CLIFT; GRACE; WEBER, 1978), Re ≈ 280.

The following physical parameters were used: φ = 0.0034m, σ = 0.01N/m, ρC = 1000kg/m3,

µC = 0.0018Pa · s and g = 9.81m/s2 in the -z-direction. Density and viscosity ratios were set to

100. The Eulerian domain was set to (8φ ×8φ ×80φ)m and six levels of refinement were used.

According to Stene (2010), such bubble should rise following a zigzag path, which is char-

acterized by a predominantly two-dimensional oscillating movement. Figure (4.29), which shows

the centroid path during the simulation, shows that although this happens at the initial stages of the

flow, a transition to a spiral path takes place, and the bubble reaches the steady state following this

movement.

Figure 4.29: Wobbling bubble, Eo = 10 and M = 9.78× 10−8. Centroid path shown in 3D. The

zigzag path can be seen in the beginning of the flow, and then the transition to spiral .

This effect is clearly seen in Fig. (4.30), which shows the time history of the velocity profile

of the bubble centroid. In the beginning of the simulation, when t < 0.2s, the plot clearly shows a

zigzag path in the yz-plane, since the velocity magnitude is much smaller in the x-direction. How-

ever, as time evolves, this velocity component increases and, after t = 0.4s, x- and y- components

reach a comparable magnitude. Simultaneously, the z-component of the velocity converges to an
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asymptotically constant value.

Figure 4.30: Wobbling bubble, Eo = 10 and M = 9.78× 10−8. Velocity profile of the bubble

centroid.

The bubble wake is illustrated by the Q-criterion, and an iso-value Q = 5000 is shown in

Fig. (4.31). Hairpin unstable eddies can be seen downstream of the bubble, which rises in the z-

direction. These eddies, which are responsible for the transition to turbulence, are similar to those

found in flows over a rigid sphere.

An example of the adaptive refinement can be seen in Fig. (4.32), which shows a planar

slice of the grid showing the fine grid around the high vorticity regions (the shaded regions in the

picture).

Figure (4.33) shows the flow inside the bubble. The velocity field is shown by plane slices

which are warped according to the velocity vector. Also, the velocity vectors located at these slices

are shown. The slices are coloured by the density field. The velocity vectors are coloured by the

velocity magnitude.

The next case simulated was based on Gaudlitz and Adams (2009), who simulated an air

bubble rising in quiescent water. The density ratio used in the paper was λρ = 774 and the viscosity

ratio employed was λµ = 54. Here, the same viscosity ratio was used, but the density ratio was


