A FULLY ADAPTIVE FRONT-TRACKING METHOD FOR THE SIMULATION OF 3D TWO-PHASE FLOWS
A FULLY ADAPTIVE FRONT TRACKING METHOD FOR THE SIMULATION OF 3D TWO-PHASE FLOWS

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica da Universidade Federal de Uberlândia, como parte dos requisitos para a obtenção do título de DOUTOR EM ENGENHARIA MECÂNICA.

Área de concentração: Transferência de Calor e Mecânica dos Fluidos.

Orientador: Prof. Dr. Aristeu da Silveira Neto
Co-Orientador: Prof. Alexandre M. Roma, Ph.D.

Uberlândia - MG
2012
Pivello, Mário Ricardo, 1975 –
132 p.:il.

Tese (Doutorado) – Universidade Federal de Uberlândia, Programa de Pós-graduação em Engenharia Mecânica.

To my family.
ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisors, Professors Aristeu and Alexandre, for their invaluable guidance and great patience;

To Ricardo Serfaty, for the useful suggestions;

To all my friends at MFLab, for their support, especially Millena and Rafael, for their active and steady help on the development of this work;

To professor Antônio Castelo Filho, for the support on the implementation of the TSUR-3D algorithm,

To Thiago Pinheiro de Macedo, for providing the (skilfully implemented) computational code that became the basis for the implementation of the indicator function;

To Wellington Carlos de Jesus, for the fundamental discussions about memory leaks;

To my wife, Tatiana, for her love and comprehension during all these years;

To my parents, Olivio and Neuza, and my sisters, Sabrina and Luciana, for their love and support;

To the Federal University of Uberlândia and the School of Mechanical Engineering, for providing the computational support for the fulfilling of this work;

To PETROBRAS, CNPq and CAPES, for the financial support.

ABSTRACT

This thesis presents a computational framework for simulating three-dimensional two-phase flows based on adaptive strategies for space and time discretization. The method is based on the front-tracking method of Unverdi and Tryggvason (1992), and the discretization of the Eulerian domain is based on the SAMR strategy of Berger and Colella (1989). The time integration algorithm is based on the IMEX scheme, and the time step is calculated based on CFL criteria. The implementation of the Lagrangian framework relied on the GNU Triangulated Library (GTS), which provides a complete data structure and supporting functions for data access, remeshing tools and data output. The memoryless simplification algorithm of Lindstrom and Turk (1998) is used for surface remeshing, preserving the volume and shape of the interface. Nevertheless, additional tools for volume recovery were implemented, motivated by the non-conservative behaviour of the advection of the Lagrangian interface. This process may also induce some non-physical undulations on the Lagrangian interface, which was circumvented with the implementation of the TSUR-3D algorithm of Sousa et al. (2004). The methodology was applied to a series of rising bubble simulations, in which a single bubble rises in an initially quiescent liquid, and validated against experimental results (BHAGA; WEBER, 1981). The validation process consisted in comparing the terminal shape and Reynolds number, as well as the topology of the streamlines downstream of the bubble. Finally, the algorithm was applied to the simulation of two cases of bubbles rising in the wobbling regime, which is characterized by the continuous change in the bubble shape and complex patterns of vortex shedding. The use of adaptive mesh refinement strategies led to physically insightful results, which would not be possible in a serial code with a uniform mesh.

Keywords: Front Tracking, Adaptive Mesh Refinement, volume preserving, multiphase flow.

RESUMO

Nesta tese apresenta-se um algoritmo para a simulação de escoamentos tridimensionais bifásicos, aliando-se o método de front-tracking de Unverdi and Tryggvason (1992) a estratégias adaptativas para a discretização espacial e temporal. A discretização do domínio Euleriano utiliza a metodologia SAMR (BERGER; COLELLA, 1989), enquanto o algoritmo de integração temporal utiliza o esquema IMEX com cálculo do passo de tempo com base em critérios CFL. A implementação da estrutura computacional Lagrangiana baseou-se na biblioteca GNU Triangulated Library (GTS), que fornece estrutura de dados completa e um algoritmo de remalhagem baseado técnica memory-less simplification algorithm, que garante preservação da forma e do volume da geometria (LINDSTROM; TURK, 1998). Ainda assim, ferramentas adicionais para recuperação de volume foram implementadas, devido ao comportamento não conservativo da advecção da interface Lagrangiana. Este processo também pode induzir ondulações não físicas na interface, o que foi contornado com a implementação do algoritmo TSUR-3D de Sousa et al. (2004). A metodologia proposta foi aplicada a uma série de simulações nas quais uma única bolha ascende em um líquido inicialmente em repouso. Os resultados foram comparados com dados experimentais de Bhaga e Weber (1981). A validação foi feita comparando-se o número de Reynolds e a forma da bolha em regime terminal, bem como a topologia das linhas de corrente. Finalmente, o algoritmo foi aplicado à simulação de dois casos de wobbling, regime caracterizado pela mudança contínua da forma da bolha e por padrões complexos de liberação de vórtices. O uso de malhas adaptativas forneceu detalhes do escoamento que dificilmente seriam obtidos em um código serial com refinamento uniforme, pois demandaria uma resolução muito alta da malha.

Palavras chave: Front Tracking, refinamento adaptativo de malhas, preservação de volume, escoamento bifásico.
List of Figures

1.1 Flow patterns for a vertical pipe gas-liquid flow (MUDDE, 2005). p. 25

1.2 An example of bubble column. Left: a laboratory-scale bubble column (WARSITO et al., 1999) in the heterogeneous regime. Right: A schematic representation of the flow pattern (PORTELA; OLIEMANS, 2006). p. 26

2.1 Three different ways to calculate the interface tension force on a surface element. On the top, using the mesh element as the integration element (left: Deen, Anna-land and Kuipers (2004), right, Singh and Shyy (2007)). At the bottom, building the integration elements around the mesh vertexes, based on the centroid of the mesh elements sharing the vertex, proposed by Tryggvason, Scardovelli and Zaleski (2011). p. 37

2.2 An example of the mesh adaptation in the MMIT method in the simulation of the merging of two droplets (QUAN; LOU; SCHMIDT, 2009). p. 39

2.3 Mesh grading applied to a cartesian grid (left) (DURBIN; IACCARINO, 2002) and to a multiblock grid (right) (CAGNONE et al., 2011). p. 39

2.4 An example of Chimera grid in the simulation of the flow around a helicopter. Left: the mesh around the entire helicopter. Right: a detail of the mesh around the rotor (RENAUD; COSTES; PRON, 2012). p. 40

2.5 An octree grid used in the simulation of the flow around a boat (POPINET, 2003). p. 41

2.6 An example of block structured adaptive mesh refinement. The vortex shedding behind a rising bubble is refined based on the gradient of the vorticity. In the simulation, the bubble actually moves in the vertical direction (present work). p. 42
3.1 A closed curve C and the regions in which the closest points not in C are orthogonal to an element of the mesh. Left: regions delimited by the outer normals. Right: regions delimited by the inner normals (MAUCH, 2003). p. 47

3.2 The bounding regions are determined by the normals of neighbour elements sharing a vertex. Left: normals point outside C. Right: normals point inside C (MAUCH, 2003). p. 47

3.3 Delimiting prism for the shortest distance from a point in space and the face of an element of a mesh. p. 48

3.4 CPT Bounding regions for edges and vertices (AZEREDO, 2007). p. 49

3.5 An example of block structured adaptive mesh refinement properly nested (VILLAR, 2007). p. 55

3.6 An example of block structured adaptive mesh refinement violating the nesting rules: the fine block in grid (a) does not lie on vertices of the coarse level block and the block in the finest level in grid (b) touches the boundary of a block in the next coarse level which is not part of the domain boundary (VILLAR, 2007). p. 55

3.7 Example of adaptive mesh refinement using based on the vorticity magnitude. p. 56

3.8 The volume change after advecting the interface is assumed to be due to an expansion/contraction of the geometry in the normal direction. p. 58

3.9 The prism conceptually formed by a typical interface element and the expansion gap h after the interface advection. p. 58

3.10 Computing a normal vector at vertex v. For each element i connected to v, n_i is the normal of this element, e_{i1} and e_{i2} are the edges of the element which are used for computing n_i and α_i is the angle between e_{i1} and e_{i2}. p. 59

3.11 Wrinkles at the rear of rising bubbles. Left: Spherical cap, $Eo = 40$, $M = 0.056$. Simulation carried out in the present Work. Right: Intermediate wobbling + spherical cap, $Eo = 10.0$, $M = 9.71 \cdot 10^{-12}$ (ANNALAND; DEEN; KUIPERS, 2006). p. 60
3.12 Undulation Removal procedure: repositioning a generic edge e (SOUZA et al.,
2004). .. p.61

3.13 Edge collapse in the Memoryless Simplification algorithm of Lindstrom and
Turk (1998). .. p.64

3.14 Constraints for calculating the coordinates of a new vertex in the Memoryless

4.1 Static grid with one refinement level used on the convergence rate analysis. . . p.70

4.2 Surface mesh of a unit cube before and after mesh coarsening. p.73

4.3 Surface mesh of a unit sphere before and after mesh coarsening. p.73

4.4 Eulerian cells flagged by the indicator function for a spherical geometry. p.74

4.5 Deformation of a spherical surface when subjected to the analytical velocity field
given by Eq. (4.11). Snapshots taken at $t = 0, t = T/4, t = T/2, t = 3T/4$ e $t = T$. . p.75

4.6 The influence of velocity interpolation and surface remeshing on the preservation
of the initial interface volume. .. p.77

4.7 The influence of the volume recovery algorithm on the preservation of the initial
interface volume. .. p.78

4.8 Clift Diagram (CLIFT; GRACE; WEBER, 1978) and the cases simulated in this
work (bubble shapes shown in black). .. p.81

4.9 A-series: Terminal Reynolds number depending on the geometric intervention
applied. Reference Reynolds number: $Re = 20.6$. p.82

4.10 A-series: Bubble shape and relative position at the beginning and at the end of
the simulation, depending on the geometric intervention applied. From left to
right: cases A1, A2, A3 and A4. ... p.83

4.11 A-series: Temporal evolution of wrinkles when no smoothing procedure is ap-
plied. From left to right: $t = T/2, t = T/4, t = 3T/4, t = T$. p.83
4.12 Bubble shape at the end of the simulation. Top: no geometric intervention. Bottom: volume recovery and wrinkle removal. p. 84

4.14 A-series. Influence of the domain size on the relative position at the end of the simulation. Left to right: 4φ, 6φ, 8φ, 10φ. p. 86

4.16 Lagrangian mesh resolution. From top to bottom: $\lambda_\xi = 1$, $\lambda_\xi = 2$ and $\lambda_\xi = 4$. p. 87

4.17 Influence of the Lagrangian mesh resolution on the bubble Reynolds profile. p. 88

4.18 Cross section of the terminal bubble shape depending on the Lagrangian edge length, for a fixed Eulerian grid size and varying Lagrangian characteristic length. ○: $\lambda_\xi = 1$, □: $\lambda_\xi = 2$, △: $\lambda_\xi = 4$. p. 88

4.19 Rising bubble. Influence of the density ratio on the ascending velocity. p. 89

4.20 Reynolds profile for a spherical rising bubble at $Eo=8.67$ and $M=711$. Experimental terminal $Re = 0.078$ according to Bhaga and Weber (1981). p. 90

4.21 Effect of the density ratio on the trajectory of a wobbling bubble. Green bubble: density ratio $\rho = 10$. Grey bubble: density ratio $\rho = 100$. On the right: The straight line corresponds to ratio $\rho = 10$. p. 91

4.22 Streamlines showing a toroidal vortex inside the bubble and another vortex downstream. Density ratio $\lambda_\rho = 10$. p. 91

4.23 Patches of the finest level of the adaptive mesh. Refinement was performed based on the vorticity magnitude, as well as on the position of the Lagrangian interface. p. 92
4.24 A simplified schematic drawing of the experimental apparatus utilized by Bhaga and Weber (1981), showing the bubble release mechanism: 1, test column; 3, dumping cup; 4, air inlet; 5, inverted funnel; 16, rising bubble.

4.25 Influence of the initial shape on the evolution of the bubble shape. $Eo = 116, M = 41.1, Re = 7.16$.

4.26 Influence of the initial shape on the Reynolds profile. $Eo = 116, M = 41.1, Re = 7.16$.

4.27 $Eo = 116, M = 8.6 \times 10^{-4}, Re = 151$. Influence of the initial shape on the evolution of the bubble shape.

4.28 $Eo = 116, M = 8.6 \times 10^{-4}, Re = 151$. Influence of the initial shape on the Reynolds number profile.

4.29 Wobbling bubble, $Eo = 10$ and $M = 9.78 \times 10^{-8}$. Centroid path shown in 3D. The zigzag path can be seen in the beginning of the flow, and then the transition to spiral.

4.30 Wobbling bubble, $Eo = 10$ and $M = 9.78 \times 10^{-8}$. Velocity profile of the bubble centroid.

4.31 Wobbling bubble, $Eo = 10$ and $M = 9.78 \times 10^{-8}$. Time evolution of vortex shedding. Iso-q = 5000.

4.32 Wobbling bubble, $Eo = 10$ and $M = 9.78 \times 10^{-8}$. Example of grid adaptation based on the vorticity gradient.

4.33 Wobbling bubble, $Eo = 10$ and $M = 9.78 \times 10^{-8}$. Velocity field inside the bubble. Planes warped by the velocity vector.

4.34 Wobbling. $Eo = 3.6, M = 2.5 \times 10^{-11}$. Q-criterion = 5000 and streamlines. Colour by vorticity.
4.35 Wobbling. $Eo = 3.6, M = 2.5 \times 10^{-11}$. Top: Q-criterion $Q = 5000$ in green, z-vorticity in red $\omega_z = +50$ and blue $\omega_z = -50$. Bottom: bubble shape at the respective time instants. .. p. 104

4.36 Wobbling. $Eo = 3.6, M = 2.5 \times 10^{-11}$. Iso surfaces of the z-component of the vorticity. Red=+50, blue = -50. .. p. 105

4.37 Time evolution of the vortex shedding behind the bubble, showing the varicose mode. Left: Iso-surfaces of the vorticity magnitude. Center: Iso-surface of the Q-criterion. Right: bubble shape. .. p. 106

4.38 Time evolution of the vortex shedding behind the bubble, showing the varicose mode (cont.). .. p. 107

4.39 Overall time cost of each task group, when taking into account the entire simulation. Pressure: 75.930%; velocity: 6.296%; writing restart files: 0.006%; Lagrangian operations: 12.468%, AMR operations: 5.145%, writing output for post-processing:0.005%, others: 0.069%. .. p. 108

4.40 Time cost of each task group, when taking into account only the time steps in which the Eulerian domain was remeshed. Pressure: 17.191%; velocity: 1.500%; writing restart files: 0.633%; Lagrangian operations: 2.933%, AMR operations: 77.692%, writing output for post-processing:0.034%, others: 0.017%. p. 109

4.41 Time cost of each task of the Lagrangian group, when taking into account the entire simulation. Surface remesh: 39.986%, transferring information from IB-GTS to AMR3D:2.511; Lagrangian maps: 7.214%, Velocity Interpolation: 0.000%, spreading the interface force on the Eulerian grid: 18.110%, TSUR3D: 3.733%, volume recovery algorithm: 0.980%. .. p. 110
A.1 The coalescence algorithm applied to two spheres. The main sequence of the algorithm is explained in the second row of the figure: the intersection between the two spheres is forced (left), then the irrelevant part of the intersection is dismissed (center) and the surfaces are taken back to their original positions, except for the vertices generated by the intersection process (right). The image on the bottom shows the necking region created by the process, overlapped with the initial stage of the algorithm. .. p. 121

A.2 Identifying the collision of two surfaces. Only a cut of the dimpled hemisphere is showed. ... p. 121

A.3 The merge algorithm applied to a dimpled hemisphere (only half is shown) and a sphere. .. p. 122

A.4 An example of bubble necking in an experimental setup used for launching bubbles inside a tank filled with liquid (BURTON; WALDREP; TABOREK, 2005). p. 123

A.5 Breakup algorithm. The necking region (top left) is identified by number of Eulerian cells inside the surface (top center) and the respective surface elements are identified (top right). The centroid of the open ends of this region (bottom left) are used for computing the normal defining the cutting plane (bottom center) and the surface is then split (bottom right). .. p. 124

B.1 Geometric data types in GTS. .. p. 126

B.2 Mesh-related data types in GTS. .. p. 126

B.3 The GtsSurface data type in GTS. .. p. 126

B.4 Relationship between the data types defined in the GTS library. p. 127

B.5 Wrapper data types as defined inside AMR3D (left) and IB-GTS (right) for granting AMR3D access to the geometric data of the surface. p. 130

B.6 A snapshot of the headers of the functions used for surface remeshing and calculating the indicator function. .. p. 130
B.7 A snapshot of the module gts_amr3d_interface showing the interface for calling functions for surface remeshing and calculating the indicator function. . . . p. 131

C.1 The rise of two bubbles with different diameter. Temporal sequence is: left column, bottom to top; right column, bottom to top. Case based on (UNVERDI; TRYGGVASON, 1992). p. 132
List of Tables

1.1 Qualitative comparison of homogeneous and heterogeneous flow regimes in bubble columns (RUZICKA et al., 2001b). ... p. 27

2.1 Physical quantities that have influence on the terminal velocity of a rising bubble (BHAGA, 1976). ... p. 30

4.1 Verification tests. Navier Stokes solver run with Dirichlet boundary conditions for velocity and Neumann for the pressure. .. p. 71

4.2 Verification tests. Navier Stokes solver run with Neumann boundary conditions for velocity and Dirichlet for the pressure. .. p. 71

4.3 Verification tests. Navier Stokes solver run with Periodic boundary conditions for both, velocity and pressure. .. p. 72

4.4 Shear Flow. Case description for each test performed. p. 76

4.5 Capillarity number as a function of the Laplace number. p. 79

4.6 A-series: Cases description and error on the terminal Re number. Reference $Re = 20.6$. ... p. 82

4.7 Influence of the domain size on the terminal Reynolds number. All cases were run with $Lz = 16\phi$. Reference $Re = 20.6$. .. p. 84

4.8 Influence of the Lagrangian mesh resolution on the terminal bubble Reynolds number. Reference $Re = 20.6$. ... p. 87
4.9 Influence of the density ratio on the terminal Reynolds number and bubble shape. Comparison against the experimental work of Bhaga and Weber (1981).

\(Eo = 243, \ M = 266, \ Re = 7.77. \) .. p. 89

4.10 Comparison of terminal shapes and Reynolds number reported by the reference works (BHAGA; WEBER, 1981; HUA; LOU, 2007) and the present work. . . p. 94

4.11 Comparison of terminal shapes and Reynolds number reported by the reference works (BHAGA; WEBER, 1981; HUA; LOU, 2007) and the present work. Influence of the Morton number on the terminal shapes and Reynolds number. . . p. 95

4.12 Comparison of terminal bubble wake observed in experiments (BHAGA; WEBER, 1981) and predicted in simulation (HUA; LOU, 2007) for various Reynolds, Morton and Eotvos numbers against results obtained in the present work. . . p. 95

4.13 Tasks executed at each time step during the simulation, grouped according to the purpose. ... p. 105

B.1 Some data types in C and their equivalent types in Fortran, as provided by the module iso_c_binding (ADAMS et al., 2009). p. 129
List of Symbols

\[|| \cdot ||_2 \] Euclidean norm, \(L_2 \)-norm.
\[|| \cdot ||_\infty \] Infinity norm, \(L_\infty \).
\((\cdot)_D \) Index referring to the dispersed phase
\((\cdot)_C \) Index referring to the continuous phase
\(\nabla \) Gradient operator
\(\nabla^2 \) Laplacian operator
\(\alpha_i \) Time discretization coefficients, \(i = 0, 1, 2 \)
\(\beta_i \) Time discretization coefficients, \(i = 0, 1 \)
\(\delta(x) \) Dirac delta function
\(\Delta e_i \) Length of edge \(i \), which belongs to a Lagrangian mesh
\(\Delta t \) Time step
\(\Delta V \) Volume change
\(\Delta x \) Grid spacing in the x-direction
\(\Delta y \) Grid spacing in the y-direction
\(\Delta z \) Grid spacing in the z-direction
\(\varepsilon \) Relative error between two variables
\(\varphi \) A generic property
\(\gamma \) Distance threshold for which the indicator function is calculated; coefficient for determining a time scheme discretization for the Navier-Stokes equations
\(\lambda_\rho \) Density ratio between the continuous phase and the dispersed phase
\(\lambda_\xi \) Characteristic length ratio between the Eulerian grid and the Lagrangian mesh
\(\mu \) Viscosity
\(\theta_i \)
- Time discretization coefficients, \(i = 0, 1, 2 \)

\(\rho \)
- Density

\(\xi_L \)
- Characteristic length of the Lagrangian mesh. The average length of all edges of the Lagrangian mesh

\(A_S \)
- Total area of a surface or a Lagrangian mesh

\(A_T \)
- Area of the triangle \(T \)

\(N_t \)
- Number of triangles in a Lagrangian mesh

\(C \)
- A generic 2D Lagrangian mesh

\(Ca \)
- Capillarity number

\(D(x) \)
- Smooth function replacing the Dirac delta function

\(d \)
- Distance between two points

\(dt \)
- Time step

\(dF \)
- Elemento de fora interfacial no domnio lagrangiano

\(df \)
- Elemento de fora interfacial no domnio euleriano

\(F \)
- Interface tension force in the Lagrangian domain

\(f \)
- Interface tension force in the Eulerian domain

\(H \)
- Indicator function; smoothed Heaviside function

\(h \)
- A characteristic length

\(La \)
- Laplace number

\(M \)
- Morton number

\(m \)
- Midpoint of an edge on a mesh

\(N_e \)
- Number of edges in the Lagrangian mesh

\(n \)
- Index for identifying of the current time step

\(n \)
- Normal vector

\(n_v \)
- Normal vector approximation for vertex \(v \)

\(p \)
- Pressure field

\(p \)
- Generic point on a mesh

\(P \)
- Generic polyhedron

\(r \)
- Distance between the Lagrangian interface and the center of an Eulerian cell

\(Re \)
- Reynolds number
\(S \) A generic surface
\(t \) time instant
\(\mathbf{t} \) tangent vector
\(\mathbf{U} \) Velocity field in the Lagrangian framework
\(\mathbf{u} \) Velocity field in the Eulerian framework
\(U, V, W \) Velocity components in x-, y- and z-directions, respectively, in the Lagrangian framework
\(u, v, w \) Velocity components in x-, y- and z-directions, respectively, in the Eulerian framework
\(w_i \) Weighting factor, used during the calculus of the \(L_2 \)-norm in the Eulerian grid
TABLE OF CONTENTS

LIST OF FIGURES

p. viii

LIST OF TABLES

p. xv

LIST OF SYMBOLS

p. xviii

1 **Introduction**

1.1 Industrial processes involving bubble flows

p. 24

1.2 Current work and contribution

p. 27

1.3 Thesis outline

p. 28

2 **Background**

2.1 Bubbly flows

p. 29

2.1.1 Classification of fluids according to Morton Number

p. 31

2.2 One Fluid Formulation

p. 32

2.2.1 Front Tracking Methods

p. 35

2.3 The front-tracking method of Tryggvason

p. 35

2.3.1 Indicator Function

p. 37

2.4 Adaptive Mesh Refinement

p. 38
3 Methodology

3.1 Overview ... p. 43

3.2 The Eulerian Framework .. p. 44
 3.2.1 Governing Equations ... p. 44
 3.2.2 Indicator Function - Closest Point Transform p. 46
 3.2.3 Temporal Discretization p. 50
 3.2.4 Spatial Discretization p. 53
 3.2.5 Structured Adaptive Mesh Refinement p. 54

3.3 The Lagrangian framework .. p. 56
 3.3.1 Interface advection ... p. 57
 3.3.2 Volume and shape preserving after advecting the interface p. 57
 3.3.3 Interfacial tension force p. 62
 3.3.4 Surface remeshing .. p. 64

3.4 The complete algorithm ... p. 66

3.5 Closure .. p. 67

4 Results

4.1 Verification ... p. 68
 4.1.1 Navier-Stokes solver .. p. 69
 4.1.2 Front tracking tools ... p. 71
 4.1.3 Spurious currents ... p. 77

4.2 Rising Bubbles .. p. 79
 4.2.1 Introduction ... p. 79
 4.2.2 Sensitivity Analysis .. p. 80
4.2.3 Terminal bubble shape and Reynolds number for low Reynolds flows . p. 93
4.2.4 Wobbling . p. 99
4.2.5 Computational cost of the algorithm p. 104

5 Concluding remarks and perspectives p. 111

Works Cited p. 114

Appendix A – Computational Geometry tools p. 119
 A.1 Coalescence . p. 119
 A.2 Fragmentation . p. 123

Appendix B – Computational Aspects p. 125
 B.1 GTS - GNU Triangulated Library . p. 125
 B.1.1 GTS Functions . p. 127
 B.2 Coupling GTS and AMR3D codes . p. 127
 B.2.1 C-Fortran interoperability . p. 128
 B.2.2 Module gts_amr3d_interface . p. 129

Appendix C – Two non-coalescing rising bubbles p. 132
CHAPTER I

Introduction

1.1 Industrial processes involving bubble flows

A flow is called multiphase when there is more than one phase moving together in the same velocity field. These phases can be solid, liquid or gas, in any combination between them. Such flows occur in countless industrial processes, covering a wide range of phenomena and scales (PORTELA; OLIEMANS, 2006). Yeoh and Tu (2009) provide a small list with some common examples of multiphase flows found in industry, grouped according to the kind of phases present in the flow:

• Gas-particle flows: pneumatic conveyors, dust collectors, spray drying, spray casting.

• Liquid-solid flows: slurry transportation, flotation, fluidized beds, water jet cutting, sewage treatment plants.

• Gas-liquid flows: boiling water and pressurized water nuclear reactors, boilers, heat exchangers, internal combustion engines, bubble column reactors, gas-lift transport.

• Liquid-liquid flows: emulsifiers, fuel-cell systems, micro-channel applications, extraction systems

• Gas-liquid-solid flows: air lift pumps, fluidized beds, oil transportation.
Gravity driven gas-liquid flows, which are the main focus of this work, are usually categorized according to the spatial distribution of each phase in the flow, as shown in Fig. (1.1). Ranging from gas bubbles flowing through a continuous liquid phase to liquid droplets dispersed in a continuous gas phase, the flow can be categorized according to the gas flow rate. At low rates, the bubbles usually rise through a stagnant liquid. As the flow rate increases, bubble coalescence increases and the bubble distribution will no longer be uniform, leading to slug-flow (large gas bubbles contained in the continuous liquid phase) or churn-flow, which takes place at higher gas velocity. Further increasing in the gas flow-rate changes the flow to annular, in which the liquid forms a film on the pipe wall and the gas phase remains in the core of the flow. In each of these flow regimes, interaction between gas and liquid phases may occur, with bubble entrainment in the liquid phase and droplets being taken from the liquid film and led by the gas flow.

Figure 1.1: Flow patterns for a vertical pipe gas-liquid flow(MUDDE, 2005).

Take as an example a bubble column, a device widely used in chemical and biochemical industries, in which a tank is filled with liquid and bubbles are injected at the bottom. The buoyancy force induces a strong circulation, with the liquid moving up in the center and down near the walls. Figure (1.2) depicts a laboratory-size bubble column on the left and the schematic representation of the flow inside it on the right.
The flow regime will depend on the gas flow rate and on the sparger geometry. The homogeneous regime is achieved by employing a plate with small and closely spaced orifices and constant, low gas flow rate (RUZICKA et al., 2001b). This leads to nearly spherical bubbles rising in a quasi-linear path, densely packed in layers of equal-sized bubbles. As the bubbles rise, a considerable amount of liquid is lifted up to the top of the column and then, due to the mass conservation, returns down. This counter current delays the bubble ascending velocity and increases the gas holdup (RUZICKA et al., 2001a). Although this small-scale liquid velocity field is unsteady and highly fluctuating on short time scales, the long-time radial profiles of velocity (HILLS, 1974; LAPIN; LUBBERT, 1994) and voidage (KUMAR; MOSLEMIAN; DUDUKOVIC, 1997) are flat.

Increasing the flow rate leads to flow instability and subsequent transition to the heterogeneous regime, characterized by large, highly non-uniform bubbles and a strong tendency to coalescence. This same regime can be also achieved by using plates with large orifices, in which case the gas flow rate is less important (RUZICKA et al., 2001b). Table (1.1) summarizes the main
differences between these two flow regimes.

Table 1.1: Qualitative comparison of homogeneous and heterogeneous flow regimes in bubble columns (RUZICKA et al., 2001b).

<table>
<thead>
<tr>
<th>Flow Regime</th>
<th>Homogeneous</th>
<th>Heterogeneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orifice size</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Orifice pitch</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Number of Orifices</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Bubbles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Formation</td>
<td>Breakup of fine jets</td>
<td>Breakup of strong jets</td>
</tr>
<tr>
<td>Coalescence</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Rising path</td>
<td>Quasi-linear</td>
<td>Irregular path</td>
</tr>
<tr>
<td>Voidage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean value</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Non-uniformity</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Mean radial profile</td>
<td>Zero</td>
<td>Non-zero</td>
</tr>
<tr>
<td>Liquid flow</td>
<td>≈Bubble size</td>
<td>≈Column size</td>
</tr>
<tr>
<td>Circulations</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mean radial profile</td>
<td>Zero</td>
<td>Non-zero</td>
</tr>
<tr>
<td>Boundaries</td>
<td>Importance</td>
<td>High</td>
</tr>
<tr>
<td>Importance</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Current work and contribution

This work will focus on the simulation of fundamental bubble flows, in order to validate the various flow regimes mapped in the Grace diagram (CLIFT; GRACE; WEBER, 1978). As for representing the interface, the front-tracking method was chosen based on the possibility of implementing specific models for coalescence and fragmentation in the future.

Regarding the Navier-Stokes solver, an adaptive refinement strategy will be adopted, based on the block structured adaptive mesh refinement (SAMR) of Berger and Collela ((BERGER; JAMESON, 1985; BERGER, 1986; BERGER; OLIGER, 1984; BERGER; RIGOUTSOS, 1991)). In fact, the front-tracking module will be added to an existing domestic code, which is ultimately the outcome of two Ph.D. theses. Villar (2007) has implemented a 2D, SAMR-based, front-tracking solver with applications to rising bubble flows. Nos (2007) implemented a 3D solver for multiphase flows based on phase field models, also based on the SAMR paradigm. Villar, later on, implemented a VOF module for the 3D code and, as the outcome of the present thesis, a front-tracking module will also be added.

In this sense, the main contribution of this thesis is providing a front-tracking module for the
simulation of multiphase flows, with volume and shape conservation properties. Also, as will be shown later, despite conservative remeshing, front-tracking methods may still be non-conservative due to the velocity interpolation process. To overcome this problem, a simple volume recovery algorithm will also be implemented, along with a sub-grid undulation removal.

1.3 Thesis outline

This thesis is outlined as follows. An overview of the main computational techniques typically employed to solve the problem is shown in Chapter 2. Chapter 3 details the aspects of the methodology developed in the current work. This methodology is then subjected to a set of analytical verification tests, described in chapter 4, which also shows the results obtained when simulating the motion of rising bubbles in various flow regimes. Chapter 5 finally concludes this thesis with a summary of the main conclusions and recommendations for future work.
CHAPTER II

Background

2.1 Bubbly flows

A body rising or falling under gravity reaches a terminal velocity when the forces acting on it (drag, buoyancy and weight) are in equilibrium. The drag force on rigid bodies depends on the body shape, on the terminal velocity and on the physical properties of the flow. When the flow has more than one fluid component, the situation becomes more complex. Fluid bodies, such as bubbles or drops, can deform under the action of the flow and the transfer of momentum across the interface may induce vortices inside the bubble. Therefore, the bubble shape will depend on the viscous and interfacial forces, as well as on the forces from the surrounding flow (VRIES, 2001). Since a general analytical solution for the drag of a bubble is not possible except for special cases, various workers have tried to correlate experimental results by dimensional analysis. The relevant physical quantities for a single bubble rising at its terminal velocity in an infinite liquid are listed in Tab. (2.1) (BHAGA, 1976).

It is usual in the studies of bubbles and drops to employ the equivalent sphere diameter, \(\phi \), as the relevant length parameter because it is independent of the bubble shape and is related directly
Table 2.1: Physical quantities that have influence on the terminal velocity of a rising bubble (BHAGA, 1976).

<table>
<thead>
<tr>
<th>property</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>terminal velocity of the bubble</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>ρ_c</td>
<td>density of the continuous phase</td>
</tr>
<tr>
<td>ρ_d</td>
<td>density of the dispersed phase</td>
</tr>
<tr>
<td>μ_c</td>
<td>viscosity of the continuous phase</td>
</tr>
<tr>
<td>μ_d</td>
<td>viscosity of the dispersed phase</td>
</tr>
<tr>
<td>σ</td>
<td>interfacial tension</td>
</tr>
<tr>
<td>ϕ</td>
<td>equivalent sphere diameter</td>
</tr>
</tbody>
</table>

Rising bubble flows can be described in terms of three non-dimensional numbers: the Eotvos number, the Morton number and the Reynolds number:

$$Eo = \frac{g \Delta \rho \phi^2}{\sigma} \quad (2.2a)$$

$$M = \frac{g \Delta \rho \mu^4}{\rho_c^2 \sigma^3} \quad (2.2b)$$

$$Re = \frac{\rho_c U \phi}{\mu_c} \quad (2.2c)$$

where g is the gravity acceleration, ρ_c is the density of the continuous phase, ϕ is the equivalent diameter of the bubble, μ_c is the viscosity of the continuous phase and σ is the interface tension of between the fluid-fluid interface.

Bubbles tend to deform when subject to external flow fields until normal and shear stresses balance at the fluid-fluid interface, and their shape under the action of gravity in a initially quiescent liquid can be grouped into three large categories: spherical, ellipsoidal and spherical-cap or ellipsoidal-cap.

Usually, bubbles are termed spherical if the interfacial tension and/or viscous forces are much more significant than inertia forces. Clift, Grace and Weber (1978) classify a rising bubble
as spherical if its aspect ratio lies within 10% of unity.

The term \textit{ellipsoidal} usually refers to bubbles that are oblate with a convex shape when viewed from inside. Although bubbles with this shape may present axi-symmetry, no fore-and-aft symmetry should be assumed. As inertia forces become more important, ellipsoidal bubbles may undergo periodic dilatation or random wobbling motion, making shape characterization rather difficult (BHAGA, 1976).

Large bubbles usually have flat or indented bases, without fore-and-aft symmetry. Their fore-shape may resemble segments cut from spheres or oblate spheroids of low eccentricity, which originated the names \textit{spherical-cap} or \textit{ellipsoidal cap}. Bubbles in this regime may also develop thin envelopes of dispersed fluid at their bases, usually referred to as skirts. (BRENNEN, 2005)

2.1.1 \textit{Classification of fluids according to Morton Number}

Since the Morton Number depends only on physical properties, it is widely used for creating experimental correlations. Its values vary over a wide range, from 10^5 to 10^{-14}, influenced mainly by the viscosity of the continuous phase (BHAGA, 1976).

Bubbles immersed in low Morton fluids quickly accelerates to their maximum velocity and then oscillate before achieving the steady state. Regarding its shape, the bubble is initially spherical, then becomes increasingly oblate until it reaches the point of maximum velocity. Then, large bubbles assume a spherical shape with a fluctuating base. The path, initially linear, may change to zigzag or spiral after reaching the maximum velocity (BHAGA, 1976).

Bubbles immersed in high Morton number fluids, on the other hand, have a rectilinear path resulting from a smoother velocity profile, in which the bubble slowly accelerates until the maximum velocity without any overshooting in this profile. Also, the spherical cap shape is achieved without any instability (BHAGA; WEBER, 1981).
2.2 One Fluid Formulation

The oldest and most successful approach for solving multiphase flows is the so-called one-fluid formulation. A single set of Navier-Stokes equations is written for the entire domain, and the phase interfaces are taken into account by adding a singular force term (TRYGGVASON et al., 2001).

The Navier-Stokes equations can be solved by any method suitable for constant physical properties, but generally a projection method is employed (TRYGGVASON et al., 2006). In projection methods, firstly an intermediate velocity field is calculated, taking into account only the advective and viscous terms, plus body forces and, in the case of multiphase flows, interface forces. In the general case, the velocity field obtained is not divergence-free and must be corrected, by adding the pressure gradient to ensure the zero-divergence. This correction is termed projection onto the divergence-free space, which gave origin to the name projection method. The equation for the pressure is obtained by taking the divergence of the momentum equation and setting the divergence of the velocity fluid to zero.

Although similar to what is done for single phase flows, projection methods for multiphase flows have some complicating factors: the pressure equation, the advection of material fields and the computation of the interface tension force (TRYGGVASON et al., 2006). In the pressure equation, the density field is not constant and therefore cannot be separated from the pressure, which may lead to numerical stability issues, especially for large density ratios (TRYGGVASON et al., 2001), (HUA; LOU, 2007).

Density and viscosity fields are not directly advec ted. Instead, a marker function H that identifies the location of the different fluids is used. This function is a scalar field so that $H=1$ identifies the location of one fluid and $H=0$ identifies the other one, resembling a Heaviside function. However, the transition from zero to one smoothed between a few computational cells, so that the gradients of physical properties at the interface are also smoothed.

There are basically two family of methods for representing the interface, according to the reference frame used in the definition of the interface:
• Eulerian methods: rely on a single, Eulerian, framework to simulate the flow field and the presence of the interface. Shock-capturing, level set and volume of fluid are typical examples of this family.

• Lagrangian methods: solve the flow field in the usual Eulerian framework and uses a Lagrangian framework to represent the fluid interface explicitly. Examples: marker particles, Lattice-Boltzmann and front-tracking methods.

Shock-capturing methods use high-order shock-capturing schemes to treat the convective terms in the governing equations, and their main advantage is that no explicit reconstruction of the interface is necessary (IDA, 2000). However, although requiring relatively fine grids to obtain accurate solutions, these methods may suffer from lack of accuracy when sharp discontinuities are present (ANNALAND; DEEN; KUIPERS, 2006).

Level set methods define the interface as the zero level set of a distance function from the interface, which is advected with the local fluid velocity in an Eulerian manner (SUSSMAN; SMEREKA; OSHER, 1994; SUSSMAN et al., 1999). Although being conceptually simple and relatively simple to implement, these methods lack volume conservation when the flow becomes too complex, that is, when there is high local deformation on the interface and the vorticity field is moderate to high (ANNALAND; DEEN; KUIPERS, 2006).

Volume of fluid methods (VOF) (HIRT; NICHOLS, 1981) use an indicator function which yields the volume fraction at a position \((x,y,z)\) at time \(t\) and the interface orientation is determined using its gradient (SCARDOVelli; ZALESKI, 1999). Similarly to level set methods, the interface is advected in an Eulerian manner. Although in one dimension it is possible to compute exactly the flux of the volume fraction from one cell to the next, the extension to two- and three-dimensions has, however, proven to be challenging (TRYGGVASON et al., 2006).

Regarding the representation of the interface, two classes of methods can be pointed out: simple line interface calculation (SLIC) and piecewise interface calculation (PLIC), the latter having the best accuracy capabilities (ANNALAND; DEEN; KUIPERS, 2006). With regards to fragmentation and coalescence, VOF methods share a feature that can be an advantage or a drawback. Since each phase has a specific scalar value attached to it, if two interfaces of the same phase
occupy the same computational cell, they will always coalesce. This could be a problem if coalescence is known to not happen at that situation or, on the other hand, an advantage if the merging occurs, because no additional test would be necessary. This is the opposite to what happens with Front Tracking methods, which always demand specific algorithms for the merging and/or the breakup of the interface.

Marker particle methods (RIDER; KOTHE, 1995; WELCH et al., 1965) track each phase with a set of meshless Lagrangian particles, spread through all the volume occupied by the respective phase. These particles also carry the physical properties of their fluid phases, and a mapping between the Lagrangian and Eulerian domain is used to retrieve the relevant physical properties to solve the Navier-Stokes equations. These methods are extremely accurate and robust and can predict the topology of an interface subjected to considerable shear and vorticity in the fluids sharing the interface. However, it may be necessary to add new marker particles, increasing the computational cost considerably. Also merging and breakup of interfaces constitute a problem (ANNALAND; DEEN; KUIPERS, 2006).

The lattice Boltzmann method (LBM) can be viewed as a special, particle-based discretization method to solve the Boltzmann equation (LADD, 1994a; LADD, 1994b). This method is particularly attractive in case multiple moving objects, since no dynamic remeshing is necessary (ANNALAND; DEEN; KUIPERS, 2006). However, similar to VOF methods, artificial coalescence and fragmentation may occur.

Front-tracking methods (UNVERDI; TRYGGVASON, 1992; TRYGGVASON et al., 2001) rely on an unstructured mesh to track the interface and an Eulerian grid is used to solve the Navier-Stokes equations. This method may be very accurate for representing the interface, but is also requires dynamic remeshing of the Lagrangian interface mesh and a mapping of the Lagrangian data onto the Eulerian grid. Multiple interfaces interacting each other as in coalescence or fragmentation require additional models in order to decide whether the merge/breakup will occur. That is, the use of a separate mesh for tracking the interface enables the implementation of additional criteria which prevent the coalescence of two bubbles/droplets just because they approached each other. This property is advantageous in cases in which swarm effects in dispersed flows need to be studied.
2.2.1 *Front Tracking Methods*

Front Tracking Methods were introduced originally in the 1960’s by Richtmyer and Morton (RICHMYER; MORTON, 1967 apud STENE, 2010) and have continually evolved since then. The Navier-Stokes equations are solved in an Eulerian framework and the interface between the phases is tracked by an independent set of marker points which store representative coordinates of the interface. Although storing the markers coordinates is enough to fully determine the interface position, storing the interface as a mesh is useful for computing geometrical properties such like normals, area and the interfacial tension force, not to mention the checking against collisions or merge/breakup phenomena. Since the interface is explicitly represented by its coordinates, the set of markers is said to use a Lagrangian framework, and the mesh which characterizes the interface is termed Lagrangian mesh.

There are two possible strategies for mesh communication. Glim and his co-workers (GLIM et al., 1981) discretize the Navier-Stokes equations using a finite difference method which modifies the stencil in the vicinity of the mesh overlap, so that the vertices of the two meshes match each other. However, for multiphase flows the most widespread methodology is based on the Immersed Boundary Method by Peskin (PESKIN, 1977), (PESKIN, 2002), which represents the interface by imposing a force field that is spread on the Eulerian mesh. The Navier Stokes equations are solved based on one-fluid models.

Among the various methodologies developed after Peskin, one of the most widespread in the context of multiphase flows is the work of Tryggvason (UNVERDI; TRYGGVASON, 1992; TRYGGVASON et al., 2001). Similarly to IBM, the interface between the phases is represented by the interfacial tension force field.

2.3 The front-tracking method of Tryggvason

The front-tracking method of Tryggvason (UNVERDI; TRYGGVASON, 1992; TRYGGVASON et al., 2001) is based on the one-fluid formulation and on the immersed boundary method of Peskin (PESKIN, 1977; PESKIN, 2002). Therefore, it relies on a mesh described in
a Lagrangian framework on which the interface tension force is calculated and then spread on the Eulerian grid, at the vicinity of the Lagrangian points. Since the interface position is known, the interface tension force can be calculated by integrating the interface tension on a surface element ΔS, according to Eq. (2.3):

$$\delta F_\sigma = \int_{\Delta S} \sigma \kappa n ds$$

(2.3)

where σ is the surface tension coefficient, κ is twice the mean curvature for three-dimensional domains and n is the local normal to the surface. By replacing the geometrical relation $\kappa \times n = (n \times \nabla) \times n$ on Eq. (2.3) and using the Stokes theorem, the force on a surface element can be computed without explicitly calculating the surface curvature, via Eq. (2.4):

$$\delta F_\sigma = \oint_{\delta \Gamma} \sigma t \times n d\Gamma$$

(2.4)

where $d\Gamma$ is the boundary of the integration element, t is the unit tangent and n is the unit normal, both computed at the element boundary.

Equation (2.4) is the basis for computing the surface tension force in front-tracking methods and many be solved in various ways. In the most common approach, the mesh elements are used as the integration elements. Tryggvason et al. (2001) compute the tangent vectors from the end points of the element edges, but perform a local surface fit in order to calculate the normal vectors. Deen, Annaland and Kuipers (2004) compute the tangent vectors in a similar manner, but use the normals at the adjacent elements as depicted in Fig. (2.1) on the top left. Therefore, the resulting force vector lies on the plane defined by the neighbouring element and is perpendicular to the tangent vector. Singh and Shyy (2007), on the other hand, use the resultant of $t \times n$ computed on both elements sharing an edge (see Fig. (2.1) on the top right). The resultant of the forces acting on the three edges is used as the force acting on the element. Recently, Tryggvason, Scardovelli and Zaleski (2011), suggested performing the integration around the mesh vertexes, as depicted in Fig. (2.1) on the bottom. In this case, the integration element is defined by the centroid of the elements sharing the vertex and the midpoint of the respective edges. This choice changes the tangent and normal definitions. In the two first cases, the tangent vectors are defined by the edges of the mesh elements. In the last case, the tangent is defined by the segment linking the midpoint of an edge to
the centroid of the element. The normal vector, on the other hand, is defined by the mesh element normals in all cases.

\[
\mathbf{n}_{m,i} = \mathbf{n}_{m} \wedge \mathbf{n}_{m,i+1}
\]

Figure 2.1: Three different ways to calculate the interface tension force on a surface element. On the top, using the mesh element as the integration element (left: Deen, Annaland and Kuipers (2004), right, Singh and Shyy (2007)). At the bottom, building the integration elements around the mesh vertexes, based on the centroid of the mesh elements sharing the vertex, proposed by Tryggvason, Scardovelli and Zaleski (2011).

2.3.1 Indicator Function

One-fluid formulations rely on a single set of equations for solving the entire flow domain, modelling it as a single fluid with variable physical properties. If the properties are constant inside a given phase, their distribution over the domain are modelled as a Heaviside function.

In this context, the objective of a given indicator function is to supply a scalar field which may be used as a Heaviside function to compute the physical properties which are relevant to the
flow. Front tracking methodologies which follow the Tryggvason school usually solve a Poisson equation for the entire domain which yields the scalar field (UNVERDI; TRYGGVASON, 1992), (ANNALAND; DEEN; KUIPERS, 2006), (SINGH; SHYY, 2007). However, solving such equation is one of the most expensive parts of a projection-based Navier-Stokes solver.

Alternatively, Mauch (2003) has developed a methodology called Closest Point Transform, or CPT, which yields an implicit representation of a surface mesh by its distance field. Unlike the Poisson equation, which needs to be solved over the entire Eulerian domain, the distance field must be calculated only in the regions around the interface. Ceniceros and Roma (2005) implemented a two-dimensional version of CPT as an indicator function in a front-tracking method and applied it to the study of a surface tension-mediated Kelvin Helmholtz instability based on a uniform Eulerian grid and Ceniceros et al. (2010) extended the formulation for a two-dimension block-structured adaptive mesh refinement formulation. (AZEREDO, 2007) implemented a three-dimension version of this indicator function in a block-structured adaptive mesh refinement framework.

2.4 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) encompasses a set of methodologies which provide the means for locally refining the mesh in regions in which the error in the solution is above some threshold previously specified. These regions are usually identified by some error measure or high gradients of some variable, such as vorticity or, in the case of multiphase flows, the density field, for example.

AMR methods can be applied either to structured or unstructured meshes. An example of unstructured adaptive mesh refinement for solving the Navier-Stokes equations is the Moving Mesh Interface Tracking (MMIT) method of Quan and Schmidt (2007), which is based on the one fluid formulation. However, unlike the front-tracking method of Unverdi and Tryggvason (1992), it uses an unstructured mesh for the discretization of the Eulerian grid, allowing the mesh points in the Lagrangian interface to be also part of the Eulerian mesh. The method was further developed in order to handle fragmentation and coalescence phenomena (QUAN; LOU; SCHMIDT, 2009).
and later improved to handle the multiple length scales originated from such phenomena (QUAN, 2011). Figure (2.2), extracted from (QUAN; LOU; SCHMIDT, 2009), shows an example of the mesh employed in the method.

Figure 2.2: An example of the mesh adaptation in the MMIT method in the simulation of the merging of two droplets (QUAN; LOU; SCHMIDT, 2009).

Regarding structured grids, the most fundamental approach for mesh adaptation is to use a non-uniform structured grid, which consists in using different grid spacing along the domain, as shown in Fig. (2.3). This approach is usually applied to multiblock grids, as shown in the image on the right, in the same figure.

Figure 2.3: Mesh grading applied to a cartesian grid (left) (DURBIN; IACCARINO, 2002) and to a multiblock grid (right) (CAGNONE et al., 2011).

While multiblock grids use boundary-fitted grids to adapt the grid around complex shapes in the domain and still have a structured grid, Chimera grids consist in overlapping different grids
on the same geometry. As shown in Fig. (2.4), different types of grids may be used together.

Figure 2.4: An example of Chimera grid in the simulation of the flow around a helicopter. Left: the mesh around the entire helicopter. Right: a detail of the mesh around the rotor (RENAUD; COSTES; PRON, 2012).

Regarding specifically cartesian grids, there are two kinds of AMR strategies widely used in the context of CFD: octree (SAMET, 1989) and Structured Adaptive Mesh Refinement or SAMR (BERGER; JAMESON, 1985). Both methods are based on splitting a cartesian cell into finer cells. However, in the SAMR approach, cells located at a given refinement level are clustered into cartesian blocks, often called patches. Figure (2.5) shows an octree grid generated by Gerris, a multiphase flow solver developed by (POPINET, 2003) which uses an octree mesh for the discretization of the Eulerian domain and VOF methods for representing the fluid interface.

The concept of block-structured adaptive mesh refinement (SAMR) is based on the works of Berger et al. (BERGER; OLIGER, 1984), (BERGER; JAMESON, 1985) and consists in creating a hierarchy of cartesian grids with different levels of refinement which cover the entire domain, concentrating the finer grids on the regions which require special attention. A level of refinement comprises one or more cartesian grid blocks which do not intersect each other and share the same grid spacing.

Regions are flagged for refinement in locations where the error on the coarse grids is high, due to localized phenomena such as turbulence, vorticity or the presence of a fluid interface (ROMA, 1996; VILLAR, 2007; CENICEROS et al., 2010). Since the refined regions are grouped
as cartesian blocks, the method can take advantage of uniform mesh solvers, which may be applied individually to each block. Figure (2.6) shows an example of a block-structured adaptive mesh during the simulation of a bubble rising in a quiescent liquid, where the grid was refined based on the gradient of the vorticity and on the presence of the interface.

Figure 2.6: An example of block structured adaptive mesh refinement. The vortex shedding behind a rising bubble is refined based on the gradient of the vorticity. In the simulation, the bubble actually moves in the vertical direction (present work).